1.1.4

CONFIDENTIAL Copy No. NATIONAL SECURITY AGENCY MILITARY CRYPTANALYTICS Part I By WILLIAM F. FRIEDMAN and LAMBROS D. CALLIMAHOS NOTICE: This material contains information affecting the national defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law. National Security Agency Washington 25, D.C. December 1952 Declassified and approved for release by NSA on 02-05-2014 pursuant to E.O. 13526

-CONFIDENTIAL

NATIONAL SECURITY AGENCY

MILITARY CRYPTANALYTICS Part I

By WILLIAM F. FRIEDMAN and LAMBROS D. CALLIMAHOS

National Security Agency Washington 25, D. C.

December 1952

The Golden Guess Is Morning-Star to the full round of Truth. -- Tennyson.

Preface

This text represents an extensive expansion and revision, both in scope and content, of the earlier work entitled "Military Cryptanalysis, Part I" by William F. Friedman. This expansion and revision was necessitated by the considerable advancement made in the art since the publication of the previous text.

I wish to express grateful acknowledgment for Mr. Friedman's generous assistance and invaluable collaboration in the preparation of this edition. I also extend particular appreciation to my colleague Robert E. Cefail for his numerous valuable comments and assistance in writing the new material which is contained herein.

– L. D. C.

)

TABLE OF CONTENTS

MILITARY CRYPTANALYTICS, PART I

Monoalphabetic Substitution Systems

Section Pages I. Introductory remarks 1-10 1. Scope of this text. 2. Mental equipment necessary for cryptanalytic work. 3. Validity of results of cryptanalysis. 1-10 II. Basic cryptologic considerations 11-20 4. Cryptology, communication intelligence, and communication security. 5. Secret communication. 6. Plain text and encrypted text. 7. Cryptography, encrypting, and decrypting. 8. Codes, ciphers, and enciphered code. 9. General

III. Fundamental cryptanalytic operations 21-30

system, specific key, and cryptosystem. 10. Cryptanalytics and cryptanalysis. 11. Transposition and substitution. 12. Nature of alphabets. 13. Types of alphabets.

14. The role of cryptanalysis in communication intelligence operations. 15. The four basic operations in cryptanalysis. 16. The determination of the language employed. 17. The determination of the general system. 18. The reconstruction of the specific key. 19. The reconstruction of the plain text. 20. The utilization of traffic intercepts.

IV. Frequency distributions and their fundamental use..... 31-54

21. The simple or uniliteral frequency distribution. 22. Important features of the normal uniliteral frequency distribution. 23. Constancy of the standard or normal uniliteral frequency distribution. 24. The three facts which can be determined from a study of the uniliteral frequency distribution for a cryptogram. 25. Determining the class to which a cipher belongs. 26. Determining whether a substitution cipher is monoalphabetic or non-monoalphabetic. 27. The ϕ (phi) test for determining monoalphabeticity. 28. Determining whether a cipher alphabetic is standard (direct or reversed) or mixed.

V. Uniliteral substitution with standard cipher alphabets 55-74

29. Types of standard cipher alphabets. 30. Procedure in encipherment and decipherment by means of uniliteral substitution. 31. Principles of solution by construction and analysis of the uniliteral frequency distribution. 32. Theoretical example of solution. 33. Practical example of solution by the frequency method. 34. Solution by completing the plain-component sequence. 35. Special remarks on the method of solution by completing the plain-component sequence. 36. Value of mechanical solution as a short cut. 37. Basic reason for the low degree of cryptosecurity afforded by monoalphabetic cryptograms involving standard cipher alphabets.

CONFIDENTIAL

Section

Pages

VI. Uniliteral substitution with mixed cipher alphabets... 75-106

38. Literal keys and numerical keys. 39. Types of mixed cipher alphabets. 40. Additional remarks on cipher alphabets. 41. Preliminary steps in the analysis of a monoalphabetic, mixed-alphabet cryptogram. 42. Preparation of the work sheet. 43. Triliteral frequency distributions. 44. Classifying the cipher letters into vowels and consonants. 45. Further analysis of the letters representing vowels and consonants. 46. Substituting deduced values in the cryptogram. 47. Completing the solution. 48. General remarks on the foregoing solution. 49. The "probable-word" method; its value and applicability. 50. Solution of additional cryptograms produced by the same components. 51. Derivation of key words.

VII. Multiliteral substitution with single-equivalent cipher alphabets...... 107-120

52. General types of multiliteral cipher alphabets. 53. The Baconian and Trithemian ciphers. 54. Analysis of multiliteral, monoalphabetic substitution ciphers. 55. Historically interesting examples. 56. The international (Baudot) teleprinter code.

VIII. Multiliteral substitution with variants...... 121-150

57. Purpose of providing variants in monoalphabetic substitution. 58. Simple types of cipher alphabets with variants. 59. More complicated types of cipher alphabets with variants. 60. Analysis of simple examples. 61. Analysis of more complicated examples. 62. Analysis involving the use of isologs. 63. Further remarks on variant systems.

IX. Polygraphic substitution systems...... 151-226

64. General remarks on polygraphic substitution. 65. Polygraphic substitution methods employing large tables. 66. Polygraphic substitution methods employing small matrices. 67. Methods for recognizing polygraphic substitution. 68. General procedure in the identification and analysis of polygraphic substitution ciphers. 69. Analysis of four-square matrix systems. 70. Analysis of two-square matrix systems. 71. Analysis of Playfair cipher systems. 72. Analysis of polygraphic systems involving large tables. 73. Further remarks on polygraphic substitution systems.

74. Preliminary observations. 75. Types of alphabets with irregular-length ciphertext units. 76. General remarks on analysis. 77. Analysis of simple examples. 78. Analysis of more complicated examples. 79. Further remarks on cryptosystems employing irregular-length ciphertext units.

-CONFIDENTIAL

Section

Pages

XI. Miscellaneous monoalphabetic systems; concluding remarks.....

249-270

80. Cryptosystems employing syllabary squares and code charts. 81. Cryptosystems employing characters other than letters or figures. 82. Special remarks concerning the initial classification of cryptograms. 83. Disguised secret communications. 84. Concluding remarks.

APPENDICES

1.	Glossary for Military Cryptanalytics, Part I
2.	Letter frequency data - English
3.	Word and pattern lists - English
4.	Service terminology & stereotypes
5.	Letter frequency data - foreign languages
6.	List of frequent words - English and foreign languages
7.	Cryptographic supplement
8.	Lester S. Hill algebraic encipherment
9.	Concealment systems
10.	Communication intelligence operations
11.	Principles of cryptosecurity
12.	Bibliography; recommended reading
13.	Problems - Military Cryptanalytics, Part I
14.	Foreign language problems

INDEX

-CONFIDENTIAL

(BLANK)

- CONFIDENTIAL

RESTRICTED	REF ID:A56892
	8° 11
	SECTION I
	TINTRODUCTORY REMARKS

1. Scope of this text.--e This text constitutes the first of a series of six basic texts¹ on the art of cryptanalysis. Although most of the information contained herein is applicable to cryptograms of various types and sources, special emphasis will be laid upon the principles and methods of solving military² cryptograms. Except for an introductory discussion of fundamental principles underlying the science of cryptana-lytics, this first text in the series will deal solely with the principles and methods for the analysis of monoalphabetic substitution ciphers. Even with this limitation it will be possible to discuss only a few of the many variations of this one type that are met in practice; but with a firm grasp upon the general principles few difficulties should be experienced with any modifications or variations that may be encountered.

b. This and some of the succeeding texts will deal only with basic types of cryptosystems not because they may be encountered unmodified in military operations but because their study is essential to an understanding of the principles underlying the solution of the modern, very much more complex types of codes, ciphers, and certain encrypted transmission systems that are likely to be employed by the larger governments of today in the conduct of their military affairs in time of war.

c. It is presupposed that the student has no prior background in the field of cryptology; therefore cryptography is presented concurrently with cryptanalysis. Basic terminology and preliminary cryptologic considerations are treated in Section II; other terms are usually defined upon their first occurrence, or they may be found in the Glossary (Appendix 1).

d. The cryptograms presented in the examples embrace messages from hypothetical air, ground, and naval traffic; thus, the student will have the opportunity to familiarize himself with the language and phraseology of all three Services comprising the Armed Forces of the United States.

^{\perp} Each text has its accompanying course in cryptanalysis, so that the student may test his learning and develop his skill in the solution of the types of cryptograms treated in the respective texts. The problems which pertain to this text constitute Appendix 13.

² The word "military" is here used in its broadest sense. In this connection see subpar. d, below.

-RESTRICTED ·

2. Mental equipment necessary for cryptanalytic work.--a. Captain Parker Hitt, in the first United States Army manual³ dealing with cryptology, opens the first chapter of his valuable treatise with the following sentence:

"Success in dealing with unknown ciphers is measured by these four things in the order named: perseverance, careful methods of analysis, intuition, luck."

These words are as true today as they were then. There is no royal road to success in the solution of cryptograms. Hitt goes on to say:

"Cipher work will have little permanent attraction for one who expects results at once, without labor, for there is a vast amount of purely routine labor in the preparation of frequency tables, the rearrangement of ciphers for examination, and the trial and fitting of letter to letter before the message begins to appear."

The present author deems it advisable to add that the kind of work involved in solving cryptograms is not at all similar to that involved in solving crossword puzzles, for example. The wide vogue the latter have had and continue to have is due to the appeal they make to the quite common interest in mysteries of one sort or another; but in solving a crossword puzzle there is usually no necessity for performing any preliminary labor, and palpable results become evident after the first minute or two of attention. This successful start spurs the crossword "addict" on to complete the solution, which rarely requires more than an hour's time. Furthermore, crossword puzzles are all alike in basic principles and once understood, there is no more to learn. Skill comes largely from the embellishment of one's vocabulary, though, to be sure, constant practice and exercise of the imagination contribute to the ease and rapidity with which solutions are generally reached. In solving cryptograms, however, many principles must be learned, for there are many different systems of varying degrees of complexity. Even some of the simpler varieties require the preparation of tabulations of one sort or another, which many people find irksome; moreover, it is only toward the very close of the solution that results in the form of intelligible text become evident. Often, indeed, the student will not even know whether he is on the right :rac1 until he has performed a large amount of preliminary "spade work" involving many hours of labor. Thus, without at least a willingness to pursue a fair amount of theoretical study, and a more than average amount of patience and perseverance, little skill and experience can be gained in the rather difficult art of cryptanalysis. General Givierge, the author of an excellent treatise on cryptanalysis, remarks in this connection:⁴

"The cryptanalyst's attitude must be that of William the Silent: No need to hope in order to undertake, nor to succeed in order to persevere."

⁵ Hitt, Capt. Parker, <u>Manual for the Solution of Military Ciphers</u>. Army Scrvice Schools Press, Fort Leavenworth, Kansas, 1916. 2d Edition, 1918. (Both out of print.)

⁴ Givierge, Général Marcel, Cours de Cryptographie, Paris, 1925, p. 301.

b. As regards Hitt's reference to careful methods of analysis, before one can be said to be a cryptanalyst worthy of the name it is necessary that one should have, firstly, a sound knowledge of the basic principles of cryptanalysis, and secondly, a long, varied, and active practical experience in the successful application of those principles. It is not sufficient to have read treatises on this subject. One month's actual practice in solution is worth a whole year's mere reading of theoretical principles. An exceedingly important element of success in solving the more intricate cryptosystems is the possession of the rather unusual mental faculty designated in general terms as the power of inductive and deductive reasoning. Probably this is an inherited rather than an acquired faculty; the best sort of training for its emergence, if latent in the individual, and for its development is the study of the natural sciences, such as chemistry, physics, biology, geology, and the like. Other sciences such as linguistics, archaeology, and philology are also excellent.

c. Aptitude in mathematics is quite important, more especially in the solution of ciphers and enciphered codes than in codebook reconstruction, which latter is purely and simply a linguistic problem. Although in the early days of the emergence of the science of cryptanalytics little thought was given to the applications of mathematics in this field, many branches of mathematics and, in particular, probability and statistics, have now found cryptologic applications. Those portions of mathematics and those mathematical methods which have cryptologic applications⁵ are known collectively as cryptomathematics.

⁵ It is quite important to stress at this point that in professional cryptologic work the science of cryptanalytics is subordinated to the art of cryptanalysis, just as in the world of music the technical virtuosity of a great violinist is adjuvant to the expression of music, that is, the virtuosity is a "tool" for the recovery of the complete musical "plain text" conceived by the composer. Since the practice of cryptanalysis is an art, mathematical approaches cannot always be expected to yield a solution in cryptology, because art can and must transcend the cold logic of scientific method. By way of example, an experienced Indian guide can usually find his way out of a dense forest more readily than a surveyor equipped with all the refined apparatus and techniques of his profession. Likewise, an experienced cryptanalyst can generally find his way through a cryptosystem more readily than a pure mathematician equipped merely with the techniques of his field no matter how abstruse or refined they may be. A cryptomathematician of repute once stated that "the only effect of /refined mathematical techniques / is frequently to discourage one so much that one does nothing at all and some unmathematical ignoramus then gets the problem out in some very unethical way. This is intensely irritating," See also in this connection the remarks made in subpar. 27e in reference to the validity of statistical tests in cryptanalysis.

క

d. An active imagination, or perhaps what Hitt and other writers call intuition, is essential, but mere imagination uncontrolled by a judicious spirit will be more often a hindrance than a help. In practical cryptanalysis the imaginative or intuitive faculties must. in other words, be guided by good judgment, by practical experience, and by as thorough a knowledge of the general situation or extraneous circumstances that led to the sending of the cryptogram as is possible to obtain. In this respect the many cryptograms exchanged between correspondents whose identities and general affairs, commercial, social, or political, are known are far more readily solved⁶ than are isolated cryptograms exchanged between unknown correspondents, dealing with unknown subjects. It is obvious that in the former case there are good data upon which the intuitive power: of the cryptanalyst can be brought to bear, whereas in the latter cas, no such dota are available. Consequently, in the absence of such data, no matter how good the imagination and intuition of the cryptanalyst, these powers are of no particular service to him. Some writers, however, regard the intuitive spirit as valuable from still another viewpoint, as may be noted in the following:

"Intuition, like a flash of lightning, lasts only for a second. It generally comes when one is tormented by a difficult decipherment and when one reviews in his mind the fruitless experiments already tried. Suddenly the light breaks through and one finds after a few minutes what previous days of labor were unable to reveal."

This, too, is true, but unfortunately there is no way in which the intuition may be summoned at will, when it is most needed.⁸ There are certain authors who regard as indispensable the possession of a somewhat

⁶ The application in practical, operational cryptanalysis of "probable words" or "cribs", i.e., plain text assumed or known to be present in a cryptogram, is developed in time of war into a refinement the extent and usefulness of which cannot be appreciated by the uninitiated. Even as great a thinker as Voltaire found the subject of cryptanalysis stretching his credulity to the point that he said:

"Those who boast that they can decipher a letter without knowing its subject matter, and without preliminary aid, are greater charlatans than those who would boast of understanding a language which they have never learned."--Dictionnaire Philosophique, under the article "Poste".

⁷ Lange et Soudart, <u>Traité de Cryptographie</u>, Libraire Télix Alcan, Paris, 1925, p. 104.

⁸ The following extracts are of interest in this connection:

"The fact that the scientific investigator works 50 per cent of his time by non-rational means is, it seems, quite insufficiently recognized. There is without the least doubt an instinct for research, and often the most successful investigators of nature are quite unable to give an account of their reasons for doing such and such an experiment, or for placing side by side two apparently unrelated facts Again, one of the most salient traits in the character of the successful scientific worker is the capacity for knowing that a point is proved when it would not appear to be proved to an outside intelligence functioning in a purely rational manner; thus the investigator feels that some proposition is true, and proceeds at once to the next set of experiments without waiting and wasting time in the claboration of the formal proof of the point which heavier minds would need. Questionless such a scientific intuition may and does sometimes lead investigators astray, but it is quite certain that if they did not widely make use of it, they would not get a quarter as far as they do. Experiments confirm each other, and a

rare, rather mysterious faculty that they designate by the word "flair", or by the expression "cipher brains". Even so excellent an authority as General Givierge,⁹ in referring to this mental faculty, uses the following words:

"Over and above perseverance and this aptitude of mind which some authors consider a special gift, and which they call intuition, or even, in its highest manifestation, clairvoyance, cryptographic studies will continue more and more to demand the qualities of orderliness and memory."

Although the present author believes a special aptitude for the work is essential to cryptenalytic success, he is sure there is nothing mysterious about the matter at all. Special aptitude is prerequisite to success in all fields of endeavor. There are, for example, thousands of physicists, hundreds of excellent ones, but only a handful of worldwide fame. Should it be said, then, that a physicist who has achieved very notable success in his field has done so because he is the fortunate possessor of a mysterious faculty? That he is fortunate in possessing a special aptitude for his subject is granted, but that there is anything mysterious about it, partaking of the nature of clairvoyance (if, indeed, the latter is a reality) is not granted. While the ultimate nature of any mental process seems to be as complete a mystery today as it has ever been, the present author would like to see the superficial veil of mystery removed from a subject that has been shrouded in mystery from even before the Middle Ages down to our own times. (The principal and readily understandable reason for this is that governments have always closely guarded cryptographic secrets and anything so guarded soon becomes "mysterious".) He would, rather, have the student approach the subject as he might approach any other science that can stand on its own merits with other sciences, because proptanalytics, like other sciences, has a practical importance in human affairs. It presents to the inquiring mind an interest in its own right as a branch of knowledge; it, too, holds forth many difficulties and disappointments, and these are all the more

Pa 5 and 10

5

K at alla

9 Op. cit., p. 302.

false step is usually soon discovered. And not only by this partial replacement of reason by intuition does the work of science go on, but also to the born scientific worker—and emphatically they cannot be made—the structure of the method of research is as it were given, he cannot explain it to you, though he may be brought to agree *a posteriori* to a formal logical presentation of the way the method works".—Excerpt from Needham, Joseph, *The Scepticat Biologist*, London, 1929, p. 79.

[&]quot;The essence of scientific method, quite simply, is to try to see how data arrange themselves into causal configurations. Scientific problems are solved by collecting data and by "thinking about them all the time." We need to look at strange things until, by the appearance of known configurations, they seem familiar, and to look at familiar things until we see novel configurations which make them appear strange. We must look at events until they become luminous. That is geientific method . . . Insight is the touchstone . . . The application of insight as the touchstone of method enables us to evaluate properly the role of imagination in scientific method. The scientific process is akin to the artistic process: it is a process of selecting out those elements of experience which fit together and recombining them in the mind. Much of this kind of research is simply a ceaseless mulling over, and even the physical scientist has considerable need of an armchair . . . Our view of scientific method as a struggle to obtain insight forces the admission that science is half art . . . Insight is the unknown quantity which has eluded students of scientific method".—Excerpts from an article entitled Insight and Scientific Method, by Willard Waller, in The American Journal of Sociology, Vol. XL, 1934

-RESTRICRED

keenly felt when the nature of these difficulties is not understood by those unfamiliar with the special circumstances that yery often are the real factors that led to success in other cases. Finally, just as in the other sciences wherein men labor long and earnestly for the true satisfaction and pleasure that comes from work well done, so the mental pleasure that the successful cryptanalyst derives from his accomplishments is very often the only reward for much of the drudgery that he must do in his daily work. General Givierge's words in this connection are well worth quoting:¹⁰

"Some studies will last for years before bearing fruit. In the case of others, cryptanalysts undertaking them never get any result. But, for a cryptanalyst who likes the work, the joy of discoveries effaces the memory of his hours of doubt and impatience."

e. With his usual deft touch, Hitt says of the element of luck, as regards the role it plays in analysis:

"As to luck, there is the old miners' proverb: 'Gold is where you find it.'"

The cryptanalyst is lucky when one of the correspondents whose cryptograms he is studying makes a blunder that gives the necessary clue; or when he finds two cryptograms identical in text but in different keys in the same system; or when he finds two cryptograms identical in text but in different systems, and so on. The element of luck is there, to be sure, but the cryptanalyst must be on the alert if he is to profit by these lucky "breaks".

f. If the present author were asked to state, in view of the progress in the field since 1916, what elements might be added to the four ingredients Hitt thought essential to cryptanalytic success, he would be inclined to mention the following:

(1) A broad, general education, embodying interests covering as many fields of practical knowledge as possible. This is useful because the cryptanalyst is often called upon to solve messages dealing with the most varied of human activities, and the more he knows about these activities, the easier his task.

(2) Access to a large library of current literature, and wide and direct contacts with sources of collateral information. These often afford clues as to the contents of specific messages. For example, to be able instantly to have at his disposal a newspaper report or a personal report of events described or referred to in a message under investigation goes a long way toward simplifying or facilitating solution. Government cryptanalysts are sometimes fortunately situated in this respect, especially where various agencies work in harmony.

(3) Proper coordination of effort. This includes the organization of cryptanalytic personnel into harmonious, efficient teams of cooperating individuals.

¹⁰ Op. cit., p. 301.

(4) Under mental equipment he would also include the faculty of being able to concentrate on a problem for rather long periods of time, without distraction, nervous irritability, and impatience. The strain under which cryptanalytic studies are necessarily conducted is quite severe and too long-continued application has the effect of draining nervous energy to an unwholesome degree, so that a word or two of caution may not here be out of place. One should continue at work only so long as a peaceful, calm spirit prevails, whether the work is fruitful or not. But just as soon as the mind becomes wearied with the exertion, or just as soon as a feeling of hopelessness or mental fatigue intervenes, it is better to stop completely and turn to other activities, rest, or play. It is essential to remark that systematization and orderliness of work are aids in reducing nervous tension and irritability. On this account it is better to take the time to prepare the data carefully, rewrite the text if necessary, and so on, rather than work with slipshod, incomplete, or improperly arranged material.

(5) A retentive memory is an important asset to cryptanalytic skill, especially in the solution of codes. The ability to remember individual groups, their approximate locations in other messages, the associations they form with other groups, their peculiarities and similarities, saves much wear and tear of the mental machinery, as well as much time in looking up these groups in indexes.

(6) The assistance of machine aids in cryptanalysis. The importance and value of these aids cannot be overemphasized in their bearing on practical, operational cryptanalysis, especially in the large-scale effort that would be made in time of war on complex, high-grade cryptosystems at a theater headquarters or in the zone of the interior. These aids, under the general čategory of rapid analytical machines, comprise both punchedcard tabulating machinery and certain other general- and special-purpose high-speed electrical and electronic devices. Some of the more compact equipment may be employed by lower echelons within a theater of operations to facilitate the cryptanalysis of medium-grade cryptosystems found in tactical communications.

g. It may be advisable to add a word or two at this point to prepare the student to expect slight mental jars and tensions which will almost inevitably come to him in the conscientious study of this and the subsequent texts. The present author is well aware of the complaint of students that authors of texts on cryptanalysis base much of their explanation upon their foreknowledge of the "answer" -- which the student does not know while he is attempting to follow the solution with an unbiased mind. They complain, too, that these authors use such expressions as "it is obvious that", "naturally", "of course", "it is evident that", and so on, when the circumstances seem not at all to warrant their use. There is no question that this sort of treatment is apt to discourage the student, especially when the point elucidated becomes clear to him only after many hours' labor, whereas, according to the book, the author noted the weak spot at the first moment's inspection. The present author can only promise to try to avoid making the steps appear to be much more simple than they really are, and to suppress glaring instances

of unjustifiable "jumping at conclusions". At the same time he must indicate that for pedagogical reasons in many cases a message has been consciously "manipulated" so as to allow certain principles to become more obvious in the illustrative examples than they ever are in practical work. During the course of some of the explanations attention will even be directed to cases of unjustified inferences. Furthermore, of the student who is quick in observation and deduction, the author will only ask that he bear in mind that if the elucidation of certain principles seems prolix and occupies more space than necessary, this is occasioned by the author's desire to carry the explanation forward in very short, easily-comprehended, and plainly-described steps, for the benefit of students who are perhaps a bit slower to grasp but who, once they understand, are able to retain and apply principles slowly learned just as well, if not better than the students who learn more quickly.¹¹

3. Validity of results of cryptanalysis. -- Valid or authentic cryptanalytic solutions cannot and do not represent "opinions" of the cryptanalyst. They are valid only so far as they are wholly objective. and are susceptible of demonstration and proof, employing authentic, objective methods. It should hardly be necessary (but an attitude frequently encountered among laymen makes it advisable) to indicate that the validity of the results achieved by any serious cryptanalytic studies on authentic material rests upon the same sure foundations and are reached by the same general steps as the results achieved by any other scientific studies; viz., observation, hypothesis, deduction and induction, and confirmatory experiment. Implied in the latter is the possibility that two or more qualified investigators, each working independently upon the same material, will achieve identical (or practically identical) results -- there is one and only one (valid) solution to a cryptogram. Occasionally a "would-be" or pseudo-cryptanalyst offers "solutions" which cannot withstand such tests; a second, unbiased, investigator working independently either cannot consistently apply the methods alleged to have been applied by the pseudo-cryptanalyst, or else, if he can apply

11 In connection with the use of the word "obvious", the following extract is of interest:

"Now the word 'obvious' is a rather dangerous one. There is an incident, which has become something of a legend in mathematical circles, that illustrates this danger. A certain famous mathematician was lecturing to a group of students and had occasion to use a formula which he wrote down with the remark, 'This statement is obvious.' Then he paused and looked rather hesitantly at the formula. 'Wait a moment,' he said. 'Is it obvious? I think it's obvious.' More hesitation, and then, 'Pardon me, gentlemen, I shall return.' Then he left the room. Thirtyfive minutes later he returned; in his hands was a sheaf of papers covered with calculations, on his face a look of quiet satisfaction. 'I was right, gentlemen. It is obvious,' he said, and proceeded with his lecture."--Excerpt from The Anatomy of Mathematics by Kershner and Wilcox. New York, 1950.

them at all, the results (plaintext translations) are far different in the two cases. The reason for this is that in such cases it is generally found that the "methods" are not clear-cut, straightforward or mathematical in character. Instead, they often involve the making of judgments on matters too tenuous to measure, weigh, or otherwise subject to careful scrutiny. Often, too, they involve the "correction" of an inordinate number of "errors" which the pseudo-cryptanalyst assumes to be present and which he "corrects" in order to make his "solution" intelligible. And sometimes the pseudo-cryptanalyst offers as a "solution" plain text which is intelligible only to him or which he makes intelligible by expanding what he alleges to be abbreviations, and so on. In all such cases, the conclusion to which the unprejudiced observer is forced to come is that the alleged "solution" obtained by the pseudo-cryptanalyst is purely subjective.¹² In nearly all cases where this has happened (and they occur from time to time) there has been uncovered nothing which can in any way

12 A mathematician is often unable to grasp the concept behind the expression "subjective solution" as used in the cryptanalytic field, since the idea is foreign to the basic philosophy of mathematics and thus the expression appears to him to represent a contradiction in terms. As an illustration, let us consider a situation in which a would-be cryptanalyst offers a solution to a cryptogram he alleges to be a simple monoalphabetic substitution cipher. His so-called solution, however, requires that he assume the presence of, let us say, approximately 50% garbles (which he claims to have been introduced by cipher clerks' errors, faulty radio reception because of adverse weather conditions, etc.). That is, the "plain text" he offers as the "solution" involves his making helterskelter many "corrections and emendations", which, one may be sure, will be based on what his subconscious mind expects or desires to find in the cleartext message. Unfortunately, another would-be cryptanalyst working upon the same cryptogram and hypothesis independently might conceivably "degarble" the cryptogram in different spots and produce an entirely dissimilar "plain text" as his "solution". Both "solutions" would be invalid because they are based upon an erroneous hypothesis -- the cryptogram actually happens to be a polyalphabetic substitution cipher which when correctly analyzed requires on the part of unbiased observers no assumption of garbles to a degree that strains their credulity. The last phrase is added here because in professional cryptanalytic work it is very often necessary to make a few corrections for errors but it is rarely the case that the garble rate exceeds more than a few percent of the characters of the cryptogram, say 5 to 10% at the outside. It is to be noted, however, that occasionally the solution to a cryptogram may involve the correction of more than this percentage of errors, but the solution would be regarded as valid only if the errors can be shown to be systematic in some significant respect, or can otherwise be explained by objective rationalization.

RESTRICTED

be used to impugn the integrity of the pseudo-cryptenalyst. The worst that can be said of him ic that he has become a victim of a special or peculiar form of self-delusion, and that his desire to solve the problem, usually in accord with some previously-formed opinion, or notion, has over-balanced, or undermined, his judgment and good sense.¹³

¹³ Specific reference can be made to the following typical "case histories":

Donnelly, Ignatius, The Great Cryptogram. Chicago, 1888. Owen, Orville W., Sir Francis Bacon's Cipher Story. Detroit, 1895. Gallup, Elizabeth Wells, Francis Bacon's Biliteral Cipher. Detroit. 1900. Arensborg, Walter Conrad, The Cryptography of Shakespeare. Los Angeles. 1922. The Shakespearean Mystery. Pittsburgh, 1928. The Baconian Keys. Pittsburgh, 1928. Margoliouth, D. S., The Homer of Aristotle. Oxford, 1923. Newbold, William Romaine, The Cipher of Roger Bacon. Philadelphia, 1928. (For a scholarly and complete demolition of Professor V Newbold's work, see an article entitled Roger Bacon and the Voynich MS, by John M. Manly, in Speculum, Vol. VI, No. 3, July 1931.) Feely, Joseph Martin, The Shakespearean Cypher. Rochester, N. Y., 1931. Deciphering Shakespeare. Rochester, N. Y., 1934. 3 Roger Bacon's Cypher: the right key found. Rochester, N. Y., 1943. Wolff, Werner, Déchiffrement de l'Ecriture Maya. Paris, 1938. "] Strong, Leonell C., Anthony Askham, the author of the Voynich manuscript, in Science, Vol. 101, June 15, 1945, pp. 608-9.

REF ID:A56892 -

12

.

SECTION II

المعالية في المعالية من المعالية في المعالية الم

BASIC CRYPTOLOGIC CONSIDERATIONS

BT ' ,	· · ·	Parag	raph
Cryptology, communication intelligence, and communication		-	. 6
security			- 4
Secret communication		******	·~5
Plain text and encrypted text			- 6
Cryptography, encrypting, srd decrypting			7
Codes, ciphers, and enciphered code		******	8
General system, specific key, and cryptosystem		*****	° "9
Cryptanalytics and cryptanalysis		******	10
Transposition and substitution		*****	11
Nature of alphabets		*****	12
Types of alphabets		*****	13

4. Cryptology, communication intelligence, and communication security. The occasional or frequent need for secrecy in the conduct of important affairs has been recognized from time immemorial. In the case of diplomacy and organized warfare this need is especially important in regard to communications. However, when such communications are transmitted by electrical means, they can be heard and copied by unauthorized persons. The protection resulting from all measures designed to deny to unauthorized persons information of value which may be derived from such communications is called communication security. The evaluated information concerning the enemy, derived principally from a study of his electrical communications, is called communication intelligence. The collective term including all phases of communication intelligence and communication security is cryptology.¹ Or, stated in broad terms, cryptology is that branch of knowledge which treats of hidden, disguised, or secret² communications.

¹ From the Greek kryptos (hidden) + logos (learning). The prefix "crypto-" in compound words pertains to "cryptologic", "cryptographic", or "cryptanalytic", depending upon the use of the particular word as defined.

v- a- _

· - <u>-</u> ·

² In this text the term "secret" will be used in its ordinary sense as given in the dictionary. Whenever the designation is used in the more restricted sense of the security classification as defined in official regulations, it will be capitalized. There are in current use the four classifications <u>Restricted</u>, <u>Confidential</u>, <u>Secret</u>, and <u>Top Secret</u>, <u>listed</u> in ascending order of degree.

່ມີ

RESERICTED

5. Secret communication.--a. Communication may be conducted by any means susceptible of ultimate interpretation by one of the five senses, but those most commonly used are sight and hearing. Aside from the use of simple visual and auditory signals for communication over relatively short distances, the usual method of communication between or among individuals separated from one another by relatively long distances involves, at one stage or another, the act of writing or of speaking over a telephone.

b. Privacy or secrecy in communication by telephone can be obtained by using equipment which affects the electrical currents involved in telephony so that the conversations can be understood only by persons provided with suitable equipment properly arranged for the purpose. The same thing is true in the case of electrical transmission of pictures, drawings, maps, and television images. However, this text will not treat of these aspects³ of cryptology.

c. Writing may be either visible or invisible. In the former, the characters are inscribed with ordinary writing materials and can be seen with the naked eye; in the latter, the characters are inscribed by means or methods which make the writing juvisible to the naked eye. Invisible writing can be prepared with certain chemicals called invisible, sympathetic, or secret inks, and in order to "develop" such writing, that is, make it visible, special processes must usually be applied. There are also methods of producing writing which is invisible to the naked eye because the characters are of microscopic size, thus requiring special photographic or microscopic apparatus to make such writing visible to the naked eye.

d. Invisible writing and unintelligible visible writing constitute secret writing.

6. Plain text and encrypted text.--a. Visible writing which is intelligible, that is, conveys a more or less understandable or sensible meaning (in the language in which written) and which is not intended to convey a hidden meaning, is said to be in plain text.⁴ A message in plain text is termed a plaintext message, a cleartext message, or a message in clear.

³ These aspects of cryptology are now known as <u>ciphony</u> (from <u>cipher</u> + telephony); <u>cifax</u> (from <u>cipher</u> + <u>facsimile</u>); and <u>civision</u> (from <u>cipher</u> + television).

⁴ Visible writing may be intelligible but the meaning it obviously conveys may not be its real meaning, that is, the meaning intended to be conveyed. To quote a simple example of an apparently innocent message containing a secret or hidden meaning, prepared with the intention of escaping censorship, the sentence "Son born today" may mean "Three transports left today." Messages of this type are said to be in open code. Secret communication methods or artifices of this sort (concealment systems) are impractical for field military use but are often encountered in espionage and counter-espionage activities.

b. Visible writing which conveys no intelligible meaning in any recognized language⁵ is said to be in <u>encrypted text</u> and such writing is termed a <u>cryptogram</u>.

7. Cryptography, encrypting, and decrypting. -- a. Cryptography is that branch of cryptology which treats of various means, methods, and apparatus for converting or transforming plaintext messages into cryptograms and for reconverting the cryptograms into their original plaintext forms by a simple reversal of the steps used in their transformation.

b. To encrypt is to convert or transform a plaintext message into a cryptogram by following certain rules, steps, or processes constituting the key or keys and agreed upon in advance by correspondents, or furnished them by higher authority.

c. To decrypt is to reconvert or to transform a cryptogram into the original equivalent plaintext message by a direct reversal of the encrypting process, that is, by applying to the cryptogram the key or keys (usually in a reverse order) used in producing the cryptogram.

d. A person skilled in the art of encrypting and decrypting, or one who has a part in devising a cryptographic system is called a cryptographer; a clerk who encrypts and decrypts, or who assists in such work, is called a cryptographic clerk.

8. Codes, ciphers, and enciphered code.--a. Encrypting and decrypting are accomplished by means collectively designated as codes and ciphers. Such means are used for either or both of two purposes: (1) secrecy, and (2) economy or brevity. Secrecy usually is far more important in military cryptography than economy or brevity. In ciphers or cipher systems, cryptograms are produced by applying the cryptographic treatment to individual letters of the plaintext messages, whereas, in codes or code systems, cryptograms are produced by applying the cryptographic treatment to entire words, phrases, and sentences of the plaintext messages. The specialized meanings of the terms code and cipher are explained in detail later.

b. A cryptogram produced by means of a cipher system is said to be in cipher and is called a cipher message, or sometimes simply a cipher. The act or operation of encrypting a cipher message is called enciphering,

⁵ There is a certain type of writing which is considered by its authors to be intelligible, but which is either completely unintelligible to the wide variety of readers or else requires considerable mental struggle on their part to make it intelligible. Reference is here made to so-called "modern literature" and "modern verse", products of such writers as E. E. Cummings, Gertrude Stein, James Joyce, et al.

⁶ From kryptos + gramma (that which is written). Analogous terminology would call a plaintext message a phanerogram (phaneros = visible, manifest, open).

-RESTRICTED

RESTRICTED

and the enciphered version of the plain text, as well as the act or process itself, is often referred to as the encipherment. The cryptographic clerk who performs the process serves as an encipherer. The corresponding terms applicable to the decrypting of cipher messages are deciphering, decipherment, and decipherer. A clerk who serves as both an encipherer and decipherer of messages is called a cipher clerk.

c. A cipher device is a relatively simple mechanical contrivance for encipherment and decipherment, usually "hand-operated" or manipulated by the fingers, as for example a device with concentric rings of alphabets, manually powered; a cipher machine is a relatively complex apparatus or mechanism for encipherment and decipherment, usually equipped with a typewriter key board and often requiring an external power source.

d. A cryptogram produced by means of a code system is said to be in code and is called a code message. The text of the cryptogram is referred to as code text. This act or operation of encrypting is called encoding, and the encoded version of the plain text, as well as the act or process itself, is referred to as the encodement. The clerk who performs the process serves as an encoder. The corresponding terms applicable to the decrypting of code messages are decoding, decodement, and decoder. A cryptographic clerk who serves as both an encoder and decoder of messages is called a code clerk.

e. Sometimes, for special purposes (usually increased security), the code text of a cryptogram undergoes a further step in concealment involving <u>superencryption</u>, that is, encipherment of the characters comprising the code text, thus producing what is called an enciphered-code <u>message</u>, or <u>enciphered code</u>. Encoded cipher, that is, the case where the final cryptogram is produced by enciphering the plain text and then encoding the cipher text obtained from the first operation, is also possible, but rare.

9. General system, specific key, and cryptosystem.--a. There are a great many different methods of encrypting messages, so that correspondents must first of all be in complete agreement as to which of them will be used in their secret communications, or in different types or classes of such communications. Furthermore, it is to be understood that all the detailed rules, processes, or steps comprising the cryptography agreed upon will be invariant, that is, constant or unvarying in their use in a given set of communications. The totality of these basic, invariable rules, processes, or steps to be followed in encrypting a message according to the agreed method constitutes the general cryptographic system or, more briefly, the general system.

b. It is usually the case that the general system operates in connection with or under the control of a number, a group of letters, a word, a phrase, or sentence which is used as a key, that is, the element which specifically governs the manner in which the general system will be applied in a specific message, or the exact setting of a cipher device or a cipher machine at the initial point of encipherment or decipherment of a specific

message. This element--usually of a variable nature or changeable at the will of the correspondents, or prearranged for them by higher authority--is called the specific key. The specific key may also involve the use of a set of specially prepared tables, a special document, or even a book.

c. The term cryptosystem⁷ is used when it is desired to designate or refer to all the cryptomaterial (device, machine, instructions for use, key lists, etc.) as a unit to provide a single, complete system and means for secret communication.

10. Cryptanalytics and cryptanalysis.--a. In theory any cryptosystem (except one⁸) can be "broken", i.e., solved, if enough time, labor, and skill are devoted to it, and if the volume of traffic in that system is large enough. This can be done even if the general system and the specific key are unknown at the start. In military operations theoretical rules must usually give way to practical considerations. How the theoretical rule in this case is affected by practical considerations will be discussed in Appendix 11.

b. That branch of cryptology which deals with the principles, methods, and means employed in the solution or <u>analysis</u> of cryptosystems is called cryptanalytics.

c. The steps and operations performed in applying the principles of cryptanalytics constitute cryptanalysis. To cryptanalyze a cryptogram is to solve it by cryptanalysis.

d. A person skilled in the art of cryptanalysis is called a cryptanalyst, and a clerk who assists in such work is called a cryptanalytic clerk.

11. Transposition and substitution.--a. Technically there are only two distinct types of treatment which may be applied to written plain text to convert it into secret text, yielding two different classes of cryptograms. In the first, called transposition, the elements or units of the plain text retain their original identities and merely undergo some change in their relative positions, with the result that the original text becomes unintelligible. In the second, called substitution, the elements of the plain text retain their original relative positions but are replaced by other elements with different values or meanings, with the result that the original text becomes unintelligible. Thus, in the case of transposition ciphers, the unintelligibility is brought about merely by a change in the original sequence of the elements or units of

The term cryptosystem is used in preference to cryptographic system so as to permit its use in designating secret communication systems involving means other than writing, such as ciphony and cifax.

⁸ The exception is the 'one-time' system in which the key is used only once and in itself must have no systematic construction, derivation, or meaning.

the plain text; in the case of substitution ciphers, the unintelligibility is brought about by a change in the elements or units themselves, without a change in their relative order.

b. It is possible to encrypt a message by a substitution method and then to apply a transposition method to the substitution text, or vice versa. Such combined transposition-substitution methods do not form a third class of methods. They are occasionally encountered in military cryptography, but the types of combinations that are sufficiently simple to be practicable for field use are very limited.⁹

c. Under each of the two principal classes of cryptograms as outlined above, a further classification can be made based upon the number of characters composing the textual elements or units undergoing cryptographic treatment. These textual units are composed of (1) individual letters, (2) combinations of letters in regular groupings, (3) combinations of letters in irregular, more or less euphonious groupings called syllables, and (4) complete words, phrases, and sentences. Methods which deal with the first type of units are called monographic methods; those which deal with the second type are called <u>polygraphic</u> (digraphic, trigraphic, etc.); those which deal with the third type, or syllables, are called <u>syllabic</u>; and, finally, those which deal with the fourth type are called <u>lexical</u> (of or pertaining to words).

d. It is necessary to indicate that the foregoing classification of cryptographic methods is more or less artificial in nature, and is established for purpose of convenience only. No sharp line of demarcation can be drawn in every case, for occasionally a given system may combine methods of treating single letters, regular or irregular-length groupings of letters, syllables, words, phrases, and complete sentences. When in a single system the cryptographic treatment is applied to textual units of regular length, usually monographic or digraphic (and seldom longer, or intermixed monographic and digraphic), the system is called a cipher system. Likewise, when in a single system the cryptographic treatment is applied to textual units of irregular length, usually syllables, whole words, phrases, and sentences, and is only exceptionally applied to single letters or regular groupings of letters, the system is called a code system and generally involves the use of a code book.¹⁰

12. Nature of alphabets.--a. One of the simplest kinds of substitution ciphers is that which is known in cryptologic literature as Julius Caesar's Cipher, but which, as a matter of fact, was a favorite long before his day. In this cipher each letter of the text of a message is replaced by the letter standing the third to the right of it in the

RESTRICTED

⁹ One notable exception is the ADFGVX system, used extensively by the Germans in World War I. See in this connection the Cryptographic Supplement (Appendix 7).

¹⁰ A list of single letters, frequent digraphs, trigraphs, syllables, and words is often called a syllabary; cryptographic treatment of the units of such syllabaries places them in the category of code systems.

ordinary alphabet; the letter A is replaced by D, the letter B by E, and so on. The word cab becomes converted into FDE, which is cipher.

b. The English language is written by means of 26 simple characters called letters which, taken together and considered as a sequence of symbols, constitute the alphabet of the language. Not all systems of writing are of this nature. Chinese writing is composed of about 44,000 complex characters, each representing one sense of a word. Whereas English words are composite or polysyllabic and may consist of one to eight or more syllables, Chinese words are all monosyllables and each monosyllable is ε word. Written languages of the majority of other civilized peoples of today are, however, alphabetic and polysyllabic in construction, so that the principles discussed here apply to all of them.

c. The letters comprising the English alphabet used today are the results of a long period of evolution, the complete history of which may never fully be known.¹¹ They are conventional symbols representing elementary sounds, and any other simple symbols. so long as the sounds which they represent are agreed upon by those concerned, will serve the purpose equally well. If taught from early childhood that the symbols \$, *, and @ represent the sounds "Ay", "Bee", and "See" respectively, the combination @\$* would still be pronounced cab, and would, of course, have exactly the same meaning as before. Again, let us suppose that two persons have agreed to change the sound values of the letters F. G. and H. and after long practice have become accustomed to pronouncing them as we pronounce the letters A, B, and C, respectively; they would then write the "word" HFG, pronounce it cab, and see nothing strange whatever in the matter. But to others no party to their arrangements, HFG constitutes cipher. The combination of sounds called for by this combination of symbols is perfectly intelligible to the two who have adopted the new sound values for those symbols and therefore pronounce HFG as cab; but HFG is utterly unpronounceable and wholly unintelligible to others who are reading it according to their own long-established system of sound and symbol equivalents. It would be stated that there is no such word as HFG, which would mean merely that the particular combination of sounds represented by this combination of letters has not been adopted by convention to represent a thing or an idea in the English language. Thus, it is seen that, in order for the written words of a language to be pronounceable and intelligible to all who speak that language. it is necessary, first, that the sound values of the letters or symbols be universally understood and agreed upon and, secondly, that the particular combination of sounds denoted by the letters should have been adopted to represent a thing or an idea. Spoken plain language consists of vocables; that is, combinations and permutations of elementary speech-sounds which have by long usage come to be adopted and recognized as representing definite things and ideas. Written plain language consists of words; that is, combinations and permutations of simple symbols, called letters, which represent visually and call forth vocally the elementary speechsounds of which the spoken language is composed. 2.00 -

11 An excellent and most authoritative book on this subject is The Alphabet: a key to the history of Mankind by David Diringer. London, 1949.

-RESTRICTED

.

ordinary alphabet; the letter A is replaced by D, the letter B by E, and so on. The word cab becomes converted into FDE, which is cipher.

b. The English language is written by means of 26 simple characters called letters which, taken together and considered as a sequence of symbols, constitute the alphabet of the language. Not all systems of writing are of this nature. Chinese writing is composed of about 44,000 complex characters, each representing one sense of a word. Whereas English words are composite or polysyllabic and may consist of one to eight or more syllables, Chinese words are all monosyllables and each monosyllable is ε word. Written languages of the majority of other civilized peoples of today are, however, alphabetic and polysyllabic in construction, so that the principles discussed here apply to all of them.

c. The letters comprising the English alphabet used today are the results of a long period of evolution, the complete history of which may never fully be known.¹¹ They are conventional symbols representing elementary sounds, and any other simple symbols, so long as the sounds which they represent are agreed upon by those concerned, will serve the purpose equally well. If taught from early childhood that the symbols \$, *, and @ represent the sounds "Ay", "Bee", and "See" respectively, the combination @\$* would still be pronounced cab, and would, of course, have exactly the same meaning as before. Again, let us suppose that two persons have agreed to change the sound values of the letters F. G. and H. and after long practice have become accustomed to pronouncing them as we pronounce the letters A, B, and C, respectively; they would then write the "word" HFG, pronounce it cab, and see nothing strange whatever in the matter. But to others no party to their arrangements, HFG constitutes cipher. The combination of sounds called for by this combination of symbols is perfectly intelligible to the two who have adopted the new sound values for those symbols and therefore pronounce HFG as cab; but HFG is utterly unpronounceable and wholly unintelligible to others who are reading it according to their own long-established system of sound and symbol equivalents. It would be stated that there is no such word as HFG, which would mean merely that the particular combination of sounds represented by this combination of letters has not been adopted by convention to represent a thing or an idea in the English language. Thus, it is seen that, in order for the written words of a language to be pronounceable and intelligible to all who speak that language, it is necessary, first, that the sound values of the letters or symbols be universally understood and agreed upon and, secondly, that the particular combination of sounds denoted by the letters should have been adopted to represent a thing or an idea. Spoken plain language consists of vocables; that is, combinations and permutations of elementary speech-sounds which have by long usage come to be adopted and recognized as representing definite things and ideas. Written plain language consists of words: that is, combinations and permutations of simple symbols, called letters, which represent visually and call forth vocally the elementary speechsounds of which the spoken language is composed.

¹¹ An excellent and most authoritative book on this subject is The Alphabet: a key to the history of Mankind by David Diringer. London, 1949.

ordinary alphabet; the letter A is replaced by D, the letter B by E, and so on. The word cab becomes converted into FDE, which is cipher.

b. The English language is written by means of 26 simple characters called letters which, taken together and considered as a sequence of symbols, constitute the alphabet of the language. Not all systems of writing are of this nature. Chinese writing is composed of about 44,000 complex characters, each representing one sense of a word. Whereas . English words are composite or polysyllabic and may consist of one to eight or more syllables, Chinese words are all monosyllables and each monosyllable is ε word. Written languages of the majority of other civilized peoples of today are, however, alphabetic and polysyllabic in construction, so that the principles discussed here apply to all of them.

c. The letters comprising the English alphabet used today are the results of a long period of evolution, the complete history of which may never fully be known.¹¹ They are conventional symbols representing elementary sounds, and any other simple symbols, so long as the sounds which they represent are agreed upon by those concerned, will serve the purpose equally well. If taught from early childhood that the symbols \$, *, and @ represent the sounds "Ay", "Bee", and "See" respectively, the combination @\$* would still be pronounced cab, and would, of course, have exactly the same meaning as before. Again, let us suppose that two persons have agreed to change the sound values of the letters F. G. and H. and after long practice have become accustomed to pronouncing them as we pronounce the letters A, B, and C, respectively; they would then write the "word" HFG, pronounce it cab, and see nothing strange whatever in the matter. But to others no party to their arrangements. HFG constitutes cipher. The combination of sounds called for by this combination of symbols is perfectly intelligible to the two who have adopted the new sound values for those symbols and therefore pronounce HFG as cab; but HFG is utterly unpronounceable and wholly unintelligible to others who are reading it according to their own long-established system of sound and symbol equivalents. It would be stated that there is no such word as HFG, which would mean merely that the particular combination of sounds represented by this combination of letters has not been adopted by convention to represent a thing or an idea in the English language. Thus, it is seen that, in order for the written words of a language to be pronounceable and intelligible to all who speak that language, it is necessary, first, that the sound values of the letters or symbols be universally understood and agreed upon and, secondly, that the particular combination of sounds denoted by the letters should have been adopted to represent a thing or an idea. Spoken plain language consists of vocables; that is, combinations and permutations of elementary speech-sounds which have by long usage come to be adopted and recognized as representing definite things and ideas, Written plain language consists of words; that is, combinations and permutations of simple symbols, called letters, which represent visually and call forth vocally the elementary speechsounds of which the spoken language is composed.

11 An excellent and most authoritative book on this subject is The Alphabet: a key to the history of Mankind by David Diringer. London, 1949.

d. It is clear also that in order to write a polysyllabic language with facility it is necessary to establish and to maintain by common agreement or convention, equivalency between two sets of elements, first, a set of elementary sounds and, second, a set of elementary symbols to represent the sounds. When this is done the result is what is called an alphabet, a word derived from the names of the first two letters of the Greek alphabet, "alpha" and "beta".

Theoretically, in an ideal alphabet each symbol or letter would denote only one elementary sound, and each elementary sound would invariably be represented by the same symbol. But such an alphabet would be far too difficult for the average person to use. It has been conservatively estimated that a minimum of 100 characters would be necessary for English alone. Attempts toward producing and introducing into usage a practical, scientific alphabet have been made, one being that of the Simplified Spelling Board in 1928, which advocated a revised alphabet of 42 characters. Were such an alphabet adopted into current usage, in books, letters, telegrams, etc., the flexibility of cryptographic systems would be considerably extended and the difficulties set in the path of the enemy cryptanalysts greatly increased. The chances for its adoption in the near future are, however, quite small. Because of the continually changing nature of every living language, it is doubtful whether an initially "perfect alphabet" could, over any long period of time, remain so and serve to indicate with great precision the exact sounds which it was originally designed to represent.

13. Types of alphabets.--a. In the study of cryptography the dual nature of the alphabet becomes apparent. It consists of two parts or components, (1) an arbitrarily-arranged sequence of sounds, and (2) an arbitrarily-arranged sequence of symbols.

b. The normal alphabet for any language is one in which these two components are the ordinary sequences that have been definitely fixed by long usage or convention. The dual nature of our normal or everyday alphabet is often lost sight of. When we write A, B, C,... we really mean:

> Sequence of sounds: "Ay" "Bee" "See" Sequence of symbols: A B C

Normal alphabets of different languages vary considerably in the number of characters composing them and the arrangement or sequence of the characters. The English, Dutch, and German alphabets each have 26; the French, 25; the Italian, 21; the Spanish, 27 (including the digraphs CH and LL); and the Russian, $31.^{12}$ The Japanese language has a syllabary consisting of 72 syllabic sounds which require 48 characters for their representation.

 $[\]frac{12}{11}$ In contrast to the foregoing alphabets, it is of interest to note that in the Hawaiian language the alphabet consists of only 12 letters, viz, the five vowels A, E, I, O, U, and the seven consonants H, K, L, M, N, P, W.

c. A cipher alphabet, or substitution alphabet as it is sometimes called, is one in which the elementary speech-sounds are represented by characters other than those representing them in the normal alphabet. These characters may be letters, figures, signs, symbols, or combinations of them.

d. When the plain text of a message is converted into encrypted text by the use of one or more cipher alphabets, the resultant cryptogram constitutes a substitution cipher. If only one cipher alphabet is involved, it is called a monoalphabetic substitution cipher; if two or more cipher alphabets are involved, it is called a polyalphabetic substitution cipher.

e. It is convenient to issignate that component of a cipher alphabet constituting the sequence of speech-sounds as the <u>plain component</u> and the component constituting the sequence of symbols as the <u>cipher</u> <u>component</u>. If omitted in a cipher alphabet, the plain component is understood to be the normal sequence. For brevity and clarity, a letter of the plain text, or of the plain component of a cipher alphabet, is designated by suffixing a small letter "p" to it: Ap means A of the plain text, or of the plain component of a cipher alphabet. Similarly, a letter of the cipher text, or of the cipher component of a cipher alphabet, will be designated by suffixing a small letter "c" to it: X_c means X of the cipher text, or of the cipher component of a cipher alphabet. The expression $A_p = X_c$ means that A of the plain text, or A of the plain component of a cipher alphabet. is represented by X in the cipher text, or by X in the cipher component of a cipher alphabet.

f. With reference to the arrangement or sequence of letters forming their components, cipher alphabets are of two types:

(1) <u>Standard cipher alphabets</u>, in which the sequence of letters in the plain component is the normal, and in the cipher component is the same as the normal, but reversed in direction or shifted from its normal point of coincidence with the plain component.

(2) <u>Mixed cipher alphabets</u>, in which the sequence of letters or characters in one or both of the components is no longer the same as the normal in its entirety.

g. Although the basic considerations of the preceding paragraphs place the student in a position to undertake the study of certain fundamental principles of cryptanalysis, this may be a good point at which to pause and to make a few remarks with regard to the role that cryptanalysis plays in the whole chain of more or less complex operations involved in deriving communication intelligence, after which these fundamental cryptanalytic principles will be treated.

RESTRICTED

3

-

- -

SECTION III

FUNDAMENTAL CRYPTANALYTIC OPERATIONS

5

Paragraph

The role of cryptanalysis in communication intelligence	-
operations	14
The four basic operations in cryptanalysis	15
The determination of the language employed	16
The determination of the general system	17
The reconstruction of the specific key	18
The reconstruction of the plain text.	19
The utilization of traffic intercepts	20

14. The role of cryptanalysis in communication intelligence operations.--a. Through the medium of communication intelligence an attempt is made to answer three questions concerning enemy communications: "Who?" "Where?" "What?"--Who are their originators and addressees? Where are these originators and addressees located? What do the messages say?

b. All of the foregoing questions are very important in the military application of communication intelligence. Hence, even though this text deals almost exclusively with the principles and operations involved in deriving the answer to the third question--"What do the messages say?"-a few words on the importance of the first and second questions may be useful. It is a serious mistake to think that one can necessarily and always correctly interpret the mere text of a message without identifying and locating the originator and the addressee or, on many occasions, without having a background against which to interpret the message in order to appreciate its real import or significance.

c. The very first step in the series of activities involved in deriving communication intelligence is the collection of the raw material, that is, the <u>interception¹</u> and copying of the transmissions constituting the messages to be studied and analyzed.

d. Then, with the raw material in hand, studies are made in order to answer the first two questions -- "Who?" and "Where?" The answers to these questions are not always obvious in modern military communications, especially in the case of messages exchanged by units in the combat zone, since messages of this sort rarely indicate in plain language who the

¹ To <u>intercept</u> means, in its cryptologic sense, to gain possession of communications which are intended for other recipients, without obtaining the consent of these addressees and without preventing or ordinarily delaying the transmission of the communications to them.

-RESTRICTED

originator and the addressee are or where they are located. Consequently, certain apparatus and techniques specifically developed for finding the answers to these questions must be employed. These apparatus and techniques are embraced by that part of communication intelligence theory and practice which is known as traffic analysis. This latter subject and interception are treated briefly in Appendix 10, "Communication intelligence theory in the serious student will derive much practical benefit from a careful reading of this appendix.)

e. The foregoing operations, interception and traffic analysis, along with cryptanalysis constitute the first three operations of communication intelligence. But generally there must follow at least one additional operation. If the plain texts recovered through cryptanalysis are in a foreign language, they must usually be translated, and translation constitutes this fourth operation. In the course of translating, it may be found that, because of errors in transmission or reception, corrections and emendations must be made in these plain texts; however, although this often requires skill and experience of a high order, it does not constitute another communication intelligence operation, since it is but an auxiliary step to the process of translation.

f. In a large-scale communication intelligence effort these four steps, interception, traffic analysis, cryptanalysis, and translation, must be properly organized and coordinated in order to gain the most benefit from the potentialities of communication intelligence, that is, the production of the maximum quantity of information from the raw traffic. This information must then be evaluated by properly trained intelligence specialists, collated with intelligence derived from other sources, and, finally, disseminated to the commanders who need the intelligence in time to be of operational use to them, rather than of mere historical interest. The foregoing operations and especially the first three--interception, traffic analysis, and cryptanalysis--usually complement one another. This, however, is not the place for elaboration on the interrelationships which exist and which when properly integrated make the operations as a whole an efficient, unified complex geared to the fulfillment of its principal goal, namely, the production of timely communication intelligence.

g. With the foregoing general background, the student is prepared to proceed to the technical considerations and principles of cryptanalysis.

15. The four basic operations in cryptanalysis.--a. The solution of practically every cryptogram involves four fundamental operations or steps:

(1) The determination of the language employed in the plaintext version.

(2) The determination of the general system of cryptography employed.

(3) The reconstruction of the specific key in the case of a cipher system, or the reconstruction, partial or complete, of the code book, in the case of a code system; or both, in the case of an enciphered code system.

(4) The reconstruction or establishment of the plain text.

-RESTRICTED

b. These operations will be taken up in the order in which they are given above and in which they usually are performed in the solution of cryptograms, although occasionally the second step may precede the first.¹

- 16. The determination of the language employed .-- a. There is not much that need be said with respect to this operation except that the determination of the language employed seldom comes into question in the case of studies made of the cryptograms of an organized enemy. By this is meant that during wartime the enemy is of course known, and it follows, therefore, that the language he employs in his messages will almost certainly be his native or mother tongue. Only occasionally nowadays is this rule broken. Formerly it often happened, or it might have indeed been the general rule, that the language used in diplomatic correspondence was not the mother tongue, but French. In isolated instances during World War I the Germans used English when their own language could for one reason or another not be employed. For example, for a year or two before the entry of the United States into that war, during the time America was neutral and the German Government maintained its embassy in Washington, some of the messages exchanged between the Foreign Office in Berlin and the Embassy in Washington were encrypted in English, and a copy of the code used was deposited with the Department of State and our censor. Another instance is found in the case of certain Hindu conspirators who were associated with and partially financed by the German Government in 1915 and 1916; they employed English as the language of their cryptographic messages. Occasionally the cryptograms of enemy agents may be in a language different from that of the enemy. But in general these

¹ Although the foregoing four steps represent the classical or ideal approach to cryptanalysis, the art may be reduced to the following:

Procedures in cryptanalysis

Requirements

Experience or ingenuity,

1. Arrangement and rearrangement of data to disclose non-random characteristics or manifestations (i.e., in frequency counts, repetitions, patterns, symmetrical phenomena, etc.).

2. Recognition of the non-random

when disclosed.

- and time (which latter may be appreciably lowered by the use of machine aids in cryptanalysis).
- Experience or statistics. characteristics or manifestations
- 3. Explanation of the non-random Experience or imagination. characteristics when recognized. and intelligence.

In all of the foregoing, the element of luck plays a very important part, as it is possible to side-step a large amount of labor and effort, in many cases, if "hunches" or intuition lead the analyst forthwith to the right path. Therefore, the phrase "or luck" should be added to each of the requirements above.

In fact, it all boils down to the simple statement: "Find something significant, and attach some significance thereto."

RESTRICTED

are, as has been said, isolated instances; as a rule, the language used in cryptograms exchanged between members of large organizations is the mother tongue of the correspondents. Where this is not the case, that is, when cryptograms of unknown origin must be studied, the cryptanalyst looks for any indications on the cryptograms themselves which may lead to a conclusion as to the language employed. Address, signature, and other data, <u>if in plain text</u> in the preamble, in the body, or at the end of the cryptogram, all come under careful scrutiny, as well as all extraneous circumstances connected with the manner ir which the cryptograms were obtained, the person on whom they were found, or the locale of their origin and destination.

b. In special cases, or under special circumstances a clue to the language employed is found in the nature and composition of the cryptographic text itself. For example, if the letters K and W are entirely absent or appear very rarely in messages, it may indicate that the language is Spanish, for these letters are absent in the alphabet of that language and are used only to spell foreign words or names. The presence of accented letters or letters marked with special signs of one sort or another, peculiar to certain languages, will sometimes indicate the language used. The Japanese Morse telegraph alphabet and the Russian Morse telegraph alphabet contain combinations of dots and dashes which are peculiar to those alphabets and thus the interception of messages containing these special Morse combinations at once indicates the language involved. Finally, there are certain peculiarities of alphabetic languages which, in certain types of cryptograms, viz., pure transposition, give clues as to the language used. For example, the frequent digraph CH. in German, leads to the presence, in cryptograms of the type mentioned, of many isolated C's and H's; if this is noted, the cryptogram may be assumed to be in German.

c. In some cases it is perfectly possible to perform certain steps in cryptanalysis <u>before</u> the language of the cryptogram has been definitely determined. Frequency studies, for example, may be made and analytic processes performed without this knowledge, and by a cryptanalyst wholly unfamiliar with the language even if it has been identified, or who knows only enough about the language to enable him to recognize valid combinations of letters, syllables, or a few common words in that language. He may, after this, call to his assistance a translator who may not be a cryptanalyst but who can materially aid in making necessary assumptions based upon his special knowledge of the characteristics of the language in question. Thus, cooperation between cryptanalyst and translator results in solution.²

- The writer has seen in print statements that "during World War I... decoded messages in Japanese and Russian without knowing a word of either language." The ext it to which such statements are exaggerated will soon become obvious to the student. Of course, there are occasional instances in which a mere clerk with quite limited experience may be able to "solve" a message in an extremely simple system in a language of which he has no knowledge at all; but such a "solution" calls for nothing more arduous than the ability to recognize pronounceable combinations of vowels and consonants—an ability that hardly deserves to be rated as "cr. ptanalytic" in any real sense. To say that it is possible to solve a cryptogram in a foreign language "without knowing a word of that language" is not quite the same as to say that it is possible to do so with only a slight knowledge of the language; and it may be stated without cavil that the better the cryptanalyst's knowledge of the language, the greater are the chances for his success and, in any case, the easier is his work.

-RESTRICTED

17. The determination of the general system. -- a. Except in the case of the more simple types of cryptograms, the step referred to as diagnosis, that is, ascertaining the general system according to which a given cryptogram has been produced is usually a difficult, if not the most difficult, step in its solution. The reason for this is not hard to find.

b. As will become apparent to the student as he proceeds with his study, in the final analysis, the solution of every cryptogram involving a form of substitution depends upon its reduction to monoalphabetic terms, if it is not originally in those terms. This is true not only of ordinary substitution ciphers, but also of combined substitution-transposition ciphers, and of enciphered code. If the cryptogram must be reduced to monoalphabetic terms, the manner of its accomplishment is usually indicated by the cryptogram itself, by external or internal phenomena which become apparent to the cryptanelyst as he studies the cryptogram. If this is impossible, or too difficult, the cryptanalyst must, by one means or another, discover how to accomplish this reduction, by bringing to bear all the special or collateral information he can get from all the sources at his command. If both these possibilities fail him, there is little left but the long, tedious, and often fruitless process of elimination. In the case of transposition ciphers of the more complex type, the discovery of the basic method is often simply a matter of long and tedious elimination of possibilities. For cryptanalysis has unfortunately not yet attained, and may indeed never attain, the precision found today in qualitative analysis in chemistry, for example, where the analytic process is absolutely clear-cut and exact in its dichotomy. A few words in explanation of what is meant may not be amiss. When a chemist seeks to determine the identity of an unknown substance, he applies certain specific reagents to the substance and in a specific sequence. The first reagent tells him definitely into which of two primary classes the unknown substance falls. He then applies a second test with another specific reagent, which tells him again quite definitely into which of two secondary classes the unknown substance falls, and so on, until finally he has reduced the unknown substance to its simplest terms and has found out what it is. In striking contrast to this situation, cryptanalysis affords exceedingly few "reagents" or tests that may be applied to determine positively that a given cipher belongs to one or the other of two systems yielding externally similar results. And this is what makes the analysis of an isolated, complex cryptogram so difficult. Note the limiting adjective "isolated" in the foregoing sentence, for it is used advisedly. It is not often that the general system fails to disclose itself or cannot be discovered by painstaking investigation when there is a great volume of text accumulating from a regular traffic between numerous correspondents in a large organization. Sooner or later the system becomes known, either because of blunders and carelessness on the part of the personnel entrusted with the encrypting of the messages, or because the accumulation of text itself makes possible the determination of the general system by cryptanalytic, including statistical, studies. But in

-RESTRICTED

the case of a single or even a few isolated cryptograms concerning which little or no information can be gained by the cryptanalyst, he is often unable, without a knowledge of, or a shrewd guess as to the general system employed, to decompose the heterogeneous text of the cryptogram into homogeneous, monoalphabetic text, which is the ultimate and essential step in analysis. The only knowledge that the cryptanalyst can bring to his aid in this most difficult step is that gained by long experience and practice in the analysis of many different types of systems. In this respect the practice of cryptanalysis is analogous to the practice of medicine: correct diagnosis is the most important and often the most difficult first step toward success.

c. On account of the complexities surrounding this particular phase of cryptanalysis, and because in any scheme of analysis based upon successive eliminations of alternatives the cryptanalyst can only progress as far as the extent of his own knowledge of all the possible alternatives will permit, it is necessary that detailed discussion of the eliminative process be postponed until the student has covered most of the field. For example, the student will perhaps want to know at once how he can distinguish between a cryptogram that is in code or enciphered code from one that is in cipher. It is at this stage of his studies impracticable to give him any helpful indications on his question. In return it may be asked of him why he should expect to be able to do this in the early stages of his studies when often the experienced expert cryptanalyst is baffled on the same score!

d. Nevertheless, in lieu of more precise diagnostic tests not yet discovered, a general guide that may be useful in cryptanalysis will be built up, step by step as the student progresses, in the form of a series of charts comprising what may be designated <u>An Analytical Key for Cryptanalysis</u>. (See Section X.) It may be of assistance to the student if, as he proceeds, he will carefully study the charts and note the place which the particular cipher he is solving occupies in the general cryptanalytic panorama. These charts admittedly constitute only very brief outlines, and can therefore be of but little direct assistance to him in the analysis of the more complex types of cryptosystems he may encounter later on. So far as they go, however, they may be found to be quite useful in the study of elementary cryptanalysis. For the experienced cryptanalyst they can serve only as a means of assuring that no possible step or process is inadvertently overlooked in attempts to solve a difficult cryptosystem.

e. Much of the labor involved in cryptanalytic work, as referred to in par. 2, is connected with this determination of the general system. The preparation of the text, its rewriting in different forms, sometimes being rewritten in dozens of ways, the recording of letters, the establishment of frequencies of occurrences of letters, comparisons and experiments made with known material of similar character, and so on, constitute much labor that is most often indispensable, but which

RESTRICTED

sometimes turns out to have been wholly unnecessary, or in vain. In one treatise³ it is stated quite boldly that "this work once done, the determination of the system is often relatively easy." This statement can certainly apply only to the simpler types of cryptosystems; it is entirely misleading as regards the much more frequently encountered complex cryptograms of modern times.

· ··· · · ·

18. The reconstruction of the specific key .-- a. Nearly all practical cryptographic methods require the use of a specific key to guide, control, or modify the various steps under the general system. Once the latter has been disclosed, discovered, or has otherwise come into the possession of the cryptanalyst, the next step in solution is to determine, if necessary and if possible, the specific key that was employed to encrypt the message or messages under examination. This determination may not be in complete detail; it may go only so far as to lead to a knowledge of the number of alphabets involved in a substitution cipher, or the number of columns involved in a transposition cipher, or that a onepart code has been used, in the case of a code system. But it is often desirable to determine the specific key in as complete a form and with as much detail as possible, for this information will very frequently be useful in the solution of subsequent cryptograms exchanged between the same correspondents, since the nature or source of the specific key in a solved case may be expected to give clues to the specific key in an unsolved case.

b. Frequently, however, the reconstruction of the key is not a prerequisite to, and does not constitute an absolutely necessary preliminary step in, the fourth basic operation, viz., the reconstruction or establishment of the plain text. In many cases, indeed, the two processes are carried along simultaneously, the one assisting the other, until in the final stages both have been completed in their entireties. In still other cases the reconstruction of the specific key may follow the reconstruction of the plain text instead of preceding it and is accomplished purely as a matter of academic interest; or the specific key may, in unusual cases, never be reconstructed.

19. The reconstruction of the plain text.--a. Little need be said at this point on this phase of cryptanalysis. The process usually consists, in the case of substitution ciphers, in the establishment of equivalency between specific letters of the cipher text and the plain text, letter by letter, pair by pair, and so on, depending upon the particular type of substitution system involved. In the case of transposition ciphers, the process consists in rearranging the elements of the cipher text, letter by letter, pair by pair, or occasionally word by word, depending upon the particular type of transposition system involved, until the letters or words have been returned to their original plaintext order. In the case of code, the process consists in determining the meaning of each code group and inserting this meaning in the code text to reestablish the original plain text.

³ Lange et Soudart, op. cit., p. 106.
-RESTRICTED

b. The foregoing processes do not, as a rule, begin at the beginning of a message and continue letter by letter, or group by group in sequence up to the very end of the message. The establishment of values of cipher letters in substitution methods, or of the positions to which cipher letters should be transferred to form the plain text in the case of transposition methods, comes at very irregular intervals in the process. At first only one or two values scattered here and there throughout the text may appear; these then form the "skeletons" of words, upon which further work, by a continuation of the reconstruction process, is made possible; in the end the complete or nearly complete⁴ text is established.

c. In the case of cryptograms in a foreign language, the translation of the solved messages is a final and necessary step, but is not to be considered as a cryptanalytic process. However, it is commonly the case that the translation process will be carried on simultaneously with the cryptanalytic, and will aid the latter, especially when there are lacunae which may be filled in from the context. (See also subpar. 16c in this connection.)

20. The utilization of traffic intercepts.⁵--a. There are, of course, other operations which are not as basic in nature as those just outlined but which must generally be performed as preliminary steps in practical cryptanalytic work (as distinguished from academic cryptanalysis). Before a military cryptanalyst can begin the analysis of an enemy cryptosystem, it is necessary for him to study the intercept material that is available to him, isolate the messages that hve been encrypted by means of the cryptosystem to be exploited, and to arrange the latter in a systematic order for analysis. This work, although apparently very simple, may require a great deal of time and effort.

b. Since, whenever practicable, two or more intercept stations are assigned to copy traffic emanating from the stations of one enemy radio net, it is natural that there should be a certain amount of duplication in the work of the several stations. This is desirable since it provides the cryptanalysts with two or more sets of the same messages, so that when one intercept station fails to receive all the messages completely and correctly, because of radio difficulties, local static, or poor operation, it is possible by studying the other sets to reconstruct accurately the entire traffic of the enemy net.

4 Sometimes in the case of code, the meaning of a small percentage of the code groups occurring in the traffic may be lacking, because there is insufficient text to establish their meaning.

> A traffic intercept is a copy of a communication gained through interception.

RESTRICTED

Ltrs. and Figs.	Morse equi- valent	Frequent Errors	Ltrs. and Figs.	Morse equi- valent	Frequent Errors
A B C D E F C H I J K L M N O P Q	· · · · · · · · · · · · · · · · · ·	i, m, t, et d, ts f, k, r, nn b, s, l, ti t, i r, in m, 0, z, me s, v, b, ii, se a, n, s v, 0, an, eo d, 0, ta r, d, ed a, n, tt i, m, t, te g, k, w, mt j, g, l, w, an 0, x, z, ma	S T U V W X Y Z L Q 34 56 78 9		h, d, i, r, u a, e, n a, s, v, it h, u, x, st a, m, o, r, u, at v, k, y, tu x, e, nm b, g, q, mi Ø, 2 1, 3 2, 4 3, 5 4, 6 5, 7 6, 8 7, 9 8, Ø
R	4 m 4	a, f, g, l, n, s, w	ø		9,1

c. In all intercept activities where operators are used for copying the traffic, one of the most likely errors to be found is caused by the human element in reception. For this reason cryptanalysts and their

Chart 1. Most common errors in telegraphic transmission.

assistants should be familiar with the international Morse alphabet and the most common errors in wire and radio transmission methods so as to be able to correct garbled groups when they occur. In this connection, Chart 1, above, will be found useful.

- . ----

'RESTRICTED

ı۲

.

2

-

RESTRICTED

,

(BLANK)

.

.

-RESTRICTED

SECTION IV

FREQUENCY DISTRIBUTIONS AND THEIR FUNDAMENTAL USES

 The simple or uniliteral frequency distribution	₽	aragrapa
 Important features of the normal uniliteral frequency distribution	The simple or uniliteral frequency distribution	21
 distribution	Important features of the normal uniliteral frequency	
 Constancy of the standard or normal uniliteral frequency distribution	distribution	22
 distribution	Constancy of the standard or normal uniliteral frequency	
The three facts which can be determined from a study of the uniliteral frequency distribution for a cryptogram	distribution	23
 uniliteral frequency distribution for a cryptogram	The three facts which can be determined from a study of the	
 Determining the class to which a cipher belongs	uniliteral frequency distribution for a cryptogram	24
Determining whether a substitution cipher is monoalphabetic or non-monoalphabetic	Determining the class to which a cipher belongs	25
 non-monoalphabetic	Determining whether a substitution cipher is monoalphabetic or	
The ϕ (phi) test for determining monoalphabeticity	non-monophabetic	26
Determining whether a cipher alphabet is standard (direct or reversed) or mixed		07
Determining whether a cipher alphabet is standard (direct or reversed) or mixed	The ϕ (phi) test for determining monoalphabeticity	••• ~!
or reversed) or mixed	Determining whether a cipher alphabet is standard (direct	~0
	or reversed) or mixed	••• 28

21. The simple or uniliteral frequency distribution .-- a. It has long been known to cryptographers and typographers that the letters corposing the words of any intelligible written text composed in any language which is alphabetic in construction are employed with greatly varying frequencies. For example, if on cross-section paper a simple tabulation, shown in Fig. 1, called a uniliteral frequency distribution, is made of the letters composing the words of the preceding sentence, the variation in frequency is strikingly demonstrated. It is seen that whereas certain letters, such as A, E, I, N, O, R, and T, are employed very frequently, other letters, such as C, G, H, L, P, and S are employed not nearly so frequently, while still other letters, such as F, J, K, Q, V, X, and Z are employed either seldom or not at all.

> II NU Z 20 × ZA ZY Z V Ŵx 8 22 5

(Total=200 letters)

Figure 1.

b. If a similar tabulation is now made of the letters comprising the words of the second sentence in the preceding subparagraph, the distribution shown in Fig. 2 is obtained. Both sentences have exactly the same number of letters (200).

RESTRICTED

11 逆 逆 丸 12	∥B 2	三 次 の 。	N N D T	NNNNNNNE S	12下7	IIIG ▲	ZH ⁵	22 22 22 12 1	J o	_ K 1	言愛し。	NN 5	12 2 2 2 N 17	三次次04	送P 6	/ Q ~	II N N N II	III NI NI NI NI NI	芝芝芝丁17	赵 ひ ₽	ÎV 1	//₩ a	X 1	∭¥3	Z o
									(]	ot	al=	=2	00	le	tte	ra)									

Figure 2.

c. Although each of these two distributions exhibits great variation in the relative frequencies with which different letters are employed in the respective sentences to which they apply, no marked differences are exhibited between the frequencies of the same letter in the two distributions. Compare, for example, the frequencies of A, B, C . . . Z in Fig. 1 with those of A, B, C . . . Z in Fig. 2. Aside from one or two exceptions, as in the case of the letter F, these two distributions agree rather strikingly.

d. This agreement, or <u>similarity</u>, would be practically complete if the two texts were much longer, for example, five times as long. In fact, when two texts of similar character, each containing more than 1,000 letters, are compared, it would be found that the respective frequencies of the 26 letters composing the two distributions show only very slight differences. This means, in other words, that in normal plain text each letter of the alphabet occurs with a rather <u>constant</u> or <u>characteristic</u> <u>frequency</u> which it tends to approximate, depending upon the length of the text analyzed. The longer the text (within certain limits), the closer will be the approximation to the characteristic frequencies of letters in the language involved. However, when the amount of text being analyzed has reached a substantial volume (roughly, 1,000 letters), the practical gain in accuracy does not warrant further increase in the amount of text.¹

e. An experiment along these lines will be convincing. A series of 260 official telegrams² passing through the Department of the Army Message Center was examined statistically. The messages were divided into five sets, each totaling 10,000 letters, and the five distributions shown in Table 1-A, were obtained.

² These comprised messages from several official sources in addition to the Department of the Army and were all of an administrative character.

¹ See footnote 5, page 38.

RESTRICTED

Set No.	1	Set No	. 2	Set No	. 8	Set No	. 4	Set No	. 5
Letter	Absolute Frequency	Letter	Absolute Frequency	Letter	Absolute Frequency	Latter	Absolute Frequency	Letter	Absolute Frequency
A	738	A	788	A	681	A	740	A	741
B	104	B	103	B	98	B	83	B	89
C	819	C	300	C	288	C	826	C	301
D	387	D	418	D	423	D	451	D	448
E	1,867	E	1,294	E	1,292	E	1,270	E	1,275
F	253	F	287	F	308	F	287	F	281
G	166	G	175	G	161	G	167	G	150
Н	310	Н	851	H	835	H	849	H	849
I	742	I	750	I	787	I	700	I	697
J.,	18	J	17	J	10	J	21	J	16
K	86	K	38	K	22	K	21	K	81
L	865	L	893	L	388	L	386	L	844
M	242	M	240	M	238	M	249	M	268
N	786	N	794	N	815	N	800	N	780
0	685	0	770	0	791	0	756	0	762
P	241	P	272	P	817	P	245	P	260
0	40	0	22	0	45	0	88	Q	80
R	760	R	745	R	762	R	785	R	786
S	658	S	583	S	585	S	628	S	604
Τ	936	Τ	879	T	894	T	958	T	928
U	270	U	283	U	312	U	247	U	288
V	163	V	173	v	142	V	138	V	155
W	166	W	168	W	186	W.	188	W	182
X	43	x	50	x	44	X	53	x	41
Y	191	Y	155	Y	179	Y	218	Y	229
Z	14	Z	17	Z	2	Z	11	Z	5
Total	10,000		10,000		10,000		10,000		10,000

TABLE 1-A.—Absolute frequencies of letters appearing in five sets of Governmental plain-text telegrams, each set containing 10,000 letters, arranged alphabetically

f. If the five distributions in Table 1-A are summed, the results are as shown in Table 2-A.

TABLE 2-A.—Absolute frequencies of letters appearing in the combined five sets of messages totaling 50,000 letters, arranged alphabetically

A	3, 683	G 819	L 1,821	Q 175	V	766
B	487	H 1,694	M1,237	R 3,788	W	780
C	1,534	I 3,676	N 3,975	S 3,058	X	231
D	2,122	J 82	0 3,764	T 4, 595	Y	967
E	6,498	K	P 1,335	U 1,300	Z	49
F	1,416					

-RESTRICTED-

. .

33

g. The frequencies noted in Table 2-A above, when reduced to the basis of 1,000 letters and then used as a basis for constructing a simple chart that will exhibit the variations in frequency in a striking manner, yield the following distribution which is hereafter designated as the normal or standard uniliteral frequency distribution for English telegraphic plain text:

22. Important features of the normal uniliteral frequency distribution.--a. When the distribution shown in Fig. 3 is studied in detail, the following features are apparent:

(1) It is quite irregular in appearance. This is because the letters are used with greatly varying frequencies, as discussed in the preceding paragraph. This irregular appearance is often described by saying that the distribution shows marked <u>crests and troughs</u>, that is, points of high frequency and low frequency.

(2) The relative positions in which the crests and troughs fall within the distribution, that is, the <u>spatial relations</u> of the crests and troughs, are rather definitely fixed and are determined by circumstances which have been explained in subpar. 13b.

(3) The relative heights and depths of the crests and troughs within the distribution, that is, the <u>linear extensions</u> of the lines marking the respective frequencies, are also rather definitely fixed, as would be found if an equal volume of similar text were analyzed.

-RESTRICTED-

 $(^{l_1})$ The most prominent crests are marked by the vowels A, E, I, O, and the consonants N, R, S, T; the most prominent troughs are marked by the consonants J, K, Q, X, and Z.

(5) The important data are summarized in tabular form in Table 3.

- TABLE 3		•	
· · · · · · · · · · · · · · · · · · ·	Frequency	Percent of total	Percent of total in round numbers
6 Vowels: A E I O U Y	398	39. 8	40
5 High Frequency (D N R S T)	350	35.0	35
10 Medium Frequency (B C F G H L M P V W)	238	23.8	24
5 Low Frequency (J K Q X Z)	. 14	1.4	1
 Total	1,000	100.0	100

(6) The frequencies of the letters of the alphabet, reduced to a base of 1000, are as follows:

A	74	G	16	L	36	Q	3	V	15
B	10	H	34	M	25	R	76	W	16
C	31	I	74	N	79	S	61	X	5
D	42	J	2	0	75	T	92	Υ	19
E	130	K	3	P	27	U	26	Ž	1
F	28								

(7) The relative order of frequency of the letters is as follows:

E	130	I	74	C	31	Y	19	X	5
T	92	S	61	F	28	G	16	Q	3
N	79	D	42	P	27	W	16	K	3
R	76	L	36	Ů	26	V	15	J	2
0	75	H	34	M	25	B	10	Z	1
Α	74								

(8) The four vowels A, E, I, O (combined frequency 353) and the four consonants N, R, S, T (combined frequency 308) form 661 out of every 1,000 letters of plain text; in other words, less than one-third of the alphabet is employed in writing two-thirds of normal plain text.

RESTRICTED

• • _ --

35

b. The data given in Fig. 3 and Table 3 represent the relative frequencies found in a large volume of English telegraphic text of a governmental, administrative character.³ These frequencies will vary somewhat with the nature of the text analyzed. For example, if an equal number of telegrams dealing solely with <u>commercial</u> transactions in the <u>leather</u> <u>industry</u> were studied statistically, the frequencies would be slightly different because of the repeated occurrence of words peculiar to that industry. Again, if an equal number of telegrams dealing solely with <u>military</u> messages of a <u>tactical</u> character were studied statistically, the frequencies would differ slightly from those found above for general governmental messages of an administrative character.

c. If ordinary English literary text (such as may be found in any book, newspaper, or printed document) were analyzed, the frequencies of certain letters would be changed to an appreciable degree. This is because in telegraphic text words which are not strictly essential for intelligibility (such as the definite and indefinite articles, certain prepositions, conjunctions, and pronouns) are omitted. In addition, certain essential words, such as "stop", "period", "comma", and the like, which are usually indicated in written or printed matter by symbols not easy to transmit telegraphically and which must, therefore, be spelled out in telegrams, occur very frequently. Furthermore, telegraphic text often employs longer and more uncommon words than does ordinary newspaper or book text.

d. As a matter of fact, other tables compiled from Army sources gave slightly different results, depending upon the source of the text. For example, three tables based upon 75,000, 100,000, and 136,257 letters taken from various sources (telegrams, newspapers, magazine articles, books of fiction) gave as the relative order of frequency for the first 10 letters the following:

> For 75,000 letters..... E T R N I O A S D L For 100,000 letters..... E T R I N O A S D L For 136,257 letters..... E T R N A O I S L D

³ Just as the individual letters constituting a large volume of plain text have more or less characteristic or fixed frequencies, so it is found that <u>digraphs</u> and <u>trigraphs</u> (two- and three-letter combinations, respectively) have characteristic frequencies, when a large volume of text is studied statistically. In Table 6 of Appendix 2, "Letter frequency data - English", are shown the relative frequencies of all digraphs appearing in the 260 telegrams referred to in subpar. 21e. This appendix also includes several other kinds of tables and lists of frequency data which will be useful to the student in his work. It is suggested that the student refer to this appendix now, to gain an idea of the data available for his future reference.

Other languages, of course, each have their own individual characteristic plaintext frequencies of single letters, digraphs, trigraphs, etc. A brief summary of the letter frequency data for German, French, I: lian, Spanish, Portuguese, and Russian constitute Appendix 5, "Letter frequency data - foreign languages".

RESTRICTED

e. Frequency data applicable purely to English military text were compiled by Hitt,⁴ from a study of 10,000 letters taken from orders and reports. The frequencies found by him are given in Tables 4 and 5. الد المساحية ال

- - TABLE 4.-Frequency table for 10,000 letters of literary English, as compiled by Hitt

-

ALPHABETICALLY ARRANGED

- 778 G..... 174 L_____ 372 A V..... 112 8 H_____ 595 141 B..... R_____ 651 N..... 686 C..... 296 S..... 622 402 D..... Y..... 196 E.... 1,277 P.____ 223 74 K..... F..... ' 197

ARRANGED ACCORDING TO FREQUENCY

	-	_	m -	-	B		·	-	_
E	1,277	R.,,,,,,,,	651	U	308	Ŷ	196	K	74
T	855	S	622	C	296	W	176	J	51
0	807	H	595	M	288	G	174	X	27
A	- 778	D	402	P	223	B	141	Z	17
N	686	L	372	F	197	V	112	Q	8
I	667				-			-	
								•	

TABLE 5.—Frequency table for 10,000 letters of telegraphic English, as compiled by Hitt

ALPHABETICALLY ARRANGED

A	813	G	201	L	392	Q	38	V	136
B	149	H	386	<u>M</u>	273	R	677	W	166
C	306	I	711	N	718	S	656	X	51
D	417	J	42	0	844	Т	634	Y	208
E	1,319	K	88	P	243	U	321	Z	6
F	205								

ARRANGED ACCORDING TO FREQUENCY

E	1,319	S	656	U	321	F	205	K	88
0	844	T	634	C	306	G	201	X	51
A	813	D	417	M	273	W	166	J	42
N	718	L	392	P	243	B	149	Q	38
I	711	H	386	Y	208	۷	136	Z	6
R.,	677								

23. Constancy of the standard or normal uniliteral frequency distribution .-- a. The relative frequencies disclosed by the statistical study of large volumes of text may be considered to be the standard or normal frequencies of the letters of written English. Counts made of smaller volumes of text will tend to approximate these normal frequencies,

Cp. cit., pp. 6-7.

ESTRICTED

and, within certain limits,⁵ the smaller the volume, the lower will be the degree of approximation to the normal, until, in the case of a very short message, the normal proportions may not manifest themselves at all. It is advisable that the student fix this fact firmly in mind, for the sooner he realizes the true nature of any data relative to the frequency of occurrence of letters in text, the less often will his labors toward the solution of specific ciphers be thwarted and retarded by too strict an adherence to these generalized principles of frequency. He should constantly bear in mind that such data are merely statistical generalizations, that they will be found to hold strictly true only in large volumes of text, and that they may not even be approximated in short messages.

b. Nevertheless the normal frequency distribution or the "normal expectation" for any alphabetic language is, in the last analysis, the best guide to, and the usual basis for, the solution of cryptograms of a certain type. It is useful, therefore, to reduce the normal, uniliteral frequency distribution to a basis that more or less closely approximates the volume of text which the cryptanalyst most often encounters in individual cryptograms. As regards length of messages, counting only the letters in the body, and excluding address and signature, a study of the 260 telegrams referred to in par. 21 shows that the arithmetical average is 217 letters; the statistical mean, or weighted average⁶, however, is 191 letters. These two results are, however, close enough together to warrant the statement that the average length of telegrams is approximately 200 letters. The frequencies given in par. 21 have therefore been reduced to a basis of 200 letters, and the following uniliteral frequency distribution may be taken as showing the most typical distribution to be expected in 200 letters of English telegraphic text:

				IXI I															- 1 80 a							٠
				NN NN				M					NN/	M			M	1	NI NI							
N IN		11	un y	N NA	17	_	U N	NUN			111	-	N MI	U NU	-		N	I WI	NN I			~				
Æ	B	Ę C	Ð	Ē	Ē	G	Ř	Ĩ	J	ĸ	ž	æ M	× N	₹ 0	ž	Q	R	₹ S	ž	₹ U	V	W	x	¥	z	
											Fi	gu	re	4	•	•			-	-	-			-		

⁻_____5 It is useless to go beyond a certain limit in establishing the normal-frequency distribution for a given language. As a striking instance of this fact, witness the frequency study made by an indefatigable German, Kaeding, who in 1898 made a count of the letters in about 11,000,000 words, totaling about 62,000,000 letters in German text. When reduced to a percentage basis, and when the relative order of frequency was determined, the results he obtained differed very little from the results obtained by Kasiski, a German cryptographer, from a count of only 1,000 letters. See Kaeding, Haeufigkeitswoerterbuch, Steglitz, 1898; Kasiski, Die Geheimschriften und die Dechtfpir-Kunst, Berlin, 1863.

⁶ The arithmetical average is obtained by adding each different length and dividing by the number of different-length messages; the mean is obtained by multiplying each different length by the number of messages of that length, adding all products, and dividing by the total number of messages.

RESTRICTED

c. The student should take careful note of the appearance of the distribution? shown in Fig. 4, for it will be of much assistance to him in the early stages of his study. The manner of setting down the tallies should be followed by him in making his own distributions, indicating every fifth occurrence of a letter by an oblique tally. This procedure almost automatically shows the total number of occurrences for each letter, and yet does not destroy the graphical appearance of the distribution, especially if care is taken to use approximately the same amount of space for each set of five tallies. Cross-section paper is very useful for this purpose.

d. The word "uniliteral" in the designation "uniliteral frequency distribution" means "single letter", and it is to be inferred that other types of frequency distributions may be encountered. For example, a distribution of pairs of letters, constituting a biliteral frequency distribution, is very often used in the study of certain cryptograms in which it is desired that pairs made by combining successive letters be listed. A biliteral distribution of A B C D E F would take these pairs: AB, BC, CD, DE, EF. The distribution could be made in the form of a large square divided up into 676 cells. When distributions beyond biliteral are required (triliteral, quadriliteral, etc.) they can only be made by listing them in some order, for example, alphabetically based on the lst, 2d, 3d, . . . letter.

The use of the terms "distribution" and "frequency distribution", instead of "table" and "frequency table", respectively, is considered advisable from the point of view of consistency with the usual statistical nomenclature. When data are given in tabular form, with frequencies indicated by numbers, then they may properly be said to be set out in the form of a table. When, however, the same data are distributed in a chart which partakes of the nature of a graph, with the data indicated by horizontal or vertical linear extensions, or by a curve connecting points corresponding to quantities, then it is more proper to call such a graphic representation of the data a distribution.

39

24. The three facts which can be determined from a study of the uniliteral frequency distribution for a cryptogram.--a. The following three facts (to be explained subsequently) can usually be determined from an inspection of the uniliteral frequency distribution for a given cipher message of average length, composed of letters:

(1) Whether the cipher belongs to the substitution or the transposition class;

(2) If to the former, whether it is monoalphabetic⁸ or nonmonoalphabetic⁹ in character;

(3) If monoalphabetic, whether the cipher alphabet is standard (direct or reversed) or mixed.

b. For immediate purposes the first two of the foregoing determinations are quite important and will be discussed in detail in the next two paragraphs; the other determination will be touched upon very briefly, leaving its detailed discussion for subsequent sections of the text.

25. Determining the class to which a cipher belongs.--a. The determination of the class to which a cipher belongs is usually a relatively casy matter because of the fundamental difference between transposition and substitution as cryptographic processes. In a transposition cipher the original letters of the plain text have merely been rearranged, without any change whatsoever in their identities, that is, in the conventional values they have in the normal alphabet. Hence, the numbers of vowels (A, E, I, O, U, Y), high-frequency consonants (D, N, R, S, T), medium-frequency consonants (B, C, F, G, H, L, M, P, V, W), and lowfrequency consonants (J, K, Q, X, Z) are exactly the same in the cryptogram as they are in the plaintext message. Therefore, the percentages of vowels, high-, medium-, and low-frequency consonants are the same in the transposed text as in the equivalent plain text. In a

⁸ In connection with uniliteral frequency distributions, the term monoalphabetic is considered to embrace the concept of monoalphabeticmonogrophic-uniliteral systems only, thus excluding <u>polygraphic</u> and <u>multiliteral</u> systems, both of which, however, usually fall into the monoalphabetic category.

⁹ The term non-monoalphabetic as applied in this instance is considered to enbrace all doviations from the characteristic appearance of monoalphabetic distributions. These deviations include the phenomena inherent in polyalphabetic, polygraphic, and multiliteral cryptograms, as well as in random text, i.e., text which appears to have been produced by chance or accident, having no discernible patterns or limitations.

substitution cipher, on the other hand, the identities of the original letters of the plain text have been changed, that is, the conventional values they have in the normal alphabet have been altered. Consequently, if a count is made of the various letters present in such a cryptogram. it will be found that the number of vovels, high-, medium-, and lowfrequency consonants will usually be quite different in the cryptogram from what they are in the original plaintext message. Therefore, the percentages of vowels, high-, medium-, and low-frequency consonants are usually guite different in the substitution text from what they are in the equivalent plain text. From these considerations it follows that if in a specific cryptogram the percentages of vowels, high-, medium-, and loy-frequency consonants are approximately the same as yould be expected in normal plain text, the cryptogram probably belongs to the transposition class; if these percentages are quite different from those to be expected in normal plain text the cryptogram probably belongs to the substitution class.

b. In the preceding subparagraph the word "probably" was emphasized by italicizing it. for there can be no certainty in every case of this determination. Usually these percentages in a transposition cipher are close to the normal percentages for plain text; usually, in a substitution cipher, they are far different from the normal percentages for plain text. But occasionally a cipher message is encountered which is difficult to classify with a reasonable degree of certainty because the message is too short for the general principles of frequency to manifest themselves. It is clear that if in actual messages there were no variation whatever from the normal vovel and consonant percentages given in Table 3, the dctermination of the class to which a specific cryptogram belongs would bc an extremely simple matter. But unfortunately there is always some variation or deviation from the normal. Intuition suggests that as messages decrease in length there may be a greater and greater departure from the normal proportions of vowels, high-, medium-, and low-frequency consonants, until in very short messages the normal proportions may not hold at all. Similarly, as messages increase in length there may be a losser and lesser departure from the normal proportions, until in messages totalling a thousand or more letters there may be no difference at all between the actual and the theoretical proportions. But intuition is not enough, for in dealing with specific messages of the length of those commonly encountered in practical work the question sometimes arises as to exactly how much deviation (from the normal proportions) may be allowed for in a cryptogram which shows a considerable amount of deviation from the normal and which might still belong to the transposition rather than to the substitution class.

c. Statistical studies have been made on this matter and some graphs have been constructed thereon. These are shown in Charts 2 - 5 in the form of simple curves, the use of which will now be explained. Each chart contains two curves marking the lower and upper limits, respectively. of the theoretical amount of deviation (from the normal percentages) of vowels of consonants which may be allowable in a cipher believed to belong to the transposition class.

41

d. In Chart 2, curve V_1 marks the lower limit of the theoretical amount of deviation¹⁰ from the number of vowels theoretically expected to appear¹¹ in a message of given length; curve V_2 marks the upper limit of the same statistic. Thus, for example, in a message of 100 letters in plain English there should be between 33 and 47 vowels (A E I O U Y). Likewise, in Chart 3 curves H₁ and H₂ mark the lower and upper limits as regards the high-frequency consonants. In a message of 100 letters there should be between 28 and 42 high-frequency consonants (D N R S T). In Chart 4 curves M1 and M2 mark the lower and upper limits as regards the medium-frequency consonants. In a message of 100 letters there should be between 17 and 31 medium-frequency consonants (B C F G H L M P V W). Finally, in Chart 5, curves L1 and Lo mark the lower and upper limits as regards the low-frequency consonants. In a message of 100 letters there should be between 0 and 3 low-frequency consonants (JKQXZ). In using the charts, therefore, one finds the point of intersection of the vertical coordinate corresponding to the length of the message, with the horizontal coordinate corresponding to (1) the number of vowels, (2) the number of high-frequency consonants, (3) the number of medium-frequency consonants, and (4) the number of low-frequency consonants actually counted in the message. If all four points of intersection fall within the area delimited by the respective curves, then the numbers of vowels and high-, medium-, and low-frequency consonants correspond with the numbers theoretically expected in a normal plaintext message of the same length; since the message under investigation is not plain text, it follows that the cryptogram may certainly be classified as a transposition cipher. On the other hand, if one or more of these points of intersection fall outside the area delimited by the respective curves, it follows that the cryptogram is probably a substitution cipher. The distance that the point of intersection falls outside the area delimited by these curves is a more or less rough measure of the improbability of the cryptogram's being a transposition cipher.

e. Sometimes a cryptogram is encountered which is hard to classify with certainty even with the foregoing aids, because it has been consciously prepared with a view to making the classification difficult. This can be done either by selecting peculiar words (as in "trick cryptograms") or by employing a cipher alphabet in which letters of <u>approximately similar normal frequencies</u> have been interchanged. For example, <u>E may be replaced by 0, T by R, and so on, thus yielding a cryptogram</u> giving external indications of being a transposition cipher but which is really a substitution cipher. If the cryptogram is not too short, a close study will usually disclose what has been done, as well as the futility of so simple a subterfuge.

¹⁰ In Charts 2 - 5, inclusive, the limits of the upper and lower curves have been calculated to include approximately 70 percent of messages of the various lengths.

11 The expression "the number of ... theoretically expected to appear" is often condensed to "the theoretical expectation of ..." or "the normal expectation of ..."

-RESTRICTED

f. In the majority of cases, in practical work, the determination of the class to which a cipher of average length belongs can be made from a mere inspection of the message, after the cryptanalyst has acquired a familiarity with the normal appearance of transposition and of substitu-

Number of letters in message.

Chart 2. Curves marking the lower and upper limits of the theoretical amount of deviation from the number of vowels theoretically expected in messages of various lengths. (Sce subpar. 25d.)

tion ciphers. In the former case, his eyes very speedily note many highfrequency letters, such as E, T, N, R, O, and S, with the absence of low-frequency letters, such as J, K, Q, X, and Z; in the latter case, his cyrs just as quickly note the presence of many low-frequency letters, and a corresponding absence of some of the high-frequency letters.

ŧ I

g. Another rather quickly completed test, in the case of the simpler varieties of ciphers, is to look for <u>repetitions</u> of groups of <u>letters</u>. As will become apparent very soon, recurrences of syllables, entire words and short phrases constitute a characteristic of all normal plain text. Since a transposition cipher involves a change is the sequence of the letters

Chart 3. Curves marking the lower and upper limits of the theoretical amount of deviation from the number of highfrequency consonants theoretically expected in messages of various lengths. (See subpar. 25d.)

composing a plaintext message, such recurrences are broken up so that the cipher text no longer will show repetitions of more or less lengthy sequences of letters. But if a cipher message does show many repetitions and these are of several letters in length, say over four or five, the

-RESTRICTED

conclusion is at once warranted that the cryptogram is most probably a substitution and not a tranposition cipher. However, for the beginner in cryptanalysis, it will be advisable to make the uniliteral frequency distribution, and note the frequencies of the vowels and of the high-,

Chart 4. Curves marking the lower and upper limits of the theoretical amount of deviation from the number of mediumfrequency consonants theoretically expected in messages of various lengths. (See subpar. 25d.)

medium-, and low-frequency consonants. Then, referring to Charts 2 to 5, he should carefully note whether or not the observed frequencies for these categories of letters fall within the limits of the theoretical frequencies for a normal plaintext message of the same length, and be guided accordingly.

-RESTRICTED

REF ID:A56892

h. It is obvious that the foregoing rule applies only to ciphers composed wholly of letters. If a message is composed entirely of figures, or of arbitrary signs and symbols, or of intermixtures of letters, figures and other symbols, it is immediately apparent that the cryptogram is a substitution cipher.

Chart 5. Curves marking the lower and upper limits of the theoretical amount of deviation from the number of lowfrequency consonants theoretically expected in messages of various lengths. (See subpar. 25d.)

i. Finally, it should be mentioned that there are certain kinds of cryptograms whose class cannot be determined by the method set forth in subparagraph d above. These exceptions will be discussed in a subsequent section of this text.¹²

12 Section X.

1

-RESTRICTED-

26. Determining whether a substitution cipher is monoalphabetic or non-monoalphabetic.--a. It will be remembered that a monoalphabetic substitution cipher is one in which a single cipher alphabet is employed throughout the .hole message; that is, a given plaintext letter is invariably represented throughout the message by one and the same letter in the cipher text. On the other hand, a polyalphabetic substitution cipher is one in which two or more cipher alphabets are employed within the same message; that is, a given plaintext letter may be represented by two or more different letters in the cipher text, according to some rule governing the selection of the equivalent to be used in each case. From this it follows that a single cipher letter may represent two or more different plaintext letters. A similar situation prevails in the case of multiliteral substitution, in which a particular cipher letter may constitute a part of the equivalents for several plaintext letters, giving rise to phenomena resembling those of polyalphabeticity.

b. It is easy to see why and how the appearance of the uniliteral frequency distribution for a substitution cipher may be used to determine whether the cryptogram is monoalphabetic or non-monoalphabetic in character. The normal distribution presents marked crests and troughs by virtue of two circumstances. First, the elementary sounds which the symbols represent are used with greatly varying frequencies, it being one of the striking characteristics of every alphabetic language that its elementary sounds are used with greatly varying frequencies.¹³ In the second place. except for orthographic aberrations peculiar to certain languages (conspicuously, English and French), each such sound is represented by the same symbol. It follows, therefore, that since in a monoalphabetic substitution cipher each different plaintext letter (=elementary sound) is represented by one and only one cipher letter (=elementary symbol), the uniliteral frequency distribution for such a cipher message must also exhibit the irregular crest-and-trough appearance of the normal distribution, but with this important modification--the absolute positions of the crests and troughs will not be the same as in the normal. That is, the letters accompanying the crests and the troughs in the distribution for the cryptogram will be different from those accompanying the crests and the troughs in the normal distribution. But the marked irregularity or "roughness" of the distribution, that is, the presence of accentuated crests and troughs, is in itself an indication that each symbol or cipher letter always represents the same plaintext letter in that cryptogram. Hence the general rule: A marked crest-andtrough appearance in the uniliteral frequency distribution for a given cryptogram indicates that a single cipher alphabet is involved and constitutes one of the tests for a monoalphabetic substitution cipher.

c. On the other hand, suppose that in a cryptogram each cipher letter represents several different plaintext letters. Some of them are of high frequency, others of low frequency. The net result of such a

13 The student who is interested in this phase of the subject may find the following reference of value: Zipf G.K., Selected Studies of the Principle of Relative Frequency in Language, Cambridge, Mass., 1932.

-RESTRICTED-

situation, so far as the uniliteral frequency distribution for the cryptogram is concerned, is to prevent the appearance of any marked crests and troughs and to tend to reduce the elements of the distribution to a more or less common level. This imparts a "flattened out" appearance to the distribution. For example, in a certain cryptogram of polyalphabetic construction, Kc=Ep, Gp, and Jp; Rc=Ap, Dp, and Bp; Xc=Op, Lp, and Fp. The frequencies of Kc, Rc, and Xc will be approximately equal because the summations of the frequencies of the several plaintext letters each of these cipher letters represents at different times will be about equal. If this same phenomenon were true of all the letters of the cryptogram, it is clear that the frequencies of the 26 letters, when shown by means of the ordinary uniliteral frequency distribution, would show no striking differences and the distribution would have the flat appearance of a typical polyalphabetic substitution cipher. Hence, the general rule: The absence of marked crests and troughs in the uniliteral frequency distribution indicates that a complex form of substitution is involved. The flattened-out appearance of the distribution. then, is one of the criteria for the rejection of a hypothesis of monoalphabetic¹⁴ substitution.

d. The foregoing test based upon the appearance of the frequency distribution is only one of several means of determing whether a substitution cipher is monoalphabetic or non-monoalphabetic in composition. It can be employed in cases yielding frequency distributions from which definite conclusions can be drawn with more or less certainty by mere ocular examination. In those cases in which the frequency distributions contain insufficient data to permit drawing definite conclusions by such examination, certain statistical tests can be applied. One of these tests, called the ϕ (phi) test, warrants detailed treatment and is discussed in paragraph 27 below.

e. At this point, however, one additional test will be given because of its simplicity of application. This test, the Λ (lambda) or <u>blank-expectation test</u>, may be employed in testing messages up to 200 letters in length, it being assumed that in messages of greater length ocular examination of the frequency distribution offers little or no difficulty. This test concerns the number of blanks in the frequency distribution, that is, the number of letters of the alphabet which are entirely absent from the message. It has been found from statistical studies that rather definite "laws" govern the theoretically expected number of blanks in normal plaintext messages and in frequency distributions for cryptograms of different natures and of various sizes. The results of certain of these studies have been embodied in Chart 6.

f. This chart contains two curves. The one labeled P applies to the average number of blanks theoretically expected in frequency distributions based upon normal plaintext messages of the indicated lengths. The other curve, labeled R, applies to the average number of blanks theoretically expected in frequency distributions based upon perfectly random assortments of letters; that is, assortments such as would be found by random

¹⁴ Cf., footnote 8 on page 140.

RESTRICTED

selection of letters out of a hat containing thousands of letters, all of the 26 letters of the alphabet being present in equal proportions, each letter being replaced after a record of its selection has been made. Such random assortments correspond to polyalphabetic cipher messages in which the number of cipher alphabets is so large that if uniliteral frequency distributions are made of the letters, the distributions are practically identical with those which are obtained by random selections of letters cut of a hat.

Chart 6. Curves showing the average number of blanks theoretically expected in distributions for plain text (P) and for random text (R) for messages of various lengths. (See subper. 26f.)

g. In using this chart, one finds the point of intersection of the vertical coordinate corresponding to the length of the message, with the horizontal coordinate corresponding to the observed number of blanks in the distribution for the message. If this point of intersection falls closer to curve P than it does to curve R, the number of blanks in the message approximates or corresponds more closely to the number theoretically expected in a plaintext message than it does to a random (ciphertext) message of the same length; therefore, this is evidence that the cryptogram is monoalphabetic. Conversely, if this point of intersection falls

£

closer to curve R than to curve P, the number of blanks in the message approximates or corresponds more closely to the number theoretically expected in a random text than it does to a plaintext message of the same length; therefore, this is evidence that the cryptogram is non-monoalphabetic.

27. The ϕ (phi) test for determining monoalphabeticity.--a. The student has seen in the preceding paragraph how it is possible to determine by ocular examination whether or not a substitution cipher is monoalphabetic. This tentative determination is based on the presence of a marked crest-and-trough appearance in the uniliteral frequency distribution, and also on the number of blanks in the distribution. However, when the distribution contains a small number of elements, ocular examination and evaluation becomes increasingly difficult and uncertain. In such cases, recourse may be had to a mathematical test, known as the ϕ test, to determine the relative monoalphabeticity or non-monoalphabeticity of a distribution.

b. Without going into the theory of probability at this time, or into the derivation of the formulas involved, let it suffice for the present to state that with this test the "observed value of ϕ " (symbolized by ϕ_0) is compared with the "expected value of ϕ random" (ϕ_r) and the "expected value of ϕ plain" (ϕ_p). The formulas are ϕ_r =.0385N(N-1) and, for English military text, ϕ_p =.0667N(N-1), where N is the total number of elements in the distribution.15 The use of these formulas is best illustrated by an example.

c. The following short cryptogram with its accompanying uniliteral frequency distribution is at hand:

QCYCH ADSKS YZZQE CYKYK QZYSK LSZAC TKFCX LKLKC ESZMX KISZX ZBZDZFGHIJKIMNOPZRZTUVWZZZ N=50

RESTRICTED

50

¹⁵ The constant .0385 is the decimal equivalent of 1/26, i.e., the reciprocal of the number of elements in the alphabet. The constant .0667 is the sum of the squares of the probabilities of occurrence of the individual letters in English plain text. These constants are treated in detail in Military Cryptanalysis, Part II.

-RESTRICTED

 ϕ_0 is calculated by applying the formula f(f-l) to the frequency (f) of each letter and totaling the result; or, expressed in mathematical notation, $^{16} \phi_0 = \xi f(f-l)$. Thus,

≤f =2 6121 11 831 3 61 356=50 ABCDEFGHIJKLMNOPQRSTUVWXYZ ≤f(f-1) = 2 30020 00 5660 6 300 62030=188

For this distribution, ϕ_{r} = .0385N(N-1)=.0385 x 50 x 49 = 94, and ϕ_{p} = .0667N(N-1)=.0667 x 50 x 49 = 163.

Now since ϕ_0 , 188, is in fact greater than ϕ_p , we have a mathematical corroboration of the hypothesis that the cryptogram is a monoalphabetic substitution cipher. If ϕ_0 were nearer to ϕ_r , then the assumption would be that the cryptogram is not a monoalphabetic cipher. If ϕ_0 were just half way between ϕ_r and ϕ_p , then decision would have to be suspended, since no further statistical proof in the matter is possible with this particular test.¹⁷

d. Two further examples may be illustrated:

(1) $\overline{A}BC\overline{D}\overline{E}\overline{F}\overline{G}\overline{H}IJ\overline{K}LMN\overline{O}\overline{P}Q\overline{R}STUVW\overline{X}Y\overline{Z}$ 0 026122 0 122 0 0 6 $\leq f(f-1)=42$

⁻¹⁶ The more usual mathematical notation for expressing ϕ_0 would be $\sum_{i=A}^{Z} f_i(f_{i-1})$, which is read as "the sum of all the terms for all integral i=A $\sum_{i=A}^{Z} f_i(f_{i-1})$ would be expanded as $f_A(f_{A-1}) + f_B(f_{B-1}) + f_C(f_{C-1}) + \dots + f_Z(f_{Z-1})$. However, in the interest of simplicity the notation $\leq f(f_{-1})$ is employed; likewise, the notations ϕ_r and ϕ_p are employed in lieu of the more usual $E(\phi_r)$ and $E(\phi_p)$.

¹⁷ Another method of determining the relative monoalphabeticity of a cryptogram is based upon comparing the <u>index of coincidence</u> (abbr. I.C.) of the cryptogram under examination with the theoretical I.C. of plain text. The I.C. of a message is defined as the ratio of ϕ_0 to ϕ_r ; thus, in the example above, the I.C. is $\frac{188}{94}$, which equals 2. The theoretical I.C. of English plain text is 1.73, which is the decimal equivalent of $\frac{.0267}{.0385}$, the ratio of the "plain constant" to the "random constant". The I.C. of random text is 1, i.e., $\frac{.0385}{.0385}$.

51

RESTRICTED

(2) A B C D E F G H I J K L \overline{M} N O P Q R S T U V W X Y Z 0 002000600 02 00 0026 $\leq f(f-1)=18$

Since both distributions have 25 elements, then for both

 $\phi_r = .0385 \times 25 \times 24 = 21$, and

 $\phi_{\rm D}$ = .0667 x 25 x 24 = 40.

Hence distribution (1) is monoalphabetic, while (2) is not.

e. The student must not assume that statistical tests in cryptanalysis are infallible or absolute in themselves¹⁸; statistical approaches serve only as a means to the end, in guiding the analyst to the most probably fruitful sources of attack. Since no one test in cryptanalysis gives definite proof of a hypothesis (in fact, not even a battery of tests gives <u>absolute proof</u>), all applicable statistical means at the disposal of the cryptanalyst should be used; thus, in examination for monoalphabeticity, the ϕ test, Λ test, and even other tests¹⁹ could profitably be employed. To illustrate this point, if the ϕ test is taken on the distribution of the plaintext letters of the phrase

A QUICK BROWN FOX JUMPS OVER THE LAZY DOG

 \overline{A} \overline{B} \overline{C} \overline{D} \overline{E} \overline{F} \overline{G} \overline{H} \overline{J} \overline{K} \overline{L} \overline{M} \overline{N} $\overline{\overline{O}}$ \overline{P} \overline{Q} \overline{R} \overline{S} \overline{T} \overline{U} \overline{V} \overline{W} \overline{X} \overline{Y} \overline{Z} 22122 $\overline{\xi} f(f-1)=20$ $\phi_{\mathbf{r}} = 41; \phi_{\mathbf{p}} = 70$

it will be noticed that ϕ_0 is less than half of ϕ_r , thus conclusively "proving" that the letters of this phrase could not possibly constitute plain text nor a monoalphabetic encipherment of plain text in any language! The student should be able to understand the cause of this cryptologic curiosity.

19 One of these, the <u>chi-square test</u>, will be treated in a subsequent text.

-RESTRICTED-

52

¹⁸ The following quotation from the Indian mathematician P. C. Mahalanobis, concerning the fallibility of statistics, is particularly appropriate in this connection: "If statistical theory is right, predictions must sometimes come out wrong; on the other hand, if predictions are always right, then the statistical theory must be wrong."--Sankhya, Vol. 10, Part 3, p. 203. Calcutta, 1950.

RESTRICTED

28. Determining whether a cipher alphabet is standard (direct or reversed) or mixed .-- a. Assuming that the uniliteral frequency distribution for a given cryptogram has been made, and that it shows clearly that the cryptogram is a substitution cipher and is monoalphabetic in character, a consideration of the nature of standard cipher alphabets²⁰ almost makes it obvious how an inspection of the distribution will disclose whether the cipher alphabet involved is a standard cipher alphabet or a mixed cipher alphabet. If the crests and troughs of the distribution occupy positions which correspond to the relative positions they occupy in the normal frequency distribution, then the cipher alphabet is a standard cipher alphabet. If this is not the case, then it is highly probable that the cryptogram has been prepared by the use of a mixed cipher alphabet. A mechanical test may be applied in doubtful cases arising from lack of material available for study; just what this test involves, and an illustration of its application will be given in the next section, using specific examples.

b. Of course, if it has been determined that a standard cipher alphabet is involved in a particular instance, it goes without saying that at the same time it must have been found whether the alphabet is a direct standard or reversed standard cipher alphabet. The difference between the distribution of a direct standard alphabet cipher and one of a reversed standard alphabet cipher is merely a matter of the <u>direction</u> in which the sequence of crests and troughs progresses--to the right, as is done in normally reading or writing the alphabet (A B C \therefore C B A). With a direct standard cipher alphabet the direction in which the crests and troughs of the distribution progress is the normal direction, from left to right; with a reversed standard cipher alphabet this direction is reversed, from right to left.

²⁰ See par. 12.

z

ļ

٠

.

•

4

RESTRICTED

SECTION V

UNILITERAL SUBSTITUTION WITH STANDARD CIPHER ALPHABETS

Farag	apn
Types of standard cipher alphabets	29
Procedure in encipherment and decipherment by means of	
uniliteral substitution	30
Principles of solution by construction and analysis of the	
uniliteral frequency distribution	31
Theoretical example of solution	32
Practical example of solution by the frequency method	33
Solution by completing the plain-component sequence	34
Special remarks on the method of solution by completing the	
plain-component sequence	35
Value of mechanical solution as a short cut	36
Basic reason for the low degree of cryptosecurity afforded by	
monoalphabetic cryptograms involving standard cipher alphabets	37

29. Types of standard cipher alphabets.--a. Standard cipher alphabets are of two types:

(1) Direct standard, in which the cipher component is the normal sequence but shifted to the right or left of its point of coincidence in the normal alphabet. Example:

Plain: ABCLEFGHIJKIMNOPQRSTUVWXYZ Cipher: QRSTUVWXYZABCDEFGHIJKIMNOP

It is obvious that the cipher component can be applied to the plain component at any one of 26 points of coincidence, but since the alphabet that results from one of these applications coincides exactly with the normal alphabet, a series of only 25 (direct standard) cipher alphabets results from the shifting of the cipher component.

(2) <u>Reversed standard</u>, in which the cipher component is also the normal sequence but runs in the opposite direction from the normal. Example:

> Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher: QPONMLKJIHGFEDCBAZYXWVUTSR

Here the cipher component can be applied to the plain component at any of 26 points of coincidence, each yielding a different cipher alphabet. There is in this case, therefore, a series of 26 (reversed standard) cipher alphabets.

-RESTRICTED

b. It is often convenient to refer to or designate one of a series of cipher alphabets without ambiguity or circumlocution. The usual method is to indicate the particular alphabet to which reference is made by citing a pair of equivalents in that alphabet, such as, in the example above, $A_p=Q_c$. The key for the cipher alphabet just referred to, as well as that preceding it, is $A_p=Q_c$, and it is said that the key letter for the cipher alphabet is Q_c .

c. The cipher alphabet in subpar. a(2), above, is also a reciprocal alphabet; that is, the cipher alphabet contains 13 distinct pairs of equivalents which are reversible. For example, in the alphabet referred to, $A_p=Q_c$ and $Q_p=A_c$; $B_p=P_c$ and $P_p=B_c$, etc. The reciprocity exists throughout the alphabet and is a result of the method by which it was formed. (Reciprocal alphabets may be produced by juxtaposing any two components which are identical but progress in opposite directions.)

30. Procedure in encipherment and decipherment by means of uniliteral substitution.--a. When a message is enciphered by means of uniliteral substitution, or simple substitution (as it is often called), the individual letters of the message text are replaced by the singleletter equivalents taken from the cipher alphabet selected by prearrangement. Example:

Message: EIGHTEEN PRISONERS CAPTURFD

Enciphering alphabet: Direct standard, Ap=Tc

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher: TUVWXYZABCDEFGHIJKLMNOPQRS

Letter-for-letter encipherment:

EIGHTEEN PRISONERS CAPTURED XBZAMXXG IKBLHGXKL VTIMNKXW

The cipher text is then regrouped, for transmission, into groups of five.

Cryptogram:

XBZAM XXGIK BLHGX KLVTI MNKXW

b. The procedure in decipherment is merely the reverse of that in encipherment. The cipher alphabet selected by prearrangement is set up with the cipher component arranged in the normal sequence and placed above the plain component for ease in deciphering. The letters of the cryptogram are then replaced by their plaintext equivalents, as shown below.

Cipher: ABCDEFGHIJKLMNOPQRSTUVWXYZ Plain: HIJKLMNOPQRSTUVWXYZABCDEFG

The message deciphers thus:

Cipher: XBZAM XXGIK BLHGX KLVTI MNKXW Plain: EIGHT EENPR ISONE RSCAP TURED

The deciphering clerk rewrites the text in word lengths:

EIGHTEEN PRISONERS CAPTURED

-RESTRICTED-

c. In subpar. a, above, the ciptogram was prepared in final form for transmission by dividing the cryptographic text into groups of five. This is generally the case in military communications involving eigher systems. It promotes acc racy in telegraphic transmission since an operator knows he must receive a definite number of characters in each group, no more and no less. Also, it rually makes solution of the messages by unauthorized persons more difficult because the length of the words, phrases, and sentences of the plain text is hidden. If the last group of the cipher text in subpar. 30a had not been a complete group of five letters, it might have been completed by adding a sufficient number of meaningless letters (called <u>nulls</u>).

31. Principles of solution by construction and analysis of the uniliteral frequency distribution .-- a. The analysis of monoalphabetic cryptograms prepared by the use of standard cipher alphabets follows almost directly from a consideration of the nature of such alphabets. Since the cipher component of a standard cipher alphabet consists either of the normal sequence merely displaced 1, 2, 3, . . . intervals from the normal point of coincidence, or of the normal sequence proceeding in a reversednormal direction, it is obvious that the uniliteral frequency distribution for a cryptogram prepared by means of such a cipher alphabet employed. monoalphabetically will show crests and troughs whose relative positions and frequencies will be exactly the same as in the uniliteral frequency distribution for the plain text of that cryptogram. The only thing that has happened is that the whole set of crests and troughs of the distribution has been displaced to the right or left of the position it occupies in the distribution for the plain text: or else the successive elements of the whole set progress in the opposite direction. Hence, it follows that the correct determination of the plaintext value of the cipher letter marking any crest or trough of the uniliteral frequency distribution, coupled with the correct determination of the relative direction in which the plain component sequence progresses, will result at one stroke in the correct determination of the plaintext values of all the remaining 25 letters respectively marking the other crests and troughs in that distribution. The problem thus resolves itself into a matter of selecting that point of attack which will most quickly or most easily lead to the determination of the value of one cipher letter. The single word identification will hereafter be used for the phrase "determination of the value of a cipher letter"; to identify a cipher letter is to find its plaintext value.

b. It is obvious that the easiest point of attack is to assume that the letter marking the crest of greatest frequency in the frequency distribution for the cryptogram represents $E_{\rm D}$. Proceeding from this initial point, the identifications of the remaining cipher letters marking the other crests and troughs are tentatively made on the basis that the letters of the cipher component proceed in accordance with the normal

alphabetic sequence, either direct or reversed. If the actual frequency of each letter marking a crest or a trough approximates to a fairly close degree the normal or theoretical frequency of the assumed plaintext equivalent, then the initial identification $\Theta_{c}=E_{p}$ may be assumed to be correct and therefore the derived identifications of the other cipher letters also may be assumed to be correct.¹ If the original starting point for assignment of plaintext values is not correct, or if the direction of "reading" the successive crests and troughs of the distribution is not correct, then the frequencies of the other 25 cipher letters will not correspond to or even approximate the normal or theoretical frequencies of their hypothetical plaintext equivalents on the basis of the initial identification. A new initial point, that is, a different cipher equivalent, must then be selected to represent E_{μ} ; or else the direction of "reading" the crests and troughs must be reversed. This procedure, that is, the attempt to make the actual frequency relations exhibited by the uniliteral frequency distribution for a given cryptogram conform to the theoretical frequency relations of the normal frequency distribution in an effort to solve the cryptogram, is referred to technically as "fitting the actual uniliteral frequency distribution for a cryptogram to the theoretical uniliteral frequency distribution for normal plain text", or, more briefly, as "fitting the frequency distribution for the cryptogram to the normal frequency distribution", or, still more briefly, "fitting the distribution to the normal." In statistical work the expression commonly employed in connection with this process of fitting an actual distribution to a theoretical one is "testing the goodness of fit." The goodness of fit may be stated in various ways, mathematical in character.²

c. In fitting the actual distribution to the normal, it is necessary to regard the cipher comporent (that is, the letters A . . . Z marking the successive creats and troughs of the distribution) as partaking of the nature of a circle, that is, a sequence closing in upon itself, so that no matter with what creat or trough one starts, the spatial and frequency relations of the creats and troughs are constant. This manner of regarding the cipher component as being cyclic in nature is valid because it is obvious that the relative positions and frequencies of the creats and troughs of any uniliteral frequency distribution must remain the same regardless of what letter is employed as the initial point of the distribution. Fig. 5 gives a clear picture of what is meant in this connection, as applied to the normal frequency distribution.

¹ The Greek letter Θ (theta) is used to represent a character or letter without indicating its identity. Thus, instead of the circumlocution "any letter of the plain text", the symbol Θ_p is used; and for the expression "any letter of the cipher text", the symbol Θ_c is used.

² One of these tests for expressing the goodness of fit, the \times (chi) test, will be treated in Military Cryptanalysis, Part II.

RESTRICTED

2222 A	# B	I Z C	Ⅲ Z D ↑	IZZZZZE	ZF	<i>⊯</i> G	」 別 王 王	N N N I	Ĵ,	33,		NW		ONNER	NN P.	Q		172 X X X	111 NU NU NU 1. •	えび	₹¥		<u>.</u>	N II	Z	N XXX	// £r ?	」 対 C	22 D	I N N N N N N	ž F	•	•	•
	•	•	H K	1必必必必必 6	IIN D	/ N C	<i>"</i> B	がおお	Z	Z II	x	₩	₹ 1	え し し	IN N N N T	22 KN KN II	斑斑斑 R	Q	E E	¥××0↓	N Z Z Z	X N	- "ZL	к	J			/// G	N F	INNNNNN E		「 図 C	// B	zzz a

Figure 5.

d. In the third sentence of subparagraph b, the phrase "assumed to be correct" was advisedly employed in describing the results of the attempt to fit the distribution to the normal, because the final test of the goodness of fit in this connection (that is, of the correctness of the assignment of values to the crests and troughs of the distribution) is whether the consistent substitution of the plaintext values of the cipher characters in the cryptogram will yield intelligible plain text. If this is not the case, then no matter how close the approximation between actual and theoretical frequencies is, no matter how well the actual frequency distribution fits the normal, the only possible inferences are that (1) either the closeness of the fit is a pure coincidence in this case and that another equally good fit may be obtained from the same data, or else (2) the cryptogram involves something more than simple monoalphabetic substitution by means of a single standard cipher alphabet. For example, suppose a transposition has been applied in addition to the substitution. Then, although an excellent correspondence between the uniliteral frequency distribution and the normal frequency distribution has been obtained, the substitution of the cipher letters by their assumed equivalents will still not yield plain text. However, aside from such cases of double encipherment, instances in which the uniliteral frequency distribution may be easily fitted to the normal frequency distribution and in which at the same time an attempted simple substitution fails to yield intelligible text are rare. It may be said that, in practical operations whenever the uniliteral frequency distribution can be made to fit the normal frequency distribution, substitution of values will result in solution; and, as a corollary, whenever the uniliteral frequency distribution cannot be made to fit the normal frequency distribution, the cryptogram does not represent a case of simple, monoalphabetic substitution by means of a standard alphabet.

-RESTRICTED

<u>32.</u> Theoretical example of solution.--a. The foregoing principles will become clearer by noting the encryption and solution of a theoretical example. The following message is to be encrypted.

HOSTILE FORCE ESTIMATED AT ONE REGIMENT INFANTRY AND TWO PLATOONS CAVALRY MOVING SOUTH ON QUINNIMONT PIKE STOP HEAD OF COLUMN NEARING ROAD JUNCTION SEVEN THREE SEVEN COMMA EAST OF GREENACRE SCHOOL FIRED UPON BY OUR PATROLS STOP HAVE DESTROYED BRIDGE OVER INDIAN CREEK.

b. First, solely for purposes of demonstrating certain principles, the uniliteral frequency distribution for this plaintext message is presented in Figure 6.

2

 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z
 Z

 Z</t

Figure 6.

c. Now let the foregoing message be encrypted monoalphabetically by the following standard cipher alphabet, yielding the cryptogram shown below and the frequency distribution shown in Figure 7.

Plain - - - - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Cipher - - - G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
Plain - - HOSTI LEFOR CEEST IMATE DATON EREGI MENTI NFANT RYAND Cipher - NUYZO RKLUX IKKYZ OSGZK JGZUT KXKMO SKTZO TLGTZ XEGTJ
Plain - - TWOFL ATOON SCAVA LRYMO VINGS OUTHO NQUIN NIMON TPIKE Cipher - ZCUVR GZUUT YIGBG RXESU BOTMY UAZNU TWAOT TOSUT ZVOQK
Plain - - STOPH EADOF COLUM NNEAR INGRO ADJUN CTION SEVEN THREE Cipher - YZUVN KGJUL IURAS TTKGX OTMXU GJPAT IZOUT YKBKT ZNXKK
Plain - - SEVEN COMMA EASTO FGREE NACRE SCHOO LFIRE DUPON BYOUR Cipher - YKBKT IUSSG KGYZU LMXKK TGIXK YINUU RLOXK JAVUT HEUAX
Plain - - PATRO LSSTO PHAVE DESTR OYEDB RIDGE OVERI NDIAN CREEK Cipher - VGZXU RYYZU VNGBK JKYZX UEKJH XOJMK UBKXO TJOGT IXKKQ

Cryptogram

N	U	Y	\mathbf{Z}	0	R	ĸ	L	U	Х	I	K	K	Y	Z	0	S	G	Z	К	J	G	Z	ប	т	-	K	X	K	Μ	0
S	К	\mathbf{T}	\mathbf{Z}	0	T	L	G	T	Z	Х	Ε	G	\mathbf{T}	J	12	C	ΰ	V	R	G	\mathbf{Z}	υ	ប	T		Y	I	G	В	G
R	X	Е	ៜ	U	В	0	Т	М	Y	ប	A	Ζ	N	υ	Т	W	A	0	T	T	0	ន	υ	Т		\mathbf{Z}	V	0	ର୍	K
Y	Z	υ	V	N	K	G	J	υ	L	I	υ	R	Λ	ន	T	T	ĸ	G	Х	0	T	М	Χ	υ		G	J	P	Ā	Т
Ι	Z	0	υ	T	Y	ĸ	В	ĸ	т	Z	N	Х	Κ	K	Y	K	В	ĸ	T	I	ប	ន	S	G		ĸ	G	Y	Z	U
L	М	Х	K	K	T	G	Ι	Х	ĸ	Y	Ι	N	υ	U	R	L	0	Х	Κ	J	A	V	ឋ	т		Η	Е	ប	A	Х
V	G	Z	Χ	ប	\mathbf{R}	Y	Y	Z	U	V	N	G	В	ĸ	J	К	Y	Z	X	U	Е	K	J	н		х	0	J	11	K
U	В	К	Х	0	T	J	0	G	Т	I	Х	Κ	К	Q																

RESTRICTED

d. Let the student now compare Figs. 6 and 7, which have been superimposed in Fig. 8 for convenience in examination. Crests and troughs are present in both distributions; moreover their relative positions and frequencies have not been changed in the slightest particular. Only the absolute position of the sequence as a whole has been displaced six places to the right in Fig. 7, as compared with the absolute position of the sequence in Fig. 6.

(FIGURE 6)	芝芝芝A↑	# B		三波D	INNNNNN E	N F.	N C C	/圣 H	II X X II	/ J	# K	習し		112312312121	2222220	/芝 P	/ Q	1光光光 R	22 1X 1X 1	 ※※※「	一足し	Z ZI	/₩	- X	III ¥	Z
(FIGURE 7)	0		. 2.	• 5 ·	• T	, e ,				m	III NI NI NI NI NI			_	1111 M			_		II INI INI INI	KI IKI IKI IKI	Ŧ			11 N	11 N' N
-	iz A	Z B	Ċ	D	∭ E	F	INN G	≈ H	/ 2 1 2 1	」 え J	IN K	N N N N	z M	IZ N	N N N	P	/ Q	/乥 R	/ 波 S	「芝丁	N U	₹ V	W	X Z	N Z Y	i z z

Figure 8.

e. If the two distributions are compared in detail the student will clearly understand how easy the solution of the cryptogram would be to one who knew nothing about how it was prepared. For example, the frequency of the highest crest, representing E_p in Fig. 6 is 28; at an interval of four letters before Ep there is another crest representing Ap with frequency 16. Between A and E there is a trough, representing the medium-frequency letters B, C, D. On the other side of E, at an interval of four letters, comes another crest, representing I with frequency 14. Between E and I there is another trough, representing the medium-frequency letters F, G, H. Compare these crests and troughs with their homologous crests and troughs in Fig. 7. In the latter, the letter K marks the highest crest in the distribution with a frequency of 28; four letters before K there is another crest, frequency 16, and four letters on the other side of K there is another crest, frequency 14. Troughs corresponding to B, C, D and F, G, H are seen at H, I, J and L, M, N in Fig. 7. In fact, the two distributions may be made to coincide exactly, by shifting the frequency distribution for the cryptogram six places to the left with respect to the distribution for the equivalent plaintext message. as shown herewith.

RESTRICTED

Ł

III NI - W W W I - W W W W W W - W W W W W W - W (FIGURE 6) 1174 NK / X 2 ABCDEFGHIJKLMNOPQRSTUVWXYZ III NI N N (Figure 7.) X NN/ M 11 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F Figure 9.

<u>f</u>. Let us suppose now that nothing is known about the process of encryption, and that only the cryptogram and its uniliteral frequency distribution is at hand. It is clear that simply bearing in mind the spatial relations of the crests and troughs in a normal frequency distribution would enable the cryptanalyst to fit the distribution to the normal in this case. He would naturally first assume that $K_c=E_p$, from which it would follow that if a direct standard alphabet is involved, $L_c=F_p, M_c=G_p$, and so on, yielding the following (tentative) deciphering alphabet:

Cipher - - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Plain - - U V W X Y Z A B C D E F G H I J K L M N O P Q R S T g. Now comes the final test: if these assumed values are substituted in the cipher text, the plain text immediately appears. Thus:

NUYZO RKLUX IKKYZ OSGZK JGZUT etc. HOSTI LEFOR CEEST IMATE DATON etc.

h. It should be clear, therefore, that the initial selection of G_c as the specific key (that is, to represent A_p) in the process of encryption has absolutely no effect upon the relative spatial and frequency relations of the crests and troughs of the frequency distribution for the cryptogram. If Q_c had been selected to represent A_p , these relations would still remain the same, the whole series of crests and troughs being merely displaced further to the right of the positions they occupy when $G_c=A_p$.

33. Practical example of solution by the frequency method.--a. The case of direct standard alphabet ciphers.--(1) The following cryptogram is to be solved by applying the foregoing principles: NWNVH CAXXY BJCCJ LTRWP XDAYX BRCRX WBNJB CXOWN FCXWB CXYYN CHABL XURVO

_RESTRICTED

(2) From the presence of so many low-frequency letters such as B, W, and X it is at once suspected that this is a substitution cipher. But to illustrate the steps, that must be taken in difficult cases in order to be certain in this respect, a uniliteral frequency distribution is constructed, and then reference is rade to Charts 2 to 5 to note whether the actual numbers of vowels, high-, menu, and low-frequency consonants fall inside or outside the areas 5-limited by the respective curves.

ZZ ABCDEFGHIJKLMNOPQRSTUVWXYZ

Letters -	Frequency	Position with respect to areas delimited by curves
Vowels (A E I O U Y) High-frequency Consonants (D N R S T) Medium-frequency Consonants (B C F G H L M P V W) Low-frequency Consonants (J K Q X Z) Total	`10 12 26 12 60	Outside, chart 1. Outside, chart 2. Outside, chart 3. Outside, chart 4.

Figure 10 a.

(3) All four points falling completely outside the areas delimited by the curves applicable to these four classes of letters, the cryptogram is clearly a substitution cipher.

(4) The appearance of the frequency distribution, with marked crests and troughs, indicates that the cryptogram is probably monoalphabetic. At this point the ϕ test is applied to the distribution. The observed value of ϕ is found to be 258, while the expected value of ϕ plain and ϕ random are calculated to be 236 and 136, respectively. The fact that the observed value is not only closer to but greater than ϕ_p is taken as statistical evidence that the cryptogram is monoalphabetic. Furthermore, reference being made to Chart 6, the point of intersection of the message length (60 letters) and the number of blanks (8) falls directly on curve P; this is additional evidence that the message is probably monoalphabetic.

(5) The next step is to determine whether a standard or a mixed cipher alphabet is involved. This is done by studying the positions and the sequence of crests and troughs in the frequency distribution, and trying to fit the distribution to the normal.
-RESTRICTED

(6) The first assumption to be made is that a direct standard cipher alphabet is involved. The highest crest in the distribution occurs over X_c . Let it be assumed that $X_c=E_p$. Then Y_c , Z_c , A_c , =Fp, Gp, H_p, . . . , respectively; thus:

Cipher....ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG

Figure 10b.

It may be seen quickly that the approximation to the expected frequencies is very poor. There are too many occurrences of J_p , Q_p , U_p and F_p and too few occurrences of N_p , O_p , R_p , S_p , T_p and A_p . Moreover, if a substitution is attempted on this basis, the following is obtained for the first two cipher groups:

> Cipher....NWNVH CAXXY "Plain text"UDUCO JHEEF

This is certainly not plain text and it seems clear that X_c is not E_p , if the hypothesis of a direct standard alphabet cipher is correct. A different assumption will have to be made.

(7) Suppose $C_c=E_p$. Going through the same steps as before, again no satisfactory results are obtained. Further trials³ are made along the same lines, until the assumption $N_c=E_p$ is tested:

Figure 10c.

(8) The fit in this case is quite good; possibly there are too few occurrences of Λ_p , D_p , and R_p . But the final test remains: trial of the substitution alphabet on the cryptogram itself. This is done and the results are as follows:

C: NWNVH CAXXY BJC'CJ LTRWP XDAYX BRCRX TROOP P: ENEMY SATIA CKING OURPO SITIO C: WBNJB FCXWB CXYYN CXOWN CNABL XURWO P: NSEAS TOFNE WTONS TOPPE TERSC OLINF ENEMY TROOPS ATTACKING OUR POSITIONS EAST OF NEWTON. PETERS COL INF.

-RESTRICTED

³ It is unnecessary, of course, to write out all the alphabets and pseudo-decipherments, as shown above, when testing assumptions. This is usually done mentally.

-RESTRICTED

(9) It is always advisable to note the specific key. In this case the correspondence between any plaintext letter and its cipher equivalent will indicate the key. Although other conventions are possible, and equally valid, it is usual, however, to indicate the key by noting the cipher equivalent of Λ_p . In this case $\Lambda_p=J_c$.

b. The case of reversed standard alphabet ciphers.--(1) Let the following cryptogram and its frequency distribution be studied.

FWFXL QSVVU RJQQJ HZBWD VPSUV RBQBV WRFJR QVEWF NQVWR QVUUF QFSRH VYBWE

(2) The preliminary steps illustrated above, under subpar. a (1) to (4) inclusive, in connection with the test for class and monoalphabeticity, will here be omitted, since they are exactly the same in nature. The result is that the cryptogram is obviously a substitution cipher and is monoalphabetic.

(3) Assuming that it is not known whether a direct or a reversed standard alphabet is involved, attempts are at once made to fit the frequency distribution to the normal direct sequence. If the student will try them he will soon find out that these are unsuccessful. All this takes but a few minutes.

(4) The next logical assumption is now made, viz., that the cipher alphabet is a reversed standard alphabet. When on this basis F_c is assumed to be E_p , the distribution can readily be fitted to the normal, practically every crest and trough in the actual distribution corresponding to a crest or trough in the expected distribution.

Cipher....ABCDEFGHIJKLMNOPQRSTUVWXYZ Plain....JIHGFEDCBAZYXWVUTSRQPONMLK

Figure 10d.

(5) When the substitution is made in the cryptogram, the following is obtained.

Cryptogram...FWFXL QSVVU RJQQJ Plain text...ENEMY TROOP SATTA

(6) The plaintext message is identical with that in subpar. a. The specific key in this case is also $A_p = J_c$. If the student will compare the frequency distributions in the two cases, he will note that the relative positions and extents of the crests and troughs are identical; they merely progress in opposite directions.

RESTRICTED

65

c. General note on solution by the frequency method .-- In actual practice, the procedure of subpars. a and b are given a more rapid treatment than that just described, the practical treatment being based, not on the initial finding of some single crest or trough, but rather on locating the more readily-discernible clusters of crests which usually appear in a distribution, such as the distinctive crest-patterns representing "A...E...I" and "RST". These crest-patterns are searched for, with a quick scanning of the distribution, and then the relative placement with respect to each other is tested to see if it conforms to the expectation for a direct standard cipher alphabet, and, if not, then for a reversed standard cipher alphabet. During this latter step, which consists of little more than counting in one direction and then (when necessary) in the other, the blank (or nearly-blank) expectation of "JK" followed by the characteristic curve for "LMNOP" and the blank "Q" are considered, as a means of either substantiating or invalidating the original "identification" of the crests.

<u>34.</u> Solution by completing the plain-component sequence.-a. The case of direct standard alphabet ciphers.--(1) The foregoing method of analysis, involving as it does the construction of a uniliteral frequency distribution, was termed a solution by the frequency method because it involves the construction of a frequency distribution and its study. There is, however, another method which is much more rapid, almost wholly mechanical, and which, moreover, does not necessitate the construction or study of any frequency distribution whatever. An understanding of the method follows from a consideration of the method of encipherment of a message by the use of a single, direct standard cipher alphabet.

(2) Note the following encipherment:

Message---- TWO CRUISERS SUNK

Enciphering Alphabet

Plain----- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Cipher---- G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

Encipherment

Plain text----- TWO CRUISERS SUNK Cryptogrom----- ZCU IXAOYKXY YATQ

Cryptogram

ZCUIX AOYKX YYATQ

(3) The enciphering alphabet shown above represents a case wherein the sequence of leaters of both components of the cipher alphabet is the normal sequence, with the sequence forming the cipher component werely shifted six places to the left (or 20 plainties to the right) of the position it occupies in the normal alphabet. If, therefore, two strips

-RESTRICTED

of paper bearing the letters of the normal sequence, equally spaced, are regarded as the two components of the cipher alphabet and are juxtaposed. at all of the 25 possible points of coincidence, it is obvious that one of these 25 juxtopositions must correspond to the actual juxtaposition shown in the enciphering alphaber directly above.⁴ It is equally obvious that if a record were kept of the results obtained by applying the values given at each juxtaposition to the letters of the cryptogram, one of these results would yield the plain text of the cryptogram.

(4) Let the work be systematized and the results set down in an orderly manner for examination. It is obviously unnecessary to juxtapose the two components so that $A_c = A_p$, for on the assumption of a direct stan-dard alphabet, juxtaposing two direct normal components at their normal point of coincidence merely yields plain text. The next possible juxtaposition, therefore, is Ac=Bp. Let the juxtaposition of the two sliding strips therefore be Ac=Bo, as shown here:

Plain ABCDEFGHIJKLMNOPORSTUVWXYZ Cipher----- ABCDEFGIIIJKIMNOPQRSTUVWXYZABCDEFGHIJKIMNOPQRSTUVWXYZ

The values given by this juxtaposition are substituted for the letters of the cryptogram and the following results are obtained.

Cryptogram----ZCUIX AOYKX 1st Test--"Plain text" A D V J Y ZZBUR BPZLY

This certainly is not intelligible text; obviously, the two components were not in the position indicated in this first test. The plain component is therefore slid one interval to the left, making $A_{C}=C_{D}$, and a second test is made. Thus

Plain ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher----- ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ Cryptogram-----ZCUIX AOYKX YYATQ 2d Test---"Plain text" B E W K Z

CQAMZ

AACVS

Neither does the second test result in disclosing any plain text. But, if the results of the two tests are studied a phenomenon that at first seems quite puzzling comes to light. Thus, suppose the results of the two tests are superimposed in this fashion.

Cryptogram----- Z C U I X ΑΟΥΚΧ YYATQ lst Test--"Plain text" A D V J Y B P Z L Y ZZBUR 2d Test---"Plain text" B E W K Z C Q A M Z AACVS

4 One of the strips should bear the sequence repeated. This permits juxtaposing the two sequences at all 26 possible points of coincidence so as to have a complete cipher alphabet showing at all times.

RESTRICTED

RESTRICTED

(5) Note what has happened. The net result of the two experiments was merely to continue the normal sequence begun by the cipher letters at the heads of the <u>columns</u> of letters. It is obvious that if the normal sequence is completed in each column the results will be exactly the same as though the whole set of 25 possible tests had actually been performed. Let the columns therefore be completed, as shown in Fig. 11.

> ZCUIXAOYKXYYATQ ADVJYBPZLYZZBUR BEWKZCQAMZAACVS CFXLADRBNABBDWT DGYMBESCOBCCEXU EHZNCFTDPCDDFYV FIAODGUEQDEEGZW GJBPEHVFREFFHAX HKCQFIWGSFGGIBY ILDRGJXHTGHHJCZ JMESHKYIUHIIKDA KNFTILZJVIJJLEB LOGUJMAKWJKKMFC MPHVKNBLXKLLNGD NQIVLOCMYLMMOHE ORJXMPDNZMNNPIF PSKYNQEOANOOQJG Q T L Z O R F P B O P P R K H RUMAPSGQCPQQSLI SVNBQTHRDQRRTMJ *TWOCRUISERSSUNK UXPDSVJTFSTTVOL VYQETWKUGTUUWPM WZRFUXLVHUVVXQN XASGVYMWIVWWYRO YBTHWZNXJWXXZSP

> > Figure 11.

An examination of the successive horizontal lines of the diagram discloses one and only one line of plain text, that marked by the asterisk and reading T W O C R U I S E R S S U N K.

(6) Since each column in Fig. 11 is nothing but a normal sequence, it is obvious that instead of laboriously writing down these columns of letters every time a cryptogram is to be examined, it would be more convenient to prepare a set of strips each bearing the normal sequence doubled (to permit complete coincidence for an entire alphabet at any setting), and have them available for examining any future cryptograms. In using such a set of sliding strips in order to solve a cryptogram prepared by means of a single direct standard cipher alphabet, or to make a test to determine whether a cryptogram has been so prepared, it is only necessary to "set up" the letters of the cryptogram on the strips, that is, align them in a single row across the strips (by sliding the individual strips

RESTRICTED

up or down). The successive horizontal lines, called generatrices (singular, generatrix)⁵, are then examined in a search for intelligible text. If the cryptogram really belongs to this simple type of cipher, one of the generatrices will exhibit intelligible text all the way across; this text will practically invariably be the plain text of the message. This method of analysis may be termed <u>a solution by completing the plaincomponent sequence</u>. Sometimes it is referred to as "running down" the sequence. The principle upon which the method is based constitutes one of the cryptanalyst's most valuable tools.⁰

b. The case of reversed standard alphabets.---(1) The method described under subpar. a may also be applied, in slightly modified form, in the case of a cryptogram enciphered by a single reversed standard alphabet. The basic principles are identical in the two cases, as will now be demonstrated.

(2) Let two sliding components be prepared as before, except that in this case one of the components must be a reversed normal sequence, the other, a direct normal sequence.

(3) Let the two components be juxtaposed A to A, as shown below, and then let the resultant values be substituted for the letters of the cryptogram. Thus:

CRYPTOGRAM

NKSEP MYOCP OOMTW

Plain-----

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher----- ZYXWVUTSRQPONMLKJIIIGFEDCBAZYXWVUTSRQPONMLKJIHGFEDCBA

Cryptogram-----NKSEP MYOCP OOMTW lst Test--"Plain text" NQIWL OCMYL MMOHE

(4) This does not yield intelligible text, and therefore the reversed component is slid one space forward and a second test is made. Thus:

 Plain---- ABCDEFGHIJKIMNOPQRSTUVWXYZ

 Cipher-----ZYXWVUTSRQPONMIKJIHGFEDCBAZYXWVUTSRQPONMIKJIHGFEDCBA

 Cryptogram------NKSEPMYOCPONMIKJIHGFEDCBA

 2d Test---"Plain text" ORJXM PDNZM NNPIF

(5) Neither does the second test yield intelligible text. But let the results of the two tests be superimposed. Thus:

Cryptogram-----NKSEPMYOCPOOMŤU1st Test---"Plain text" NQIULOCMYLMMCHE2d Test---"Plain text" ORJXMPDNZMNNFIF

⁵ Pronounced: jon er-a-tri sez and jen er-a triks, respectively.

⁶ A set of heavy paper strips, suitable for use in completing the plain-component sequence, has been prepared for use as a training aid in connection with the courses in Military Cryptanalysis.

'RESTRICTED

(6) It is seen that the letters of the "plain text" given by the second trial are merely the continuants of the normal sequences initiated by the letters of the "plain text" given by the first trial. If these sequences are "run down"--that is, completed within the columns--the results must obviously be the same as though successive tests exactly similar to the first two were applied to the cryptogram, using one reversed normal and one direct normal component. If the cryptogram has really been prepared by means of a single reversed standard alphabet, one of the generatrices of the diagram that results from completing the sequences must yield intelligible text.

(7) Let the diagram be made, or better yet, if the student has already at hand the set of sliding strips referred to in footnote 6 to page 69, let him "set up" the letters given by the <u>first</u> trial. Fig. 12 shows the diagram and indicates the plaintext generatrix.

> NKSEPMYOCPOOMTW NQIWLOCMYLMMOHE ORJXMPDNZMNNPIF PSKYNQEOANOOQJG Q T L Z O R F P B O P P R K H RUMAPSGQCPQQSLI SVNBQTHRDQRRTMJ *TWOCRUISERSSUNK UXPDSVJTFSTTVOL VYQETWKUGTUUWPM WZRFUXLVHUVVXQN XASGVNMWIVWWYRO YBTHWZNXJWXXZSP ZCUIXAOYKXYYATQ A D V J Y B P Z L Y Z Z B U R BEWKZCQAMZAACVS CFXLADRBNABBDWT DGYMBESCOBCCEXU EHZNCFTDPCDDFYV FIAODGUEQDEEGZW GJBPEHVFREFFHAX HKCQFIWGSFGGIBY ILDRGJXHTGHHJCZ JMESHKYIUHIIKDA KNFTILZJVIJJLEB LOGUJMIAKWJKKMFC MPHVKNBLXKLLNGD

> > Figure 12.

(8) The only difference in procedure between this case and the preceding one (where the cipher alphabet was a direct standard alphabet) is that the letters of the cipher text are first "deciphered" by means of any reversed standard alphabet and then the columns are "run down", according to the normal A B C . . . Z sequence. For reasons which will

RESTRICTED

become apparent very soon, the first step in this method is technically termed converting the cipher letters into their plain-component equivalents; the second step is the same as before, viz., completing the plaincomponent sequence.

35. Special remarks on the method of solution by completing the plain-component sequence.--a. The terms employed to designate the steps in the solution set forth in par. 34b(8), viz., "converting the cipher letters into their plain-component equivalents" and "completing the plaincomponent sequence", accurately describe the process. Their meaning will become more clear as the student progresses with the work. It may be said that whenever the components of a cipher alphabet are known sequences, no matter how they are composed, the difficulty and time required to solve any cryptogram involving the use of those components is considerably reduced. In some cases this knowledge facilitates, and in other cases is the only thing that makes possible, the solution of a very short cryptogram that might otherwise defy solution. Later on an example will be given to illustrate what is meant in this regard.

b. The student should take note, however, of two qualifying expressions that were employed in a preceding paragraph to describe the results of the application of the method. It was stated that "one of the generatrices will exhibit intelligible text all the way across; this text will practically invariably be the plain text." Will there ever be a case in which more than one generatrix will yield intelligible text through its extent? That obviously depends almost entirely on the number of letters that are aligned to form a generatrix. If a generatrix contains but a very few letters, only five, for example, it may happen as a result of pure chance that there will be two or more generatrices showing what might be "intelligible text." Note in Fig. 11, for example, that there are several cases in which 3-letter and 4-letter English words (LAD, COB, MESH, MAPS, etc.) appear on generatrices that are not correct, these words being formed by pure chance. But there is not a single case. in this diagram, of a 5-letter or longer word appearing fortuitously, because obviously the longer the word the smaller the probability of its appearance purely by chance; and the probability that two generatrices of 15 letters each will both yield intelligible text along their entire length is exceedingly remote, so remote, in fact, that in practical cryptology such a case may be considered nonexistent.7

c. The student should observe that in reality there is no difference whatsoever in principle between the two methods presented in subpars. a and <u>b</u> of par. 34. In the former the preliminary step of converting the cipher letters into their plain-component equivalents is apparently not present but in reality it is there. The reason for its apparent absence is that in that case the plain component of the cipher alphabet is identical in all respects with the cipher component, so that the cipher letters

⁷ A person with patience and an inclination toward the curiosities of the science might construct a text of 15 or more letters which would yield two "intelligible" texts on the plain-component completion diagram.

-RESTRICTED-

require no conversion, or, rather, they are identical with the equivalents that would result if they were converted on the basis $A_c = A_p$. In fact, if the solution process had been arbitrarily initiated by converting the cipher letters into their plain-component equivalents at the setting $A_c = 0_p$, for example, and the cipher component slid one interval to the right thereafter, the results of the first and second tests of par. 34a would be as follows:

Cryptogram-----ZCUIXAOYKXYYATQ lst Test--"Plain text"--- NQIWLOCMYLMMOHE 2d Test---"Plain text"--- ORJXMPDNZMNNPIF

Thus, the foregoing diagram duplicates in every particular the diagram resulting from the first two tests under par. 34b: a first line of cipher letters, a second line of letters derived from them but showing externally no relutionship with the first line, and a third line derived immediately from the second line by continuing the direct normal sequence. This moint is brought to attention only for the purpose of showing that a simple, broad principle is the basis of the general method of solution by completing the plain-component sequence, and once the student has this wirmly in mind he will have no difficulty whatsoever in realizing when the principle is applicable, what a powerful cryptanalytic tool it can be, and what results he may expect from its application in specific instances.

d. In the two foregoing examples of the application of the principle, the components were normal sequences; but it should be clear to the student, if he has grasped what has been said in the preceding subparagraph, that these components may be mixed sequences which, if known (that is, if the sequence of letters comprising the sequences is known to the cryptanalyst), can be handled just as readily as can components that are normal sequences.

e. It is entirely immaterial at what points the plain and the cipher components are juxtaposed in the preliminary step of converting the cipher letters into their plain-component equivalents. For example, in the case of the reversed alphabet cipher solved in par. 34b, the two components were arbitrarily juxtaposed to give the value $A_p=A_c$, but they might have been juxtaposed at any of the other 25 possible points of coincidence without in any way affecting the final result, viz., the production of one plaintext generatrix in the completion diagram.

36. Value of mechanical solution as a short cut.--a. It is evident that the very first step the student should take in his attempts to solve an unknown cryptogram that is obviously a substitution cipher is to try the mechanical method of solution by completing the plain-component sequence, using the normal alphabet, first direct, then reversed. This takes only a very few minutes and is conclusive in its results. It saves the labor and trouble of constructing a frequency distribution in case the cipher is of this simple type. Later on it will be seen how certain variations of this simple type may also be solved by the application of this method. Thus, a very easy short cut to solution is afforded, which even the experienced cryptanalyst never overlooks in his first attack on an unknown cipher.

-RESTRICTED-

b. It is important now to note that if neither of the two foregoing attempts is successful in bringing plain text to light and the cryptogram is quite obviously monoalphabetic in character, the cryptanalyst is warranted in assuming that the cryptogram involves a mixed cipher alphabet.⁸

37. Basic reason for the low degree of a prosecurity afforded by monoalphabetic cryptograms involving standard cipher alphabets .-- The student has seen that the solution of monoalphabetic cryptograms involving standard cipher alphabets is a very easy matter. Two methods of analysis were described, one involving the construction of a frequency distribution, the other not requiring this kind of tabulation, being almost mechanical in nature and correspondingly rapid. In the first of these two methods it was necessary to make a correct assumption as to the value of but one of the 26 letters of the cipher alphabet and the values of the remaining 25 letters at once became known; in the second method it was not necessary to assume a value for even a single cipher letter. The student should understand what constitutes the basis of this situation, viz., the fact that the two components of the cipher alphabet are composed of known sequences. What if one or both of these components are, for the cryptanalyst, unknown sequences? In other words, what difficulties will confront the cryptanalyst if the cipher component of the cipher alphabet is a mixed sequence? Will such an alphabet be solvable as a whole at one stroke, or will it be necessary to solve its values individually? Since the determination of the value of one cipher letter in this case gives no direct clues to the value of any other letter, it would seem that the solution of such a cipher should involve considerably more analysis and experiment than has the solution of either of the two types of ciphers so far examined. The steps to be taken in the cryptanalysis of a mixedalphabet cipher will be discussed in the next section.

⁸ There is but one other possibility, already referred to under subpar. 31d which involves the case where transposition and monoalphabetic substitution processes have been applied in successive steps. This is unusual, however, and will be discussed in its proper place.

73

-RESTRICTED

-RESTRICTED-

} ;

. . .

,

-RESTRICTED-

SECTION VI

UNILITERAL SUBSTITUTION WITH MIXED CIPHER ALPHABETS

Tibovel bern and municipal logra	Paragra	ph
Literal keys and numerical keys		30
Types of mixed cipher alphabets		39
Additional remarks on cipher alphabets		40
Preliminary steps in the analysis of a monoalphabetic, mixed-		
alphabet cryptogram,		41
Preparation of the work sheet		42
Triliteral frequency distributions		43
Classifying the cipher letters into vowels and consonants		44
Further analysis of the letters representing vowels and consonar	rts	45
Substituting deduced values in the cryptogram		46
Completing the solution		47
General remarks on the foregoing solution		48
The "probable-word" method; its value and applicability		49
Solution of additional cryptograms produced by the same		•
components		50
Derivation of key words		51

38. Literal keys and numerical keys.--a. As has been previously mentioned, most cryptosystems involve the use of a specific key to control the steps followed in encrypting or decrypting a specific message (see subpar. 9b). Such a key may be in literal form or in numerical form.

b. It is convenient to designate a key which is composed of letters as a <u>literal key</u>. As already mentioned, a literal key may consist of a single letter, a single word, a phrase, a sentence, a whole paragraph, or even a book; and, of course, it may consist merely of a sequence of letters chosen at random.

c. Certain cryptosystems involve the use of a <u>numerical key</u>, which may consist of a relatively long sequence of numbers difficult or impossible for the average cipher clerk to memorize. Several simple methods for deriving such sequences from words, phrases, or sentences have been devised, and a numerical key produced by any of these methods is called a <u>derived numerical key</u> (as opposed to a key consisting of randomly-selected <u>numbers</u>). One of the commonly-used methods consists of assigning numerical values to the letters of a selected literal key in accordance with their relative positions in the ordinary alphabet, as exemplified in the following subparagraph.

-RESTRICTED

d. Let the prearranged key word be the word LOGISTICS. Since C, the penultimate letter of the key word, appears in the normal alphabet before any other letter of the key word, it is assigned the number 1:

LOGISTICS

The next letter of the normal alphabet that occurs in the key word is G, which is assigned the number 2. The letter I, which occurs twice in the key word, is assigned the number 3 for its first occurrence and the number 4 for its second occurrence; and so on. The final result is:

LOGISTICS 562379418

This method of assigning the numbers is very flexible and varies with different uses to which numerical keys are put. It may, of course, be applied to phrases or to sentences, so that a very long numerical key, ordinarly impossible to remember, may be thus derived at will from an easily-remembered key text.

e. As far as the cryptanalyst is concerned, the derivation of a numerical key from a specific literal key is of interest to him because this knowledge may assist in subsequent solutions of cryptograms prepared according to the same basic system, or in identifying the source from which the literal key was selected - perhaps an ordinary book, a magazine, etc. However, it should be pointed out that in some instances the cryptanalyst may be unaware that a literal key has in fact been used as the basis for deriving a numerical key.

<u>39. Types of mixed cipher alphabets.--a.</u> It will be recalled that in a mixed cipher alphabet the sequence of letters or characters in one of the components (usually the cipher component) does not correspond to the normal sequence. There are various methods of composing the sequence of letters or elements of this mixed component, and those which are based upon a scheme that is systematic in its nature are very useful because they make possible the derivation of one or more mixed sequences from any easily-remembered word or phrase, and thus do not necessitate the carrying of written memoranda. Alphabets involving a systematic method of mixing are called systematically-mixed cipher alphabets.

b. One of the simplest types of systematically-mixed cipher alphabets is the keyword-mixed alphabet. The cipher component consists of a key word or phrase (with repeated letters, if present, omitted after

their first occurrence)¹, followed by the letters of the alphabet in their normal sequence (with letters already occurring in the key omitted of course). Example, with GOVERNMENT as the key word:

> Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher: GOVERNMTABCDFHIJKLPQSUWXYZ

c. It is possible to disarrange the sequence constituting the cipher component even more thoroughly by applying a simple method of transposition to the keyword-mixed sequence. Two common methods are illustrated below, using the key word TELEPHONY.

(1) Simple columnar transposition:

T	Е	L	Ρ	H	0	N	Y
A	В	C	D	F	G	I	J
ĸ	М	ΰQ΄	R	S	ប	V	W
X	7.	-		-			

Mixed sequence (formed by transcribing the successive columns from left to right):

TAKXEBMZLCQPDRHFSOGUNIVYJW

(2) Numerically-keyed columnar transposition:

ſ	7.	-1-	-3-	-6-	-2-	-5-	-4.	-8
3	2	Е	L	P	H	0	N	Y
1	Į	В	C	D	F	G	Ι	J
ł	C	М	Q	R	ន	υ	V	W
7	ζ	Z						

Mixed sequence (formed by transcribing the columns in a sequence determined by the numerical key derived from the key word itself):

EBMZHFSLCQNIVOGUPDRTAKXYJW

¹ Mixed alphabets formed by including all repeated letters of the key word or key phrase in the cipher component were common in Edgar Allan Poe's day but are impractical because they are ambiguous, making decipherment difficult; an example:

(a)	Alphabet for enciphering	Plain: Cipher:	AB NO	CDEFC WISTE	HIJ ETI	KLMNOP MEFORA	QRSTU LLGOO	VWXYZ DMENT
(ъ)	Inverse form of (a).	Cipher: Plain:	AB P	CDEFC VHMS	HIJ GD	KLMNOP QKAB	QRSTU OEF	VWXYZ C
/	for deciphering			L X	J	RWYN T	I Z	
						Ű		

The average cipher clerk would have considerable difficulty in decrypting a cipher group such as TOOET, each letter of which has three or more equivalents, and from which the plaintext fragments (N)INTH., ...FT THI(S), IT THI..., etc. can be formed on decipherment.

RESTRICTED

. .

77

d. The last two systematically-mixed sequences are examples of transposition-mixed sequences. Almost any method of transposition may be used to produce such sequences.

e. Another simple method of forming a mixed sequence is the decimation method. In this method, letters in the normal alphabet, or in a keyword-mixed sequence, are "counted off" according to any selected interval. As each letter is decimated--that is, eliminated from the basic sequence by counting off--it is entered in a separate list to form the new mixed sequence. For example, to form a mixed sequence by this method from a keyword-mixed sequence based on the key phrase SING A SONG OF SIXPENCE with 7 the interval selected, proceed as follows:

Keyword-mixed (or basic) sequence:

SINGAOFXPECBDHJKLMQRTUVWYZ

When the letters are counted off by 7's from left to right, F will be the first letter arrived at, H the second, T the third:

SINGAOFXPECBDFJKLMQRFUVWYZ 123456712345671234567

These letters are entered in a separate list (F first, H second, T third, and so on) and eliminated from the keyword-mixed sequence. When the end of the keyword-mixed sequence is reached, return to the beginning, skipping the letters already eliminated:

> SŹNGAOFXPECBDEJKLEQREUVWYZ 12345 671234 567123 4567

The decimation-mixed sequence:

FHTIEMZPONDWCVBSLXAGOKYJRU

<u>f</u>. Practical considerations, of course, set a limit to the complexities that may be introduced in constructing systematically-mixed alphabets. Beyond a certain point there is no object in further mixing. The greatest amount of mixing by systematic processes will give no more security than that resulting from mixing the alphabet by random selection, such as by putting the 26 letters in a box, thoroughly shaking them up, and then drawing the letters out one at a time. Whenever the laws of chance operate in the construction of a mixed alphabet, the probability of producing a thorough disarrangement of letters is very great. <u>Randommixed alphabets</u> give more cryptographic security than do the less <u>complicated</u> systematically-mixed alphabets, because they afford no clues to positions of letters, given the position of a few of them. Their chief disadvantage is that they must be reduced to writing, since they cannot readily be remembered, nor can they be reproduced at will from an easilyremembered key word.

RESTRICTED

40. Additional remarks on cipher alphabets.--a. All cipher alphabets may be classified on the basis of their arrangement as enciphering or deciphering alphabets. An enciphering alphabet is one in which the sequence of letters in the plain component coincides with the normal sequence and is arranged in that manner for convenience in encipherment. In a deciphering alphabet the sequence of letters in the cipher component coincides with the normal, for convenience in deciphering. For example, (1), below, shows a mixed cipher alphabet arranged as an enciphering alphabet; (2) shows the corresponding deciphering alphabet. An enciphering alphabet and its corresponding deciphering alphabet present an inverse relationship to each other. To invert a deciphering alphabet is to write the corresponding enciphering alphabet; to invert an enciphering alphabet is to write the corresponding deciphering alphabet.

Enciphering Alphabet

(1) Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher: JKQVXZWESTRNUIOLGAPHCMYBDF

Deciphering Alphabet

(2) Cipher: ABCDEFGHIJKLMNOPQRSTUVWXYZ Plain: RXUYHZQTNABPVLOSCKIJMDGEWF

b. A series of related reciprocal alphabets may be produced by juxtaposing at all possible points of coincidence two components which are identical but progress in opposite directions. This holds regardless of whether the components are composed of an even or an odd number of elements. The following reciprocal alphabet is one of such a series of 26 alphabets:

Plain: HYDRAULICBEFGJKMNOPQSTVWXZ Cipher: GFEBCILUARDYHZXWVTSQPONMKJ

A single or isolated reciprocal alphabet may be produced in one of two ways:

(1) By constructing a complete reciprocal alphabet by arbitrary or random assignments of values in pairs. That is, if A_p is made the equivalent of K_c , then K_p is made the equivalent of A_c ; if B_p is made R_c , then R_p is made B_c , and so on. If the two components thus constructed are slid against each other no additional reciprocal alphabets will be produced.

(2) By juxtaposing a sequence comprising an even number of elements against the same sequence shifted exactly half way to the right (or left), as seen below:

ABCDEFGHIJKLMNOPQRSTUVWXYZ, ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ

-RESTRICTED

79

1

-RESTRICTED

41. Preliminary steps in the analysis of a monoalphabetic, mixedalphabet cryptogram.--a. The student is now ready to resume his cryptanalytic studies. Note the following cryptogram:

SFDZF IOGHL PZFGZ DYSPF HBZDS GVHTF UPLVD FGYVJ VFVHT GADZZ ATTYD ZYFZJ ZTGPT VTZBD VFHTZ DFXSB GIDZY VTXOI YVTEF VMGZZ THLLV XZDFM HTZAI TYDZY BDVFH TZDFK ZDZZJ SXISG ZYGAV FSLGZ DTHHT CDZRS VTYZD OZFFH TZATT YDZYG AVDGZ ZTKHI TYZYS DZGHU ZFZTG UPGDI XWGHX ASRUZ DFULD EGHTV EAGXX

b. A casual inspection of the text discloses the presence of several long repetitions as well as of many letters of normally low frequency, such as F, G, V, X, and Z; on the other hand, letters of normally high frequency, such as the vowels, and the consonants N and R, are relatively scarce. The cryptogram is obviously a substitution cipher and the usual mechanical tests for determining whether it is possibly of the monoalphabetic, standard-alphabet type are applied. The results being negative, a uniliteral frequency distribution is immediately constructed, as shown in Figure 13, and the ϕ test is applied to it.

c. The fact that the frequency distribution shows very marked crests and troughs indicates that the cryptogram is very probably monoalphabetic, and the results of the ϕ test further support this hypothesis. The fact that the cryptogram has already been tested by the method of completing the plain-component sequence and found not to be of the monoalphabetic, standard-alphabet type, indicates with a high degree of probability that it involves a mixed cipher alphabet. A few moments might be devoted to making a careful inspection of the distribution to insure that it cannot be made to fit the normal; the object of this would be to rule out the possibility that the text resulting from substitution by a standard cipher alphabet had not subsequently been transposed. But this inspection in this case is hardly necessary, in view of the presence of long repetitions in the message.² (See subpar. 25g.)

² This possible step is mentioned here for the purpose of making it clear that the plain-component sequence completion method cannot solve a case in which transposition has followed or preceded monoalphabetic substitution with standard alphabets. Cases of this kind will be discussed in a later text. It is sufficient to indicate at this point that the frequency distribution for such a combined substitution-transposition cipher would present the characteristics of a standard alphabet cipher and yet the method of completing the plain-component sequence would fail to bring out any plain text.

d. One might, of course, attempt to solve the cryptogram by applying the simple principles of frequency. One might, in other words, assume that Z_c (the letter of greatest frequency) represents E_p , D_c (the letter of next greatest frequency) represents To, and so on. If the message were long enough this simple procedure might more or less quickly give the solution. But the message is relatively short and many difficulties would be encountered. Much time and effort would be expended unnecessarily, because it is hardly to be expected that in a message of only 235 letters the relative order of frequency of the various cipher letters should exactly coincide with, or even closely approximate the relative order of frequency of letters of normal plain text found in a count of 50.000 letters. It is to be emphasized that the beginner must repress the natural tendency to place too much confidence in the generalized principles of frequency and to rely too much upon them. It is far better to bring into effective use certain other data concerning normal plain text, such as digraphic and trigraphic frequencies.

42. Preparation of the work sheet .-- a. The details to be considered in this paragraph may at first appear to be superfluous, but long experience has proved that systematization of the work and preparation of the data in the most utilizable, condensed form is most advisable, even if this seems to take considerable time. In the first place, if it merely serves to avoid interruptions and irritations occasioned by failure to have the data in an instantly available form, it will pay by saving mental wear and tear. In the second place, especially in the case of complicated cryptograms, painstaking care in these details, while it may not always bring about success, is often the factor that is of greatest assistance in ultimate solution. The detailed preparation of the data may be irksome to the student, and he may be tempted to avoid as much of it as possible, but, unfortunately, in the early stages of solving a cryptogram he does not know (nor, for that matter, does the expert always know) just which data are essential and which may be neglected. Even though not all of the data may turn out to have been necessary, as a general rule, time is saved in the end if all the usual data are prepared as a regular preliminary to the solution of most cryptograms.

b. First, the cryptogram is recopied in the form of a work sheet. This sheet should be of a good quality of paper so as to withstand considerable erasure. If the cryptogram is to be copied by hand, crosssection paper of $\frac{1}{4}$ -inch squares is extremely useful. The writing should be in ink, and plain, carefully-made roman capital letters should be used in all cases.³ If the cryptogram is to be copied on a typewriter, the ribbon employed should be impregnated with an ink that will not smear or smudge under the hand.

³ It is advisable to use, for this purpose, the system of standardized manual printing adopted by Service communications personnel. The use of this system, which is included in Appendix 7, assures that work sheets are completely legible, not only to the person preparing them, but to others as well.

RESTRICTED

c. The arrangement of the characters of the cryptogram on the work sheet is a matter of considerable importance. If the cryptogram as first obtained is in groups of regular length (usually five characters to a group) and if the uniliteral frequency distribution shows the cryptogram to be monoalphabetic, the characters should be copied without regard to this grouping. It is advisable to allow one space between letters (this is especially true for work sheets prepared on the typewriter), and to write a constant number of letters per line, approximately 25. At least two spaces, preferably three spaces, should be left between horizontal lines, to allow room for multiple assumptions. Care should be taken to avoid crowding the letters in any case, for this is not only confusing to the eye but also mentally irritating when later it is found that not enough space has been left for making various sorts of marks or indications. If the cryptogram is originally in what appears to be word lengths (and this is the case, as a rule, only with the cryptograms of amateurs), naturally it should be copied on the work sheet in the original groupings.⁴ If further study of a cryptogram shows that some special grouping is required, it is often best to recopy it on a fresh work sheet rather than to attempt to indicate the new grouping on the old work sheet.

d. In order to be able to locate or refer to specific letters or groups of letters with speed, certainty, and without possibility of confusion, it is advisable to use coordinates applied to the lines and columns of the text as it appears on the work sheet. To minimize possibility of confusion, it is best to apply letters to the horizontal lines of the text, numbers to the vertical columns. In referring to a letter, the horizontal line in which the letter is located is usually given first. Thus, referring to the work sheet shown below, coordinates Al7 designate the letter Y, the 17th letter in the first line. The letter I is usually omitted from the series of line indicators so as to avoid confusion with the figure 1. If lines are limited to 25 letters each, then each set of 100 letters of the text is automatically blocked off by remembering that 4 lines constitute 100 letters.

e. Above each character of the cipher text may be some indication of the frequency of that character in the whole cryptogram. This indication may be the actual number of times the character occurs, or, if colored pencils are used, the cipher letters may be divided up into three categories or groups--high-frequency; medium-frequency, and low-frequency. It is perhaps simpler, if clerical help is available, to indicate the actual frequencies. This saves constant reference to the frequency tables, which interrupts the train of thought, and saves considerable time in the end, since it enables the student better to visualize frequency-patterns of words. In any case, it is recommended that the frequencies of the letters comprising the repetitions be inscribed over their

¹ In some cryptosystems, certain low-frequency letters are employed as word severators to indicate the end of a word; if the meaning of these letters is discovered, it is tantamount to having the cryptogram in word lengths and thus the work sheet is made accordingly. See also in this connection the treatment on word separators in Section VII.

respective letters; likewise, the frequencies of the first 10 and last 10 letters should also be inscribed, as these positions often lend themselves readily to attack.⁵

f. After the special frequency distribution, explained in Par. 43 below, has been constructed, repetitions of digraphs and trigraphs should be underscored. In so doing, the student should be particularly watchful for trigraphic repetitions which can be further extended into tetragraphs and polygraphs of greater length. Repetitions of more than ten characters should be set off by heavy vertical lines, as they indicate repeated phrases and are of considerable assistance in solution. If a repetition continues from one line to the next, put an arrow at the end of the underscore to signal this fact. Reversible digraphs and trigraphs should also be indicated by an underscore with an arrow pointing in both directions. Anything which strikes the eye as being peculiar, unusual, or significant as regards the distribution or recurrence of the characters should be noted. All these marks should, if convenient, be made with ink so as not to cause smudging. The work sheet will now appear as shown below (not all the repetitions are underscored):

	-									-										-	~ •			•		
	-	1	2	3	4	5	6	7	8	Q	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
-	A	10 S	19 F	23 D	35 Z	19 F	10 I	з 0	19 G	15 H	5 L	ð P	85 Z	19 F	19 G	85 Z	23 D	и <u>Y</u>	10 S	5 P	19 F	15 H	∢ B	35 Z	23 D	10 S
	В	19 G	16 V	15 H	22 T	19 F'	s U	⁵ P	б L	16 V	23 D	19 F	19 G	14 Y	16 V	з Ј	16 V	19 F	16 V	15 H	22 T	19 G	8 A	23 D	35 Z	35 Z
	C	8 A	10 I	22 T	H Y Y	23 D	35 Z	и Ү	19 F	35 Z	з J	35 Z	22 T	19 G	8 P	22 T	16 V	22 T	35 Z	4 <u>B</u>	23 D	16 V	19 F	15 H	22 T	35 Z,
	D.	23 D	19 F	8 X	10 S	4 B	19 G	10 I	23 D	35 Z	14 Y	16 V	22 T	8 X	3 0	10 I	14 Y	16 V	22 T	8 E	19 F	16 V	2 M	19 G	35 Z	35 Z
	E	22 T	15 H	δ L	5 L	16 V	8 X	35 Z	23 D	19 F	2 M	15 <u>H</u>	22 T	35 Z	8 A	10 I	22 T	14 Y	23 D	85 Z	и <u>Ү</u>	4 B	23 D	16 V	19 F	15 <u>H</u>
	F	22 • T	35 Z	23 D	19 F	² K	35 Z	23 D	35 Z	85 Z	з Ј	10 S	8 X	10 I	10 S	19 G	35 Z	14 Y	19 G	8 A	16 V	19 F	10 S	s L	19 G	85 Z
	G	23 D	22 T	15 H	15 H	22 T	ı C	23 D	35 Z	² R	10 S	16 V	22 T	14 Y	35 Z	23 D	8 0	35 Z	19 F	19 F	18 <u>H</u>	22 T	35 Z	8 <u>A</u>	10 I	22 T
-	Ħ	14 • ¥	23 D	85 Z	14 Y	19 G	8 A	18 V	23 D	19 G	35 Z	35 Z	22 T	2 K	15 H	10 <u>I</u>	22 T	14 Y	35 Z	14 Y	10 S	23 D	85 Z	19 G	15 H	ů U
	J	85 Z	19 F	85 Z	22 T	19 G	s U	s P	19 G	23 D	10 I	8 X	1 W	19 G	15 H	8 X	8 A	10 S	² R	⁵ U	35 <u>Z</u>	23 D	19 F	ō U	10 I	23 D
-	ĸ	s E	19 G	15 H	22 T	18 V	3 E	8 A	19 G	8 X	8 X															

⁵ See Appendix 4 in this connection.

RESTRICTED

43. Triliteral frequency distributions, --a, In what has gone before, a type of frequency distribution known as a uniliteral frequency distribution was used. This, of course, shows only the number of times each individual letter occurs. In order to apply the normal digraphic and trigraphic frequency data (given in Appendix 2) to the solution of a cryptogram of the type now being studied, it is obvious that the data with respect to digraphs and trigraphs occurring in the cryptogram should be compiled and should be compared with the data for normal plain text. In order to accomplish this in suitable manner, it is advisable to construct a more comprehensive form of distribution termed a triliteral frequency distribution.⁶

b. Given a cryptogram of 50 or more letters and the task of determining what trigraphs are present in the cryptogram, there are three ways in which the data may be arranged or assembled. One may require that the data show (1) each letter with its two succeeding letters; (2) each letter with its two preceding letters; (3) each letter with one preceding letter and one succeeding letter.

c. A distribution of the first of the three foregoing types may be designated as a "triliteral frequency distribution showing two suffixes"; the second type may be designated as a "triliteral frequency distribution showing two prefixes"; the third type may be designated as a "triliteral frequency distribution showing one prefix and one suffix." Quadriliteral and pentaliteral frequency distributions may occasionally be found useful.

d. Which of these three arrangements is to be employed at a specific time depends largely upon what the data are intended to show. For present purposes, in connection with the solution of a monoalphabetic substitution cipher employing a mixed alphabet, possibly the third arrangement, that showing one prefix and one suffix, is most satisfactory.

e. It is convenient to use $\frac{1}{4}$ -inch cross-section paper for the construction of a triliteral frequency distribution in the form of a distribution showing crests and troughs, such as that in Figure 14. In that figure the prefix to each letter to be recorded is inserted in the left half of the cell directly above the cipher letter being recorded; the suffix to each letter is inserted in the right half of the cell directly above the letter being recorded; and in each case the prefix and the suffix to the letter being recorded occupy the same cell, the prefix being directly to the left of the suffix. The number in parentheses gives the total frequency for each letter.

It is felt advisable here to distinguish between two closely related terms. A triliteral distribution of A B C D E F would consider the groups A B C, B C D, C D E, D E F; a trigraphic distribution would consider only the trigraphs A B C and D E F. (See also subpar. 23d.)

-RESTRICTED

TD:A56892 REF

-RESTRICTED-

85	

.

	:			<u> </u>											۱ 						;				UD
				1					CONI	DENS	ED 7	TABL	e oi	REF	ETII	ION	S								\mathbf{FT}
			·.			Di	graph	8					Trigr	aphs				Long	er Pol	ygrapi	is				UF
		Т			7-9		F75		VF4	L		<u>הקא</u>	-4	FT	477			HT7.	ላ ተጥጥ	07V_	2	•			DG
				Ĩ	D-9	I	ΓΥ5		VT4	-		HTZ	-4	T	7D-3			BDVE	THTZI)F-2	"				11 770
				H H	T-8	J	FH-4		ZF-4	ŀ		ITY	-4	Ŷ)Z-3			ZA	LTYD2	ZY3	ſ			I.	67.
•	· ·	J		2	Y-6	(GH-4		ZT-4	Ł		ZDF	-4	Z	\I-3			E	HTZ-	-3					DY
				D)F5		IT4		ZZ-4	Ł		AIT	3									•			TA
				G	Z-5																	· ′			OF
	1		ł			_		-																	YD
	•		ı																						DR
			,IE																						GD
			\mathbf{ZF}																HV						GY
			GI																ZG						ZJ
			SZ																IY						DZ
			VG .		DU	AX													ZK		,	٠			KD
	•		YZ TO		22	EH													ΤT						TD
			20 07		70 70	חפ													HZ VV		80)173	•			DY mv
			52 77		Дг VS	עז זויז	ርሞ												UL HU		16				
			77.		אח אח	7H	GX												nu nu		аd Ст			75	217
	•		22 7.F		VH	77	GU												H7.		<u>کت</u>	,		<u>ግር</u> ሞፖ	G7.
	Ļ		BV		DM	YA	KI												IY		<u>नत</u>			ZG	DY
			YZ		EV	LZ	FT												HZ		LX			TD	TD
	;		ZF		DX	YA	HT	UD										AR	ZH		FM			TZ	TB
			IZ		VH	SZ	TH	DX										YD	VE		YT	4		ZG	\mathbf{JT} (
EG			ZF		YZ	ΜZ	\mathbf{FT}	HT										RV	VX		YT		X	ΖB	FJ ·
XS			BV		VV	BI	МT	AT										FL	HZ		DF		GX	TD	DY
GV			YZ		DG	TP	TL	XS							_			IG	٧Z		\mathbf{TT}		HA	IV	ZA
ZI			AZ		TU	TA	FT	AT			SG				UG			JX	PV	FI	FH		IW	ZV	DZ
GV	YD		VF		PH	FY	VT	OY							GT			XB	ZG	RZ	JF		SI	ZF	BD ,
ZI	SG		ZS	VA	ZG	SV	VT.	GD	ZS	2707 T	HL	T 3 T T		DZ WT	UL			DG	TT	GP	YJ		٧Z	TD	GD
CD ZT	20 117	Π	21 57	DG: mp	ST ST	12 02	r B CT	AT FO			гv цр	rn VC		AL TC	of T7		20 20	11 F	ng Ur	HZ TD	LU CU	70	TU FC	GV	rr DF
GD	<u>n</u> 2	UL.	<u>г</u> Д	11	עם	Un	<u></u>	FU	• •	F 4	DL.	y G		1.64		·····	20	- <u>r</u>	rif.	r r	GH	AG.	61	00	Dr
A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	ប	V	W	X	Y	Z
(8)	(4)	ά)	(23)	(3)	(19)	(19)	(15)	(10)	(3)	(4)	(5)	(2) Figure 1	(0) 14.	(3)	(5)	(0)	(2)	(10)	(22)	(5)	(16)	(1)	(8)	(14)	(35)
	-										-														

١

.

.

r

I.

RESTRICTED

1

.

.

RESTRICTED

<u>f</u>. The triliteral frequency distribution is now to be examined with a view to ascertaining what digraphs and trigraphs occur two or more times in the cryptogram. Consider the pair of columns containing the prefixes and suffixes to D_c in the distribution, as shown in Fig. 14. This pair of columns shows that the following digraphs appear in the cryptogram:

Digraphs based on prefixes
(arrangel as one reads up
the column)Digraphs based on suffixes
(arranged as one reads up
the column)FD, ZD, 2D, VD, AD, YD, BD,
ZD, ID, ZD, YD, BD, ZD, ZD,
ZD, CD, ZO, YD, VD, SD, GD,
ZD, IDDZ, DY, DS, DF, DZ, DZ, DV,
DF, DZ, DF, DZ, DV, DF, DZ,
DF, DZ, DO, DZ, DG, DZ, DI,
DF, DE

The nature of the triliteral frequency distribution is such that in finding what digraphs are present in the cryptogram it is immaterial whether the prefixes or the suffixes to the cipher letters are studied, so long as one is consistent in the study. For example, in the foregoing list of digraphs based on the prefixes to D_c , the digraphs FD, ZD, ZD, VD, etc., are found; if now, the student will refer to the suffixes of F_c , Z_c , V_c , etc., he will find the very same digraphs indicated. This being the case, the question may be raised as to what value there is in listing both the prefixes and the suffixes to the cipher letters. The answer is that by so doing the trigraphs are indicated at the same time. For example, in the case of D_c , the following trigraphs are indicated:

FDZ, ZDY, ZDS, VDF, ADZ, YDZ, BDV, ZDF, IDZ, ZDF, YDZ, BDV, ZDF, ZDZ, ZDT, CDZ, ZDO, YDZ, VDG, SDZ, GDI, ZDF, IDE.

g. The repeated digraphs and trigraphs can now be found quite readily. Thus, in the case of D_c , examining the list of digraphs based on suffixes, the following repetitions are noted:

DZ appears 9 times; DF appears 5 times; DV appears 2 times

Examining the trigraphs with D_c as central letter, the following repetitions are noted:

ZDF appears 4 times; YDZ appears 3 times; BDV appears 2 times

h. It is unnecessary, of course, to go through the detailed procedure set forth in the preceding subparagraphs in order to find all the repeated digraphs and trigraphs. The repeated trigraphs with D_c as central letter can be found merely from an inspection of the prefixes and suffixes opposite D_c in the distribution. It is necessary only to find those cases in which two or more prefixes are identical at the same time that the suffixes are identical. For example, the distribution shows at once that in four cases the prefix to D_c is Z_c at the same time that the suffix to this letter is F_c . Hence, the trigraph ZDF appears four times. The repeated trigraphs may all be found in this manner.

														-									-		-
											,								.	13					
				Γ																	-				UD
•				1					CONI	DENS	ED 1	[ABL]	e of	REF	ETII	NONS	3				{				FT
						Di	graph	3					Trigra	tphs	Т			Long	er Pol	ygrapl	18	÷	, I		UF DC
				I)Z9		rz5		VF-4	F		DZY	-4	FI	HT-3			HTZ	AITY	DZY-	2	, ,	: '		YY
				Z	2D-9		ry—5		VT-4	ł		HTZ	-4	T	7D3			BDVI	THTZ	DF-2	ļ	• م			ZT
				F	IT8	1	FH-4		ZF-4	Ł		ITY	-4	YI)Z-3			ZAI	L TYD:	ZY–3		٠.	;		GΖ
• :					3Y6	(GH4		ZT-4	F		ZDF	-4	ZĮ	AI-3			1	THTZ-	3		, -'	t 		DY
)F-5		11-4		ZZ-4	F		ALT	-3									•	- , , ,		TA
					a79-0																	- 1° ;			OF
۲				January 1								~~~~~			•							· •			עז פח
			TE																			4			CD
			ZF																HV			_+} ¦	I		GY
			GI																ZG			•			ZJ
			SZ																IY			•			DZ
			VG		DU	AX													ZK			≓ r`			KD
•			YZ		ZZ	EH													IY			•			TD
			Z0		FH 7F	WH													HZ		नान			,	DY
			64 ፖሞ		ДГ VS	רט דוד	Cт												HG.		TE	• '			TA YD
			77		DK	ZH	GX												DH		ST			7.S	7.T
'			ZF		VH	DZ	GU												HZ		AF			ΤZ	GZ
			BV		DM	YA	KI												IY		DF			ZG	DY
			ΥZ		EV	LZ	\mathbf{FT}												HZ		LX			TD	TD
			ZF		DX	YA	HT	UD										AR	ZH		FM			TZ	TB
			IZ		VH	SZ	TH	DX										YD	VE		YT		-	ZG	JT
EG			2년 [.] 1917		YZ WW	MZ DT	F.L. Mill	HT Am										KV ът	۷ <u>۸</u> 1177		YT DF		X	ZB	fj Dv
AD CV			DV V7.		DG.	рт Тр	мт. ТТ.	XS										TG	N7.		ጋድ ጥጥ		GA HA	TV	74
ZI			AZ		TU	TA	FT	AT			SG				UG			ĴX	PV	FI	FH		IW	ZV	DZ
GV	YD		VF		PH	FY	VT	OY			LV				GT			XB	ZG	RZ	JF		SI	ZF	BD
ZI	SG		ZS	VA	ZG	sv	VT	GD	ZS		HL			DZ	UL			DG	IY	GP	YJ		٧Z	TD	GD
ZI	ZD	_	ZY	DG	ZI	FZ	FB	AT	ZZ	TH	PV	FH		XI	SF		SU	YP	HG	HZ	LD		TO	GV	PF
GD	HZ	TD	FZ	TF	SD	OH	GL	FO	<u></u>	FZ	HP	VG		IG	LZ		ZS	F	HF	FP	GH	XG	FS	DS	DF
A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
(8)	(4)	ω,	(23)	(3)	(13)	(19)	(10)	(40)	(3)	(2)	(0)	(4) Figure :	(0) 14.	(3)	(0)	(U)	V 0	(10)	(23)	(0)	(10)	(L)	(8)	(13)	(00)

١

RESTRICTED

-RESTRICTED-

85 87

1

-RESTRICTED

f. The triliteral frequency distribution is now to be examined with a view to ascertaining what digraphs and trigraphs occur two or more times in the cryptogram. Consider the pair of columns containing the prefixes and suffixes to D_c in the distribution, as shown in Fig. 14. This pair of columns shows that the following digraphs appear in the cryptogram:

Digraphs based on prefixes	Digraphs based on suffixes
(arranged as one reads up	(arranged as one reads up
the colum)	the column)
FD, ZD, 2D, VD, AD, YD, BD,	DZ, DY, DS, DF, DZ, DZ, DV,
ZD, ID, ZD, YD, BD, ZD, ZD,	DF, DZ, DF, DZ, DV, DF, DZ,
ZD, CD, ZO, YD, VD, SD, GD,	DT, DZ, DO, DZ, DG, DZ, DI,
ZD, ID	DF, DE

The nature of the triliteral frequency distribution is such that in finding what digraphs are present in the cryptogram it is immaterial whether the prefixes or the suffixes to the cipher letters are studied, so long as one is consistent in the study. For example, in the foregoing list of digraphs based on the prefixes to D_c , the digraphs FD, ZD, ZD, VD, etc., are found; if now, the student will refer to the suffixes of F_c , Z_c , V_c , etc., he will find the very same digraphs indicated. This being the case, the question may be raised as to what value there is in listing both the prefixes and the suffixes to the cipher letters. The answer is that by so doing the trigraphs are indicated at the same time. For example, in the case of D_c , the following trigraphs are indicated:

FDZ, ZDY, ZDS, VDF, ADZ, YDZ, BDV, ZDF, IDZ, ZDF, YDZ, BDV, ZDF, ZDZ, ZDT, CDZ, ZDO, YDZ, VDG, SDZ, GDI, ZDF, IDE.

g. The repeated digraphs and trigraphs can now be found quite readily. Thus, in the case of D_c , examining the list of digraphs based on suffixes, the following repetitions are noted:

DZ appears 9 times; DF appears 5 times; DV appears 2 times Examining the trigraphs with D_c as central letter, the following repetitions are noted:

ZDF appears 4 times; YDZ appears 3 times; BDV appears 2 times

h. It is unnecessary, of course, to go through the detailed procedure set forth in the preceding subparagraphs in order to find all the repeated digraphs and trigraphs. The repeated trigraphs with D_c as central letter can be found merely from an inspection of the prefixes and suffixes opposite D_c in the distribution. It is necessary only to find those cases in which two or more prefixes are identical at the same time that the suffixes are identical. For example, the distribution shows at once that in four cases the prefix to D_c is Z_c at the same time that the suffix to this letter is F_c . Hence, the trigraph ZDF appears four times. The repeated trigraphs may all be found in this manner.

i. The most frequently repeated digraphs and trigraphs are then assembled in what is termed a condensed table of repetitions, so as to bring this information prominently before the eye. As a rule, in messages of average length, digraphs which occur less than four or five times, and trigraphs which occur less than three or four times may be omitted from the condensed table as being relatively of no importance in the study of repetitions. In the condensed table the frequencies of the individual letters forming the most important digraphs, trigraphs, etc., should be indicated.

44. Classifying the cipher letters into vowels and consonants.-a. Before proceeding to a detailed analysis of the repeated digraphs and trigraphs, a very important step can be taken which will be of assistance not only in the analysis of the repetitions but also in the final solution of the cryptogram. This step concerns the classification of the high-frequency cipher letters into two groups--(1) those which most probably represent vowels, and (2) those which most probably represent consonants. For if the cryptanalyst can quickly ascertain the equivalents of the four vowels, A, E, I, and O, and of only the four consonants, N, R, S, and T, he will then have the values of approximately two-thirds of all the cipher letters that occur in the cryptogram; the values of the remaining letters can almost be filled in automatically.

b. The basis for the classification will be found to rest upon a comparatively simple phenomenon: the associational or combinatory behavior of vowels is, in general, quite different from that of consonants. If an examination be made of Table 7-B in Appendix 2, showing the relative order of frequency of the 18 digraphs composing 25 percent of English telegraphic text, it will be seen that the letter E enters into the composition of 9 of the 18 digraphs; that is, in exactly half of all the cases the letter E is one of the two letters forming the digraph. The digraphs containing E are as follows:

ED	\mathbf{EN}	\mathbf{ER}	ES		
	ne	RE	SE	TE	YE

The remaining nine digraphs are as follows:

ለግ	ND	OR	ST
III	NT		\mathbf{TH}
ON			TO

c. None of the 18 digraphs is a combination of vowels. Note now that of the 9 combinations with E, 7 are with the consonants N, R, S, and T, one is with D, one is with V, and none is with any vowel. In other words, E_p combines most readily with consonants but not with other vowels, or even with itself. Using the terms often employed in the chemical analogy, E shows a great "affinity" for the consonants N, R, S, T, but not for the vowels. Therefore, if the letters of highest frequency occurring in a given cryptogram are listed, together with the number of times each of them combines with the assumed cipher equivalent of E_p , those which show considerable combining power or affinity for the cipher equivalent

87

of E_p may be assumed to be the cipher equivalents of N, R, S, T_p ; those which do not show any affinity for the cipher equivalent of E_p may be assumed to be the cipher equivalents of A, I, O, U_p . Applying these principles to the problem in hand, and examining the triliteral frequency distribution, it is quite certain that $Z_c=E_p$, not only because Z_c is the letter of highest frequency, but also because it combines with <u>several</u> other high-frequency letters, such as D_c , F_c , G_c , etc. The nine letters of next highest frequency are:

> 23 22 19 19 16 15 14 10 10 D T F G V H Y S I

Let the combinations these letters form with Z_c be indicated in the following manner:

Number of times $Z_c \equiv$ occurs as prefix--- $\not\equiv$ \equiv \qquad $\not\equiv$ Cipher Letter----- D(23) T(22) F(19) G(19) V(16) H(15) Y(14) S(10) I(10) Number of times $Z_c \not\equiv$ $\not\equiv$ $\not\equiv$ $\not\equiv$

d. Consider D_c . It occurs 23 times in the message and 18 of those times it is combined with Z_c , 9 times in the form Z_cD_c (= $E\Theta_p$), and 9 times in the form D_cZ_c (= ΘE_p). It is clear that D_c must be a consonant. In the same way, consider T_c , which shows 9 combinations with Z_c , 4 in the form Z_cT_c (= $E\Theta_p$) and 5 in the form T_cZ_c (= ΘE_p). The letter T_c appears to represent a consonant, as do also the letters F_c , G_c , and Y_c . On the other hand, consider V_c , occurring in all 16 times but never in combination with Z_c ; it appears to represent a vowel, as do also the letters H_c , S_c , and I_c . So far, then, the following classification would seem logical:

7	owe]	ls				Con	sonar	nts	
$Z_{c}(=E_{p}),$	Vc,	H _c ,	s _c ,	I _c	D _c ,	T _c ,	F _c ,	G _c ,	Y _c

45. Further analysis of the letters representing vowels and consonants.--a. O_p is usually the vowel of second highest frequency. Is it possible to determine which of the letters V, H, S, I_c is the cipher equivalent of O_p ? Let reference be made again to Table 6 in Appendix 2, where it is seen that the 10 most frequently occurring diphthongs are:

Diphthong-----IO OU EA EI AI IE AU EO AY UE Frequency----41 37 35 27 17 13 13 12 12 11

If V, H, S, I_c are really the cipher equivalents of A, I, O, U_p (not respectively), perhaps it is possible to determine which is which by exemining the combinations they make among themselves and with Z_c (=E_p). Let the combinations of V, H, S, I, and Z that occur in the message be listed. There are only the following:

 $ZZ_c - 4$ VHc--2 HHc--1 HIc--1 ISc--1 SVc--1

 ZZ_c is of course EE_p . Note the doublet HH_c ; if H_c is a vowel, then the chances are excellent that $H_c=O_p$ because the doublets AA_p , II_p , UU_p , are practically non-existent, whereas the double vowel combination OO_p is of

-RESTRICTED-

next highest frequency to the double vowel combination EE_p . If $\text{H}_c=\text{O}_p$, then V_c must be I_p because the digraph VH_c occurring two times in the message could hardly be AO_p, or UO_p, whereas the dipthong IO_p is the one of high frequency in English. So far then, the tentative (because so far unverified) results of the analysis are as follows:

Z_c=E_p H_c=O_p V_c=I_p

This leaves only two letters, I_c and S_c (already classified as vowels) to be separated into A_p and U_p . Note the digraphs:

$$HI_{c}=O\Theta_{p} - IS_{c}=O\Theta_{p} SV_{c}=OI_{p}$$

Only two alternatives are open:

_

(1) Either $I_c = A_p$ and $S_c = U_p$, (2) Or $I_c = U_p$ and $S_c = A_p$.

If the first alternative is selected, then

HIC=OAD ISC=AUD SVC=UID

If the second alternative is selected, then

HIc=OUp ISc=UAp SVc=AIp

The eye finds it difficult to choose between these alternatives; but suppose the frequency values of the plaintext diphthongs as given in Table 6 of Appendix 2 are added for each of these alternatives, giving the following:

HIc=OAp,	frequency value:	: 7	HIc=OUp,	frequency val	lue=37
svc=UIp,	frequency value:	: 5	SVc=AIp,	frequency val	lue=17
ISc=AUp,	frequency value:	:13	ISc=UAp,	frequency val	lue= 5
					-
	Total	25		Total	59

Mathematically, the second alternative appears to be more probable than the first. I Let it be assumed to be correct and the following (still tentative) values are now at hand:

Zc=Ep Hc=Op Vc=Ip Sc=Ap Ic=Up

b. Attention is now directed to the letters classified as consonants: How far is it possible to ascertain their values? The letter D_c , from considerations of frequency alone, would seem to be T_p , but its frequency, 23, is not considerably greater than that for T_c . It is not

⁷ A more accurate guide for choosing between the alternative groups of digraphs could be obtained through a consideration of the <u>logarithmic</u> weights of their assigned probabilities, rather than their plaintext frequency values. These weights are given in Appendix 2, along with an explanation of the method for their derivation; a detailed treatment of their application is presented in Military Cryptanalysis, Part II.

much greater than that for F_c or G_c , with a frequency of 19 each. But perhaps it is possible to ascertain not the value of one letter alone but of two letters at one stroke. To do this one may make use of a tetragraph of considerable importance in English, <u>viz</u>., TION_p. For if the analysis pertaining to the vowels is correct, and if $VE_c=IO_p$, then an examination of the letters immediately before and after the digraph VH_c in the cipher text might disclose both T_p and N_p . Reference to the text gives the following:

$\operatorname{GVHT}_{\mathbf{C}}$	FVIITe
eice ^b	ercep

The letter T_c follows VH_c in both cases and very probably indicates that $T_c=N_p$; but as to whether G_c or F_c equals T_p cannot be decided. However, two conclusions are clear: first, the letter D_c is neither T_p nor N_p , from which it follows that it must be either R_p or S_p ; second, the letters G_c and F_c must be either T_p and S_p , respectively, or S_p and T_p , respectively, because the only tetragraphs usually found (in English) containing the diphthong IO_p as central letters are $SION_p$ and $TION_p$. This in turn means that as regards D_c , the latter cannot be <u>either</u> R_p or S_p ; it must be R_p , a conclusion which is corroborated by the fact that ZD_c (= RE_p) and DZ_c (= RE_p) occur 9 times each. Thus far, then, the identifications, when inserted in an <u>enciphering</u> alphabet, are as follows:

Plain----- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Cipher---- S Z V T H D G F I F G

46. Substituting deduced values in the cryptogram.--a. Thus far the analysis has been almost purely hypothetical, for as yet not a single one of the values deduced from the foregoing analysis has been tried out in the cryptogram. It is high time that this be done, because the final test of the validity of the hypotheses, assumptions, and identifications made in any cryptographic study is, after all, only this: do these hypotheses, assumptions, and identifications ultimately yield verifiable, intelligible plain text when consistently applied to the cipher text?

b. At the present stage in the process, since there are at hand the assumed values of but 9 out of the 25 letters that appear, it is obvious that a continuous "reading" of the cryptogram can certainly not be expected from a mere insertion of the values of the 9 letters. However, the substitution of these values should do two things. First, it should immediately disclose the fragments, outlines, or "skeletons" of "good" words in the text; and second, it should disclose no places in the text where "impossible" sequences of letters are established. By the first is meant that the partially deciphered text should show the outlines or skeletons of words such as may be expected to be found in the communication; this will become quite clear in the next subparagraph. By the second is meant that sequences, such as "AOOEN" or "INRSENO" or the like, obviously not possible or extremely unusual in normal English text, must not result from the substitution of the tentative identifications resulting from the analysis. The appearance of several such extremely unusual or impossible sequences would at once signify that one or more of the assumed values is incorrect.

-

-

_

.

-RESTRICTED

c. Here are the results of substituting the nine values which have been deduced by the reasoning based on a classification of the highfrequency letters into vowels and consonants and the study of the members of the two groups: -

	ı	2	8	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A	10 S A	19 F T S	23 L R	35 Z E	19 F T S	I) I	3 0	19 G S T	15 H O	5 L	p P	85 Z E	19 F T S	19 G S T	85 Z E	23 D R	14 Y	10 S A	⁵ P	19 F T S	15 H O	4 B	35 Z E	28 D R	10 S A
в	19 G S T	16 V I	15 H 0	22 T N	19 F T S	5 U	s P	5 L	16 V I	23 D R	19 F T S	19 G S T	14 Y	16 V I	Ĵ	16 V I	19 F T S	16 V I	15 H O	22 T N	19 G S T	8 A	23 D R	35 Z E	85 乙 臣
C	8 A	10 I	22 T N	14 Y	23 D R	³ő Z E	и У	19 F T S	35 Z E	8 J	85 Z E	23 T N	19 G S T	⁵ P	22 T N	16 V I	22 T N	25 Z E	4 B	23 D R	16 V I	19 F T S	15 H O	22 T N	85 Z E
D	23 D R	9 F T S	8 X	10 S A	4 B	19 G S T	10 I ·	23 D R	35 Z E	14 Ү	16 V I	22 T N	* X	з О	10 I	14 Ү	16 V I	22 T N	s E	19 F T S	16 V I	2 M	19 G S T	35 Z E	35 Z E
Е	22 T N	15 H O	s L	₅ Ľ	16 V I	8 X	35 Z E	23 D R	19 F T S	2 M	15 H O	22 T N	35 Z E	8 A	IO I	22 T N	14 Y	23 D R	35 Z E	и Ү	4 B	23 D R	16 V I	19 F T S	15 H O
F	22 T N	35 Z E	23 D R	19 F T S	2 K	86 Z E	23 D R	85 Z E	яз Z E	s J	10 S A	a X	10 I	10 S A	19 G S T	35 Z E	и Y	ıı G S T	8 A	16 V I	19 F T S	10 S A	٥ L	19 G S T	35 Z E
G	28 D R	22 T N	15 H O	15 Hੂ 0	22 T N	ı C	23 D R	35 Z E	² R	10 S A	16 V I	22 T N	14 Y	35 Z E	23 D R	з О	38 Z E	19 F T S	19 F T S	15 H O	22 T N	35 Z E	8 A	10 I	22 T N
Ħ	14 Y	23 D R	35 Z E	14 Y	19 G S T	8 A	16 V I	23 D R	19 G S T	35 Z E	35 Z E	22 T N	² K	18 H O	10 I	22 T N	14 Y	35 Z E	14 Y	10 S A	23 D R	35 Z E	ม G S T	15 H O	Ů
J	85 Z E	19 F T S	35 Z E	22 T N	19 G S T	ត ប	ð P	19 G S T	23 D R	10 I	8 X	ı W	≇ G S T	15 H O	s X	8 A	10 S A	2 R	ů U	88 Z E	23 D R	19 F T S	б U	10 I	23 D R
ĸ	в Е	19 G S ጥ	15 H O	22 T N	16 V I	s E	8 A `	19 G S T	8 X	8 X															

RESTRICTED

d. No impossible sequences are brought to light, and, moreover, several long words, nearly complete, stand out in the text. Note the following portions:

The words are obviously OPERATIONS, NINE PRISOMERS, and AFTERNOON. The value G_c is clearly T_p ; that of F_c is S_p ; and the following additional values are certain:

Be=Pp Le=Fp

47. Completing the solution.--a. Each time an additional value is obtained, substitution is at once made throughout the cryptogram. This leads to the determination of further values, in an ever-widening circle, until all the identifications are firmly and finally established, and the message is completely solved. In this case the decipherment is as follows:

> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 SFDZFIOGHLPZFGZDYSPFHBZDS A ASRESULTOFYESTERDAYSOPERA GVHTFUPLVDFGYVJVFVHTGADZZ в TIONSBYFIRSTDIVISIONTHREE AITYDZYFZJZTGPTVTZBDVFHTZ С HUNDREDSEVENTYNINEPRISONE DFXSBGIDZYVTXOIYVTEFVMGZZ \mathbf{D} RSCAPTUREDINCLUDINGSIXTEE THLLVXZDFMHTZAITYDZYBDVFH Е NOFFICERSXONEHUNDREDPRISO TZDFKZDZZJSXISGZYGAVFSLGZ F NERSWEREEVACUATEDTHISAFTE D T H H T C D Z R S V T Y Z D O Z F F H T Z A I T G RNOONQREMAINDERLESSONEHUN YDZYGAVDGZZTKHITYZYSDZGHU Η DREDTHIRTEENWOUNDEDARETOB ZFZTGUPGDIXWGHXASRUZDFUID J ESENTBYTRUCKTOCHAMBERSBUR EGHTVEAGXX ĸ GTONIGHTXX

Message: AS RESULT OF YESTERDAYS OPERATIONS BY FIRST DIVISION THREE HUNDRED SEVENTY NIME PRISONERS CAPTURED INCLUDING SIXTEEN OFFICERS ONE HUNDRED PRISONERS WERE EVACUATED THIS AFTERNOON REMAINDER LESS ONE HUN-DRED THIRTEEN WOUNDED ARE TO BE SENT BY TRUCK TO CHAMBERSBURG TONIGHT

b. The solution should, as a rule, not be considered complete until an attempt has been made to discover all the elements underlying the general system and the specific key to a message. In this case, there is no need to delve further into the general system, for it is merely one of uniliteral substitution with a mixed cipher alphabet. It is necessary or advisable, however, to reconstruct the cipher alphabet because this may give clues that later may become valuable.

c. Cipher alphabets should, as a rule, be reconstructed by the cryptanalyst in the form of <u>enciphering</u> alphabets because they will then usually be in the form in which the encipherer used them. This is important for two reasons. First, if the sequence in the cipher component gives evidence of system in its construction or if it yields clues pointing toward its derivation from a key word or a key phrase, this may often corroborate the identifications already made and may lead directly to additional identifications. A word or two of explanation is advisable here. For example, refer to the skeletonized enciphering alphabet given at the end of subpar. 45b:

Plain-----ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher----SZV TH DGFI FG

Suppose the cryptanalyst, looking at the sequence DGFI or DFGI in the cipher component, suspects the presence of a keyword-mixed alphabet. Then DFGI is certainly a more plausible sequence than DGFI. Examining the skeleton cipher component more carefully, he notes that S . . . Z would allow for insertion of three of the missing letters UWXY, since the letters T and V occur later, probably in the keyword itself; further, he notes that the key word probably begins under Fp and ends in TH, making it probable that the TH is followed by AB or BC. This would mean that either P, Qp=A, Bc or B, Cc. Assuming that P, Qp=A, Bc, he refers to the frequency distribution and finds that the assumptions $P_{p}=A_{c}$ and $Q_{n}=B_{c}$ are not good; on the other hand, assuming that F, QD=B, Cc, the frequency distribution gives excellent corroboration. A trial of these values would materially hasten solution because it is often the case in cryptanalysis that if the value of a very low-frequency letter can be surely established it will yield clues to other values very quickly. Thus, if Q_D is definitely identified it almost invariably will identify U_D , and will give clues to the letter following the Up, since it must be a vowel. In the case under discussion the identification P, Qp=B, Cc would have turned out to be correct. For the foregoing reason an attempt should always be made in the early stages of the analysis to determine, if possible, the basis of construction or derivation of the cipher alphabet; as a rule this can be done only by means of the enciphering alphabet, and

not the deciphering alphabet. For example, the skeletonized <u>deciphering</u> alphabet corresponding to the enciphering alphabet directly above is as follows:

Cipher----ABCDEFGHIJKLMNOPQRSTUVWXYZ Plain----- R TSOU AN I E ST

Here no cvidences of a keyword-mixed alphabet are seen at all. However, if the enciphoring alphabet has been examined and shows no evidences of systematic construction, the deciphering alphabet should then be examined with this in view, because occasionally it is the deciphering alphabet which shows the presence of a key or keying element, or which has been systematically derived from a word or phrase. The second reason why it is important to try to discover the basis of construction or derivation of the cipher alphabet is that it affords clues to the general type of key words or keying elements employed by the enemy. This is a psychological factor, of course, and may be of assistance in subsequent studies of his traffic. It merely gives a clue to the general type of thinking indulged in by certain of his cryptographers.

d. In the case of the foregoing solution, the complete enciphering alphabet is found to be as follows:

Plain----- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Cipher---- S U X Y Z L E A V N W O R T H B C D F G I J K M P

Obviously, the letter Q, which is the only letter not appearing in the cryptogram, should follow P in the cipher component. Note now that the latter is based upon the keyword LEAVENWORTH, and that this particular cipher alphabet has been composed by shifting the mixed sequence based upon this keyword five intervals to the right so that the key for the message is $A_p=S_c$.⁸ Note also that the deciphering alphabet fails to give any evidence of keyword construction based upon the word LEAVENWORTH.

Cipher----- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Plain----- H P Q R G S T O U V W F X J L Y Z M A N B I K C D E

. -

. .

2

F

e. If neither the enciphering nor the deciphering alphabet exhibits characteristics which give indication of derivation from a key word by some form of mixing or disarrangement, the use of such a key word for this purpose is nevertheless not finally excluded as a possibility. For the reconstruction of such mixed alphabets the cryptanalyst must use ingenuity and a knowledge of the more common methods of suppressing the appearance of key words in the mixed alphabets. Several of these methods are given detailed treatment in par. 51 below.

f. It is very important in practical cryptanalytic work to prepare a technical summary of the solution of a system. Step-by-step

⁸ It is usual practice to employ as the specific key the equivalent of either $A_{\rm D}$, or the equivalent of the first letter of the plain component when this component is a mixed sequence.

commentaries should accompany an initial solution; the steps taken should be jotted down as they are made, and at the end they should be combined into a complete résumé of the analysis. The résumé should be brief and concise, yet comprehensive enough that at any future time the solution may be reconstructed following the exact manner in which it was originally accomplished. Assumptions of words, etc., should be referred to with work sheet line- and column-indicators, and should be couched in the proper cryptologic language or symbols. A short exposition of the mechanics of the general system, enciphering alphabets, enciphering diagrams, etc., as well as all key words (together with their derivation) and specific keys should be included. On the work sheet there should be a letter-for-letter decryptment under the cipher text; the final plaintext version should be in word lengths, with any errors or garbles corrected. Nulls or indicators showing sentence separation, change of key, etc., may be enclosed in parentheses. All work sheets and notes should be kept together with the solution.

48. General remarks on the foregoing solution.--a. The example solved above is admittedly a more or less artificial illustration of the steps in analysis, made so in order to demonstrate general principles. It was easy to solve because the frequencies of the various cipher letters corresponded quite well with the normal or expected frequencies. However, all cryptograms of the same monoalphabetical nature can be solved along the same general lines, after a certain amount of experimentation, depending upon the length of the cryptogram, and the skill and experience of the cryptanalyst.⁹

b. It is no cause for discouragement if the student's initial attempts to solve a cryptogram of this type require much more time and effort than were apparently required in solving the foregoing purely illustrative example. It is indeed rarely the case that every assumption made by the cryptanalyst proves in the end to have been correct; more often it is the case that a good many of his initial assumptions are incorrect, and that he loses much time in casting out the erroneous ones. The speed and facility with which this elimination process is conducted is in many cases all that distinguishes the expert from the novice.

⁹ The use of monoalphabetic substitution in modern military operations is exceedingly rare because of the simplicity of solution. However, such cases have occurred, and one rather illuminating instance may be cited. In an important communication on 5 August 1918, General Kress von Kressenstein used a single mixed alphabet, and the intercepted radio message was solved at American GHQ very speedily. A day later another message, but in a very much more difficult cipher system, was intercepted and solved. When translated, it read as follows:

"GHQ Kress:

The cipher prepared by General von Kress was at once solved here. Its further use and employment is forbidden.

Chief Signal Officer, Berlin."

c. Nor will the student always find that the initial classification into vowels and consonants can be accomplished as easily and quickly as was apparently the case in the illustrative example. The principles indicated are very general in their nature and applicability, and there are, in addition, some other principles that may be brought to bear in case of difficulty. Of these, perhaps the most useful are the following:

(1) In normal English it is unusual to find more than two consonants in succession, each of high frequency. If in a cryptogram a succession of three or four letters of high-frequency appear in succession, it is practically certain that at least one of these represents a vowel.¹⁰

(2) Successions of three vowels are rather unusual in English.¹¹ Practically the only time this happens is when a word ends in two vowels and the next word begins with a vowel.¹²

(3) When two letters already classified as vowel-equivalents are separated by a sequence of six or more letters, it is either the case that one of the supposed vowel-equivalents is incorrect, or else that one or more of the intermediate letters is a vowel-equivalent.¹³

(4) Reference to Table 7-B of Appendix 2 discloses the following: Distribution of first 18 digraphs forming 25 percent of English text

Number	of	consonant-consonant digraphs	4
Number	of	consonant-vowel digraphs	. 6
Number	of	vowel-consonant digraphs	8
Number	of	vowel-vowel digraphs	0

Distribution of first 53 digraphs forming 50 percent of English text

Number	of	consonant-consonant digraphs	8
Number	oſ	consonant-vowel digraphs	23
Number	of	vowel-consonant digraphs	18
Number	of	vowel-vowel digraphs	4

¹⁰ Sequences of seven consonants are not impossible, however, as in STRENGTH THROUGH.

11 Note that the word RADIOED, past tense of the verb RADIO, is coming into usage.

12 A sequence of seven vowels is not impossible, however, as in THE WAY YOU EARN.

13

Some cryptanalysts place a good deal of emphasis upon this principle as a method of locating the remaining vowels after the first two or three have been located. They recommend that the latter be underlined throughout the text and then all sequences of five or more letters showing no underlines be studied attentively. Certain letters which occur in several such sequences are sure to be vowels. An arithmetical aid in the study is as follows: Take a letter thought to be a good possibility as the cipher equivalent of a vowel (hereafter termed a *possible vowel-equivalent*) and find the length of each interval from the possible vowel-equivalent to the next *known* (fairly surely determined) vowel-equivalent. Multiply the interval by the number of times this interval is found. Add the products and divide by the total number of intervals considered. This will give the *mcan* interval for that possible vowel-equivalent. Do the same for all the other possible vowel-equivalents. The one for which the mean is the greatest is most probably a vowel-equivalent. Underline this letter throughout the text and repeat the process for locating additional vowel-equivalents, if any remain to be located.

The latter tabulation shows that of the first 53 digraphs which form 50 percent of English text, 41 of them, that is, over 75 percent, are combinations of a vowel with a consonant. In short, in normal English the vowels and the high-frequency consonants are in the long run distributed fairly evenly and regularly throughout the text.

(5) As a rule, repetitions of trigraphs in the eigher text are composed of high-frequency letters forming high-frequency combinations. The latter practically always contain at least one vowel; in fact, if reference is made to Table 10-A of Appendix 2 it will be noted that 36 of the 56 trigraphs having a frequency of 100 or more contain one vowel, 17 of them contain two vowels, and only three of them contain no vowel. In the case of tetragraph repetitions, Table 11-A of Appendix 2 shows that no tetragraph listed therein fails to contain at least one vowel; 27 of them contain one vowel, 25 contain two vowels, and 2 contain three vowels.

(6) Quite frequently when two known vowel-equivalents are separated by six or more letters none of which seems to be of sufficiently high frequency to represent one of the vowels A E I O, the chances are good that the cipher-equivalent of the vowel U or Y is present.

d. To recapitulate the general principles, vowels may then be distinguished from consonants in that they are usually represented by:

(1) high-frequency letters;

(2) high-frequency letters which do not readily contact each other;

- - |

(3) high-frequency letters which have a great variety of contact;

(4) high-frequency letters which have an affinity for low-frequency letters (i.e., low-frequency plaintext consonants).

e. In the foregoing example the amount of experimentation or "cutting and fitting" was practically nil. (This is not true of real cases as a rule.) Where such experimentation is necessary, the underscoring of all repetitions of several letters is very essential, as it calls attention to peculiarities of structure that often yield clues.

f. After a few basic assumptions of values have been made, if short words or skeletons of words do not become manifest, it is necessary to make further assumptions for unidentified letters. This is accomplished most often by assuming a word.¹⁴ Now there are two places in every message which lend themselves more readily to successful attack by the assumption of words than do any other places--the very beginning and the very end of the message. The reason is quite obvious, for although words may begin or end with almost any letter of the alphabet, they usually begin

¹⁴

This process does not involve anything more mysterious than ordinary, logical reasoning; there is nothing of the subnormal or supernormal about it. If cryptanalytic success seems to require processes akin to those of medieval magic, if "hocus-pocus" is much to the fore, the student should begin to look for items that the claimant of such success has carefully hidden from view, for the mystification of the uninitiated. If the student were to adopt as his personal motio for all his cryptanalytic ventures the quotation (from Tennyson's poem *Columbus*) appearing on the back of the title page of this text, he will frequently find "short cuts" to his destination and will not too often be led astray!
-RESTRICTED

and end with but a few very common digraphs and trigraphs. Very often the association of letters in peculiar combinations will enable the student to note where one word ends and the next begins. For example suppose, E, N, S, and T have been definitely identified, and a sequence like the following is found in a cryptogram:

• • • ENTSNE • • •

Obviously the break between two words should fall either after the S of E N T S or after the T of E N T, so that two possibilities are offered: . . E N T S / N E . . ., or . . . E N T / S N E Since in English there are very few words with the initial trigraph S N E, it is most likely that the proper division is . . . E N T S / N E Of course, when several word divisions have been found, the solution is more readily achieved because of the greater ease with which assumptions of additional new values may be made.

g. Although a considerable amount of detailed treatment has been devoted to vowel-consonant analysis, it is felt advisable again to caution the student against the natural tendency to accept without question the results of any one cryptanalytic technique exclusively, even one such as vowel-consonant analysis which seems quite scientific in character.

<u>49.</u> The "probable-word" method; its value and applicability.--a. In practically all cryptanalytic studies, short cuts can often be made by assuming the presence of certain words in the message under study. Some writers attach so much value to this kind of an "attack from the rear" that they practically elevate it to the position of a method and call it the "intuitive method" or the "probable-word method." It is, of course, merely a refinement of what in everyday language is called "assuming" or "guessing" a word in the message. The value of making a "good guess" can hardly be overestimated, and the cryptanalyst should never feel that he is accomplishing a solution by an illegitimate subterfuge when he has made a fortunate guess leading to solution. A correct assumption as to plain text will often save hours or days of labor, and sometimes there is no alternative but to try to "guess a word", for occasionally a system is encountered the solution of which is absolutely dependent upon this artifice.

b. The expression "good guess" is used advisedly. For it is "good" in two respects. First, the cryptanalyst must use care in making his assumptions as to plaintext words. In this he must be guided by extraneous circumstances leading to the assumption of probable words--not just any words that come to his mind. Therefore he must use his imagination but he must nevertheless carefully control it by the exercise of good judgement. Second, only if the "guess" is correct and leads to solution, or at least puts him on the road to solution, it is a good guess. But, while realizing the usefulness and the time and labor-saving features of a solution by assuming a probable word, the cryptanalyst should exercise discretion in regard to how long he may continue in his efforts with this method. Sometimes he may actually waste time by adhering to the method too long, if straightforward, methodical analysis will yield results more quickly.

-RESTRICTED

c. Obviously, the "probable-word" method has much more applicability when working upon interial the general nature of which is known, than when working upon more or less isolated communications exchanged between correspondents concerning whom or whose activities nothing is known. For in the latter case there is little or nothing that the imagination can acize upon as a background or basis for the assumptions.¹⁵ However, in the case of military cryptanalysis in time of active operations there is, indeed, so great a probability that certain words and expressions are present in certain cryptograms that those words and expressions ("cliches") are often referred to as "cribs" (as defined in Webster's New Collegiate Dictionary: "...a plagiarism; hence, a translation, etc., to aid a student in reciting."). The cryptanalyst is quite sure they are present in the cryptogram under examination--what he must do is to "fit' the crib to the text", that is, locate it in the cipher text.

-d. Very frequently, the choice of probable words is aided or limited by the number and positions of repeated letters. These repetitions may be patent--that is, externally visible in the cryptographic text as it originally stands -- or they may be latent -- that is, externally invisible but susceptible of being made patent as a result of the analysis. For example, in a monoalphabetic substitution cipher, such as that discussed in the preceding paragraph, the repeated letters are directly exhibited in the cryptogram; later the student will encounter many cases in which the repetitions are latent, but are made patent by the analytical process. When the repetitions are patent, then the pattern or formula to which the repeated letters conform is of direct use in assuming plaintext words; and when the text is in word-lengths, the pattern is obviously of even greater assistance. Suppose the cryptanalyst is dealing with military text, in which case he may expect such words as DIVIS-ION, BATTALION, etc., to be present in the text. The positions of the repeated letter I in DIVISION, of the reversible digraph AT, TA in BAT-TALION, and so on, constitute for the experienced cryptanalyst tell-tale indications of the presence of these words, even when the text is not divided up into its original word lengths.

e. The important aid that a study of word patterns can afford in cryptanalysis warrants the use of definite terminology and the establishment of certain data having a bearing thereon. The phenomenon herein under discussion, namely, that many words are of such construction as regards the number and positions of repeated letters as to make them readily identifiable, will be termed idiomorphism (from the Greek "idios"= one's own, individual, peculiar + "morphe"=form). Words which show this phenomenon will be termed idiomorphic. It will be useful to deal with the idiomorphisms symbolically and systematically as described below.

General Givierge in his Cours de Cryptographie (p 121) says. "However, expert cryptanalysts often employ such details as are cited above [in connection with assuming the presence of 'probable words'], and the experience of the years 1914 to 1918, to cite only those, prove that in practice one often has at his disposal elements of this nature, permitting assumptions much more audacious than those which served for the analysis of the last example. The resder would therefore be wrong in imagining that such fortuitous elements are encountered only in cryptographic works where the author deciphers a document that he himself euciphered. Cryptographic correspondence, if it is extensive, and if sufficiently numerous working data are at hand, often furnishes elements so complete that an author would not dare use all of them in solving a problem for fear of being accused of obvious exaggeration."

<u>f</u>. When dealing with cryptograms in which the word lengths are determined or specifically shown, it is convenient to indicate their lengths and their repeated letters in some easily recognized manner or by formulas. This is exemplified, in the case of the word DIVISION, by the formula ABCBDBEF; in the case of the word BATTALION, by the formula ABCCBDEFG. If the cryptanalyst, during the course of his studies, makes note of striking formulas he has encountered, with the words which fit them, after some time he will have assembled a quite valuable body of data. And after more or less complete lists of such formulas have been established in some systematic arrangement, a rapid comparison of the idiomorphs in a specific cryptogram with those in his lists will be feasible and will often lead to the assumption of the current word. Such lists can be arranged according to word length, as shown herewith:

> 3/aba : DID, EVE, EYE, etc. abb : ADD, ALL, ILL, OFF, etc. 4/abac : ARAB, AWAY, etc. abbc : ALLY, BEEN, etc. abca : AREA, BOMB, DEAD, etc. abcb : ANON, CEDE, etc. etc. etc.

g. When dealing with cryptographic text in which the lengths of the words are not indicated or otherwise determinable, lists of the foregoing nature are not so useful as lists in which the words (or parts of words) are arranged according to the intervals between identical letters, in the following manner:

1 Interval	2 Intervals	3 Intervals	Repeated digraphs
-DiD-	AbbAcy	AbeyAnce	COCOa
-EvE-	ArAbiA	hAbitAble	-derer
-EyE-	AblAtive	lAborAtory	ICICle
dIvIsion	AboArd	AbreAst	-ININg
revIsIon	-AciA-	AbroAd	bAGgAGe
etc.	etc.	etc.	etc.

h. The most usual practice, however, in designating idiomorphic patterns and classifying them into systematic lists is to assign a literal nomenclature to that portion of a word (or sequence of plaintext letters) which contains the distinctive pattern, beginning with the first letter which is repeated in the pattern and ending with the last letter which is repeated in the pattern. Thus, the word DIVISION would be termed as an idiomorph of the abaca class (based on the sequence IVISI contained therein), and the word BATTALION as an idiomorph of the abba class (based on the sequence ATTA). In Appendix 3 will be found a compendium of the more frequent military words in English, arranged according to word-lengths in alphabetical order and in rhyming order; in addition, there will be found in this appendix a listing of idiomorphs arranged first according to pattern and then according to the first letter of the idiomorphic sequence.

50. Solution of additional cryptograms produced by the same components .-- a. To return, after a rather long digression, to the cryptogram solved in pars. 44 - 47, once the components of a cipher alphabet have been reconstructed, subsequent messages which have been enciphered by means of the same components may be solved very readily, and without recourse to the principles of frequency, or application of the probableword method. It has been seen that the illustrative cryptogram treated in paragraphs 41 - 47 was enciphered by juxtaposing the cipher component against the normal sequence so that Ap=Sc. It is obvious that the cipher component may be set against the plain component at any one of 26 different points of coincidence, each yielding a different cipher alphabet. After the components have been reconstructed, however, they become known sequences and the method of converting the cipher letters into their plain-component equivalents and then completing the plain-component sequence¹⁶ begun by each equivalent can be applied to solve any cryptogram which has been enciphered by these components.

b. An example will serve to make the process clear. Suppose the following message, passing between the same two stations as before, was intercepted shortly after the first message had been solved:

IYEWK CERNW OFOSE LFOOH EAZXX

It is assumed that the same components were used, but with a different key letter. First the initial two groups are converted into their plain-component equivalents by setting the cipher component against the plain component at any arbitrary point of coincidence. The initial letter of the former may as well be set against A of the latter, with the following result:

Plain----- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Cipher----- L E A V N W O R T H B C D F G I J K M P Q S U X Y Z Cryptogram---- I Y E W K C E R N W Equivalents--- P Y B F R L B H E F

The plain component sequence initiated by each of these conversion equivalents is now completed, with the results shown in Fig. 15. Note the plaintext generatrix, CLOSEYOURS, which manifests itself without further analysis. The rest of the message may be read either by continuing the same process, or, what is even more simple, the key letter of the message may now be determined quite readily and the message deciphered by its means.

¹⁰ It must be noted that if the plain component is a <u>mixed</u> sequence, then it is this mixed sequence which must be used to complete the columns.

101

RESTRICTED

IYEWKCERNW PYBFRLBHEF QZCGSMCIFG RADHTNDJGH SBEIUOEKHI TCFJVPFLIJ UDGKWQGMJK VEHLXRHNKL WFIMYSIOLM XGJNZTJPMN ΥΗΚΟΑυΚQΝΟ ZILPBVLROP AJMQCWMSPQ BKNRDXNTQR *CLOSEYOURS DMPTFZPVST ENQUGAQWTU FORVHBRXUV GPSWICSYVW HQTXJDTZWX IRUYKEUAXY JSVZLFVBYZ KTWAMGWCZA LUXBNHXDAB MVYCOIYEBC NWZDPJZFCD OXAEQKAGDE

Figure 15.

c. In order that the student may understand without question just what is involved in the latter step, that is, discovering the key letter after the first two or three groups have been deciphered by the conversion-completion process, the foregoing example will be used. It was noted that the first cipher group was finally deciphered as follows:

> Cipher---- I Y E W K Plain---- C L O S E

Now set the cipher component against the normal sequence so that $C_p = I_c$. Thus:

Plain----- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Cipher----- F G I J K M P Q S U X Y Z L E A V N W O R T H B C D

It is seen here that when $C_p=I_c$ then $A_p=F_c$. This is the key for the entire message. The decipherment may be completed by direct reference to the cipher alphabet. Thus:

Cipher-- IYEWK CERNW OFOSE LFOOH EAZXX Plain--- CLOSE YOURS TATIO NATTW OPMXX Message: CLOSE YOUR STATION AT TWO PM

RESTRICTED

d. The student should make sure that he understands the fundamental principles involved in this quick solution, for they are among the most important principles in cryptanalytics. How useful they are will become clear as he progresses into more and more complex cryptanalytic studies.

e. It must be kept in mind that there are <u>four</u> ways that two basic sequences may be used to form a cipher alphabet, subject to the instructions guiding the cryptographer in the use of his cryptosystem; this fact must be considered when additional cryptograms appear in a particular cryptosystem for which the primary components have been recovered. Assuming that the sequences just recovered are labelled "A" and "B", then the following contingencies might arise in the encryption of subsequent messages:

(1) "A" direct for the plain component, and "B" direct for the cipher component (as in the original recovery);

(2) "A" direct for the plain, and "B" reversed for the cipher;

(3) "B" direct for the plain, and "A" direct for the cipher; and

(4) "B" direct for the plain, and "A" reversed for the cipher.

51. Derivation of key words.--a. Concurrent with the solution of a cryptogram, there should be a simultaneous effort in the reconstruction of cipher alphabets and recovery of key words. Much labor can thus be saved as recovery of the keys early in the stages of solution may trans-form the process of cryptanalysis into one of decipherment.

b. A mixed cipher alphabet falls into one of five categories, according to the composition of its components, viz.,

(1) the plain component is the normal sequence and the cipher component is mixed;

(2) the cipher component is the normal sequence and the plain component is mixed;

(3) both components are the same mixed sequence;

(4) both components are the same mixed sequence, but running in reverse; or

(5) the components are different mixed sequences.

c. Let us examine several types of mixed sequences, using the key word HYDRAULIC as an example. The ordinary keyword-mixed sequence produced from this key word is:

(1) HYDRAULICBEFGJKMNOPQSTVWXZ

RESTRICTED

and read:

RESTRICTED

The two principal transposition-mixed types based on this key word are derived from the diagram:

HYDRAULIC BEFGJKMNO PQSTVWXZ

(2) HBPYEQDFSRGTAJVUKWLMXINZCO and

(3) A J V C O D F S H B P I N Z L M X R G T U K W Y E Q

Other types may arise from various types of route transpositions such as the following, using the foregoing diagram:

(4) HBPQEYDFSTGRAJVWKULMXZNICO

(5) HYBPED'RFQSGAUJTVKLIMWXNCOZ

(6) PBQHESYFTDGVRJWAKXUMZLNIOC

(7) HYDRAULICONMKJGFEBPQSTVWXZ

(8) OCILUARDYHBPQSTVWXZNMKJGFE

(9) HYEBPQSTGFDRAUKJVWXZNMLICO

(10) CPIOQBLNSEHUMZTFYAKXVGDRJW

Any transposition system may be employed to produce a systematicallymixed sequence; practicability of method is the only determining factor. It must be remembered that the greatest amount of systematic mixing will produce a sequence inherently no more secure than a random-mixed alphabet.

d. The student would do well to construct both enciphering and deciphering versions of cipher alphabets recovered, as has been previously mentioned. For example, in the following case

Plain:JQNMFHLEBRSKGYZOTICDUVAWPXCipher:ABCDEFGHIJKLMNOPQRSTUVWXYZ

no semblance of a key is apparent; but in the inverse form

Plain: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Cipher: W I S T H E M F R A L G D C P Y B J K Q U V X Z N O

the key-phrase "NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR PARTY" is quite clear. In other types of mixed sequences, first the one form is attacked, and then if negative results are obtained the inverse form is treated.

e. Let us consider the following cipher alphabet:

P: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z C: D W Z M S O C R Y A T X B E F U G Q H I V J K L N P

The section V W X seems to comprise superimposed parts of the non-keyword J K L

portions of mixed sequences. Adding Y Z to the plain component, we get

RESTRICTED

V W X Y Z which is certainly consistent as far as alphabetical progres-JKLNP sion goes, and indicates that the letters M and O are present in the key word of the cipher component. Continuing in this vein, the section MNOQSTVWXYZ is rapidly established by correlating both se-BEFGHIJKLNP quences. It is obvious that the plain component key word begins right after the Z, and that the cipher component key word probably just precedes the B. Going to the right, Z R H suggests key words like RHOMBOID, PQR RHEUMATISM, etc. These trials are quickly repudiated; therefore we go on to Z R E which is acceptable. Z R E K is found wanting, but Z R E P is PQS PQST PQSU very satisfactory, and this is soon expanded to ZREPUBLIC, and in PQSUVWXYZ a moment or two we recover the complete cipher alphabet: P: REPUBLICANDFGHJKMOQSTVWXYZ C: QSUVWXYZDEMOCRATBFGHIJKLNP f. In the example below the student will observe that the alphabets are reciprocal: this is an indication of identical sequences at a shift of 13, or that a mixed sequence running against itself in reverse has been employed. In this case the W X Y Z points to the latter hypothesis. ZYXW P: ABCDETGHIJKLMNOPQRSTUVWXYZ C: HOJFTDNAKCIMLGBSUVPEQRZYXW Starting with the V W X Y Z R cluster, we see that the key word begins RZYXWV with the letter R; therefore the next letter should be a vowel. Z R A WVH is not acceptable, but Z R E is fine, showing that the letter U appears WVT in the key word. Continuing the same line of reasoning as in the preceding example, and with a little further experimentation, the final alphabet is discovered to be P: REPUBLICANDFGHJKMOQSTVWXYZ C: VTSQOMKJHGFDNACILBUPERZYXW g. In the next example, all efforts to derive key words on the basis of keyword-mixed sequences are fruitless: the conclusion is therefore drawn that this is a case of a transposition. P: ABCDEFGHIJKLMNOPQRSTUVWXYZ · C: ACSEJYIGWLFVMHXNKZPBQRDUTO

Considering the mechanics of the cryptography involved, and assuming for the time being that Z is at the bottom of the matrix and not in the key word, we start with the letters to the left, or if this fails, to the right of Z in the cipher component, obtaining the column N which is not K

incompatible if N is in the key word on the top row. If we place Y to

-RESTRICTED

Z

-RESTRICTED

the left of Z and build up <u>its</u> column, we get E N which is excellent. J K Y Z This is expanded into I M E N which quickly becomes <u>718435269</u> G H J K W X Y Z B C D F G H J K O Q S U V W X Y Z

This last example was very easy because none of the letters V W X Y Z appeared in the key word; but other cases should hardly prove more difficult.

h. Two additional methods that have been encountered for deriving mixed sequences may be mentioned. One is a slight modification of the preceding paragraph, when the key word contains repeated letters:

 $\frac{187349.526}{COM.IT.E.}$ A B D F G H J K L N P Q R S U V W X Y Z Which produces the mixed sequence: C A N Y E K W F R I G S J V L X M D Q O B P Z T H U

The other method is an interrupted-key columnar transposition system: 17

513426 VAL.EY BC) DFGHI) JKM) NOPQ) R) STUWXZ) which produces the mixed sequence: ACFKOTEIXLGMPUHQWVBDJNRSYZ

The first example will succumb to the treatment outlined in subpar. <u>g</u>, whereas the second method is vulnerable owing to the presence of the fragments D J N, F K O, and G M P in the sequence which may be anagrammed. Note the fair-sized fragment B D J N R S, composed of an ascending sequence of letters; this is an outward manifestation of the interruptedkey columnar method.

i. There are still other methods used for the production of mixed sequences, but space does not permit giving further examples. However, the student should by this time be able to devise methods of attack for any special cases that may present themselves, based upon the cryptanalytically exploitable weaknesses or peculiarities inherent in the system of cryptography involved.

17 It is to be noted that in this particular case the numerical key serves two purposes: (1) determining the cut-off point (and therefore the number of letters) in each row of the diagram, after the appearance of the keyword; and (2) determining the order of transcription of the columns.

REF ID:A56892

SECTION VII

MULTILITERAL SUBSTITUTION WITH SINGLE-EQUIVALENT CIPHER ALPHABETS

	Paragraph
General types of multiliteral cipher alphabets	52
The Baconian and Trithemian ciphers	53
Analysis of multiliteral, monoalphabetic substitution ciphers	54
Historically interesting examples	
The international (Baudot) teleprinter code	56

52. General types of multiliteral cipher alphabets.--a. Monoalphabetic substitution methods in general may be classified into uniliteral and multiliteral systems. In the former there is a strict "one-to-one" correspondence between the length of the units of the plain and those of the cipher text; that is, each letter of the plain text is replaced by a single character in the cipher text. In the latter this correspondence is no longer $l_p:l_c$ but may be $l_p:2_c$, where each letter of the plain text is replaced by a combination of two characters in the cipher text; or $l_p:3_c$, where a three-character combination in the cipher text represents a single letter of the plain text, and so on. A cipher in which the correspondence is of the $l_p:l_c$ type is termed uniliteral in character; one in which it is of the $l_p:2_c$ type, biliteral; $l_p:3_c$, triliteral, and so on. Ciphers in which one plaintext letter is represented by cipher characters of two or more elements are classed as multiliteral.¹

b. Biliteral alphabets are usually composed of a set of 25 or 26 combinations of a limited number of characters taken in pairs. An example of such an alphabet is the following:

			•		-	- ·			. – .			-	A.,
Plain	А	В	С	D	Έ	\mathbf{F}	G	H	I	J	Κ	Ĺ	М
Cipher	WW	WH	WI	WT	WE	HW	ΗH	ĦÌ	HI	HT	ΗĒ	IW	IH
Plain	_ N	<u>ت</u>	Έ Ρ	ç	R´	Š	T	. n	v	W	ż	۲	Z
Cipher	TT	*	TE	777	TT	ΨT	ካጥ	TTE	ŦW	मंत्र	ĒT	121	जज

This alphabet is derived from the cipher square or matrix shown in Fig. 16. The cipher equivalent of each plaintext element is made up of two coordinate letters from outside the cipher matrix, one letter being the coordinate of the row, the other being the coordinate of the column

¹ The terms uniliteral and multiliteral, although originally applied only to cipher text composed of letters, are used here in their broader sense to embrace cipher text in letters, digits, and even other symbols. In more precise terminology, these terms would probably be <u>monosymbolic</u> and <u>polysymbolic</u>, respectively, but the terms uniliteral and multiliteral are too well established in literature to be changed at this late time.

107

RESTRICTED

in which the plaintext letter is located. In other words, the letters at the side and top of the matrix have been used to designate, according to

Figure 16.

a coordinate system, the cell occupied by each letter within the matrix. The letters (or figures) constituting the coordinate elements of such matrices are termed row and column indicators.

c. If a message is enciphered by means of the foregoing biliteral alphabet, the cryptogram is still monoalphabetic in character. A frequency distribution based upon pairs of letters will obviously have all the characteristics of a simple, uniliteral distribution for a monoalphabetic substitution_cipher.

d. The cipher alphabets shown thus far in this text have involved only letters, but alphabets in which the cipher component consists of figures, or groups of figures, are not uncommon in military cryptography.² Since there are but 10 digits it is obvious that, in order to represent an alphabet of more than 10 characters by means of figure ciphers, combinations of at least two digits are necessary. The simplest kind of such an alphabet is that in which $A_p=01$, $B_p=02$, . . . $Z_p=26$; that is, one in which the plaintext letters have as their equivalents two-digit numbers indicating their positions in the normal alphabet.

e. Instead of a simple alphabet of the preceding type, it is possible to use a diagram of the type shown in Fig. 17. In this cipher

		1	2	3	4	5	6	7	8	9	Ø.
1	1	A	B	Ċ.	D	E	F	Ģ	Ħ	I	J
	2	ĸ	L	Μ	N	0	P	ର୍	R	ន	T
-	3	U	V	W	X	Y	Z		,	:	;
<u>ت</u> ے کی	-	. <u></u>									
				F	ʻigu	re	17.				

² Although, as an extension of this idea, cipher alphabets employing signs and symbols are possible, such alphabets are not suitable for modern cryptography because they can be neither telegraphed nor telephoned with any degree of accuracy, speed, or facility.

-RESTRICTED

F ID:A56892

RESTRICTED

the letter A_p is represented by the dinome³ ll, B_p by the dinome 12, etc. Furthermore, this matrix includes provision for the encipherment of some of the frequently-used punctuation marks in addition to the 26 letters.

f. Other types of biliteral cipher alphabets are illustrated in the examples below:

- -	1 2 3 4	5 A G N T	6 B H O U-V	7 C I-J P W	8 D K Q X	9 E L R Y	Ø F M S Z	*#- * -	<u> </u>	-	• -	1 2 3	1 A J S	2 B K T	3 C L U	4 D M V	5 E N W	6 F 0 X	7 G P Y	8 H Q Z	9 I R *	
		 -	Fi	gur	e 1	8.		- n	 	-			•	-	نگړ . - بد	- gu	16		· • . - -	·		•••
-	-	- M	` U	N	T	C_	ਸ	•	-				A	в	C	D	E	F	Ğ.	н	Ĩ	
	В	G	7	E	5	R	M					A	A	D	G	J	M	P	S	V	Ŷ	
- * *	- E	A	i	N	Ŷ	B	2		-			В	в	E	Η	K	N	ର୍	т	W	z	
	R	C	3	D	4	F	6					C	C	F	I	L	0	R	U	х	1	
	Ľ	H	8	I	9	J	ø					D	2	3	4	5	6	7	8	9	Ø	
	Ι	K	\mathbf{L}	0	Ρ	Q	S				•							· · ·	-			
	N	Т	U	V	W	X	Z								F	igu	re	21.				
•			Fig	ure	20	•						-		-			-	-				

It is to be noted that in alphabets of the foregoing types, the row indicators may be distinct from the column indicators (e.g., Fig. 18), or they may not (e.g., Fig. 19); of course, when there is any duplication between the row and column indicators, it is necessary to agree beforehand. upon which indicator will be given as the first half of the equivalent for a letter, in order to avoid ambiguity. (In all of the systems described in this and subsequent sections of this text, the row indicator will always form the first part of an equivalent). When letters are used as row and column indicators they may form a key word (e.g., Fig. 20), or they may not (e.g., Fig. 21); the key words, if formed, may be identical (e.g., Fig. 16) or different (e.g., Fig. 20). Furthermore, the plaintext letters may be arranged within the matrix as a mixed sequence (e.g., Fig. 20), either systematically- or random-mixed; and the matrix may contain, in addition to the letters of the alphabet, punctuation symbols (Fig. 17), numbers (Figs. 20, 21), etc., permitting their encipherment as such, instead of having to be spelled out.

³ A pair of digits is called a dinome; similarly, a trinome is a set of three digits; a tetranome, a set of four digits; etc. Although a single digit would properly be termed a mononome, for the sake of euphony it is shortened into the term monome.

109

-RESTRICTED

· · · ·

h. When letters are used as row and column indicators, they may be selected so as to result in producing cipher text that resembles artificial words; that is, words composed of alternate vowels and consonants. For example, if in Figure 16 the row indicators consisted of the vowels A = I = 0 U in this sequence from the top down, and the column indicators consisted of the consonants B C D F G in this sequence from left to right, the word RAIDS would be enciphered as OCABE FAFOD, which very closely resembles code of the type formerly called artificial code language. Such a system may be called a false, or pseudo-code system.⁴

i. As a weak type of subterfuge, biliteral ciphers may involve a third character appended to the basic two-character cipher unit; this is done to "camouflage" the biliteral nature of the cipher text. This third character may be produced through the use of a cipher matrix of the type illustrated in Fig. 22 (wherein $A_p=611$, $B_p=612$, etc.); or the third character may be a "sum-checking" digit which is the non-carrying sum (i.e., the sum modulo 10)⁵ of the preceding two digits, such as in the trinomes 257, 831, and 662; or it may merely be a randomly-selected character (inserted solely for the purpose of leading the cryptanalyst astray).

-	1	2	3	4	5	
61	A	B	C	D	E	
72	F	G	Η	ĿJ	K	
.83	L	М	N	0	P	
94	Q	R	S	Т	U	
05	v	W	Х	Y	Z	

Figure 22.

.j. Another possibility that lends itself to certain multiliteral ciphers is the use of a word spacer or word separator. This word separator might be represented by a value in the matrix; i.e., the separator is enciphered (for instance, the dinome "39" in Fig. 19 might stand for a word separator). The word separator might instead be a single element not otherwise used in the cryptosystem; i.e., unenciphered, and thus not giving rise to any possible ambiguity. Thus, in Fig. 19 the digit Ø and in Fig. 21 the letter J might be used as word separators, since no confusion would arise in decrypting.

Prior to 1934, international telegraph regulations required code words of five letters to contain at least one vowel and code words of ten letters to contain at least three vowels. The International Telegraph Conference held in Madrid in 1932 amended these regulations to permit the use of 5-letter code groups containing any combination of letters. These unrestricted code groups were authorized for use after 1 January 1934.

.110

⁵ The term modulo (abbreviated mod) pertains to a cyclic scale or basis of arithmetic; thus, in the modulus of 7, the numbers 8 and 15 are equivalent to 1, and 9 and 16 are equivalent to 2, etc.; or expressed differently, 8 mod 7 is 1, 9 mod 7 is 2. In cryptology, many operations are expressed mod 10 and mod 26.

k. The biliteral alphabets yielded by the matrices of Figs. 16-21 may also be termed bipartite, because the cipher units of these alphabets may be divided into two separate parts whose functions are clearly defined, viz., row indicators and column indicators. As will be discussed later, this bipartite nature of most biliteral alphabets produced from cipher matrices constitute one of the weaknesses of these alphabets which make them recognizable as such to a cryptanalyst. However, it is possible to employ a cipher matrix in a manner which will produce a biliteral alphabet not bipartite in character. For example, using the matrix of Fig. 23 one could produce the following biliteral cipher alphabet in

_	1	2	3	4	5	
- ' 09	H	Y	D	R	A	
15	U	\mathbf{L}	I-J	C.	™B	
- 21	Ε	F	G	κ	M	
•27	N	0	P	Q	ន	
<u>3</u> 3	T	V	V	Х	Z	
J #	्य व		÷.		1	17

which the equivalent for any letter in the matrix is the sum of the two coordinates which indicate its cell in the matrix:

Figure 23.

Plain	`А	В	с	D	E	F	-q	10	1	J	X	17	м
Cipher	. 14	20	19 ⁻	12	22	23	24	10	18	18	aș	17	26
Plain	N	0	^{-"} ₽	Q	R	s	т	U	v	W	Х	¥	Z
Cipher	28	29	30	31	13	32	34	16	35	36	37	11	38

The cipher units of this alphabet are, of course, biliteral; but they are not bipartite. Note the equivalent of A_p , that is 14--if divided, it yields the digits 1 and 4 which have no meaning per se: plaintext letters whose cipher equivalents begin with 1 may be found in two different rows of the matrix, and those whose equivalents end in 4 appear in three different columns.

53. The Baconian and Trithemian ciphers.--a. An interesting example in which the cipher equivalents are five-letter groups and yet the resulting cipher is strictly monoalphabetic in character is found in the cipher system invented by Sir Francis Bacon (1561-1626) over 300 years ago. Despite its antiquity the system possesses certain features of

111

RESTRICTED

RESTRICTED

merit which are well worth noting.⁶ Bacon proposes the following 24element cipher alphabet, composed of permutations of two elements taken five at a time:⁷

A=aaaaa	I-J=abaaa	R=baaaa
Bzaaaab	Kzabaab	Sebaaab
Czasaba	Lzababa	Tzbaaba
Dzaaabb	Miebebb	U-V=baabh
Ezaabaa	Nzabbaa	_W = babaa
Fzaabab	Ozabbab	X=babab
Gzaabba	Pzabbba	• Y=babba
Hzaabbb	Qzabbbb	Z=babbb

If this were all there were to Bacon's invention it would be hardly worth bringing to attention. But what he pointed out, with great clarity and simple examples, was how such an alphabet might be used to convey a secret message by enfolding it in an innocent, external message which might easily evade the strictest kind of censorship. As a very crude example, suppose that a message is written in capital and lower-case letters, any capital letter standing for an "a" element of the cipher alphabet, and any small letter, for a "b" element. Then the external sentence "All is well with me today" can be made to contain the secret message "Help." Thus:

A a	L a	1 Ъ	1 Ъ	s b.	W	E a	l b	L a	W a	I .a	t Þ	H a	m D	E a	T a	о Ъ	đ b	a. b	Y a
<u> </u>		H		ک	Ċ		Ē			Ċ.		Ľ		ک	Ľ		P	_	ت_
												ŧ	-			,	• •	·,	

Instead of employing a device so obvious as capital and small letters, suppose that an "a" element be indicated by a very slight shading, or a

• For a true picture of this cipher, the explanation of which is often distorted beyond recognition even by cryptographers, see Bacon's own description of it as contained in his <u>De Augmentis Scientiarum (The Advancement of Learnin</u>), as translated by any first class editor, such as Gilbert Watts (1640) or Ellis, Spedding, and Heath (1857, 1870). The student is cautioned, however, not to accept as true any alleged "decipherments" obtained by the application of Bacon's cipher to literary works of the 16th century. These readings are purely subjective.

÷

7 Bacon's alphabet was called by him a "biliteral alphabet" because it employs permutations of two letters. But from the cryptanalytic standpoint the significant point is that each plaintext letter is represented by a 5-character equivalent. Hence, present terminology requires that this alphabet be referred to as a <u>quinqueliteral alphabet</u>. Although the quinqueliteral alphabet affords 32 permutations, Bacon used only 24 of them, because in the 16th century the letters I and J, U and V were used interchangeably. Note the regularity of construction of Bacon's biliteral alphabet, a feature which easily permits its reconstruction from memory.

ID:A56892

-RESTRICTED

very slightly heavier stroke. Then a secret message might easily be thus enfolded within an external message of exactly opposite meaning. The number of possible variations of this basic scheme is very high. The fact that the characters of the cryptographic text are hidden in some manner or other has, however, no effect upon the strict monoalphabeticity of the scheme.

b. Almost 100 years before Bacon's time, the abbot Trithemius, born Johann von Heydenberg (1462-1516), invented a triliteral alphabet which he evidently intended to use in a fashion similar to Bacon's alphabet; i.e., as a means of disguise or cover for a secret text. This alphabet, modified to include the 26 letters of the present-day English alphabet, is shown in Fig. 23 below; it consists of all the permutations of three things taken three at a time, i.e., 3^3 or 27 in all.

	، با منبعان	. .	,		· · · · · · · ·	۰.		
A=111	D=121	-G :1 31	J=211	M=221	P=231	S : 311	V : 321	Y=331
B=112	E=122	H=132	K:212	N=222	Q=232-	T=312	W=322	Z = 332
C=113	F=123	I=133	L : 213	0:223	R=233	v =313	X=323	*=333
		-		. 4	بيوم ماهد له إسل م		<u>بر</u> .	فهدات محيا سا
~				Figure :	23	• •		
· · · · · ·		5 T 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· · · · · · · · · · · ·	- "	1 T 227-	- SL 922-	ат н з <u>е</u>

The cipher text of course does not have to be restricted to digits; any groupings of three things taken three at a time will do.

17

SER LANDER LAND Analysis of multiliteral, monoalphabetic substitution ciphers .---

7# I

a. Biliteral ciphers and those of the other multiliteral (triliteral, quadriliteral, . . .) types are often readily detected externally by the fact that the cryptographic text is usually composed of but a very limi--ted number of different characters. They are handled in exactly the same manner as are uniliteral, monoalphabetic substitution ciphers. So long as the same character, or combination of characters, is always used to represent the same plaintext letter, and so long as a given letter of the -plain text is always represented by the same character or combination of characters, the substitution is strictly monoalphabetic and can be handled in the simple manner described in the preceding section of this text.

b. In the case of biliteral ciphers in which the row and column indicators are not identical, and the direction of reading the cipher pairs is chosen at will for each succeeding cipher pair, an analysis of the contacts of the letters comprising the cipher pairs will disclose that there are two distinct families of letters, and a cipher pair will never consist of two letters of the same family. With this fact discovered, the cipher may be quickly reduced to uniliteral terms and solved in the manner previously mentioned.

c. If a multiliteral cipher includes provision for the encipherment of a word separator, the cipher equivalent of this word separator may be readily identified because it will have the highest frequency of any cipher unit. On the other hand, if the word separator is a single character (see subpar. 52j. on the use of the digit ϕ and the letter J), this

character may be identified throughout the encrypted text by its positional appearance spaced "wordlength-wise" in the cipher text, and by the fact that it never contacts itself. If this single character is used as a null indiscriminately throughout the cipher text, instead of as a word separator, the analysis is a bit more complicated but not as great as might be thought.

d. As a general rule, it is advisable to reduce multiliteral cipher text to uniliteral equivalents, especially if a triliteral frequency distribution is to be made. If not more than 36 different combinations are present in a cryptogram, the extra values over 26 may be represented by digits for the purpose of this reduction. If, however, more than 36 different combinations are found in the encrypted text, it is usually not worth the trouble to attempt any uniliteral reduction, and the cipher text can be attacked in its multiliteral groupings.

e. As one of the first steps in the solution of any multiliteral cipher in letters which appears to involve the use of a cipher matrix. it is generally advisable to anagram the letters comprising the row and column indicators in an attempt to disclose any key words for these indicators. When the anagramming process does disclose such a key word or words, the next step is to make a skeleton reconstruction matrix which is a duplicate of the original enciphering matrix in that the indicators are arranged in the same order as on the original. Then, as plain text is recovered in the cryptogram by any of the methods outlined in the previous section of this text, the recovered plaintext letters should be inserted in the proper cells of the reconstruction matrix, so that any systematic arrangement of the plaintext letters, if present in the original, may be disclosed prior to recovery of the complete plain text. Furthermore, it may in some instances be found worthwhile, immediately after successfully uncovering the key words used as indicators, to make a frequency distribution of the particular cryptogram in the form of tally marks within the properly arranged frame of the reconstruction matrix, because it may be that a few moments' study of the locations of the crests and troughs in the distribution made in that form may, if the plaintext letters are arranged in the normal sequence or in a keyword-mixed sequence (especially if it is related to the key words for the indicators), provide a basis for the derivation of this sequence at one stroke, without recourse to analysis of the eigher text.

55. Historically interesting examples. -- â. Two examples of multiliteral ciphers of historical interest will be cited as illustrations. During the campaign for the presidential election of 1876 (Hayes vs. Tilden) many cipher messages were exchanged between the Tilden managers and their agents in several states where the voting was hotly contested. Two years later the New York Tribune⁸ exposed many irregularities in the

1.14

New York Tribune, Extra No. 44, The Cipher Dispatches, New York, 1879.

-RESTRICTED

RESTRICTED

campaign by publishing the decipherments of many of these messages. These decipherments were achieved by two investigators employed by the Tribune, and the plain text of the messages seems to show that illegal attempts and measures to carry the election for Tilden were made by his managers. Here is one of the messages:

GEO. F. RANEY, Tallahassee. Ppyyemnsnyyypimäähnsyyäsitepääenshns pensshnsmmpiyysnppyeaapieissyeshainsssp eeiyyshnynsssyepiaanyitnsshyyspyypinsyy ssitemeipimmeisseiyyeissiteiepyypeeiaass imaayespnsyyianssseissmmppnspinssnpinsim imyyitemyysspeyymmnsyyssitspyypeeppma aäyypiit L'Engle goes up tomorrow.

· DANIEL.

Examination of the message discloses that only ten different letters are used. It is probable, therefore, that what one has here is a cipher which employs a multiliteral alphabet. First assuming that the alphabet is one in which combinations of two letters represent single letters of the plain text, the message is rewritten in pairs and substitution of arbitrary letters for the pairs is made, as seen below:

		• • • • • • •	ه مد دین	۰.	ت خو جور	يتها وماتو ما		·	at ta	Ξ	-	
מס	~~~	EM	NG	NV	~~	רא	Ϋ́ΜΛ΄	ਫ਼ਸ਼	NG	°vîv '	ີ້ດຕີ	ata :
	**	7.1.7	740		بالد بال	يلد له	1.11.2	1 Miles	*1/**	÷.	, in the second s	M H H H
٨	P	C	D.	TE	ГЪ.	ੱਜ	- d	ਸ਼	'n	TA I	- T	a + ^ '
~.	<u>, </u>	•	• • •		~	-	u	++		-	-	# 44 4

A triliteral frequency distribution is then made and analysis of the massage along the lines illustrated in the preceding section of this text yields solution, as follows:

GEO. F. RANEY, Tallahassee:

Have Marble and Coyle telegraph for influential men from Delaware and Virginia. Indications of weakening here, Press advantage and watch Board. L'Engle goes up tomorrow.

. The other example, using numbers, is as follows:

Jacksonville, Nov. 17.

DANIEL.

S. PASCO and E. M. L'ENGLE:

84	55	84	25	93	34	82	31	31	75	93	82	77	33	55	42
93	20	93	66	77	56	33	84	66	31	31	93	20	82	33	66
52	48	44	55	42	82	48	89	42	93	31	82	66	75	31	93
		-		_			-	-		DAN	TEL.				

115

RESTRICTED

REF ID:A56892

There were, of course, several messages of like nature, and examination disclosed that only 26 different numbers in all were used. Solution of these ciphers followed very easily, the decipherment of the one given above being as follows:

Jacksonville, Nov. 17.

S. PASCO and E. M. L'ENGLE:

Cocke will be ignored, Eagan called in. Authority reliable.

DANIEL.

c. The Tribune experts gave the following alphabets as the result of their decipherments:

			• د	т	
AA=0	EN=Y	IT=D	NS =E	PP=H	SS =N
AI=U	EP=C	MA:B	NY=M	SH:L	YE =F
EI¤I	IA=K	MM=G	PE T	SN=P	YI=X
EM=V	IM=S	NN = J	PI=R	SP:W	YY=A
20:D	33=N	44=H	62:X	77 = G	89=¥
. 25=K	34=W_	`48 = T .	66=A	82=I	93 = E
27:5	39=P	52 <u>=</u> U ^{^†}	68 : F	84=C	96=M
31=L	42:R	55=0	75 = B	87 : V	99=J

They did not attempt to correlate these alphabets, or at least they say nothing about a possible relationship. The present author has, however, reconstructed the rectangle upon which these alphabets are based, and it is given below (Fig. 24).

-RESTRICTED

-RESTRICTED

It is amusing to note that the conspirators selected as their key a phrase quite in keeping with their attempted illegalities - HIS PAYMENT for bribery seems to have played a considerable part in that campaign. The blank cells in the matrix probably contained proper names, numbers, etc.⁹

56. The international (Baudot) teleprinter code.--a. Modern printing telegraph systems, ¹⁰ or teleprinter systems as they are more often called, make use of a five-unit code¹¹ or alphabet which is similar to the Baconian alphabet treated in par. 53. Like the Baconian alphabet, the teleprinter alphabet is composed of permutations of two elements taken five at a time, making it possible to obtain 32 different permutations, 26 of which are assigned to the letters of the alphabet, leaving 1 for an "idle condition" and 5 for certain printer operations called functions, such as "space", "figure shift", "letter shift," etc.

b. During electrical transmission, the two distinct elements of which each character is composed take the form of (1) a timed interval of electrical current and (2) a timed interval of no current, which are commonly referred to as "mark" impulses and "space" impulses, respectively. In certain operations, a paper tape is prepared of the traffic to be transmitted, or a paper tape may be prepared of the incoming traffic at the receiving end; in such tapes, the elements of the Baudot characters take the form of punched holes ("mark" impulses) and imperforate positions ("space" impulses).

⁹ As was mentioned in a previous footnote, a matrix containing such items would be termed a syllabary square; for example of such matrices see the treatment of syllabary squares and code charts in Section X.

¹⁰ Such systems are characterized by the transmission and <u>reception</u>printing of messages by electrical means, incorporating two electricallyconnected instruments, resembling typewriters. When a key of the keyboard on the transmitting instrument is depressed, an electrical signal is transmitted to the receiving instrument, causing the corresponding character to be printed therein. Usually the message is printed at the local as well as the distant station. The system has been adapted to radio as well as wire and overseas cable transmission,

11 The five-unit code was first applied to teleprinter systems by Jean Maurice Emile Baudot (1845-1903), and is commonly known as the Baudot code. It is worthwhile to point out that Baudot apparently constructed his alphabet to correspond with normal frequencies of characters (with certain exceptions), since the most frequent ones are represented by permutations requiring the least electrical energy on the basis of "marking" and "spacing." In this respect Baudot "took a leaf out of Morse's note-book."

-RESTRICTED

RESTRICTED

c. The teleprinter code in international use is given in Chart 7, below, wherein the mark and space impulses (known collectively as bauds) are illustrated as the holes (shown as black dots) and "no-holes" of a teleprinter tape. The letter equivalents ("lower case") are self-explanatory. The figure shift is used to change the meaning of a particular character to an "upper case" equivalent, and when it is desired to return to lower case, the letter shift is used; in regular teleprinter usage,

Chart 7. International teleprinter code.

the "communications" set of upper-case equivalents are the ones recorded on the typed copy by the teleprinter, whereas the "weather symbols" are the upper-case equivalents which are printed in teleprinter systems designed for the sending and receiving of weather information. The <u>space</u> is used to separate words; the <u>carriage return</u> (C.R.) effects the return of the teleprinter carriage to the right and the line feed (L.F.) rolls the platen to the next line for printing (cf. the corresponding functions of an ordinary typewriter). In addition, when the upper-case equivalent of "S" is used, a bell rings in the receiving teleprinter as a signal to call the operator to his machine, or to indicate that traffic Is about to be sent.

d. In Fig. 25 is shown a portion of a teleprinter tape containing the beginning of the phrase "Now is the time for all good men . . ."

4

Figure 25.

The small holes, one of which appears in every position of the tape between the second and third levels, are sprocket holes used for advancing the tape through the transmitter unit.

1 -1

-RESTRICTED-

e. It is to be emphasized that messages are not made secure from unauthorized reading mcrely by sending them by means of an ordinary teleprinter system--the teleprinter alphabet is internationally known, just as the English, Russian, etc. alphabets are. In order to provide security for a teleprinter message, it is just as necessary to apply thereto some sort of cryptographic treatment as it is to any other kind of message. The cryptosystems used for teleprinter encryption may involve either, or both, of the two classes of cipytographic treatment, viz.. substitution and transposition. A substitution treatment might involve changing certain of the mark impulses of the characters comprising a message to space impulses, and vice versa, according to a prearranged system, a transposition treatment might involve changing the order of the 5 impulses in the Baudot equivalents for the characters comprising a message; and so on. The cryptographic treatment can be accomplished by a special cipher attachment (called an "applique unit") to a teleprinter; thus no modification of the teleprinter itself would be necessary. There are, of course, self-contained cipher teleprinters designed as such for engineering or cryptographic reasons, or both.

f. In the analysis of encrypted teleprinter systems, recourse is had to special tables¹² of the frequencies of single Baudot characters, digraphs, trigraphs, etc., as they appear in teleprinter traffic. It is important to note that in teleprinter traffic, as in any other type of traffic involving the use of a word separator, this character has the highest frequency of any plaintext element! Furthermore, one of the highest-frequency plaintext digraphs, in a dition to those wherein the word separator constitutes one of the elements, will be the commination "carriage-return/line-feed", since this combination of characters is used in the normal procedure of typing each line of text on the teleprinter.

12 In such tables, as is common in cryptanalytic practice, the mark impulses are designated by a plus symbol (+), and the space impulses are designated by a minus symbol (-). In addition, it is usual in such tables to denote the character representing the figure shift by the digit "2", the space by "3", the letter shift by "4", the line feed by "5", the blank by "6", and the carriage return by "7".

ESTRICTED

11073

~ 4 ~ r 7 **r1** 7] _ 2 . . ¢ -51 - 4 -Y 127 10 43 . 101 ٤. OF I 2 + r ŧ 1003 ĩ 7 1.1 1.5 F 1 3 3 t . **5**. **1** ŧ٦

سو معمد بر سر می از در می از می می میرون ویو از می از م از می از م

ال المحلي ماني من ي المعالية من المالية المحلي من ي المعالية من الم " الإيرانية و الرائمية 20 من المحلي المحلية المحلية المحلية المحلية المحلية المحلية المحلية المحلية المحلية الم المحالية المحلية المحلية

in the second

-RESTRICTED

1...*

-RESTRICTED

SECTION VIII

MULTILITERAL SUBSTITUTION WITH VARIANTS

	Paragraph
Purpose of providing variants in monoalphabetic substitution	••• 57
Simple types of cipher alphabets with variants	58
More complicated types of gipher alphabets with variants	• • 59
Analysis of simple examples	60
Analysis of more complicated examples	61
Analysis involving the use of isologs	62
Further remarks on variant systems	63

57. Purpose of providing variants in monoalphabetic substitution .--

It has been seen that the individual letters composing ordinary intelligible plain text are used with varying frequencies, some, such as (in English) E, T, R, I, and N, are used much more often than others, such as J, K, Q, X, and Z. In fact, each letter has a characteristic frequency which affords definite clues in the solution of simple monoalphabetic ciphers, such as those discussed in the preceding sections of this text. In addition, the associations which individual letters form in combining to make up words, and the peculiarities which certain of them manifest in plain text, afford further direct clues by means of which ordinary monoalphabetic substitution encipherments of such plain text may be more or less speedily solved. This has led cryptographers to devise methods for disguising, suppressing, or eliminating the foregoing characteristics manifested in cryptograms produced by the simpler methods of monoalphabetic substitution One category of such methods, the one to be discussed in this section, is that in which the letters of the plain component of a cipher alphabet are assigned two or more cipher equivalents, which are called variant values (or, more simply, variants).

b. Basically, systems involving variants are multiliteral¹ and, in such systems, because of the large number of equivalents made available

¹ <u>Uniliteral</u> substitution with variants is also possible. Note the following cipher alphabet, illustrated by Captain Roger Baudouin in his excellent treatise, <u>Eléments de Cryptographie</u>, p. 101 (Paris, 1939)

Plain	A	В	C	D	Е	F	G	H	Ι	L	М	N	0	Ρ	Q	R	S	Т	U	V	Х	Z	
Cipher	L	G	0	R	F	Q	A.	H	C	Μ	В	T	I	D	N	P	U	S	Y	E	W	J	
					к							Х					Z						
					V					-													

ž

Baudouin proposed that J_p and Y_p be replaced by I_p , K_p by C_p or Q_p , and W_p by VV_p --thus four cipher letters would be available as variants for the high-frequency plaintext letters in French.

_121

-RESTRICTED-

by the combinations and permutations of a limited number of elements, each letter of the plain text may be represented by several multiliteral cipher equivalents which may be selected at random. For example, if 3-letter combinations are employed as the multiliteral equivalents, there are available 26³ or 17.576 such equivalents for the 26 letters of the plain text, they may be assigned in equal numbers of different equivalents for the 26 letters, in which case each letter would be representable by 676 different 3-letter equivalents, or they may be assigned on some other basis, for example, proportionately to the relative frequencies of plaintext letters. For this reason this type of system may be more completely described as a monoalphabetic, multiliteral substitution with a multipleequivalent ciphci alphabet.² Some authors ferm such a system "simple substitution with multiple equivalents", others term it "monoalphabetic substitution with variants", or multilitera, substitution with variants. For sake of brevity and precise terminology, the latter designation will be employed in this text. It being understood without further restatement that only such systems as are monoalphabetic will be discussed.

c. The primary object of monoalphabetic substitution with variants is, as has been mentioned above, to provide several values which may be employed at random in a simple substitution of cipher equivalents for the plaintext letters

d. A word or two concerning the underlying theory of (monoalphabetic) multiliteral substitution with variants may not be amiss. Whereas in simple or single-equivalent substitution it has been seen that

(1) the same letter of the plain text is invariably represented by but one and always the same character of the cryptogram, and

(2) the same character of the cryptogram invariably represents one and always the same letter of the plain text,

in multiliteral substitution with variants it will be seen that

(1) the same letter of the plain text may be represented by one or more different characters of the cryptogram, but

(2) the same character of the cryptogram nevertheless invariably represents one and always the same letter of the plain text.

58. Simple i bes of cipher alphabets with variants.--a. The matrices shown on the next page provide some of the simpler means for accomplishing monoalphabetic substitution with variants. The systems incorporating these matrices are extensions of the basic idees of multiliteral substitution treated in par 52. The variant equivalents for any plaintext letter may be chosen at will, thus, in Fig. 26, E_p =10, 15, 60, or 65, in Fig. 27, F_p =AU_c, AZ_c, FU_c, FZ_c, LU_c, or LZ_c, etc

² Cf. the title of the preceding section, "Nultiliteral substitution with single-equivalent cipher alphibets."

-RESTRICTED

122

£.

L

÷ 2

_

-

-RESTRICTED

6789Ø 12345 61 ABCDE 72 FGHLJK 83 IMNOP 94 ORSTU Ø5 VWXYZ	VWXYZ QRSTU LFAABCDL MGBFGHLJK NHCLMNOP OIDQRSTU PKEVVXYZ	AETOU FNHBABCDL VPJCFGHLJK WQKDLMNOP KRLFQRSTU ZSMGVVXYZ
Figure 26	Figure 27	figure 28
VWXYZ QRSTU LMNOP FGHIK ABCDE VQLFA ABCDE VRMGB FGHIJK XSNHC LMNOP YTOID QRSTU ZUPKE VWXYZ	O MN JKL FGHI ABCDI OMJFA ENAL NKGB TRSFT LHC OLJHY TD DCMVI E PGBQ	Z WXŸ STUV STUV MJFA ENALU MJFA ENALU KGB TRSFW LHC OLJHYX LHC OLJHYX ID DCMVK E PGBQZ
Figure 29	Figure 30	Figure 31
1234567 741 ABCDEFG 852 KLMNOPQ 963 UVVXYZ.	89Ø HIJ RST , , 963 ST	3456789 CDEFGHI LMNOPQR UVWXYZ*
Figure 32		ure 33
12345678 51 ABCDEFGH 62 JKLMNOPO 73 STUVWXYZ 84 23456789	$ \begin{array}{c} 9 \\ \hline 1 \\ R \\ \hline 9 \\ 62 \\ \hline 7 \\ 4 \end{array} $	123456789 TERMINALS BCDFGHJKO PQUVWXYZ1 234567890
Figure 34	-	Figure 35

-RESTRICTED

~

4

123

_

-

b. It is to be noted that encipherment by means of the matrices in Figures 27, 28, and 3] is commutative, 1.e., he coordinates may be read in either row-column or column-row order without cryptographic ambiguity, since there is no duplication between the row and column coordinates. The remaining matrices above are non-commutative, therefore a convention must be agreed upon as to the order of reading the coordinates. It should also be noted that in Figs. 30 and 31 the letters in the square have been inscribed in such a manner that, coupled with the particular arrangement of the row and column coordinates, the number of variants available for each plaintext letter is roughly proportional to the frequencies of the letters in plain Levi A similar idea is found in Fig. 35, wherein the top row of the rectangle contains a word composed of high-frequency letters, and the coordinates are arranged in a manner roughly corresponding to the frequencies of plaintert letters. The matrix in Fig. 28 is a modification of the pseudo-code system described in par. 52h, with the added feature of variants.

. c. Other simple ideas for producing variant systems are matrices such as the following

			-					-		ы ч _е ,	ñ.					1				-	~	۱.	•	
Α	В	C	D	E	F	G	н	I-d	ΓК	\mathbf{L}	Гı	N	0	P	ନ୍ଦ	R	ន	T	υ	V	W	X	Y	Z
08 35 68 87	09 36 69 88	10 37 70 89	11 38 71 90]2 39 72 91	13 40 73 92	14 41 74 93	15 42 75 94	16 h3 51 95	17 44 52 96	18 45 53 97	19 46 54 98	20 47 55 99	21 118 56 00	22 149 57 76	23 50 58 77	24 26 59 78	25 27 60 79	01 28 61 80	02 29 62 81	03 30 63 82	04 31 64 83	05 32 65 81	06 33 66 85	07 34 67 86

Figure 36

A B C D E F G H I J K L M N O P Ω R S T U V W X Y Z 1¹/₄ 15 16 17 18 19 20 21 22 23 24 25 26 01 02 03 0¹/₄ 05 06 07 08 09 10 11 12 13 27 28 29 30 31 32 33 34 35, 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 53 54 55 56 57 81 82 83 8¹/₄ 85 86 87 88 89 90 91 92 93 94 95 96 91 98 99 00

Figure 37

In these two m trices there has been a regular inscription of the dinomes in the rows. () thermore, in Fig. 36 the dinomes Ol, 26, 51, and 76 (re., the lowest number in each of the four sequences) give the key word (TRIP) for that matrix, and in Fig. 37, the dinomes Ol, 27, 53, and 79 denote the key word (NAVY) for that matrix. The security of systems involving such matrices would of course be greatly improved in the dinomes were assigned in a rendom manner but, then the easy impendic feature of the four sequences and the lev word would be lost.

-RESTRICTED

a. An interesting adaptation in a disc form of the type of mairir illustrated in Fig. 37 is the following device reputedly once used by the Maximum

REF ID:A56892

The device consisted of five-concentric discs, the outer disc bearing the 26 letters of the alphabet, and the other four bearing the sequences 01-26, 27-52, 53-78, and 79-00. The rotatable discs made it possible to change the keys at frequent intervals, without the necessity of writing out a new matrix each time

59 More complicated types of cipher alphabets with variants .--

a. Matrices such as those in Figs. 38, 39, and 40 below are termed frequential matrices, slice the number of cipher values available for any given plaintext letter closely approximates its relative plaintext frequency.

·J• <u>z</u> 3∰∼s.	متعريك المعامين	¥**``	4 T 4
د_		F	m s f
_mp = = +ytt	ABCDE	<u>V II X Y Z</u>	
_ A	TGAUR	IECAP	, ,
B-	SLICY	FRNST	1 · · · ·
C C	CND <u>Q</u> M	ELTIH	
, , , , , , , , , , , , , , , , , , ,	RAPTF	<u>```o v</u> s_o`v	
E	NTXNE	CERED	
·	¦		_ ¥* x + + + +
A 57		•	(676 - cell matrix)
			
17			
V	NOATL	АЦБИЦ	
W	IHROQ	ETRBT	-
۶ X	OIETA.	. CNPES	,
Y	FTLOS -	- AMTIU	
7			

Figure 38

b. In the fragmentary matrix illustrated in Fig. 38, the number of occurrences of a particular letter within the matrix is proportional to its frequency in plain text, the letters are inscribed in a random manner, in order to enhance further the security of the system. In Fig. 39, we have a modification of the idea set forth in Fig. 38, except that the size of the matrix has been reduced from 26 c26 to 10x10, in this case, the letters (with appropriate number of repetitions) have been inscribed in a simple diagonal route (lower left to upper right) within the square. and the coordinates have been scrambled, for greater security. In Fig. 40, there is illustrated a type of cipher square which is known in cryptologic literature as the Grandpré cipher, in this square there are inscribed ten 10-letter words containing all the letters of the alphabet in their approximate plaintext frequencies These ten words are further linked together by a 10-letter word which oppears vertically in the first column, as a mnemonic feature for the inscription of the words in the rows. 3 - **1**2 - 1 ī, 113 17

c. The frequential-type system represented in Fig. 41a (enciphering matrix) and 41b (deciphering matrix) was described by Sacco³, who proposed that the dinomes inscribed in the enciphering matrix be thoroughly disarranged by applying a double transposition to the dinomes 00-99 as a means of suppressing any patent relationships among the variant values for the various plaintest letters, furthermore, the nulls incorporated in the matrix were to be used occasionally during the encryption of a message, in order to throw a cryptanalyst off the track. In this example the number of variant values for each plaintest letter has been established, of course, from the standpoint of Italian letter frequencies.

³ Sacco, Generale Luigi, <u>Manuale di Crittàgrafie</u>, 3d Ed., Rore, 1947, p. 22.

RESTRICTED

-

-

Ŧ

-

_

-RESTRICTED

Nulls 48-56 21-09 76-54	л 03-25 52-62 79-69	18-35 37-65 71-78	J 10-23 53-75 82-87	ห* 39 68	ନ୍ 20 77	V 02-86	one 44 66	seven 146 eight
42-12				N	R	IJ	L170	29
64-74 55-14 83-90	В 40	г 2 ^ј і	J 81	13-73	26 - 9!+	95	8 ¹	nine
63-06	93	57		0	ß	X	ihrce	31
47-45	C	G	K	07-30	13-58	85	50	
	28 70	38 97	96	51 - 67 72 - 89	т 33-88	¥ 22	four 27	zero 19 92
	D 08	II 17	L 05	Р 41	U 00-15	Z 3 ⁾ t	Cive 60-91	period 16-61
	80	43	49	98	36-99 0]	59	SIX Oly	comma 32

^ _

Figure 41a

-

~ _6[~] ĩ 7 3 4 8 ø 5 l 2 9 ----Ħ Ι ន E 1 Ν ប period zero ----ରୁ 2 ---Y I F R C eight Α four 3 Т 7 nıne comma Е U Е G Μ 0 /one 4 Ρ п L В -seven -. 5 l 0 А ---F ន \mathbf{Z} ihree 6 period A --- \mathbf{E} 0 М А five one 7 Ε 0 Ι ର Е Λ C Μ - 2 -8 J Ι tvo Х v I T 0 D 9 W В R G P five к U zero --ø U v A -0 D ---ប **51**7 Ъ ----

Figure hib.

ہ -

-

The Baconian cipher described in par. 53a may be used as a basis đ. for superimposing additional complexities For instance, the "a" elements may be represented by any one of the 20 consonants as variants, while the "b" elements may be represented by any one of the six vowels, or the letters A-M may be used to represent the "a" elements and the letters N-Z for the "b" elements, digits may be used for the "a" and "b" elements, either on the basis of the first five and last five digits, or on the basis of the odd and even digits, or the first 10 consonants (B-M) and the last 10 consonants (N-Z) may be used for the "a" and "b" elements. with the vowels used occasionally as nulls -- thus the resultant cryptoarams will resemble those of a fairly complex cryptosystem However. once the cryptanalyst assumes the possibility of such a system, its complexity is more apparent than real Similarly, variations of this genre may be superimposed on triliteral systems such as the Trithemian' cipher illustrated in par. 53b; variants for the "1", "2", and "3" elements may be chosen in such a way as to provide a large number of equivalents for each basic triliteral combination

e. Another scheme for a complex variant system is a <u>summing-trinome</u> system. In this cryptosystem, each plaintext letter is assigned a unique value of 1 to 26, this value is then expressed as a trinome, the digits of which sum to the designated value of the letter. For example, if a letter has been assigned the value "4", it may be represented by any one of the following permutations and combinations¹

00/1	031	112	202	301
013	040	121	211	310
022	103	130	220	400

Since the values toward the middle of the range 1-26 may be represented by a very considerable number of summing-trinomes (e.g., for the values 13 and 14 there are 75 variants each), such a system would offer a cryptographer wide latitude in the choice of cipher equivalents in enciphering,

"The representations of an integer (i.e., a whole number) as the sum of integers in all possible ways are termed the partitions of that number. The partitions in this subparagraph are mod 10 and also include the digit ϕ in order to form trinome equivalents out of all the possible permutations.

-

-RESTRICTED-

-RESTRICTED

especially if the basic values of the plaintext letters were chosen to correspond with the scale of their relative frequencies, such as the following

ONETRASLCPMGVXKZ JQBW Y UFHDI 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 01234 - 5 7 <u>¥₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹</u> ੑਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼*ਫ਼*ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ ZZZZZZZZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZ ⋰[⋰]⋇⋍⋨⋧⋧⋧⋧⋧ a* (大 席 : 土り 🌶

すいがったい よいべるし 13 The tallies beneath each value represent the number of variants possible for the particular value The unused values for ϕ and 27 (uniquely re-presented by 000 and 999, respectively) may be used for punctuation marks, nulls, or other special-purpose symbols. Since such a system, once suspected, would offer little difficulty' to a cryptanalyst, certain modifications would be necessary in order to pose any real obstacles in the way of solution. For instance, if the numerical value of a letter is expressed by permutations of 3 letters (inteed of digits) out of a set of the 10 letters A-J wherein the sequence of the letters A-J represents a disarranged sequence of the digits p - 9, such a system may be among the most complex types of ciphers in the realm of monoalphabetic substitution, requiring the solution of many simultaneous equations. A further refinement would involve the use of all 26_lefters as variants, in predetermined groups, to represent the digits 4-9 Fortunately for the cryptanalyst, such systems are impracticable for field mulitary use, but if they were encountered, a sufficiently large volume of text, coupled with Hitt's four essentials quoted in Section I, would eventually make a solution possible. The, actual cryptanalytic complexity of certain apparently exceedingly complex cryptosystems is dependent on their being correctly used at all times, which is not invariably the case with military ciphers.

⁵ The solution would involve simply dividing the cipher text into groups of 3 digits, summing the trinomes thus produced to yield 28 possible basic values, and solving these basic values as in any simple monoelphabetic substitution cipher.

RESTRICTED

60.	Analysis of	simple examples a.	The following	cryptogram is
available	for study		a 4.40 + 54	4 I N N N N N N N N N N N N N N N N N N
OMDOW	ਯੱਯ ਕਾਰ		זי מי מי זי זי	
A TO CA	гыгиг	лиио ирил	и мирса	RUTYM
BKLWD	ων μνκ	SHBCL PQKJ	R VWSML	KGCNR
LRNKV	MGFXW	JRGMV WGTJ	H QKXFN	ZVFDM
LTBPL	PVFLM	DCNWN HBCV	Z NMLWQ	FDHDW
VZBRV	KLCVC	VRDHL RVTI	F NCDKG	МХУХМ
DTSCB	CLZLR	LMVTS ZNKB	V YPBRN	CLRXR
DCNKV	PBTNT	GHJZL FQFV	K BWDZX	PNHSP
GHLKL	FVZLT	VMLKD PQRN	Z LZDTB	MNTGM
NZVFX	KSFDC	LZVŢV ŢFDFV	R_ GÇLP_Q	PNCDW
VRJTN	HLZLM	VWNPV PDZD	W JPNWL	-R_JKVM
XMDTS	MGFDR	DKLWĴ FLPJ	M SFQWB	FNCBZ
DKVWG	ZSHBH	DНЈСХ –	* # 2	1

The first thing that strikes the eye is the total absence of vowels, remarkable not only because six letters are missing (cf. the A test) in a text of this size, but also because all six of these letters fall into an identical limited category--a significant non-random phenomenon. Since a uniliteral substitution alphabet with six letters missing is highly improbable, the conclusion of multiliteral substitution is obvious. Upon closer inspection it is found that, if the cipher text is divided into pairs of letters, only ten consonants (B D G J L N Q S V X) are used as prefixes, and the remaining ten consonants (C F H K M P R T W Z) are used as suffixes--thus the biliteral (and bipartite) characteristics of the cipher text are disclosed. A digraphic^o distribution is therefore constructed

If it had not been noticed that the cryptogram should be divided into pairs for analysis, a biliteral distribution (see par. 23d) might have been made, in order to reveal contact affinities of the cipher letters.

RESTRICTED

.

ł

It is possible that the cryptogram under study may involve the b. use of a small enciphering matrix with variants for the rows and columns. Since there is available an easily-applied special solution which permits the determination of the row indicators which are equivalent (i.e., interchangeable variants) and the column indicators which are equivalent, merely from a study of the digraphic distribution, this possibility is examined. The special solution is based on the following considerations. ın a message of moderale length for such a crypiosystem, it may be assumed that the various possible cipher pairs for a given plaintext letter will be used with approximately equal frequency, for this reason, the cipher letters which pair with one of the letters used to indicate any particular row of the enciphering matrix may be expected to pair equally often with any other cipher letter which has been used to indicate the same row (and, of course, the same is true concerning the column-indicator letter). Thus, in the digraphic distribution of such a cryptogram, sets of rous appear which have similar "profiles" and, likewise, sets of similar columns.7 First a study will be made of the rows of the distribution just compiled, in an attempt to locate and isolate those which match with each other, then, the same will be done with the columns of the distribution.

c. It is noted that the "L" and "V" distributions have pronounced similarities (Fig. 42a)--these rows came under consideration first because of their unique "heaviness" of their frequency characteristics. Likewise, the "D" and "N" rows have homologous attributes in their appearance (Fig. 42b). However, the further grouping of the rows by ocular inspection may present difficulties to the student, since be may not yet trust his eye

in matching distributions, and he may feel the need for some kind of statistical assurance. In the following subparagraphs there is given the technique of a more precise method for matching, mathematical in nature.

ه الجهريين مسيك تروشي والد

These similarities are especially pronounced when the encipherer uses a "check-off" procedure for choosing his variants for each letter, that is, when he systematically "checks off" the variants used during encryption to insure that all possible variants are used in approximately equal proportions.

-RESTRICTED

' d. This method of matching in an attempt to "equate" interchangeable variants involves computing a separate value for each trial matching of a particular row (or column) against each of a series of other rows (or columns, as appropriate)--such a value is taken as an indication of the "goodness of match" exhibited by the particular trial, the theory being that the correct match will produce the highest value.⁸ The value for a particular trial match is computed by multiplying the number of tallies in each cell of one row (or column) by the number of tallies in each corresponding cell in the other row (or column) and then totaling the products thus obtained. Because of the way in which it is produced, such a value is termed a "cross-products sum".

e. In subparagraph c above, it was determined that the "L" and "V" rows were equivalent, and that the "D" and "N" rows also formed an equivalent pair. The next "heavy" row is the "G" row, this is to be tested for match with the five remaining unmatched rows. Let the "G" row be tested first against the "B" row finese two rows are given below, with their cross-products sum. For convenience, the cross-products sum is symbolized by $\chi(\Theta^1,\Theta^2)$, where Θ^1 and Θ^2 represent the designators of the distributions to be matched 9

"G" 222-3--1-1 - "B" 3111122121 **y(G,B)** 622-3--1-1=15

The complete table of the comparisons of the "G" row with the five available rows is as follows

The results indicate that the most probable match with the "G" row is the "S" row.

f. Sinc: the next "heaviest" row to be tested is the "B" row, its 'matchings with the three remaining rows are made, and are given below

⁸ In this connection, note the considerations treated in subpar. 60_j . ⁹ The Greek letter × (chi) is often used in cryptology to symbolize

matching operations

RESTRICTED

RESTRICTED

The correct matching of the "B" and "J" rows is indicated by the results. This leaves only the "Q" and "X" rows, which me presumed to go together, since not only is their cross-products sum satisfactory (when compored to the \varkappa values for some of the other rows which have been matched), but, equally important, their patterns of crests and troughs are similar. Since we have not found more than two rows for any one set of interchangeable values, it appears that the original matrix had only five rows, with two variants for each row. The rows of the distribution diagram are therefore combined in the following diagram

	C	F	Π	ĸ	М	Ρ	R	T	W	Z
\mathbf{BJ}	4	2	2	2	2	3	7	2	3	2
-DN	8	2	8	7	2	2	2	5	7	5
GS	3	կ	4	-	5	1	-	1		2
LV	2	8	1	7	7	8	9	6	7	7
QX	-	3	-	3	3	2	2	-	3	-

Figure 43

g. Analysis of the distributions of the columns of Fig. 43 quickly reveals that columns "C" and "H" may be matched as a pair, and likewise columns "F" and "M", and columns "P" and "R". In order to decide the groupings of the remaining columns, the six possible χ values are derived.

χ(K,T)·	4 35 - 42 - = 81	Combinations
$\gamma(K,W)$	4 49 - 49 9 = 113	KT, WZ 81 + 90 = 171
$\tilde{\chi}(K,Z)$	4 35 - 49 - = 88	$KI, TZ \cdot 113 + 73 = 186$
$\tilde{\gamma}(\mathbf{T},\mathbf{W})$	6 35 - 42 - = 83	KZ, TV 88 + 83 = 171
$\tilde{\chi}(T,Z)$	4 25 2 42 - = 73	-
$\chi(W,Z)$	6 35 - 49 - = 90	_

It appears that the proper pairings of the columns are "K" and "W", "T" and "Z".

h. The groupings of the columns having been determined, the frequency diagram is reduced to its basic 5x5 square, and the ϕ test is

	-	<u>_</u> ",	4	C	F	ĸ	۰P	Ť			
		₽	b.	H	М	U.	R	Z	-		
			BJ	6	4	5	7	4		φn=196	2
-			DN	16	4	14	4	10		\$r=113	2
			GS	7	9		1	3		\$o=167	Ö
	+2.		ĨΛ	3	15	14	17	13			_
	-	a	QX	-	6	6	_ 4	-			
		r									

taken as further statistical assurance of the matchings. Although ϕ_0 in this case does not come up to the best expectations, we feel nevertheless that the matching has been carefully and correctly accomplished, and so

1. .

e '

RESTRICTED
-RESTRICTED

the next step is continued with a conversion of the multiliteral text into uniliteral equivalents, using the following reduction square containing an arbitrary sequence

	Ç	F	ĸ	P	Τ	
	H	11	W	R	Z	
BJ	A	В	C	D	Ε	
DN	F	G	H	I	K	
ເຈີ	L	М	N	0	P	
LV	Q	R	S	Т	U	
QX	V	W	Х	Y	\mathbf{Z}	

The converted cryptogram is now easily solved, using the principles set forth in Section VI. The first fifteen letters of the plaintext message are found to read "WEATHER FORECAST . .", and the original enciphering matrix is recovered, based on the key word ATMOSPHERIC, as follows

	Ρ	F	C	K	Т
	R	Μ	H	W	Z
LV	Α	Т	li	0	S
DN	Ρ	н	Ε	R	I
BJ	С	в	D	F	G
GS	ĸ	L	N	Q	U
QX	V	W	Х	Y	Z

1. The method of matching rows and columns just described in the preceding subparagraphs applies equally well to all the matrices in Figs. 26-35, and similar variations If in the process of equating indicators the cryptanalyst sees that the row indicators are falling into the same groupings as the column indicators, he might be able to accelerate the equating procees by taking advantage of this feature alone, as would be the case if he had encountered a cryptogram involving a matrix with indicators arranged in a manner similar to that shown in Figs 29 and 30. Furthermore, a cryptogram enciphered in a commutative system, wherein the equivalents have been taken in row-column and column-row order indiscriminately, may be recognized as such through a study of the digraphic distribution of the cryptogram since the " \ll " row of the distribution will have an appearance similar to the " \bigstar " column, the " β " row vill be similar to the " \bigstar " column, the " β " row vill be similar to the " \bigstar " of the discussed further in subpar 61d.

¹⁰ It is often convenient to use arbitrary symbols in cryptanalytic work, to prevent confusion with designations of actual elements of plain tert, cipher text, or key (see footnote 1 on page 58). For this purpose Greek letters are often used, for reference, the 2⁴ letters of the Greek alphabet and their names are appended in the chart below

A	R	alphy	E	٤	epsilon	I	L	iota	N	r	nu	12	P	ro	Φ	φ phi	1
в	ß	bels	Z	ζ	leta	к	к	Lappa	Ξ	ξ	X1	٤	5	ເງພາ	X	χ^{ch1}	
r	x	gormu	н	η	clı	۸	ລ	lanbd	0	0	omicron	T	τ	tou	Ψ	γρει	
Δ	Š	delli	Θ	θ	theta	Μ	m	ามา	Ц	π	נק	r	v	ານ⊾ າ Pon	10	່ພ ຕານອເເຊ	4

J. It is important to point out that in matching, the cryptanalyst should begin with the "best" rows or columns -- best not only from the standpoint of "heaviness" of the distribution, but also best from the point of view d(a distinctive pattern of crests and troughs. If insufficient text is available to allow equating all the interchangeable coordinates of a particular enciphering matrix, it may still be possible that a conversion of the cipher text by means of a partially-reduced reconstruction matrix may yield enough follomorphic potterns and other data to make possible an entry into the text. If the cryptographer has not used a "check-off" process in enciphering, but instead has favored certain equivalents for the various plaintext letters, matching may not be possible, nevertheless, an entry into the text may be facilitated in this case, because some of the resultant peaks in the cipher text may be correctly identified Furthermore, since no variant system can possibly disguise the letters of low frequency in plain text, their low-frequency equivalents in the cipher text may provide possible approaches to solution (See also subpar. 61e).

k. In addition to the method of solution by matching and combining rows and columns of a digraphic distribution of a multiliteral cipher, there is also the general approach applicable without exception to any variant system. This method, involving the correlation of cipher elements suspected to be the equivalents of specific but unknown plaintext letters, is treated in detail in paragraphs 61 and 62.

1. Systems such as the 4-level dinome cipher illustrated in Fig. 36 are susceptible to a very easy solution, if the dinomes have been inscribed in numerical order of ideated. Assuming such a case in a specific cryptogram, the first six group. If which are

68321 09022 48057 65111 88648 42036 ..

a four-part frequency distribution of the entire message, is taken as illustrated in Fig. 44 below

 $\vec{S}_{1} = \vec{S}_{2} = \vec{S}_{3} = \vec{S}_{1} = \vec{S}_{1}$

If the student will bring to bear upon this problem the principles he learned in Section V of this text, he will soon realize that what he now has before him are four simple, monoalphabetic frequency distributions similar to those involved in a monoalphabetic substitution cipher using standard alphabets. The realization of this fact/immediately provides the clue to the next step. "fitting each of the/distributions to the normal". (See par. 31). This can be done without difficulty in this case (remembering that a 25-letter alphabet is /involved and assuming that I and J are combined) and the following alphabets result

01I-J	2 <u>6</u> U	51—N	76—E
02—K	27V	520	77F 🚽
03 L	28₩	53P	78G
04M	29X	54—Q	79—H
05N	30Y	55—R	80I-J
06-0	31—Z	56S	81K
07P	32A	57T	82—L
08Q	33B	58U	83M
09—R	34C	59V	84N
10—S	35D	60 ₩	850
11—T	36E	61X	86—P
12U	37F	62—Y	87 Q
13—V	38G	63Z	88R
14W	39—-H	64A	89—-S
15X	40I-J	65B	90T
16—Y	41—-K	66 C	91U
17—Z	42—-L	67D	92V
18A	43M	68E	93W
19B	44—Ñ	69F	94X
20C	450	70—G	95Y
21D	46P	71—H	96Z
22Е	47—Q	72I-J	97A
23—F	48R	73K	98B
24—G	49—S	74L	99C
25—H	50T	75—M	00D

The key word is seen to be JUNE and the beginning of the cryptogram is deciphered as "HASTERN ENTRANCE....."

m. If instead of 25-element alphabets, a system such as that in Fig. 37 has been used, only a slight modification of the procedure in subparagraph j would have been necessary, i.e., the distributions would have had to be considered on a basis of 26, and the process of fitting the distributions to the normal would have gone on as in the previous example.

RESTRICTED

- TY 1847

4.5

n. One further application of principles learned in Section V de-
such as those of Fig. 36. Let the following short message be considered
48226 88423 <u>52</u> 099 93604 76059 05651 36683 52267 97114 54466 76
t_A T ttt Titl Titl A
If it is known that the correspondents have been using a variant system
such as that in Fig. 30, a special solution may be employed in those cases
of fatting the frequency distribution to the normal. Thus a short crup-
togram may be solved by a variation of the plain-component completion
method described in par. 34.11 First, let the cryptogram be copied in
dinomes, with an indication of the level (i.e., the "alphabet") the di-
nome would occupy in the 4-level matrix, thus
The dinomes belonging to the four levels are as follows
(3) 66 52 56 51 66 67 66 (11) 81 60 76 60 67 76 (11) (11)
These dinomes are converted into terms of the plain component by setting
each of the cipher sequences against the plain component at an arbitrary
point of coincidence, such as in the following example
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00
(1) 221W, 231X, 0911, 041D, 051E, 221W, 111L (0) $h_{\rm Rev}$ 26-T 26-T 26-T $h_{\rm E-T}$ $h_{\rm E-T}$
(2) (3) $(3-B)$ $(5-E)$ $(5-E)$ $(3-A)$
(4) $84=1$, $99=Y$, $76=A$, $90=P$, $97=V$, $76=A$
en e
¹¹ It should be clear to the student that the reason this method can be

applied in this instance is that both the plain component (ABC.... Z) and the cipher component (01, 02, 03 25, 26-50, 51-75, 76-00) are known sequences (on thus assumed).

RESTRICTED

o. The plain component sequence is now completed on the letters of the four levels, as follows

+	- 1	- ,	
<u>lst level</u>	2d level	<u>3d level</u>	4th level
WXIDEWL	XLLKUT	SBFASRQ	IYAPWA
ΧΥΚΕFλΜ	ΥΜΜΙΥυ	TCGBTSR	KZBQXB
YZLFGYN	ZNNMWV	UDHCUTS	LACRYC
ZAMGHZO	AOONXW	νειρνυτ	MBDSZD
ABNHIAP	врроух	WFKEVVU	NCETAE
BCOIKBQ	CQQPZY	XGLFXWV	ODFUBF
ÇDPKLCR	DRRQAZ	ҮНМ G ҮХW	PEGVCG
DEQLMDS	ESSRBA	ZINHZYX	QFHWDH
EFRMNET	FTTSCB	ΑΚΟΙΑΖΥ	RGIXEI
FGSNOFU	GUUTDC	BLPKBAZ	знкуғк
GHTOPGV	HVVUED	СМОГСВУ	TILZGL
HIUPQHW	IWWVFE	DNRMDCB	UKMAHM
IKVQRIX	KXXWGF	EOSNEDC	VLNBIN
KLWRSKY	LYYXHG	FPTOFED	WMOCKO
LMXSTLZ	MZZYIH	GQUPGFE	YNPDLP
MNYTUMA	NAAZKI	HRVQHGF	YOQEMQ
NOZUVNB	OBBALK	ISVRIHG	ZPRFNR
OPAVWOC	PCCBML	KTXSKIH	AQSGOS
PQBWXPD	Q D D C N M	LUYTLKI	BRTHPT
QRCXYQE	REEDON	NVZUMLK	CSUIQU
RSDYZRF	SFFEPO	NWAYNML	DTVKRV
STEZAS.G	TGGFOP	OXBWONM	EUWLSW
TUFABTH	UHHGRO	PYCXPON	FVXMTX
UVGBCUI	VIIHSR	QZDYQPO	GWYNUY
VWHCDVK	WKKITS	RAEZRQP	HXZOVZ

It is seen that the generatrices with the best assortment 12 of high-frequency letters for the four levels are

<u>lst level</u>	2d level	3d level	4th level
EFRMNHT	REEDON	EQSNEDC	NCETAE

¹² In evaluating generatrices, the sum of the arithmetical frequencies of the letters in each row may be used as an indication of their relative "goodness". A statistically much more accurate method of evaluating generatrices involves the use of log-rithms of the probabilities of the plaintext letters forming the generatrices. (See also footnote 7 on page 89)

138

1 1

-RESTRICTED

If the letters of these generalizes are arranged in the order of appearance of their dinome equivalents, according to the way they fall into the various levels,

48	22	68	8h	23	52	09	99	36	04	76	05	90	56	51	36	68	35	22	67	97	11	45	44	66	76	
	Е			ŀ		R		-	М		N							Ł			T					
R								Е							Е		D					0	N			
		Е			0								ទ	N		Е			D					C		
			N			-	C			E		T								A					E	

the plain text "REENFORCEMENTS NEFDED AT ONCE" is clearly seen. Or, more simply, if we examine the equivalents of Ol, 26, 51, and 76 after the generatrix determination has been made, the key word JUNE is revealed. If an error had been made in the selection of a generatrix, the error could be resolved by hypothesizing the probable key word, or by deciphering the text on the basis of the assumed diagram and then noting and degarbling the systematic errors (which, it would be noticed, all come from one level)

p. The student should note that no one generatrix will yield plain text all the way across as in the example in par. 34 Instead, the generatrices must be considered separately for the four levels, since it is within each of the four levels that there is a homogeneous relationship of dinomes Obviously if dinomes from more than one level were used to complete the plain component sequence, the generatrices would not consist of a homogeneous group of letters but instead would represent an assortment of letters from two or more "alphabets"

61. Analysis of more complicated examples.--a As soon as a beginner in cryptography realizes the consequences of the fact that letters are used with greatly varying frequencies in normal plain text, a brilliant idea very speedily comes to him Why not disguise the natural frequencies of letters by a system of substitution using many equivalents, and let the numbers of equivalents assigned to the various letters be more or less in direct proportion to the normal frequencies of the letters? Let E, for example, have 13 equivalents, T, 9, N, 8, etc., and thus (he thinks) the enemy cryptanalyst can have nothing in the way of telltale or characteristic frequencies to use as an entering wedge

b. If the text available for study is smill in amount and if the variant values are wholly independent of one another, the problem can become exceedingly difficult. But in practical military communications such methods are rarely encountered, because the volume of text is usually great enough to permit of the establishment of equivalent values. To illustrate what is meant, suppose a number of cryptograms produced by the monoalphabetic-variant method described above show the following

two sets of groupings¹³ of cipher elements in the text, Set "A" being assumed to be different representations of one particular underlying plain text, and Sct "B" assumed to be representations of another underlying plain text

Sci "A"	Set "B"
(12-37-02-79-68-13-03-37-77)	(71-12-02-51-23-05-77)
(82-69-02-79-13-68-23-37-35)	(11-82-51-02-03-05-35)
(82-69-51-16-13-13-78 05-35)	(11-91-02-02-23-37-35)
(91-05-02-01-68-42-78-37-77)	(97-12-51-02-78-69-77)

An examination of these groupings would lead to the following tentative conclusions with regard to probable equivalents

(12, 82, 91)	(02, 51)	(13, 42, 68)	(35, 77)
(05, 37, 69)	(01, 16, 79)	(03, 23, 78)	(11, 71, 97)

The establishment of these equivalencies would sooner or later lead to the finding of additional sets of equal values. The completeness with which this can be accomplished will determine the ease or difficulty of solution Of course, if many equivalencies can be established the problem can then be reduced practically to monoalphabetic terms and a speedy solution can be attained

c. Theoretically, the determination of equivalencies may seem to be quite an easy metter, but practically it may be very difficult, because the cryptanalyst can never be certain that a combination showing what may appear to be a variant value is ically such and does not represent a part of a different plaintert sequence. For example, take the groups --

17-82-31-82-14-63, and 27-82-40-82-14-63

Here one might suspect that 17 and 27 represent the same letter, 31 and 40 another letter. But it happens that one group represents the word MANAGE, the other DAMAGE. There are hundreds of such cases in English and in other languages

d. When reversible combinations are used as variants, the problem is perhaps a bit more simple For example, using the accompanying Fig. 45

ſ		3 94				•	
• -		57 8	K,Z	ଚ,V	BJH	II,R	D,L
	-	W,S_	IV	H	Λ	0	Ŀ
	1	У,У	D	Ţ	11	F	P
		G,J	5	B	U	1	V
-		C,N	G	X	R	C	S
		P,T		L	Y	W.	K
~			J	ไปกัน	ie 4	5	

13 The elest storent might be able to determine the under 1 ing plain tert of the two sets of ciphertext groupings.

1 '0

for encipherment, two messages with the same initial words, REFERENCE YOUR, may be enciphered as follows

	R	2	Ē	-	F		1	5	1	<u>,</u>	-	J	Ξ	I	N		C	1	ľ	مع]	C		0	Ī	ີ້	-	R
(1)	N	π	1 1) F	{	Х	L	S	Η	C		D	W	Ū	Z	N		R	S	L	H	P	S	R	В	J	C	H
(2)	C	H I	D T	I F	1	х	ន	\mathbf{L}	H	N		D	U	Z	W	N		R	\mathbf{L}	ន	Η	Ρ	R	V	J	В	N	H

The experienced cryptanalyst, noting the appearance of the very first few cipher groups, assumes that not only have the messages identical beginnings in their plain texts, but also that he is here confronted with a variant system involving biliteral reversible equivalents One of the manifestations of such a cryptosystem is that in the digraphic distribution of the cipher text the "B" row will have an appearance similar to the "B" column, the "C" row will resemble the "C" column, etc., thus, the cryptanalyst will almost immediately realize that he has encountered a commutative system involving a matrix smaller than that indicated by the size of matrix necessary for making the digraphic distribution.

The probable-word method of solution may be used, but with a slight variation introduced because of the fact that, regardless of the system, letters of low frequency in plain text remain infrequent in the civptogram. Hence, suppose a word containing low-frequency letters, but in itself a rather common word strikingly idiomorphic in character is sought as a "probable word", for example, words such as GAVALRY, ATTACK, and PREPARC. Such a word may be written on a slip of paper and slid one interval at a time under the test, which has been marked so that the high- and low-frequency characters are indicated. Each coincidence of a low-frequency letter of the text with a low-frequency letter of the assumed word is examined carefully to see whether the adjacent text letters correspond in frequency with the other letters of the assumed word; or, if the latter presents repetitions, whether there are correspondences between repetitions in the cipher text and those in the word. Many trials are necessary but this method will produce results when the difficulties are otherwise too much for the cryptanalyst to overcome.

62. Analysis involving the use of jsologs .--a. In military communications it is not unusual that cryptograms are produced containing identical plain text but which have been subjected to different cryptographic treatment, thus yielding different cipher texts. This difference in cryptographic treatment may be caused by the use of an entirely different general system, or by the use of a different specific key, or merely by the choice of equivalents in a variant system. Messages which present different encrypted texts but which contain identical plain text are called isologs (from the Greek iso = "equal" and logos = "word"). One of the easily-noted indications of the possible presence of isologs is equality or near-equality in the lengths of two (or more) cryptograms. Isologs, no matter how the cryptographic treatment varies, are among the most powerful media available to the cryptanalyst for the successful solution of a difficult cryptosystem--and, in some cases, may provide the

13

15

-RESTRICTED

only possible entries into a complex cryptosystem. An inkling of the help afforded by isologs was revealed by the example contained in su_{\perp} , ir. 61d above; however, a much more striking illustration is given in the next few subparagraphs.

b. The following two cryptograms, suspected to be isologs, are available for study

Message ⁻"A"

8 2 2 6 5 8 6 7 7 9 8 3 6 2 2 9 8 3 6 2 9 8 3 9 6 2 9 8 8 8 7 2 9 9 6 7 2 9	63103 89106 33918 52538 91147 93816 27730 40867 36245	74839 69842 94000 13828 43158 81048 73309 20749 99926 41468 51750 57074 31199 79962 46594 19855 .	3292 588 520 520 520 522 525 1380 51 1386 52 1178 20 20 20 20 20 20 20 20 20 20 20 20 20	70115 40039 165476 3325 43653 43653 2987
	\$ <i>Pm</i>	Message "B"		-
34956293 056293 0561429 38614 285 3264 16 56 58 58 58 58 58 58 58 58 58 58 58 58 58	8791 9791 797538 7975138 79770 75878 3297 83295 3526	14511 97360 69672 53889 20351 10570 99974 50232 14648 00646 94889 33728 98715 42662 59728 22855	4 9 6 7 6 4 1 5 6 3 8 9 2 7 7 0 4 1 1 5 8 5 2 7 2 8 5 2 7 6 0 8 7 3 0 0	50106 25203 75011 89216 53898 2058 9880 70893

On the possibility that some dinome system (or systems) is involved, the messages are written under each other in dinomes to facilitate the examination of the <u>similarities and differences</u> of such a grouping of the cipher texts, as shown on the next page

RESTRICTED

ν.

-

-

¥

ana na m

. -

-RESTRICTED

١. Т

ī.

						<i>م</i>	- 5			-	-	10					15	
		Λ Λ'	82 30	26 15	56 08	31 71 ₁	03 97	74 14	83 51	96 19	98 73	112 60	32 119	52 67	97 65	01 01	15 06	
		B B'	80 115	27 64	78 79	91 91	06 81	94 69	00 67	01 25	38 38	28 89	5)1 43	08 56	2 ¹ 1 32	00 52	65 03	-
		C C'	63 90	62 62	93 87	39 75	18 36	43 20	15 35	88 11	10 05	'1¦8 70	26 89	145 27	8½ 77	50 50	39 11	-
ı		D D'	81 35	71 19	35 99	25 01	38 38	73 99	30 97	92 115	07 02	49 32	61 04	75 11	21 58	64 92	76 16	1
I	r •	Ē E'	38 38	72 46	89 31	11 75	47 47'	99 1 ¹ +	92 64	64 80	1/1 06	68 46	13 85	36 86	53 145	38 38	81 98	ł
		F F'	89 26	69 12	79 18	38 38	16 78	51 94	75 88	05 93	70 37	74 28	11 11	80 27	4) ₁ 22	32 05	55 04	
-	,	G G'	28 06	12 48	02 43	77 21	30 03	31 98	19 73	97 54	99 26	62 67	27 80	86 76	56 08	06 98	53 80	· F
		н н	90 1 ₁ 1 ₁	87 10	04 55	08 29	67 00	46 59	59 72	41 82	98 28	55 55	10 87	82 30	22 07	29 08	87 93	
		J J'	46 59	72 68 1	93 24	62 62	45 53	٠	-				- - -		יזי י ש	, -	•	
Th	e	dino	ome d	listr	ibut	ions	for	the	two	mes	sage	es ar	'e as	fol	lows	, •	• -	
,	ø	1	2	3_4	. 5	6	78	9	-		ø]	2 3	4	5_	6 7	8	_9_
Ø	2	2	1 1	1 1	. 1	2] 2 _]	-		Ø		2 4	1 2	2	2 1	3 1	. 3	-
2	-	1	l	- 1	. 1	2	2 2	ĩ		2	1	i	1	. 1	1	2 2	2	ī
3 4	2	2	2 1	 1]	1	1 2	- 5 1 1	2		3 Ji	2	1 1	2 -	- 1_	2 7	1 1 2 1	· 5	-
5	11	1	1	2]	2	2		1		5	11	1	1 1	. 1	2	1 -	1	2
ю 7	lī	ı 1	3	1 2	2 2	1	1 1 1 1	1		6 7		- 1	5 - 1 1	. 1	2	- 2	: 1 . 1	1
8 9	2 1	2 1	2 2	1 1 2 1		1 1	21 22	2		89		1 1	1 - 1 2	· -	1 -	1 2	2 1 2 3	2 2
-	<u> </u>		Dist Me	tribu essag	tion e "A	for				-	harman (τ)isir Mes	ibui sage	ion B'B'	for		

~

۰.

ļ

c. Since a general absence of marked crests and troughs is noted in both distributions, if the division of these cryptograms into dimones is correct, and if they are both monoalphabetic, it is quite probable that! some type of valiant system (or systems) has been used. With this in mind, the encrypted terts and their distributions are scrutinized further for some indication of the kind of relationship which exists between the methods of encipherment of the two messages. The distributions are seen to be strikingly similar, not only with respect to the location of the one predominant perk in each, but also in the close correlation of the locations of the blanks in each 14 Furthermore, upon examination of the superimposed messages themselves, it is observed that there are several instances wherein a value in message "A" coincides with the same value in message "B" (e.g., see positions $A/\Lambda' l_{+}, B/B' 9$) This observation, taken in conjunction with the marked similarity of the distributions, strongly indicates that not only has the same general cryptosystem been used for the encryption of both messages, but that the same enciphering matrix has been used for both. Also, in the case of the values 38 and 62, it is noted that wherever either occurs in one message the same value

For the benefit of the student with a mathematical background, it might be interesting to point out certain applications of cryptomathematics in connection with these two distributions. First of all, each of the two distributions is much flatter than that which would be expected. for a sample of 125 dinomes of random text, i.e., a drawing (with replacement) and recording from an urn containing equal numbers of counters in each of 100 categories labeled 00-99 consecutively. In other words, whereas "random" follows a characteristic distributional appearance, approximated by the normal or binomial distributions, the samples at hand exhibit phenomena even flatter (or "worse") than that expected for random, approaching the theoretical (and fantastically non-random) "equilibrium" of exactly the same number of tallies in each cell of a distribution. The following table gives the observed number of x-fold repetitions in the two distributions, together with the expected number of x-fold repetitions in a sample of like size of random text, which expected number has been computed from tables of the Poisson exponential distribution (see Military Cryptanalysis, Part III)

x	Observed Msg. "A"	Observed Msg. "B"	Evpected
ø	14	17	29
1	51	52	36
2	33	23	22
3	1	6	9
4	-	1	3
5]	1	1

It is to be noted that in the distribution for Lessage "A" the observed number of blanks (1^{j_1}) against the expected number of blands from random text (29) represents a signage or standard deviation of 2 78 σ , which

RESTRICTED

1/14

4H + 3

* \$ 6

_=

'4

RESTRICTED

occurs in the other message, a phenomenon explainable on the assumption that the plaintext equivalents of these values are of such low frequency that no variant values have been provided for these plaintext letters in the cryptosystem.

d. With the foregoing details determined, it is now realized that it should be possible to form, between the two messages, "chains" of those cipher values which represent identical plaintext letters, as exemplified below. Beginning with the first value in each message, 82 and 30, a partial chain of equivalent variants is started, now locating some other occurrence of either value elsewhere (e.g., 82 at position H'8), and noting the cipher value coinciding with it (in this case, 11), the partial chain may be extended (including now 82, 30, and 41). After this particular chain is extended to include as many values as possible, another chain is formed by starting with any value which has not already been included in the preceding chain, this procedure being repeated until

can be translated as odds of 368 to 1 against its occurrence by pure chance. Likewise the other entries besides \emptyset (in particular, the x-values of 1 and 2, and the cumulative values of 3-and-better) may be evaluated in terms of sigmages, and the conclusion would be reached that the two distributions have a most remote chance of being as flat as they are through mere chance, for instance, it is 3.05 o or 877 to 1 against distribution "A", having only two tallies occurring three or more times when 13 such tallies are expected by landom -- and this sigmage when taken into consideration with that of the number of blanks yields a signage of 4 σ or approximately 31,000 to 1 of occurring through sheer chance. The sum total of all the deviations could be collectively evaluated, but this would involve the laborious computation of a multinomial distribution. Since the distributions of the two messages are much worse than would even be expected for random chance, the conclusion is drawn that the dinome grouping is highly significant and therefore must be correct, and furthermore that the cryptosystem involves variants in sufficient numbers for the plaintert letters to permit the encipherer to select the cipher equivalents with a view to suppressing as much of the phenomena of repe-Secondly, the χ test of the two distributions gives tition as possible a χ value of 206, as against the χ value of 156 for random samples of this size, this represents a signage of 4.02 o, or a ratio of 33,000 to 1 against its happening by pure chance, i.e., if the cryptograms were not in the same general system and specific keys. Therefore it is a foregone conclusion statistically that not only do the cryptosystems involve dinomes as the ciphertext grouping, but that the identical cryptosystem is involved in the two messages, and that because of the close correlation of the patterns of the two distributions, there is a good probability that the cryptograms contain identical plain text and therefore are iso-This specific illustration of the potentialities of cryptomathematics indicates the important role that this branch of science may play in the art of cryptanalysis.

Ð

-RESTRICTED

all possible chains are completed. It is found that the following chains, arbitrarily arranged here according to length, may be derived from the two messages

(06 (02 (12 (03) (15 (11) (21) (21) (46)	14 07 30 10 18 59 59 59	15 24 4 24 35 57 76 7 6 7	26 22 5 ¹ / ₄ 376 88 84 72	28 439 659 780	3] 44 70 82 87 92 92	35 63 97 93 86	73 90 94	,7 ¹ i	81	89	98	99))			•		
(00)	52 55	67	\mathbf{i}	•														
(08	29	56	Ś															
(19)	71 25)	90,))					5	Jing	gle	dir	nome	95				1	
(13 (42	85 60)							(38)) ((47)) ((50)	(62)	(91)			- 1

If we now make an arbitrary assignment of a different letter to represent each chain (and each single dinome) and convert either of the messages to uniliteral terms by means of these arbitrarily-assigned values, we note the pattern of the opening stereotype "REFERENCE YOUR MESSAGE.....", and quickly recover the plain text.

e. The plaintext values when inserted into a 10x10 matrix having arbitrarily-arranged coordinates yield the following.

	-									-
	ø	1	2_	3) _F	5	6	7	8	9
ø	Ũ	11	T	R	P	0	E	T.	F	-1
1	0	D	N	\mathbf{H}	Е	\mathbf{E}	Λ	-	Ā	C
2	Т	Ι	\mathbf{T}		0	М	E	ន	E	F
-3	R	Е	0	-	-	E	Α	N	в	D
կ	-	R	Y	т	T	ទ	L	V	N	0
5	X	\mathbf{N}	ប	ន	R	P	F	-	ĩ	L
6	Y	\mathbf{P}	W	т	S	R	-	ប	L	N
7	N	С	L	Е	E	D	Λ	I	Λ	A
8	S	Ε	R	N	I	н	Λ	0	D	Е
9	Т	G	S	0	N		C	R	E	E

Manipulating the rows and columns with a view to uncovering some symmetry or systematic phenomena, the latent diagonal pattern of the equivalents

ŧ

for certain of the letters (such as E_p , N_p , O_p , R_p , and G_p) is revealed, and the rows and columns of the reconstruction diagram are permuted to yield the following original enciphering matrix

		•			•	· · '		-4.5	¥	~ `	~		× =
- 11, e	6	8_	9.	1	5	<u>ب</u> ر	3	7	2	ø	-	-	بـ
The provide T	Λ	Λ	A	C	D	Е	Е	I	L	N		F -	
(<u>-</u> , 1	A	Λ	С	D	\mathbf{E}	E	H	K	N	0			
r 3	Α	В	D	E	Ξ	H	J	N	0	R			
IIII State 8	Α	D	Е	E	Ħ	Ι	N	0	\mathbf{R}	ន			
1 + 9	C	E	E	G	I	N	0	\mathbf{R}	ន	T			
* ··· proverting and 2	Е	E	F	_ I	М	0	ର୍	ន	т	т			
* 3*** ~ Ø	E	F	Ι	М	0	Ρ	\mathbf{R}	Т	\mathbf{T}	ប			
A 5	F	I	\mathbf{L}	N	P	R	ន	Ͳ	ប	X			
	I	\mathbf{L}	N	\mathbf{P}	R	ន	т	U	W	Y			
<u>ደ</u> ኒ ¼	L	N	0	R	S	T	T	V	Y	Z			
				- 14					-				

There are no observable relationships in or between the sequences of digits in the row and column coordinates, therefore for want of any visible phenomena or further information on the derivation (if any) of these digits, it is assumed that they must have been assigned at random. The student will note that the final matrix is identical to that of Figure 39 in paragraph 59.

f. It should be emphasized that in the example of the preceding subparagraphs it was only possible to form chains of values from both messages reciprocally because the same encipnering matrix had been used for both. A non-reciprocal chaining procedure would have been required if only the general system had been the same for both but the enciphering matrices had differed in some respect, or if two completely different variant systems had been used (e g , one using a frequential matrix and the other involving a less complex type of variant matrix, such as Fig. 29). Specifically, it would have been necessary to maintain two separate groups of chains, one group for each message, otherwise heterogeneous values would have become intermingled.

g. Although an analysis of but one isolated example by means of isologs was presented, the student should be able to appreciate the significance and potentially enormous value of isologs to a cryptanalyst. This value goes far beyond the simple variant encryption in a monoalphabetic substitution system, isologs produced by the use of two different code books, or two different enciphered code versions of the same underlying plain text, or two encryptions of identical plain text by two different "settings" of a cipher machine, may all prove of inestimable value in the attack on a difficult cryptosystem

-RESTRICTED

_-΀s.

63. Further remarks on variant systems.--a. A few words should be added with regard to certain subterfuges which are sometimes encountered in monoalphabetic substitution with variants, and which, if not recoging mized in time, cause considerable delays The considerations treated before in subpars. 52i and j on the disguise of the length of the basic, multiliteral group apply equally here to multiliteral substitution with variants, thus, in dinome systems, a sum-checking digit or a null might T8. be added in specified positions of the group to form a trinome. In complex variant systems, the presence of a null as one of the digits of a trinome would add greatly to the complexities of cryptanalysis of that system. The most important of the subterfuges have to deal with the use of nulls which are of a different size than the real cryptographic units. inserted occasionally to prevent the cryptanalyst from breaking up the text into its proper units The student should take careful note of the last phrase, the mere insertion of symbols having the same characteristics as the symbols of the cryptographic text, except that they have no meaning, is not what is meant Athis class of nulls rarely achieves the purpose intended. What is really meant can best be explained by an example. Suppose that a 5x5 variant matrix with the row and column indicators shown in Fig. 46 is adopted for encipherment. Normally, the cipher units would consist of 2-letter combinations of the indicators, invariably giving the row indicator first (by agreement).

	-	V	G	I	W	D	4 '
		A	Н	P	ន	M	
		Т	0	ž	В	N	
		F	U	R	L	C	
	T,F	A	В	C	D	E]
, G,H,	0,U	F	G	H	I-J	K	
I,P,	ER	L	M	N	0	P	
W,S,	B,L	Q	R	S	T	U	
D,M,	N,C	V	W	x	Y	Z	ļ

The phrase CONIMIMAR OF SPLCIAL TROOPS might be enciphered thus.

C Е R 0 F 0 M М Λ ٦ł σ AB TH WO FU VI EB PH IU FT F GT

These would nor sally then le arranged in 5-letter groups, thus

VIEBP HIUFT 1FABT hVOFV GT ...

-RESTRICTLD

b (1) ill be noted, however, that only 20 of the 26 letter, of the alphabet have been employed as not and column indicator, letter J, F, O, V, I, and ' unu ed Pow, suppose the errichtler are used as rulls, not an part, in usind valued if ther analited it random just before the real test is an anged in 5-letter groups Occasionally, a pair of letters mucht be presided, in order to mask the characteristics of "avoidance" of the eletters for each other. Thus, for example.

VIEXB JUKIU FJXTI EAJBT MWOQP VGKTY

The cryptanalysi, after some study suspecting a biliteral cipher, proceeds to break up the lext into pairs

VI EX BP HK IU FJ XT IE AJ BT MJ OQ PU GK TY

Compare this set of 2-leiter combinations with the correct set. Only 4 of the 15 pairs are "proper" units It is easy to see that without a knowledge of the existence of the nulls--and even with a knowledge, if he does not know which letters are nulls--the cryptonalyst would be confronted with a problem for the solution of which a fairly large empount of text might be necessary The coreful employment of the variants also very materially adds to the security of the method because repetitions can be rather effectively suppressed

c. Similarly in the complex under paragraph 58, the letter J in Figs. 27 and 29 may be used as a null, the letter Y in Fig. 28, and the digit \emptyset in Figs 33 and 3¹. In Fig. 30, any letters in the range of P - Z might be used as nulls, out this usage might be weak because of the extremely low frequency of these letters as compared with the letters A - 0, this is an important point to consider in the examination of encrypted text for possible poor usages of nulls

d. From the cryptographic standpoint, usage of nulls in the manner outlined above results in cryptographic led even more than twice as long as the plain text, thus constituting a serious disadvantage. From the cryptanalytic standpoint, the reserious of the cipher units in the system described in subpar b above constitutes the rost important obstacle to solution, this, coupled rith the u i of variants, makes this system considerably more difficult to solve, espite its monoalphabeticity.

-RESTRICTED

ղևտ

SECTION IX

POLYGRAPHIC SUBSTITUTION SYSTEMS

_						
- 13	AL 184	~ ~	1000	~ 7	nh.	
~	u .	•••	5 6-	-		
_		C L O	<u> </u>		~~	

General remarks on polygraphic substitution	64
Polygraphic substitution methods employing large tables	65
Polygraphic substitution methods employing small matrices	66
Methods for recognizing polygraphic substitution	67
General procedure in the identification and analysis of polygraphic	
substitution ciphers	68
Analysis of four-square matrix systems	69
Analysis of two-square matrix systems	70
Analysis of Playfair cipher systems	71
Analysis of polygraphic systems involving large tables	72
Further remarks on polygraphic substitution systems	73

64. General remarks on polygraphic substitution.--a. The substitution systems dealt with thus far have involved plaintext units consisting of single elements (usually single letters). The major distinction between them has been made simply on the basis of the number of elements constituting the <u>ciphertext units</u> of each, i.e., those involving single-element ciphertext units were termed <u>uniliteral</u>, and those involving ciphertext units composed of two or more elements were termed <u>multiliteral.</u>¹ That is to say, when the terms "uniliteral", "biliteral", "triliteral", etc., were used, it was to have been automatically inferred that the plaintext units were composed of single elements.

b. This section of the text will deal with substitution systems involving <u>plaintext units</u> composed of more than one element; such systems are termed <u>polygraphic</u>.² (By comparing this new term with the terms "uniliteral" and "multiliteral" it may then be deduced--and correctly so--that a term involving the suffix "-literal" is descriptive of the composition of the cipher text units of a cryptosystem, and that a term containing the suffix "-graphic" describes the composition of the

¹ See also subpar. 52a.

² Systems involving plaintext units composed of single elements may, on this basis, be termed monographic; however, as has been stated in connection with the terms "uniliteral" and "multiliteral", the plaintext units of a system are understood (without restatement) to be monographic unless otherwise specified.

RESTRICTED

plaintext units.³) Polygraphic systems in which the plaintext units are composed of two elements are called <u>digraphic</u>, these in which the plaintext units are composed of three elements are <u>trigraphic</u>, etc. The <u>ciphertext</u> units of polygraphic systems usually consist of the same number of elements as the plaintext units.⁴ Thus, if a system is called "digraphic", it may be assumed that the ciphertext units of the system consist of two elements, as do the plaintext units; if this were not the case, the term "digraphic" by itself would not be adequate to describe the system completely, and an additional modifying word or phrase would have to be used to indicate this fect.⁵

c. In polygraphic substitution, the <u>combinations</u> of elements which constitute the plaintext units are considered as indivisible compounds. The units are composite in character and the individual elements composing the units affect the equivalent cipher units jointly, rather than separately. The basic important factor in true polygraphic substitution is that all the letters of each plaintext unit participate in the determination of its cipher equivalent, the identity of each element of the plaintext unit affects the composition of the whole cipher unit.⁶ Thus, is a certain digraphic system, \overline{AB}_p may be enciphered as \overline{XP}_c , and \overline{AC}_p , on the other hand, may be enciphered as \overline{NK}_c ; a difference in the identity of but one of the letters of the plaintext pair here produces a difference in the identity of both letters of the cipher pair.⁷

^J In this connection, it is further pointed out that since the root "literal" derives from the Latin "litera", it is conventionally prefixed by modifiers of Latin origin, such as "uni-", "bi-", and "multi-"; similarly, "graphic", deriving from the Greek "graphikos", is prefixed by modifiers of Greek origin, such as "mone-", "di-", and "poly-".

⁴ The qualifying edverb "usually" is employed because this correspondence is not essential. For example, if one should draw up a set of 6/6 arbitrary single signs, it would be possible to represent the 2-letter pairs from AA to ZZ by single symbols. This would still be a digraphic system.

 5 See subpers. 65e and 66f for examples of two such systems and their names.

⁶ An analogy is found in chemistry, when two elements combine to form a nolecule, the latter usually having properties quite different from those of either of the constituent elements. For example, sodium, a metal, and chlorine, a gas, combine to form sodium chloride, common table salt. However, sodium and fluorine, elso a gas similar in many respects to chlorine, combine to form sodium fluoride, which is much different from table salt.

⁷ For this reason the two letters are marked by a ligature, that is, by a bar across their tops. In cryptologic notation, the symbol $\overline{\Theta_p}$ means "any plaintext digraph", the symbol $\overline{\Theta_c}$, "any ciphertext digraph". To refer specifically to the 1st, 2a, 3d,...member of a ligature, the exponent 1, 2, 3,... will be used. Thus Θ_p^2 of REM_p is the letter E, Θ_c^2 of XRZ_c is Z. See also footnote 1 on Image '3

d. The fundamental purpose of polygraphic substitution is again the suppression or the elimination of the frequency characteristics of single letters of plain text, just as is the case in monoalphabetic substitution with variants; but here this is accomplished by a different method, the latter arising from a somewhat different approach to the problem involved in producing cryptographic security. When the substitution involves replacement of single letters in a monoalphabetic system, even a single cryptogram can be solved rather readily; basically the reason for this is that the principles of frequency and the laws of probability, applied to individual units (single letters) of the plain text, have a very good opportunity to manifest themselves. However, when the substitution involves replacement of plaintext units composed of two or more letters -- that is, when the substitution is polygraphic in nature -- the principles of frequency and laws of probability have a much lesser opportunity to manifest themselves. If the substitution is digraphic, then the units are pairs of letters and the normal frequencies of plaintext digraphs become of first consideration; if the substitution is trigraphic, the units are sets of three letters and the normal frequencies of plaintext trigraphs are involved. In these cases the data that can be employed in the solution are meager; that is why, generally speaking, the solution of polygraphic substitution ciphers is often extremely difficult.

e. By way of example, a given plaintext message of say <u>n</u> letters, enciphered by means of a uniliteral substitution system, affords <u>n</u> cipher characters, and the same number of cipher units. The same message, enciphered digraphically, still affords n cipher characters but only $\frac{n}{2}$.

cipher units. Statistically speaking, the sample to which the laws of probability now are to be applied has been cut in half. Furthermore, from the point of view of frequency; the very noticeable diversity in the frequencies of individual letters; leading to the marked crests and troughs of the uniliteral frequency distribution, is no longer so strikingly in evidence in the frequencies of digraphs. Therefore, although digraphic encipherment, for example, simply cuts the cryptographic textual units in half, the number of cipher units which must be identified has been squared, and the difficulty of solution is not merely doubled but, if a matter of judgment arising from practical experience can be expressed or approximated mathematically, squared or cubed.

f. The following two paragraphs will treat various polygraphic substitution methods. The most practical of these methods are digraphic in character and for this reason their treatment herein will be more detailed than that of trigraphic methods.

65. Polygraphic substitution methods employing large tables.-a. The simplest method of effecting polygraphic substitution involves the use of tables similar to that shown in Figure 47a. This table merely provides equivalents for digraphs, by means of the coordinate system. Specifically, in obtaining the cipher equivalent of any

	Å	B	C	D	Ē	F	G	H	Ĩ	J	K	L	4	Ŋ	0	P	Q	R	S	T	U	٧	Ħ	X	Y	Z
A	WG	EE	SN	TR	IÅ	NL.	GC	HT	OI	UO	AH	RP	Bľ	I'B	CD	DF	FH	JJ	LK	MQ	PS	ÇŬ	VV	X¥	YX	Z4
B	EG	se	TN	IR	NA	GL	HC	ot	UI	AO	SH	BP	ĸ¥	СВ	DD	FΓ	JH	IJ	MK	PQ	QS	٧U	٧X	ΥW	ZΧ	WZ
C	SG	TE	τn	NR	GA	HL	0 C	Ur	AI	RO	BM	КÞ	CY	ЪB	FD	JF	ĩ.H	MJ	PK	QQ	vs	χU	ΥV	ZW	WX	EZ
D	TG	IE	NN	GR	HA	0L	UG	AT	RI	BÖ	KM	CP	DY	FB	JD	LF	MH	PJ	QĽ	٧Q	XS	YU	ZV	WW	EX	SZ
E	IG	NE	GN	HR	0Å.	UL	AC	РT	₿т	KQ	СW	DP	FY	JB	LD	MF	PH	QJ	ү К	XQ	YS	ZU	٨V	E₩	SX	rz
F	NG	GE	Нų	OR	UA	AL	RC	BT	ĸr	CO	DM	FP	ĴΧ	LB	MD	PF	QH	¥J	XK	YQ	ZS	WU	ea.	SW	ТX	12
G	GG	HC	on	UR	ÅÅ	RL	BC	KT	CI	DQ	FM	JP	Γĩ	MB	PD	QF	VН	XJ	YK	7Q	WS	EU	sv	T₩	IX	NZ
14	HG	0E	UN	AR	٢A	EL	KC	ĻΤ	DI	FO	JM	ΓĿ	MY	PB	QD	VF	XH	YJ	ZK	WQ	ES	SU	TV	IW	NX	GZ
I	0G	UL	AN	RR	BA	чL	CC	DT	FI	10	LM	MP	PY	QB	٧D	XF	YH	ZJ	WK	EQ	SS	TU	IV	NW	GX	HZ
J	UG	AE	RN	BR	KA	CL	DC	FT	JI	L0	MM	PP	QY	VВ	۶D	Æ	ZH	МJ	ЕK	SQ	TS	IU	NV	G₩	HX	07,
K	AG	кC	BN	ĸr	ÇA	DL	FÇ	JT	LI	MO	PM	QP	٧Y	ΧВ	١D	ZF	ŴН	EJ	SK	тq	IS	NU	Gγ	H₩	ОX	UZ
L	RG	BE	KN	CR	D٨	FL	JC	LT	MI	FO	ĞК	ЪР	XY	YB	ZÐ	wГ	FH	SJ	ТK	IQ	ns	GU	HV	0W	UX	4Z
X	BG	КE	CN	DR	FA	JL	LC	МT	ЪŢ	QO	VМ	XP	YY	ZB	WD	EF	SH	ТJ	IK	NQ	GS	HU	ov	UW	AX	RZ
N	KG	Cf	DN	FR	JA	LL	MC	PT	QI	vo	XM	∕ ₽	ZY	₩В	ED	SF	ΊН	IJ	NK	GQ	HS	οU	UV	AW	RX	BZ
0	CG	DF	FN	JR	LA	ML	PC	QT	IV	XO	XW	ZP	WY	EB	ŞD	lF	IH	NJ	GK	HQ	05	UU	AV	RW	BX	KΖ
P	DG	FE	JN	LR	MA	PL	QC	VT	XI	YO	ZM	WP	Εł	SB	TD	IF	NH	GJ	HK	0Q	US	AU	RV	BW	KX	CZ
9	FG	JE	LN	MR	PA	QL	VC	XT	X1	20	WW	EP	SY	TB	ID	NF	GH	HJ	Oh.	.UQ	AS	RU	BV	KW	CX	DZ
R	JG	LE	MN	PR	QA	۷L.	XC	YT.	ZI	WO	LM	SF	TI	IB	ND	GF	HH	0J	UK	AQ	RS	BU	KV	CW	DX	FZ
2	LG	ML	PN	Ġн	VA	XL	XC	ZT	W1	CO	SM	TP	IY	NE	GD	HF	OH	υJ	AK	RQ	BS	KU	CV	DW	FX	JZ
T	MG	PE	QR	YR	AA	ΥL	ZU	W1	EI.	SO	IM	Th	NY	GB	HD	OP.	UH	AJ	KK	BQ	KS	CU	DV	FW	JX	LZ
2	PG	QE:	VN.	XR	YA	ZL	WC	Er	SI.	TO	ML	NP	GY	FB	00	UF	AH	RJ	BK	KQ	CS	DU	FV	JW	LX	MZ
¥	QG	VE	XN	YR	ZA	WL	EC	Sr	Υĭ	TO	NM	GP	HX	08	00	AF	RH	BJ	KK	CŐ	DS	FU	JY	LW	MX.	PZ
W	γG	XE	XN	ZR	WA.	EL.	SC	TT	II	NO	GM	11P	10	UB	AD	PF	BH	КJ	CK	DQ	FS	JU	LY	MW	PX	Q2
X	XG	ΥE	ZN	WK	LA	SL	TC	ΤĨ	NI	60	HM	UP	UY	AB	RD	вГ	КH	C1	DK	FO	JS	LU	MV	PW	QX	VZ
Y	YG	ZE	WN	ER	SA	TI	10	NE	ι _σ γ.	20	ON.	UP	AY	RB	RD	hΓ	CH	DJ	FF	20	LS	MO	PV	QW.	VX	YZ.
Z	ZG	WE	EN	SR	'7A	ĨĽ	NC	Gf	НJ	00	u٨	AP	Rì	BB	KD	CF	DH	FJ	JK	ĽQ	MS	PU	QV	٧W	XX	¥2,

Figure 472.

plaintext digraph, the initial letter of the plaintext digraph is used to indicate the row in which the equivalent is found, and the final letter of the plaintext digraph indicates the column, the cluber digraph is then found at the intersection of the row and column thus indicated. For example, $\overline{\mathrm{KG}_{p}}$: $\overline{\mathrm$

b. In the preceding table two nixed sequences were employed to form the clipher equivalents, one sequence being based on the key phrase WESTINGHOUSE AIF PRAKE and the other on GENERAL ELECTRIC COMPANY. The table in Figure 47a could have been drawn up in a slightly different manner, as shown in Figure 47b, and whill yield the same clipher equivalents as before. Using this latter tauls, Θ_c^1 for any plaintext digraph is found at the intersection of the power and column identified by Θ_p^1 and Θ_p^2 , respectively, Θ_c^2 is fourd in the sequence below the table and is

-RESTRICTED

 θ^2_p

Т

	A	В	C	D	E	F	G	H	I	J	ĸ	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
A	W	E	s	Т	I	N	G	Н	0	U	A	R	B	ĸ	C	D	F	J	L	M	P	Q	V	x	Y	Z
В	Е	S	Т	I	N	G	Н	0	U	A	R	В	K	C	D	F	J	L	М	P	Q	V	X	Y	Z	W
C	s	Т	I	N	G	H	0	U	A	R	В	K	C	D	F	J	L	М	Ρ	Q	V	X	Y	\mathbf{Z}	W	E
D	Т	I	N	G	н	0	U	A	R	В	K	C	D	F	J	L	Μ	Ρ	Q	V	х	Y	\mathbf{Z}	W	Е	ន
Е	II	N	G	Н	0	U	A	R	В	K	C	D	F	J	L	M	Ρ	Q	V	X	Y	Z	W	Е	S	Т
F	N	G	Н	0	ប	A	R	В	K	C	D	F	J	L	М	P	Q	V	Х	Y	\mathbf{Z}	W	Ē	S	T	I
G	G	Н	0	U	A	R	В	K	C	D	F	J	L	М	P	Q	V	Х	Y	Z	W	Е	ន	Т	I	N
Н	Н	0	U	A	R	В	K	С	D	F	J	L	М	P	Q	V	X	Y	\mathbf{Z}	W	Е	ន	T	I	Ν	G
I	0	U	A	R	В	K	C	D	F	J	L	M	P	Q	V	Х	Y	\mathbf{Z}	W	E	ន	Т	Ι	N	G	H
J	ט	A	R	В	K	C	D	F	Ĵ	L	M	P	Q	V	Х	Y	\mathbf{Z}	W	Е	S	Т	I	N	G	Н	0
K	A	R	В	ĸ	C	D	Г	J	Ľ	М	P	Q	V	Х	Y	Z	W	Е	ន	T	Ι	N	G	Н	0	U
L	R	В	ĸ	C	D	F	J	L	М	Р	Q	V	Х	Y	Z	W	Е	S	Т	Ι	N	G	Н	0	U	A
A M	B	K	С	D	F	J	L	М	P	Q	۷	X	Y	Z	W	Е	S	Т	I	N	G	Н	0	U	A	R
N	K	C	D	F	J	L	М	Р	Q	V	X	Y	Z	W	Е	ន	Т	I	N	G	Н	0	U	A	R	В
0	C	D	F	J	L	M	P	Q	V	Х	Y	Z	W	Е	S	Т	I	N	G	Н	0	U	A	R	В	Κ
F	D	F	J	L	M	P	Q	V	X	Y	Z	W	Е	S	Т	I	N	G	н	0	U	A	R	В	ĸ	C
Q	F	J	L	M	P	Q	V	х	Y	Z	W	Е	ន	Т	E	N	G	н	0	U	A	R	B	K	С	D
R	J	L	M	Ρ	Q	V	х	Y	Z	W	Е	ន	т	I	N	G	Н	0	U	A	R	В	K	C	D	F
S	[L	M	Ρ	Q	V	X	Y	Z	W	E	S	Т	I	N	G	Н	0	U	A	R	Ē	K	C	D	F	J
Т	M	P	Q	V	Х	Y	Z	W	Е	ន	Ţ	I	N	G	Н	0	U	A	R	В	K	C	D	Г	J	L
ប	P	Q	v	X	Y	Z	W	Ε	S	Т	Ï	N	G	Н	0	U	A	R	В	K	C	D	F	J	L	М
V	Q	V	Х	Y	Ζ	₩	Е	S	Т	I	N	G	Н	0	U	A	R	В	K	C	D	F	J	L	M	P
W	l V	X	Y	Z	W	Е	S	Т	I	N	G	Н	0	U	A	R	В	K	C	D	F	J	L	М	Р	Q
х	X	Y	Z	W	Ε	S	Т	Σ	N	G	Н	0	U	A	R	В	K	C	D	F	J	L	M	P	Q	V
Y	Y	Z	W	Ε	S	Т	I	N	G	Н	0	U	A	R	В	K	C	D	F	J	L	M	P	Q	V	Х
Z	Z	W	E	S	т	I	N	G	Н	0	U	A	R	В	K	C	D	F	J	L	M	P	Q	V	X	Y
θ²,	G	E	N	R	A	L	C	Т	I	0	M	P	Y	в	D	F	н	J	ĸ	Q	S	U	v	W	x	Z

Figure 47b.

taken from the position directly under the column identified by Θ_p^2 . A few sample encipherments will illustrate that this table is cryptographically equivalent to that of Fig. 47a.

c. Figures 48 and 49, below, contain other possible types of tables for digraphic substitution. In Fig. 48, it will be seen that there are two vertical sequences to the left of this table and no horizontal sequence below it. Θ_p^1 is located in the leftmost sequence, Θ_c^1 being found directly to its side in the right-hand sequence, Θ_c^2 is then found at the intersection of the row and column identified by Θ_p^1 and Θ_p^2 ,

83₀

<i>m</i> _ 1	Q]	A	B	C	D	F	F	Ģ	H	I	J	K	L	М	N	0	P	Q	R	S	ፓ	U	۷	W	x	Y	Z
A	w	G	E	N	R	A	L	6	T	I	0	M	ŀ	Y	В	D	F	н	J	K	0	S	U	v	W	X	z
В	E	Е	N	R	A	L	C	T	I	0	74	P	Y	В	D	r	н	J	ĸ	۵	ŝ	Ū	v	Ŵ	x	z	G
C	S	N	R	٨	L	C	T	I	0	M	P	Y	B	D	Г	H	J	ĸ	0	ŝ	U	v	W	X	z	G	E
D	T	R	A	L	Ċ	Т	I	0	M	P	Y	B	D	Г	Н	J	ĸ	Q	S	U	V	W	X	Z	G	E	N
Е	I	A	L	C	T	I	0	M	P	1	В	D	F	H	J	k	0	S	U	v	W	X	z	G	Ε	N	R
F	N ,	L	C	T	I	0	М	P	Y	В	D	F	H	J	K	Q	ន	Û	٧	1	X	Z	G	E	N	R	A
G	G	С	т	I	0	M	P	Y	Б	D	F	ч	J	K	Q	ន	U	Y	W	X	7	G	Г	N	R	A	L
H	н	Т	Ι	0	М	P	Y	в	D	F	Н	J	K	Q	S	ឋ	Ŷ	W	X	Z	G	Е	N	R	A	L	cl
I	0	I	0	M	P	Y	в	D	F	Н	J	ĸ	Q	8	U	۷	W	λ	Z	G	Е	N	R	A	L	C	τĺ
J	ប	0	M	P	Y	В	D	F	ч	J	K	Q	S	U	V	Ŵ	Χ	Z	G	Е	N	R	A	L	C	ſ	I
K	A	M	P	Y	В	D	I	H	J	K	Q	S	ប	۷	W	Y	Z	Ģ	Е	N	R	A	L	C	т	Ι	0
L.	R	P	Y	В	D	F	H	J	K	Q	ន	U	V	W	X	\mathbf{Z}	G	Е	N	R	A	L	C	Т	Ι	0	M [
M	в	Y	В	D	F	Н	Ĵ	ĸ	Q	S	U	۷	N	X	Z	G	Е	N	R	A	L	C	Т	Ι	0	M	P
N	K	В	D	ę	Н	J	K	Q	ន	U	V	W	X	\mathbf{Z}	G	E	N	R	A	L	C	Т	Ι	0	М	Ρ	Y
0	C	D	ŀ	Н	J	K	Q	Ŝ	U	V	W	X	Z	G	Ε	N	R	A	L	C	Т	I	0	M	Р	Y	B
P	D	F	Н	J	K	Q	ŝ	ប	V	W	X	7	G	L	N	R	A	L	ሮ	Т	1	0	M	P	У	Ĩ	D
Q	F	Н	J	K	Q	Ś	U	y	W	X	\mathbf{Z}	G	Ε	N	R	Å	L	C	т	I	0	М	P	Y	В	D	F
P	1	J	Ł	Q	\$	U	v	₩	X	Z	G	Е	N	R	A	L	C	Ţ	I	0	M	Ρ	Y	В	Ď	F	Ĥ
ន	L]	K	Q	S	U	V	W	Y	Z	G	Е	N	R	A	L	C	Ť	Ι	0	M	Ρ	Y	В	D	F	Н	J
T :	M	Q	5	U	V	W	X	Z	G	Ε	N	R	A	Г	C	T	I	0	М	P	Y	В	D	F	Н	J	h
U	P	S	U	V	W	х	Z	G	E	N	R	4	L	C	т	I	0	М	P	Y	В	D	F	H	J	K	Q
V	Qj	U	V	₩	Х	Z	G	Е	N	R	A	L	C	T	Ι	0	М	P	Y	В	D	F	Н	J	K	Q	S
W	V	V	W	X	Z	G	E	Ħ	R	A	L	C	Т	I	0	M	Р	Y	В	D	F	Н	J	K	Q	ន	υ
X	X)	W	Y	Z	G	F	N	R	A	L	C	T	Ι	0	M	P	Y	В	D	F	H	J	K	Q	ន	U	V
X.	Y	Х	Z	G	C	N	R	A	L	C	1	Ι	0	M	D	X	В	D	Ľ	H	J	K	Q	S	U	V	W
Z	ΖĮ	Z	G	Е	N	R	A	L	C	Т	Ī	0	M	Ρ	Y	B	D	ŀ	H	J	K	Q	S	U	V	W	X
	-										~	-															ł

Figure 48.

respectively. The table in Fig. 49 provides digraphic equivalents by mans of the coordinate system (e.g., $\overline{\text{ME}}_{\text{p}}=\overline{JZ}_{\text{C}}$), in the same manner as in Fig. 47a, and a cursory examination of the inside of the table might disclose nothing new about this table at sll. But, if one were to scan closely the diagonals formed by each θ_{C}^1 from upper right to lower left,

he would see that each such diagonal changes below the "M_p row", similarly, if the diagonals formed by θ_c^2 are scanned from upper left to

lower right, it will be seen that each of them also changes after the "Itp row". In effect, the inside of the table is divided into two separate portions by an imaginary line extending horizontally between the N and N rows, but within each portion a straightforward type of symmetry is exhibited and the same two mixed sequences have been employed in each. Actually, in a 26x26 table, it is not possible to maintain the diagonals formed thus by θ_d^2 and θ_c^2 in a completely "unbroken" sequence without

producing repeated digraphs within the table and without consequent cryptographic ambiguity, thus, Fig. 49 illustrates one type of limited diagonal symmetry which must be resorted to in the systematic construction of such a table.

ł

Figure 49.

d. All of the foregoing tables have exhibited a symmetry in the arrangement of their contents, which is undesirable from the standpoint of cryptographic security. This systematic internal arrangement could be detected by a cryptanalyst early in his attack on cryptograms produced through their use, permitting rapid reconstruction of the particular table involved, this subject will be given a more detailed treatment in par. 72. The table in Figure 50 is an example of one type of table which would provide more security than the foregoing. This table is constructed by random assignment of values and shows no symmetry whatsoever in its arrangement of contents. It will be noted that this table is

reciprocal in nature, that is $\overline{AF}_p = \overline{YG}_c$ and $\overline{YG}_p = \overline{AF}_c$. Thus, this single table serves for deciphering as well as for enciphering. Reciprocity is, however, not an essential factor, in fact, greater security is provided by non-reciprocal tables. But, in the case of such non-reciprocal, randomly constructed tables, each enciphering table must have its complementary deciphering table.

e. Digraphic tables employing numerical equivalents instead of letter equivalents may be encountered. However, since 676 equivalents are required (there being 676, or 26x26, different pairs of letters), this means that combinations of three figures must be used, such systems are termed trinome-digraphic systems, indicating clearly the number of elements which comprise the cipher units. By way of an example, the

following figure contains a fragment of a table⁸ which provides trinome equivalents for the plaintext digraphs:

	A	B	C	D	E			Y	Z
Α	001	002	003	004	005	 		025	026
В	027	028	029	030	031			051	052
C	053	054							r
	•••								
Y Z	625 651	626 652					-	649 675	650 676

Figure 51.

<u>f</u>. All of the foregoing tables have been digraphic in nature, but a kind of false trigraphic substitution may also be accomplished by means of similar tables, as illustrated in Figure 52, wherein the table is the same as that in Figure 49 with the addition of one more sequence at the top of the table. In using this table, $\Theta_{\rm D}^{\rm I}$ is located in sequence I, and

^o It is interesting to note that this comparatively bulky and unwieldy table can be reduced to the following two alphabets with numerical equivalents for the letters:

(1)	A 000	в 026	C 052	D 078	Е 104	F 130	•	•	•	•	•	x 598	ч .624	z 650
(2)	A l	В 2	C 3	D կ	E 5	F 6	•	•	•	•	•	х 24	Y 25	Z 26

In enciphering, the first letter of the plaintext digraph is converted into its numerical value from alphabet (1), and the second plaintext letter is converted by means of alphabet (2), the two numerical values thus derived are added together, and their sum is taken as the cipher equivalent of the particular plaintext digraph. Of course, this simple reduction would not be possible if the trinomes, in ascending order, had been arranged in the table in, say, a diagonal manner.

-RESTRICTED

I	II	A	В	С	D	Е	F	G	Н	I	J	к	L	М	N	0	P	Q	R	s	Т	U	V	W	ź	Y	Z	
	IV	R	A	D	I	0	C	Ρ	Т	N	F	М	Ε	В	G	H	J	K	L	Q	S	U	V	₩	X	Y	Z	
I	II																											
A	W	G	Е	N	R	A	L	C	Т	1	0	M	P	Y	В	D	F	H	J	K	Q	S	U	V	W	X	Z	
В	E	E	Ν	R	Α	L	C	Т	Ι	0	M	P	Y	В	D	F	Н	J	K	Q	S	U	V	W	x	Z	G	
C	ន	N	R	A	L	С	Т	I	0	M	Ρ	Y	в	D	F	Н	J	K	Q	S	U	V	W	х	Z	G	E	
D	T	R	A	Ļ	С	Т	Ι	0	М	Ρ	Y	в	D	F	Н	J	K	Q	S	U	V	W	X	Z	G	Е	И	
Е	I	A	L	C	т	I	0	M	P	Y	В	D	F	Н	J	K	Q	ន	U	V	W	Х	Z	G	Е	N	R	
F	N	L	С	Т	Ι	0	М	Ρ	Y	В	D	F	Н	J	K	Q	S	Ű.	V	W	х	z	G	Е	N	R	A	
G	G	C	Т	Ι	0	М	Ρ	Y	В	D	F	Н	J	K	Q	ន	U	۷	W	Х	Z	G	Е	N	R	A	L	
н	н	Т	I	0	М	Ρ	Y	В	D	F	Н	J	K	Q	ន	U	V	W	Х	z	G	Е	N	R	А	L	C	
I	0	I	0	М	Ρ	Y	В	Ð	F	Н	J	ĸ	Q	S	U	V	₩	Х	z	G	Е	N	R	A	L	C	T	
J	ប	0	М	P	Y	В	D	F	Н	J	K	Q	S	U	V	W	Х	z	G	Е	N	R	A	L	С	Т	I	
K	A	M	Ρ	Y	в	D	F	Н	J	К	Q	S	U	v	W	х	Z	G	Е	N	R	A	L	C	т	I	0	
L	R	P	Y	в	D	F	Н	J	ĸ	Q	s	U	v	W	х	\mathbf{Z}	G	Е	N	R	А	L	С	т	Ι	0	M	
M	В	Y	в	D	F	Н	J	K	Q	s	U	V	W	х	z	G	Е	N	R	A	L	С	т	Ι	0	М	P	
N	K	В	Ð	F	н	J	K	Q	ន	U	٧	W	х	\mathbf{Z}	G	Е	N	R	A	L	С	Т	Ι	0	М	Ρ	Y	
0	C	D	F	н	J	К	Q	S	U	۷	W	х	Z	G	Е	N	R	A	L	C	т	I	0	М	Ρ	Y	B	
P	D	F	Н	J	К	Q	S	U	V	W	х	\mathbf{Z}	G	Е	N	R	Α	L	C	т	Ι	0	М	Ρ	Y	В	D	
Q	F	Н	J	К	Q	s	U	۷	W	X	Z	G	E	N	R	A	L	C	Т	I	0	М	Ρ	Y	В	D	F	
R	J	J	K	Q	S	U	V	W	х	\mathbf{Z}	G	Е	N	R	A	L	C	Т	Ι	0	М	Ρ	Y	В	D	F	н	
ន	L	K	Q	S	ប	v	W	х	\mathbf{Z}	G	Е	N	R	А	L	C	т	I	0	M	Ρ	Y	в	D	F	Н	J	
т	м	Q	ຣ	U	v	W	х	\mathbf{Z}	G	E	N	R	A	L	C	т	I	0	М	Ρ	Y	в	D	F	Н	J	к	
U	P	S	U	v	W	х	z	G	Ε	N	R	A	L	C	т	I	0	M	P	Y	в	D	F	Н	J	ĸ	0	
v	Q	U	v	W	х	z	G	E	N	R	A	L	£	т	Ι	0	М	Ρ	Y	в	D	F	Н	J	ĸ	Q	s	
W	v	V	W	х	\mathbf{Z}	G	Е	N	R	A	L	-C	T	Ι	0	М	Ρ	Y	в	D	F	н	J	К	Q	s	υl	
x	x	W	х	z	G	Е	N	R	A	L	C	Ŧ	I	0	М	Р	Y	В	D	F	н	J	К	Q	s	U	vl	
Y	Y	X	z	G	Е	N	R	A	L	C	т	Ι	0	M	P	Y	В	D	F	Н	J	К	Q	s	ប	V	w	
Z	Z	Z	G	Е	N	R	A	L	C	Т	Ι	0	M	P	Y	В	D	F	Н	J	K	Q	S	U	V	W	x	

its equivalent, θ_c^1 , taken from sequence II; θ_p^2 is located in sequence III, and its equivalent, θ_c^2 , taken from sequence IV; θ_c^3 is the letter lying at the intersection of the row indicated by θ_p^3 in sequence I and the column determined by θ_p^2 . Thus, FIRE LINES would be enciphered $\overline{\text{NNZ}}$ $\overline{\text{IEQ KOV}}$. Various other agreements may be made with respect to the alphabets in which each plaintext letter will be sought in such a table, but the basic cryptographic principles are the same as in the case described.

g. Tables such as those illustrated in Figs. 47-52, above, have been encountered in operational systems, but their use has not been very widespread because of their relatively large size and the inconvenience in their production and handling. In lieu of these large tables it is possible to employ much smaller matrices or geometrical designs to accomplish digraphic substitution, methods involving their use will be discussed in the following paragraph.

Polygraphic substitution methods employing small matrices.9---66 a. A simple method for accomplishing digraphic substitution involves the use of the four-square mutrix, a matrix consisting of four 575 squares in which the letters of a 25-clement alphabet (combining I and J) are inserted in any prearranged order. When four such squares are arranged in a matrix as shown in Figure 53, the latter may be cmployed for digraphic substitution to yield the same cipher results as does a much larger table of the type treated in the preceding paragraph. In a four-square matrix, θ_p^1 of $\overline{\Theta \Theta}_p$ is sought in section 1, θ_p^2 , in section 2. Thus, θ_p^1 and θ_p^2 will always form the northwest-southeast corners of an imaginary rectangle delimited by these two letters as located in these two sections of the square. Then θ_c^1 and θ_c^2 are, respectively, the letters at the northeast-southwest corners of this same rectangle. Thus, $\overline{TG}_{p}=\overline{XS}_{c}, \overline{VD}_{p}=\overline{CH}_{c}, \overline{OR}_{p}=\overline{W}_{c}; \overline{VR}_{p}=\overline{XB}_{c}; \text{ etc. In decrypting, } \Theta_{c}^{1} \text{ and } \Theta_{c}^{2} \text{ are}$ sought in sections 3 and h, respectively, and their equivalents, Θ_p^1 and $\theta_{\rm p}^2$, noted in sections 1 and 2, respectively.

ı

	A	В	C	D	Е	F	0	ប	R	T	
_	F	G	н	I	K	L	М	P	Q	Е	
Sec. 1 (θ_p^1)	L	М	N	0	P	К	Y	Z	S	N	Sec. 3 (θ_c^l)
-	ର୍	R	ន	T	υ	I	x	V	v	A	
	v	W	Х	Y	Z	H	G	D	C	В	
	T	H	I	R	Е	A	В	С	D	Е	
	0	Ρ	ନ୍ଦ	S	N	F	Ģ	H	I	K	
Sec. 4 (θ_c^2)	М	Y	Z	U	Α	L	М	N	0	P	Sec. 2 (θ_{p}^{2})
	L	х	W	V	в	ୡ	R	S	T	υ	P
	к	G	F	D	C	V	W	x	Y	Z	

Figure 53.

<u>b</u>. It is possible to effect digraphic substitution with a matrix consisting of but two sections by a modification in the method of finding equivalents. In a horizontal two-square matrix, such as that shown in Figure 54, θ_p^1 of $\overline{\theta}\overline{\theta}_p$ is located in the square at the left, θ_p^2 , in the square at the right.

⁹ The word <u>matrix</u> as employed in this paragraph refers to checkerboard-type diagrams smaller than the tables illustrated in the preceding paragraph. These matrices are usually composed of sections containing 25 cells each.

When θ_p^1 and θ_p^2 are at the opposite ends of the diagonal of an imaginary rectangle defined by these letters, the ciphertext equivalent comprises the two letters appearing at the opposite ends of the other diagonal of the same rectangle, θ_c^1 is the particular one which is in the same row as θ_p^1 , and θ_c^2 is the one in the same row as θ_p^2 . For example, $\overline{AI_p}=\overline{TI_c}$, $\overline{DO_p}=\overline{GA_c}$. When θ_p^1 and θ_p^2 happen to be in the same row, the ciphertext equivalent is merely the reverse of the plaintext digraph, for example, $\overline{AT_p}=\overline{TA_c}$ and $\overline{EH_p}=\overline{HE_c}$.

c. Digrephic substitution may also be effected by means of verticel two-square matrices, in which one section is directly above the other, as in Figure 55, it will be noted that matrices of this type have a feature of reciprocity when employed according to the usual rules, which follow.

М	A	N	U	F
C	T	R	I	G
В	þ	Ē	н	ĸ
L	0	Р	Q	S
V	W	X	Y	z
A	U	T	0	M
В	I	L	E	s
C	D	F	G	Н
K	N	P	Q	R
Y	W	X	Y	Z

Figure 55.

When θ_p^1 and θ_p^2 are at the opposite ends of a diagonal, the rule for encipherment is the same as that for horizontal two-square encipherment (e.g., $\overline{\text{MO}_p}=\overline{\text{UA}_c}$ and $\overline{\text{UA}_p}=\overline{\text{MO}_c}$); when both θ_p^1 and θ_p^2 happen to be in the same column, the plaintext digraphs are self-enciphered, (e.g., $\overline{\text{MA}_p}=\overline{\text{MA}_c}$ and $\overline{\text{EL}_p}=\overline{\text{EL}_c}$), a fact which constitutes an important weakness of this method.¹⁰ This disadvantage is only slightly less obvious in the preceding case of horizontal two-square methods wherein the cipher equivalent of $\overline{\theta_p}$ consists merely of the plaintext letters in reversed order.

d. One-square digraphic methods, with a necessary modification of the method for finding equivalents, are also possible. The first of this type to appear as a practical military system was that known as the <u>Playfair cipher</u>.¹¹ It was used for a number of years as a field cipher by the British Army, before and during World War I, and for a short time, also during that war, by certain units of the American Expeditionary Forces. Figure 56 shows a typical Playfair square. The modification in the method of finding cipher equivalents has been found useful in

М	A	N	U	F
C	Т	R	I	G
В	D	Е	Ħ	K
L	0	Р	Q	ន
V	W	X	Y	Z

Figure 56.

imparting a greater degree of security than that afforded in the preceding small matrix methods. The usual method of encipherment can be best explained by examples given under four categories:

¹⁰ See subpar. 73b on other enciphering conventions which remove this weakness.

¹¹ This cipher was really invented by Sir Charles Wheatstone but receives its name from Lord Playfair, who apparently was its sponsor before the British Foreign Office. See Wemyss Reid, <u>Memoirs of Lyon Playfair</u>, London, 1899. It is of interest to note that, to students of electrical engineering, Wheatstone is generally not known for his contributions to cryptography but is famed for something he did not invent--the so-called Wheatstone bridge", really invented by Samuel H. Christie.

REF ID:A56892

(1) Members of the plaintext pair, Θ_p^1 and Θ_p^2 , are at opposite ends of the diagonal of an imaginary rectangle defined by the two letters, the members of the ciphertext pair, Θ_c^1 and Θ_c^2 , are at the opposite ends of the other diagonal of this imaginary rectangle. Examples $\overline{\text{MO}}_p = \overline{\text{AL}}_c$, $\overline{\text{MI}}_p = \overline{\text{UC}}_c$, $\overline{\text{LU}}_p = \overline{\text{QM}}_c$, $\overline{\text{VI}}_p = \overline{\text{YC}}_c$.

(2) θ_p^1 and θ_p^2 are in the same row, the letter immediately to the <u>right</u> of θ_p^1 forms θ_c^1 , the letter immediately to the right of θ_p^2 forms θ_c^2 . When either θ_p^1 or θ_p^2 is at the extreme right of the row, the first letter in the row becomes its cipher equivalent. Examples $\overline{MA_p}=\overline{AN_c}$, $\overline{IN_p}=\overline{AF_c}$; $\overline{AF_p}=\overline{NM_c}$; $\overline{FA_p}=\overline{MN_c}$.

(3) Θ_p^1 and Θ_p^2 are in the same column, the letter immediately below Θ_p^1 forms Θ_c^1 , the letter immediately below Θ_p^2 forms Θ_c^2 . When either Θ_p^1 or Θ_p^2 is at the bottom of the column, the top letter in that column becomes its cipher equivalent. Examples $\overline{MC_p}=\overline{CB_c}$, $\overline{AW_p}=\overline{TA_c}$, $\overline{WA_p}=\overline{AT_c}$, $\overline{CU_p}=\overline{YI_c}$.

(4) θ_p^1 and θ_p^2 are identical, they are to be separated by inserting a null, usually the letter X or Q, and subsequently enciphered by the pertinent rule from above. For example, the word BATTLES would be enciphered thus.

BA TX TL ES DM RW CO KP

The Playfair square is automatically reciprocal so far as enciphermonts of type (1) above are concerned, but this is not true of encipherments of type (2) and (3).

e. It is not essential that the small matrices used for digraphic substitution be in the shape of perfect squares, rectangular designs will serve equally well, with little or no modification in procedure.¹² For example, each section of, say, a four-square matrix could be constructed with four rows containing six letters each by having U_p serve for V_p , as well as J_p for J_p . Furthermore, it is possible to expand the sections of a digraphic matrix to 28, 30, or more characters by the following subterfuge, without introducing digits or symbols into the cipher text.¹³ One

¹² However, because the terms "four-square matrix", "two-square matrix", and "Playfair square" have become firmly fired in cryptologic literature and practice, they continue to be applied to all such matrices, even when the "squares" of such matrices do not contain on equal number of rows and columns (that is, even when they are not square).

¹³ The addition of any symbols such as the digits 1, 2, 3,... unto a matric solely to augment the number of elements to 27, 28, 30, 32, or 36 characters would not be considered placticable, since such a plocedure would result in producing cryptograms containing intervixtures of letters and figures.

RESTRICTED

of the letters of the alphabet may be omitted from the set of 26 letters, and this letter may then be replaced by 2, 3, or more <u>pairs</u> of letters, each pair having as one of its members the omitted single letter. The 5x6 Playfair square of Figure 57a has been derived thus, the letter K has been omitted as a single letter, and the number of characters in the rectangle has been made a total of 30 by the addition of five combinations of K with other letters. An interesting consequence of this

W	A	ន	H	I	N
G	T	0	В	C	D
E	F	J	KA	KE	KI
KO	KU	L	M	P	Q
R	U	V	X	Y	Z

Figure 57a.

modification is that certain irregularities are introduced in any cryptogram produced through its use, for example, (1) occasionally a plaintext digraph is replaced by ciphertext trigraph or tetragraph, such as

 $\overline{AM_p}$ =HKU_c and $\overline{EP_p}$ =KEKO_c; and (2) variant values may appear--EKE_c, $\overline{DKE_c}$, $\overline{KEP_c}$, $\overline{GP_c}$, and $\overline{TP_c}$ all may be used to represent $\overline{CK_p}$. As far as the deciphering is concerned, there is no difficulty because any K occurring in the cipher text is considered as invariably forming a ligature with the succeeding letter, taking the pair of letters as a unit; and, when a plaintext unit is obtained containing one of the K-pairs, the letter after the K is disregarded, for example, $\overline{CKO_p}$ is read as CK. The four-

square matrix in Fig. 57b has also been constructed using the foregoing

		-											
	В	2	E	5	R	L	A	B	C	D	E	F	
	I	9	N	Λ	1	C	G	H	I	J	KA	KΈ	
^ 1	3	D	4	F	6	G	ΚI	KO	KU	KY	L	M	_1
p	7	H	8	J	Ø	K	N	0	P	QA	QE	QI	σc
	М	0	P	ବ	S	T	ର୍ଠ	ର୍ଯ	QY	R	ន	T	
	U	V	Ũ	X	Y	Z	U	V	W	X	Y	Z	
	A	В	C	D	E	F	M	ប	N	I	9	C	
	G	Ħ	I	J	KA	KE	3	H	8	A	1	B	
2	KI	KO	KU	KY	L	M	2	D	4	E	5	F	_2
e	N	0	P	QA	QE	QI	6	G	7	J	Ø	K	e p
	ର୍ଠ	ର୍ଅ	QY	R	ន	T	L	0	P	ନ୍ଦ	R	S	-
	U	V	W	X	Y	Z	T	V	V	X	Y	Z	

Figure 57b.

-RESTRICTED

subterfuge. With this latter matrix, numbers in the plain text may be enciphered, still without producing <u>cipher</u> text containing numbers, for example, the plain text "HILL 3406" would be represented by the cipher QAB AT KUKI NQE, which would be regrouped into groups of five letters and sent as QABAT KUKIN QE...

f. Figure 58 shows a numerical four-square matrix which presents a rather interesting feature in that it makes possible the substitution of 3-figure combinations for digraphs in a unique manner. To encipher a message one proceeds as usual to find the numerical equivalents of a pair, and then these numbers are added together Thus

Plain text.	PR	OC	EE	DI	NG
	275	350	100	075	325
	9	13	24	18	7
Cipher text ·	284	363	124	093	332

	A	В	C	D	E	000	025	050	075	100	
	F	G	Н	I	к	125	150	175	200	225	
Sec 1 (θ_p^i)	L	М	N	0	P	250	275	300	325	350	Sec 3 (θ^{1}_{c})
	Q	R	S	Т	U	375	400	425	450	475	
	v	W	x	Y	Z	500	525	550	575	600	
	0	1	2	3	4	V	Q	L	F	A	
	5	6	7	8	9	W	R	M	G	В	
Sec 4 (θ_c^2)	10	11	12	13	14	X	ន	N	н	C	Sec 2 (θ_p^2)
	15	16	17	18	19	Y	T	0	I	D	
	20	21	22	23	24	Z	U	Р	к	E	

Figure 58.

In deciphering, the greatest multiple of 25 contained in the group of three digits is determined, then this multiple and its remainder are used to form the elements for determining the plaintext pair in the usual manner. Thus, 284=275 + 9=PR.

g. Thus far all the small-matrix methods have involved only digraphic substitution. The two matrices together illustrated in Figures 59a and b may be used to provide a system for encipherment which is partly trigraphic, the adverb "partly" has been used because this particular system will yield trigraphic encipherment approximately 88.7% of the time in ordinary text and digraphic encipherment approximately 11.5% of the time.¹⁴ In this case the cipher equivalents of the trigraphs

14 These figures are based on the number of trigraphs ending in one of the 15 highest-frequency letters (ETNROAISDLHCFFU), and on the number of trigraphs ending with other letters.

<u>RESTRICTED</u>

						-									Contraction of the local division of the loc			-	
H ₁	H ₂ H ₃	H4	Y ₁	Y ₂	¥3	Y ₄	D1	D ₂	00	01	02	03	04	05	06	07	08	09	
n ³	$D_4 R_1$	K2	К3 7	R4	A1 -	A2	A3 T	A ₄	10	11	15	13	14	15	10	11	10	19	
	$U_2 U_3$	U4	L1	\mathbb{L}_2	L3	L_4	\mathbf{I}_1	12	20	21	22	23	24	25	26	27	28	29	
13	$14 C_1$	C_2	C ³	C ₄	\mathbb{B}_1	$\underline{B_2}$	B3	B ₄	30	31	32	33	34	35	36	37	38	39	
E1 .	E2 E3	Ĕ4	^µ 1	F2	Fз	F4	G ₁	G2	40	41	42	43	44	45	46	47	48	49	
G3	G_4 K_1	K2	K3	K_4	M_1	M_2	M_3	M_4	50	51	52	53	54	55	56	57	58	59	
\mathbb{N}_1	$N_2 N_3$	N_4	01	02	03	0_4	P_1	P_2	60	61	62	63	64	65	66	67	68	69	
P3 :	$P_4 Q_1$	Q_2	ସ୍ତ	Q_4	s_1	S_2	S_3	S_4	70	71	72	73	74	75	76	77	78	79	
T_1	$T_2 T_3$	${ m T}_4$	٧ı	v_2	V3	v_4	W_1	W_2	80	81	82	83	84	85	86	87	88	89	1234
W3 1	$W_4 X_1$	X_2	Хз	X_4	z_1	\mathbf{Z}_{2}	\mathbf{Z}_{3}	\mathbb{Z}_4	90	91	92	93	94	95	96	97	98	99	l-ETN
00	01 02	2 03	04	05	06	07	08	09	Q.1	02	Q3	Q.4	Ŭ1	U 2	U3	U4	E1	E_2	2 R O A I
110	11 12	2 13	14	15	16	17	18	19	E3	E4	Si	S 2	Sa	S ₄	Tĩ	T_2	Τŝ	T_4	3 S D L H
					~	•	-0			. ~			÷		-	-	-		4 IC F P U
20	21 22	23	24	25	26	27	28	29	I1	I2	13	I 4	01	02	03	04	N_1	N_2	
20 30	21 22 31 32	2 23 2 33	24 34	25 35	26 36	27 37	28 38	29 39	I ₁ N3	I_2 N4	I3 A1	I4 A2	01 A3	02 A4	03 B1	04 B2	N_1 B ₃	\mathbb{N}_2 \mathbb{B}_4	
20 30 40	21 22 31 32 41 42	23 23 233 243	24 34 44	25 35 45	26 36 46	27 37 47	28 38 48	29 39 49	I ₁ N3 L1	I_2 N4 L2	13 A1 L3	I4 A2 L4	01 A3 Y1	$ \begin{array}{c} 0_2 \\ A_4 \\ Y_2 \end{array} $	03 B1 Y3	04 B2 ¥4	N1 B3 C1	N2 B4 C2	Fig. 59b.
20 30 40 50	21 22 31 32 41 42 51 52	23 233 243 243 253	24 34 44 54	25 35 45 55	26 36 46 56	27 37 47 57	28 38 48 58	29 39 49 59	I ₁ N3 L1 C3	I2 N4 L2 C4	I3 A1 L3 D1	I4 A2 L4 D2	01 A3 Y1 D3	02 A4 Y2 D4	03 B1 Y3 F1	04 B2 ¥4 F2	N1 B3 C1 F3	$f N_2 \ B_4 \ C_2 \ F_4$	Fig. 59b.
20 30 40 50 60	21 22 31 32 41 42 51 52 61 62	23 233 233 243 253 253	24 34 44 54 64	25 35 55 55 55	26 36 46 56	27 37 47 57 67	28 38 48 58 68	29 39 49 59	I ₁ N ₃ L ₁ C ₃ G ₁	I2 N4 L2 C4 G2	I3 A1 L3 D1 G3	I4 A2 L4 D2 G4	01 A3 Y1 D3 H1	02 A4 Y2 D4 H2	03 B1 Y3 F1 H3	04 B2 ¥4 F2 H4	N1 B3 C1 F3 K1	$f N_2 \ B_4 \ C_2 \ F_4 \ K_2$	Fig. 59 <u>b</u> .
20 30 40 50 60 70	$\begin{array}{c} 21 & 22 \\ 31 & 32 \\ 41 & 42 \\ 51 & 52 \\ 61 & 62 \\ 71 & 72 \end{array}$	23 23 23 23 23 23 23 24 33 25 32 25 33 25 35 25 25 35 25 25 25 25 25 25 25 25 25 25 25 25 25	24 34 44 54 74	25 34 55 55 55 75	26 36 46 56 76	27 37 47 57 67 77	28 38 48 58 68 78	29 39 49 59 69 79	I1 N3 L1 C3 G1 K3	I2 N4 L2 C4 G2 K4	I3 A1 L3 D1 G3 M1	I4 A2 L4 D2 G4 M2	01 A3 Y1 D3 H1 M3	O2 A4 Y2 D4 H2 M4	03 B1 Y3 F1 H3 P1	04 B2 ¥4 F2 H4 P2	N1 B3 C1 F3 K1 P3	N2 B4 C2 F4 K2 P4	Fig. 59 <u>b</u> .
20 30 40 50 60 70 80	21 22 31 32 41 42 51 52 61 62 71 72 81 82	23 33 43 53 53 73 8 2 8 3	24 34 4 54 54 784	25 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26 36 56 76 86	27 37 47 57 67 77 87	28 38 48 58 68 78 88	29 39 39 59 79 79 79	I1 N3 L1 C3 G1 K3 R1	I2 N4 L2 C4 G2 K4 R2	13 A1 L3 D1 G3 M1 R3	I4 A2 L4 D2 G4 M2 R4	O ₁ A ₃ Y ₁ D ₃ H ₁ M ₃ V ₁	02 A4 Y2 D4 H2 M4 V2	03 B1 Y3 F1 H3 P1 V3	04 B2 ¥4 F2 H4 P2 V4	N1 B3 C1 F3 K1 P3 W1	N2 B4 C2 F4 K2 P4 W2	Fig. 59b.
20 30 40 50 60 70 80 90	21 22 31 32 41 42 51 52 61 62 71 72 81 82 91 92	2 23 2 33 2 43 2 53 2 63 2 63 2 73 2 83 2 93	244456789	2555555555 7895	26 36 56 76 76 96	27 37 47 57 67 77 87 97	28 38 58 58 78 88 98	29 39 49 59 69 79 89 99	I1 N3 L1 C3 G1 K3 R1 W3	I2 N4 C4 G2 K4 R2 W4	13 A1 L3 D1 G3 M1 R3 X1	I4 A2 L4 D2 G4 M2 R4 X2	01 A3 Y1 D3 H1 M3 V1 X3	O ₂ A4 Y ₂ D4 H2 M4 V ₂ X4	03 B1 Y3 F1 H3 P1 V3 Z1	04 B2 ¥4 F2 H4 P2 V4 Z2	N1 B3 C1 F3 K1 P3 W1 Z3	N2 B4 C2 F4 K2 P4 W2 Z4	Fig. 59 <u>b</u> .

Figure 59a.

(or digraphs, as the case may be) are tetranomes. Encipherment is best illustrated by an example, this is given in the next subparagraph.

h. Let the text to be enciphered be a message beginning with the words "REFERRING TO YOUR MESSAGE NUMBER FIVE STOP" This is rewritten into trigraphs, with the proviso that the third letter of the trigraph be one of the letters contained in the small square in Fig. 59b, if the third letter is not one of these 15 letters, the plaintext grouping is left as a digraph, then the grouping into trigraphs (or digraphs) continues. Thus, the foregoing plain text would be written as follows.

REF ERR IN- GTO YOU RME SSA GEN UM- BER FI- VES TOP ...

In encipherment, it is to be noticed that R_p occurs four times in section 1 (as do all the letters) and E_p occurs four times in section 2; the proper combination of the 16 possibilities is determined by the coordinates of the third letter of the trigraph as inducated in the small square, Fig. 59b. Since the coordinates of Fp in this square are 42, then it is the 4th occurrence of R_p in section 1 and the 2d occurrence of E_p in section 2 which are used to obtain the equivalent for the trigraph $\overline{\text{ReF}}_p$, this equivalent is 1905. When the plaintext unit as obtained above is only a digraph, it is the <u>lst</u> occurrence of θ_p^{\perp} which is used in section 1 and the <u>lst</u> occurrence of θ_p^2 which is used in section 2; thus, "IN-" from the sample message beginning, above, would be enciphered 2828. The encipherment of the plaintext example above is then

REF ERR IN- GTO YOU RME SSA GEN UM- BER FI- VES TOP 1905 4081 2828 4719 0727 1372 7417 4118 2270 3807 4024 8806 8623

The cipher text could then be transmitted in groups of four digits, or, as a subterfuge to conceal the basic group length, the transmission could be in five-digit groups. In decipherment, the ciphertext tetranome is deciphered in the manner of the usual four-square matrix, and the location of the particular values for θ_p^1 and θ_p^2 will indicate the identity of the third plaintext letter, if any.

1. Now that the student has become familiar with the details of typical polygraphic substitution systems, he is ready to continue his cryptanalytic study with the treatment of methods for recognizing polygraphic substitution, these methods are described in the next paragraph.

67. Methods for recognizing polygraphic substitution .-- a. The methods used to determine whether a given cryptogram is digraphic in character are usually rather simple. If there are many repetitions in a cryptogram or a set of cryptograms and vet the uniliteral frequency distribution gives no clear-cut indications of monoalphabeticity, if most of the repetitions contain an even number of letters and these repetitions for the most part begin on he odd letters and end on the even letters of the message, yet the cipher text does not yield to solution as a biliteral cipher when the procedures outlined in Sections VII and VIII are applied to it, if the cryptograms usually contain an even number of letters (exclusive of nulls), and if the cipher text is in letters and all 26 letters are not present and J or U are among the absent letters (or if the cipher is in digits and there is a limitation in the range of the text when divided into transmes, this range usually being not greater than 001-676), then the encipherment may be assumed to be digraphic in nature.

b. Although the foregoing general remarks are true as far as they go, occasionally they may be difficult to apply with any clear-cut results unless a large volume of cipher text is available for study. To surplement them there are statistical tests which may be applied for the recognition of digraphic substitution. Just as the ϕ test and the Λ test may be applied to the uniliteral distribution of a cryptogram to help determine whether it is monoalphabetic with respect to singleletter plaintext units, so may these same tests be applied to the <u>diraphic</u> distribution of a cryptogram for the purpose of determining whether the cryptogram in question is monoalphabetic when considered as a digraphic cipher.

c The basic form of the ϕ test is the same when applied to digraphic distributions as when applied to monographic--thet is, uniliteral--distributions (see par. 27). It is only the plain and random constants that change, and "N" in the formulas now pertains to the number of <u>digraphs</u> under consideration, instead of the number of single letters.

-RESTRICTED

To illustrate this, the formulas for computing the "digraphic phi plain (ϕ_n^2) " and the "digraphic phi random (ϕ_n^2) " are shown below:¹⁵

$$\phi_p^2 = .0069 N(N-1)$$

 $\phi_r^2 = .0015 N(N-1)$

The "digraphic phi observed (ϕ^2) " is calculated in the usual manner, that is, by multiplying each f (which in this case is found in one of the cells of a digraphic distribution) by <u>f-1</u>, and then totalling all the values thus derived.

d. The Λ^2 test (or the "digraphic blank-expectation test") may be applied to a digraphic distribution just as easily as its monographic counterpart is applied to a uniliteral frequency distribution. For this purpose, Chart 8 is given below, showing the average number of blanks theoretically expected in digraphic distributions for plain text and for random text containing various numbers of digraphs (up to 200 digraphs). As can be seen, the chart contains two curves. The one labeled P applies to the average number of blanks theoretically expected in digraphic distributions based upon normal plaintext messages containing the indicated number of digraphs. The other curve, labeled R, applies to the average number of blanks theoretically expected in digraphic distri-

¹⁵ The digraphic plain constant, .0069, was obtained by summing the squares of the probabilities of digraphs in English plain text; the digraphic random constant, .0015, is merely the decimal equivalent of 1/676. Further elaboration on the use of these constants, among others, will be given in Military Cryptanalysis, Part II.

RESTRICTED

Chari 8.

but lons based upon perfectly random assortments of digraphs. In using this chart one finds the point of intersection of the vertical coordinate corresponding to the number of digraphs in the message, with the horizontal coordinate corresponding to the observed number of blanks in the digraphic distribution for the message. If this point of intersection falls closer to curve <u>P</u> than it does to curve <u>R</u>, this is evidence

-RESTRICTED

that the cryptogram is digraphic in nature¹⁶; if it falls closer to curve <u>R</u> than to curve <u>P</u>, this is evidence that the cryptogram is not digraphic in character.

e. Although it may not be necessary to resort to the use of the ϕ^2 and Λ^2 test to determine whether or not a particular cryptogram has been digraphically enciphered, it is well to know the application of these tests, since use has been made of them in difficult cases in operational practice. They may be helpfully employed in cases where the cryptanalyst is uncertain as to whether or not a single null has been added at the beginning of a cryptogram suspected to be a digraphic cipher; and these tests may also be found useful in the analysis of complex cases where the digraphic encipherment has been applied, not to adjacent letters of the plaintext message, but to digraphs composed of more-or-less separated letters in the message. Elaborations of these ideas will be treated in Military Cryptanalysis, Part II.

f. As for the recognition of trigraphic substitution ciphers--if most of the repetitions are a multiple of three letters in length, if these repetitions for the most part begin (when the cipher text is divided into trigraphs) with the first letters and end with the third letters of the trigraphs, and if the length of the cryptograms is for the most part a multiple of three letters, yet the cipher text does not yield to solution as a triliteral cipher, then the encipherment may be assumed to be trigraphic in nature.

g. Just as the ϕ test may be used as an aid in the recognition of digraphicity, it may theoretically be used for recognizing the trigraphic, tetragraphic, etc., nature of cryptograms, but its use for these latter purposes is much more limited because of the large amount of text which would be required to permit a valid application of the pertinent polygraphic ϕ test.

68. General procedure in the identification and analysis of polygraphic substitution ciphers.--a. Certain systems which at first glance seem to be polygraphic, in that groupings of plaintext letters are treated as units, are on closer inspection seen to be only partly polygraphic in character. Such is true of systems involving large tables of the type illustrated in Figs. 47a and b, and 48 (in par. 65, above),

¹⁶ Unfortunately, such would also be the case if the cryptogram under consideration were a polyalphabetic cipher involving two alphabets. However, to distinguish between a digraphic cipher and a polyalphabetic cipher with two alphabets, a digraphic distribution could be made "off the cut", that is, made of those ciphertext digraphs which are formed by omitting the first letter of text and then dividing the remaining text into groups of two letters. If the system were digraphic, such a distribution would exhibit a poor ϕ_0^2 ; if the system were a two-alphabet substitution system, the ϕ_0^2 would be as satisfactory as that of the regular distribution, taken "on the cut".

wherein encipherment is by pairs but one of the letters in each pair is cnciphered monoalphabetically, making these systems only <u>pseudo-poly-</u> graphic. For example, using the table in Figure 48, any plaintext digraph beginning with "A" must be enciphered by a ciphertext digraph beginning with "W"; any plaintext digraph beginning with "B" must be enciphered by a ciphertext digraph beginning with "E"; etc. A cryptogram involving the use of this table may then be identified as such merely from a study of the uniliteral frequency distribution made on the initial letters of the cipher digraphs, since such a distribution would perforce be monoalphabetic.¹⁷

b. In certain other systems -- namely, the four-square, two-square, and Playfair square systems of par. 66, above -- the method of encipherment is by pairs, but the encipherments of the left-hand and right-hand members of the pairs show group relationships; this is not pseudopolygraphic but, rather, <u>partially</u>-polygraphic. Cryptograms enciphered by means of systems of this latter type may not be readily identified as such merely througn an examination of their cipher text, but their solution may be effected rather repidly as scon as a few correct plaintext assumptions have been made therein. A more detailed treatment of this matter will be given in succeeding paragraphs of this section.

c. The analysis of cryptograms which have been produced by digraphic substitution is accomplished largely by the application of the simple principles of frequency of digraphs,¹⁸ with the additional aid of digraphic idiomorphs and such special circumstances as may be known to or suspected by the cryptanalyst. The latter refer to peculiarities which may be the result of the particular method employed in obtaining the equivalents of the plaintext digraphs in the encrypting process, such as those mentioned in subpars. a and b, above. In general, if there is sufficient text to disclose the normal phenomena of repetition and idiomorphism, or if cribs are available to be used as an entering wedge, solution will be feasible. The foregoing general statements will be expanded upon in the following two subparagraphs, d and e.

d. When a digraphic system is employed in regular service, there is little doubt that traffic will rapidly accumulate to an amount more than sufficient to permit of solution by simple principles of frequency. Sometimes only two or three long messages, or a half-dozen of average length, are sufficient. For with the identification of only a few cipher

¹⁷ For this purpose, the simplest and most economical way to obtain the uniliteral distributions for the initial and final letters of digraphs is to make a digraphic distribution and then add the tallies in each row to yield the distribution for the initial letters, and add the tallies in each column to obtain the distribution for the final letters. 18

In this connection, it would be well for the student to familiarize himself with that portion of Appendix 2 which contains digraphic frequency data.

RESTRICTED

digraphs, larger portions of messages may be read because the sheletons of words formed from the few high-frequency digraphs very definitely limit the values that can be inserted for the intervening unidentified digraphs. For example, suppose that the plaintext digraphs RE, IN, ON, ND, NO, SI, NT, and TO are among those that have been identified by frequency considerations, corroborated by a tentatively identified long repetition; and suppose also that the enemy is known to be using a large table of 676 cells containing digraphs showing reciprocal equivalence between plaintext and ciphertext digraphs. Suppose the message begins as follows (in which the assumed values have been inserted).

XQ	vo	ZI ND	LK IN	AP	OL NT	ZX	PV RE	CK	IK	OL NT	UK NO	ΤA	HN	lK IN
VL	BN	0Z	BZ	DY TO	TY	LE	GI							

The initial words SECOND INFANTRY REGIMENT are readily recognized. Furthermore, if $\overline{CK}_c = \overline{GI}_p$, then $\overline{GI}_c = \overline{CK}_p$, which suggests ATTACK as the last word in the message beginning. This fragment of the message may now be completely recovered. SECOND INFANTRY REGIMENT NOT YET IN POSITION TO ATTACK....

e. Just as the choice of probable words in the solution of uniliteral systems is aided or limited by the positions of repeated letters (see subpar. 49d), so, in digraphic ciphers, is the placing of cribs aided or limited by the positions of repeated digraphs. In this connection, several frequent words and phrases containing repeated digraphs have been tabulated for the student's aid, and this list of digraphic idiomorphs is presented as Section D in Appendix 3 (q.v.). Thus, if one is confronted by a ciphertext message containing the following repeated sequence (therefore likely to represent an entire word).

VI <u>FW</u> HM AZ FF <u>FW</u> RO

he may refer to the appropriate section of Appendix 3 which will disclose, on the basis of the idiomorphic pattern "AB -- -- - AB" starting with the second cipher digraph, that the underlying plaintext word may be RE EN FO RC EM EN T, among others. Once a good start has been made and a few words have been solved, subsequent work is quite simple and straightforward. A knowledge of enemy correspondence, including data regarding its most common words and phrases, is of as much assistance in breaking down digraphic systems as it is in the solution of any other cryptosystems.

f. In the case of trigraphic substitution, analysis is made considerably more complex by the large amount of traffic required, not only for the initial entries, but also for further exploitation of the entering wedges. In effect, the solution of a trigraphic system closely parallels the solution of the syllabary portion of a large two-part code, these techniques will be discussed in Military Cryptanalysis, Part V.

69. Analysis of four-square matrix systems .-- a. In all the smallmatrix methods illustrated in paragraph 66, the encipherment is only partially digraphic because there are certain relationships between those plaintext digraphs which have common elements and their corresponding ciphertext digraphs, which will also have common elements. For example, in the four-square matrix given in Fig. 53, it will be noted that $\overline{AA_p}=\overline{FT_c}$, $\overline{AF_p}=\overline{FO_c}$, $\overline{AL_p}=\overline{FM_c}$, $\overline{AQ_p}=\overline{FL_c}$, and $\overline{AV_p}=\overline{FK_c}$. In each of these cases when An is the initial letter of the plaintext pair, the initial letter of the ciphertext equivalent is F_{c} . This, of course, is the direct result of the method, it means that the encipherment is monoalphabetic for the first half of each of these five plaintext pairs. This relationship holds true for four other groups of five pairs beginning with An, in effect, there are five cipher alphabets employed, not 25. Thus, this case differs from the case discussed under subpar. 68a only in that the monoalphabeticity is complete, not for half of all the pairs but only among the members of certain groups of pairs. In a true digraphic system, such as a system making use of a 676-cell randomized table, relationships of the foregoing type are entirely absent, and for this reason such a system is cryptographically more secure than smallmatrix systems.

b. From the foregoing it is clear that when solution has progressed sufficiently to disclose a few values, the insertion of letters within the cells of the matrix to give the plaintext-ciphertext relationships indicated by the solved values immediately leads to the disclosure of additional values. Thus, the solution of only a few values soon leads to the breakdown of the entire matrix.

c. The following example will serve to illustrate the procedure. (1) Let the message be as follows.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 20 27 28 29 30 HFCAP GOQIL <u>BSPK</u>M NDUKE OHQNF BORUN Α. QCLCH QBQ<u>BF HM</u>AFX SIOKO QYFNS XMCGY в. XIFBE XAFDX LPMXH HRGKG QKQML FEQQI С <u>GOI</u>HM UEORD CLTU<u>F EQQ</u>CG QNHF<u>X IFBEX</u> D. FLBUQ FCHQO QMAFT XSYCB EPFN<u>B SPK</u>NU Ε. QITXE UQMLF EQQIG OIEUE HPIAN YTFLB F. FEEPI DHPCG NQIH<u>B FHM</u>HF XCKUP DGQPN _ G. CBCQL QPNFN FNITO RTENC OBCN<u>T FHHAY</u> H. J. ZLQCI AAIQU CHTPC BIFGW_KFCQS LQMCB OYCRQ QDPRX FNQML FIDGC CGIOGOIHHF К. IRCGG GNDLN OZTFG EERRP IFHO<u>T FHHAY</u> L. M. ZLQCI AAJQU CHTP

-RESTRICTED

(2) The cipher having been tested for standard alphabets (by the method of completing the plain-component sequence) and found to give negative results, a uniliteral frequency distribution is made. It is as follows:

(3) At first glance this may appear to the untrained eye to be a monoalphabetic frequency distribution, but upon closer inspection it is noted that, aside from the frequencies of four or five letters, the frequencies for the remaining letters are not very dissimilar. There are, in reality, no very marked crests and troughs--certainly not as many as would be expected in a monoalphabetic substitution cipher of equal length. The ϕ test, if taken (this test, as a rule, is not necessary with samples of text of sizes such as this), would show unsatisfactory results (ϕ_0 =6084, as against ϕ_p =7870 and ϕ_r =4543).

(4) The message is carefully examined for repetitions of 4 or more letters, and all of them are listed.

Frequency Located in lines

TFHHAYZLQCIAAIQUCHTP (20 letters)	2	H and L.
QMIFEQQIGOI (11 letters)	2	C and F.
XIFBEX (6 letters)	2	C and D.
FEQQ	3	C, D, F.
QMLF	3	C, F, K.
BFHM	2	B and G.
BSPK	2	A and E.
GOIH	2	D and K.

Since there are quite a few repetitions, two of considerable length, since all but one of them contain an even number of letters, since these repetitions with but two exceptions begin on odd letters and end on even letters, and since the message also contains an even number of letters (344), the cryptogram is retranscribed into 2-letter groups for further study. It is as follows:

					Me	ssage	trans	scribe	d m	pairs					
	1	2	8	4	ð	6	7	8	9	10	11	12	13	14	15
Λ	HF	CA	PG	୦ହ	IL	BS	PK	MN	DU	KE	OH	QN'	FB	OR	UN
B	QC	LC	HQ	BQ	BF	HM	AF	XS	IO	KO	QY	FN	SX	MC	GY
C	<u>XI</u>	FB	EX	AF	DX	LP	MX	HH	RG	KG	QK	QM	LF	EQ	QI,
D	<u>G0</u>	<u>IH</u>	MU	EO	RD	CL	TU	<u>FE</u>	QQ	CG	QN,	HF	XI	FB	EX
Е	FL	BU	QF	CH	QO	QM	AF	TX	SY	CB	EP	FN	<u>BS</u>	<u>PK</u>	NU
F	QI	ТX	EU	<u>QM</u>	LF	EQ	QI	<u>G0</u>	<u> </u>	UE	HP	IA	NY	TF	LB
G	FE	EP	ID	HP	CG	NQ	IH	BF	<u>HM</u>	HF	XC	KU	PD	GQ	PN
\mathbf{H}	CB	CQ	LQ	PN	FN	PN	IT	OR	TE	NC	CB	CN	TF	HH	AY,
J	ZL_	QC	IA	AI	QU	CH	<u>T</u> P	CB	IF	GW	KF	CQ	\mathbf{SL}	QM	CE
K	OY	CR	ହହ	DP	RX	FN	QM	LF	ID	GC	CG	10	<u>G0</u>	IH	HF'
\mathbf{L}	IR	CG	GG	ND	LN	0Z	TF	GE	ER	RP	IF	HO	TF	HH	AY,
\mathbf{M}	ZL	QC	IA	AI	QU	CH	TP				•				-

It is noted that all the repetitions listed above break up properly into digraphs except in one case, viz., FEQO in lines C, D, and F. This latter seems rather strange, and at first thought one might suppose that a letter was dropped out or was added in the vicinity of the FEQQ in line D. But it may be assumed that the FE QQ in line D has no relation at all to the .F EQ Q. in lines C and F and is merely an accidental repetition.

(5) A digraphic distribution is made as follows.

ł

RESTRICTED

176

RESTRICTED

(6) The appearance of the foregoing distribution for this message is quite characteristic of that for a digraphic substitution cipher. Although there are 676 possible digraphs, only 107 are present in the distribution, this parallels what is expected of normal plain text, since out of the 676 possible two-letter combinations (including "impossible plaintext digraphs" such as QQ, JK, etc., which <u>might</u> have been used for special indicators, punctuation marks, etc.) only about 300 are usually used in the construction of plain text.¹⁹ The number of blank cells,

REF ID:A56892

¹⁹ The 300 most frequent digraphs comprise 95% of normal English plain text (Appendix 2, Table 7-A).

569, closely approximates the 565 which would be expected in a distribution made on a sample of plain text of this size, as shown by Chart 8. Furthermore, although there are many cases in which a digraph appears only once, there are quite a few in which a digraph appears two or three times, four cases in which a digraph appears four times, one case in which a digraph appears five times, and one in which a digraph appears six times. All of the foregoing observations concerning the distribution are reflected by the o test: the observed digraphic phi value, 210, -compares very favorably with the expected plain value (=.0069 x 172 x 171 = 203) as against the expected random value (=.0015 r 172 x 171 = 44). Thus all indications point to a digraphic substitution system. (7) Since neither the ϕ_0 (1780) and Λ_0 (4) for the initial letters of the cipher digraphs nor the ϕ_0 (1496) and Λ_0 (2) for the final letters are too satisfactory in their approximation to the values expected for monoalphabetic distributions (ϕ_{p} :1962 and ϕ_{r} :1133; Λ_{p} :5 and $\Lambda_{r=0}$), the possibility of a pseudo-digraphic system is ruled out. There remain the possibilities of a partially-digraphic system employing a small matrix, or a true digraphic system employing a large, randomized table. In one common type of small-matrix system, the Playfair cipher. one of the telltale indications besides the absence of (usually) the letter J is the absence of cipher doublets, that is, two successive identical cipher letters. The occurrence of the double letters GG, HH, and QQ in the message under investigation eliminates the possibility of its being a normal Playfair cipher. For want of more accurate diagnostic criteria ²⁰ at this stage,²¹ the simplest thing to assume, from among the various hypotheses that remain to be considered, is that a four-square matrix is involved. One with normal alphabets (as being the simplest case) in Sections 1 and 2 is therefore set down (Figure 61a).

²⁰ Even a medical practitioner often cannot successfully diagnose a condition on the first visit. Cryptanalytically speaking, we are still on our "first visit". Subsequent probing will, we hope, reject or substantiate this or that hypothesis or assumption, until the patient (the cipher text) is recovered (i.e., brought back to plain text).

- - -

~ 4

²¹ However, see the treatment on the diagnosis of various types of digraphic systems in subpar 73j.

RESTRICTED

178

RESTRICTED

(8) The recurrence of the group QMLF, three times, and at intervals suggesting that it might be a sentence separator, leads to the assumption that it represents the word STOP. The letters Q, M, L, and F are there-fore inserted in the appropriate cells in Sections 3 and 4 of the diagram. Thus (Fig. 61b).

		_									
	A	В	C	D	E						
	F	G	Н	I-J	K						
1	L	М	N	0	P					L	3
	Q	R	S	Т	U				Q		
	v	W	X	Y	Z						ļ
						A	В	C	D	Е	
						F	G	Н	I-J	K	
4				F		L	М	N	0	P	2
			М			Q	R	S	Ť	U	
						v	W	X	Y	Z	
				F	igu	re 6	ыı.		·		I

These placements seem rather good from the standpoint that keyword-mixed sequences may have been used in these two sections. Moreover, in Section 3 the number of cells between L and Q is just one less than enough to contain all the letters M to P, inclusive, this suggests that one of these letters, probably N or O, is in the keyword portion of the sequence,

-RESTRICTED

that is, near the top of Section 3. Without making a commitment in the matter, let us suppose that M follows L and that P precedes Q; then let both N and O, for the present, be inserted in the cell between M and P. Thus (Fig. $6l_{\underline{c}}$).

(9) Now, if the placement of P in Section 3 is correct, the cipher equivalent of $\overline{\text{TH}}_p$ will be $\overline{\text{PO}}_c$, and there should be a group of adequate frequency to correspond. Noting that $\overline{\text{PN}}_c$ occurs three times, it is assumed to represent $\overline{\text{TH}}_p$ and the letter N is inserted in the appropriate cell in Section 4. Thus (Fig. 61d).

	A	В	C	D	E						
	F	G	Н	I-J	K						
1	L	М	N	0	P					L	3
	Q	R	ន	Т	U	М	ğ	Ρ	Q		
	v	W	x	Y	Z						
						Α	В	C	D	Е	
				N		F	G	Н	I_J	K	
հ				F		L	М	N	0	P	2
	 		М			Q	R	S	T	ប	
						V	W	X	Y	Z	
	h			F	igui	re 6	ld.	<u> </u>	<i></i>		•

0

-RESTRICTED

(10) It is about time to try out these assumed values in the message. The proper insertions are made, with the following results.

	¥	2	8	*	5	6	7	8	0	10	11	12	13	14	15
A	HF	CA	PG	OQ	IL	<u>BS</u>	PK	MN	DU	KE	OH	QN	FB	OR	UN
В	ହ୯	LC	HQ	BQ	BF	HM	AF	XS	10	KO	QY	FN	SX	MC	GY
\mathbf{C}	<u>XI</u>	FB	EX	AF	DX	LP	MX	HH	RG	KG	QK	<u>QM</u>	LF	EQ	QI,
												ST	0P		
D	, <u>G0</u>	<u>IH</u>	MU	EO	RD	CL	TƯ	FE	ର୍ୟ	CG	QN	HF	<u>xı</u>	FB	EX
E	FL	BU	QF	СН	ହ୦	QM ST	AF	ΤX	sy	CB	EP	FN	<u>BS</u>	<u>PK</u>	NU
\mathbf{F}	QI	тх	EU	QM	LF	EQ	QI	GO	IE	UE	HP	IA	NY	\mathbf{TF}	LB
				ST	OP										
G	FE	EP	ID	HP	CG	NQ	IH	BF	HM	HF	xc	KU	PD	GQ	PN
**	an	~~			÷			~~	-		an	017	PT1 1*1	* * * *	111
н	СВ	CQ	LQ	PN TH	F.N	PN TH	TL	OR	ΤE	NC	CB	CN	<u>TF</u>	<u></u>	\underline{AY}
J	ZL	QC	IA	AI	QU	CH	TP	CB	IF	GW	KF	CQ	SL	QM	CB
	ç											-		ST	
К	OY	CR	QQ	DP	RX	FN	<u>QM</u> ST	LF OP	ID	GC	CG	IO	<u>G0</u>	IH	HF
\mathbf{L}	IR	CG	GG	ND	LN	0Z	TF	GE	ER	RP	IF	HO	TF	HH	AY .
										٩					

M ZL QC IA AI QU CH TP

(11) So far no impossible combinations are in evidence. Beginning with group H⁴ in the message is seen the following sequence.

PNFNPN TH..TH

Assume it to be THAT THE. Then $\overline{\text{AT}}_{p}$ -FN_c, and the letter N is to be inserted in row 4 column 1 of Section 4. But this is inconsistent with previous assumptions, since N in Section 4 has already been tentatively placed in row 2 column 4. Other assumptions for FN_c are made that it is, $\overline{\text{IS}}_{p}$ (THIS TH...), that it is $\overline{\text{EN}}_{p}$ (THEN TH...), but the same inconsistency is apparent. In fact the student will see that $\overline{\text{FN}}_{c}$ must represent a digraph ending in F, G, H, I-J, or K, since N_c is tentatively located on the same line as these letters in Section 2. Now $\overline{\text{FN}}_{c}$ occurs 4 times in the message. The digraph it represents must be one of the following.

DF,	DG,	DH,	DI,	DJ,	DK	OF,	, OG,	OH,	ΟΙ,	ОJ,	
IF,	IG,	IH,	II,	IJ,	IK	TK	,		•		
JF,	JG,	JH,	JI,	JJ,	JK	YF	, YG,	YH,	YI,	YJ,	YK

RESTRICTED

REF ID:A56892

Of these the only one likely to be repeated 4 times is OF, yielding

P N F N P NT H O F T H which may be a part of

С Q L Q P N F N P N I T N O R T H O F T H E . Or . S O U T H O F T H E

In either case, the position of the F in Section 3 is excellent F . L in row 3 There are 3 cells intervening between F and L, into which G, H, I-J, and K may be inserted. It is not nearly so likely that G, H, and K are in the keyword as that I should be in it Let it be assumed that this is the case, and let the letters G, H, and K be placed in the appropriate cells in Section 3 Thus (Fig 61e)

Let the resultant derived values be checked against the frequency distribution. If the position of H in Section 3 is correct, then the digraph $\overline{\text{ON}}_p$, normally of high frequency, should be represented several times by $\overline{\text{MF}}_c$. Reference to Fig. 60 shows $\overline{\text{HF}}_c$ to have a frequency of 4. And $\overline{\text{HM}}_c$, with 2 occurrences, represents $\overline{\text{MS}}_p$. There is no need to go through all the possible corroborations.

PNFNPN (12) Going back to the assumption that TH...TH is part of the expression

> CQLQPNFNPNIT .NORTHOFTHE. or .SOUTHOFTHE.,

it is seen at once from Fig <u>61e</u> that the latter is apparently correct and not the former, because \overline{LQ}_c equals \overline{OU}_p and not \overline{OR}_p . If $\overline{OS}_p = \overline{CQ}_c$, this

-RESTRICTED-

means that the letter C of the digraph \overline{CQ}_{c} must be placed in row 1 column 3 or row 2 column 3 of Section 3. Now the digraph \overline{CB}_{c} occurs 5 times, \overline{CG}_{c} , 4 times, \overline{CH}_{c} , 3 times, \overline{CQ}_{c} , 2 times. Let an attempt be mide to deduce the exact position of C in Section 3 and the positions of B, G, and H in Section 4. Since F is already placed in Section 4, assume G and H directly follow it, and that B comes before it. How much before? Suppose a trial be made. Thus (Fig. 61f)

	A	В	C	D	Е			C?			
	F	G	Н	I–J	K			C?			
1	L	M	N	0	P	F	G	н	к	L	ર
-	Q	R	S	T	U	M	NO	P	Q		5
	v	W	X	Y	Z						
						A	В	C	D	Е	
				N		F	G	H	I–J	K	
4	Bî	B?	B?	F	G	L	M	N	0	P	2
· _	н		M	Q		Q	R	S	T	U	
-						V	W	x	Y	Z	
	_										

Figure 61f

By referring now to the frequency distribution, Fig. 60, after a very few minutes of experimentation it becomes apparent that the following is correct.

											-
	A	B	C	D	E			C			
	F	G	Н	I-J	K						
1	L	M	N	0	P	F	G	Н	K	L,	1
	Q	R	S	т	U	M	N	P	Q		
•	V	W	X	Y	Z						
						A	в	C	D	E	
				N		F	G	H	I–J	K	
4	В			F	G	L	M	N	0	P	2
	Н		M	Q		Q	R	S	T	U	
						V	W	X	Y	Z	
	and the second s										

Figure 61g.

-RESTRICTED

τ

Ŧ

_RESTRICTED

(13) The identifications given by these placements are inserted in the text, and solution is very rapidly completed The final matrix and deciphered text are given below.

									_						_																	
								A	1	в	C	E	•	E		s	0		C	I	1	G										
								F		3	Н	I-	J	K		T	Y		A	В	1	>										
						1		L	1	M	N	C)	P		F	G		H	K	I			3								
								Q]	R	S	T		ប		M	N		P	Q	I	2		-								
								V	۱ ۱	N	X	Y		Z		U	V		W	X	2	Z										
								E	2	X	P	Ū	1	L		A	B		C	D	I	C										
								S		I	0	N	ſ	A		F	G		H	IJ	I	٢										
						4		B		C	D	F	·	G		L	M		N	0	1	2		2								
								H		K	M	۹	2	R		Q	R		S	Т	J	7										
								T	1	v	W	צ	[]	Z		V	W		X	Y	2	5										
			ŕ						-				Fi	.gu	re	6	۱ <u>h</u>	4														•
A	н	F	C	A	P	G	0	Q	I	L	в	s	Р	K	M	N	D	υ	K	E	0	H	Q	N	F	В	0	R	U	N		
_	0	N	E	H	U	N	D	R	E	D	F	I	R	S	Т	F	I	E	L	D	A	R	T	I	L	L	E	R	Y	F	-	
в	Q R	C O	L M	C P	Н 0	Q S	B I	Q T	B I	F O	H N	M S	A I	F N	X V	S 1	I C	0 I) K N	0 I	Q T	Y Y	F O	N F	S B	X A	M R	C L	G Ò	Y W		
C	X W	I I	F L	B L	E B	X E	A I	F N	D G	X E	L N	P E	M R	X A	H L	H S	R U	G P	K P	G O	Q R	K T	Q S	M T	L 0	F P	E D	Q V	Q R	I I		
D	G N	0 G	I A	H T	M T	U A	E C	0 K	R S	D P	C E	L C	T I	U A	F L	E	Q	Q	C E	G N	Q T	N I	Н 0	F N	X W	Ī	F L	B L	E B	<u>x</u> E	l	
E	F P	L A	B I	U D	Q T	F O	C A	H S	Q S	0 I	Q S	M T	A I	F N	T G	X A	S	Y V	C A	B N	E C	P E	F O	N F	B F	S I	P R	K S	N T	U B	-	•
F	Q R	I I	T G	X A	E D	U E	Q ຮ	M T	L O	F P	E D	Q ប	Q R	III	G N	0 G	IA	E	U V	E	H N	P C	I E	A I	N T	Y W	T I	F L	L L	B P		-
G	F L	E A	E	PE	I	Ð	H	P	า บ พ	G M	N	QR	I	- Н т	В	ज ज 0	H		I H	F	Xw	C	K	U	PS	D N	G	Q Q R	P	ר א		
Ħ	C	B	C	Q	L	Q	P	N	F	N	P	N	I	T	- 0 5	R	i T	'E		C	C	B	C	N	T	F	Н	Н	A	Y		
J	R Z	L	Q	с С	I	A	A	п І	Q	r U	C	п Н	A T	P	С С	E	. r : I	F	'G	W	ĸ	F	c	л Q	S	L	Q	л М	C	л В		
	Z	E	R	0	E	I	G	Н	Т	D	A	ន	Н	A	A	N	D	0) <u>N</u>	W	0	0	D	S	E	A	S	Т	A	N		
K	0 D	Y W	C E	R S	Q T	Q T	D H	P E	R R	X E	F 0	N F	Q ธ	M T	Լ 0	F P) G	C M	C E	G N	I C	0 I	G N	0 G	I A	H T	н 0	F N		
\mathbf{r}	I E	R T	C E	G N	G P	G M	n S	D M	L 0	N K	0 E	Z W	T I	F L	G L	E B	E	F U	r Is	P E	I D	F O	H N	0 H	T I	F L	H L	H S	A I	Y X		
М	Z Z	L E	Q R	C 0	I E	A I	A G	I H	Q T	ป D	C A	H S	T H	P A																		

-RFSTRICTED

d. In the solution of four-square cryptograms, advantage may be taken not only of the general type of digraphic idiomorphs mentioned in subpar. 68e, above, but also of a special type of partial idiomorphism present in any four-square cryptograms involving the use of a matrix in which the plain components consist of normal alphabets normally inscribed.²² As an illustration, let the digraphs \overline{SO} UT (H.) be enciphered by means of any four-square having normal alphabets in Sections 1 and 2, and it will be found that in the encipherment the initial letter of the cipher digraph representing \overline{SO}_p will be identical to the initial letter of the cipher digraph representing \overline{UT}_p , regardless of how the cipher components are constructed. On this basis, a brief list of specialized single-letter patterns have been compiled for use in the solution of such a digraphic system, this list of "four-square digraphic idiomorphs" constitutes Section F of Appendix 3.

e. It is interesting to note how much simpler the technique of analysis is in the case of so-called inverse four-square ciphers, which involve the use of a matrix wherein the <u>ciphertext</u> sections contain normal alphabets, the plain components being mixed. For example, referring to Fig. 53, suppose that Sections 3 and 4 are used as the source of the plaintext pairs, and Sections 1 and 2 as the source of the ciphertext pairs, then ON_p =ET_c, EH_p=GE_c, etc. The simplicity of the analytic procedure will be made clear by the following exposition.

(1) To solve a message enciphered with an inverse four-square matrix, it is necessary to perform two steps. First, convert the ciphertext pairs into their plain-component equivalents by "deciphering" the message with a matrix in which all four sections contain normal alphabets, this operation yields two uniliteral substitution "ciphers", one composed of the odd letters, the other of the even letters. The second step is to solve these two monoalphabetic portions

(2) As an example, let us consider the following cipher text, known (or assumed) to have been encrypted with a trinome-digraphic²³ system

²² If any other known plain components were involved, the procedure of deriving a list of idiomorphic patterns would be modified to fit the particular case.

²³ If the cipher text were being examined "from cryptanalytic scratch", the limitations (003-595) of the cipher text when the latter is divided into trinomes for examination would have at once indicated that this grouping is the one which merits detailed analysis. The ϕ^2 test would then give an indication of the digraphic nature of the underlying cryptographic treatment.

-RESTRICTED

incorporating a four-square matrix similar to that illustrated in Fig. 58, except that the plain-component sections have been changed

2 3 2 3 2 7 8 3 5 2 7 8 0 5 2 7 8 1 8 2 7 8 8 1 8 2 7 8 8 1 8 2 1 5 6 3 1 8 2 1 5 6 3 1 6 1 6 7 8 7 0 3	8 5 0 8 1 4 1 8 0 4 7 4 1 3 5 3 3 8 3 2 6 1 0 4 1 6 2 6 6 3 7 3 9 3 3 7 0 9 1 4	83450 50413 91359 0473 928359 04407 8147 819391	27934 27426 321024 301021 18321 18321 18321 187607	1 1 5 0 3 3 3 0 9 1 9 1 1 6 0 4 1 3 3 1 6 1 0 4 3 8 2 4 0 3 0 1 4 0 3 2 0 4 0 3 2 7 1 3 7 1	0 9 1 6 8 0 1 9 2 8 0 3 2 9 6 1 7 9 1 6 6 3 8 1 5 6 3 8 1 3 9 4 3 5 9 5
08703	70914	19391	11607	71371	53595 88133

(3) The first thing to be done is to construct a four-square matrix with the known ciphertext sections, and inscribe arbitrary alphabets in the pl _______.ext sections, as follows.

A	В	C	D	E	000	025	050	075	100
F	G	H	I	ĸ	125	150	175	200	225
L	М	N	0	P	250	275	300	325	350
Q	R	ន	ፒ	U	375	400	425	450	475
V	W	X	Y	Z	500	525	550	575	600
Ø	1	2	3	4	A	В	C	D	E
5	6	7	8	9	F	G	H	I	K
10	11	12	13	14	L	М	N	0	P
15	16	17	18	19	Q	R	S	T	υ
20	21	22	23	24	V	W	Х	Y	Z

(4) The cipher text is then written in trinomes, and these trinomes are "deciphered" by means of the foregoing matrix, yielding the converted cipher text as follows:

-RESTRICTED ,

	~															
-					5	وروبي المحمد المراجع				10		<u></u>			٦5	
Λ	203 ID	238 IP	508 YF	183 IH	ົ450 ຊຸກ	279 PB	341 MT	150 FB	309 РН	168 IR	278 0B	354 PĽ	180 FH	450 OD	413 M	ب بر ا
В	274 PV	163 IM	309 PH	101 BE	092 CT	208 11	057 CH	413 TM	535 VM	473 TY	326 MD	269 PQ	116 BU	003 DA	218 IT	
C	468 TT	183 IH	393 TQ	091 BT	393 TQ	411 RM	- 044 ER	133 IF	117 CU	296 MV	243 IV	028 DB	383 TF	228 IE	359 PK	- •
ם	380 qf	226 Ge	104 Ee	369 PU	130 FF	153 IB	-136 GL	104 EE	100 <u>A</u> E	144 KQ	101 BE	018 DQ	240 FU	336 MO	168 IR	
E	465 QT	366 MU	266 MQ	344 PT	007 CF	183 IH	450 QD	140 FQ	288 OM	, 152 118	478 TE	217 HT	393 Tබ	381 RF	193 IS	
F	479 UE	240 Fu	403 TB	241 GU	306 MH	087 CO	037 CM	091 BT	419 UR	391 RQ	116 אנו	077 CD	137 HL	153 IB	595 VY	
G	007 CF	413 TM	338 00	133 IF	593 YT	393 TQ	406 RG	353 OE	188 IN	133 IF						-
The dis final l	trıbu ettera	tions s of	s of the	the conv	let	ters ed d:	cons [gra]	stita ohs a	uting are a	- g the as fe	e in ollo	itia ws	l le	- tter	s an	đ
(Initia	- 1 Let	ters) 7						E M 1			R S 1		v w	x Ŧ	- Z
			、			-				-4 4		- -1-	-	,		*
(Final	Lette	rs)					= ₹.	ĨĸĨ	. ₹.	- = . N 0 1	Z Z PQ			v v	x Ŧ	Z
(5) morphs, RECONNA ed for	2 ⁴ the ISSAN the co	ng si e pla E onvei	traig ann f .) is rted	ghtfo text s rec cīpl	orwai (be ovei ner :	rd pi ginn: red, lette	rinc: ing t and ers (iple: with the of th	s of the fol: he to	fre ope: lowi: wo a	quen ning ng e lpha	cy ā vor quiv bets	ňđ p ds E alen	arti NEMY ts a	al i re o	dıo- btain-
(Initia	l Leti	ters) C P	 	B C R A	D E H M	FG SC	HI DĘ	K L F	M N I	O P L N	Q R O P	ST T	U V U V	w x	y'z d Y
(Final)	Lette	rs)	C P	• W	B C A	D E N E	F G R B	H I C D	K L F H	M N I K	O P L M	Q R O P	S T Q S	U V T U	u x v	y z Y
24 No patent	te the	e ABA	A pat o-alj	tter	a of et co	the	fira	st we	ord : oces:	in t	he m Also	essa not	ge (e th	ENEM e 3-	Y), fold	made

т f

r

-RESTRICTED

Keyword-mixed sequences directly manifest themselves because the original enciphering matrix contained such sequences in Sections 1 and 2, inscribed in the same manner as were the arbitrary A-Z sequences which were used for the conversion. In fact, the key words of the two distributions might have been recovered from an analysis of the "profiles" of the distributions above, as described in subpar $5^{\rm he}$

B	R	A	H	M	000	025	050	075	100
S	C	D	\mathbf{E}	F	125	150	175	200	225
G	I	K	L	N	250	275	300	325	350
0	P	Q	Т	U	375	400	425	450	475
V	W	X	Y	Z	500	525	550	575	600
Ø	l	2	3	4	W	A	G	N	Е
5	6	7	8	9	R	В	С	D	F
10	11	12	13	14	н	I	K	\mathbf{L}	М
15	16	17	18	19	0	Р	ର୍	ន	т
20	21	22	23	24	U	V	Х	Y	Z

(6) The original enciphering matrix is then reconstructed, thus

(7) Although the example illustrated was that of a numerical digraphic system, it is obvious that this technique of solution also applies to <u>literal</u> four-square systems in which the cipher components are known sequences. It should be clear to the student the trenendous difference it makes when it is possible to convert a <u>digraphic</u> system into a <u>two-alphabet</u> system, in a digraphic system, we are plagued by a potential 676 different elements in the cipher, whereas in a two-alphabet system we still have only 26 elements (in each of two sets, it is true) in the cipher text to be solved This principle of conversion of cipher text into a secondary cipher text has application in some of the most complex types of cryptosystems, the student would do well to keep this in mind

(8) As a further observation on inverse four-square systems, it is pointed out that where the <u>same</u> mixed alphabet is present in Sections 3 and 4, the problem is still easier, since the letters resulting from the conversion into plain-component equivalents all belong to the same, <u>single</u> mixed alphabet, thus such a digraphic system is reduced to an ordinary simple substitution cipher.

f. The solution of cryptograms enciphered by other types of small matrices is accomplished along lines very similar to those set forth in subparagraph c on the solution of a four-square cipher, this will be illustrated in subsequent paragraphs There are, unfortunately, few means or tests which can be applied to determine in the early stages of the analysis exactly what type of digraphic system is involved in the first case under study The author freely admits that the solution outlined in subparagraph c is quite artificial in that nothing is demonstrated in step (7) that obviously leads to or warrants the assumption that a four-square matrix is involved. The point was passed over with the quite bald statement that this was "from among the various hypotheses that remain to be considered"--and then the solution proceeded exactly as though this mere hypothesis had been definitely established For example, the very first -RESTRICTED

results obtained were based upon assuming that a certain 4-letter repetition represented the word STOP and immediately inserting certain letters in appropriate cells in a four-square matrix with normal sequences in 54ctions 1 and 2. Several more assumptions were built on top of that, and very rapid strides were made What if it had not been a four-square matrix at all? What if it had been some other type of not readily identifiable digraphic system? The only defense that can be made of what may seem to the student to be purely arbitrary procedure based upon the author's advance information or knowledge is the following. In the first place, in order to avoid making the explanation a too-long-drawn-out affair, it is necessary (and pedagogical experience warrants) that certain alternative hypotheses be passed over in silence. In the second place, it may now be added, after the principles and procedure have been clucidated (which at this stage is the primary object of this text) that if good results do not follow from a first hypothesis, the only thing the cryptanalyst can do is to reject that hypothesis and formulate a second hypothesis In actual practice he may have to reject a second, third, fourth, ... nth hypothesis. In the end he may strike the right one--or he may not. There is no assurance of success in the matter In the third place, one of the objects of this text is to show how certain cryptosystems, if employed for military purposes, can readily be broken down Assuming that some type of digraphic system is in use, and that daily changes in key words are made, it is possible that the traffic of the first day might give considerable difficulty in solution if the specific type of digraphic system were not known to the cryptanalyst But by the time two or three days' traffic had accumulated it would be easy to solve, because probably by that time the cryptanalytic personnel would have successfully analyzed the cryptosystem and thus learned what type of matrix or table the enemy is using

70 Analysis of two-square matrix systems --a Cryptosystems involving either vertical two-square or horizontal two-square matrices may be identified as such and solved by capitalizing on the cryptographic peculiarities and idiosyncracies of these systems It will be noted that, considering the mechanics of the cryptosystems, in vertical two-square matrices employing the normal enciphering conventions,²⁵ exactly 20% of the 625 "possible" plaintext digraphs will be "transparent" (i.e , selfenciphered) in cipher text, in horizontal two-square systems, exactly 20% of the 625 digraphs will be characterized by an "inverse transparency"

- 1

²⁵ That is, for vertical two-square systems, digraphs are self-enciphered if θ_p^1 and θ_p^2 fall in the same column in the matrix, and, for horizontal two-square systems, if θ_p^1 and θ_p^2 are in the same row, the ciphertext digraphs are the reversed plaintext digraphs

RESTRICTED

189

-RESTRICTED

(i.e., enciphered by the same digraphs reversed).²⁶ Therefore, if an examination of a cryptogram or a set of cryptograms discloses a goodly portion of what appear to be <u>direct</u> transparencies (cipher digraphs which could well be plaintext digraphs), it may then be assumed that a <u>vertical</u> two-square matrix has been used for the encryption. On the other hand, if a large number of cipher digraphs could be "good" plaintext digraphs if the positions of the letters were <u>reversed</u>, then it may be assumed that the cryptosystem involved a <u>horizontal</u> two-square matrix Sometimes skeletons of words or even of whole phrases are self-evident in such cipher text, thus affording an easy entering wedge into the cryptosystem

<u>b</u> An example will best serve to illustrate the techniques of identification and subsequent solution of a two-square matrix cipher.' The following naval message is to be studied

BEIRI UODLC RCRGL NMOLC ENOAN SIGLB PTEP3 GPABQ RBBOE WNNKS IPCRM OORAP DEA h ANXRA IEDAI RMAGB EKHSL CDDLC TIAQF TQORE NDTMD IEQTA NNBFN 0 U O O S KTASE SNNNR SNHLP ONNKS IPCRC ENOIS HLIRK PLONO NZUCT ALTOI IHOCN OCERA OSDIN OEEKR LCUBR AOSDI IPDAR COGGR OILNQ OLNOC WDILP XDIGL RBBQY FSSRA VYOIG RSLXX

Preliminary steps in analysis are made according to the procedures already described in this text, and the hypothesis of monographic, uniliteral encipherment (with either standard or mixed cipher alphabets) has been rejected Multiliteral substitution, or digraphic substitution, comes next

Although 625 "possible" plaintext digraphs are involved, the identity of digraphs actually used in plain text limit this figure considerably Furthermore, the <u>frequencies</u> of the plaintext digraphs actually used come into consideration, in conjunction with the location of the letters of these digraphs in any particular two-square matrix Thus, from the cryptanalyst's standpoint, there are "excellent" two-square matrices giving a high self-encipherment rate for high frequency plaintext digraphs, and there are "poor" two-square matrices which have a potentially high selfencipherment rate only for those low frequency plaintext digraphs which may not occur at all in a given cryptogram

-RESTRICTED

into consideration The cipher text is written in digraphs, as follows

					5					10					15
A	UO	DL	CE	NO	AN	SI	GL	BB	EI	RI	RC	RG	LN	МО	LC
B	PT	ER	GR	BB	OE	GP	AB	QW	NN	KS	IP	CR	MO	OR	AP
c	DE	AM	HA	*NX	RA	IE	DA	IR	MA	GB	EK	HS	LC	DD	LC
D	TQ	OR	EN	DT	MD	TI	AQ	FI	EQ	TA	NN	BF	NO	υo	OS
E	SN	NN	RK	TA	SE	SN	HL	PO	NN	KS	IP	CR	CE	NO	IS
F	HL	IR	KP	LO	NO	NZ	UC	TA	LT	OI	IH	OC	NO	CE	RA
G	< 05	DI	NO	EE	KR	LC	UB	RA	05	DI	IP	DA	RC	OG	GR
н	OL	NO	CW	DI	LP	OI	LN	QX	DI	GL	RB	BQ,	YF	SS	RA
J	٧Y	oI	GR	SL	XX										

Figure 62

Noting the 8-letter repetition 90 letters apart, the 6-letter repetition 16 letters apart, and the 4-letter repetition at an interval of 220 letters, and that those repetitions begin on odd letters and end on even letters, credence is given to the grouping of the cipher text into pairs of letters. A digraphic distribution is then made, illustrated in Fig. 63

RESTRICTED

<u>c</u> The ϕ_0^2 , 152, is most satisfactory when compared with ϕ_p^2 (107) and ϕ_r^2 (23) Since the cryptogram has all the earmarks of a digraphic cipher, and no manifestations are found to support the hypothesis of a multiliteral system, the next problem is the specific determination of the particular kind of digraphic system involved. It may be noted that there are quite a few digraphs in the cipher text which resemble good plaintext digraphs, proportionally more so than, for instance, in the cryptogram in subpar 69c, the cryptologic finger points to the possibility of a twosquare system. However, since the words "good digraphs" are semantically

RETRICTED

elusive, let us attempt to determine statistically whether or not a two-square system might be involved and, if a two-square, whether it is more probably a vertical or a horizontal two-square 27

<u>d</u> First, for the purpose of determining whether "direct transparencies" or "inverse transparencies" predominate in this cryptogram, the digraphs of the distribution in Fig 63 will be set down in tabular form, with an indication of their frequency in the cryptogram, and with data relative to the probability of these digraphs as <u>plaintext digraphs</u>, and as plaintext digraphs when reversed. In the table on page 194, col (1) is a listing of the ciphertext digraphs; col (2) is the frequency of the ciphertext digraph as it occurs in the cryptogram, col (3) is the logarithm of the theoretical plaintext frequency of the particular digraph (from Table 15, Appendix 2), col (4) represents the products of the entries in cols (2) and (3); col. (5) is the logafithm of the theoretical plaintext frequency of the feversed digraph (from Table 15, Appendix 2), and col. (6) represents the products of the entries in cols. (2) and (5). From this, the sum of the values in col. (4), 58.34, is taken to be the "direct transparency" value, and the sum of the values in col. (6), 63.02, is taken to be the "inverse transparency" value. Thus, since this particular cryptogram has an "inverse transparency" value which is higher

27 The test to be described in the following Subparagraphs is based on an evaluation of those instances wherein the observed frequency of any particular diphertext digraph approximates the frequency with which the particular digraph, or its reversal, would be expected to occur if considered as & plaintext digraph Any such correlation which occurs in a four-square or Playfair dipher, or in a cryptogram produced by a large randomized digraphic table, is purely accidental because it is not a result of the mechanics of the system However, in two-square dipptograms such correlation is caused by the Machanics of the system in the encipherment of 20% of the possible plaintext digraphs, and these causal instances of correlation 6dcur in addition to any accidental instances which may arise in the encipherment of the remaining 80% Thus, if a digraphic cipher exhibits merely the random expectation of correlation both when the particular ciphertext digiaphs are considered as they are and when their reversals are considered, the cryptogram may be assumed to involve a system other than two-square If a digraphic cipher exhibits more than the random expectation of correlation, either when the particular digraphs are considered direct or when considered reversed, it may be assumed to inVolVe two-square encipherment, and the particular consideration -- that of the digraphs direct of that of the digraphs reversed -- which gives rise to the greater degree of correlation indicates whether the cryptogram involves a vertical two-square or a horizontal two-square, respectively

ŕ

÷.

RESTRICTED

(1)	(2)	(3)	(4)	(5)	(8)	(1)	(2)	(3)	(4)	(5)	(6)	(1)	(2)	(8)	(4)	(5)	(6)
AB	1	45	0,45	. 38	0, 38	HA	1	. 67	0.67	. 25	0.25	QR	2	. 89	1,78	.74	1,48
AM	1	, G1	0,61	, 78	0,78	HL	2	,13	0,26	13	0,20	05	3	61	1, 83	62	1,86
AN	1	.89	0,89	.72	0.72	HS	1	, 38	0,38	72	0.72	PO	1	. 64	0.64	, 72	,0,72
AP	1	, 58	0,58	, 61	0.61	IE	1	. 59	0,59	, 73	0,73	PT	1	. 51	0.51	. 25	0.25
AQ	1	.00	0.00	.00	0.00	IH	1	,00	0,00	.77	0.77	ର୍	1	.00	0,00	.00	0,00
BB	2	.00	0,00	.00	0,00	IP	3	. 48	1.44	. 45	1,35	QX	1	.00	0,00	,00	0,00
\mathbf{BF}	1	, 00	0.00	.00	0,00	IR	2	.73	1.46	,75	1,50	RA	4	# 80	3,20	, 82	8,28
BQ	1	ſ	0.00	.00	0,00	IS	1	. 78	0.78	.77	0,77	RB	1	, 25	0,25	. 25	0,25
CE	3	16	2,28	,76	2.28	KP	1	.00	0.00	.00	0,00	RC	2	, 53	1.06	. 38	0,76
CR	2	. 38_	0,76	. 53	1.06	KR	1	.00	0.00	.13	0,13	RG	1	. 48	0,48	. 42	0.42
CW	1	.13	0,13	.00	0,00	KS	2	.13	0,26	.13	0,26	RI	1	.75	0.75	,73	0.73
DA	2	.76	1 52	, 73	1.46	LC	4	. 33	1.32	. 42	1,68	RK	_ 1	,13	0,13	.00	0.00
DD	1	. 51	0.51	. 51	0,51	LN	2	.13	0,26	. 42	0.84	SE	1	, 84	0,84	. 86	0.86
DE	1	.77	0,77	, 88	0.88	LO	1	.59	0,59	, 67	0.67	SI	1	,77	0,77	.78	0,78
DI	4	.73	292	45	1.80	LP	1	. 33	0.33	, 59	0,59	SL	1	.25	0,25	, 45	0.45
$\mathbb{D}\mathbb{L}$	1	• 33	0,33	. 53	0.53	LT	1	. 51	0,51	. 42	0.42	SN	2	. 38	0,76	. 71	1.42
DT	1	.62	0,62	. 45	0.45	MA	1	.78	0,78	61	0,61	85	1	. 67	0,67	, 67	0,67
EE	1	. 81	0,81	, 81	0.81	MD	1	.13	0,13	, 42	0,42	TA	3	.74	2,22	.83	2,49
ΕI	1	.73	0,73	.59	0.59	MO	2	55	1.10	.72	1.44	TI	1	. 82	0,82	73	0 /3
EK	1	.00	0,00	.45	0.45	NN	4	.51	2.04	. 51	2,04	TQ	1	,13	0.13	.00	0.00
EN	1	• 99	0,99	.87	0.87	NO	7	. 66	4,62	. 92	5,74	UB	1	, 33	0,33	.25	0,25
EQ	1	, 58	0 , 58	.00	0,00	ŊX	1	.00	0.00	.13	0,13	UC	1	, 33	Q . 33	. 38	0 38
ER	1	. 94	0.94	9 6	0.96	NZ	1	.00	0.00	.00	0,00	vo	2	.13	0.26	.79	1.58
FI	1	.80	0 . 80	• 55	0.55	00	1	. 51	0,51	, 80	0,80	VY	1	.00	0,00	.00	0.00
GB	1	.00	0,00	.00	0,00	OE	1	33	0,33	• 58	0.58	XX	1	.00	0,00	.00	0,00
GL	2	.25	0,50	.13	0.26	OG	1	.25	0,25	. 45	0,45	YF	1	, 56	0.56	.13	0.13
GP	1	•25	0,25	.00	0.00	OI	3	, 42	1.26	. 80	2,40		125		58,34		63,02
GR	3	.42	1.26	_48	1.44	OL	1	67	0 67	, 59	0.59	}	-				

(1) Identity of cipher digraph appearing in the cryptogram.

(2) Frequency of the particular digraph as it occurs in the cryptogram

(3) Logarithm of theoretical plaintext frequency of the particular digraph (from Table 15, Appendix 2),

(4) Product of entries in columns (2) and (3).

(5) Logarithm of theoretical plaintext frequency of the digraph's reversal (from Table 15, Appendix 2).

(6) Product of entries in columns (2) and (5),

-RESTRICTED

than the "direct transparency" value, it may be assumed²⁰ to involve a <u>horizontal</u> two-square--if, indeed, two-square encipherment has been employed. It is now for us to establish whether or not this latter is the case, and this will be done by determining whether or not the foregoing observed value, 63 02, is representative of the degree of transparency which may be expected in a horizontal two-square cipher. (If the "direct transparency" value had been the higher of the two, then it would have been more probable that a <u>vertical</u> two-square were involved, and it would be necessary to determine whether or not this observed value was representative of the degree of transparency cipher)

e The observed "inverse transparency" value (selected in this case because it is the higher observed value) will be compared with the value expected from a horizontal two-square cryptogram of the same size, and if this observed value is as great as or greater than the transparency value expected for horizontal two-squares, the cryptogram may be considered to be a horizontal two-square cipher, if the observed value is lower than the expected two-square value, decision will have to be suspended ²⁹ The transparency value expected in a horizontal two-square cipher containing N digraphs is computed by multiplying N by .3388, which in this case

Actually, if the two-square hypothesis is made, the difference between the horizontal two-square value and the vertical two-square value will indicate the degree of probability of the higher score over the lower In this case, the difference of 4 68 (= 63 02 - 58 34), which represents a difference of log scores, is equivalent to an overwhelming ratio of 100 <u>billion</u> to 1 (i.e., 224^{4} 68 to 1) in favor of the hypothesis of a horizontal two-square The foregoing computation involves an aspect of mathematics which will be given detailed treatment in Military Cryptanalysis, Part III

²⁹ For the benefit of the student with a background in statistics, it is pointed out that by abiding by the stipulation "as great or greater", some cryptograms which actually are the result of two-square encipherment may be rejected by this stipulation, but it will insure that only a relatively few non-two-square cryptograms will be accepted A better approach of a statistical nature would involve, first, computing the expected value for non-two-squares as well as that for two-squares Then, any observed value falling below the expected two-square value could be expressed in terms of the number of standard deviations (i e, the sigmage) from this expected two-square value and from the expected nontwo-square value. Finally, the particular expected value which would be considered as significant would be the one from which the observed value differed by the smaller number of standard deviations The concept of standard deviation will be treated in Military Cryptanalysis, Part III.

yields 42 35 (= 3388 x 125).³⁰ The observed value for the cryptogram, 63 02, is much higher than the expected value, 42 35. Thus, it has been proven statistically that the cryptogram at hand involves two-square encipherment, particularly, horizontal two-square encipherment

<u>f</u> Having now proved that the cryptogram at hand is a horizontal two-square cipher, the next step is to assume some plain text in the message, guided by probable inverse transparencies (<u>inverse</u> because the system has been identified as a horizontal two-square) in the cipher text. Referring to the work sheet in Fig 62, the repeated sequence at B9 and E9 is assumed to represent the plain text TA SK FO RC (E-), on the basis of $\overline{\text{KS}}_c=\overline{\text{SK}}_p$, and $\overline{\text{CR}}_c=\overline{\text{RC}}_p$ The plaintext-ciphertext values are now

³⁰ In the case of <u>vertical</u> two-squares, N would be multiplied by the constant 3610 The mathematical considerations underlying this test and their proofs (involving Bayes' theorem and Bayes' factors) are beyond the scope this text, however, for the benefit of the mathematician, the derivation of the foregoing constants is explained below, along with the derivation of the constant used for computing the expected transparency value for non-two-squares In the formulas, below, --

- \sum_{AB} = the summation over all digraphs AA-ZZ
- F_{AB} = the frequency of a given digraph AB as found in Table 6A, Appendix 2
- AB = the logarithm (to the base 224) of the frequency of a given digraph AB as found in Table 15, Appendix 2

For vertical two-squares,

$$k = \sum_{AB} \left[.80(.0015) + \frac{20^{F_{AB}}}{5000} \right] = 3610$$

For horizontal two-squares,

$$k = \sum_{AB} \ll_{BA} \left[80(0015) + \frac{20 F_{AB}}{5000} \right] = 3388$$

For non-two square digraphic systems,

$$k = \frac{\alpha_{AB}}{676} = 2737$$

497.

-RESTRICTED

recorded^{D^{\perp}} in a skeleton reconstruction diagram as illustrated in Fig. 64a. At A3, the assumption of (-R) EC ON NA IS SA NC (E-) is tossed off without much ado, since four of the six digraphs concerned are transparent. The plain-cipher relationships from this assumption are added to the reconstruction diagram, as shown in Fig. 64b. Continuing in this vein, the plain text (-A) IR CR AF (T-) is inserted at AlØ, and the plain

text (-B) AT TL ES HI (P-) is inserted at J3, the successive cumulative reconstruction diagrams for these two assumptions are shown in Figs. 64c

31 During the reconstruction of the squares of the matrix, the student should keep clear in his skeleton diagram which letters are in the same row, and which are in the same column. It will be found expeditious to draw a dividing line (either horizontal or vertical, depending on the type of two-square matrix involved) on the page to keep the elements of the two squares independent, recording the values which are in the same row or column and writing down the letters as they are assumed. In the early stages of this process the student must exercise care in recording the letters so that no false relationships are formed, in other words, the values should be written down so that they are not in the same row or column with any letters other than those with which they are known to be related. This will entail spreading the work rather widely over the page initially, then gradually telescoping and reducing the size of the reconstruction diagram as the work progresses, until in the end it will be reduced to a concise matrix of two 5x5 squares.

and 64d below. It is to be noted that at $J7, \overline{OC}_{c} = \overline{P\Theta}_{p}$; but since in Fig. 64d it has already been determined that $\overline{OC}_{c} = \overline{\ThetaS}_{p}$, then \overline{OC}_{c} must equal \overline{PS}_{I} aking the word BATTLESHIPS rather than in the singular.

<u>g</u>. At this point the partially filled-in work sheet will look as follows:

													-	A.,	
					5					10				,	15
A	υo	DL -R	CE EC	NO ON	AN NA	SI IS	GL SA	BB NC	EI ⁻ EA	RI IR	RC ^t CR	RG AF	LN T-	MO E-	IC
В	PT	ER RE	GR -E	BB NC	OE EO	G₽ ₽₽	AB NE	QW	NN TA	KS SK	IP FO	ĊR RC	MO E-	OR RO	AP -E
C	DE	AM	HA	NX	RA AR	IE -0	DA	T R -0	MA	GB -E	EK	HS	LC	DD	LC
D	TQ	OR RO	EN BA	DT	MD	TI IT	AQ	FI -R	EQ	TA AT	NN TA	BF	NO ON	UO	OS
Е	SN NS	NN TA	RK	TA AT	SE TO	SN NS	HL	PO	NN TA	KS SK	IP FO	CR RC	CE EC	NO ON	IS
F	HL.	IR -0	KP	LO OL	NO ON	NZ	UC -B	TA AT	LT TL	OI ES	IH HI	OC PS	NO ON	CE EC	RA AR
G	<mark>∢ 0</mark> 5	DI	NO ON	EE EE	KR	rc	UB	RA AR	OS	DI	IP FO	DA	RC CR	OG	GR -E
H	0L -S	NO ON	CW	DI	LP	OI ES	LN T-	QX	DI	GL SA	RB N-	Bର -	YF	SS L-	RA AR
J	VY	OI ES	GR -E	SL LS	XX					5		-	-		• 5
									ŕ		-	-	-		د د ۲۰۰۹

RESTRICTED

Skeletons of additional plain text, such as the word OUR at Al, PRESENCE OF ENEMY at Bl, PROBABLE at Dl, ATTACK ON OUR INSTALLATIONS at DLO, CARRIER at F14, and VESSELS at Jl, may now clearly be seen The complete recovery of the plain text follows, and the reconstruction diagram is completed and telescoped into the form shown in Fig 64c Since phenomena of keyword-mixed sequences are observed, the rows and columns of

AIC GDF UEP Y-X	LNA SHG RBE V-W	B K C Z	S I O Y	R F D	T H M X	L S K V	I D M W	C F O X	A G Q Y	NHTZ	R F L V	A G N W	T H P X	SIQY	B K U Z
Fi	gure		3			-		F	۱ <u>מ</u> ו	ire		541	e		

Fig 64e are permuted to yield the original two-square matrix as shown in Fig 64f

h The solution of vertical two-square systems follows analogous lines, with the necessary modifications of the reconstruction diagram in consonance with the difference in mechanics between horizontal and vertical two-square systems

A few additional remarks concerning the test applied in subpars d and e, above, are in order First, the exceptionally high transparency value observed in this cryptogram is a direct result of the very favorable manner in which the keyword-mixed sequences in the two squares interact, in the foregoing cryptogram, 47 of the 125 digraphs present (approx 38%) were inverse transparencies It is also pointed out that, although some actual two-square cryptograms may be rejected by that portion of the test which was described in subpar e, the other phase of the test (described in subpar d)--by which one may determine whether a cryptogram is more probably a vertical two-square encipherment or more probably a horizontal two-square encipherment -- is extremely sensitive and highly accu-The foregoing statistical method is not merely valuable per se as rate an application of cryptomathematics in the analysis of two-square matrix systems, but is included as being illustiative of the general principles of special techniques that may be developed in the attack on any particular cryptosystem, the mechanics of which are known to the cryptanalyst The field of actual operational cryptanalysis is replete with special methods of attack of this nature

<u>71</u> Analysis of Playfair cipher systems --a Of all digraphic cryptosystems employing small matrices, the one which has been most frequently encountered is the Playfair cipher Certain variations of this cipher have been incorporated in several complex manual ciphers used in actual operational practice, because of this it is important that the student gain familiarity with the methods of solution of the classic Playfair system

- 7 ^

-RESTRICTED

199

The first published solutions³² for this cipher are quite similar basically and vary only in minor details The earliest, that by Lieut. Mauborgne (later to become Chief Signal Officer of the U.S. Army), used straightforward principles of frequency to establish the values of three or four of the most frequent digraphs Then, on the assumption that in most cases in which a keyword appears on the first and second rows the last five letters of the normal alphabet, VWXYZ, will rarely be disturbed in sequence and will occupy the last row of the square, he "juggles" the letters given by the values tentatively established from frequency considerations, placing them in various positions in the square, together with VWXYZ, to correspond to the plaintext-ciphertext relationships tentatively established A later solution by Lieut Frank Moorman, as described in Hitt's manual, assumes that in a Playfair cipher prepared by means of a square in which the key word occupies the first and second rows, if a digraphic frequency distribution is made, it will be found that the letters having the greatest combining power are very probably lette of the key A still later solution, by Lieut Commander Smith, is perhaps the most lucid and systematized of the three He sets forth in definite language certain considerations which the other two writers certainly entertained but failed to indicate

<u>c</u> The following details have been summarized from Smith's solution

(1) The Playfair cipher may be recognized by virtue of the fact that it always contains an even number of letters, and that when divided into groups of two letters each, no group contains a repetition of the same letter, as NN or EE Repetitions of digraphs, trigraphs, and polygraphs will be evident in fairly long messages

(2) Using the square³³ shown in Fig 65, there are two general cases to be considered, as regards the results of encipherment

В	٨	N	K	R
D	Е	F	G	H
I-J	L	М	0	ୟ
U	P	T	С	Y
S	۷	W	X	Z

Figure 65

³² Mauborgne, Lieut J. O., U S.A An advanced problem in cryptography and its solution, Leavenworth, 1914

Hitt, Captain Parker, U.S.A <u>Manual for the solution of military</u> ciphers, Leavenworth, 1918

Smith, Lieut Commander W. W., U.S.N. In Cryotography by Andre Langie, translated by J.C.H. Macbeth, New York, 1922

³³ The Playfair square accompanying Smith's solution is based upon the key word BANKRUPTCY, "to be distributed between the first and fourth lines of the square" This is a simple departure from the original Playfair scheme in which the letters of the key word are written from left to right and in consecutive lines from the top downward

RESTRICTED

<u>Case 1</u> Letters at opposite corners of a rectangle The following illustrative relationships are found

Reciprocity and reversibility 34

<u>Case 2</u> Two letters in the same row or column. The following illustrative relationships are found

> AN_pINK NA_pIKN

But $\overline{NK_{p}}$ does not = $\overline{AN_{c}}$, nor does $\overline{KN_{p}}=\overline{NA_{c}}$.

Reversibility only

(3) The foregoing gives rise to the following

<u>Rule I</u> (a) Regardless of the position of the letters in the square, if

This rule is of particular and in selecting probable words in the solution of Playfair ciphers, as will be shown shortly ³⁵

(b) If 1 and 2 form opposite corners of a rectangle, the following equations obtain

- 1 2:3 4 2 1:4 3 - - 3 4:1 2 4 3:2 1

 $\frac{34}{34}$ By way of explaining what is meant by reciprocity and by reversibility, in the case of digraphic systems, the following examples are given $\frac{1}{2}$ TH_p=YF_c and $\frac{1}{2}$ WF_p=TH_c constitute a reciprocal relationship, $\frac{35}{2}$ TF this constitute a reversible relationship

³⁵ In this connection, a list of frequently-encountered words and phrases which contain reversed digraphs (so-called "ABBA patterns") has been compiled and is included as Section E, "Digraphic idjomorphs. Playfair", in Appendix 3

RESTRICTED

(4) A letter considered as occupying a position in a row can be combined with but four other letters in the same row, the same letter considered as occupying a position in a column can be combined with but four other letters in the same column. Thus, this letter can be combined with only 8 other letters all told, under Case 2, above But the same letter considered as occupying a corner of a rectangle can be combined with 16 other letters, under Case 1, above Smith derives from these facts the conclusion that "it would appear that Case 1 is twice as probable as Case 2". He continues thus (notation my own).

"Now in the square, note that

Np=NKc INp=FKc DNp=Kc DNp=Kc INp=TKc	also	ENO FAC
KNp=WKc		EFp=FCc

"From this it is seen that of the 24 equations that can be formed when each letter of the square is employed either as the initial or final letter of the group, five will indicate a repetition of a corresponding letter of plain text

"Hence, <u>Rule II</u> After it has been determined, in the equation 1 2:3 4, that, say, $\overline{EN}_p = \overline{FA}_c$, there is a probability of one in five that any other group beginning with F_c indicates $\overline{E0}_p$, and that any group ending in A_c indicates \overline{ON}_p ³⁰

"After such combinations as \overline{ER}_p , \overline{OR}_p , and \overline{EN}_p have been assumed or determined, the above rule may be of use in discovering additional digraphs and partial words"

36

There is an error in this reasoning Take, for example, the 24 equations having F as an initial letter

1.4

Cese		Case		Case		Case	
1	FB.=DNp	2	ΓE=CD	2	FT=NM	1	FX=G₩
2	FD =EH	1	FL=CM	2	FW=NT	1	FR=HN
1	FI =DM	1	FP=ET	1	ΓK=GN	2	FH=EG
1	FU =DT	1	FV=EW	2	FG=ET	1	FQ=HM
1	FS ≕D₩	2	FN=NW	1	FO=GM	1	FY=HT
1	FA =EN	2	ſ‰=nf	1	FC=GT	1	FZ=HW

Here, the initial letter F_s represents the following initial letters of plain-text digraphs

 $D\Theta_p$, $E\Theta_1$, $N\Theta_p$, $G\Theta_p$, and $H\Theta_p$

It is seen that F_e represents D_p , N_p G_p , H_i 4 times each, and E_p , 8 times Consequently, supposing that it has been determined that $FA_e = EN_p$, the probability that F_e will represent E_p is not 1 in 5 but 8 in 24, or 1 in 3, but supposing that it has been determined that $FW_e = NT_p$, the probability that F_e will represent N_p is 4 in 24 or 1 in 6. The difference in these probabilities is occasioned by the fact that the first instance, $FA_e = EN_p$ corresponds to a Case 1 encipherment, the second instance $FW_e = NT_p$, to a Case 2 encipherment. But there is no way of knowing initially, and without other data, whether one is dealing with a Case 1 or Case 2 encipherment. Oully as an approximation therefore, may one say that the probability of F_e representing a given Θ_p is 1 in 5. A probability of 1 in 5 is of almost trivial importance in this situation since it is presents such a long shot ' for success. The following rule might be preferable. If the equation 12=3 is has been established where all the letters represented

RESTRICTED

<u>Rule III</u> In the equation 1 2:3.4, 1 and 3 can never be identical, nor can 2 and 4 ever be identical Thus, \overline{AN}_p could not possibly be represented by \overline{AY}_c , nor could \overline{ER}_p be represented by \overline{KR}_c This rule is useful in elimination of certain possibilities when a specific message is being studied

Rule IV In the equation 1.2p=3.4c, if 2 and 3 are identical, the letters are all in the same row or column, and in the relative order 1-2-4 from left to right or top to bottom, respectively In the square shown, $AN_p=NK_c$ and the absolute order is ANK The relative order 1-2-4includes five absolute orders which are cyclic permutations of one another Thus. ANK.., NK..A, K..AN, ..ANK, and .ANK

Rule V In the equation $1 2_p = 3.4_c$, if 1 and 4 are identical, the letters are all in the same row of column, and in the relative order 2-4-3 from left to right or top to bottom In the square shown, $\overline{\text{KN}_p}=\overline{\text{RK}_c}$ and the absolute order is NKR The relative order 2-4-3 includes five absolute orders which are cyclic permutations of one another Thus NKR.., KR .N, R..NK, ..NKR, and .NKR..

<u>Rule VI</u> "Analyze the message for group recurrences. Select the groups of greatest recurrence and assume them to be high-frequency digraphs.³⁷ Substitute the assumed digraphs throughout the message, testing the assumptions in their relation to other groups of the cipher The reconstruction of the square proceeds simultaneously with the solution of the message and aids in hastening the translation of the cipher".

positions occupied in Fig 25a by the letters involved) However, it must be added that these probabilities are based upon assumptions which fail to take into account any considerations whatever as to frequency of letters or specificity of composition of the matrix For instance, suppose the 5 high-frequency letters E, T, R, I N all happen to fall in the same row or column in the matrix, the number of Case 2 encipherments would be much greater than expectancy and the probability that the equation 12=34 represents a Case 1 encipherment falls much below 4/5

³⁷ A more accurate guide to the determination of the plaintext equivalents of high-frequency cipher digraphs would involve the consideration of the difference in frequency of a particular digraph and its reversal. Thus, an example of a high-frequency $\overline{\Theta_p}$ which is also high-frequency in its reversal, is $\overline{\text{RE}}_p$, an example of a high-frequency $\overline{\Theta_p}$ which is rarely found in its reversed form, is $\overline{\text{TH}}_p$

by 1, 2, 3, and 4 are different, then there is a probability of 4/5 that a Case 1 encipherment is involved Consequently, if at the same time another equation, 36=52, has been established, where 2 and 3 represent the same letters as in the first equation, and 5 and 6 are different letters, also different from 2 and 3 there is a probability of 16/25 that the equation 16=54 is valid or if at the same time that the equation 12=34 has been determined, the equation 16=54 has also been established, then there is a probability of 16/25 that the equation 36=52 is valid (Check this by noting the following equations based upon Fig 25a CE=PG, PH=YE, CH=YG Note the positions occupied in Fig 25a by the letters involved) Likewise, if the equation 12=34 and 16=35have been simultaneously established, then there is a probability that the equation 25=46 is valid, or if the equations 12=34 and 25=46 have been simultaneously established, then there is a probability that the equation 25=46 is valid (Check this by noting the following equations CE=PG, CA=PK, EK=GA, note the

RESTRICTED

d (1) When solutions for the Playfair cipher system were first developed, based upon the fact that the letters were inserted in the cells in keyword-mixed order, cryptographers thought it desirable to place stumbling blocks in the path of such solution by departing from strict, keyword-mixed order One of the simplest methods is illustrated in Fig 65, wherein it will be noted that the last five letters of the keyword proper are inserted in the fourth row of the square instead of the second, where they would naturally fall. Another method involves inserting the letters within the cells from left to right and top downward but using a sequence that is derived from a columnar transposition instead of a keyword-mixed sequence Thus, using the keyword BANKRUPTCY.

> 2 1 5 4 7 9 6 8 3 10 B A N K R U P T C Y D E F G H I L M O Q S V W X Z

Sequence AEVBDSCOKGXNFWPLRHZTMUIYQ

The Playfair square is as follows

A	Ε	V	В	D
ន	C	0	К	G
X	N	F	W	P
L	R	Н	Z	Т
М	U	I	Y	Q

(2) Note the following three squares

Z T L R H	OKGSC	N F W P X
Y Q M U I	FWPXN	R H Z T L
B D A E V	HZTLR	U I Y Q M
K G S C O	IYQMU	E V B D A
W P X N F	VBDAE	C O K G S
Figure 66b	Figure 66 <u>c</u>	Figure 66 <u>d</u>

At first glance they all appear to be different, but closer examination shows them to be cyclic permutations of one another and of the square in Fig. 66a. They y eld identical cryptographic equivalents in all cases However, if an attempt be made to reconstruct the original key word, it would be much easier to do so from Fig 66a than from any of the others, because in Fig 66a the original keyword-mixed sequence has not been disturbed as much as in Figs 66b, c, and d In working with Playfair ciphers, the student should be on the lookout for such instances of cyclic permutation of the original Playfair square, for during the course of solution he will not know whether he is building up the original or an

RESTRICTED-

equivalent cyclic permutation of the original metrix, usually only after he has completely reconstructed the matrix will he be able to determine this point

(1) The steps in the solution of a typical example of this е cipher will now be illustrated Let the message be as follows 1 2 8 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 20 27 28 29 30 A VTQEU HIOFT CHXSC AKTVT RAZEV TAGAE B OXTYM HCRLZ ZTOTD UMCYC XCTGM TYCZU C SNOPD GXVXS CAKTV TPKPU TZPTW ZFNBG D PTRKX IXBPR ZOEPU TOLZE KTTCS NHCQM E V T R K M W C F Z U B H T V Y A B G I P R Z K P C O F N L V F OXOTU ZFACX XCPZX HCŶNO TYOLG XXIIH G TMSMX CPTOT CXOTT CYATE XHFAC XXCPZ. H,XHYCT XWLZT SGPZT VYWCE TWGCC MBHMQ JYXZPW GRTIV UXPUM ORKMW CXTMR SWGHB K XCPTO TCXOT MIPYD NFGKI TCOLX UETPX L XFSRS UZTDB HOZIG XRKIX ZPPVZ IDUHQ Μ ΟΤΚΤΚ ССНХХ

(2) Without going through the preliminary tests in detail, with which it will be assumed that the student is now familiar,³⁰ the conclusion is reached that the cryptogram is digraphic in nature, and a digraphic frequency distribution is made (Fig. 67)

38 See par 69c ₩.F
RESTRICTED

Since there are no double-letter groups (termed "doublets"), the conclusion is reached that a Playfair cipher is involved and the message is rewritten in digraphs

RESTRICTED

-RESTRICTED

	1	8	3	4	5	6	7	8	9	10	11	12	13	14	15
A	VT	QE	UH	IO	FT	CH	<u>xs</u>	CA	KT	VT	RA	ZC	٧T	AG	AE
В	OX	TY	MH	CR	LZ	ZT	QT	DU	MC	YC	XC	ΤG	MT	ХC	ZU
C	SN	OP	DG	XV	<u>XS</u>	CA	<u> </u>	VT	PK	PU	TZ	PT	WZ	FN	BG
D	PT	RK	XI	XB	PR	Z0	EP	UT	0L	ZE	KT	TC	SN	HC	QM
E	VT	RK	MW	CF	ZU	BH	TV	YA	BG	IP	RZ	KP	CQ	FN	LV
F	OX	0T_	UZ	<u>FA</u>	CX	XC	PZ	XH	_CY	NO	ΤY	QL	GX	XI	IH
G	ТМ	SM	<u>xc</u>	PT	OT	CX	OT	TC	YA	TE	XH	FA	CX	XC	PZ,
H	, XH	YC	TX	WL	ZT	SG	PZ	TV	YW	CE	TW	GC	СМ	BH	MQ
J	YХ	ZP	WG	RT	IV	UX	PU	MQ	RK	М∦	CX	TM	RS	₩G	HB
K	xc	PT	OT	CX	OT	MI	PY	DN	FG	KI	TC	OL	XU	ET	PX
\mathbf{L}	XF	SR	ຣບົ	ZT	DB	HO	ZI	GX	RK	IX	ZP	PV	ZI	DU	HQ
М	OT	KT	KC	CH	XX			-						-	
							-	-							

(3) The following three fairly lengthy repetitions are noted:

Lines								-			
F	OT	UZ	<u>FA</u>	CX	XC	PZ	XH	СЧ	NO		
G	TE	XH	FA	<u> </u>	xc	PZ	хн	YC	TX		
А	FT	СН	<u>xs</u>	CA	KT	VT	RA	ZE			
C	DG	XV	<u>xs</u>	CA	KT	VŢ	PK	PU,			
G	TM	SM	<u>xc</u>	PT	OT	CX	OT	TC		_	
ΓK	WG	HB	<u>xc</u>	PT	<u>_0</u>	CX	OT	MI_			
					·~_	·····				-	

The first long repetition, with the sequent reversed digraphs \overline{CX} and \overline{CC} immediately suggests the word BATTALION (see Section E, Appendix 3), split up into -B AT TA LI ON and the sequence containing this repetition in lines F and G becomes as follows

Line F	OX	OT	UΖ	FA	CX	XC	PZ	XH	CY	NO	TY
				- B	AT	TA	LI	ON			
											-
Line G	YA	TE	ХН	FA	CX	XC	\mathbf{PZ}	XH	YC	TX	WL
				B	AT	TA	LI	ON			

(4) Because of the frequent use of numerals before the word BAT-TALION (as mentioned in Section B of Appendix 4) and because of the appearance of \overline{ON}_p before this word in line G, the possibility suggests itself that the word before BATTALION in line G is either ONE or SECOND. The identical cipher digraph FA in both cases gives a hint that the word BATTALION in line F may also be preceded by a numeral, if ONE is correct

-RESTRICTED

in line G, then THREE is possible in line F On the other hand, if SECOND is correct in line G, then THIRD is possible in line F Thus

Line	F	•	٠	OX	or	UZ	FA	CX	XC	PZ	XH	CY	NO	TY
lst :	hypothes	is			TH	RE	EB	ДŢ	TA	LI	on			
2nd	hypothes	is .			TH	IR	DB	AT	TA	LI	OII			
Line	G			YA	TE	хн	<u>FA</u>	CX	XC	PZ	XH	YC	TX	WL.
lst	hypothes	is			# =	ON	EB	тA	TA.	LI	on			
2nd	hypothes	is	•	-S	EC	on	DB	٨T	TA	LI	on			

First, 'e that if either hypothesis is true, then $\overrightarrow{OT}_c = \overrightarrow{TH}_p$ The frequency distribution shows that \overrightarrow{OT} occurs 6 times and is in fact the most frequent digraph in the message Moreover, by Rule I of subparagraph b, if $\overrightarrow{OT}_c = \overrightarrow{TH}_p$ then $\overrightarrow{TO}_c = \overrightarrow{HT}_p$ Since \overrightarrow{HT}_p is a very rare digraph in normal plain text, \overrightarrow{TO}_c should either not occur at all in so short a message or else it should be very infrequent. The frequency distribution shows that it does not occur. Hence, there is nothing inconsistent with the supposition that the word in front of BATTALION in line F is THREE or THIRD, and there is some evidence that it is actually one or the other

(5) But can evidence be found for the support of one hypothesis against the other? Let the frequency distribution be exemined with a view to throwing light upon this point If the first hypothesis is true, then UZc-REp, and, by Rule I, ZUc-ERp The frequency distribution shows but one occurrence of \overline{UZ}_{c} and but two occurrences of \overline{ZU}_{c} These do not look very good for RE and ER On the other hand, if the second hypothesis is true, then $\overline{UZ}_c = \overline{IR}_p$ and by Rule I, $\overline{ZU}_c = \overline{RI}_p$ The frequencies are much more favorable in this case Is there anything inconsistent with the assumption, on the basis of the second hypothesis, that $\overline{TE}_{c}=\overline{EC}_{p}$? The frequency distribution shows no inconsistency, for $\overline{\text{TE}}_c$ occurs once and $\overline{\text{ET}}_c(=\overline{\text{CE}}_p)$, by Rule I) occurs once As regards whether $\overline{\text{FA}}_c=\overline{\text{EB}}_p$ or $=\overline{\text{DS}}_p$, both hypotheses are tenable, possibly the second hypothesis is a unade better than the first, on the following reasoning By Rule I, if FAc=EBp then $\overline{AF_c}=\overline{BE_p}$, or $\bot f \overline{FA_c}=\overline{DB_p}$ then $\overline{AF_c}=\overline{BD_p}$ The fact that no $\overline{AF_c}$ occurs, whereas at least one BE, may be expected in this message, inclines one to the second hypothesis, $\tilde{s}_{incc} \overline{BD}_{o}$ is very rare

(6) Let the 2nd hypothesis be assured to be correct The additional values are ientatively inserted in the text, and in lines G and K tro interesting repetitions are noted

Line GThi Shi XC PT OL CA OT TO YA TE XH FA CA YO PZ XH
TA 111T THLine KWG HB XC PT OT C' CT HI PY D' FG KI TO OL AU LT
TA 1H / T' TH

-RESTRICTED

RESTRICTED

This certainly looks like STATE THAT THE . . , which would make TE_PT_ Furthermore, in line G the sequence STATETHATTIE .SICONDBATTALION cha hardly be anything else than STATE THAT THEIR SECOND BALTALION, which would make $\overline{\text{IC}}_{e} = \overline{\text{EI}}_{p}$ and $\overline{\text{YA}}_{e} = \overline{\text{RS}}_{p}$ Also $\text{SM}_{e} = -S_{p}$

(7) It is perhaps high time that the whole list of tentative equivalent values be studied in relation to their consistency with the positions of letters in the Playfair square, moreover, by so doing, additional values may be obtained in the process The complete list of values is as follows

Assumed values	Derived by Rule I
ATL CZZ CZZ CZZ CZZ CZZ CZZ CZZ CZ	TAPPER CONCERNMENT OF

(8) By Rule V, the equation TH_p=OT_c means that H, O, and T are all in the same row or column and in the absolute order HTO similarly, C, E, and T are in the same row or column and in the absolute order CET Further, E, P, and T are in the same row and column, and their absolute order is ETP That is, these sequences must occur someplace in the square, in either rows or columns, taking into consideration of course the probability of cyclic displacements of these sequences within the square

. 8° 1 Ji -(b) СЕТ (a) H T O (c) E T P

(9) Noting the common letters E and T in the second and third scquences, these two sequences may be combined into one sequence of four letters, viz, CETP Since only one position remains to be filled in this row (or column) of the square, and noting in the list of equivalents that $EI_{n}=TC_{c}$, it is obvious that the letter I belongs to the C E T P sequence, the complete sequence is therefore CETPI

(10) Since the sequence HTO has a common letter (T) with the sequence CETPI, it follows that if the HTO sequence occupies a row, then the CETPI sequence must occupy a column, or, if the HTO sequence occupies a column, then the CETPI sequence must occupy a row, and they may be combined by means of their common letter, T, Viz

RESTRICTED

RESTRICTED

The proof of whether the CETPI sequence, for example, properly belongs as a row or a column of the Playfair square lies in the establishment of a rectangular relationship, instead of the <u>linear</u> relationships constructed thus far.

(11) We note that, from the assumptions in subpar $\underline{d}(6)$, $\overline{AF_p}=\overline{CX_c}$ and $\overline{ON_p}=\overline{XH_c}$ The relationship $\overline{ON_p}=\overline{XH_c}$ might be either a rectangular one, such as 0 X, or it might be linear, \underline{viz} , HTOXN or H Since however H N 0 X N

 $\overline{\text{AT}}_{\text{D}}$: $\overline{\text{CX}}_{c}$ must be a rectangular relationship, then only the configuration

H	C E T P I	0	Ā X	N	will	ъе	valid,	since	the	alternative	form	C	E	H T O X N	 P	I	will	not
ί_	<u>_</u>											i		<u>N</u> .			i	

satisfy the equation $\overline{\text{AT}}_{p} = \overline{\text{CX}}_{c}$

(12) The fragmentary Playfair square³⁹ has been established, in one of its 25 possible cyclic permutations, as

Scanning the list of plain-cipher equivalents given in subpar d(7) in order to insert possible additional letters, none is found But seeing that several high-frequency letters have already been inserted in the matrix, perhaps reference to the cipptogram itself in connection with values derived from these inserted letters may yield further clues For example, the vowels A, E, I, and O are all in position, as are the very frequent consonants N and T The following combinations may be studied

$\frac{\overline{AN}_{p} = \overline{\Theta X}_{c}}{\overline{EN}_{p} = \overline{\Theta T}_{c}}$ $\frac{\overline{IN}_{p} = \overline{\Theta T}_{c}}{\overline{ON}_{p} = \overline{XH}_{c}}$	-	ATp=CXc ETp=TPc ITp=CPc OTp=XOc	•	Mup=XA Fp=16c Fp=16c JOp=XC	$\frac{\overline{TA}_{p} = \overline{YC}_{c}}{\overline{TT}_{p} = \overline{PT}_{c}}$ $\frac{\overline{TT}_{p} = \overline{PC}_{c}}{\overline{TT}_{p} = \overline{OC}_{c}}$ $\frac{\overline{TT}_{p} = \overline{OC}_{c}}{\overline{TO}_{p} = \overline{OX}_{c}}$
				-	

³⁹ In actual practice, it is more usual to start witr a much larger diagram than a simple 5x5 square, as relationships develop, the diagram is gradually condensed, until finally a 5x5 square energies this piocedure is quite similar to that exployed in the reconstruction diagrams for two-square matrices 9

RESTRICTED

 $\overline{\text{AT}_{p}(=CX_{c})}$, $\overline{\text{TA}_{p}(=XC_{c})}$, $\overline{\text{ON}_{p}(=XH_{c})}$, $\overline{\text{TE}_{p}(=PT_{c})}$ and $\overline{\text{ET}_{p}(=TP_{c})}$ have already been inserted in the text Of the others, only $\overline{\text{OX}_{c}(=TO_{p})}$ occurs two times, and this value can be at once inserted in the text But can the equivalents of $\overline{\text{AN}}$, $\overline{\text{EN}}$, or $\overline{\text{IN}}$ be found from frequency considerations? Take $\overline{\text{EN}_{p}}$, for example, it is represented by $\overline{\Theta T}_{c}$ What combination of $\overline{\Theta T}$ is most likely to represent $\overline{\text{EN}_{p}}$ among the following candidates

> $\overline{\mathrm{KT}}_{\mathrm{c}}$ (4 times), by Rule I, $\overline{\mathrm{NE}}_{\mathrm{p}}$ would = $\overline{\mathrm{TK}}_{\mathrm{c}}$ (no occurrences) $\overline{\mathrm{VT}}_{\mathrm{c}}$ (5 times), by Rule I, $\overline{\mathrm{NE}}_{\mathrm{p}}$ would = $\overline{\mathrm{TV}}_{\mathrm{c}}$ (2 times) $\overline{\mathrm{ZT}}_{\mathrm{c}}$ (3 times), by Rule I, $\overline{\mathrm{NE}}_{\mathrm{p}}$ would = $\overline{\mathrm{TZ}}_{\mathrm{c}}$ (1 time)

VT_c certainly looks good it begins the message, suggesting the word ENEMY, and the sequence $PZTV_c$, in line H, would become the plaintext sequence LINE. Let this be assumed to be correct, and let the word ENEMY also be assumed to be correct Then $EM_p=QE_c$ and the partial square then becomes as shown herewith.

Figure 68a

(13) In line E is seen the following sequence

Line E . VT RK MW CF ZU BH TV YA BG IP RZ KP CQ FN LV EN RI NE RS PT -E

The plaintext sequence RI..NERS..PT... suggests PRISONERS CAPTURED, as follows

MW CF ZU BH TV YA BG IP RZ KP P RI SO NE RS CA PT UR ED

This gives the following new values: $\overline{\Theta P}_p = \overline{CF}_c$, $\overline{SO}_p = \overline{BH}_c$, $\overline{CA}_p = \overline{BG}_c$, $\overline{UR}_p = \overline{RZ}_c$, and $\overline{ED}_p = \overline{KP}_c$ The letters B and G can be placed in position in the partial square at once, since the positions of C and A are already known The insertion of the letter B immediately permits the placement of the letter S, from the equation $\overline{SO}_p = \overline{BH}_c$ Of the remaining equations only $\overline{ED}_p = \overline{KP}_c$ can be used Since E and P are fixed and are in the same column, D and K must be in the same column, and moreover the K must be in the

RESTRICTED

-RESTRICTED-

same row as E There is only one possible position for K, \underline{viz} , immediately after Q This automatically fixes the position of D The square is now as shown herewith.

(14) A review of all equations, including the very first ones established, gives the following which may now be used $\overline{DB}_{p}=FA_{c}$, $\overline{RS}_{p}=YA_{c}$. The first permits the immediate placement of F, the second, by elimination of possible positions, permits the placement of both R and Y. The sq \therefore is now as shown herewith

Γ		P	F	D
	Y	I		R
G	S	Ç	В	A
V	М	Е	Q	K
N	H	T	0	X

Figure 68c

Once more a review is made of all remaining unused equations $\overline{LI}_p=\overline{PZ}_c$ now permits the placement of L and Z $\overline{IR}_p=\overline{UZ}_c$ now permits the placement of U, which is confirmed by the equation $\overline{UR}_p=\overline{RZ}_c$ from the word CAPTURED. There is then only one cell vacant, and it must be occupied by the only letter left unplaced, <u>viz</u>, W Thus the whole square has been reconstructed, and the message can now be deciphered.

	, m J	בו	ħ.	וע
Z	Y	I	U	R
G	ន	C	В	A
v	М	Е	Q	К
N	H	T	0	X

Figure 68d

<u>f</u> Reconstruction of the square in Playfair ciphers is normally carried on concurrently with the synthesis of the plain text, once a few correct assumptions have been made. Now, having just is constructed the square as shown in Fig 68d, the question to be answered is whether this square is identical with the original enciphering matrix or whether it is a cyclic permutation of the original square (which may have contained, say, a transposition-mixed sequence) Even though the cryptogram in subpar 71e has been solved, this point is still of interest

-RESTRICTED

(1) The square that is derived may not necessarily be the original enciphering square, more than likely it will be one of the 24 possible cyclic permutations of the original square If the Playfair square consisted of a keyrord-mixed sequence, a permutation of the square will cause no difficulty in recovering the original matrix and hence the key For example, if the square derived in some other instance is word Q T L N O then the square P Y R A M is easily recovered because of the XZUVW IDSBC AMPYR EFGHK LNOQT BCIDS HKEFG UVWXZ

tell-tale letters UVMXZ occurring in a row of the derivative square But when the Playfan square consists of a transposition-mixed sequence, then a different procedure must be adopted

(2) As an example, let us take the transposition matrix
58614327 from which AFTDK is the original square Using the
PYRAMIDS WIHVM
BCEFGHKL GUPBN
IUUUTUVWX ZREQS
LXYCO
methods illustrated in par. 51g, scanning successive rows of the square

will disclose sequences of letters which could have appeared as columns in the transposition matrix For example, discovery of the columns IDS - HKL VWX

will afford rapid recovery of the key word. But if instead of the original square we had one of its permutations such as Q S Z R E, then treatment

C O L X Y D K A F T V M W I H B N G U P

of the "columns", e.g , F | V | 0 | L | Q, of the tentative transposition matrix T M L X S V | W | X | Z

(assuming that some or all of the letters V, W, X, Y, Z are in the lest row of the transposition matrix) will be without significance, therefore the procedure above is inapplicable without a slight modification.

(3) Since it will be noted that a permutation of the rows will not affect the procedure of keyword recovery, then we construct a 9x5 rectangle Q S Z R E Q S Z P which contains the five squares which result C O L X Y C O L X

D K A F T D K A F V M W I H V M W I B N G U P B N G U

simply from successive permutations of the columns. A 5x5 cut-out square will be found convenient in testing each permutation in turn Affirmative results will be obtained when the correct permutation is reached,

-RESTRICTED

RESTRICTED

which in this case is the third square in the rectangle, namely, Z R E Q S. After recovery of the key word from this permuted square it L X Y C O A F T D K W I H V M G U P B N

is probable then that the original enciphering square must have been

A F T D K. W I H V M G U P B N Z R E Q S L X Y C O

(4) In the case of the square recovered in Fig 68d, it is found that, following the procedure outlined in subpars (1), (2), and (3) above he key word is based on COMPANY, recoverable from the following diagram.

2 5 3 6 1 4 7 C O M P A N Y B D E F G H I K L Q R S T U V W X Z

The original square must have been this

A	G	S	C	B
K	V	М	Е	ର୍
X	N	H	T	0
D	L	W	Ρ	F
R	Z	Y	I	υ

Figure 68e

g Continued practice in the solution of Playfair ciphers will make the student quite expert in the matter and will enable him to solve shorter and shorter messages ⁴⁰ Also, with practice it will become a matter of indifference to him as to whether the letters are inserted in the square with any sort of regularity, such as simple keyword-mixed order, transposition-mixed order, or in a purely random order

<u>h</u> It may perhaps seem to the student that the foregoing steps are somewhat too artificial, a bit too "cut and dried" in their accuracy to portray the process of analysis as it is applied in practice For example, the critical student may well object to some of the assumptions and the reasoning in subpar e(5), above, in which the words THREE and

⁴⁰ The author once had a student who "specialized" in Playfair ciphers and became so adept that he could solve messages containing as few as 50-60 letters within 30 minutes

RESTRICTED

ONE (1st hypothesis) were rejected in favor of the words THIRD and EECOID This issted largely upon the rejection of REp and ERp (2nd hypothesis) as the equivalents of \overline{UZ}_c and \overline{ZU}_c , and the adoption of \overline{IR}_p and \overline{RI}_p as their equivalents indeed if the student will comme the final message with a critical eye, he will find that while the bit of reasoning in step (5) is perfectly logical, the assumption upon which it is based is in fact wrong, for it happens that in this case ERp occurs only once and REp does not occur at all Consequently, although most of the reasoning which led to the rejection of the first hypothesis and the adoption of the second was logical, it was in fact based upon erroneous assumption In other words, despite the fact that the assumption was incorrect, a correct deduction was made The student should take note that in cryptanalysis situations of this sort are not at all unusual Indeed they are to be expected, and a few words of explanation at this point may be useful

Ciyptanalysis is a science in which deduction, based upon observational data, plays a very large role But it is also true that in this science most of the deductions usually rest upon assumptions It is most often the case that the cryptanalyst is forced to make his assumptions based upon a quite limited amount of text. It cannot be expected that assumptions based upon statistical generalizations will always hold true when applied to data comparatively very much smaller in quantity than the total data used to derive the generalized rules Consequently, as regards assumptions made in specific messages, most of, the time they will be correct, but occasionally they will be incorrect In cryptanalysis it is often found that among the correct deductions there will be cases in which subsequently discovered facts do not bear Indeed, it is out the assumptions on which the deduction was based sometimes true that if the facts had been known before the deduction was made, this knowledge would have prevented making the correct deduction For example, suppose the cryptanalyst had somehow or other divined that the message under consideration contained no RE, only one ER, one IR, and two RI's (as is actually the case) He would certainly not have been able to choose between the words THREE and ONE (1st hypothesis) as against THIRD and SECOND (2d hypothesis) But because he assumes that there should be more \overline{ER}_p 's and \overline{RE}_p 's than \overline{IR}_p 's and \overline{RI}_p 's in the message, he deduces that UZ_c cannot be RE_p , rejects the first hypothesis and takes the second It later turns out, after the problem has been solved, that the deduction was correct, although the assumption on which it was based (expectation of more frequent appearance of RE_{p} and ER_{p}) was, in fact, not true in this particular case The cryptanalyst can only hope that the number of times when his deductions are correct, even though based upon assumptions which later turn out to be erroneous, will abundantly exceed the number of times when his deductions are wrong, even though based upon assumptions which later prove to be correct If he is lucky,

⁴¹ See fooinoie 1, on page 52

-RESTRICTED

the making of an assumption which is really not true will make no difference in the end and will not delay solution, but if he is specially favored with luck, it may actually help him solve the message--as was the case in this particular example

Another comment of a general nature may be made in connection with this specific example. The student may ask what would have been the procedure in this case if the message had not contained such a tell-tale repetition as the word BATTALION, which formed the point of departure for the solution, or, as it is often said, permitted an "entering wedge" to be driven into the message The answer to his query is that if the word BATTALION had not been repeated, there would probably have been some other repetition which would have permitted the same sort of attack + If the student is looking for cut and dried, straightforward, unvarying methods of attack, he should remember that cryptanalysis, while considered a branch of mathematics by some, is not a science which has many "general solutions" such as are found and expected in mathematics proper It is inherent in the very nature of cryptanalytics that, as a rule, only general principles can be established, their practical application must take advantage of peculiarities and particular situations This is especially true in a text which are noted in specific messages The illustration of a general principle requires a on the subject specific example, and the latter must of necessity manifest characterjstics which make it different from any other example The word BAT-TALION was not purposely repeated in this example in order to make the demonstration of solution easy, "it just happened that way" In another exemple, some other entering wedge would have been found The student can be expected to learn only the general principles which will enable him to take advantage of the specific characteristics manifested in Here it is desired to illustrate the general principles specific cases of solving Playfair ciphers and to point out the fact that entering wedges must and can be found. The specific nature of the entering wedge varies with specific examples

<u>72</u> Analysis of polygraphic systems involving large tables --a The analysis of systems incorporating large digraphic tables is accomplished by entering, within the appropriate cells of a 26x26 chart, data corresponding to the plain-cipher ielationships of assumed cribs on 26x26 chaits, and examining the charts for evidences of symmetry or systematic construction in their compilation The initial plaintext entries may, in the absence of cribs, be made on the basis of digraphic frequency considerations, aided by idiomorphisms and repetitions

b. In pseudo-digraphic systems, such as those incorporating tables similar to Figs 47a and b, and 48, the identification of the monoalphabetically-enciphered component of cipher digraphs will greatly accelerate plaintext entries, since advantage may be taken of this monoalphabeticity. Tables with a feature of reciprocity, such as the example in Fig 50, may be exploited on the basis of <u>this</u> weakness, even if the reciprocal pairs are assigned at random Tables such as that in Fig 49 and the one for trinome ligraphic encipherment shown in Fig 51 may also be exploited with facility, once enough plain text has been correctly

-RESTRICTED

RESTRICTED

assumed and inserted to disclose their systematic construction A word of warning is inserted here against making incautious assumptions concerning the exact internal composition of tables such as that in Fig 49, since their unusual construction could easily mislead the analyst who jumps to premature conclusions. In the case of a table such as Fig 51 wherein the trinomes have been inscribed in straight horizontals (or for that matter, any other known inscription), if the dimensions of the table have been correctly assumed the simplest solution involves a reduction to two alphabets, ieflecting the sequences of letters for the side and top of the matrix, this solution closely parallels that of the numerical four-square system described in subpar 69e

Because the foregoing principles are rather straightforward, it is not considered necessary to illustrate their application with examples Of course, when digraphic tables of random construction have been used, no refinements in solution are possible However, the recording of as few as 225 different plaintext digraphs and their ciphertext equivalents will theoretically enable the automatic decryption of approximately 92% of the cipher digraphs of messages, and the recording of 335 plaintextciphertext values will enable the automatic decryption of 98% of the cipher digraphs, thus almost every message may be read in its entirety without recourse to further assumptions Actually, it should be pointed out that having only 122 matched plaintext-ciphertext equivalencies will theoretically enable the decryption of 75% of the cipher digraphs, and enough skeletons of plain text may then be manifest to permit the decryption of the complete message texts

d It might be well to point out in connection with large digraphic tables that there exist literal types which give rise to monoalphabetic distributions for both the initial letters and final letters of pairs Such a table is illustrated in Fig 69 below

RESTRICTEE

217

RESTRICTED

	A	B	C	D	E	F	G	Ħ	I	J	ĸ	L	M	N	0	P	Q	R	8	T	U	V	W	X	Y	Z
A	HQ	YQ	DQ	RQ	AQ	UQ	LQ	IQ	CQ	BQ	EQ	TQ	GQ	JQ	KQ	MQ	NQ	QQ	PQ	QQ	SQ	TQ	VQ	WQ	XQ	ZQ
B	HU	YU	DU	RU	AU	UU	LU	IJ	CU	BU	EU	FU	GU	JU	KU	MU	NU	OU	PU	QU	SU	TU	YU	WÜ	XU	2U
C	HE	YE	DE	RE	AE	UE	LE	IE	CE	BE	EE	FE	GE	JE	KE	ME	RIC.	OE	PE	QE	SE	TE	٧E	WE	XE	ZE
D	HS	YS	DS	RS	AS	US	IS	IS	CS	BS	ES	FS	GS	JS	KS	MS	NS	05	ps	QS	85	TS	VS	ws	XS	ZS
E	HT	ΥT	DT	\mathbf{RT}	АŢ	UT	LT	ŤΤ	CT	\mathbf{BT}	ы	\mathbf{FT}	СТ	\mathbf{JT}	KT	МГ	NT	от	PT	QT	ST	TT	٧T	WT	XT	ZT
F	HI	ΥT	DI	RI	AI	UI	LI	II	CI	BI	EI	FI	GI	JI	KI	MI	NI	OI	PI	QI	SI	TI	VI	WI	XI	ZI
G	HO	YO	DO	RO	AO	UO	IJ	IO	CO	BO	EO	FO	GO	JO	KO	MO	NO	00	PO	QO	50	TO	VO	WO	XO	Z0
H	HN	YN	DN	RN	AN	UN	LN	IN	CN	BN	EN	FN	GN	JN	KN	MN	NIN	ON	PN	QN	SN	TN	VN	WN	XN	ZN
I	HA	YA	DA	RA	AA	UA	LA	IA	CA	BA	EA	FA	GA	JA	KA	MA	NA	OA	PA	QA	SA	TA	۷A	WA	XA	ZA
J	HB	YB	DB	RB	AB	UB	LB	B	CB	BB	EB	FB	GB	æ	КB	MB	RB	OB	PB	QB	SB	TB	VB	WB	ХВ	2B
K	HL	YL	DL	RL	AL	UL	$\mathbf{L}\mathbf{L}$	IL	CL	BL	EL	FL	GL	T	ĸĿ	ML	NL	OL	PL	QL	SL	\mathbf{TL}	VL	WL	ХL	ZL
L	HY	YY	DY	RY	AY	UY	LY	IY	CY	BY	EY	FY	GY	JX	КY	MY	NY	OY	PY	QY	SY	TY	VY	WY	XY	ZY
M	HC	YC	DC	RC	AC	UC	IC	IC	CC	BC	EC	FC	GC	JC	KC	MC	NC	OC	PC	QC	SC	TC	VC	WC	XC	ZC
N	ED	TD	DD	RD	AD	UD	IJ	D	CD	BD	ED	FD	GD	D	ĸD	MD	ND	OD	PD	QD	SD	TD	VD	WD	XD	ZD
0	HF	YF	DF	RF	AF	UF	LF	IF	CF	BF	EF	FF	GF	JF	KF	MF	NF	OF	PF	QF	8F	TF	VF	WF	XF	ZF
P	HC	YG	DG	RG	AG	UG	LG	IG	CG	BG	EG	FG	GG	JC	KG	MG	NG	OG	PG	QG	SC	TG	VG	WG	XG	zo
Q.	HH	YH	DH	RH	AH	UH	LH	IH	CH	BH	EH	FH	GH	JH	KH	MH	NH	OH	PH	QH	SH	TH	VH	WH	XH	ZH
R	НJ	¥J	DJ	RJ	AJ	UJ	IJ	IJ	CJ	BJ	EJ	FJ	GJ	JJ	KJ	MJ	ŊJ	OJ	PJ	QJ	SJ	ТJ	٧J	WJ	XJ	ZJ
S	HK	YK	DK	RK	AK	UK	LK	IK	CK	BK	EK	FK	GK	JK	KK	MK	NK	OK	PK	QK	SK	TK	VK	WK	XK	ZK
T	HM	YM	DM	RM	AM	UM	LM	IM	CM	BM	EM	FM	GM	JII	KM	MM	NM	OM	PM	QM	SM	TM	VM	WM	XM	ZM
U	EP	YP	DP	RP	AP	UP	LP	P	CP	BP	EP	FP	GP	<u>J</u> P	XP.	MP	NP	OP	PP	QP	SP	TP	VP	WP	XP	ZP
V	HR	YR	DR	RR	AR	UR	LR	IR	CR	BR	ER	FR	GR	JR	KR	MR	NR	OR	PR	QR	SR	TR	VR	WR	XR	ZR
W	HV	YV	DV	RV	A۷	UV	LV	IV	CV	BV	EV	FV	GV	JV	KV	MV	NV	ov	PV	QV	SV	TV	vv	WV	XV	ZV
X	HW	WY	DW	RW	AW	W	IW	IW	CW	BW	EW	FW	GW	JW	ĸw	MW	NW	WO	PW	QW	SW	TW	WV	WW	XW	ZW
Y	НX	YX	DX	RX	AX	υX	IX	IX	CX	BX	EX	FX	GX	JX	KX	MX	NХ	OX	PX	QX	SX	TX	VX	WX	XX	ZX
Z	HZ	YZ	DZ	RZ	AZ	UZ	ĽZ	IZ	CZ	BZ	EZ	FZ	GZ	JZ	KZ	MŻ	NZ	OZ	PZ	QZ	SZ	TŻ	٧Ż	WZ	XZ	ZZ

Figure 69.

In effect, encipherment by means of such a system yields the equivalent of a two-alphabet cipher, with a transposition within each of the pairs of letters. The cipher text produced by such a system may be characterized by a large number of repetitions which begin with the initial letter of digraphs and end on the final letter of digraphs and which are preceded by digraphs having repeated initial letters or which are followed by digraphs having repeated final letters; for example, ciphertext passages of the following type might often arise: SF BD CB HK and SQ BD CB WK (wherein the repeated plain text is actually represented by SDBBGK, affected by the transposition). This system is included here as being illustrative of many simple systems which are capable of leading the student very much astray in this instance, if one were unaware of the transposition feature involved and were to attempt what appears to be the simple task of fitting plain text into the two monoalphabetic portions on the basis of single-letter frequency considerations, he could spend a great deal of time without success -- probably without any idea of what was causing his difficulties.

e. A pseudo-trigraphic cipher involving a table such as that in Fig. 52 may be readily recognized as such, since two letters of each trigraph enciphered by means of such a table are treated monoalphabetically. If three separate uniliteral frequency distributions are made--one for each of the three letters of the cipher trigraphs--two of the distributions should be monoalphabetic. Then, exploiting the monoalphabeticity

RESTRICTED

(i.e., the <u>positional</u> monoalphabeticity) thus disclosed in the cipher text, plain text can be fitted to the cipher on the basis of singleletter frequency considerations; in addition, advantage may be taken of <u>partial</u> idiomorphisms, if these idiomorphisms involve the particular positions of the trigraphs which have been treated monoalphabetically.

f. Fortunately, it is unlikely that trigraphic systems other than the foregoing pseudo-trigraphic type will be encountered, because they are difficult to manipulate without extensive tables or complicated rules for encryption.⁴¹ The subject can be passed over with the simple statement that their analysis requires much text to permit of solution by the frequency method, -- and blood, sweat, and tears.⁴²

73. Further remarks on polygraphic substitution systems.--a. In the treatment of the cryptography of the various digraphic systems in this Section, the rules for encryption and decryption which have been illustrated are the "standard" rules (i.e., the rules extant in cryptologic literature, or the rules more commonly encountered in operational practice). Needless to say, however, there is no cryptologic counterpart of the Geneva Convention making these rules sacrosanct, nor forbidding the use of other rules for enciphering and deciphering.

b. In two-square systems and Playfair systems there are possible (and, in fact, there have been encountered in operational practice) modifications of the usual enciphering and deciphering rules which, if not suspected, may pose difficulties in the identification of such systems and in their cryptanalysis. For example, in a vertical two-square system, when two plaintext letters fall in the same column, their cipher equivalents might be taken as the letters immediately to the right of or immediately below these plaintext letters. Similarly, in a horizontal twosquare system, if two plaintext letters are in the same row, their cipher equivalents might be taken as those immediately below, or to the right of these letters. In Playfair cipher systems, two plaintext letters in the same row might be represented by the letters immediately below, two plaintext letters in the same column might be represented by the letters immediately to the right; a plaintext doublet might be represented by a ciphertext doublet formed by doubling the letter immediately to the right, or below, or diagonally to the right and below, thus removing one of the identifying ciphertext characteristics of the normal Playfair system. In one case encountered, instead of the normal Playfair linear relationship $AB_{p}=BC_{c}$, the rule was changed to $\overline{AB_{p}}=\overline{CB_{c}}$ (thus allowing a

41 However, see in this connection Appendix 8, "Lester S. Hill algebraic encipherment", which gives a mathematical treatment of <u>true</u> polygraphic encipherment for polygraphs of <u>any</u> size. (See also subpar. 73<u>h</u>).

⁴² If a trigraphic system is encountered in operational cryptanalysis, special solutions would be made possible by the application of cribs, the aid furnished by isologs (not only in the same system, but also <u>between</u> systems), etc.

RESTRICTED

RESTRICTED

letter to "represent itself"--an "impossibility" in Playfair encipherment), even this simple modification caused difficulties in cryptanalysis because variant rules for encryption nad not been considered

The placing of cribs in small-matrix digraphic systems may be guided by the cryptographic peculiarities of these systems, when the general system is known to, or suspected by the cryptanalyst, conversely, the placing of a known crib may assist in the determination of the type of cryptosystem, or in the rejection of other types of systems For example, cribs may be placed in Playfair ciphers on the basis of the "non-crashing" feature of the normal Playfair, that is, on the basis that in the equation 1 2=3 4 neither 1 and 3 nor 2 and 4 can be identical In horizontal two-square systems, if $\alpha\beta_2 = \alpha_p$, then $\alpha\beta_c$ must equal $\beta\alpha_p$, and if $\alpha\beta_c = \beta_p$, then $\alpha\beta_c$ must equal $\beta\alpha_p$ If, by placing a known crib in a cryptogram, evidence of non-reciprocity is disclosed (e g , if $AB_{p}=CD_{c}$, but $CD_{p}=XY_{c}$), the cryptogram may be assumed to be other than a vertical two-square cipher, since vertical two-square encipherment yields complete reciprocity In either type of two-square system, if one of the two squares is known (for example, a vertical two-square might be employed in which the upper square is always a normal alphabet), the placement of cribs is materially facilitated

d The ϕ test performed separately on the initial letter and final letter of ciphertext pairs from cryptograms produced by small-matrix digraphic systems will give results neither close to that expected for plain text, nor close to that for random text The reason for the comparative "roughness" or pronounced differences among the relative frequencies in these distributions, as contrasted with the "smoothness" expected of random, is that small-matrix digraphic systems are only partially digraphic in nature and that the encryption involves characteristics similar to those of monoalphabetic substitutions for the prefixes and suffixes, and, for that matter, for the over-all cipher text, reflects the partially digraphic nature of the encipherment

e If the cipher letters V, W, X, Y, and Z are of very low frequency in the over-all uniliteial frequency distribution of a digraphic cryptogram or set of cryptograms, this may be taken as evidence that the cryptosystem is a small-matrix digraphic system employing keyword-mixed sequences in the matrix or matrices Furthermore, in small-matrix systems involving keyword-mixed squares, if Θ_c^1 of Θ_c^0 is one of the letters VMXYZ, the Θ_p^1 of the corresponding $\overline{\Theta_p}$ is likely to be one of these same letters Similarly, if Θ_c^2 is one of the letters VMXYZ, then Θ_p^2 of the corresponding $\overline{\Theta_p}$ is likely to be one of

<u>f</u> In trinome-digraphic systems employing large tables, the trinomes may run from 001 to 676, as in Fig 51, or any consecutive set of 676 trinomes in the scale of 1000 possible trinomes may be used For

,

-RESTRICTED

)

that malter, the entire spen of trinomes 000-999 might be used in such a table, with occasional gaps, to hide the limitations of this system As another means of disguising the limitation of 676 trunomes in such a system, three of the initial digits of the trinomes might have one variant each--thus no limitation would exist in the first porition of trinomes The OOL, or other starting point in the cyclic scale, need not be at the upper left-hand corner of the table The 676 transmes in such tables may be inscribed in straight horizontals (i e., in the normal manner of wilting) as in Fig 51, or they might be inscribed according to some other route, they probably would not be inscribed in a rardom manner because clumsy "deciphering tables" would then be necessary ΤL is also possible that the trinomes in a trinone-digraphic system might be converted into tetranomes by the addition of a sum-check (to assist in $e_1ror-correction)$

The cryptanalysis of tetranome-trigraphic systems with matrices g similar to that illustrated in Fig 59 involves a modification of the technique used in solving inverse four-square systems If the plaincomponent and ciphei-component sections of the large square have been inscribed according to the normal manner of writing (or any other manner, if known), the first two elements of the trigraphs may be reduced to a pair of cipher alphabets, and these two monoalphabetic substitutions may be solved as indicated in subpar 69e The applicability of inverse four-square solution principles to this tetranomo-trigraphic system of course rests on the fact that the ciphertext sections are known or essumed to contain the dinomes 00-99 in numerical order, inscribed in the normal manner of writing, the conversion of the first two elements of the trigraphs depends upon the knowledge of the monner of inscription of the letters of the plain component sections, in order that the four occurrences of the initial letters and the four occurrences of the final letters may be correctly combined into two nonoalphabetic distributions Of course, if the composition of the small square (for the third element of trigraphs) is known, the third letter of trigraphs may be automatically deciphered If the composition of the small square is not brown, a consideration of the frequencies of the converted dinomes for the well square (1 e, the coordinates of the square to indicate the third m por of trigraphs) may be used to obtain on entering wedge into this thick monoalphabetic substitution

There are but a very limited number of known cipher mechanisms which employ the polygraphic encipaerment principle in any form U.S. Patent No 1515680 issued to A Henkels in 1924 and US Patent No 1845947 issued to Weisner and Hill in 1932 describe two such mechanisms which produce polygraphic substitutio The latter, that of Weisner and Hill, is of particular interest because it is based on a rather simple mathematical process which can yield true polygraphic encipnement for polygraphs of any size The underlying mathematical process, invented oy Prof Lester S Hill of Hunter College and described in the "Anterican Mathematical Monthly" in 1929 (Vol XXXVI, p 306) and 1931 (Vol XXXVIII, p 135), is treated briefly, below, a more detailed treatment is contained in Appendix 8, "Lester S Hill algebraic encipherwent", which also includes remarks on the cryptanalysis of this method of encipherment

_RESTRICTED

(1) Since Professor Hill's system is mathematical in nature, the first step in its use involves the conversion of the plaintext letters into numbers by means of a conversion alphabet which shows a correspondence between the 26 letters of the alphabet and the 26 numbers from 0 to 25, such as the following.

A	В	С	D	Е	F	G	H	Ι	J	K	\mathbf{L}	М	N	0	P	ଢ	R	S	T	U	V	W	Х	Y	Z
0	9	3	5	24	6	18	8	11	1	21	14	15	12	4	10	25	17	7	19	20	2	22	16	23	13

(2) The numbers obtained through the conversion of the plaintext letters are next treated arithmetically through the application of algebraic linear functions, this treatment being performed by means of mod 26 arithmetic ⁴³ The numerical results yielded by the algebraic treatment are then converted back into letters by means of the conversion alphabet, to yield the cipher equivalent of the original plain text

(3) For example, suppose that the message "NOTHING TO REPORT" is to be enciphered by trigraphs, and that, for this purpose, the enciphering keys⁴⁴ are 1, 2, 1, 5, 11, 3, 2, 4, 13 The message would be divided into trigraphs NOT-HIN-GTO-REP-ORT and the letters which result from the following operation would be taken as the cipher equivalent of the first trigraph.

Using the conversion alphabet in (1), above, (N O T) is converted into (12 4 19), then the foregoing keys are applied--

 $1 \times 12 + 2 \times 4 + 1 \times 19 = 12 + 8 + 19 = 13 + 1(26) = Z$ $5 \times 12 + 11 \times 4 + 3 \times 19 = 8 + 18 + 5 = 5 + 1(26) = D$ $2 \times 12 + 4 \times 4 + 13 \times 19 = 24 + 16 + 13 = 1 + 2(26) = J$

Thus, NOT_n is enciphered as ZDJ_c

(4) A large number of sets of enciphering and deciphering keys can be constructed It is even possible to construct keys which yield reciprocal encipherment, and it is this possibility which makes practicable the construction of a machine or device to accomplish the enciphering and deciphering

 43 Using "mod 26 arithmetic", one considers as the sum or product of two numbers, the number from 0-25 which is obtained by subtracting 26 (or a multiple of 26) from the ordinary arithmetical sum or product of the numbers

⁴⁴ Encipherment of polygraphs containing <u>n</u> letters requires the use of \underline{n}^2 keys Thus, 9 keys are necessary for trigraphic encipherment, digraphic encipherment requires only 4 keys, whereas tetragraphic and pentagraphic encipherment necessitate the use of 16 and 25 keys, respectively The numbers selected for use as keys must be chosen according to rather definite rules based on the "theory of determinants", otherwise, cryptographic ambiguity may result when decipherment is attempted Appendix 8 contains more on this matter

-RESTRICTED

i. Attention is called here to the applications of Table 13 ("Foursquare individual frequencies") of Appendix 2; this table has been reproduced here for convenience. If the cryptanalyst has at hand a fairly

	[Based on a count of 5,000 digraphs]										
			P ₁	-		-		Ĉ,			
A		B	C	D	E	244	225	875	394	197	
F	•	G	н	IJ	К	125	98	198	271	95	
L		М	N	0	Р	229	199	188	350	251	
ଜ	!	R	S	Т	U	148	162	258	427	295	
V	1	W	X	Y	Z	42	12	34	91	97	
21	.2 3	17	358	308	249	A	В	C	D	E	
12	20 1	08	216	256	85	F	G	н	IJ	К	
21	.6 1	40	152	435	269	L	М	N	0	Р	
20)6 1	21	306	364	2 84	Q	R	S	Т	U	
8	88	29	21	147	43	v	W	x	Y	Z	
L			С,					P 2			

(Table 13, Appendix 2)

harge volume of cipher digraphs produced by encipherment with a normal four-square, he may use Table 13 as an aid in placing the initial letters and final letters of the cipher digraphs into the appropriate cells of the cipher component sections on the basis of their uniliteral frequencies. Thus, if a distribution made of the initial letters of cipher pair, in a particular example shows Q_c , I_c , and C_c to be the letters of predominantly high frequency (listed in descending order of frequency), and if the distribution of the final letters shows F_c , Q_c , and P_c as the letters of predominantly high frequency (in descending order of fur-quency), these letters may be tentatively placed into a skeleton four-square matrix as follows (Fig 70), based on the locations of the highest frequencies as given in Table 13

RESTRICTED

223

RESTRICTED

A	B	С	D	E			С	1	
F	G	М	8	ĸ					
٤	M	N	0	P					
Q	R	\$	т	Ц				Q	
V	W	X	Y	Z					
		٩				B	C	D	ε
		ſ			۴	Ģ	н	1	K
			F		L	M	N	0	P
			6		Q	R	S	Т	u
	l		Y	1					

Figure 70

j In attempting to diagnose the underlying cryptosystem in any particular polygraphic cipher, the student may gain some assistance from the following recapitulation

(1) In digraphic ciphers the majority of repetitions will be an even number of letters apart and these repetitions should for the most part begin on the first letters of pairs and end on the last letters of pairs The majority of repetitions in trigraphic ciphers will be some multiple of three letters apart and these repetitions should for the most part begin on the first letters of trigraphs and end on the last letters of trigraphs.

(2) Digraphic cipheis may be revealed as such by the digraphic phi test, with additional support being given by the digraphic blankexpectation test, the presence of a null letter at the beginning of the cipher text might be disclosed by applying the two foregoing tests to a distribution of the digraphs which are formed when the first letter of the text is omitted

(3) If either the uniliteral frequency distribution for the initial letters or for the final letters of the digraphs in a cryptogram exhibits monoalphabeticity, the cryptogram is probably a pseudo-digraphic cipher involving a large table of the type in Fig 47 or 48 If both of the foregoing uniliteral frequency distributions reflect monoalphabeticity, the cryptogram may involve the use of a table of the type in Fig 69

(4) If the "decipherment" of a cryptogram by means of a four-square matrix containing four normal alphabets yields two monoalphabetic substitutions--one for the initial letters and one for the final letters of the pseudo-decipherment--the cryptogram may be assumed to be an inverse four-square cipher.

(5) If an ocular inspection or statistical evaluation of the cipher text of a cryptogram reveals a large number of "transparencies", the cryptogram probably involves a two-square system

RESTRICTED

(6) If a cryptogram contains several cipher doublets, all of which are broken up when the cipher text is divided into digraphs, the cryptogram may well involve normal Playfair encipherment

(7) If the cipher text of a cryptogram exhibits any invariable affinity of one of the letters J, K, Q, X, or Z for vowels (or, for that matter, another cluster of 5 or 6 letters), the cryptogram probably is in a small-matrix system employing sections consisting of more than 25 letters

If a particular four-square cryptogram involves the use of a k matrix in which either the plan component sections or the cipher component sections are normal alphabets, the matrix will be recovered through cryptanalysis in its original form, even when the components which are mixed have been derived by a transposition method or by no method at all In Playfair cipher solution, the matrix can be recovered in its original form as long as the original matrix has been mixed in some systematic manner However, in the case of two-square solution, there is no guarantee that the matrix can be recovered in its original form unless the original matrix has been keyword-mixed, if the original has been transposition-mixed, for example, the matrix which has been recovered through cryptanalysis -- while being cryptographically equivalent to the original -- will undoubtedly involve a permutation of the rows and columns of the original

<u>l</u> When four-square systems are encountered in which the matrix consists of four differently-mixed sections, reconstruction of the matrix is accomplished in a manner similar to that used in the analysis of twosquare ciphers If the sections are composed of keyword-mixed sequences, the original matrix may be recovered Otherwise, the reconstructed matrix will in all probability be a permutation of both the rows and the columns of the original matrix, and there may be no way of recovering or or proving the original matrix

<u>m</u> In passing, it might be well to mention that any two-square system can be solved as a four-square system in which the matrix is composed of four mixed sections, upon the realization, from phenomena im the matrix reconstruction, that a two-square matrix is involved, the proper conversion car then easily be made

RESTRICTED

.

4

(BLANK)

.

-CONFIDENTIAL

SECTION X

CRYPTOSYSTEMS EMPLOYING IRREGULAR-LENGTH CIPHERTEXT UNITS

Paragi	aph
Preliminary observations	74
Types of alphabets with irregular-length ciphertext units	75
General remarks on analysis	76
Analysis of simple examples	77
Analysis of more complicated examples	78
Further remarks on cryptosystems employing irregular-length cipher-	•
text units	79

 7^{4} . Preliminary observations...a. The cipher alphabets of nearly all of the various cryptosystems treated thus far in this text have involved cipher units of a constant length.¹ That is, the ciphertext units have been (prior to regrouping into fives for transmission) either single characters, or pairs of characters, or three-character groupings, or, in the case of the Baconian and Baudot alphabets, 5-element ciphertext units; however, within a given cryptosystem the lengths of the ciphertext units have been consistent, and it is this consistency that has been of most importance to the cryptanalyst.

b. There is no reason why a cryptographer could not vary the size of the cipher units in a particular cryptosystem, as long as no cryptographic ambiguity in deciphering would result thereby. Furthermore, if the size of the cryptographic units is varied within a particular cryptosystem, obstacles are put in the way of cryptanalytic attack on the system --varying the length of the ciphertext groupings complicates the cryptanalyst's preliminary task of dividing the cipher text into the proper units for study. In this connection, the student should refer back to par. 63 and read again the remarks on the use of nulls which differ in size from the real cryptographic units. The example contained therein makes it clear that, until such nulls are identified and isolated by the cryptanalyst, he is unable to divide the cipher text properly and make appropriate frequency distributions. However, nulls may sometimes be recognized as such because they do not behave like units which represent actual plaintext elements. For example, in the three almost-identical ciphertext passages below.

(a)	181ø5	11343	71129	32190	23231	52937 • • •
(Ъ)	18151	Ø1343	71129	32192	32ø31	52937 • • •
(c)	18151	I 3437	1ø129	32192	3 <u>Ø</u> 231	52937 • • •

¹ The only exceptions have been in the digraphic systems using the matrices illustrated in Figs. 57a and 57b, in which a plaintext digraph may be represented by a ciphertext digraph, trigraph, or tetragraph, depending upon the identity of the plaintext digraph.

-CONFIDENTIAL

the behavior of the digit \emptyset is characteristic of a null, and when this is recognized and eliminated, the remaining cryptographic text may be broken up into its real units and solved quite readily.

c. Since it has been indicated above that there are weaknesses in a scheme in which all cipher elements do not behave like equivalents for plaintext elements, it would be logical then to devise a system in which different-sized ciphertext units all represent actual plaintext elements and thus do behave more or less alike. It is easy to draw up cipher alphabets in which, for example, some of the letters are represented by single digits, others by pairs of digits. Such a system, called a monome-dinome system², would produce cipher text which is an irregular intermixture of uniliteral and multiliteral equivalents. From the cryptanalytic standpoint, the decomposition of such cipher text could be very difficult for the analyst who does not know which digits to treat separately, which in pairs. Such systems, and similar variations, are given detailed treatment in the following paragraph.

۹

75. Types of alphabets with irregular-length ciphertext units.--a. One simple scheme for yielding single-digit equivalents for some letters and two-digit equivalents for others makes use of a rectangular matrix which is similar to some of the biliteral matrices of Sections VII and VIII, but which differs in that the top row of the matrix has no indicator (or coordinate). For examples, see Figs. 71-74, below. Each plaintext char-

Ø183452976	Ø183452976
ETNROAIS	-ZALATREASON
(BCDFGHJKLM	ØBCDFGHIJKL
PQUVWXYZ.*	IMPQUVWXYZ.
	80123456789
Figure 71.	Figure 72.
Ø123456	ø 1 8 3 4
- RATIONS	-AEIOU
7 BCDEFGH	5 B C D F G
8 J K L M P Q U	2 H K L M N
9VWXYZ.*	9 P Q R S T
	7 V W X Y Z
Figure 73.	Figure 74.

acter appearing in the top row in the matrix has as its cipher equivalent merely the monome which appears above it, among the column coordinates; thus, in Fig. 71, $E_p = \phi_c$, $T_p = l_c$, $N_p = 8_c$, etc. Each plaintext character

-CONFIDENTIAL

228

² See in this connection Foote, Alexander, <u>Handbook for Spies</u>, New York, 1949, pp. 250-256, wherein is described such a cryptosystem reputedly typical of those used by secret agents in World War II.

CONFIDENTIAL

appearing in one of the remaining rows has as its cipher equivalent the dinome formed by its row coordinate and column coordinate, respectively; thus in Fig. 71, $G_p = 74_c$, $Q_p = 61_c$, etc.

b. It should be noted that the external construction of all of the foregoing matrices is such that any digit which appears as a row coordinate does not occur as the monome equivalent for any letter; this limitation, accomplished by blanking out appropriate cells in the top row, is necessary in all monome-dinome systems in order that cryptographic ambiguity will not arise. In Fig. 71, the internal composition is such that the plaintext letters which are most frequent in English are the ones which are provided with monome equivalents. This type of arrangement theoretically provides the most economical encryption for any given message--that is, theoretically yields the shortest possible cipher text for a given plain text--but, of course, greatly limits the number of internal arrangements which may be used. Fig. 75, below, which is split into two

52976 5ABCDF 2GHIJK 9LMPQS 7UVWXY 6Z.()*	<u>Ø1834</u> ETNRO
Figure 75a.	Figure 75b.

separate parts--one providing the monome equivalents and the other providing the dinome equivalents--illustrates another scheme for drawing up a monome-dinome cipher alphabet. In this alphabet, the digits which are used for the initial and final elements of dinomes are completely distinct from the digits used as monomes.

c. Most of the foregoing matrices contain a period for punctuation, and the matrix in Fig. 72, containing the single digits \oint -9, provides a means for encrypting numbers without first spelling them out. The matrices in Figs. 71, 73, and 75 contain another character, symbolized by an asterisk, which may be used for punctuation or as a special indicator3. The matrix in Fig. 74 uses only nine of the single digits as coordinates, the digit 6 being omitted; this single digit might be employed as a word separator, a stop, or a null. The matrix in Fig. 76, below, illustrates

³ For example, this special character may be put to use as an indicator to show that plaintext numbers begin or end, thus obviating the necessity of including digits within the cipher matrix. In this usage digits in the plain text might be <u>tripled</u> and inserted in the cipher text with the appropriate indicator before and after the plaintext digits. Thus, using the matrix in Fig. 71, the plaintext fragment"..HILL 865.." would be encrypted as the cipher sequence 75 2 77 77 66 888 666 555 66 (prior to regrouping into five-character groups).

-CONFIDENTIAL

a scheme by which certain high-frequency plaintext digraphs and trigraphs may be represented in the matrix, as well as the single letters and

	ø	1	8	3	4	5	2	9	76	
-	R	E	T	A	I	N	622	Inth	u l I	3
2	В	C	D	\mathbf{F}	G	H	J	K	LM]
9	0	\mathbf{P}	Q	S	ប	V	W	Х	ΥZ	
7	•	,	\mathbf{TH}	IN	\mathbf{ST}	ED	ION	ING	* #	ł
6	ø	1	2	3	4	5	6	7	8 9	2

Figure 76.

digits. The symbol # in this latter matrix could be used as a "repetition indicator" for checking numbers, as in the ciphertext passage 69 65 68 76 69 65 68, meaning the number 752, the symbol * might be used as an indicator meaning "the immediately-preceding plaintext letter is repeated" (thus AA patterns would be suppressed in the cipher text). In all of the foregoing matrices the order of inscription of the letters within the matrix, and the particular arrangement of the row- and columncoordinates are both subject to variation.

d. By prearranged convention it is possible to employ ordinary commutative bipartite matrices (such as those already described in Sections VII and VIII) in a manner which yields monome-dinome encipherment. For example, using the matrix illustrated in Fig. 77, the plaintext word EIGHT could be

	6	7	8	9	ø
1	A	B	С	D	E
2	F	G	H	I	K
3	L	Μ	N	0	P
4	Q	R	ន	Т	U
5	V	W	X	Y	Z

Figure 77.

encrypted as 10 29 7 8 49. That is, the normal bipartite enciphering conventions would be used, with the exception that the row indicator in the cipher equivalent for a particular plaintext letter would not be employed when this row indicator is the same as that for the immediately preceding letter of the plain text.⁴ As may be noted, no cryptographic ambiguity in decipherment may arise.

e. Of course, as an extension of the foregoing ideas, there could also be monome-dinome-trinome systems, incorporating matrices of the types illustrated in Figs. 78-82, below. In Fig. 83 there is a matrix which may

[&]quot;A variation of this method could make use of a convention by which the <u>column</u> indicator is dropped if it is the same as that for the pieceding plaintext letter.

-CONFIDENTIAL

Ø 1 8 3 4 - S T O N E 5 A B C D F 9 G H I K L 9 M P O R U 7 V W X Y Z 6Ø Ø 1 2 3 4 61 5 6 7 8 9	01634 ØABCDF IGHIKL 8MPQSU 52976 3VWXYZ TENOR 4501234 4256789	Ø 18345 - BRANCH 2 DEFGIJ 9 KLMOPQ 7 STUVWX 29 YZØ123 27 456789
Figure 78.	Figure 79a. Figure 79b.	Figure 80.
Ø 183452976 - RELATION 7 BCDFGHJKM 6 PQSUVWXYZ. 76 Ø 123456789	Ø 1834529 - ETNROAJS 7 BCDFGHJK 6 LMPQUV 62 WXYZØ123 69456789.,	Ø 18345 2 A B C D E F 9 G H I J K L 7 M N O P Q R 62 S T U V W X 69 Y Z Ø 1 2 3 67 4 5 6 7 8 9
Figure 81.	Figure 82.	Figure 83.

be used for dinome-trinome encipherment. Encipherment with this latter matrix is commutative; for example, $E_p = 24$ or 42, and $T_p = 621$ or 162.

f. Literal versions of the preceding types of alphabets with irregular-length cipher units are also possible. Several types are illustrated in Figs, 84-88, including among them matrices permitting the use

BLACK - ALIGN WBCDEF HHJKMO IPORST TUVWXY EZ., ()	V W X Y Z Q R S T U - E T N R O L F A A B C D F M G B G H I J K N H C L M P Q S O J D U V W X Y P K E Z ., ()	L M N O P F G H I K F A B D E F G G B I J K L N H C O P Q S T I D U V W X Y K E Z ., ()	MARCH QRSTU VWXYZ
Figure 84.	Figure 85.	Figure 86a.	Figure 87b.
N O P Q R I J K L M E A A B C D E F B F H I K L G C M N Q S T H D V W X Y Z	GROUP _p STUVW XYZ	Q R S T U V W X G H I J K L M N - E T N R O A I S D A B G K Q W Z 2 5 E B C H M U X Ø 3 6 F C F J P V Y 1 4 7	Y Z O P D L 8 . 9 .
Figure 87a.	Figure 87b.	Figure 88.	

of variants in encryption. Furthermore, any of the commutative variant matrices treated in par. 58a (1.e., Figs. 27, 28, and 31) may be used in

-CONFIDENTIAL

-CONFIDENTIAL

connection with the convention described in subpar. d, above, to provide cipher alphabets with irregular-length ciphertext units.

76. General remarks on analysis.--a. The first step in the analysis of any cryptogram encrypted in a system with irregular-length cipher groupings involves dividing the cryptogram into the proper, vari-sized cipher units--that is, reducing the cryptogram to monoalphabetic terms. After this has been done, solution proceeds along the straightforward lines which have been described in earlier sections of the text. Thus, in this section, attention will be focused on this first step of dividing the text into its proper monoalphabetic units. In order to simplify somewhat the general treatment contained in this paragraph, all remarks will be directed at monome-dinome systems, most of the principles and methods outlined herein are general enough that they may be modified and applied in the solution of other types of systems with irregular-length ciphertext units.

b. A cryptographer, in his process of deciphering a particular monome-dinome cryptogram, would begin by considering whether or not the first digit of the cipher text were among those digits which can start a dinome--that is, whether it were a row coordinate or not. If it were, he would treat it along with the next digit of the text as a dinome, and then proceed to consider whether or not the following digit were a row coordinate, etc. If the first digit of the message were not a row coordinate, he would treat it as a monome, and then proceed to consider whether or not the next digit were a row coordinate, etc. One may now see that the cryptographic process of dividing the cipher text into its proper units is based solely on a knowledge of the digits which are the row coordinates of the pertinent matrix. Thus, it may further be seen that the cryptanalytic attack on a monome-dinome cipher would first involve an attempt to determine the identity of the row coordinates.

c. If a given cryptogram involves a matrix in which the highfrequency plaintext elements are evenly distributed throughout the various rows, it may be expected that the particular digits occurring with the greatest frequency in a uniliteral frequency distribution made on the cipher text are those which are row coordinates of the pertinent matrix. This may be explained by the fact that the digits used as row coordinates occur in the cipher equivalents for more plaintext letters than do those digits which are used as monomes. However, one must remember that a monomedinome matrix may involve two, three, four, or more row coordinates and, although in a particular instance it may be that the most frequent cipher digits are those digits which have been used as row coordinates, a study of the uniliteral frequency distribution may not make it obvious as to just how many coordinates are involved, it may be necessary to make several trials, one considering only the two most frequent cipher digits as row coordinates, one considering the three most frequent, etc.

d. If trials of the type just mentioned do not yield reduced, monoalphabetic text which will succumb to the principles of plaintext recovery treated in the earlier sections of this text, it ray then be assumed that the cryptogram involves a matrix in which several of the high-frequency letters are arranged together in the top row or in which one or more columns

CONFIDENTIAL

are composed solely of high-frequency letters. Such matrices are likely to produce cipher text in which some of the digits which have been used as monomes occur more frequently than some of those used as row coordinates. Thus, the easy mode of entry via the uniliteral frequency distribution may not be used, and other approaches of a less clear-cut nature must be taken.

e. In an attempt to identify at least one or two probable coordinates, the analyst should carefully scrutinize the cryptogram itself in order to find passages exhibiting bipartite characteristics, such as appear in the sequence 804381874J, wherein the digits 8 and 4 "act" like digits which have been used as row coordinates, being spaced off at intervals of two. A slightly more objective approach involves first making a biliteral⁵ distribution of the cipher text. and then considering as a probable row coordinate the initial digit of the particular dinome which the distribution shows to be the most frequent. Of course, this approach is most likely to be valid when the particular dinome occurs with a much greater frequency than the remaining dinomes. While still on the subject of distributions, it is pointed out that the previously-mentioned "bipartite characteristics" manifested in a cryptogram might be disclosed by making a biliteral distribution of alternate digits of the cipher text⁶, that is, in the sequence 123456 one would consider the dinomes 13, 24, 35, 46. In such a distribution, one may expect that the most frequent dinomes will be those comprising two digits which were both row coordinates of the pertinent enciphering matrix.

f. If the cipher text of a given monome-dinome cryptogram begins with a doubled digit, this digit is most probably one of the row coordinates of the pertinent matrix; otherwise, the doublet would have to be considered as comprising two monomes and the first word of the underlying plain text would have to begin with a doublet (a very rare contingency in the English language). Similarly, if the cipher text is seen to contain any digit repeated consecutively four or more times, the particular digit may be assumed to be a row coordinate; otherwise, such a sequence of repeated digits would have to represent at least a threefold repetition of some one plaintext letter (another rare event in English, although not as rare as that mentioned in the preceding sentence).

⁵ The use of the term "bi<u>literal</u>" in connection with <u>digit</u> cipher text may not be in conformance with the strictest rules of semantics, but the author feels that it is unnecessary to give a new name to an alreadyfamiliar type of distribution merely because it is being applied to a different kind of text. However, some who prefer to be purists in this matter term a digraphic distribution which is made on digit text as a "dinome distribution" or "dinomic distribution", and a biliteral distribution made on digit text, a "running dinome distribution".

⁶ In the vernacular such a distribution is termed an "A-A" (pronounced "ay-dit-ay") distribution.

-CONFIDENTIAL

g. On occasion it may be found that much time has been spent in the attempt to identify the row coordinates, yet apparently with not all of the coordinates being identified. In such a case, it may be found useful to consider those digits which are <u>least likely</u> to be row coordinates, specifically, those which occur least frequently in the cryptogram. The analyst may go through the troublesome cryptogram and place a slant bar (virgule) directly after each such digit as it occurs in the message. These marks may then be taken as an indication of places in the cryptogram where one <u>bona fide</u> cipher unit ends and the next begins. The analyst must then study the digits which directly follow these slant bars with a view to discovering new possibilities for row coordinates-possibilities which, although previously latent, have been made patent by this latest step.

h. In the foregoing subparagraphs, a to g, the secondary step of testing for the corroboration or invalidation of any particular trial decomposition has been passed over quite briefly. Actually, this step is best described with specific examples of solution, and for this reason is treated in two subsequent paragraphs, 77 and 78, with such examples. However, a few methods which can be applied for the rejection of incorrect hypotheses will be mentioned here, because they are rather basic and simple. If the cryptanalyst finds, after having divided a monome-dinome cipher on the basis of a particular hypothesis, that a long repetition in the cryptogram is not broken up in the same way on each of its occurrences, he may well reject as incorrect the hypothesis on which the division is based. Likewise, the analyst may reject any hypothesis which requires him to make the last digit of a cryptogram a monome when this particular digit has to be considered as a row coordinate as part of the basic assumption.7 The presence of an inordinate number of consecutive monomes may cause one to suspect that a particular decomposition is incorrect; however, probably only continued exposure to traffic of a certain type or involving one kind of enciphering matrix would provide one with a sound basis for knowing just how many are too many.

1. There is one practical, straightforward measure for determining the relative goodness of an assumed decomposition which deserves particular mention. It involves considering the ratio of the <u>number of monomes</u> produced in a particular decomposition to the <u>number of remaining cipher</u> units. In the case of monome-dinome ciphers, for example, in which an assumption of only two row coordinates is made, there can be no more than eight different plaintext letters represented by monomes and the total frequency of those monomes can not exceed the frequency expected of the eight most frequent letters in the language.⁸ Since in English the eight most frequent letters occur with a total relative frequency of 66%, any trial decomposition giving rise to a ratio of monomes to dinomes which is

'However, the possibility of a final null or nulls must not be ignored; the presence of nulls at the end of the cipher text would invalidate this reasoning.

⁸ The only exception to this statement would be a case wherein a word separator is included as part of the cryptosystem, and that this separator is represented by a monome. This usage, however, seems rather unlikely.

-CONFIDENTIAL

considerably more than 66 to 3^4 (= 1.9) may be considered incorrect. Likewise, since an assumption of three row coordinates limits to seven the number of different plaintext letters which may have monome equivalents and since the seven most frequent letters in English occur with a total relative frequency of 60%, any such assumption giving rise to a ratio of monomes to dinomes which is considerably more than 60 to 40 (= 1.5) may be considered invalid. The author does, however, hasten to point out that a ratio which is smaller in any instance than the pertinent ratio, above, does not disprove the particular trial decomposition since the plaintext letters represented by monomes may not necessarily be the letters of highest frequency. The examples in the next two paragraphs will serve to clarify the foregoing considerations.

77. Analysis of simple examples.--a. The following cryptogram, suspected to be a monome-dinome cipher, is available for study:

		5	10	15	20	25	30
A	240	90	15709 (08121 0	2092 93	2405 56	001
B	270	72	904821	47607 0	9022 10	020929	724
C	072	92	91257 9	529610	9042 73	200207	247
D	505	70	96081 7	724092	904040	097124	097
E	291	28	76090 1	407506	5297 09	9067 20	902
F	090	40	74076				

Cursory examination of the cipher text reveals nothing more significant than the fact that the digit 3 is absent; however, the significance of this escapes us for the moment. A uniliteral frequency distribution of the text is then made, as is illustrated below:

b. The uniliteral frequency distribution shows four marked peaks $(2,7,\overline{9}, \text{ and } \phi)$ and one pronounced trough (8). A biliteral frequency

CONFIDENTIAL

distribution is made, as shown below, to assist in further evaluation of the properties of the cipher text. It is noted that the 2 and ϕ rows,

12345678 9 1 - 5 - - 1 - 1 - 1221-71-21 9 -1---21 - 10 5 - 2 - - 1 1 3 - 6 1 - - 1 - 1 - 1 -2 4 -718-133-----5 821---1--9 2 5 - - - 2 4 - - 10 025-6227214

representing the two highest-frequency digits in the cipher text, have the most liberal combinations with the remaining digits; this would indicate that 2 and \emptyset are likely row coordinates of the cipher matrix. Since the 7 and 9 rows show less affinity of these digits for other digits, 7 and 9 are less likely to represent row coordinates of the matrix; consequently the assumption is made that the matrix involved only two numbered row coordinates, 2 and \emptyset .

c. The cryptogram is now divided accordingly, and the assumption of 2 and ϕ as row coordinates is borne out by the bipartite character of the following passages in the cipher text:

(1))/	21/02	09/2	9/24,	/05/ • • •	(at	: A14)
(2))/	07/09	/02/2	1/02	/09/29/	(at	B14)
(3))/	09/04	/27/20	0/02	/07/24/	(at	; C16)
(4))/	24/09	/29/01	+/04	/09/	(at	D12)

A frequency distribution of the decomposed text is made, as illustrated below:

	1	2	3	4	5	6	7	8	9	Ø
-	7			1	6	6	12	1	1	
2	2	-	-	7	1	-	2	1	9	2
ø	1	5	-	6	2	2	7	2	13	1

The percentage of monomes, 35%, does not exceed the threshold for the sum of the frequencies of the eight highest-frequency plaintext letters; furthermore, since the eight monomes have a much lower frequency than the sum of the eight highest-frequency letters in English, this is an indication that some of the monomes represent plaintext letters of lower frequency.

d. The decomposed text may now be solved, and the message is found to begin with the words "SABOTAGE PLANS..." The original matrix is reconstructed, and is discovered to be based upon the key word VERMOUTH, as follows: CONFIDENTIAL

	9	1	6	łį	5	8	7	3	ø 2
-	V	E	R	M	Ō	U	T	H	
ø	A	Е	C	D	F	G	J	J	KL
2	N	F	Q	S	Ŵ	X	Y	Z	•

The reason for the absence of the digit 3 in the cipher text may now be seen: the digit 3 forms a part of only the letters H, J, and Z, and these letters did not occur in the plaintext message.

e. Solution of certain other cases of mixed-length systems progresses as easily as did the solution of the foregoing example.

(1) For instance, in the case of a cryptogram produced by a matrix with which the digits used for both the initial and final digits of dinomes are completely distinct from the monome digits (e.g., Fig. 75), it may be seen that "eliminating" from the cipher text those particular digits which were used as monomes in the original enciphering alphabet will leave the remainder of the cryptogram broken up into units all of which contain on even number of digits. (This would not be true in the case of other types of matrices, such as Figs. 71-74, since eliminating the digits which were used as monomes in the pertinent alphabet would remove not only actual cipher monomes but also the final digits of many cipher dinomes.) Based on this fact, if one is confronted with a cryptogram which he assumes to have been produced by a matrix such as that in Fig. 75, he may use a mechanical method by means of which he will quickly be able to determine which digits are row coordinates and which are not, or. if his basic assumption concerning the type of matrix involved is incorrect, the error will quickly become known to him. He need only make successive trials each of which involves considering a different one of the 10 digits as being one of those which is a monome in the pertinent alphabet, "eliminating" the particular digit from the cryptogram in each trial will inevitably lead to other digits which must also be eliminated throughout the cryptogram in order to maintain the stipulation that all the cipher units which remain must contain an even number of digits. For example, if one assumes that " ϕ " is a digit which was a monome, then he must further assume from a sequence of cipher digits such as $\phi 5\phi 35\phi$ that "5" is also a digit which was a monome; and then likewise "3". Any particular one of the tcn trials which is based on an incorrect initial assumption may be expected to end up with all ten digits being considered as digits which were monomes.

(2) In the case of a monome-dinome system in which the row coordinates of the enciphering matrix are distinct from the column coordinates (as in Figs. 73 and 74), solution is expedited by capitalizing on the fact that the digits within the family comprising the row coordinates do not (and cannot) contact themselves or any other digits within the family; using Fig. 73 as an example, it is obvious that the digits 7, 8, and 9 can never be followed by a 7, 8, or 9. A cryptogram enciphered by such a system may be expected to contain much fewer cipher doublets than would a cryptogram produced by a matrix without the foregoing limitation, and the doublets which do occur will themselves involve but a limited number

-CONFIDENTIAL

of the 10 different digits. When solving such a cryptogram, the cryptanalyst need only consider as possible candidates for row coordinates those particular digits which do not appear in cipher doublets. Furthermore, he may with certainty go through the cryptogram placing a slant bar (to indicate the end of a valid cipher unit) after every occurrence of any digit which has appeared in a cipher doublet.

(3) If the cryptanalyst is confronted with a monome-dinome cipher which is the result of encipherment by means of a commutative bipartite matrix (see subpar. 75d and the accompanying Fig. 77), he knows that the first digit of the cryptogram must be a row coordinate. The analyst then has only to go through the cryptogram noting the digits which follow this row coordinate digit wherever it occurs in the cryptogram and, in this way, he may be able to identify all the column coordinate digits. Of course, by the process of elimination, he will then know which digits are row coordinates besides the initial digit of the cryptogram, and it will then be possible for him to divide the text into its proper irregular-length ciphertext units.

78. Analysis of more corplicated examples .-- a. In sore cases, the rather simple methods of analysis applied in the preceding paragraph will not bear fruit, either because of the complexity inherent in the number of plaintext elements in the cipher matrix, or because of certain unpredictable abberrations caused by the particular designations of the row and column coordinates. For instance, if a specific matrix contained only the highest-frequency letters in the top row, and if the matrix contained a fairly large number of plaintext elements (and therefore erbodied 3 or 4, or more, row coordinates), and if the elements in the dinome rows were balanced from the frequency standpoint, so that the rows would be used with approximately equal frequency, and if furthermore certain of the columns were composed of heavier elements than others (thus producing peaks that might incorrectly be identified as row coordinates) -- all these conditions would yield a cryptosystem that might pose considerable difficulties in the way of straightforward analysis. A case will now be studied that will illustrate typical techniques that would be necessary in more difficult circumstances.

b. The following cryptogram has been intercepted on an enemy net known to be passing monome-dinome traffic:

 62719
 44081
 21204
 71270
 55042
 12627

 09637
 06212
 24712
 91724
 21058
 12727

 07055
 58719
 55721
 04109
 52847
 71297

 23571
 82123
 94578
 77571
 80581
 97654

 74572
 05191
 77194
 52958
 70012
 12251

 69051
 15724
 71389
 47316
 79035
 47359

 54742
 78271
 72327
 05504
 58255
 55918

-CONFIDENTIAL,

-CONFIDENTIAL

The uniliteral frequency distribution for the cryptogram is shown below:

c. From the appearance of the uniliteral frequency distribution, it is to be expected that from among the four peaks (1, 2, 5, and 7) some row coordinates must be represented, and since there is not much variance in frequency among these peaks, perhaps all four represent row coordinates. In an attempt to obtain as much information as possible from a study of the frequency characteristics of the cipher text, a biliteral distribution is made and is shown below.

> 1 234567890 1111-123353 7 233219132 23456 1 1 - - 3 - 111 -1 3 - 19 - 6521 3 2 - 39 - 6522 - 31 - 1 - 1 - 1 -7 8 722113217 10 3 - 1 - - 3 - 1 1 3 3 --4412--2 9 1 01 -14711121

Examination of this latter distribution adds support to the impressions gained from the uniliteral frequency distribution, namely, that the row coordinates for the cipher matrix are very likely to be found among the digits 1, 2, 5, and 7. Furthermore the digit 7, because of its high frequency and because of satisfactory combinative qualities in the biliteral distribution, is selected as a definite row coordinate--this will reduce the number of trials that must subsequently be considered.

d. If all of the row coordinates of the cipher matrix are found among the various combinations of 7 with 1, 2, and 5, then it is clear that:

(1) if there are but two coordinates of the matrix, these must be either 7 and 1, 7 and 2, or 7 and 5, (three cases);

(2) if there are three coordinates of the matrix, these must be either 7-1-2, 7-1-5, or 7-2-5 (three cases); or

(3) if the matrix has four numbered coordinates, this must entail the combination of 7-1-2-5 (only one case).

-CONFIDENTIAL

CONFIDENTIAL

e. On the basis of each of the foregoing seven hypotheses, the cipher text is divided and the resulting frequency distributions are shown below:

Case VII

f. In order to be able to evaluate the relative merits of the seven hypotheses and choose the case which is most likely to be correct, it is possible to resort to a method wherein group frequencies of the high-frequency elements from each of the decompositions are studied. In the following table drawn up for this purpose, the column of figures under "x" denotes the cumulative twelve highest-frequency ciphertext units; under "N", we have the actual frequencies of the first, the first two, the first three..., the first 12 highest-frequency ciphertext units for each hypothesis (compare with the distributions in subpar. e); in the adjoining column to the right of each "N" column, the various cumulative frequency values are expressed as percentages of the total number of ciphertext

	I		II		III		IV		V		VI		VII		P
x	N	N 158	N	N 161	N	<u>N</u> 157	N	N 147	N	<u>N</u> 138	N	<u>N</u> 139	N	<u>N</u> 129	
1	31	19.6	30	18.6	25	15.9	29	19.7	16	11.6	17	12.2	12	9.3	13.0
2	48	30.4	48	29.8	46	29.3	44	29.9	29	21.0	31	22.3	24	18.6	22.2
3	64	45.0	64	39.8	60	38.2	57	38.8	42	30.4	43	30.9	34	26.6	30.2
4	77	48.7	79	49.1	73	46.5	67	45.6	51	37.0	54	38.8	41	31.8	37.8
5	87	55.1	91	56.5	85	54.1	77	52.4	60	43.5	62	44.6	47	36.4	45.3
6	96	60.8	102	63.4	92	58.6	84	57.1	67	48.6	70	50.4	52	40.3	52.7
7	105	66.5	110	68.3	99	63.1	90	61.2	74	53.6	76	54.7	57	44.2	60.1
8	113	71.5	116	72.0	105	66.9	96	65.3	80	58.0	81	58.3	62	48.1	66.2
9	120	75.9	122	75.8	111	70.7	101	68.7	86	62.3	86	61.9	67	51.9	70.4
10	127	80.4	128	79.5	117	74.5	105	71.4	91	65.9	91	65.5	71	55.0	74.0
11	133	84.2	133	82.6	122	77.7	109	74.1	96	69.6	96	69.1	75	58.1	77.4
12	137	86.7	138	85.7	127	80.9	113	76.9	101	73.2	101	72.7	79	61.2	80.5

units which remain after the particular trial decomposition. The column labelled "P" gives the cumulative <u>theoretical</u> frequencies of the first 12 letters in English plain text.

g. It is noted that in Case I, the most frequent ciphertext unit has a percentile frequency of 19.6%, the highest two units, a percentile frequency of 30.4%; the highest three, a percentile frequency of 45.0%. When these percentages are compared with the percentile frequency of the highest-frequency letter in English plain text (13.0%), of the highest two letters (22.2%), and of the highest three letters (30.2%), it is clear that Case I does not conform to the characteristics expected of a simple monoalphabetic substitution, therefore Case I is not the correct division of the cipher text. Similarly, Cases II, III, and IV can also be rejected because the cumulative values are much higher than the corresponding expectations for plain text. Case VII, on the other hand, demonstrates values much lower than the corresponding expectations for plain text; therefore this case too is rejected. This leaves only Cases V and VI, both of which show a close correspondence with plaintext expectations.

h. If there were nothing else in the manifestations of the decomposed cipher text in Case V and Case VI, these two cases would have to be tried in turn, making some tentative plaintext assumptions; of course, only the correct case would consistently yield plain text. However, there is an additional bit of reasoning which may be applied here as a means of deciding which of these two remaining cases is more likely to be correct and ought to be worked on first--namely, it may be reasoned that cipher text which has been decomposed according to an incorrect hypothesis will be likely to contain a larger ratio of monomes to dinomes than would the same text if it had been decomposed according to the correct hypothesis.9

⁹ This intuitive reasoning has been borne out by empirical observation. 30 monome-dinome ciphers of an average length of 100 digits were decomposed in all possible ways based on the hypotheses of two, three, and four row coordinates. In the case of ______ of these ciphers, the correct decomposition yielded a monome-to-dinome ratio which was lower than the monome-to-dinome ratio yielded by any of the incorrect decompositions.
-CONFIDENTIAL

Case V has a monome-dinome ratio of .916 whereas Case VI has a corresponding ratio of 1.043; thus Case V is indicated as the case which is more likely to be correct.

i. The cipher text is now divided according to the hypothesis of row coordinates of 1, 5, and 7, and the plain text is quickly recovered, facilitated by the pattern of the first word, RECONNAISSANCE. The cipher matrix is reconstructed as follows:

	1	7	5	ø	2	8	4	9	6	3
-	62			A	Е	Ι	N	0	R	T
1	B	F	J	M	S	W	Z	1	4	7
7	C	G	ĸ	₽	ប	Х	•	2	5	8
5	D	Ħ	L	Q	V	Y	ø	3	6	9

The reason for the high frequency of the cipher digit 2 is now seen: the combined frequencies of E_p , S_p , and U_p contribute to an inordinate peak for that column coordinate.

j. In retrospect, several important points may be noted in the solution of this particular cryptogram. First of all, the four consecutive 5's in the last two groups of the cryptogram make it a very strong probability that 5 is a row coordinate, otherwise the four 5's would mean a threefold (or even fourfold) repetition of a monome letter, a comparatively rare contingency. Secondly, the digit 1 could have been selected as a row coordinate with considerable certainty, based on the fact that, since the dinome 12 was the highest-frequency element in the biliteral distribution, it may be assumed that at least a number of 12's were causal and therefore 1 must be a row coordinate. In other words, the correct set of coordinates might have been cstablished at the very beginning of the analysis, but for pedagogical reasons it was felt necessary to proceed along the general lines of the solution as given. It is to be noted that, since at the start of solution we did not know exactly how many numbered row coordinates there were in this particular case. we could not apply the ratio of monomes to dinomes at once as the deciding criterion.

k. If mixed-length systems were encountered in actual practice, after the type of matrix became known through solution of several days' traffic, solution of subsequent days' messages would be facilitated because by this time the analyst would be familiar with the general type of matrix used. This knowledge would be of great assistance in making assumptions as to the nature of subsequent matrices. In some cases, the internal arrangement of the matrix might remain fixed, with only the coordinates being changed periodically, in other cases, the internal arrangement and the coordinates of the matrix might change, with only the size of the matrix remaining fixed. If it were known, for instance, that the enemy were using a monome-dinome system with only two numbered row coordinates, then there would only be 10×9 or 45 exhaustive trials (if 1×2

these had to be made) which would be necessary to guarantee reaching the correct decomposition of the cipher text; if there were three numbered coordinates, then there would be a maximum of $10 \times 9 \times 8$ or 120 trials $1 \times 2 \times 3$

necessary to insure reaching the proper scheme for the decomposition of

CONFIDENTIAL

<u>-CONFIDENTIAL</u>

the cipher text.¹⁰ Such trials, although laborious (and ordinarily unnecessary) when made by manual methods, would be by no means prohibitive if there were available machine processes for assistance. Exhaustive trials would rarely be necessary, except in very difficult cases; in the majority of instances, straightforward methods of cryptanalysis would reduce the large number of theoretical trials to but a few, from which the correct selection could be made.

1. If the exact composition of the internal arrangement of the matrix were known, this knowledge would be useful in determining how the letters of assumed cribs would be enciphered as monomes or dinomes. In any case, if a word of pronounced idnomorphic pattern is assumed, no matter how the letters of the word are encrypted as monomes or dinomes, the idiomorphism must be patent in the cipher text; for example, the word ARTILLERY in a monome-dinome system must have a consecutively repeated monome or dinome representing L_p , closely flanked on both sides by some particular monome or dinome representing R_p . If unenciphered numbers were to appear in the encrypted text, bracketed by an indicator to signal that numbers begin and end, the recognition of these plaintext numbers would enable the analyst to identify the indicator, and thus, lead to the establishment of one row coordinate.

m. It must be pointed out that mixed-length systems, even more so than other types of systems treated in this text, often present unusual problems for the cryptanalyst. Each case is a distinctly special case, 11 but continued practice in the solution of these types of systems should, as in other situations, cultivate skill and develop abilities in this field.

n. The student may have noted that no mention has been mide concerning the possible use of the ϕ test as a means for determining whether or not a particular trial decomposition represents the proper reduction of a cryptogram to monoalphabetic terms. The ϕ test has been ignored throughout this Section because, when dealing with cipher alphabets which include plaintext elements other than single letters (e.g., such elements as syllables, numbers, indicators, etc.), the value of ϕ_p can only be leosely approximated, furthermore, computation of the value of ϕ_r in a mixed-length cipher is also a rather tenuous matter. For this reason, it has been considered best to describe only rethods of solution which do not depend at all on the use of the ϕ test, and thus keep from establishing in the mind of the student any doubt as to the usefulness of this test when applied in other instances, such as those described in earlier sections of this text.

¹⁰ The number of combinations of <u>N</u> things taken <u>r</u> at a time is given by the formula $N^{C_r} = \frac{N!}{r!(N-r)!}$; thus for the assumption of 3 numbered rows in a monome-dinome matrix, $10^{C_3} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot (7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)} = \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 120$. The notation N! is read as "factorial N."

11 And, as one cryptowag has pointed out, some cases are more special than others.

CONFIDENTIAL

79. Further remarks on cryptosystems employing irregular-length ciphertext units.--a. The subject of the diagnosis or identification of mixed-length cipher systems has not been discussed. This problem can sometimes be extremely difficult in complex cases; however, the general statement can be made that one takes advantage of any phenomena of repetitions that are present in a cryptogram to arrive at the conclusion that a mixed-length system has been encountered. If the repetitions present are separated by numbers of letters without a constant factor, or if the interval between repetitions is a prime number, and if the possibility of a null or nulls (of a different size than the real cryptographic units) has been considered and ruled out, then in all probability the cryptogram involves some sort of mixed-length cipher units. As to exactly which kind of mixed-length system is involved, this question can be answered only by detailed analysis, sometimes to the point of actual plaintext recoveries in order to be certain about one's conclusions.¹²

b. It is not imperative that a mixed-length cipher system be produced through the medium of a matrix with row and column coordinates. For example, in one cryptogram that was submitted for solution, the cipher text began as follows:

QKT2Q 3KB3K QKTQK T3QKT 2KB3Q KTQR2 KKT2K KT2KB 3QKTQ BQRK3 KQ2QK T2QR2....

The entire cryptogram, containing 490 characters, consisted only of the seven symbols B, K, Q, R, T, 2, and 3. When this cryptogram was solved, the following alphabet was recovered:

Α	z	КЗ	G	Ξ	KR2	Ν	=	ର୍2	U	2	Q
В	2	KR3	H	Ŧ	ବ୍ୟ	0	2	QR2	V	=	QB2
C	=	QB3	IJ	=	QKT3	Ρ	=	QR	W	=	ĸ
D	=	KB2	KQ	=	К2	R	=	QKT	Х	=	KB
Е	2	КВЗ	\mathbf{L}	Ξ	ккт3	S	=	QB	Y	=	KKT
F	=	KKT2	М	Ħ	QR3	Т	=	QKT2	\mathbf{Z}	=	KR

To the reader who is a devotee of the royal game, it will be apparent that the foregoing alphabet is based upon chess notation.¹³ If however the digits 1-7 had been used in lieu of the symbols above, the cryptogram could still have been correctly divided into its component ciphertext groupings of 1, 2, 3, and ⁴ digits, based upon an interpretation of the characteristics present in the cipher text, and of the phenomena in a triliteral distribution showing one prefix and one suffix.¹⁴

 12 Cf. the discussion of diagnosis in subpar. 69f.

¹³ The chess-playing reader might be interested in recovering the key word for this alphabet.

14 The interested student could make up a cryptogram using seven characters in this facture, so no could see for himself the methods of attack on such a system.

CONFIDENTIAL

c. The concept of irregular-length cryptographic units can be applied to many varieties of systems, both code and cipher. For example, in Fig. 89, below, there is illustrated a four-square matrix in which plaintext digraphs are represented by ciphertext dinomes, trinomes, or tetranomes. The positioning of the monomes in the ciphertext portions of the matrix was governed by the frequencies of individual components of

A	B	C	D	E	10	12	5	3	13
F	G	H	Ι	K	14	15	16	8	17
L	М	N	0	P	18	19	40	6	ø
ବ	R	ន	T	U	42	43	9	2	7
V	W	<u>X</u>	Y	Z	45	46	47	48	49
10	6	5	7	12	A	B	C	D	E
13	14	15	16	17	F	G	H	I	K
18	19	40	2	ø	L	М	N	0	P
42	43	8	3	9	ହ	R	ន	T	U
15	<u>1</u> 6	止 7	<u>ь</u> 8	ha	v	U	X	Y	7.

Figure 89

four-square cipher digraphs,¹⁵ thus permitting optimum compression of the cipher text, i.e., allowing the most liberal use of ciphertext dinomes and trinomes rather than the maximum cipher length of tetranomes; for example, the word REGIMENTAL would be encrypted RE GI ME NT AL. 76 814 06 68 1018

d. The matrix for another mixed-length cipher system, employing dinomes and trinomes for the encryption of plaintext digraphs, is shown

¹⁵ See Appendix 2, Table 13, "Four-square individual frequencies."

in Figs. 90a and b. Using this matrix, the word DIVISION is encrypted as 07 883 32 746. It is noted that consonant-vowel digraphs involving

Figure 90a.

eight high-frequency consonants with five vowels are represented by dinomes, and all other plaintext digraphs are represented by trinomes. In those rare cases where, as in the example NU ZZ LE, an "impossible" digraph appears in the plain text, the insertion of the letter K_p in the plain text at that point in question, similar to the normal Playfair doublet convention, enables the encryption of the word, as MU ZK ZL E. A better variation of the foregoing system might incorporate a dinome matrix for the 40 highest-frequency digraphs (comprising 42% of English plain text) such as that illustrated in Fig. 91, and a trinome matrix modified

	ø	1	2	3	4	5	6	7	8	9
ø	AN	AR	AS	AT	CO	DE	EA	ED	EE	EN
1	ER	ES	\mathbf{ET}	FI	\mathbf{FO}	HI	IN	IO	IS	LE
2	MA	ND	NE	NI	OII	OR	OU	RA	RE	RT
3	SE	SI	ST	TE	\mathbf{TH}	TI	TO	TW	TY	VE

Figure 91.

-CONFIDENTIAL

CONFIDENTIAL

in suitable fashion for the remaining digraphs. Such a scheme would yield a greater condensing property for the cipher text, but would not be as easy to use as the system described above since the easy mnemonic feature of the matrix in Fig. 90b would be lost.

e. Another idea for a cryptosystem having irregular-length ciphertext groupings employs the diagram in Figs. 92s and b. This scheme incorporates Playfair digraphic encipherment (with biliteral cipher equivalents) and monographic encipherment (with uniliteral cipher equivalents). In order to disturb the regularity of usual digraphic encipherment (produced by the Playfair-type matrix in Fig. 92a), certain selected medium-

Α	C	D	Ε	F					
H	I	Κ	L	N	В	Ģ	М	٧	W
0	P	ର୍	R	S	ឃ	V	Μ	G	B
т	υ	X	Y	Z					

Figure 92a Figure 92b

frequency consonants are enciphered monographically and uniliterally by the reciprocal alphabet shown in Fig. 92b. Using Fig. 92, as an example, the phrase BRIGADE OF ENEMY INFANTRY MOVING...would be broken up and enciphered as follows:

> B RI G AD EO FE NE M YI NF AN TR YX M OX V IN G W PL V CE AR AF IF M UL SN FH YO ZY M QT G KH V

The cipher text, regrouped into fives, VPLVC EARAF LFMUL SNFHY OZYMQ TGKHV, reveals no indication of the uniliteral-biliteral encipherment involved. Since the letters BGMVW represent 8.2% of normal plain text, there is approximately 8% interruption of the regularity of normal digraphic text. Furthermore, since it is expected that about half the time these letters will occur as singles in the plain text, and about half the time as interruptor letter (such as X_p in the example above) will have to be used, this scheme is accomplished by adding only about 4% to the length of the original plain text. Other variations of the basic idea are found in Figs. 93 and 94; in Fig. 93, the Playfair matrix is a 6 x 4 rectangle omitting S and Y, and these two letters form a reciprocal monographic

A B C D E F G H I J K L M N O P Q R T U V W X Z	s y y s	A B C D E F G H I K L M N O P Q R S T U V W X Y Z	p c
111		no anota oli	

Figure 93

Figure 94

encipherment convention; in Fig. 94, the Playfair matrix is the normal 5 x 5, but with the convention that, unless E_p is the second member of a digraph in the process of encryption, E_p is represented monographically

-CONFIDENTIAL

by J_c . In the foregoing two figures, the SY of Fig. 93 could be replaced of course by any other two letters whose combined frequency is in the neighborhood of 6-10%, and the monographic E_p of Fig. 94 could be replaced by any other high or medium-frequency letter. Instead of Playfair matrices, the digraphic portions of the enciphering schemes of this subparagraph could be accomplished by the use of any other small-matrix digraphic methods.

<u>f</u>. The Morse code, consisting as it does of irregular-length units composed of dots and dashes, lends itself to interesting cryptographic treatments. For example, the dots and dashes (and, of necessity, the spaces between Morse characters) might be encrypted by means of the table illustrated in Fig. 95, wherein each of the three elements has approximately the same number of variants. A better idea, however, is to employ variants in the proportions of dots (42.4%), dashes (29.1%), and spaces

dot:	Α	В	C	D	Ε	F	G	Η	Ι	dot: H	•	Y	D	R	A	U	\mathbf{L}	Ι	C	B	Е
dash:	J	К	\mathbf{L}	М	N	0	Ρ	ର୍	R	dash: F	(G	J	K	М	N	0	P			
space:	ន	T	U	V	W	X	Y	Z		space. Q	i	S	Т	V	W	X	Z				

Figure 95

Figure 96

(28.4%) of the letters comprising normal English plain text; such a scheme for variants is shown in Fig. 96. Thus, using the example of Fig. 96, the word ENENY (which in Morse code is - - ----) might be encrypted as RS MDW CQ NFV PIKGZ, which would then be regrouped in fives for transmission. Other ideas for the encryption in digit form of Morse code systems might incorporate alphabets such as those illustrated in Figs. 97 and 98 below:¹⁶

dot:	1234	dot:	13579
dash:	567	dash:	2468
space:	890	space:	0
Figure	97	Figu	re 98

g. Space does not permit detailed examples of analysis of some of the foregoing systems. Admittedly, some of them would pose considerable difficulty in the way of solution, however, if these systems were used in actual practice, then <u>operational</u> cryptanalytic methods and entries would make possible successful solution.

¹⁶ Further ideas of cryptosystems based on the Morse code will be treated in Military Cryptanalysis, Part IV.

CONFIDENTIAL,

SECTION XI

MISCELLANEOUS MONOAL PHABETIC SYSTEMS, COPCLUDING REMARKS

	* • •	-	' Parngraph	,
Cryptosyntems employing syllebaly squares	and code cl	hurts	80	
Cryptosystems employing characters other t	ban letter	s or fig	ures 81	,
Special remarks concerning the initial cla	ssificatio	n of cry	ptograms 82	
Disguired secret communications			83	
Concluding remarks	*******		84	

Po. Cryptosystems cuploying syllabory squares and code charts .--2. The various cryptosystems treated in the pieceding acctions of this text have in the main fallen into either the multiliteral category or the polygraphic category This and the next few subparagraphs will Ticat of systems which represent a merger of these two categories -n-mely, biliteral systems which have as plaintext elements not only single letters end digits, but also certain polygraphs selected for the condensation in ciphei text that their usage may permit In addition. creatment will be made of biliteral systems which involve, as plaintext anis, a selection of frequent words (that is, which occur frequently in the type of traffic for which the particular cryptosystem is intended) and perhaps some common phrases, such as "reference your message number", "request acknowledgment", "nothing to report", etc. Systems which embrace digraphs, trigraphs and other polygraphs as plaintext elements in addition to single letters and digits are called syllabary systems because the adartional inclusion of these polygraphs permits the encryption of plain text in a syllable or quasi-syllabic fashion, most systems of this type involve bipartite matrices in the cryptographic scheme, and these matrices are called syllabary squares. When the matrix in this general type of system also incorporates words among the plaintext elements. the matrix is termed a code chart.

b. The category of systems embodying syllabary squares and code charts as the cryptographic vehicle actually constitutes a transition between <u>cipher</u> and <u>code</u> systems,¹ since a syllabary square or a code chart may be regarded equally properly as either a special type of cipher or a primitive code. However, because syllabary systems follow very closely on the ideas of bipartite matrices, these systems are included in this particular text instead of being reserved for treatment in a subsequent text.

¹ See definitions of the terms <u>cipher</u> and <u>code</u> in the glossary.

CONFIDENTIAL

c A sample syllabary square is illustrated in Fig 99, below:

	1	2	3	h.	5_	6	7	8	9	ø
1	A	1	AL	AN	AND	AR	ARE	AS	ΛT	ATE
2	ATI	в	2	\mathbf{BE}	C	3	CA	CE	CO	COM
3	D	14	DA	DE	E	5	EA	ED	EN	ENT
4	ER	ERE	ERS	\mathbf{ES}	EST	F	6	G	7	н
5	8	HAS	HE	Ι	9	IN	ING	ION	IS	IT
6	IVE	J	ø	K	L	LA	\mathbf{LE}	М	ME	N
7	ND	NE	NT	0	OF	ON	OR	OU	\mathbf{P}	ୟ
8	R	RA	RE	RED	RES	RI	\mathbf{RO}	ន	SE	SH
9	\mathbf{ST}	STO	\mathbf{T}	TE	TED	TER	\mathbf{TH}	THE	THI	THR
ø	TI	TO	<u> </u>	V	VE	W	WE	<u> </u>	Y	Z

Figure 99.

It will be noted that the square contains the 26 letters, the 10 digits, and 6^{1} digraphs and trigraphs chosen both on the basis of frequency considerations and the combinative potentialities of the particular polygraphs; the internal arrangement of the square is such as to permit the easy finding of the plaintext elements to be enciphered. Other matrices, of larger dimensions, may contain not only a larger number of different plaintext elements within the matrix, but may also duplicate some of the more frequent plaintext elements and thus incorporate plaintext variants within the matrix. Furthermore, when letters are used as coordinates, variant cipher equivalents may be incorporated into the scheme

d. Typical of the many ideas that have been employed in the past for code charts is the chart which is shown in Fig. 100, below, and which

		C,D	E,Ĥ	F,I	J,K	T,L	м,0	U,V	Y,G	Z,N	Р,Q	X,R	w,s	B,A
	мн	ÇØØ Acinie	Addrio	15 Ad ce d	45	A A99_e1	AD	Spell/fig Bg_s	AL	AM A (g fi/	AN	AND	AR	ARE
	T,Q	∫itys ∫f¢l Amod	jia Antist I dilst	16 Α εί!! γ	Assemble d ing s	AS Alla k ed S	AT AT Attempt d g s	1) Armth (deg)	BA Balt lion	E B tt y	BY Bgn/start dgs	C Bomb ed e	CA Bidge d	CAN Caplu d ig s
-	K,Z	Cas alty ies	G4 Command tigs	17 Comm icate, d ing i	55 Company is	CE C mplete d g i s	CH Coc bate digio	CO C lact d s	D Codat d ti	DA C np	DAY Ceu iek, d g	DE Cosed 9	Di Die d/d 1 s (of)	DO Diy d is i
	0,L	1 Destroy ed	195 Detchd m t(of)	18 D spose al d ti	E D J	FA Dmp	ED (1)	EE Encoulr dig	EN E my s	ENT Eng eer	ER Elisted M /M	ERS Equpmet, pdpg	ES E cap d s t	EST Est mal, d ing s (1)
	R,X	2 E pect ed	146 F phil, e	19 Fidig	ET FL L	F Force d	FO Form of	FOR	U Fm	H Ent 1	HA E I	HE Gu t	1 H /h +	IL H day 1 e
	S,P	3 He y ly	я́7 ⁻ Н∥ (N)	21 H 1J ւ s ድክ 1J	IN H the ty	ING H		1S Id tfy d g sto	IT I med L Iv	IVE II by	J Ifrm L d s	K Ístli t dgs	L J ett s (f)	LA L d dis
	W,N	4	ダ8 し It (al)	II Les(of)	LE Locat d g lo s	Ll Mach ne gun, s (t)	10 M	LY Mpped pgs	M Meha zed	MA M sag	ME Mil (I om) (to)	MENT M dig	MI M si on s	MY Moning
	A,B	5 Mo 1	89 M dis m t	92 N #	N Night	NA N t th g g t	ND NI(F)	NE Nmb (f)	NI Obji	NO Ob rve t dig			Opeate d	OF Ode ed
	C,E	6 ⁻ 0 e	1¢ Pay 1 led ling s	\$3 Felrte d⊾ig Is	ON Pl el, n y s (1)	OR Plat n.s	OU Pinteal :	OUR Pts	P Post ed g s	PE Popae,d to gis	α Ριει	QU P ceed ed 9	R Radio ed	RA Railway/ R lod s
	1,G	7 R dy (fa)(to)	11 Ree	975 R wed 3, c pt	RE R s	RED Ríe ed s(t)	RES Rgmt Is	PI Rfed gmti	RO Rplced gm s	RS R poted s	RT Request ed, S	S Requed gio	SA Reserve d S	SE Rdg
	D,J	8 Rusht (ol)	19. R / Stem	39 R J / Rout s	SH Sc tig s	Si Sis Sets	SO Senjog shit(t)	ST Shill d ig s	T Sm.∏l/ Sm.∐. m	TA S lh (of)	TE Sq 3 i	TED Stegths (1), 12 g	TER Stpped psi	TH Supply 1 (1)
	F,V	9 ppotd igs	13 Ta k	33 T gel s	TI Tod y	TION Tomerrew	TO Tonisi t	TR Tops	U Tcks/ Vhies	UN U t (1)	บร ปาเ	V Ugetcy Iy	₩/ V nlγ(f)	WE Wate
	υ,Ψ	#1 ₩est (of)	14 Whet/who	4ø Whe	X Whe e	y W II	Z ₩ih	Spell/fg Ends	Perd Withdw Is	Comma W d	Colon Yads (fm) (o)	Smet, Ytdy	Dıh— Y	Pan() Z (1)
				,		f	7	,		1		1		

Figure 100

250

CONFIDENTIAL

-CONFIDENTIAL

has been used as a standard tactical crypiosystem for ground forces by AGCRESSOR, the maneuver enemy in U.S. joint maneuvers and training exercises. This chart provides 2-letter equivalents for letters, numbers, syllables, and a selection of words which occur frequently in low-echelon² messages. A particular plaintext value may be designated by a combination of one of the two row coordinates and one of the two column coordinates of the cell containing the plaintext value: thus each plaintext element has four variant equivalents and, for example, the word ARTILLERY contained in the chart may be encrypted in toto as TF. TI, QF, or QI When a complete word contained in the chart is to be encrypted in a message, no designator is necessary to indicate this lowercase meaning However, when upper-case meanings (i.e., letters, numbers, and ryllables) are to be encrypted, it is necessary first to encrypt the designator "Spell/fig Begins", followed by the cipher equivalents of the particular upper-case meanings; when the spelling is completed, the designator "Spell/ fig Ends" is encrypted, to show the return to lower-case meanings. The coordinates of the chart, as used by AGGRESSOR, were random sequences and were changed daily. the inside of the chort remained unchanged

For the most part, the steps used in the recovery of plain text e from messages involving syllabary squares differ from those used in the solution of previously-discussed multiliteral and polygraphic systems only in that a larger number of plaintext elements may have to be considered. The cryptanalyst must accordingly modify his interpretation of the frequency characteristics and idiomorphic patterns occurring in such messages. By a careful study of the behavior of frequently recurring cipher units, the analyst is led to conclude that certain units, because of the general characteristics they exhibit, must be representative of numbers, others of punctuation, others of single letters, and so on. This classification is based upon a knowledge of the general behavior of the various classes of For example, cipher units representing digits may be plaintext elements expected to appear in clusters (as in dates and time, and the designations of topographical features, such as hills, road junctions, etc.); whereas those which represent punctuation may be expected to appear at varying intervals throughout the message text (the particular intervals being dependent upon the particular punctuation mark) When this classification has proceeded upon a solid foundation far enough, each set of cipher units is underlined throughout the text in some distinctive manner by means of colored pencils. Subsequent to this, the individual members of each class of cipher units are subjected to closer scrutiny, and based upon a knowledge of the specific behavior of the various elements in each class, specific units are identified as having specific plaintext meanings. For example, among those cipher units which the analyst has decided constitute the class which represents plaintext digits, the particular cipher unit

² The term <u>low-echelon</u> as applied to a cryptographic system means that the system is designed for use at the lower organizational levels such as (in the army) at the regimental level and below. The term <u>low-grade</u> as applied to cryptosystems means that the inherent security afforded by the system is low. Cf. the terms <u>medium-echelon</u> and <u>-grade</u>, and <u>high-echelon</u> and <u>-grade</u>.

- E.A. Marker

representing plaintext " \emptyset " may be expected to be readily recognizable on the basis that (1) it is one of the three units which appear as the first unit in those clusters which are suspected of representing four-digit time designations and (2) it is one of the two cipber units which, with any noteworthy frequency, occur doubled at the end of the same four-unit clusters.

f When working on messages involving code charts, the cryptanalyst usually starts by attempting to isolate sequences of cipher units which represent plaintext letters, syllables, numbers and punctuation Subsequent to this he proceeds to classify and identify these particular cipher units in the manner described in the foregoing subparagraph; the recovery of word meanings is usually accomplished much later. The isolating of the ciphertext units which represent syllabary portions may be readily accomplished in those cases wherein the underlying code chart has only one "Spell/fig. Begins" group and one "Spell/fig Ends" group, since the recognition of these designators automatically permits one to divide the cipher text into word values and non-word values, the recognition of these designators is made on the basis of their high frequency and their alternating placements throughout the cipher text

g. As plaintext meanings are recovered in a syllabary square system or code chart system, these meanings should be entered into a skeleton matrix in a manner similar to that used in the solution of the bipartite systems previously described (Sections VII and VIII). This is done in order to uncover and exploit as early as possible any evidences of systematic construction arising from the arrangement which was used in the underlying matrix. It may be assured that each syllabary square and code chart will normally have had its internal elements arranged in some type of systematic fashion in order to permit the ready finding of plaintext elements during the encryption of a message

h. When there are special circumstances involved, for instance, when the contents or the exact internal construction of the matrix is known, or when the arrangement of the outside coordinates is known, or when messages with isologous syllabary portions (i.e., spelled-out portions encrypted "off-the-cut", such as IN TER CE P TO R and I NT ER CE P T OR) are present in the cipher text, solution is naturally considerably facilityted. Even when only a single message is available, if the matrix is known there may be special approaches to solution, based on the nature of the plaintext elements constituting each row and each column of the particular matrix. For instance, if the words REFERINCE and YOUR and MESSAGE are known to be in the same row of a particular code chari, then it would be quite possible that the cipheriext sequence LA LH LT at the beginning of a message represents the stereotype REFERENCE YOUR RESSAGE, if but a few other similarly identifiable sequences were also available to the cryptanalyst, he could possibly recover the arrangement of the outside cooldinates after a relatively few steps.

81 Cryptosystems employing characters other than letters or figures -a In practical cryptography today, the use of characters other than the letters of bona fide alphabets (including recognized Morse and Eaudot

-CONFIDENTIAL

CONFIDENTIAL

alphabets) or the 10 digits is comparatively rare. When so-called symbol ciphers, that is, ciphers employing peculiar symbols, signs of punctuation, diacritical marks, figures of "dancing men", and so on are encountered in practical work nowadays, they are almost certain to be simple monoalphabetic ciphers. They are adequately described in romantic tales,³ in popular books on cryptography, and in the more common types of mogazine articles. No further space need be given ciphers of this type in this text, not only because of their simplicity but also because they are encountered in military cryptography only in sporadic instances, principally in censorship activities! Even in the latter cases, it is usually found that such ciphers are employed in "intimate" correspondence for the exchange of sentiments that appear less decorous when set forth in plain language. They are very seldom used by authentic enemy agents When such a cipher is encountered nowsdays it may practically slways be regarded as the work of the veriest tyro, when it is not that of a crank or a mentally-deranged person.

b. The usual preliminary procedure in handling such cases, where the symbols may be somewhat confusing to the mind because of their unfamilian appearance to the eye, is to substitute letters for them consistently throughout the message and then treat the resulting text in the manner in which an ordinary cryptogram composed of letters is treated. This procedure also facilitates the construction of the necessary frequency distributions, which would be tedious to construct by using symbols.

c. A final word must be said on the subject of symbol ciphers by way of caution When symbols are used to replace letters, syllables, and entire words, then the systems approach code methods in principle, and can become difficult of solution ¹. The logical extension of the use of symbols in such a form of writing is the employment of arbitrary characters for a specially developed "shorthand" system bearing little or no resemblance to well-known and therefore nonsecret, systems of shorthand, such as Gregg, Pitman, etc. Unless a considerable amount of text is available for analysis, a privatelydevised shorthand may be very difficult to solve. Fortunately, such systems are rarely encountered in military cryptography. They fall under the heading

r 12

3- - ----

³ The most famous: Edgar Allan Poe's The Gold Bug; Sir Arthur Conan Doyle's The Adventure of the Dancing Mon, Jules Verne's A Journey to the Center of the Earth.

⁴ The use of symbols for abbreviation and speed in writing goes back to the days of antiquity. Cicero's freedman and amanuensis, Tiro, is reported to have drawn up "a book like a dictionary, in which he placed before each word the notation (symbol) which should represent it, and so great was the number of notations and words that whatever could be written in Latin could be expressed in his notation." The designation "Tironian notes" is applied to this type of shorthand.

CONFIDENTIAL

253

of cryptographic curiosities, of interest to the cryptanalyst in his leisure moments.5

82 Special remarks concerning the initial classification of cryptograms.--a The student should by this time have a good conception of the basic nature of monoalphabetic substitution and of the many variations which may be played upon this simple tune The first step of all, naturally, is to be able to classify a cryptogram properly and place it in either the transposition or the substitution class. The tests for this classification have been given and as a rule the student will encounter no difficulty in this respect.

b. There are, however, certain kinds of cryptograms whose class cannot be determined in the usual manner, as outlined in par. 25 of this text. First of all there is the type of code message which employs bona fide dictionary words as code groups. Naturally, a frequency distribution of such a message will approximate that for normal plain text. The appearance of the message, however, gives clear indications of what is involved The study of such cases will be taken up in its proper place. At the moment it is only necessary to point out that these are code messages and not cipher, and it is for this reason that in pars. 24 and 25 the words "cipher" and "cipher messages" are used, the word "cryptogram" being used only where technically correct.

c. Secondly, there come the unusual and borderline cases, including cryptograms whose nature and type can not be ascertained from frequency distributions. Here, the cryptograms are technically not ciphers but special forms of disguised secret writings which are rarely susceptible of being classed as transposition or substitution. These include a large share of the cases wherein the cryptographic messages are disguised and carried under an external, innocuous text which is innocent and seemingly without cryptographic content -- for instance, in a message wherein specific letters are indicated in a way not open to suspicion under censorship, these letters being intended to constitute the letters of the cryptographic messages and the other letters constituting "dummies." Obviously, no amount of frequency tabulations will avail a competent. expert cryptanalyst in demonstrating or disclosing the presence of a cryptographic message, written and secreted within the "open" message. which serves but as an envelop and disguise for its authentic or real import. Certainly, such frequency tabulations can disclose the existence neither of substitution nor transposition in these cases, since both forms are absent. The next paragraph contains more about these latter cases.

⁵ An example is found in the famous Pepys Diary, which was written in shorthand, purely for his own eyes by Samuel Pepys (1633-1703) "He wrote it in Shelton's system of tachygraphy (1641), which he complicated by using foreign languages or by varieties of his own invention whenever he had to record passages least fit to be seen by his servants, or by 'all the world.'"

⁶ The subparagraph which the student has just read (82c) contains a hidden cryptographic message. With the hints given in par. 83 let the student see if he can uncover it

CONFIDENTIAL

-CONFIDENTIAL

83. Disguised secret communications --a As was mentioned above. there is a general class of methods of secret writing in which a secret message is concealed within the text of an apparently innocuous plaintext message, also, by extension, a secret message may be concealed within otherwise bonn fide media such as maps, drawings, charis, music manuscripts, bridge hands, chess_problems, shopping lists, stock quotations, and so on The addressee of such a communication, knowing where to look for the secret elements. does so and from them is able to read the message contained within its covering disguise. When the plaintext elements of the secret message are concealed by surrounding them with the plaintext elements of an innocent cover text, such a system is known as a conceal-When, however, the actual plaintext elements of the secret ment system message arc not themselves concealed within a cover text, but instead have code equivalents which are themselves actual plaintext words or phrases and which are used to form an apparently innocent message, such systems are called open code systems.

b. An example of a concealment system ressage is the communication "HAVE ESTABLISHED LOW PRIORITY", in which the secret message "help" has been concealed as the first letter of each word of the covering text As an example of an open code, in the message "AUNT MARY LEFT FOR DEIROIT ON FRIDAY", the words AUNT MARY might stand for "five troop ships", DETROIT might mean "Southampton", and FRIDAY might stand for "Monday." An oftencited case of open code is the message "A SON IS BORN", which allegedly was sent out by German-controlled radio stations all over the world in August, 1914, meaning that war was about to be declared

c. The solution of concealment systems may pose considerable difficulties for the cryptanalyst, who is placed in the rather odd situation where he might have before him a simple system, if he can but find the system. Most of the statistical and other tools at the disposal of the cryptanalyst are of no avail to him in the attack on concealment systems. First of all, he might not even know whether or not a given letter does contain a secret message, often the only reason for an examination of a particular message, other than a random sampling case, is that the originator or the addressee is on a suspect list and therefore the communication is considered for possible secret writing. The difficulty in analysis is usually not brought about by the complexity of the system, for concealment systems are almost always cryptographically simple. The difficulty of the problem arises from the lack, at the outset, of tangible cryptographic elements into which the cryptanalyst can "get his teeth" There

CONFIDENTIAL

-CONFIDENTIAL

REF ID:A56892

is primarily the question of whether or not a secret text actually exists, and, if it does, where are the elements constituting the secret text As a consequence, locating the elements of the secret text and deriving the meaning of the secret text are practically synonymous. Success in this type of analytic work requires extraordinary patience and preséverance, keen powers of observation nurtured by unrelenting suspicion, a lively iragination, exceptional ingenuity, and organized methods of analysis--plus a firm foundation and considerable experience in the methods and practices of concealment systems

The number of different concealment systems possible is enormous. d. The letters of the secret message might be concealed as the first, second, or third letters of the cover text, or they might be concealed as the final penultimate, or antepenultimate letters of the words, or they might he concealed by means of a specific key into prearranged variable placements within the words of the innocent text. The secret text might be read by considering the letters which follow or precede all unnecessary breaks in cursive handwriting; or the secret text might be indicated by shaded letters or by pin pricks over significant letters, or even by elongated tails on words pointing to significant letters in the line above. In the analysis of such concealed-letter systems, it is advisable to write the successive words of the cover text one below the other, in a column, aligned by their beginnings and subsequently to rewrite them columnwise aligned by their endings, this will assist in disclosing a secret text hidden in a fixed position relative to the beginnings or endings, or in diagonal routes near those locations (see Fig 101). It is also advisable to write out the

¹ In this connection, it is worthwhile to cite an extract from an official report prepared in 1946 by the wartime Office of Censorship:

"Detection of concealed messages is based on the principle that there is no absolutely safe disguise for duplicity. Espionage letters have weaknesses and identifying characteristics, which modern techniques can minimize but never completely eliminate. Seasoned examiners develop an ability to relate facts and think clearly about possibilities They develop a keen perception of, or alertness to, certain peculiarities, an attitude of suspicion toward certain indicators, and experience or training in handling certain types of materials.

J. Tata

.....

× 5 } ₹

"The texts of letters containing concealed messages do not ring true; they lack spontaneity, and the normal emphasis which people give to certain thoughts or ideas is absent Something comparable in social life is the stilted behavior and speech of a person who is obliged to entertain a stranger with whom he feels nothing in common, he behaves unnaturally, he desires to be polite, but in order to do so he must hide his boredom and pretend an interest he does not feel. Exactly the same is true in the writing of cover texts or open code letters--the attempt to pursue two aims simultaneously results in strain. Skill and experience may overcome the strained-text hazard to a high degree, but they can never completely dispel the distortion and dislocation of a normal emphasis inevitable in a cover letter."

-CONFIDENTIAL

256

63

÷ -

~/*=*;

Cover text:

CONFIDENTIAL

cover text in rectangular arrangements of various vidths, in order to disclose secret text which might have been concealed in every nth letter of the entire cover text (see Fig. 102). In cases where physical indicators are employed, such as breaks in handwriting or as shaded letters, an examination of the letters in the immediate vicinity of such indicators would disclose the secret text

Cover text:

UNCLE EZRA SEEMS DESPONDENT. HAVE YOU HEARD THE LAST REPORT?

UNCLE EZRA SEEMS DESPONDENT HAVE YOU HEARD LAST REPORT WHEN YOU SEE CHESTER AT MADISON'S HOUSE TELL HIM LOIS DEPARTED.

W H E NYO U S E E C H E S T E R A T M A D I S O N S H O U S E T E L L H I M L O I S D E P A R T E D

Secret text: NEED HELP

Secret text: NEED HELP

Figure 101.

Figure 102.

e. Some systems involve the concealment of entire words, instead of just individual letters, in the cover text Thus, for example, the secret text might consist of (1) every nth word of the cover text, (2) the first and last words of every line, (3) words preceding or following punctuation marks, (4) words bisected by an imaginary line running diagonally from the upper left to the lower right of the sheet of paper; or countless varieties of similar schemes. Grilles have also been used, the secret text being written through the apertures of the grille on placed positions on the sheet of paper, and then a covering letter written to surround and camouflage the secret text. In the solution of concealed-word systems, examining the text produced by counting off every nth word may bear fruit; if the secret text is long enough, the validity of the assumed secret text may be proved by the consistency of the decimation. In cases wherein a variable key has been used to indicate which words constitute the secret text, proof of the assumed secret text may be impossible. unless the key is short compared to the message lengths, or unless additional messages in exactly the same key are available for comparison to test an assumed key.

f. There have been many cases in which a secret text has first been converted into the dots, dashes, and spaces of the Morse code, or encrypted in a Baconian or a tripartite cipher; then this converted text was concealed within an innocent text in any one of the almost infinite number of possible ways Some of these ways in which the multiliteral elements of the preluminary conversion may be represented are by (1) the lengths of words,

-CONFIDENTIAL

-CONFIDENTIAL

(2) the number of vowels or consonants in the words; (3) the number of syllables in the words; or (4) by the ways in which t's are crossed or i's are dotted. The solution of such systems involves experimentation with basic hypotheses concerning the man_er in which multiliteral elements are denoted, followed by a recombination into monoalphabetic terms (under the assumption of a Morse, tripartite, or Boconian system) and solving the reduced monoalphabetic text Another method for a concealment system involves the use of a bipartite matrix employing coordinates consisting of vowels (or, for that matter, any other set of five or six letters), the secret text is first enciphered in this biliteral system, and then the vowels are surrounded by consonants to form the plain text of an immocent cover message. As in most concealment systems, once such a subtrifuge is suspected or assumed, then and only then is solution possible

g The detailed discussion thus far has been limited to concealment systems ⁸ In cases of open code, unfortunately there are no clear-cut hethods of analysis or even of recognition, there is simply no rational way of proving that a message such as "AUNT MARY LEFT FOR DETROIT TODAY" contains a secret meaning, unless it is known for a fact that the sender nas no aunt named Mary, and even then there still might exist a friend of the sender's who is affectionately called "Aunt Mary"--or, for that matter, she might be someone else's aunt ⁹ And once having suspected or even proved that there is something rotten in Denmark, proof of the serder is somehow convinced to mend his ways and thereupon volunteers the information In many wartime instances where open codes have been used, a legal case could not be proved against a suspect without his cooperation.

h. A prominent case of the use of open code in espionage communications is that of an Axis spy, Mrs. Velvalce Dickinson, who in August, 1944, was sentenced in New York to ten years' imprisonment and was fined '10,000 after pleading guilty to the charge that a series of letters she had written to an agent in Buenos Aires in the early part of 1942 contained secret messages hidden in the plain text. These messages gave information regarding the location and condition of allied warships in Pacific ports These two agents professed to be dealers in antique dolls and used a prearranged code giving secondary meaning to words pertaining to the sale of dolls Mrs. Dickinson would send out letters advertising of offering to sell certain of her antique dolls to the addressee. She would write the doll's name and after the name a brief description, then she would write, as in an ordinary business letter, the price of each

⁸ Further discussion of this subject will be found in Appendix 9, "Concealment Systems."

⁹ In one instance, it has been related that a censor reviewed a telegram transmitted by a person on a suspect list The telegram read "FATHER IS DECEASED." The censor, smelling a rat, changed the text to read "FATHER IS DEAD", and waited. Sure enough, several hours later came a query: "IS FATHER DEAD OR DECEASED?"

258

-CONFIDENTIAL

CONFIDENTIAL

doll The original cause for suspicion was the extreme variation in prices over a range of three or four letters of what was apparently the same doll of the same type of doll A great many letters were necessary in order to build up a case sufficient to prove the use of open code. It is doubtful even then that the use of open code could have been legally proven except for the fact that, faced with so much evidence against her, she chose to confess this use.

1. In addition to concealment systems and open codes, there are three other methods for hiding the existence of secret text. These methods embrace the following:

(1) secret inks;

(2) microscopic writing, involving use of micropantographs; and
(3) photographic methods, including "microdots" (i.e., the reduction of a page of copy to a negative the size of a miniature dot, which is then affixed on a period or on the dot of an "i"), double printing, double exposure, or concealment within photographs.

The methods of use and analysis of these systems, however, are beyond the scope of this text.

84 Concluding remarks --- a The student will have by this time appreciated that monoalphabetic substitution ciphers are for the most part quite easy to solve, once the underlying principles are thoroughly understood. As in other arts, continued practice with many examples leads to facility and skill in solution, especially where the student concentrates his attention upon traffic all of the same general nature, so that the type of text which he is continually encountering becomes familiar to him and its peculiarities or characteristics of construction give clues for short cuts to solution It is true that a knowledge of the general phraseology of messages, the kind of words used, their sequences, and so on, is of very great assistance in practical work in all fields of cryptanalysis In operational cryptanalysis.it is of vital importance to gain a knowledge of the language habits of a particular group of correspondents, to permit the rapid exploitation of the cryptosystem involved. Thus, at least initially, all possible traffic is cryptanalyzed, even that in simple systems and that of comparatively little intelligence value Word lists obtained empirically are of more value than "intuitive" or academic compilations, however, at the outset, reference may of course be made to these latter compilations 10

b. Some of the simpler subterfuges which the student should be on the lookout for in monoalphabetic substitution are the following:

(1) There may be employed in the cryptographic scheme the consecutive use of several different mixed cipher alphabets in a single long message Obviously, a single, composite frequency distribution for the whole message will not show the characteristic crest and trough appear-

259

See in this connection the word and idiomorph lists comprising Arpendix 3.

CONFIDENTIAL

10

ance of a simple monoalphabetic cipher. since a given cipher unit will represent different plaintext letters in different parts of the message. But if the cryptanalyst will carefully observe the distribution as it is being compiled, he will note that at first it presents the characteristic crest and trough appearance of monoalphabeticity, and that after a time it begins to lose this appearance If possible he should be on the lookout for some peculiarity of grouping of letters which serves as an indicator for the shift from one cipher alphabet to the next. If he finds such an indicator he should begin a second distribution from that point on, and proceed until another shift is encountered. By thus isolating the different portions of the text, and restricting the frequency distributions to the separate monoalphabets, the problem may be treated then as an ordinary simple monoalphabetic substitution.¹¹ Consideration of these remarks in connection with instances of this kind leads to the comment that it is often more advisable for the cryptanalyst to compile his own data, than to have the latter prepared by clerks, especially when studying a system ab initio. For observations which will certainly escape an untrained clerk can be most useful and may indeed facilitate solution. For example. in the case under consideration, if a clerk should merely hand the completed over-all uniliteral distribution to the cryptanalyst. the latter may be led astray, the appearance of the composite distribution might convince him that the cryptogram is much more complicated than it really is. While still on the subject of frequency distributions, it is pointed out that, although earlier (par 43) the triliteral frequency distribution was cited primarily for its usefulness in extracting frequency data relative to the digraphs and trigraphs occurring in a simple substitution cipher. this particular type of distribution is used extensively in the manual attack on many other types of cryptograms because it provides one of the best means for systematically locating all of the repetitions which appear in a message.

(2) There have been cases where direct and reversed standard alphabets have been used alternately in a single cryptogram, the change of alphabets being made at irregular intervals, or changed at the end of every word or with each group of five letters. If the interruption takes place at too short an interval, not only will a frequency distribution be of no avail, but also it would be almost impossible for the cryptanalyst to detenmine when and how the change of alphabets occurs from a mere examination of the cipher text However, if the cryptanalyst is on the alert to try the simplest thing first, completing the plain-component sequence on the assumption of standard alphabets will yield a solution where otherwise a solution might be out of the question

(3) Another subterfuge that has been encountered is the encryption by means of a monoalphabetic uniliteral substitution of a message whose

CONFIDENTIAL

¹¹ The cryptonalyst should be on the alert for the possibility of related alphabets in such a system, if this is the case, the reconstruction of the public ponents from the solution of one portion of the researce would crable the reading of other pollions of the researce by r rou of the generatrix rated in g^{-1} 50

CONFIDENTIAL

plain test has first been written backwards (or for that matter, on ordinary simple substitution cipher sent beckwards) Ciphers of this type may successfully resist the unsystematic attempts of solution which a tyro might make, however, the experienced analyst would probably quickly recognize the work subterfuge if he wore to examine the frequencies of cipher digraphs, trigraphs. and tetragraphs. in relation to the uniliteral frequencies of their component letters

· · · · · REF ID A56892

c. Monoalphabetic substitution with variants represents an extension of the basic principle, with the intention of masking the characteristic frequencies resulting from a strict monoalphabeticity, by means of thich solutions are rather readily obtained Some of the subterfuges applied on the establishment of variant or multiple values are simple and more or less fail to serve the purpose for which they are intended; others, on the contiery, may interpose serious difficulties to a straightforward solution. But in no case way the problem be considered of more than ordinary diffi-To homme it should be recognized that where these subterfuges ~ **^** .ro (ally adequate to the purpose, the complications introduced are such that the practical manipulation of the system becomes as difficult for the cryptographer as for the cryptanalyst

(1) A few words may be added here in regard to a method which often suggests liscif to laynen, but which is very old indeed in the art. this consists in using a book possessed by all the correspondents and udicuting the letters of the massage by means of numbers referring to recific letters in the book One way consists in selecting a certain roge and then giving the line number and position of the letter in the line, the page nurber being shown by a single initial indicator Apother way is to use the entire book, giving the cipher equivalents in groups of three numbers representing page, line, and number of letter (for example, 75-8-10 means page 75, 8th line, 10th letter in the line) Such systems are, however, extremely cumbersone to use and, when the enciphering is done cerelessly, can be solved The basis for solution in such cases reats upon the use of adjacent letters on the same line, the accidental repetitions of certain letters, and the occurrence of unenciphered words in the messages, when laziness or fatigue intervenes in the enciphering 12

(2) It may also be indicated that humon nature and the fallibility of cipher clerks is such that it is rather rare for an encipherer

In 1915 the German Government conspired with a group of Hindu revolutionates to stir up a rebellion in India, the purpose being to cause the withdrawal of British troops from the Western Front Hindu conspartors in the United States were given money to purchase arms and emanition and to transport them to India For communication with their supexforts in Berlin the conspirators used, among others the system described A 7-page typewritten letter built up from page, line, in this paragraph and letter-number references to a book known only to the consubicants, wis intercepted by the British and turned over to the United Suites Governeent for use in connection with the presecution of the Hindus for violating our neutrality , The author /N.F.F. solved this massage without the book in question, by taking full advantage of the clues referred to 4

261

- <u>ج</u>

to make full use of the complement of variants placed at his disposal. The result is that in most cases certain of the equivalents will be used so much more often than others that diversities in frequencies will soon manifest themselves, affording important data for attack by the cryptanalyst

d There is one aspect of cryptography within the realm of monoalphabetic substitution ciphers that should be discussed at this point-the aspect involving repetitive monoalphabetic substitution.

(1) Suppose a message undergoes a primary encipherment by means of a single mixed, non-reciprocal cipher alphabet, and this primary cipher text then undergoes a secondary encipherment by means of the same or a different mixed elphabet The resulting cryptogram is still monoalphabetic in character, and presents very little, if any, augmentation in the degree of security (depending upon the type of alphabet employed).¹³ Here an entirely illusory increase in security is involved and an ineffectual complexity is introduced, the process may indeed be repeated indefinitely without producing the desirable result of added security Similarly, the same illusory increase in security is present in the case of repetitive multiliteral encipherments involving regular-length ciphertext units, as long as the repetitive encipherments are made "on the cut".

(2) In the case of repetitive polygraphic encipherment made on the cut, a moderate increase in security is achieved over the degree of security normally provided by a single polygraphic encipherment. For instance, in the case of repetitive digraphic encipherment using, let us say, a four-square system for the first encipherment and modified Playfair system for the second step, the final encipherment is still monoalphabetic digraphic in character, except that the cryptosystem might have to be resolved as involving a more-or-less random square table, instead of being recovered in its primary and secondary steps, all the repetitive encipherment has accomplished is that it has added to the difficulty of reconstruction of the matrices used--but this, in the case of a digraphic system, is a reasonably fair increase in security, since we expect solution to be expedited through an early recovery of the matrix

(3) When, however, successive multiliteral or polygraphic encipherments are made "off the cut" for the second step, the increase in security can be considerable, since the end result no longer exhibits the phenomena of monoalphabeticity and the cryptanalytic complexity of the

¹³ The only possible slight increase in security lies in the fact that the key words for the primary and secondary encipherments might be made more difficult to recover or even impossible to recover

CONFIDENTIAL

CONFIDENTIAL

12

-CONFIDENTIAL,

system has been thereby materially enhanced ¹⁴ For example, using the two-square matrix illustrated in Fig 55 on page 162, the message REENF ORCE WITS NEEDFD undergoes the following encipherments.

RE FN FO KC EM EN TS NE ED ED Cipher I IL DP UM CF KT DP GI UL DF DF Cipher II OC OT MC MR TD QF TO OC AH

The first encipherment, IL DP UM. , is subjected to a second encipherment by considering the digraphs "off the cut", resulting in the encryptment OC OT MC In the final cryptogram, the first and last letters of the primary encipherment may be retained as is, or they may be combined for the second encryption, for added security, thus the final cryptogram may read either IOCOT OCAHF, or ROCOT. OCAHG When this sort of secondary encipherment is applied in a repetitive multiliteral cipher, the system is called a fractionating system 15 The cryptanalysis of these systems, which is often quite complex, will be treated in subsequent texts.

e. If the cryptanalyst is fortunate enough to have a pair of isologs, one message of which is in a monoslphabetic substitution system and the other in a transposition system, it may be possible for him to make exact identifications of the elements in the substitution cipher based on the plaintext letter frequencies present in the transposition cipher. Then, having the plain text, the solution of the transposition is greatly facilitated

¹⁴ A rather ingenious idea proposed by Charles Eyraud in his excellent work, Piecis de Cryptographie Moderne, Paris, 1953, pp 224-225, involves a repetitive encipherment using two different monome-dimore matrices. In Eyraud's example, using the two matrices illustrated, the plain text

12345	56789		123456789
IIIIAE S A	NTIR		- PBGHUZA
UDLFV	IQMPC		1CHNVRDJOU
HGOBX	CWJZK		3IFKQXSFLT
Matri	LA I		Y Matrix II
	ECRIT	URES	SECRETES
	210087	110 21	1210 0 2721

3 31	19 9	9 9	8 8	7 7	11 11	9 9	3 34	4 上	4 31	39	19 9	9 37	3 34	7	3	4	
I	Ā	Ā	Z	Ū	C	Â	Q	B	I	Á	A	F	ିର୍				

"ECRITURES SECRETES" is first enciphered with Matrix I, then the digits are recombined into letters using Matrix II with the resulting cipner text IAAZU (It is interesting to note that the 17 letters of the plain text are encrypted by only 14 letters in the final cipher') The letter Y_p is eliminated from Matrix I, and is included in Matrix II to take care of a final 1 or 3 in the first encipherment which otherwise could not have been encrypted as a single element.

¹⁵ See Appendix 7 for other examples

CONFIDENTIAL

1 As has already been stated in subpar 2c, mathematics and mathematical methods have an important place in the art of cryptanalysis. This text has included only those introductory statistical and mathematical applications which apply to monoalphabetic systems If it appears to the student that there has been a rather extensive treatment of too-specialized techniques, let him be reassured that these have been included as being in the nature of collateral information, rather than being an absolute necessity in the solution of the particular problems to which they were applied As a final word of caution to the student the following extract from a report by C. H. O'D. Alexander is included:

"There is a considerable danger that a learner, when he realizes that statistical methods can be of some use, will attempt to use them where they are quite inappropriate If he does this a few times and finds it gets him nowhere, he then gives the whole thing up as a waste of time and does not use such methods where he might There is also the worse danger of doing statistical tests for their own sake so that they are used as a method of passing the time and avoiding real thought about the problem to be solved "

g. The general problem of cryptanalytic diagnosis has been discussed briefly in various Sections of this text The problem is far from simple, since many variations and conventions may be encountered in the various systems treated in this text, furthermore, the problem is made even harder by the fact that certain systems, themselves quite simple, may be combined

264

CONFIDENTIAL

to produce a system much more difficult to diagnose The lack of precise diagnostic tests, such as those available in the natural sciences, ¹⁶ is brought about by the fact that variations and conventions introduced into otherwise conventional systems may change radically the appearance and manifestations expected in the cipher text produced by the known systems, yielding "hitherto-unencountered phenomena." Each cryptosystem is then actually an individual and unique case in diagnosis 17

(1) For example, four-letter cipher groups of the pattern consonant-vowel-consonant-consonant do not necessarily prove a code system, even though this grouping is a frequent one in four-letter code systems, the basic system might still be a cipher system, with the apparent

¹⁶ The author feels that it is of value to pursue further a discussion of how the science of cryptanalytics compares with some branch of one of the natural sciences, when the diagnostic procedures involved in each are considered. In that branch of biology called taxonomic botany, for example, the first steps in the classificatory process are based upon observation of externally quite marked differences; as the process continues, the observational details become finer and finer, involving more and more difficulties as the work progresses Towards the end of the work the botanical taxonimist may have to dissect the specimen and study interpal characteristics. The whole process is largely a matter of painstaking, accurate observation of data and drawing proper conclusions therefrom Except for the fact that the botanical taxonomist depends almost entirely upon ocular observation of characteristics while the cryptanalyst in addition to observation must use some statistics, the steps taken by the former are quite similar to those taken by the latter It is only at the very end of the work that a significant dissimilarity between the two sciences arises. If the botanist makes a mistake in observation or deduction, he merely fails to identify the specimen correctly, he has an "answer"--but the answer is wrong He may not be cognizant of the error, however, other more skillful botanists will find him out But if the cryptanalyst makes a mistake in observation or deduction, he fails to get any "answer" at all, he needs nobody to tell. him he has failed. Further, there is one additional important point of The botanist is studying a bit of Nature -- and she does not difference consciously interpose obstacles, pitfalls, and dissimulations in the path of those trying to solve her mysteries. The cryptanalyst, on the other hand, is studying a piece of writing prepared with the express purpose of preventing its being read by any persons for whom it is not intended. The obstacles, pitfalls, and dissimulations are here consciously interposed by the one who encrypted the message. These, of course, are what make cryptanalytics different and difficult.

¹⁷ Baudouin (op cit., Chapter XIV) drew up a sort of check list of the classificatory procedures which an analyst might follow when attempting to diagnose the cryptosystem underlying a particular cryptogram or cryptograms. However, the science of cryptanalytics being as it is does not lend itself to successful completion of such diagnostic "check lists." Thus, the one compiled by Baudouin is far from satisfactory and is of no more than academic interest to the present-day practicing cryptanalyst characteristics of a code system. Upon closer examination, it might be possible to disprove a code system, based on the non-appearance of certain other characteristics that should be present in a code system

(2) If a cryptogram or a set of cryptograms contain only the letters A through O in the cipher text, all that can be said initially is that only 15 letters are present in the encrypted text, and that the system must be one of substitution, either cipher or code. If a cipher, then the system must of course be a multiliteral system (including perhaps a mixed-length system), not excluding, for example, a digraphic system or a code chart For instance, in the biliteral matrix below, the ciphertext units consist only of pairs of consonants, and the plaintext elements include the 26 letters and the 374 most frequent digraphs; thus the system is essentially a digraphic system. Such a system would not be at once recognized as a digraphic system, and if the vowels were used as nulls, the diagnosis of the cryptosystem would be considerably impeded

h. The often extensive and elaborate treatment of the many varieties of cryptosystems within the scope of this text has not been given solely for the sake of the analysis of the particular systems involved, but rather to illustrate the general cryptanalytic techniques which are applied to various problems. In being guided along the lines of "thinking cryptanalytically", the student has been put in a position to analyze successfully many possible variations and modifications of the cryptosystems treated in this text and in the accompanying course. The cryptosystems in this text and accompanying course have been solved for the most part from one or two messages Naturally, there is a certain amount of artificiality in the

G H J K L M N P Q R S T V W X Z BCDF A AA AB AC AD AE AF AG AH AI AK AL AM AN AO AP AR AS AT AU B AV AW AY B BA BE BI BL BO BR BT BU BY C CA CC CE CH CI CK C CL CO CR CT CU CY D DA DB DC DD DE DF DG DH DI DL DM DN DO D F DP DQ DR DS DT DU DV DW DY E EA EB EC ED EE EF EG EH EI EJ EL EM EN EO EP EQ ER ES ET EU EV EN EX EY EZ F FA FC FE FF G FI FL FO FR FS FT FU FY G GA GC GE GF GG GH GI GL GN GO GP Ħ GR GS GT GU GW H HA HB HC HD HE HF HI HL HM HN HO HR HS HT J К HU HY I IA IB IC ID IE IF IG IK IL IM IN IO IP IR IS IT IV IX IZ J JA JE JO JU K KA KE KI KS 🔪 LA LB LC LD LE LF LG L LI LL LM LN LO LP LR LS LT LU LV LN LY M MA MB MC ME MI MM Μ MO MP MR MS MT MU MY N NA NB NC ND NE NF NG NH NI NK HL NM N INN NO NP NR NS NT NU NV NW NY O OA OB OC OD OE OF OG OH OI Ρ OK OL OM ON OO OP OR OS OT OU OV OW OX OY P PA PE PF PH PI Q PL FM PN PO PP PR PS PT PU PY Q QU R RA RB RC RD RE RF RG R RH RI RL FM RN RO RP RR RS RT RU RV RW RY S SA SB SC SD SE SF SG SH SI SK SL SM SH SO SP SR SS ST SU SW SY T TA TB TC S T TD TE TF TG TH TI TL TM TN TO TP TR TS TT TU TW TY TZ U UA V UB UC UD UE UG UI UL UM UN UP UR US UT V VA VE VI VQ W WA W X WE WH WI WL WN WO WR WY X XA XC XE XF XI XN XP XT Y YA YB Z YC YD YE YF YG YH YI YL YM YN YO YP YR YS YT YW Z ZA ZE ZI

Figure 103

÷ -

۳.

_<u>A</u>(1 + 2)____

÷ ب ۲

2

CONFIDENTIAL

examples and messages employed herein The texts of messages have been manipulated, especially in connection with the accomponying problems, in order to illustrate pedagogical principles and the application of cryptanalytic techniques In actual practice, instead of the one or two messages, five might be required, or for that motter, fifly or more might be required in order to effect a solution In operational practice, there is frequently a high incidence of garbles which would have a pronounced impact on not only a facile identification of the cryptosystem but also on its subsequent solution Speed is an essential criterion in operational practice, a cryptosystem must be broken and messages read as soon as possible, to be of maximum use to a field commander -- messages read six or twelve ronths after they were sent are hardly of more than historical Nevertheless, when a system is cryptonalyzed for the first importance time, no matter when it is broken it helps maintain cryptologic continuity which is of extreme importance in successful operational practice.

i The student should now study, if he has not already done so, the various appendices to this text Through them, he may gain an insight into further aspects of cryptography and topics related to the art of cryptanalysis Practice on many different ciphers of the types covered in this text will tend to sharpen the wits and give to the student confidence and facility in the cryptanalysis of unknown examples It is for this reason that a course of problems is a necessary adjunct to the study of this text; as was previously mentioned, one month's actual practice in solution is worth a whole year's mere reading of theoretical principles

j. It may be of assistance to indicate, by means of a graphic outline, the relationship existing among the various cryptographic systems thus far considered The outline will be augmented with each succeeding text as the different cryptosystems are encountered, and will constitute what has already been alluded to in par 6d and there termed a "synoptic chart of cryptography" The synoptic chart for this text (Chart 9) forms an insert following this Section. Looking at this chart the student may see that, although it is essentially dichotomous in form, at several levels there appears a sort of cryptographic tertium quid--some category (or categories) of cryptosystems which properly belongs at the particular level shown, but which does not directly fit into either of the two primary subdivisions already appearing at that level However, if the student will study the synoptic chart attentively, it will assist him in fixing in mind the manner in which the various systems covered thus far are related to one another, and this will be of benefit in clearing away some of the mental fog or haziness from which he is at first apt to suffer.

k. There remain five more volumes to this series of basic texts on the art of cryptanalysis Military Cryptanalytics, Part II, will treat mainly periodic polyalphabetic substitution ciphers, including periodic numerical systems, Part III will treat varieties of aperiodic substitution systems, including an introduction to elementary cipher devices and cryptomechanisms, Part IV will treat transposition and fractionating systems, and combined substitution-transposition systems, Part V will treat the reconstruction of codes, and the solution of enciphered code systems, and Part VI will treat the solution of representative machine cipher systems. In addition.

٠,

CONFIDENTIAL

throughout the five remaining texts there will be interpolated statistical techniques applicable to the systems treated, and information on the application of analytical machines in cryptanalytic problems. The security classification of each succeeding text will vary according to the information contained therein. It is not intended that the student study all six texts; life is too short to become an expert cryptanalyst in all fields of the art. Parts I and II embrace most of the necessary fundamentals of cryptanalysis; the succeeding four volumes will impart knowledge on more specific categories of systems with which the cryptanalyst may be faced.

268

.

Chart 7. Synoptic chart of cryptography for Military Cryptanalytics, Part I.

٨

(DLATK)

رية. كاريني ا

and the second s

in which is the more than a start and the

APPENDIX 1

Tablet

- i numita and

4 3

GLOSSARY FOR MILITARY CRYPTANALYSIS, PART I

* A 12

PT 3

Explanatory Notes

tu'ratr

1 . . .

1. This glossary is designed primarily to be used in connection with the text Military Cryptanalysis, Part I. It is limited in scope to cryptologic terms actually appearing in the text, terms likely to be encountered in other cryptologic literature of approximately the same level as the text, and a few other terms considered necessary to complement or to clarify certain definitions.

2. The terms in this glossary are arranged in strictly alphabetical order, disregarding word spaces and hyphens. Single words and certain hyphenated words are followed directly by an abbreviation of the part of speech. Run-on entries, indicating a part of speech different from that of the main entry, are shown simply by means of a series of dashes followed by the abbreviations used for parts of speech, as well as those used to indicate examples, cross-references, etc., are those listed in Webster's New International Dictionary, Second Edition.

The second of th

- 4 - 6

GLOSSARY FOR MILITARY CRYPTANALYSIS, PART I

- accidental repetition. A repetition produced fortuitously, and not by the encipherment of identical plaintext letters by identical keying elements. (Cf. causal repetition.)
- additive, n. A single digit, a series of digits, or a numerical group which, for the purpose of encipherment, is added to a numerical code group or to numerical cipher or plain text.
- additive book. A book comprising a group of additive tables.
- additive system. A cryptosystem in which encipherment is accomplished through the application of additives.
- additive table. A tabular arrangement of additives.
- addressee, n. The office, headquarters, activity or individual to whom a message is directed by the originator.
- ADFGVX system. A German high-command cipber system used in World War I. Essentially, a biliteral substitution system employing a 6 x 6 square, to which a columnar transposition was subsequently applied.
- applique unit, teleprinter. A special cipher attachment used in connection with a teleprinter to provide cryptographic treatment for teleprinter messages.
- artificial word. A group of letters having no real meaning, constructed by the systematic arrangement of vowels and consonants so as to give the appearance and pronounceability of a bona fide word.

3 7

- Baconian cipher. A cipher system invented by Sir Francis Bacon (1561-1626). It is basically a monoalphabetic substitution system in which single plaintext letters are represented by five-letter cipher equivalents formed by permutations of two letters taken five at a time.
- baud, n. A mark or space impulse in the international (Baudot) teleprinter code.
- Baudot code. A five-unit code applied to teleprinter systems by Jean Maurice Emile Baudot (1845-1903). It employs a 32-element alphabet composed of permutations of two elements taken five at a time. Also called the international teleprinter code.
- biliteral, adj. Of or pertaining only to cryptosystems, cipher alphabets, and frequency distributions which involve <u>cipher</u> units of two letters or characters. See the more inclusive term <u>digrephic</u>; see also <u>bi-</u> <u>literal</u> frequency <u>distribution</u>.

biliteral alphabet. A cipher alphabet involving a cipher component composed of two-character units.

biliteral frequency distribution. A frequency distribution of pairs formed by combining successive letters or characters. Thus, a

AB, BC, CD, DE, EF. (Cf. digraphic frequency distribution.)

bipartite alphabet. A biliteral alphabet in which the cipher units may be divided into two separate parts whose functions are clearly defined, viz., row indicators and column indicators of a matrix.

bipartite system. A substitution system involving the use of a bipartite alphabet.

blank-expectation test. See lambda test.

bust message. A message containing an error in encipherment which jeopardizes the cryptographic security of the message, and thus is potentially valuable to the cryptanalyst.

Caesar's cipher. An ancient form of simple substitution cipher in which each plaintext letter was replaced by the letter three places to the right of it in the normal alphabet; attributed to Julius Caesar.

call sign. A group of letters or numbers, or a combination of both, used as the identification for a telecommunication station (or stations), when stations are establishing contact with each other.

causal repetition. A repetition produced by the encipherment of identical plaintext letters by identical keying elements.

cell, n. An individual small square on cross-section paper, grilles, etc.

characteristic frequency. See normal frequency.

chi-square (χ) table. A mathematical table listing the probabilities of occurrence by chance of a chi-square value higher than that observed in a given case; an adjunct to the chi-square test.

chi-square (X) test. A mathematical means for determining the relative likelihood that two distributions derive from the same source. For example, the test can be used to aid in the determination of whether a distribution is more likely to be random or not; in this usage, the observed distribution is compared with a theoretical distribution representing that which is expected for random. The end result of the test is a value representing the discrepancy between the two distributions which have been compared. This value, called a "chi-square value" may be interpreted as it is, or it may be interpreted through the use of a chi-square table.

- chi (χ) test. A test applied to the distributions of the elements of two cipher texts either to determine whether the distributions are the result of encipherment by identical cipher alphabets, or to determine whether the underlying cipher alphabets are related. Also called the cross-product test.
- cifax, n. Enciphered facsimile. The process of converting a plane image into an unintelligible image or series of electrical impulses and of reconverting it or them into intelligibility through the use of a key.--adj. Using or pertaining to cifax.
- cipher, n. l. A cipher system. 2. A cryptogram produced by means of a cipher system.---adj. Pertaining to that which enciphers or is enciphered.
- cipher alphabet. An ordered arrangement of the letters (or other conventional signs, or both) of a written language and of the characters which replace them in a cryptographic process of substitution.

cipher clerk. A clerk who enciphers and deciphers messages.

- cipher component. The sequence of a cipher alphabet containing the symbols which replace the plain symbols in the process of substitution.
- cipher device. A nonmechanical and nonelectrical apparatus used for enciphering and deciphering.
- cipher disk. A cipher device consisting of two or more concentric disks, . each bearing on its periphery one component of a cipher alphabet.
- cipher machine. A mechanical or electrical apparatus for enciphering and deciphering.
- cipher square. An orderly arrangement or collection of sequences set forth in a rectangular form, commonly a square (c.g., a Vigenère square)
- cipher system. Any cryptosystem in which cryptographic treatment is applied to textual units of regular length, usually monographic or digraphic. (Cf. code system.)
- cipher text. The text of a cryptogram which has been produced by means of , a cipher system.
- ciphony, n. Enciphered telephony. The process of converting vocal communications into unintelligibility and of reconverting them into intelligibility through cryptographic treatment.---adj. Using or pertaining to ciphony.
- citrol, n. The process of converting control and telemetering signals, such as those used in missile guidance, into unintelligibility and reconverting them into intelligibility through cryptographic treatment.---adj. Using or pertaining to citrol.

- + 5 *

civision, n. Enciphered television. A system of converting television signals into unintelligible signals and vice versa, in accordance with certain predetermined procedures.---adj. Using or pertaining to civision.

clear text. Plain text.

- code, n. l. A code system. 2. A code book.---adj. Pertaining to that which encodes or is encoded.
- <u>code book</u>. A book or document used in a code system, arranged in systematic form, containing units of plain text of varying length (letters, syllables, words, phrases, or sentences) each accompanied by one or more arbitrary groups of symbols used as equivalents in mossages.
- code chart. A chart in the form of a matrix containing letters, syllables, numbers, words and, occasionally, phrases. The matrix has row and column coordinates for the purpose of designating the plaintext elements within.
- code clerk. A clerk who encodes and decodes messages."
- code group. A group of letters or numbers, or a combination of both, assigned (in a code system) to represent a plaintext element.

code message. A cryptogram produced by encodement.

- code system. A cryptosystem in which arbitrary groups of symbols represent plaintext units of <u>irregular</u> length, usually syllables, whole words, ' phrases and sentences.
- code text. The text of a cryptogram which has been produced by means of a code system.
- coincidence test. The kappa test. A statistical test applied to two ciphertext messages to determine whether they both involve encipherment by the same sequence of cipher alphabets.
- columnar transposition. A method of transposition in which the ciphertext equivalent of a message is obtained by transcribing the columns of a matrix into which the message was inscribed earlier according to some scheme other than this vertical one.
- column coordinate. A symbol normally at the top of a matrix or cryptographic table, identifying a specific column of cells, used in conjunction with a row coordinate to specify an individual cell in the matrix or table. Also called column indicator.

column indicator. See column coordinate.

communication intelligence (COMINE). Evaluated and interpreted information derived from the study of intercepted communications.

- communication security (COMSEC). The protection resulting from all measures designed to deny to unauthorized persons information of value which might be derived from communications. <u>Cryptosecurity</u>, <u>transmission security</u>, and <u>physical security</u> are the components of communication security.
- commutative, adj. As applied to cipher matrices, so constructed as to permit coordinates to be read in either row-column or column-row order without cryptographic ambiguity.
- component, n. One of the two sequences (plain and cipher) which compose a cipher alphabet.
- compromise, n. The loss of security of a classified document, information, or material, which results from the possibility of an unauthorized person or persons having knowledge thereof.
- concealment system. A method of secret communication so designed as to convey a secret message without its presence being suspected by others than the addressee. In its most usual form, the plaintext elements are concealed by combining them with extrancous plaintext elements in such a way that the end result is an intelligible and apparently innocent message. (Cf. open code.)
- crest, n. In its cryptologic application, a point of high relative frequency in a frequency distribution.
- crib, n. 1. Plain text assumed or known to be present in a cryptogram. 2. Keys assumed or known to have been used in a cryptogram.---v.t. To fit assumed or known plain text or keys into the proper position in an encrypted message.

cross-product test. See chi test.

cryptanalysis, n. The steps and operations performed in applying the principles of cryptanalytics.

cryptanalyst, n. A person versed in the art of cryptanalysis.

cryptanalytic, adj. Of, pertaining to, or used in cryptanalytics.

cryptanalytics, n. That branch of cryptology which deals with the principles, methods, and means employed in the solution or analysis of cryptosystems.

cryptanalyze, v.t. To solve by cryptanalysis.
- cryptogram, n. A communication in visible writing which conveys no intelligible meaning in any known language, or which conveys some meaning other than the real meaning.
- cryptographer, n. One who encrypts or decrypts messages or has a part in making a cryptographic system.

cryptographic, adj. Of, pertaining to, or concerned with cryptography.

- cryptographic embiguity. Uncertainty as to the method of decryption or as to the meaning intended after decryption; created by a fault in the structure of a cryptosystem.
- cryptographic arithmetic. The method of modular arithmetic used in cryptographic procedures which involves no carrying in addition and no borrowing in subtraction.

cryptographic security. See cryptosecurity.

cryptographic system. See cryptosystem.

1 mar 1 - 1

cryptographic text. Encrypted text; the text of a cryptogram.

cryptography, n. That branch of cryptology which treats of the means, methods, and apparatus for converting or transforming plaintext messages into cryptograms, and for reconverting the cryptograms into their original plaintext form by a simple reversal of the steps used in their transformation.

cryptologic, adj. Of, pertaining to, or concerned with cryptology.

- cryptology, n. That branch of knowledge which treats of hidden, disguised, or encrypted communications. It embraces all the means and methods of producing communication intelligence and maintaining communication security; for example, cryptology includes cryptography, cryptanalytics, traffic analysis, etc.
- cryptomaterial, n. All documents, devices and machines employed in encrypting and decrypting messages.

cryptomathematician, n. One versed in cryptomathematics.

- cryptomathematics, n. Those portions of mathematics and those mathematical methods which have cryptologic applications.
- cryptosecurity, n. That component of communication security which results from the provision of technically sound cryptographic systems and from their proper use.
- cryptosystem, n. The associated items of cryptomaterial and the methods and rules by which these items are used as a unit to provide a single means of encryption and decryption. A cryptosystem embraces the general cryptosystem and the specific keys essential to the employment of the general cryptosystem.

cyclic, adj. Periodic; continuing or repeating so that the first term of a series follows the last; characterized by a ring or closedchain formation.

- cyclic permutation. Any rearrangement of a sequence of elements which rearrangement merely involves shifting all the elements a conson distance to the right or left of their initial positions in the sequence, the relative order remaining undisturbed; such a rearrangement requires that one consider the basic sequence as being circular in nature so that, for example, shifting that elerent which occupies the left-most position in the sequence one place to the left places this element in the right-most position.
- daily keying element. That part of the specific key which changes at predetermined intervals, usually daily.

decimated alphabet. An alphabet produced by decimation.

decimation, n. The process of selecting members of a series by counting off at a chosen interval, the original series being treated as cyclic; or the result of the foregoing process.

decimation-mixed sequence. A mixed sequence produced by decimation. _____¥1

decipher. v.t. To convert an enciphered message into its equivalent plain text by a reversal of the cryptographic process used in encipherment. (This does not include solution by cryptanalysis.) NT + 1 - 1

deciphering alphabet. A cipher alphabet in which the sequence of symbols in the cipher component is arranged in normal order for convenience in decipherment. ______

و ب 🗠

- decipherment, n. 1. The process of deciphering. 2. The plain text of a deciphered cryptogram. 3. In an enciphered code system, the code text resulting from the removal of the encipherment.
- decode, v.t. To convert an encoded message into its plain text by means of a code book. (This does not include solution by cryptanalysis.) ---n. 1. That section of a code book in which the code groups are in alphabetical, numerical, or other systematic order. 2. The decoded, but not translated, version of a code message.
- decodement, n. 1. The process of decoding. 2. The decoded, but not translated, version of a cryptogram.
- decrypt, v.t. To transform an unintelligible or cryptic communication into an intelligible one by a reversal of the cryptographic process used in encryptment. (This does not include solution by cryptanalysis.) -- n. A decrypted, but not translated, message.

decryption, n. The act of decrypting.

degarble, v.t. To make emendations in a garbled text.

derived numerical key. A key produced by assigning numerical values to a selected literal key.

_ _ _ _

diagnosis, cryptanalytic. A systematic examination of cryptograms with a view to discovering the general system underlying these cryptograms.

digraph, n. A pair of letters.

digraphic, adj. Of or pertaining to any combination of two characters.

- digraphic frequency distribution. A frequency distribution of successive pairs of letters or characters. A digraphic distribution of ADCDEF would list the pairs: <u>AB</u>, <u>CD</u>, <u>EF</u>. (Cf. <u>biliteral frequency distri-</u> bution.)
- digraphic idiomorph. A plaintext or cipher sequence which contains or shows a pattern in its construction as regards the number and position of repeated digraphs.
- digraphic substitution. Encipherment by substitution methods in which the plaintext units are pairs of characters and their cipher equivalents usually consist of two characters.
- dinowe, n. A pair of digits.
- direct standard cipher elphabet. A cipher alphabet in which both the plain and cipher components are the normal sequence, the two components being juxiaposed in any of the non-crashing placements.
- discriminant, n. A group of symbols indicating the specific cryptosystem used in encrypting a given message. Also called system indicator.
- distribution, n. See frequency distribution.
- doublet, n. A double-letter digraph, such as, LL, EE, etc.
- double transposition. A cryptosystem in which the characters of a first or primary transposition are subjected to a second transposition.
- encicode, n. A portmanteau word for enciphered code.
- encipher, v.t. To convert a plaintext message into unintelligible language by means of a cipher system.
- enciphered code. A cryptographic system in which a cipher system is applied to encoded text.

- enciphering alphabet. A cipher alphabet in which the sequence of letters in the plain component is arranged in normal order for convenience in encipherment.
- encipherment, n. 1. The process of enciphering. 2. Text which has been enciphered.
- encoded cipher. The final text produced by enciphering the plain text and then encoding the enciphered text.
- encode, v.t. To convert a plaintext message into unintelligible language by means of a code book.---n. That section of a code book in which the plaintext equivalents of the code groups are in alphabetical, numerical, or other systematic order.
- encodement, n. 1. The act or process of encrypting plain text with a code system. 2. The text produced by encoding plain text.
- encrypt, v.t. To convert a plaintext message into unintelligible language by means of a cryptosystem.
- encrypted text. The text produced by the application of a cryptosystem to a plaintext message.
- encryption, n. 1. The act of encrypting. 2. Encrypted text.
- external text. In concealment systems, the apparently innocent enveloping text within which a secret message is hidden.
- four-level dinome cipher. A biliteral substitution cipher system employing four cipher sequences composed of two-digit numbers, by means of which all or nearly all of the plaintext letters are provided with four two-digit variant equivalents.
- four-square matrix system. A digraphic substitution system employing a matrix which usually consists of four 5 x 5 squares in which the letters of 25-element alphabets (usually combining I and J) are inserted according to any prearranged order.
- fractionating system. A cipher system in which plaintext units are represented by two or more cipher symbols which in turn are dissociated and subjected to further encipherment by substitution or transposition or both.
- fractionation, n. A cryptographic process wherein the cipher symbols, which combined represent a plaintext unit, are dissociated and subjected to further encipherment.

- frequency distribution. A tabulation of the frequency of occurrence of plaintext or ciphertext units in a message or a group of messages. A frequency count.
- frequential matrix. A type of cipher matrix providing veriants. A matrix in which the number of different cipher values available to represent any given plaintext letter closely approximates its relative plaintext frequency.
- garble, n. An error in transmission, reception, encryption, or decryption which renders incorrect or undecryptable a message or transmission or a portion thereof.---v.t. To rake an error in transmission, reception, encryption, or decryption of a message.
- general cryptosystem. The basic inveriable method of encryption included in a cryptosystem, excluding the specific keys essential to its employment.
- generatrix, n. In connection with the method of completing the plain component sequence, any one of the rows, each of which represents a trial "decipherment" of the original cryptogram.
- Grandpre cipher. A type of substitution system providing variants. This system employs a cipher square in which are inscribed ten 10-letter words containing all the letters of the alphabet in their spproximate plaintext frequencies. These ten words are further linked together by a 10-letter word which appears vertically in the first column as a mnemonic feature for the inscription of the words in the rows.
- grid, n. In a transposition system, a form or matrix over which a grille is placed for the purpose of enciphering or deciphering.
- grille, n. 1. A sheet of paper, cardboard, thin metal, plastic, or like material in which perforations have been made for the uncovering of spaces in which textual units may be written or read on the grid. 2. A matrix in which certain squares are blocked out or otherwise marked so as not to be used.
- group, n. A number of digits, letters or characters forming a unit for transmission or for cryptographic treatment.
- high-echelon, adj. Pertaining to organizational units at the army divisional level or higher, or their equivalents.
- high-grade, adj. Pertaining to a cryptosystem which offers a maximum of resistance to cryptanalysis; for example: (1) complex cipher machines, (2) one-time systems, (3) two-part codes enciphered with an additive book. (Cf. low-grade and medium-grade.)

- Hill's algebraic encipherment. A true polygraphic system for the encipherment of polygraphs of any order, involving algebraic treatment by means of coefficients for the transformation of a plaintext polygraph into its ciphertext polygraphic equivalent, and vice versa. Invented by Professor Lester S. Hill of Hunter College.
- hit, n. A coincidence or identity.
- horizontal two-square matrix system. A digraphic substitution system employing a matrix which normally consists of two 5 x 5 squares placed side by side.
- identification, n. Determination of the plaintext meaning of a cipher clement or code group.
- identify, v.t. To determine the plaintext meaning of a cipher element or code group.
- idiomorph, n. A plaintext or cipher sequence which contains or shows a pattern in its construction as regards the number and positions of repeated letters.
- idiomorphism, n. In a plaintext or cipher sequence, the phenomenon of showing a pattern as regards the number and positions of repeated letters.
- index of coincidence. The ratio of the observed number of coincidences in a given cryptogram to the number of coincidences expected in a sample of random text of the same size as the cryptogram.
- indicator, n. In cryptography, an element inserted within the text or heading of a message which serves as a guide to the selection or derivation and application of the correct system and key for the prompt decryption of the message. See also the more precise terms discriminant and message indicator.
- inscription, n. In a transposition system, the process of writing a message into a matrix.
- integer, n. A whole number.
- intercept, v.t. In its cryptologic application, to gain possession of communications which are intended for other recipients, without obtaining the consent of the addressees and without preventing or ordinarily delaying the transmission of the communications to those addressees.--n. A copy of a message obtained by interception.
- interception, n. The process of gaining possession of communications intended for others without obtaining the consent of the addressees and without preventing or ordinarily delaying the transmission of the communications to those addressees.

internal text. In concealment systems, the secret text which is enveloped by open or apparently innocent text.

international teleprinter code. See Baudot code.

- interrupted-key columnar transposition. A columnar transposition system in which the plaintext elements are inscribed in a matrix in rows of irregular length as determined by a numerical key.
- inverse four-square matrix system. A four-square matrix system in which the cipher sections contain normal alphabets while the plain component sections contain mixed alphabets.
- invisible writing. Writing not visible to the naked eye; the characters composing such writing may be microscopic or inscribed with invisible ink.
- isolog, n. A cryptogram of which the plain text is identical with that of another message encrypted in another system, key, code, etc.

isologous, adj. Pertaining to or having the nature of an isolog.

- Jefferson cipher. A polyalphabetic substitution system invented by Thomas Jefferson and independently at a later date by the French cryptographer Bazeries. It provided for encipherment by means of a manually operated device involving a number of revolvable disks, each bearing a mixed alphabet on its periphery.
- kappa plain constant. A constant employed in coincidence tests to denote the probability of coincidence of a given textual element or unit in plain text. It is the sum of the squares of the probabilities of occurrence of the different textual elements or units as they are employed in writing plain text; for example, in English telegraphic plain text, the monographic and digraphic kappa plain constants are .0667 and .0069 respectively.
- kappa random constant. A constant employed in coincidence tests to denote the probability of coincidence of a given textual element or unit in random text. It is merely the reciprocal of the number of different elements or units of which the cipher text may have been composed; if a 26-letter alphabet were employed, for instance, the constant denoting the probability of coincidence of various textual elements would be derived as follows:

a.	single letters	1/26		.0385
Ъ.	digraphs	1/676	æ	.00148
c.	trigrephs	1/17576	*	.000057

- kappa test. See coincidence test.
- key, n. l. In cryptography, a symbol or sequence of symbols applied to successive textual elements of a message to accomplish their encryption or decryption. 2. A specific key.

key book. A book containing key text, or plain text forming specific keys. keyed columnar transposition. A transposition system in which the columns of a matrix are taken off in the order determined by the specific kcy, which is often a derived numerical key. key phrase. An arbitrarily selected phrase from which a key is derived. 6)) (<u>)</u> (key recovery. The cryptanalytic reconstruction of a key. key text. Text from which key is derived. key word. An arbitrarily selected word used as a key per se, or from which a key is derived. - ntime · 8 keyword-mixed alphabet. An alphabet constructed by writing the prearranged kcy word or kcy phrase (repeated letters, if present, usually being omitted after their first occurrence), and then completing the sequence from the unused letters of the alphabet in their normal sequence. lambda (Λ) test. A test for monoalphabeticity in a message, based on a comparison of the observed number of blanks in its frequency distribution with the theoretically expected number of blanks both in (a) a normal plaintext message of equal length and (b) a random assortment of an equal number of letters. Also called the blankexpectation test. 1 +7 と ちちんげ ヘレー 46 1 latent repetition. A plaintext repetition not apparent in cipher text but susceptible of being made patent as a result of analysis. T- they , to it was a A 1441 • r. Latin square. A cipher square in which no row nor column contains a ⁴ بر ۲ مر باند . repeated symbol. . 1 m) " h an be agent of your 5 81 18 lexical, adj. Of, pertaining to, or connected with words. In its cryptologic sense, the word is used to characterize those cryptographic methods (chiefly codes) which deal with plaintext elements comprising complete words, phrases and sentences. 1 # 1 V E 2 literal key. A key composed of a sequence of letters. No Sey as my fight a . logarithmic weights. Numerical weights assigned to units of plain text, which weights are actually logarithms of the probabilities of the plaintext units, and which are used to evaluate the results of certain cryptanalytic operations. r.t low-echelon, adj. Pertaining to organizational units below the level of the army division or its equivalent. low-grade, adj. Pertaining to a cryptosystem which offers only slight resistance to cryptanalysis; for example: (1) Playfair ciphers, (2) single transposition, (3) unenciphered one-part codes. (Cf. medium-grade and high-grade). 1181 1-14

- mutrix, n. A geometric form or pattern. In transposition systems, the figure or diagram in which the various steps of the transposition are effected; in substitution systems, the figure or diagram containing the sequence or sequences of plaintext or eipher symbols.
- <u>medium-grade</u>, adj. Pertaining to a cryptosystem which offers considerable resistance to cryptanalysis; for example: (1) strip ciphers, (2) polyphase transposition, (3) unenciphered twopart codes. (Cf. <u>low-grade</u> and <u>high-grade</u>).
- message, n. Any thought or idea expressed in plain or secret language, prepared in a form suitable for transmission by any means of communication.
- message indicator. That part of the specific key which changes with every message.

message keying element. See message indicator.

- mixed cipher alphabet. A cipher alphabet in which the sequence of letters or characters in one or both of the components is not the normal sequence.
- <u>mixed-length system</u>. A cryptosystem in which the units of cipher text or code text are of irregular or non-constant length, as for example, a monome-dinome system, or a code system employing both 4-letter and 5-letter groups.

mmemonic key. A key so constructed as to be easily remembered.

- modulo, adj. Pertaining to a cyclic scale or basis of arithmetic. (Abbreviated as mod; e.g., mod 10, mod 26, etc.)
- modulus, n. Scale or basis of arithmetic; the number n is called the modulus when all numbers which differ from each other by n or a multiple of n are considered equivalent.
- monitor, v.t. To intercept and copy one's own or friendly radio and wire transmissions for the purpose of detecting and correcting violations of regulations.
- monoalphabeticity, n. A characteristic of encrypted text which indicates that it has been produced by methods involving a single cipher alphabet or single code book, unenciphered. It is normally disclosed by frequency distributions which display "roughness", or pronounced variation in relative frequencies.

2. 1

- <u>monoalphototic substitution</u>. A type of substitution employing a single cipher alphabet by means of which each cipher equivalent, composed of one or more elements, invariably represents one particular plaintext unit, wherever it occurs throughout any given message.
- monographic, adj. Of or pertaining to any units comprising single characters.
- monographic substitution. Encipherment by substitution methods in which the plaintext units are single characters and their cipher equivalents usually consist of single characters.

monome, n. A single digit.

- monone-dinome system. A substitution system in which certain plaintext elements have single-digit cipher equivalents, while others are represented by pairs of digits.
- <u>multiliteral</u>, adj. Of or pertaining <u>only</u> to cryptosystems, cipher alphabets, and frequency distributions which involve <u>cipher</u> units of two or more letters or characters. See the more inclusive term <u>poly-</u> graphic.
- multiliteral cipher alphabet. A cipher alphabet in which one plaintext letter is represented by cipher units comprising two or more elements.
- multiliteral system. A substitution system involving one or more multiliteral cipher alphabets.
- multiple alphabet system. A type of substitution in which successive lengthy portions of a message are each monoalphabetically enciphered by a different alphabet; monoalphabetic encipherment by sections.

non-carrying sum. A sum produced in cryptographic (mod 10) arithmetic.

- non-crashing, adj. A term used to describe that feature of the structure of certain cryptosystems which does not permit a plaintext unit to be self-enciphered.
- non-commutative, adj. As applied to bipartite cipher matrices, so constructed that row and column coordinates must be read in a certain prescribed order (for example, in a row-column order).
- normal frequency. The standard frequency of a plaintext unit or letter relative to other such units or letters, as disclosed by the statistical study of a large volume of text.
- normal sequence. The normal alphabetical sequence of those letters which are used in the written text of any particular language, or any cyclic permutation thereof.

1-16

- normal uniliteral frequency distribution. A distribution showing the standard relative frequency of single plaintext symbols as disclosed by statistical study of a large volume of text.
- null, n. In cryptography, a symbol or unit of encrypted text having no plaintext significance.

numerical key. A key composed of a sequence of numbers.

nurerically-keyed columnar transposition. A transposition system in which the columns of a matrix are taken off in the order determined by a numerical key.

off the cut. As applied to the division of cipher text into polygraphs, beginning elsewhere than with the initial character of a bona fide polygraph.

- one-part code. A code in which the plaintext elements are arranged in alphabetical or numerical order accompanied by their code groups also arranged in alphabetical or numerical order.
- one-tire pad. A form of key book used in a one-time system so designed as to permit the destruction of each page of key as soon as it has been used.
- one-tire system. A cryptosystem in which the key, normally of a rendom nature, is used only once.
- on the cut. As applied to the division of text into polygraphs, beginning with the first textual character.
- open code. A cryptosystem in which units of plain text are used as the code equivalents for letters, numbers, words, phrases or sentences. The code equivalents themselves, usually words or phrases, can be combined to form the intelligible text of apparently innocent messages. (Cf. concealment system.)
- originator, n. The individual (a commander or his officially designated representative) by whose authority a message is sent.
- padding, n. Extraneous text added to a message for the purpose of concealing its length and beginning or ending or both.
- parcyhrose, v.t. To change the phraseology of a message without changing its meaning.
- partially-polygraphic system. Any polygraphic substitution system in which the encipherment of certain members of the polygraphs shows group relationships; small matrix systems, such as the four-square, two-square and Playfair systems involve such group relationships and are considered to be partiallydigraphic systems.

-

۰.

.

-

pariltion, n. Resolution of an integer juto a set of integers (e.g., representation of the integer 6 as 1 and 5, 2 and 4, 3 and 3).	
prient repetition. A repetition which is externally visible in the original cryptographic text.	
pentagraph, n. A set of five letters.	
penturome, n. A set of five digits.	مر . ستد
periodic substitution. Periodic polyalphabetic substitution. A method of encipherment involving the cyclic use of a plurality of alphabets.	- من من من جو محمد ما ما
permutation table. A table designed for the systematic construction of code groups. It may also be used to correct garbles in groups of code text.	
phi (\$\$) test. A test applied to a frequency distribution to determine its relative monoalphabeticity. See also <u>kappa plain constant</u> and <u>kappa</u> ' random constant.	ی ن یو در او 12 می او 1 میرود
physical security. That component of communication security which results from all physical measures necessary to safeguard classified communi- cation equipment and material from access thereto by unauthorized persons.	<u> </u>
placode, n. A portmanteau word used to designate plain or unenciphered code.	•
plain code. Unenciphered code.	~
plain commonent. That component of a cipher alphabet which comprises the sequence of plaintext symbols,	
plain component equivalents. In connection with the method of completing the plain component sequence, the plaintext equivalents for cipher units derived from an arbitrary juxtaposition of the components of a cipher alphabet.	
plain leogurge. Plain text.	
plain text (clear text). 1. Text or language which conveys an intelligible meaning in the language in which it is written, with no hidden meaning. 2. The intelligible text underlying a cryptogram.	
Playfair system. A type of digraphic substitution using a single matrix	7
	<u>، البدني</u>
n a ta t	هين ه مي مع
- <u>-</u> 1–18	•

- Poisson table. Table of the Poisson distribution. A type of mathenstical table containing probability data applicable to the phenomena of repetitions expected to obtain in samples of random text; used in cryptanalysis to determine whether or not the repetitions observed in a given sample of cryptographic text are causal repetitions or accidental (random) repetitions.
- polyalphabetic substitution. A type of substitution in which the successive plaintext elements of a message, usually single letters, are enciphered by a succession of different alphabets which may be used more than once and which are used in a predetermined order.
- polygraphic, adj. Of, pertaining to, or connected with any groupings comprising two or more letters or characters.
- polygraphic substitution. Encipherment by substitution methods in which the plaintext units are regular length groupings of more than one element.
- polyphase encipherrent. Any system of encryption involving two or nore successive operations of encipherment.
- probable word. Plain text assured or known to be present in a cryptogram. A crib.
- probable-word method. The method of solution involving the trial of plain text assumed to be present in a cryptogram.
- proforma message. A message in standardized form, designed to convey intelligence by conventions of arrangement and abbreviation.
- pseudo-code system. A cipher system which produces a cryptogram whose groups rescuble those produced by a code system.
- pseudo-polygraphic system. A polygraphic substitution system in which at least one of the letters in each polygraph is enciphered monoalphabetically.
- guinqueliteral alphebet. A cipher alphabet in which each plaintext
- randor-mixed cipher alphabet. A cipher alphabet in which the letters comprising the plain or cipher component have been mixed at random. (Cf. systematically-mixed cipher alphabet).
- random text. Text which appears to have been produced by chance or accident, having no discernible patterns or limitations.

 rapid analytical mechinery. Any high-speed cryptanalytic machinery, usually electronic or photoelectric in nature.

- raw traffic. Intercepted traffic showing no evidence of processing for communication intelligence purposes beyond sorting by clear address elements, elimination of unwanted messages, and the inclusion of a case number and/or an arbitrary traffic designator.
- reciprocal cipher alphabet. A cipher alphabet in which either of the two sequences may serve as plain or cipher since the equivalents exhibit reciprocity.
- reciprocity, n. As used in cryptology, interchangeability of plain-cipher relationships (e.g., $A_p = B_c$ and $B_p = A_c$).
- related alphabets. Any of the scycral secondary cipher alphabets which are produced by sliding any given pair of primory corponents against each other.
- relative code. Code text from which an encipherment has been removed in relative terms but not reduced to plain-code text, so that the groups differ from the actual, original plain code by an interval constant for every group; thus the difference between two relative code groups is the same as that between their plain-code equivalents.

repeating-key method. See periodic substitution.

- repetitive encipherment. A type of encipherment in which the primary cipher text of a cryptogrem is subjected to further encipherment with either the same or a different system. Double transposition is a frequentlyencountered example of repetitive encipherment.
- reversed stondard cipher alphabet. A cipher alphabet in which both the plain and cipher components are the normal sequence, the cipher component being reversed in direction from the plain component.
- reversibility, n. That characteristic of the relationship between a plaintext digraph and its cipher digraph equivalent which permits the elements of each to be reversed (e.g., ABp = CDc and BAp = DCc).
- revolving grille. A type of grille in which the apertures are so distributed that when the grille is turned successively through four angles of 90 degrees and set in position on the grid, all the cells on the grid are disclosed only once. Also called rotating grille.

rotating grille. See revolving grille.

rotor, n. A disk which is designed to rotate within a cipher machine and which controls the action of some other machine component or produces a variation in some textual or keying element.

- roughness, n. That characteristic of a frequency distribution where there is displayed in the distribution a pronounced vorintion in relative frequencies of the elements considered.(Cf. s)othness.)
- route transposition. A method of transposition in which the ciphertext equivalent of a ressage is obtained by transcribing, according to any prearranged route, the cells of a matrix into which the message was inscribed carlier according to some other prearranged route.
- row coordinate. A symbol normally at the side of a matrix or cryptographic table, identifying a specific row of cells, used in conjunction with a column coordinate to specify an individual cell in the matrix or table. Also called row indicator.
- row indicator. See row coordinate.
- runnirg dinore distribution. A biliteral distribution node on digit text.
- secret ink. Any of several chericals used for writing or printing which have the property of being initially invisible to the noked eye or of bocoming so after a short time. Also called invisible ink or sympthetic ink.
- secret language. Text which conveys no intelligible meaning in any language or which conveys an intelligible meaning that is not the real, hidden meaning.
- secret writing. 1. Visible writing in secret language. 2. Invisible writing.

separator, n. See word separator.

- sequence, n. An ordered arrangement of symbols (letters, digits, etc.) having continuity. Specifically, the members of a component of a cipher alphabet in order; the symbols in a row, column, or diagonal of a cipher square in order; key letters or key figures in order.
- setting, n. The arrangement and alignment of the variable elements of a cryptographic device or machine at any moment during its operation.
- $\frac{si(mode,n.}{deviation}$ As used in cryptomathematics, a measure of the standard deviation from normal, expressed in terms of sigma (σ).

simple substitution. Monoalphabetic uniliteral substitution.

simple transposition. See single transposition.

1.4

- "et -a

single transposition. A transposition in which only one inscription and one transcription are effected. <u>.</u>

smoothness, n. That characteristic of a frequency distribution where there is displayed in the distribution no pronounced variation in relative frequencies of the elements considered. (Cf. roughness)

- solution, n. In its cryptanalytic application, the process or result of solving a cryptogram or cryptosystem by cryptanalysis.
- solve. v.t. To cryptanalyze. To find the plain text of encrypted communications by cryptanalytic processes, or to recover by analysis the keys and the principles of their application.
- specific key. An element which is used with a specific cryptosystem to determine the encipherment of a message and which includes both the message keying elerent and the daily keying elerent. It may consist of a letter, number, word, phrase, sentence, a special document, book, or table, etc., usually of a variable nature and easily changeable at the will of the correspondents, or prearranged for them or for their agents by higher authority.

square. n. See patrix.

standard cipher alphabet. A cipher alphabet in which the sequence of letters in the plain component is the normal, and in the cipher component is the same as the normal, but either reversed in direction or shifted from its normal point of coincidence with the plain component.

standard uniliteral frequency distribution. See normal uniliteral frequency distribution.

- stercotype, n. A word, number, phrase, abbreviation, etc., which as a result of language habits, has a high probability of occurrence. especially at the beginning or ending of a message. - -
- stercotyred ressages. Related encrypted messages which are recognizable es such because of distinctive characteristics of the underlying plain text. トリックテ

<u>, </u> strip cirb'r device. A cipher device employing sliding alphabet strips.

V-----

substitution alphabet. See cipher alphabet.

^ ...* substitution cipher. 1. A cipher system in which the elements of the plain text are replaced by other elements. 2. A cryptogram produced by enciphering a plaintext message with a substitution system.

× v_

- 3,

substitution system. A system in which the elements of the plain or code text are replaced by other elements.

sun-checking durate. A preselected digit (normally the final digit) in a ce a of either group thich is the non-corrying sum of the other digits in the group.

superencipherment, n. A form of superencryption in which the final step involves encipherment.---v.t. Superencipher.

gran for increased security. Enciphered code is a frequentlyencountered example of superencryption.---v.t. Super nervot.

- switch group. A group used within a ressage to indicate that the following textual elements are encrypted with a different key or code book.
- syllabary, n. In a code took, a list of individual letters, combinations of letters, or syllables, accompanied by their equivalent code groups, usually provided for spelling out words or proper names not present in the vocabulary of a code; a spelling table.
- syllabary square. A cipher matrix containing individual letters, digits, syllables, frequent digraphs, trigraphs, etc., which are encrypted by the row and column coordinates of the matrix.

1 T

syllabic, adj. Of, pertoining to, or denoting syllables.

syster, n. See cryptosystem.

systematically-mixed cipher slphrbet. A cipher alphabet in which the corronent that is mixed has been disarranged by systematic procedure. (Cf. random-mixed cipher alphabet) -

system indicator. See discriminant.

teleprinter, n. An electrically-operated instrument resembling a typewhiter, used for the transmission and reception-printing of messages by electrical means. Also called teletypewriter.

teletypewriter, n. A teleprinter.

tetragraph, n. A set of four letters.

tetranome, n. A set of four digits.

iert, n. The part of a message containing the basic information which the originator desires to be communicated.

traffic, n. All transmitted commications.

traffic analysis. That branch of cryptology which, through a study of signal transmissions by all means short of cryptanalysis of message texts, assembles information concerning communication networks. This information is used (1) as a guide to further interception; (2) as an aid to cryptabalysis; (3) as a source of intelligence even in the absence of docrypted message texts; and (4) to strengthen our own security by discovering weaknesses in our communications and by avoiding weaknesses discovered in the communications of others.

traffic intercept. A copy of a communication obtained through interception.

transcription, n. In a transposition system, the process of removing the text from a matrix or grid by a method or route different from that used in the inscription.

transmission security. That component of communication security which results from all measures designed to protect transmissions from interception and traffic analysis.

transparency, direct. That characteristic of cipher text which indicates that certain plaintext elements may have been self-onciphered.

transparency, inverse. That characteristic of cipher text which indicates that certain cipher digraphs may be merely reversals of the corresponding plaintext digraphs.

transposition cipher. 1. A transposition system. 2. A cryptogram produced by enciphering a message with a transposition system.

transposition-mixed cipher alphabet. A cipher alphabot in which at least one component (plain or cipher) has been constructed by applying a form of transposition to either a standard or a mixed sequence.

transposition system. A cryptosystem in which the elements of plain text, whether individual letters, groups of letters, syllables, words, phrases, sentences, or code groups or their components undergo some change in thoir relative positions without a change in their identities.

1-1-

trigraph, n. A set of three letters.

inigramhic, adj. Of or pertaining to any three-character group.

trigrophic flequency distribution. A frequency distribution of successive trigrophies. A trigraphic frequency distribution of AECLIF would consider culy the frequency Astribution of AECLIF would conbution)

trigrephic substitution system. A substitution system in which the plaintext units are composed of three elements.

triliteral, adj. Of, or pertaining only to cryptosystems, cipher alphabets, and frequency distributions which involve <u>cipher</u> units of three letters or characters. See the more inclusive term trigraphic; see also triliteral frequency distribution.

triliteral frequency distribution. A distribution of the characters in the text of a message in sets of three, which will show: (a) each character with its two preceding characters or (b) each character with its two succeeding characters, or, in its most usual form, (c) each character with one preceding and one succeeding character. A triliteral frequency distribution of AECDEF would consider the groups ABC, BCD, CEE, DEF.

trinome, n. A set of three digits.

trinome-digraphic system. A substitution system in which plaintext digraphs are represented by 3-digit cipher elements.

trough, n. In its cryptologic application, a point of low relative frequency in a frequency distribution.

- true polygraphic system. Any polygraphic substitution system in which the individual elements of the polygraphs display no evidence of monoalphabeticity, nor evidence of relationships within any group of polygraphs; that is, in a true polygraphic system, changing one letter in any plaintext polygraph affects the equivalent ciphertext polygraph in its entirety. (Cf. partially-polygraphic system and pseudo-polygraphic system.)
- two-element differential. The characteristic incorporated in certain codes in which the groups differ from one another by a minimum of two elements, either in identity or the positions occupied. When the elements are lettens, the characteristic is called a <u>two-letter differential</u>; when the elements are digits, it is called a <u>two-digit differential</u>.

two-part code. A randomized code, consisting of an encoding section in which the plaintext groups are arranged in alphabetical or other significant order accompanied by their code groups arranged in a non-alphabetical or random order; and a decoding section, in which the code groups are arranged in alphabetical or numerical order and are accompanied by their meanings as given in the encoding section.

two-square matrix system. A digraphic substitution system which normally employs a matrix consisting of two 5 x 5 squares arranged either horizontally or vertically.

1-25

1 366

- uniliteral, adj. Of, or pertaining only to cryptosystems, cipher alphabets, and frequency distributions which involve cipher units of single letters or characters. See the more inclusive term monographic; see also uniliteral frequency distribution.
- uniliteral frequency distribution. A simple tabulation showing the frequency of individual characters of a text.
- uniliteral substitution. A cryptographic process in which the individual letters of a message text are replaced by single-letter cipher equivalents.
- variant, n. 1. One of two or more cipher or code symbols which have the same plain equivalent; also called variant value. 2. One of several plaintext meanings which may be represented by a single code group.
- variant system. A substitution system in which some or all plaintext letters may be represented by more than one cipher equivalent.

variant value. See variant.

- vertical two-square matrix system. A digraphic substitution system employing a matrix which normally consists of two 5 x 5 squares arranged vertically.
- Vigenère square. The cipher square commonly attributed in cryptographic literature to the French cryptographer Vigenère, having the normal sequence at the top (or bottom) and at the left (or right), with cyclic permutations of the normal or other sequence forming the successive rows (or columns) within the square.
- visible writing. Writing in which the characters are inscribed with ordinary writing materials and can be seen with the naked eye. (Cf. invisible writing.)
- Wheatstone cipher device. A cipher device consisting essentially of two rings mounted concentrically in a single plane, the outer (and larger) ring being the plain component of the device and comprising 27 equisized divisions, the inner (and smaller) ring being the cipher component, comprising 26 similar divisions. The device incorporates two hands (similar to those on a clock) pivoted at the center of the device--the larger hand serving the outer ring and the smaller hand, the inner--so geared together that for each complete revolution of the larger, the smaller turns through one complete revolution <u>plus</u> one twenty-sixth.
- word pattern. The characteristic arrangement of repeated letters in a word which tends to make it readily identifiable when enciphered monoalphabetically.

1-26

word separator. A unit of one or more characters employed in certain cryptosystems to indicate the space between words. It may be enciphered or unenciphered. Also called a word spacer.

1-27

word transposition. A cryptosystem in which whole words are transposed according to a certain prearranged route or pattern.

ι,

1

-RESTRICTED

· · ·

ENGLISH CRYPTANALYTIC DATA FREQUENCY TABLES

Table N	To and the second se	Page
1-A	Absolute frequencies of letters appearing in five sets of Governmental plain-text telegrams, each set containing 10,000 letters, arranged alphabetically	4
1-B	Absolute frequencies of letters appearing in five sets of Governmental plain-text telegrams, each set containing 10,000 letters, ar anged according to frequency	5
1-C	Absolute frequencies of vowels, high-frequency consonants, medium-frequency consonants, and low- frequency consonants appearing in five sets of Governmental plain-text telegrams, each set con- taining 10,000 letters	5
2A	Absolute frequencies of letters appearing in the combined five sets of messages totalling 50,000 letters, arranged alphabetically	6
2B	Absolute frequencies of letters appearing in the combined five sets of messages totalling 50,000 letters, arranged according to frequency	6
2-C	Absolute frequencies of vowels, high-frequency consonants, medium-frequency consonants, and low- frequency consonants appearing in the combined five sets of messages totalling 50.000 letters	6
2-D	Absolute frequencies of letters as initial letters of 10,000 words found in Governmental plain-text tele- grams (1) Arranged alphabetically and (2) arranged according to frequency	6
2E	Absolute frequencies of letters as final letters or 10,000 words found in Governmental plain-text tele- grams (1) Arranged alphabetically and (2) arranged according to frequency	7
8	Relative frequencies of letters appearing in 1,000 letters based upon Table 2-B (1) Arranged alpha- betically, (2) arranged according to frequency, (3) vowels, (4) high-frequency consonants, (5) me- dium-frequency consonants, and (6) low-frequency consonants	7-8
4	Frequency distribution for 10,000 letters of literary English, as compiled by Hitt (1) Arranged alphabetically and (2) arranged according to frequency	8
5	Frequency distribution for 10,000 letters of telegraphic English, as compiled by Hitt (1) Arranged alphabetically and (2) arranged according to frequency	8
6-A	Frequency distribution of digraphs, based on 50,000 letters of Governmental plain-text telegrams, reduced to 5,000 digraphs	9
6-B	Frequency distribution of digraphs (naval text) based on 20,000 letters of naval text, reduced to 2,000 digraphs	10
711	Absolute frequencies of digraphs, trigraphs, and tetragraphs and the logarithms of their as- signed probabilities	1188
7A	The 428 different digraphs of Table 6-A, arranged according to their absolute frequencies, accom- panied by the logarithms of their assigned probabilities	1815
7-B	The 18 digraphs composing 25% of the digraphs in Table 6-A, accompanied by the logarithms of their assigned probabilities, arranged alphabetically according to their initial letters (1) and according to their final letters (2) and according to their absolute frequencies	15
7-C	The 53 digraphs composing 50% of the 5,000 digraphs in Table 6-A, accompanied by the logarithms of their assigned probabilities, arranged alphabetically according to their initial letters (1) and according to their final letters (2) and according to their absolute frequencies	16
7-D	The 122 digraphs composing 75% of the 5,000 digraphs in Table 6-A, accompanied by the loga- rithms of their assigned probabilities, arranged alphabetically according to their initial letters (1)	17 10
7-E	All the 428 digraphs of Table 6-A, arranged first alphabetically according to their initial letters	17-18
8	The 428 different digraphs of Table 6-A, arranged first alphabetically according to their initial letters and then according to their absolute frequencies under each initial letter, accompanied by the logarithms of their assigned probabilities	10_21
9-A	The 428 different digraphs of Table 6-A, arranged first alphabetically according to their final letters and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities.	22-24
9-B	The 18 digraphs composing 25% of the 5,000 digraphs of Table 6-A, accompanied by the loga- rithms of their assigned probabilities, arranged alphabetically according to their final letters (1) and according to their initial letters (2) and according to their absolute frequencies	,25

RESTRICTED

•

- - -----

RESTRICTED

-RESTRICTED-

Table N	o la	Page
9-C	The 53 digraphs composing 50% of the 5,000 digraphs of Table 6-A, accompanied by the loga- rithms of their assigned probabilities, arranged alphabetically according to their final letters (1) and according to their initial letters (2) and according to their absolute frequencies	25-26
9-D	The 122 digraphs composing 75% of the 5,000 digraphs of Table 6-A, accompanied by the loga- rithms of their assigned probabilities, arranged alphabetically according to their final letters (1)	00.00
9E	All the 428 different digraphs of Table 6-A, arranged alphabetically first according to their final letters and then according to their initial letters	20-28
10-A	The 56 trigraphs appearing 100 or more times in the 50,000 letters of Governmental plain-text tele- grams, arranged according to their absolute frequencies, accompanied by the logarithms of their	
10 5	assigned probabilities	28
10-B	grams, arranged first alphabetically according to their initial letters, and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities	29
10-C	The 56 trigraphs appearing 100 or more times in the 50,000 letters of Governmental plain-text tele- grams, arranged first alphabetically according to their central letters, and then according to their absolute frequencies accompanied by the longer time of their assessed probabilities	20-20
10-D	The 56 trigraphs appearing 100 or more times in the 50,000 letters of Governmental plain-text tele- grams, arranged first alphabetically according to their final letters, and then according to their abso-	20-00
11-A	The 54 tetragraphs appearing 50 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged according to their absolute frequencies, accompanied by the logarithms of	80
	ther assigned probabilities	81
11-B	The 54 tetragraphs appearing 50 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged first alphabetically according to their initial letters, and then according to their	0.1
11-C	The 54 tetragraphs appearing 50 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged first alphabetically according to their second letters, and then according to	81
11-D	their absolute frequencies, accompanied by the logarithms of their assigned probabilities The 54 tetragraphs appearing 50 or more times in the 50,000 letters of Governmental plain-text	82
	telegrams, arranged first alphabetically according to their third letters, and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities	3288
11-E	The 54 tetragraphs appearing 50 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged first alphabetically according to their final letters, and then according to their	
	absolute frequencies, accompanied by the logarithms of their assigned probabilities	88
12	Average length of words and messages	84
18 17	Oneckerpoaru maiyaqual frequencies of Francis of Franksh digraphy	00 94
15	Relative logarithmic values of frequencies of English digraphs	00 87
20	TANKALA MANATTINA LINKAN (MARC RINK) AT FAMILIAN AT MUTAN ATBUM ATBUM ATBUM ATBUM	

* * * * *

SPECIAL-PURPOSE DATA

16-A.	Frequency distribution of digraphs, based on 64,365 letters of	
	decrypted U. S. Government messages in which Z was used as a word-separator and X was used for both X_p and Z_p	38
16-в.	Frequency distribution of digraphs, based on the text used for	-
	(total. 53,866 letters)	39
16-C.	The 53 digraphs from Table 6-A which comprise 50% of the to- tal, arranged according to frequencies reduced to a base of	
	5,000 digraphs, shown with the corresponding frequencies of the same digraphs from Table 16-B (also reduced to a base	
	of 5,000)	40

Ŧ

-RESTRICTED-

Set No 1		Set No	0 2	Set No 8		Set No 4		Set No. 5	
Lotter	Absolute Frequency	"Lotter	Absolute Frequency	Letter	Absolute Frequency	Letter	Absolute Frequency	Letter	Absolute Frequency
AB CD EF GF H J K	738 104 819 887 1,367 253 166 810 742 18 36	AB B D E F G H J K	788 103 800 418 1,294 287 175 351 750 17 88	AB B D E F F G H J X	681 98 288 428 1,292 308 161 385 787 10 22	A A B D E F G H J K	740 88 826 451 1,270 287 167 849 700 21 21	AB B D E F G H J J X	741 99 301 448 1,275 281 150 849 697 16 81
LMNNN	865 242 786 685 241 40 760 658 986 270 168 166 48 191 14	L M O P Q R S T V V W X Y Z	898 240 794 770 272 22 745 588 879 238 178 163 50 155 17	L M O P P P R T U V W Y Z	338 238 815 791 817 45 762 585 894 812 142 142 136 44 179 2	L M N O P Q R S T U V W X Y Z	886 249 800 756 245 38 785 628 958 247 188 188 188 58 218 11	LN MN OP QR RS TV VV WV YZ	844 268 780 762 260 80 786 604 928 288 155 182 41 229 5
TotaL	10,000		10,000		10,000		10,000		10,000

TABLE 1-A — Absolute frequencies of letters appearing in five sets of Governmental plain-text telegrams, each set containing 10,000 letters, arranged alphabetically

RESTRICTED

-

__ _ _ _

_ _ _

5

1

RESTRICTED

Set No 1		Set No	2	Set No 8		Set No 4		Set No 5	
Letter	Absolute Frequency	Letter	Absolute Frequency	Letter	Absolute Frequency	Letter	Absolute Frequency	Letter	Absolute Frequency
E F	1,367 936 786 760 742 738 685 658 887 865 819 810 270 258 242 241 191 166 166 163 104 43 40 86 18	ET TT O I R D R D R D P M D V J J J J J J J J J J J J V J J J V J J J J V J	1,294 879 794 783 770 750 745 583 413 398 351 300 287 272 240 288 175 173 168 155 103 50 88 22 17	E	1,292 894 815 791 787 762 681 585 428 888 835 888 817 812 308 288 288 288 179 161 142 136 98 45 44 22 10	E T	1,270 958 800 756 740 785 700 628 451 886 849 326 287 249 247 245 213 167 183 183 183 88 58 88 21 21	E T R N O A S D H C F F V V B X Q J J J E S N P J J E S N P J J T _ T _ T _ T _ T _ T _ T _ T _ T	1,275 928 786 780 762 741 697 604 448 849 844 801 281 268 229 182 155 150 99 41 81 80 16
Z Total	14 10,000	Z	17	<u> </u>	2 10,000		11	Z	5 10,000

TABLE	1-B — Absolute frequencies of letters appearing in five sets of Governmental plain-text telegram	ıs,
	each set containing 10,000 letters, arranged according to frequency	

TABLE 1-C -Absolute frequencies of vowels	s, high-frequency	consonants,	medrum-frequency	con-
sonants, and low-frequency consonants	appearing in five	e sets of Gove	rnmental plain-text	tele-
grams, each set containing 10,000 letters				

Set No	Vowels	High Frequency Consonants	Medium-Fre- quency Conso- nants	Low-Frequency Consonants
1 2 3 4 5 Total 1	3,993 3,985 4,042 8,926 8,942	8,527 8,414 3,479 8,572 8,546 17,588	2,829 2,457 2,856 2,858 2,889 11,889	151 144 123 144 128 685
	10,000	11,000	11,000	000

¹ Grand total, 50 000

-RESTRICTED

RESTRICTED

bu,uuu letters, arranged alphaoetically						
A 3,683	G 819	L 1,821	Q 175	V 766		
B487	H 1,694	M . 1,237	R 3,788	W 780		
C _ 1,534	I 3,676	N 3,975	S 3,058	X 231		
D 2,122	J 82	0 . 3,764	т. 4,595	¥		
E 6,498	K _ 148	P 1,335	Ų. 1,300	Z 49		
F _ 1,416						

TABLE 2-A—Absolute frequencies of letters appearing in the combined five sets of messages totalling 50,000 letters, arranged alphabetically

(TABLE 2–B — Absolute frequencies of lett	ers appearing in th	he combined	five sets	of messages	totall _{ing}
	50,000 letters	, arranged accordin	ig to frequen	cy		-

E6,498	I 3,676	C	_	1,534	Y	967	Χ	231
Т 4,595	S3,058	F		1,416	G	819	Q	175
N 3,975	D 2,122	Р		1,335	W _	 780	Κ	148
R 3,788	L 1,821	U		1,300	V	766	J	82
0 3,764	H., 1,694	М	-	1,237	В	487	Z	49
A 3,683								

TABLE 2-C — Absolute frequencies of vowels, high-frequency consonants, medium-frequency consonants, and low-frequency consonants appearing in the combined five sets of messages totalling 50,000 letters

	50,00	0
High-frequency consonants (D, N, R, S, and T) Medium-frequency consonants (B, C, F, G, H, L, M, P, V, and W) Low-frequency consonants (J, K, Q, X, and Z)	17,53 11,88 68	8 9 5
Vowels	19 88	Q

TABLE 2-D — Absolute frequencies of letters as initial letters of 10,000 words found in Governmental plain-text telegrams

(1) ARRANGED ALPHABETICALLY

A	-	905	G		109	L		196	Q	-	30	٧.	. 77
Β.	-	287	H		272	М		384	R		611	W	820
C		664	I		344	N		441	S		965	X_	4
D	-	525	J		44	0_	-	646	т	1	.,253	Υ	88
Е	-	390	K		23	Р		433	U_		122	Z	- 12
F		855											
												Total	_10,000
				(2) ARR	ANGE	D A	CCORD	ING TO	FRI	QUEN	CY		
Т		1,253	R		611	М	-	384	L		196	J	44
S .		. 965	D.		525	I		344	U		122	Q	30
A		. 905	N		441	W	-	320	G		109	K	23
F.		855	Р		433	В		287	Y	-	88	Z	- 12
C		664	Е		390	Н	-	272	V		77	X	- 4
0		646											<u> </u>
										· · · · · · · · · · · · · · · · · · ·		Total	10,000

-RESTRICTED-

-RESTRICTED

Labri	3 2 –E	2	bsolu	te fr	eqt	uenc	en es	of Icl r	ters Jam	as j -leri	fınal t Icle	l letters grains	of i	(0,000	words	∫oun	d in	Gove	rnmei	rta
							(1)	ARR	۸NG	ED	ΛLF	IIABET	LICY	LLY						
A			269	G_				225	L.			354	Q.		8	V			4	
В			22	Н		_		450	M		-	154	R		_769	W			45	
C		-	86	I		-		22	N			872	S		962	Х			116	
D		. 1	,002	J.			,	6	0	-	-	575	Τ-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,007	Y			866	
E F		. 1	,628 252	K		-		53	P			213	U		81	Z		. <u>-</u> 	9	
																Te	otal	_10	,000	
					(2	!) A	RR	ANGE	DA	cco	RDI	NG TO	FR	EQUE	NCY					
E		1	,628	R	_			769	F			252	C	-	86	I			22	
Т	-	1	,007	0		-		575	G			225	К		53	Z			9	
D		. 1	,002	Н		-		450	Ρ			213	W	_	45	Q			8	
ន			962	L				354	М			154	U		_ 31	J	-		6	
N		-	872	A				269	х			116	В.		22	V		•	4	
T	-		ØUU													Tot	al.	10	,000	
	Таві	æ З·	—Rel	atıve	fr	equ	enci (1)	es of l ARR	etter ANG	s ap ED	opean ALP	ring in PHABET	1,00 TICA	0 lette LLY	rs based	l upo	n To	ıble 2	рВ	
•		73	66	G	-		10	3 38	L			36 42	Q		. 3	50	V		15	8

- -

B		9	74	Н	-		33	88	М		24	74	R		75	76	W		15	60
С		30	68	I			73	52	N		79	50	S		61	16	X		. 4	62
D		_42	44	J			1	64	0	-	75	28	Т		91	90	Y		19	34
Ε.	-	129	96	ĸ			2	96	Р		26	70	U	-	26	00	Z			98
F		28	32																	
									,								Total	1	,000	Q0
					(2)	ARRA	NGE	DA	CCO	RDING	то	FRE	QUENC	YY					
E.		129	96	I		_	73	52	C		- 3D	68	Y		19	34	Х		. 4	62
т	-	91	90	S	-	-	61	16	F		28	32	G		16	38	; Q	-	. 3	50
N		79	50	D			42	44	Р		26	70	W	-	15	60	K	-	. 2	96
R_		75	76	L			36	42	U	-	. 26	00	V	-	15	32	J		1	64
0.		75	28	н		-	33	88	М	-	24	74	В		9	74	Z			98
A		73	66																	

-		Total 1,000 00
	(3) VOWELS A.	(4) HIGH-FREQUENCY CONSONANTS D79 50 R75 76 S61 16 T91 90
	Total 3.97 76	
		· · ·

-RESTRICTED-

RESTRICTED

. .

(5) MEDIUM-FREQUE	ENCY	(6) LOW-FREQUENCY
CONSONANTS		CONSONÁNTS
В	9 74	X 4.62
C	80 68	Q 8 50
F	28 32	K 2 96
G	16 38	J 1 64
Н	33 88	Z 98
L	36 42	
Μ	24 74	Total 13 70
P	26 70	
V	15 32	
W	15 60	
		- Total (3), (4),
Total	237 78	(5), (6) 1,000 00

TABLE 4 — Frequency distribution for 10,000 letters of literary English, as compiled by Hitt¹(1) ARRANGED ALPHABETICALLY

A 778	G	174	L	872	Q	8	V	112
B 141	Н	595	М	288	R_	651	W	176
C 296	I	667	N	686	S	622	х.	27
D 402	J	51	0	807	T	855	Y	196
E 1,277	К	74	P	223	U	308	Ζ	17
F 197								
	(2) AR	RANGE	D ACCORD	ING TO	FREQUEN	ĊY		
E _ 1,277	R	651	U	308	¥	196	K	74
T 855	S	622	C	296	W	176	J	51
0 807	Η	595	М	2 88	G	174	Χ	27
A 778	D	402	P	2 23	B	141	Z	17
N 686	L	372	F	197	V	112	Q	8
I 667								

TABLE 5 — Frequency distribution for 10,000 letters of telegraphic English, as compiled by Hitt¹ (1) ARRANGED ALPHABETICALLY

Α	813	G	201	L	892	Q	38	V	136
B	149	Н	386	M	273	R	677	W	166
C	306	I	711	N	718	S	656	Χ	51
D	417	J	42	0	844	Т	634	Y	208
E 1,	319	К	88	P	243	U	321	Ζ	6
F	205								
		(2) ARH	RANGE	D ACCORDI	NG TO	FREQUENC	Y		
Е1,	319	S	656	U J	821	F	205	K	88
0.	844	Τ	634	С	806	G	201	X	51
A	813	D	417	M	273	W	166	J	42
N	718	L	392	P	243	В	149	Q	38
I	711	Н	386	Y	208	V	136	Ζ	6
R _	677						_		

¹ Hitt, Capt Parker Manual for the Solution of Military Ciphers Army Service Schools Press, Fort Leavenworth, Kansas, 1916

-RESTRICTED

_

- - --

_

		A	B	C	D	E	F	G	H	I	J	ĸ	L	M	N	0	P	Q	R	S	т	U	V	W	X	Y	Z	Total	Blanks
	A	3	6	14	27	1	4	6	2	17	1	2	82	14	64	2	12		44	41	47	13	7	3	Γ	12		374	3
	в	4				18				2	1		6	1		4			2	1	1	2				7		49	14
	C	20		8	1	32	1		14	7		4	5	1	1	41			4	1	14	4		1	-	1	-	155	8
	D	82	4	4	8	33	8	2	2	27	1			5	4	16	5	2	12	18	15	5	8	4	-	1		209	3
	Е	85	4	82	60	42	18	4	7	27	1		29	14	111	12	20	12	87	54	87		20	7	7	4	1	648	1
	F	5		2	1	10	11	1		89			2	1		40	1	-	9	- 3	11	8		1	-	1		141	9
	G	7		2	1	14	2	1	20	5	1		2	1	3	6	2		5	8	4	2		1	-		-	82	7
	н	20	1	. 3	2	20	5			33			1	2	8	20	1	1	17	4	28	8		1	-	1		171	7
	I	8	2	22	6	13	10	19				2	28	9	75	41	7		27	85	27		25		15		2	368	7
	J	1				2										2						2			-			7	22
	ĸ	1		1		6				2			1		1					1								18	19
E	L	28	3	8	9	37	3	1	1	20			27	2	1	13	3		2	6	8	2	2	2		10	-	188	5
E S	M	36	6	3	1	26	1		1	9				18		10	8	_	2	4	2	2			_	2		126	10
SST]	N	26	2	19	52	57	9	27	4	80	1	2	5	5	8	18	3	1	4	24	82	7	8	8		5		897	2
ц Ц	0	7	4	8	12	8	25	2	8	5	1	2	19	25	77	6	25		64	14	19	37	7	8	1	2		376	2
	P	14	1	1	1	28	2		3	6			18	4	1	17	11		18	6	8	8	1	1		1	_	185	6
	Q													1					1			15						17	23
	R	89	2	9	17	98	6	7	8	80	1	1	5	9	7	28	18		11	81	42	5	5	4		9		882	8
	ន	24	3	13	5	49	12	2	26	84		1	2	8	4	15	10		5	19	63	11	1	4		1		807	4
	T	28	8	6	6	71	7	1	78	45			5	6	7	50	2	1	17	19	19	5		86		41	1	454	4
	ប	5	8	8	8	11	1	8		5			6	5	21	1	2		81	12	12		1					180	9
	V	6				57				12						1					1							77	21
	W	12				22		_	4	18			1		2	19			1	1						1		76	16
	X	2		2	1	1	1		1	2					1	1	2		1	1	7							28	18
	Y	6	2	4	4	9	11	1	1	3			2	2	6	10	3		4	11	15	1		1				96	7
	Z	1				2				1											_							4	28
Tot	al	870	46	154	217	657	187	82	170	374	8	14	189	128	897	878	130	17	868	804	462	180	75	77	28	99	4	5, 000]
Bla	nks.	1	11	6	7	1	7	12	10	8	18	19	6	6	7	3	8	21	4	4	5	7	15	11	28	10	28		248

 TABLE 6-A. —Frequency distribution of digraphs, based on 50,000 letters of Governmental plain-text telegrams, reduced to 5,000 digraphs

SECOND LETTER

RESTRICTED

•

-

		A	в	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	s	Т	v	V	W	x	Y	Z	Total	Blanks
	A	1	4	9	5		2	3	1	8		3	7	2	29		4	Π	16	11	81	1	8		1	5		146	6
	в	4			1	8	_			1		_	6	2		4	_	-				1				2	-	29	17
	C	7		1		10		2	5	1		4				22	1		4	1	4					-		62	14
	D	10	2	2	2	15	3	1	1	12	-		2	2		4	3	_	- 8	6	6	2	1	1	_	8		86	6
	E	9	8	8	24	25	7	1	2	7	1	1	6	6	34	6	10	1	48	23	18	1	7	2	4	1	4	254	0
	F	2		1		2	1			18		~	5	1		12	1		2	1	5	1	_	_		1	_	48	12
	G	4		1	1	8	1	1	11	2			2		1	2	1		2	2	6	8	-				1	49	9
	н	6			_	7	1	-		6				1		3	1		7	1	11	6		1			-	51	14
	I	2	1	6	2	2	5	11	-				8	2	42	21	2		10	10	11		9	-	5		_	149	9
	J							[-					2										-		2	25
	ĸ	1	1	1		8	1			2	-	-	1		1													11	18
BR	L	14	1	1		15	1			8			6			7	2	-	1	2	1	1	2			2	_	64	11
	M	11	1			5	-			4			1	2		4	2			1					-	3		34	16
ST L	N	10	8	8	22	22	5	22	2	6		2	2	2	8	10	2		2	9	27	3		1				168	6
FIR	0	3	8	8	11	4	9	2		6		1	4	9	88	2	8		20	9	7	20	1	4	1	1	1	167	8
	P	4				18			1	1			б			7	8		8	3	2	1				-	-	58	15
	Q						_															8						8	25
	R	14	2	6	9	84	2	8		19		1	1	3	3	24	2		2	8	10	4		1				148	7
	ន	8	2	8	1	15	2		4	13			2	1	1	5	6	1	1	6	23	6	_	8			_	108	7
	т	16	1	4	8	27	4	1	21	28			8	1	2	22	8		10	8	8	4		12		8	4	185	5
	ប	4	8	1	2	8	_	1		4			2	2	9	_	1		1	4	10						_	47	12
	V	8				17				4						1		-					_	_				25	22
	W	4				10			1	5						6	_		1									27	20
	х			1			1		1	4	_		1								2			_			_	10	20
	Y	- 8	1	2	1	2	8			1			8	2		2	2		1	2	2			1		_		28	11
	Z			-		10												_					1	_			_	11	24
Tot	al	140	28	68	84	262	48	48	50	150	1	12	67	38	163	166	54	2	189	107	184	57	24	26	11	26	10	1,960	{
Bla	nks	4	12	9	13	4	10	15	15	4	25	20	7	11	15	6	8	24	8	8	8	11	19	17	22	17	22		334

TABLE 6-B — Frequency distribution of digraphs (naval text), based on 20,000 letters of naval text, reduced to 2,000 digraphs¹

- SECOND LETTER

¹Fractional values have been discarded This accounts for the discrepancy between the indicated total (1,960) and the stated total (2,000)

2-10

TABLES 7-11, Inclusive

Absolute frequencies of digraphs, trigraphs, and tetragraphs and the logarithms of their assigned probabilities ¹

1 For each of the following 18 tables, the basic data were first arranged according to their absolute frequencies (F), and then the logarithms— $L_{10}(F)$ of the frequencies found

2 The tables are designed to facilitate determination of the relative weights or probability of occurrence of sets of digraphs, trigraphs, or tetragraphs, particularly with respect to various "matching" operations For example, are the matched digraphs RE and ET more probable than the matched digraphs RT and EF? Table 7-A shows the frequencies (F) of the digraphs to be as follows RE=98, ET=37, RT=42, EF=18 Therefore, 98 times 37 is compared with 42 times 18, or 3,626 with 756 This arithmetic method of approach is extremely cumbersome for a large number of comparisons By using the logarithms of the individual frequencies, the operation is greatly simplified, since the addition of the logarithms of two numbers is equivalent to the multiplication of their equivalent arithmetic values Thus, the foregoing computation may be expressed as Log 98+Log 37, compared with Log 42+Log 18, or 0.96+0.79 versus 0.81+0.66 (see Table 7-A and explanation below) If more than one occurrence of a particular digraph is involved, it is merely necessary to multiply the logarithmic value by the number of the occurrences, viz, Log X+2(Log Y)+3(Log Z), as compared with Log A+3(Log B)+2(Log C)

3 The logarithm of any given number is the power to which 10 must be raised to equal the given number Thus, $10^2 = 100$, or the logarithm of 100 = 2 Similarly, $10^3 = 1,000$, or the logarithm of 1,000 = 3 The sum of logarithms is equal to the logarithm of the product of their antilogs (arithmetic numbers they represent) For example, $10^2 = 100$, $10^3 = 1000$, $10^{2+3} = 100 \times 1000$, Log 100,000 = 5 Also, $10^0 = 1$, or Log 1 = 0 The Log of 0 is minus infinity (- ∞)

4 In the compilation of the logarithms of the elements constituting these tables, frequencies of 1, of course, had a logarithmic value of 0.00 Digraphs which did not occur,² 1 e., those with 0 occurrences, had a logarithmic value of minus infinity $(-\infty)$ For practical use, each of the original frequency occurrences in these tables was doubled, 1 e, EN was given a frequency of 222 instead of 111, the frequency of RE became 196 instead of 98, etc Thus, single occurrences were doubled $(2 \times 1=2)$, and the logarithms of those elements became 0.30 instead of 0 This is equivalent to saying Log 1+Log 2=0.00+0.30=0.30 Those elements which occurred 0 times, now were assumed to have an occurrence of 1, with an equivalent logarithmic value of 0.00

5 In order to place all the logarithms of the initial frequencies on a comparable logarithmic basis, it was merely necessary to add 0 30 to each of them While EN had a frequency of 111 in the original compilation, it now had a frequency of 222, or 2(111) The logarithm of 222 is 2 35 This is equivalent to saying Log 111 + Log 2 = 205 + 0.30 = 2.35

6 The frequencies as stated in terms of their actual logarithms do not readily indicate their relative size for each distribution Therefore, the highest frequency in each group was given a value of 0 99, and the lowest a value of 0, frequencies intermediate between these extremes were

It should be pointed out however, that since probabilities are multiplied (by summing logarithms) a 10% error in evaluating the digraph ZZ for example, makes the product, wherever ZZ occurs 10% wrong and is just as serious as a 10% error in evaluating the high frequency digraph EN In practice however results obtained from the logarithmic method are so satisfactory that refinements are not needed

¹ These frequency distributions are based upon data derived from 50,000 letters of U S Governmental plain-text telegrams, reduced to 5 000 digraphs

² While in general it is possible to assign probability values to digraphs in accordance with their observed frequencies, it is not atricily correct to associate the probability "\$\$ with a frequency of zero. This would be equivalent to saying Because a specified digraph has not occurred, it cannot occur and would be reflected in the mathematics. Log probability zero equals minus infinity." What may be said is "Since a specified digraph has not occurred in the data its true probability value is unknown except that it must be below the probability value assigned to a frequency of one." The proper way to assign a probability value to digraphs with frequencies of zero is to continue counting until they have at least one occurrence then the true relative probability can be found

A simple practical method of taking this difficulty into account is merely to assume that in twice the amount of data the digraph probably would have occurred at least once that is it has a frequency of one-half

evaluated in proportion to their respective frequencies This is equivalent to expressing the frequencies in logarithms with a base other than 10 In other words, this procedure of converting the logarithms to the range from 00 to 99 consists in dividing up the original range of logarithms, into 100 equal parts and assigning each one to the proper rank in the range

7 The new base (C) used to convert each of the digraphic frequencies to the logarithmic range 0 to 0 99 is derived as follows, when 222 is the highest frequency (F)

Let
$$222 = C^{0}$$
 ⁹⁹
Log₁₀ $222 = Log_{10} C^{0}$ ⁹⁹
Log₁₀ $222 = (0 99) (Log_{10} C)$
 $C = Antilog \frac{Log_{10} 222}{0 99} = Antilog \frac{235}{0 99}$
 $C = 224$

8 The formula for the computation of the logarithm to the new base (C) of any actual frequency (Y) of a series is

$$\operatorname{Log}_{\circ} Y = \frac{\operatorname{Log}_{10} Y}{\operatorname{Log}_{10} C}$$

It is more expeditious to use reciprocals in the conversion of a whole series of logarithmic values, as in this instance The formula is $(\text{Log}_{10} \text{ C})^{-1}$ $(\text{Log}_{10} \text{ Y}) = \text{Log}_{\circ} \text{ Y}$

9 The digraphic index chart, Table 15, on page 37, summarizes the logarithmic frequencies of all English plain-text digraphs, computed to a base of 224 so that the logarithm of the highest frequency (EN) is 0 99

Example

$$EN = 222$$

$$Log_{10} 222 = 2 35$$

$$(Log_{10} C)^{-1} = (Log_{10} 224)^{-1} = 0 421$$

$$Log_{0} 222 = 0 421 \times 2 35 = 0 99$$

10. Likewise, the trigraphs and tetragraphs have been computed to the bases L586 and L244, respectively, so that the logarithms of the highest-frequency trigraph (ENT) and tetragraph (TION) are 0.99. Since no use is being made of the trigraphs appearing less than 100 times and tetragraphs appearing less than 50 times, the basic frequencies of the trigraphs and tetragraphs have not been doubled in computing the new bases of the logarithms.

k

_

-RESTRICTED

F	L19(T)	L114 (2Γ)	F	L ₁₀ (F)	L774 (2F)	F	L19(F)	Ln4 (2F)		F	L10(F)	L124 (2F)
EN_ 111	2 05	99	DA 32	1 51	76	OL 19	1 28	67	EQ	12	1	08	58
RE _ 98	1 99	96	EC 32	1 51	76	OT. 19	1 28	67	0D	12	1	08	58
ER _ 87	1 94	94	RS _ 31	1 49	75	SS 19	1 28	67	SF	12	1	08	58
NT. 82	1 91	93	UR 31	1 49	75	TS. 19	1 28	67	US	12	1	08	58
TH. 78	1 89	92	NI_ 30	1 48	75	TT _ 19	1 28	67	UT _	12	1	08	58
ON _ 77	1 89	92	RI_ 30	1 48	75	WO _ 19	1 28	67	VI.	12	1	08	58
IN 75	1 88	92	EL 29	1 46	74	BE _ 18	1 26	66	WA	12	1	08	58
TE. 71	1 85	91	HT. 28	1 45	74	EF 18	1 26	66	FF	11	1	04	56
AN 64	1 81	89	LA 28	1 45	74	NO _ 18	1 26	66	FT	11	1	04	56
OR _ 64	1 81	89	RO 28	1 45	74	PR 18	1 26	66	PP	11	1	04	56
ST 63	1 80	88	TA _ 28	1 45	74	AI 17	1 23	64	RR	11	1	04	56
ED 60	1 78	88	22,495			HR 17	1 23	64	SU_	11	1	04	56
NE 57	1 76	87				PO17	1 23	64	UE	11	1	04	56
VE 57	1 76	87	AD _ 27	1 43	73	RD 17	1 23	64	YF _	11	1	Q4	56
ES 54	1 73	86	DI _ 27	1 43	73	TR 17	1 23	64	YS	11	1	04	56
ND 52	1 72	85	EI _ 27	1 43	73	DO 16	1 20	63	FE	10	1	00	55
TO 50	1 70	84	IR. 27	1 43	73	DT. 15	1 18	62	IF	10	1	00	55
SE. 49	1 69	84	IT _ 27	1 43	73	IX _ 15	1 18	62	LY	10	1	00	55
11,249			LL 27	1 43	73	QU _ 15	1 18	62	MO	10	1	00	55
			NG 27	1 43	73	SO _ 15	1 18	62	SP	10	1	00]	55
AT 47	1 67	83	ME 26	1 41	72	YT. 15	1 18	62	YO	10	1	00	55
TI 45	1 65	82	NA_ 26	1 41	72	AC 14	1 15	61	FR	9	0	95	58
AR _ 44	1 64	82	SH 26	1 41	72	AM 14	1 15	61	IM	9	0	95	53
EE 42	1 62	81	IV 25	1 40	72	CH_ 14	1 15	61	LD	9	0	95	53
RT _ 42	1 62	81	OF 25	1 40	72	CT. 14	1 15	61	MI	9	0	95	53
AS 41	1 61	80	OM 25	1 40	72	EM _ 14	1 15	61	NF	9	0	95	53
CO 41	1 61	80	OP 25	1 40	72	GE 14	1 15	61	RC	9	0	95	53
IO 41	1 61	80	NS 24	1 38	71	05 <u>14</u>	1 15	61	RM	9	0	95	53
TY 41	1 61	80	SA 24	1 38	71	PA _ 14	1 15	61	RY	9	0	95	53
FO 40	1 60	80	IL _ 23	1 36	70	AU _ 13	1 11	59	YE	9	0	95	53
FI 39	1 59	80	PE 23	1 36	70	DS 13	1 11	59	DD	8	0	90	51
RA _ 39	1 59	80	IC _ 22	1 34	69	IE 13	1 11	59	DF	8	0	90	51
ET 37	1 57	79	WE 22	1 34	69	LO 13	1 11	59	HU	8	0	90	51
LE 37	1 57	79	UN 21	1 32	68	MM_ 13	1 11	59	IA.	8	0	90	51
OU 37	1 57	79	CA 20	1 30	67	PL 18	1 11	59	LT	8	0	90	51
MA36	1 56	78	EP 20	1 30	67	RP 13	1 11	59	MP	8	0	90	51
TW 36	1 56	78	EV 20	1 80	67	SC 18	1 11	59	NN	8	0	90	51
EA 35	1 54	78	GH 20	1 80	67	WI <u>18</u>	1 11	59	00	8	0	90	51
IS 35	1 54	78	HA_ 20	1 30	67	3,745	}		0W	8	0	90	51
SI 34	1 58	77	HE 20	1 30	67				PT	8	0	90	51
DE 33	1 52	77	HO 20	1 80	67	AP 12	1 08	58	UG	8	0	90	51
HI _ 33	1 52	77		1 30	67	AY 12	1 08	58	AV -	'(0	85	48
AL . 32	1 51	76	IG _ 19	1 28	67	DR 12	1 08	58	BY	7	0	85	48
CE_ 32	1 51	76	NC _ 19	1 28	67	E0 , 12	1 08	58	CI	- 7	10	85	48

TABLE 7-A -The 428 different digraphs of Table 6-A, arranged according to their absolute frequencies	e8,
accompanied by the logarithms of their assigned probabilities	

¹ The 18 digraphs above the line compose $-\mathfrak{o}^c \mathfrak{c}$ of the total ² The 53 digraphs above this line compose 50° of the total

1

* The 122 digraphs above this line compo a 75% of the total

-RESTRICTED

.

	0	เบร	olute	e freque	ncres, acc	om	pa	nied	by the	logarithm	s	f ti	reir	assigne	ed probab	ılıtı	es		
	F	L	10(T)	L-24 (2F)		F	L	ø(F)	L ₂₂₄ (2Γ)		F	٤,	•(F)	L ₁₁₄ (2F)		F	L	(Ŧ)	L ₂₂₄₄ (2Γ)
EH.	7	0	85	48	RU	5	0	70	42	GŞ	3	0	48	83	JE.	2	0	80	25
EW	7	0	85	48	RV _	5	0	70	42	HC .	3	0	48	33	JO	2	0	30	25
EX _	7	0	85	48	SD	5	0	70	42	HN .	3	0	48	83	JU	2	0	30	25
GA	7	0	85	48	SR _	5	0	70	42	LB	3	0	48	33	KT	2	Õ	30	25
IP.	7	Õ	85	48	TL.	5	0	70	42	T.C	3	ñ	48	88	T.M	2	õ	30	25
NU	7	lõ	85	48	TU	5	lŏ	70	42	t.F	3	ŏ	18	33	T.R	2	ň	30	25
0A	7	ŏ	85	48	11A	5	ŏ	70	42	I.P	8	ň	48	33	LII	2	ň	80	25
ov	7	lŏ	85	48	UT	5	ŏ	70	42	MC	3	ň	18	33	LU	2	ň	30	25
RG	7	l õ	85	48	TIM	5	ŏ	70	42	NP	3	ň	48	33	T.W	2	ň	30	25
RN	7	Ň	85	48		Ă	۱Ň	60	38	NV	2	ň	18	22		2	ň	20	20
	7	ได้	85	18	RA	Ā	Ň	80	38	NW	2	0	10	22	MTT	4	0	20	05 05
ጥእ	7	۱Ň	85	18		Ā	۱ŏ.	60	20	05	2	ň	10	22	MTT	2	ň	90	40 05
211 - 211 -	7	۱ů.	25	18	CK CK	Ā		60	30		2	0	40	90 90	MV	4		90	40 05
VD -	å		78	15	01.	Ā	1	60	90		0	0	40	00 00	MD	6	Ň	00	40 05
	6		79	40		4 A		60	90		0	0	40	00 00		2	0	00	20 05
AG	0		(0 770	40		4± 1		00 60	00		0	0	40	00 00		2	0	80	20
DL .	0		10	40	<u></u>	4		00	00	NH SD	0		40	00 00		2	0	30	20
GU_	0		10	40		4		00	00 90	- 00 	J J	U A	40	00 00		2	U	80	20
TD	0		10	40		4		00	00 00	MG UD	ð	0	40	33		Z	U	30	25
KE .	0	۱v ۱	10	40		4	0	00	00	TB	ປັ ຄ	0	40	- 33 - 5		Z	0	30	25
LS _	0		70	40	EB.	4		00	00 00	UB.	ð	0	48	88	RB	Z	0	30	25
MB ⁻ -	0	0	70	40	EG	4		00	00		ð	U	48	33	SG	Z	0	30	25
00	6	0	78	45	EY	4	0	60	88	<u> </u>	ខ	0	48	33	SL.	2	0	30	25
PI_	6	0	78	45	GT _	4	0	60	88	YI -	3	0	48	88	TP	2	0	80	25
PS	6	0	78	45	HS _	4	0	60	38	YP	3	0	48	88	UP	2	0	80	25
RF	6	0	'18	45	MS .	4	0	60	38	AH	2	0	30	25	WN -	2	0	30	25
TC	6	0	78	45	NH	4	0	60	38	AK	Z	0	30	25	XA	2	0	30	25
TD	6	0	78	45	NR	4	0	60	38	OA	2	U	30	25	XC.	2	0	30	25
TM	6	0	78	45	0B	4	0	60	38	BI	2	0	80	25	XI	2	0	30	25
UL	6	0	78	45	PM	4	0	60	38	BR	2	0	80	25	XP	2	0	30	25
VA _	6	0	78	45	RW	4	0	60	38	BU _	2	0	30	25	YB	2	0	30	25
YA	6	0	78	45	SN -	4	0	60	88	DG	2	0	30	25	YL_	2	0	30	25
YN	6	0	78	45	SW _	4	0	60	38	DH _	2	0	80	25	YM _	2	0	30	25
CL	5	0	70	42	WH	4	0	60	38	QQ	2	0	30	25	ZE	2	0	30	25
DM _	5	0	70	42	YC	4	0	60	38	FC _	2	0	80	25	AE	1	0	00	13
DP	5	0	70	42	YD	4	0	60	33	FL _	2	0	30	25	AJ	1	0	00	13
DU .	5	0	70	42	YR _	4	0	60	83	GC _	2	0	30	25	BJ_	1	0	00	13
FA _	5	0	70	42	AA _	3	0	48	33	GF	2	0	30	25	BM _	1	0	00	13
GI	5	0	70	42	AW	3	0	48	33	GL _	2	0	30	25	BS	1	0	00	13
GR	Б	0	70	42	CC -	3	0	48	33	GP	2	0	30	25	BT	1	0	00	13
HF	5	0	70	42	DL	3	0	48	33	Gប	2	0	30	25	CD _	1	0	00	13
NL.	5	0	70	42	DV _	3	0	48	33	HD	2	0	30	25	CF _	1	0	00	13
NM	5	0	70	42	EU _	3	0	48	83	HM	2	0	30	25	СМ	1	0	00	13
NY _	5	0	70	42	FS .	3	0	48	33	IB	2	0	30	25	CN	1	0	00	13
0I	5	0	70	42	FU	3	0	48	83	IK	2	0	30	25	CS	1	0	00	13
RL	5	0	70	42	GN _	3	0	48	33	IZ	2	0	30	25	CW	1	0	00	13

2-14

TABLE 7-A, Contd — The 428 different digraphs of Table 6-A, arranged according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

RESTRICTED

RESTRICTED

	F	$L_{10}(\Gamma)$	L ₂₂₄ (2Г)		ŀ	L ₁₀ (F)	L-24 (2Г)		F	L ₄₉ (F)	L424 (2F)		F	L ₄₀ (F)	L ₂₂₄ (2F)
CY	1	0 00	13	HW	1	0 00	18	PD _	1	0 00	13	WL	1	0 00	13
DJ _	1	0 00	13	HY	1	0 00	13	PN _	1	0 00	13	WR _	1	0 00	13
DY	1	0 00	13	JA _	1	0 00	13	PV	1	0 00	13	WS	1	0 00	13
EJ _	1	0 00	13	KA	1	0 00	13	PW	1	0 00	13	WY _	1	0 00	13
EZ	1	0 00	18	KC	1	0 00	13	PY_	1	0 00	13	XD	1	0 00	13
FD	1	0 00	13	KL	1	0 00	13	QM	1	0 00	13	XE _	1	0 00	13
FG _	1	0 00	13	KN	1	0 00	13	QR	1	0 00	18	XF	1	0 00	13
FM	1	0 00	13	KS .	1	0 00	13	RJ _	1	0 00	13	XH	1	0 00	13
FP	1	0 00	13	LG _	1	0 00	13	RK	1	0 00	13	XN -	1	0 00	13
FW	1	0 00	13	LH	1	0 00	18	SK _	1	0 00	18	X0	1	0 00	13
FY	1	0 00	13	LN _	1	0 00	13	SV .	1	0 00	13	XR	1	0 00	13
GD	1	0 00	18	MD	1	0 00	13	SY _	1	0 00	13	XS _	1	0 00	13
GG	1	0 00	13	MF _	1	0 00	13	TG	1	0 00	18	YG	1	0 00	13
GJ	1	0 00	13	MH	1	0 00	13	TQ _	1	0 00	13	YH	1	0 00	13
GM	1	0 00	13	NJ	1	0 00	13	TZ	1	0 00	18	YU	1	0 00	13
GW	1	0 00	13	NQ	1	0 00	13	UF _	1	0 00	13	YW	1	0 00	13
HB	1	0 00	13	0J	1	0 00	13	UO _	1	0 00	13	ZA .	1	0 00	13
HL	1	0 00	13	OX	1	0 00	13	UV .	1	0 00	13	ZI _	1	0 00	.13
HP	1	0 00	13	PB.	1	0 00	13	VO _	1	0 00	13	5.00	0		1
HQ	1	0 00	13	PC _	1	0 00	13	VT _	1	0 00	13			1	

TABLE	7-A,	Concluc	led — <i>Th</i>	e 428	dıfferent	digraphs	of	Table	6-A,	arranged	according	to	their
	abs	olute freg	uencies,	accom	panied by	y the logar	ıthı	ns of ti	herr a	ssigned pr	obabilities		

TABLE 7-B — The 18 digraphs composing 25% of the digraphs in Table 6-A, accompanied by the logarithms of their assigned probabilities, arranged alphabetically according to their initial letters

		1.15.1.	TERS		L. REQUENCIES								
F	Lis(F)	L±24 (2Γ)	F	L10(F)	L .4 (2F)	r	L ₂₀ (F)	L ₂₂₄ (2F)	F	L ₁₀ (F)	(2F)		
AN_ 64	1 81	89	ON 77 OR 64	1 89 1 81	92 89	AN 64	1 81	89	ON _ 77 OR _ 64	1 89 1 81	92 .89		
ED 60 EN111 ER 87 ES 54	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	88 99 94 86	RE 98 SE . 49 ST 63	1 99 1 69 1 80	96 84 88	EN111 ER 87 ED 60 ES 54	$ \begin{array}{ccc} 2 & 05 \\ 1 & 94 \\ 1 & 78 \\ 1 & 73 \end{array} $	99 94 88 86	RE 98 ST 63 SE 49	1 99 1 80 1 69	96 88 84		
IN 75	1 88	92	TE_ 71 TH_ 78 TO_ 50	1 85 1 89 1 70	91 92 84	IN _ 75	1 88	92	TH 78 TE _ 71 TO _ 50	1 89 1 85 1 70	92 91 84		
ND <u>52</u> NE 57 NT <u>82</u>	1 72 1 76 1 91	85 87 93	VE <u>57</u> 1,249	1 76	87	NT. 82 NE 57 ND 52	1 91 1 76 1 7?	93 87 85	VE57 1,249	1 76	87		

(1) AND ACCORDING TO THEIR FINAL LETTERS (2) AND ACCORDING TO THEIR ABSOLUTE FREQUENCIES

-RESTRICTED
-RESTRICTED

(1) AND ACCORDIN	NG TO THEIR FIN. TTERS	AL	(2) AND ACCORDING FREQU	TO THEIR ABSOLUTE ENCIES
$F \qquad L_{10}(F) \qquad \begin{array}{c} L_{124} \\ (2\Gamma) \end{array}$	F L10(F)		Γ Lus(Γ) L224 (2F)	Γ Lis(Γ) Lini (2F)
AL 32 1 51 76	MA 36 1 56	78	AN 64 1 81 89	MA 36 1 56 78
AN., 64 1 81 89			AT 47 1 67 83	
AR. 44 1 64 82	ND_ 52 1 72	85	AR 44 1 64 82	NT 82 1 91 93
AS. 41 1.61 80	NE _ 57 1 76	87	AS _ 41 1 61 80	NE. 57 1 76 87
AT 47 1 67 83	NI _ 30 1 48	75	AL 32 1 51 76	ND 52 1 72 85
	NT. 82 1 91	93		NI 30 1 48 75
CE 32 1 51 76		Į –	CO 41 1 61 80	
CO 41 1 61 80	ON 77 1 89	92	CE _ 32 1 51 76	ON _ 77 1 89 92
	OR _ 64 1 81	89		OR _ 64 1 81 89
DA 32 1 51 76	00 . 37 1 57	79	DE 33 1 52 77	00_ 37 1 57 79
DE 33 1 52 77			DA. 32 1 51 76	
	RA. 39 1 59	80		RE 98 1 99 96
EA _ 35 1 54 78	RE 98 1 99	96	EN 111 2 05 99	RT. 42 1 62 81
EC _ 32 1 51 76	RI. 30 1 48	75	ER 87 1 94 94	RA 39 1 59 .80
ED 60 1 78 88	R0 28 1 45	14	ED_ 60 1 78 88	RS 31 1 49 75
EE 42 1 02 81	RS 81 1 49	75	ES _ 54 1 73 86	RI 30 1 48 75
EL. 29 1 46 74	RT. 42 1 62	L ST		RU 28 1 45 74
EN111 2 05 99		04	$ET_{-} = 37 \pm 57 \pm 79$	
ER. 87 1 94 94	SE 49 1 09	04	EA . 30 1 94 78	ST 03 1 80 88
ES _ 54 1 73 80	SL 34 1 93	00		ST 94 1 59 84
ET 37 1 07 79	ST . 03 1 80	00	EL. 29 1 40 74	SI 34 I 03 11
FI 39 1 59 80	TA _ 28 1 45	74	FO 40 1 60 80	TH 78 1 89 92
FO 40 1 60 .80	TE 71 1 85	91	FI 89 1 59 80	TE 71 1 85 91
	TH_ 78 1 89	92		TO 50 1 70 84
HI 33 1 52 77	TI 45 1 65	82	HI _ 33 1 52 77	TI 45 1 65 82
HT_ 28 1 45 74	TO 50 1 70	84	HT 28 1 45 74	TY - 41 1 61 80
	TW 36 1 56	78		TW 36 1 56 78
IN _ 75 1 88 92	TY _ 41 1 61	80	IN _ 75 1 88 92	TA. 28 1 45 74
IO _ 41 1 61 80				
IS 35 1 54 78	UR _ 31 1 49	75	IS. 35 1 54 78	UR. 31 1 49 75
I.A 28 1 45 74	VE. 57 1 76	87	LE 37 1 57 79	VE _ 57 1 76 87
LE. 37 1 57 79	2,495		LA 28 1 45 74	2,495

TABLE 7-C —The 58 digraphs composing 50% of the 5,000 digraphs of Table 6-A, accompanied by the logarithms of their assigned probabilities, arranged alphabetically according to their initial letters

RESTRICTED

2-16

- -

TABLE 7-D — The 122 digraphs composing 75% of the 5,000 digraphs of Table 6-A, accompanied by the logarithms of their assigned probabilities, arranged alphabetically according to their initial letters

										_						
	F	L10(F)	(21 ⁻)	F	I. (ת	(21)	F	Τ	L ₁₀ (F)	L14 (2F)		F	L	0(F)	L ₂₂₄ (2F)
AC	14	1 1	5 61	ER _ 87	11	14	94	MA 3(3	1 56	78	RS _	31	1	49	75
AD	27	1 48	3 73	ES 54	1 '	73	86	ME 20	3	1 41	72	RT _	42	1	62	81
AI	17	1 23	3 64	ET 37	11	57	79									
AL	32	1 51	L 76	EV 20	11 :	80	67	NA 20	3	1 41	72	SA .	24	1	38	71
AM _	14	1 18	5 61		1			NC 1)	1 28	67	SE _	49	1	69	84
AN	64	1 81	1 89	FI. 39	11	59	80	ND 59	2	1 72	85	SH	26	1	41	72
AR _	44	1 64	1 82	FO 40	11	60	80	NE _ 5'	7	1 76	87	SI	34	1	53	77
AS.	41	1 61	L 80		1			NG 2'	7	1 43	73	SO	15	1	18	62
AT.	47	1 67	7 83	GE 14	11:	15	61	NI 30	5	1 48	75	SS	19	1	28	67
AŬ	13	1 11	L 59	GH 20	11	BO	67	NO 18	2	1 26	66	ST	63	1	80	88
		~			[-``			NS 24	<u>.</u>	1 38	71	N/ 41		1		00
BE	18	1 26	66 66	HA 20	11 1	BOL	67	NT 89	5	1 91	93	ጥል	28	1	45	.74
				HE 20	lī i	BO	67		-			TH	71	ī	85	91
CA	20	1 30) 67	HI 33	11	52	77	OF 2	5.	1 40	72	TH	78	11	89	92
CE	32	1 51	L 76	HO 20	11	RO	67	OT. 19	a l	1 28	67	ጥፐ	45	1	65	82
СН	14	1 1	5 61	HR 17	lī !	23	64			1 40	72	ጥበ	50	Îĩ	70	84
CO	41	1 61	L 80	HT 28	1	45	74		7	1 89	92	TR	17	Î	23	64
CT	14	1 18	5 61		1	"	1.2	OP 20		1 40	72	TS	19	1	28	67
74	29	1 51	76	IC _ 22	11:	84	69	OR 64	1	1 81	89		19	Î	28	67
DE	94 QQ	1 50	0 77	IE _ 13	1 :	11	59	0S 14	1	1 15	61	TW	36	Î	56	78
DE	97	1 / 9	2 72	IG 19	1	28	67	OT_ 1	9	1 28	67	TY	41	1	61	80
DU DT	16	1 90	63	IL. 23	1	B6	70	OU. 3'	7	1 57	79			[~	•-	
ספ	19	1 11	50	IN 75	11	88	92					UN	21	1	32	68
יית	15	1 15	2 69	IO _ 41	11	61	80	PA _ 14	1 1:	1 15	61	UR	31	1	49	75
U	TO	1 10		IR_ 27	11	43	73	PE _ 2	3	1 36	70			[]		
EA	35	1 54	1 78	IS 35	11	54	78	P0 _ 1'	7	1 23	64	VE	57	1	76	87
EC	32	1 51	L 76	IT 27	11	43	78	PR _ 18	3	1 26	66		•••	1-	•••	
ED	60	1 78	3 88	IV _ 25	11	40	72 '					WE	22	1	34	69
EE	42	1 62	2 81	IX _ 15	11:	18	62	QU. 1	5	1 18	62	WO	19	ī	28	67
EF	18	1 20	66 66	ł	{			•						1		
EI	27	1 48	3 73	LA 28	11	45	74	RA 3	9	1 59	80	YT	15	1	18	62
EL	29	1 40	3 74	LE 37	11	57	79	RD 1'	7	1 23	64	3	745	ſ		
EM	14	1 18	5 61	LI 20	11	30	67	RE 9	8	1 99	96	,	1.40			1
EN	111	2 0	5 99	LL 27	11	43	78	RI _ 3	01:	1 48	75			1		
EP _	20	1 30	67	LO 13	11	11	59	R0 2	8	1 45	74			ł		

(1) AND ACCORDING TO THEIR FINAL LETTERS

2-17

TABLE 7-D, Concluded — The 122 digraphs composing 75% of the 5,000 digraphs of Table 6-A, accompanied by the logarithms of their assigned probabilities, arranged alphabetically according to their initial letters

F	L ₁₀ (F)	L2.1 (2F)	Г	L ₁₉ (F)	L ₂₂₄ (2Γ)	F	L ₁₀ (F)	L ₂₂₄ (2Γ)	Г	L10(I')	L74 (2F)
AN 64	1 81	89	EI 27	1 43	73	MA 36	1 56	78	RI 30	1 48	75
AT 47	1 67	83	EP_ 20	1 30	67	ME _ 26	1 41	72	R0 _ 28	1 45	74
AR 44	1 64	82	EV 20	1 30	67				RD 17	1 23	64
AS 41	1 61	80	EF 18	1 26	66	NT 99	1 01	09			
AL 32	1 51	76	EM 14	1 15	61	NF 57	1 76	90 97	~ ~ ~	1 00	00
AD_ 27	1 43	73					1 79	85	ST. 63	1 80	88
AI _ 17	1 23	64	FO 40	1 60	80	NT 30	1 48	75	SE 49	1 59	84
AC _ 14	1 15	61	FI _ 39	1 59	80	NG 27	1 43	73	SL_34	1 00	70
AM _ 14	1 15	61				NA 26	1 41	72	$SII_2 ZO$	1 41	71
AU _ 13	1 11	59	GH _ 20	1 30	67	NS 24	1 38	71	DA _ 24	1 90	67
			GE _ 14	1 15	61	NC 19	1 28	67	50 15	1 10	60
BE 18	1 26	66		}		NO 18	1 26	66	50 10	1 10	02
	1	{	HI 33	1 52	77						1
CO 41	1 61	80	HT 28	1 45	74	01 77	1 00	00	TH 78	1 89	92
CE 32	1 51	76	HA_ 20	1 30	67	ON = 77	1 89	92	TE 71	1 85	91
CA . 20	1 80	67	HE 20	1 30	67	UK 04		89 70	TO 50	1 70	84
CH 14	1 15	61	HO _ 20	1 30	67		1 40	79	TI 45	1 65	82
CT14	1 15	61	HR 17	1 23	64	OF 25	1 40	70	TY 41	1 61	80
	}	}		})	OM _ 20	1 40	14	TW 36	1 56	78
DE 99	1 20	77	IN 75	1 88	92	OF 20	1 40	67	TA _ 28	1 45	74
DE _ 33	1 54	76	IO _ 41	1 61	80	01 19	1 20	67	TS _ 19	1 28	67
DA 04	1 12	79	IS _ 35	1 54	78		1 15	61	TT 19	1 28	67
$D1_2$ 21	1 90	62	IR _ 27	1 43	73	00	T 10	UT .	TR _ 17	1 23	64
די דע דיית 15	1 18	62	IT_ 27	1 43	73					1	
DI10	1 11	59	IV 25	1 40	72	PE _ 23	1 86	70	UR 31	1 49	75
00.10		00	IL _ 23		70	PR. 18	1 26	66	UN. 21	1 32	68
	0.05			1 34	69	P0 _ 17	1 23	64			
EN _111	2 05	99	1G 19	1 28	67	PA_ 14	1 12	9T	VF 57	1 76	077
ER_ 87	1 94	94	1X - 10	1 18	62	})		10 . 01	1 10	01
ED 60	1 78	88	18 - 12	1 11	59	QU _ 15	1 18	62			_
ES 54	1 73	86		1 87	70		Į		WE _ 22	1 34	69
EE 42	1 62	81		1 07	79		1 00	00	WO_ 19	1 28	67
ET 37	1 57	19	LA 28	1 40	74	KE 98	1 23	96			
EA 35		18		1 90	73	RT_ 42	1 52	81 81	YT_ 15	1 18	62
EC 32		70		1 30	50	NA. 89	1 40	80 75	3.745		
EL 29	1 46	74	LV - 13		69	10 - 21	1 49	70	-,	}	1

(2) AND ACCORDING TO THEIR ABSOLUTE FREQUENCIES

TABLE 7-E —All the 428 digraphs of Table 6-A, arranged first alphabetically according to their initial letters and then alphabetically according to their final letters

(SEE TABLE 6-A -- READ ACROSS THE ROWS)

2-18

-RESTRICTED-

E

The second s		_							-	-								
<u></u>	F	L10((T)	Lт. (2Г)		Г	II	o(Г)	L24 (2Г)		Г	L10(F)	Lr: (3F)		F	L	₀(T)	L214 (2F)
AN .	64	1	81	89	CT .	14	1	15	61	ED	60	1 78	88	GH	20	1	30	67
AT	47	1	67	83	CI.	7	0	85	48	ES	54	1 73	86	GE	14	1	15	61
AR	44	1	64	82	CL .	5	0	70	42	EE.	42	1 62	81	GA	7	õ	85	48
AS	41	1	61	80	CK _	4	0	60	38	ET .	37	1 57	79	GO	6	Õ	78	45
AL .	32	1	51	76	CR	4	0	60	38	EA (35	1 54	78	GI	5	Ō	70	42
AD	27	1 .	43	73	CU _	4	0	60	38	EC _ S	32	1 51	76	GR	5	Õ	70	42
AI	17	1	23	64	CC	3	0	48	33	EL .	29	1 46	74	GT	4	0	60	38
AC	14	1	15	61	CD	1	0	00	13	EI :	27	1 43	73	GN	3	0	48	33
AM	14	1	15	61	CF	1	0	00	13	EP 2	20	1 30	67	GS	3	0	48	33
AU _	13	1	11	59	CM _	1	0	00	13	EV 2	20	1 30	67	GC	2	0	30	25
AP	12	1 (08	58	CN	1	0	00	13	EF	18	1 26	66	GF	2	0	30	25
AY _	12	1	08	58	CS	1	0	00	13	EM_	14	1 15	61	GL _	2	0	30	25
AV	7	0	85	48	CW _	1	0	00	13	E0 :	12	1 08	58	GP	2	0	30	25
AB	6	0 '	78	45	CY	1	0	00	13	EQ :	12	1 08	58	GU	2	0	30	25
AG	6	0	78	45			{.			EH	7	0 85	48	GD	1	0	00	13
AF	4	0	60	38	DE	33	1	52	77	EW_	7	0 85	48	GG _	1	0	00	13
AA	3	0	48	83	DA _	32	1	51	76	EX .	7	0 85	48	GJ	1	0	00	13
AW	8	0	48	88	DI	27	1	43	78	EB _	4	0 60	38	GM	1	0	00	13
AH	2	0	30	25	D0	16	1	20	63	EG	4	0 60	38	GW	1	0	00	13
AK	20		30	25 05	DT _	15	1	18	62 50	EY	4	0 60	88					
AU	2		00 00	20 19	פע	10		11	59 FO	EU	3	0 48	33		1			
AE	1		00	10	_ תע	14	1	00	90 51	EJ	1		13	777	00	4	ro	77
A0				10	 יזת	0		00	01 51	E-2	시	0 00	10		33 00	T	DZ	17
BE	18	1	26	66		5	Ň	70	19	FO	10	1 60	80		40	T T	40	14 67
BY	7	lô i	85	48	DP	5	ŏ	70	42	י <u>י</u> יטין דיד	gal	1 59	80	HE	20	1 1	30	67
BL	6	0 '	78	45	DU	5	ŏ	70	42	े पर	11	1 04	56	HO	20	1	30	67
BA	4	0	60	38	DB	4	lŏ	60	38	י ידי ק	11	1 04	56	HR	17	1	23	64
B0	4	0	60	38	DC _	$\bar{4}$	lõ	60	38	FE	10	1 00	55	ни	- 8	ō	90	51
BI	2	0	30	25	DN _	4	0	60	38	FR .	9	0 95	53	HF	5	Õ	70	42
BR	2	0	30	25	DW	4	0	60	38	F'A	5	0 70	42	HS	4	Ŏ	60	38
BU	2	0	30	25	DL	3	0	48	33	FS	3	0 48	33	HC	3	0	48	33
BJ	1	0	00	13	DV_	3	0	48	33	FU	3	0 48	33	HN _	3	0	48	33
BM	1	0	00	13	DG _	2	0	30	25	FC	2	0 30	25	HD	2	0	30	25
BS	1	0	00	13	DH	2	0	30	25	FL	2	0 30	25	НМ	2	0	30	25
BT_	1	0	00	13	DQ	2	0	30	25	FD	1	0 00	13	HB	1	0	00	13
					DJ	1	0	00	13	FG _	1	0 00	13	HL,	1	0	00	13
<u>co</u> -	41	1	61	80	DY	1	0	00	13	FM	1	0 00	13	HP	1	0	00	13
CE	32		51	76						FP	1	0 00	13	HQ _	1	0	00	13
CA	20		30	67	EN_	111	2	05	99	FW -	1	0 00	13	HW	1	0	00	13
CH _	14	11	19	61	ER	87	1	94	94	FY _	1	0 00	13	HY	1	0	00	13

TABLE 8 — The 428 different digraphs of Table 6–A, arranged first alphabetically according to their initial letters and then according to their absolute frequencies under each initial letter,¹ accompanied by the logarithms of their assigned probabilities

¹ For arrangement alphabetically first under initial letters and then under final letters, see Table 6-A

2-19

-RESTRICTED

ID:A56892 REF

TABLE 8. Contd — The 428 different digraphs of Table 6-A, arranged first alphabetically according to their initial letters and then according to their absolute frequencies under each initial letter.¹

¹ For airingement alphabetically first under initial letters and then under final letters, see Table 6-A

2-20

- RESTRICTED

1

_ _

accon	ipame	d by the	e logarithms (en acco of their	assigne	o their absolu ed probabiliti	ie freque es	ncies 1	unaer each 1	nt	ial le	tter, 1
F	L19(T)	L ₂₂₄ (2F)	F	L ₁₀ (F)	Ln4 (2F)	F	Lis(F)	L224 (2Γ)	F	L	10(下)	L434 (2F)
RE 98	1 99	96	SR 5	0 70	42	US _ 12	1 08	58	XI 2	0	30	25
RT _ 42	1 62	81	SN _ 4	0 60	38	UT 12	1 08	58	XP _ 2	20	80	25
RA _ 39	1 59	80	SW _ 4	0 60	38	UE 11	1 04	56	XD 1	. 0	00	13
RS 31	1 49	75	SB 3	0 48	88	UG 8	0 90	51	XE 1	0	00	13
RI . 30	1 48	75	SM 3	0 48	33	UL_ 6	0 78	45	XF 1	. 0	00	13
RO 28	1 45	74	SG _ 2	0 30	25	UA. 5	0 70	42	XH 1	0	00	13
RD 17	1 23	64	SL 2	0 30	25	UI 5	0 70	42	XN 1	0	00	13
RP13	1 11	59	SK 1	0 00	13	UM _ 5	0 70	42	XO., 1	. 0	00	13
RR 11	1 04	56	SV 1	0 00	13	UB 3	0 48	83	XR_ 1	. 0	00	13
RC 9	0 95	53	SY 1	0 00	13	UC 3	0 48	33	XS 1	0	00	18
RM 9	0 95	53		1		UD 3	0 48	33		}		
RY 9	0 95	53	TH . 78	1 89	92	UP 2	0 30	25	YT _ 18	51	18	62
RG _ 7	0 85	48	TE 71	1 85	91	UF 1	0 00	18	YF _ 11	.11	04	56
RN _ 7	0 85	48	TO 50	1 70	84	UO 1	0 00	13	YS 11	1	04	56
RF _ 6	0 78	45	TI 45	1 65	82	UV _ 1	0 00	13	YO 10	1	00	55
RL. 5	0 70	42	TY . 41	1 61	80				YE 9	10	95	53
RU 5	0 70	42	TW 36	1 56	78	VE_ 57	1 76	87	YA. (s 0	78	45
RV _ 5	0 70	42	TA. 28	1 45	.74	VI _ 12	1 08	58	YN 6	5 0	78	45
RW 4	0 60	88	TS _ 19	1 28	67	VA . 6	0 78	45	YC 4	L O	60	88
RH 3	0 48	33	TT 19	1 28	67	VO 1	0 00	13	YD 4	10	60	38
RB 2	0 30	25	TR 17	1 23	64	VT. 1	0 00	13	YR 4	L 0	, 60	38
RJ 1	0 00	13	TF . 7	0 85	48				YI 8	0	48	83
RK 1	0 00	13	TN 7	0 85	48	WE _ 22	1 34	69	YP 8	8 0	48	33
		}	TC_ 6	0 78	45	WO_ 19	1 28	67	YB 2	2 0	30	25
ST 63	1 80	88	TD _ 6	0 78	45	WI _ 13	1 11	59	YL 2	2 0	30	25
SE 49	1 69	84	TM_6	0 78	45	WA _ 12	1 08	58	YM _ 2	2 0	30	25
SI 34	1 53	77	TL _ 5	0 70	42	WH _ 4	0 60	38	YG. 1	0	00	13
SH 26	1 41	72	TU 5	0 70	42	WN _ 2	0 30	25	YH 1	. 0	00	13
SA _ 24	1 38	71	TB. 3	0 48	33	WL 1	0 00	13	YU 1	0	00	13
SS 19	1 28	67	TP 2	0 30	25	WR 1	0 00	13	YW 1	0	00	13
SO 15	1 18	62	TG _ 1	0 00	13	WS 1	0 00	13				
SC 13	1 11	59	TQ 1	0 00	13	WY 1	0 00	13	ZE _ 2	2 0	30	25
SF 12	1 08	58	TZ 1	0 00	13				ZA 1	10	00	13
SU _ 11	1 04	56		ł	l	XT. 7	0 85	48	ZI 1	10	00	13
SP 10	1 00	55	UR 31	1 49	75	XA. 2	0 30	25	5.000	5		1
SD 5	0 70	42	UN 21	1 32	68	XC 2	0 30	25				

TABLE 8, Concluded — The 428 different digraphs of Table 6-A, arranged first alphabetically accord-ing to their initial letters and then according to their absolute frequences under each emitted letter 1

¹ For arrangement alphabetically first under initial letters and then under final letters, see Table 6-A

-RESTRICTED

TABLO 9-A—The 428 different digraphs of Table 6-A, arranged first alphabetically according to their final letters and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

······	F	L ₁₀ (F	") Lara (2F)	Г	L10(H) L224 (2F)		F	L10(F)	L ₂₃₄ (2Γ)		F	L	₀(F)	L ₁₂₄ (2F)
RA	89	15	9 80	EC _ 32	1 5	1 76	RE	98	1 99	96	GF	2	0	30	25
MA	36	1 5	6 78	IC 22	1 3	4 69	TE	71	1 85	91	PF	2	0	30	25
EA	35	15	4 78	NC 19	1 2	8 67	NE	57	1 76	87	CF	1	0	00	13
DA	32	15	1 76	AC 14	1 1	5 61	VE	57	1 76	87	MF'	1	0	00	13
LA _	28	14	5 74	SC _ 13	1 1	1 59	SE	49	1 69	84	UF	1	0	00	13
TA _	28	14	5 74	RC 9	0 9	5 53	EE	42	1 62	81	XF _	1	0	00	13
NA	26	14	1 72	00 8	09	0 51	LE	37	1 57	79	l l		ł		
SA	24	13	8 71	TC_ 6	07	8 45	DE	33	1 52	77		I			ł
CA	20	13	0 67	DC _ 4	0 6	0 38	CE	32	1 51	76	NG _	27	1	43	73
HA _	20	13	0 67	YC_4	06	0 38	ME	26	1 41	72	IG.	19	1	28	67
PA	14	11	.5 61	CC 3	0 4	8 33	PE	23	1 36	70	UG _	8	0	90	51
WA	12	10	8 58	HC 3	04	8 33	WE	22	1 34	69	RG _	7	0	85	48
IA _	8	09	0 51	LC 3	0 4	8 33	HE _	20	1 30	67	AG	6	0	78	45
GA	7	08	5 48	MC_ 3	04	8 33	BE	18	1 26	66	EG_	4	0	60	38
OA	7	08	5 48	UC _ 3	0 4	8 33	GE _	14	1 15	61	DG	2	0	30	25
VA	6	07	8 45	FC _ 2	0 3	0 25	IE -	13	1 11	59	OG _	2	0	80	25
YA _	6	07	8 45	GC 2	0 3	0 25	UE	11	1 04	56	SG	2	0	30	25
FA _	5	07	0 42	XC 2	0 3	0 25	FE _	10	1 00	55	FG _	1	0	00	13
UA	5	07	0 42	KC 1	0 0	0 13	YE _	9	0 95	53	GG _	1	0	00	13
BA	4	06	0 38	PC 1	00	0 13	KE	6	0 78	45	LG _	1	0	00	13
AA	3	04	8 33				OE -	8	0 48	88	TG	1	0	00	13
XA	2	03	0 25				JE	2	0 30	25	YG _	1	0	00	13
JA	1	00	0 13	ED_ 60	117	8 88	ZE:	Z	0 30	20 10			{		
KA -	1	0 0	0 18	ND _ 52	1 7	2 85	AE	1	0 00	13	1		{		
ZA _	1	0 0	0 13	AD 27	1 4	3 73	XE _	Ŧ	0 00	19	1017	70	1.	00	00
•		~ ~		RD 17		3 64	1				TH -	10		09	92
AB	6	0 7	8 45	0D 12		8 58	1					20		41	12
MB _	6	0 7	8 45		0 9	0 51	OF	05	1 40	70	GH _	20		30	07
DB -	4	0 0	0 38			0 15	ਹਿਸਾ_ ਸ਼ਾਸ਼ਾ	40	1 40	(2)		14		10	10
EB	4	υυ	0 30		0 7	0 40		10	1 40	00 E0		4		00 60	40
0B	4	0 0	00 00		0 7	0 40	ਸ਼ਾਸ	11	1 04	56	WL	4	۱Ň	60	90
LB	3	04	0 00			0 44	VF	11		56		2	10	10	00
20	0 0	0 4	0 00			8 33	TF	10	1 004	55	PH	2	ň	40	20
TB -	0	04	0 00			0 25	NF	g	0 95	53	RH	2	l o	40	22
	0	0 4	0 00			0 13	דות	ิล	0 90	51	AH	9	1 Å	20	25
	4	0 3	0 20			0 18	TR	7	0 85	48	DH	2	10	80	25
םאם סס	40	0 0	0 25			0 18	RF	6	0 78	45	I.H	1	0	00	19
AD -	24 G	00	0 25			0 18	HF	5	0 70	42	MH	1	10	00	12
UD ID	7		0 13			0 13		4	0 60	38	хн	1	ľň	00	19
	1		0 12			0 13	I.F	â	0 48	33	VH	1	ľň	00	12
rb.	T	00	0 10				1.1		Ŭ - Ŭ		111		۱v	00	10

2-22

-RESTRICTED-

-RESTRICTED-

										_					
	F		a(l)	(2F)	Г	L10(F)	(2F)	Г	$L_{10}(\Gamma)$	L ₂ ((2F)		F	L	•(F)	Lni (2Γ)
TI	45	1	65	82	LL _ 27	1 4	3 73	AN 64	1 81	89	RP _	13	1	11	59
FI _	89	1	59	80	IL 23	1 3	3 70	UN _ 21	1 32	68	AP	12	1.	.08	58
SI	34	1	53	77	0L 19	1 2	3 67	NN _ 8	0 90	51	PP	11	1	04	56
HI	33	1	52	77	PL 13	11	L 59	RN 7	0 85	48	SP	10	1	00	55
NI	30	1.	48	75	BL 6	0 7	3 45	TN 7	0 85	48	MP.	8	0	90	51
RI _	30	1	48	75	UL_ 6	0 7	3 45	YN. 6	0 78	45	IP.	7	0	85	48
DI	27	1	43	78	CL 5	0 7) 42	DN 4	0 60	38	DP	5	0	70	42
EI	27	1	43	73	NL . 5	0 7) 42	SN 4	0 60	38	LP _	3	0	48	38
LI	20	1	30	67	RL _ 5	0 70) 42	GN 3	0 48	33	NP	3	0	48	33
AI	17	1	23	64	TL. 5	0 7) 42	HN3	0 48	33	YP	8	0	48	33
WI_	13	1	11	59	DL 3	0 4	3 83	WN 2	0 30	25	GP	2	0	30	.25
VI	12	1	08	58	FL 2	0 3) 25	CN 1	0 00	13	TP	2	0	30	25
MI	9	0	95	53	GL _ 2	0 3) 25	KN 1	0 00	13	UP	2	0	30	25
CI _	7	0	85	48	SL _ 2	0 3) 25	LN 1	0 00	13	XP	2	0	30	25
PI .	6	0	78	45	YL 2	0 3) 25	PN . 1	0 00	13	FP	1	0	00	.13
GI_	5	0	70	42	HL _ 1	0 0) 13	XN . 1	0 00	13	HP.	1	0	00	13
0I	5	0	70	42	KL_ 1	0 0) 13		{		170	10		00	ro
UI.	5	0	70	42	WL 1	0 0) 13		1 70	01	 DO	14	1	00	90 ຄະ
YI _	3	0	48	33		1			1 61	04 01		2		00 00	20
BI	2	0	30	25	OM 25	1 4	79		1 61	80		1		00	10
KI	2	0	30	25	AM 14		61	FO 40	1 60	80	ר - שאנ יייר	1		00	10
XI	2	0	30	25	FM 14	1 1	61	RO 28	1 45	74	L ~ ~ ~	T		00	10
ZI	1	0	00	13	MM 18	1 1	59	HO 20	1 30	67	ER	87	1	94	94
					IM 9	0 9	5 53	WO 19	1 28	67	OR	64	1	81	89
AJ _	1	0	00	13	RM 9	0 9	5 53	NO 18	1 26	66	AR	44	1	64	82
BJ	1	0	00	13	TM. 6	0 7	45	P0 17	1 23	64	UR	31	1	49	75
DJ	1	0	00	13	DM 5	0 7) 42	D0 . 16	1 20	63	IR	27	1	43	78
EJ	1	0	00	13	NM _ 5	0 7) 42	SO 15	1 18	62	PR	18	1	26	66
GJ	1	0	00	13	UM. 5	0 7) 42	LO 13	1 11	59	HR	17	11	23	64
NJ	1	0	00	13	PM 4	0 6	38	E0 12	1 08	58	TR	17	1	23	64
0J	1	0	00	13	SM _ 3	0 4	3 33	MO 10	1 00	55	DR	12	11	08	58
RJ	1	0	00	13	HM 2	0 30) 25	YO _ 10	1 00	55		11		04	56
					LM . 2	0 30	25	GO 6	0 78	45	FR	9	0	95	53
CK	4	0	60	38	YM 2	0 3) 25	00 6	0 78	45	GR	5	0	70	42
AK _	2	0	80	25	BM 1	0 0) 13	BO_ 4	0 60	38	SR -	9	0	70	42
IK	2	0	30	25	CM 1	0 0) 13	A0 2	0 30	25		4	0	00	38
NK _	2	0	30	25	FM 1	0 0) 13	JO 2	0 30	25		4	N.	00	38
OK	2	0	30	25	GM 1	0 0) 13	UO _ 1	0 00	13		4	0	00	30
RK _	1	0	00	13	QM 1	0 0) 13	VO _ 1	0 00	13		20		3U 90	20
SK _	1	0	00	13	}			X0 _ 1	0 00	13		20	UV N	อัV จก	20
					EN 111	2 0	5 00	1			0P	2 1	0	3U 00	40
ΔΤ.	82	1	51	76		1 2	92	OP 25	1 10	72		ير 1	10	00	10
EI.	29	1	46	74	TN 75	1 8	92	EP 20	1 20	67	XP	1		00	10 19
	~ ~ .				1 10			1 240		· · ·	. 4242 ~	ياد	ιV		I TO

TABLE 9-A, Contd —The 428 different digraphs of Table 6-A, arranged first alphabetically according to their final letters and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

2-23

_

-RESTRICTED-

٠

a ti	ccore he lo	aını gar	g io ithn	their j is of the	eir assig	ers (ned :	ino pro	i the bab	n accor ilities	aing to	tneri	· a	08060	ue frequ	lencies,	acco	тp	0.7666	sa oy
	F	Lı	(Г)	L ₂₂₄ (2F)		г	L	₀(F)	Lr4 (2F)		F	L	ı(F)	L224 (2F)		Г	L	(F)	L114 (2F)
ES	54	1	73	86	OT	19	1	28	67	JU_	2	0	30	25	PW.	1	0	00	18
AS	41	1	61	80	TT _	19	1	28	67	LU	2	0	30	25	YW	1	0	00	13
IS	35	1	54	78	DT_	15	1	18	62	MU _	2	0	30	25					
RS	31	1	49	75	YT	15	1	18	62	YU	1	0	00	13	тx	15	1	18	62
NS	24	1	38	71	CT	14	1	15	61						EX	7	n n	85	48
SS .	19	1	28	67	UT	12	1	08	58	IV	25	1	40	72	07	1	ŏ	00	18
TS_	19	1	28	67	FT _	11	1	04	56	EV _	20	1	30	67	UA	•		00	10
0S	14	1	15	61	LT _	8	0	90	51	AV.	, 7	0	85	48		I	ł		
DS	13	1	11	59	PT	8	0	90	51	OV _	7	0	85	48	TY	41	1	61	80
US	12	1	08	58	XT	7	0	85	48	RV	5	0	70	42	AY	12	1	08	58
YS	11	1	04	56	GT	4	0	60	38	DV _	3	0	48	33	LY	10	1	00	55
LS	6	0	78	45	MT	2	0	30	25	NV .	3	0	48	33	RY	9	0	95	53
PS	6	0	78	45	BT _	1	0	00	13	LV	2	0	30	25	BY	7	0	85	48
HS	4	0	60	38	VT.	1	0	00	13	PV _	1	0	00	13	NY	5	0	70	42
ms _	4	0	60	38			ł			SV	1	0	00	13	EY.	4	0	60	38
FS	3	0	48	33	00	37	1	57	79	UV _	1	0	00	13	MY	2	0	30	25
GS	3	0	48	33	ຊນ _	15	1	18	62						OY	2	0	30	25
BS	1	0	00	13	AU	13	1	11	59	'TW	36	1	56	78	CY	1	0	00	13
CS	1	0	00	13	SU_	11	1	04	· 56	OW	8	0	90	51	DY	1	0	00	13
KS	1	0	00	13	HU _	8	0	90	51	EW	7	0	85	48	FY	1	0	00	13
WS	1	0	00	13	NU _	7	0	85	48	D₩ _	4	0	60	38	HY	1	0	00	13
XS	1	0	00	13	DU _	5	0	70	42	RW	4	0	60	38	PY	1	0	00	13
					RU _	5	0	70	42	SW	4	0	60	38	SY.	1	0	00	13
NT	82	1	91	93	TU _	5	0	70	42	AW _	8	0	48	33	WY	1	0	00	13
ST	63	1	80	88	CU	4	0	60	- 38	NW	3	0	48	33				i	
AT_	47	1	67	83	EU _	3	0	48	33	LW	2	0	30	25	T17	0		90	05
RT	42	1	62	81	FU_	3	0	48	33	CW	1	0	00	13	12.	2	0	30	20
ET	37	1	57	79	PU .	3	0	48	33	FW	1	0	00	13	<u> </u>	Ţ	0	00	13
HT	28	1	45	74	BU	2	0	30	25	GW	1	0	00	13		<u> </u>	0	00	13
IT _	27	1	43	73	GU	2	0	30	25	HW _	1	Ó	00	13	5,0	000			

TABLE 9-A, Concluded — The 428 different digraphs of Table 6-A, arranged first alphabetically according to their final letters and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

- - - -

RESTRICTED

-RESTRICTED

(1) AND ACCORDING TO THEIR INITIAL

		TRU.	fers				F	REQUE	NCIES		
F	L ₁₀ (F)	L=4 (2Γ)	F	Lig(F)	L414 (2F)	F	L10(F)	L114 (2F)	F	L ₁₀ (F)	L124 (2F)
ED 60 ND . 52	1 78 1 72	88 85	IN 75 ON 77	1 88 1 89	92 92	ED 60 ND 52	1 78 1 72	88 85	IN _ 75 AN 64	1 88 1 81	92 89
NE 57	1 76	87	TO 50	1 70	84	RE 98	1 99	96 01	то _ 50	1 70	84
SE 98 SE 49 TE 71	1 99 1 69 1 85	96 84 91	ER 87 OR 64	1 94 1 81	94 89	TE 71 NE 57 VE _ 57	1 85 1 76 1.76	91 87 87	ER 87 OR. 64	194 181	94 89
VE 57	1 76	87	ES 54	1 73	86	SE _ 49	1 69	.84	ES . 54	1 73	86
TH 78	1 89	92	NT. 82 ST. 63	1 91 1 80	93 88	TH _ 78	1 89	92	NT 82 ST 63	1 91 1 80	93 88
AN 64 EN111	1 81 2 05	89 99	1,249			EN_ 111 ON_ 77	2 05 1 89	99 92	1,249		

TABLE 9-B --- The 18 digraphs composing 25% of the 5,000 digraphs of Table 6-A, accompanied by the logarithms of their assigned probabilities, arranged alphabetically according to their final letters

(2) AND ACCORDING TO THEIR ABSOLUTE

TABLE 9-C — The 53 digraphs composing 50% of the 5,000 digraphs of Table 6-A, accompanied bythe logarithms of their assigned probabilities, arranged alphabetically according to their final letters

F	L10(F)	L124 (2F)	F	L19(F)	L ₂₂₄ (2F)	F	L10(F)	(2F)	F	Las(F)	Ltti (2F)
DA. 32 EA. 31 LA 28 MA 30 RA 39	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	76 78 74 78 80	NE. 57 RE. 98 SE. 49 TE. 71 VE 57	$ \begin{array}{r} 1 & 76 \\ 1 & 99 \\ 1 & 69 \\ 1 & 85 \\ 1 & 76 \\ \end{array} $	87 96 84 91 87	AN 64 EN111 IN 75 ON . 77	1 81 2 05 1 88 1 89	89 99 92 92	AS 41 ES 54 IS 35 RS 31	1 61 1 73 1 54 1 49	.80 86 .78 75
TA 28 EC 32		74 76	TH 78	1 89	92	CO 41 FO 40	1 61 1 60	80 80	AT 47 ET 37 HT 28 NT 82	$ \begin{array}{rrrr} 1 & 67 \\ 1 & 57 \\ 1 & 45 \\ 1 & 91 \\ \end{array} $	83 79 7 <u>4</u> 93
ED 60 ND 52	0 1 78 2 1 72	88 85	FI. 39 HI 38 NI. 30 RI. 30 SI 34	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80 77 75 75 75	10 41 RO 28 TO 50	1 61 1 45 1 70	80 74 84	RT 42 ST 63 OU 37	1 62 1 80 1 57	81 88 79
CE 32 DE 32 EE 42 LE 37	1 51 1 52 1 62 1 57	76 77 81 79	TI 45 AL 32 EL 29	1 65 1 51 1 46	82 76 74	AR 44 ER 87 OR 64 UR 31	1 64 1 94 1 81 1 49	82 94 89 75	TW 36 TY_ <u>41</u> 2,495	1 56 1 61	78 80

(1) AND ACCORDING TO THEIR INITIAL LETTERS

2-25

-RESTRICTED-

١

RESTRICTED

TABLE 9-C, Concluded —The 53 digraphs composing 50% of the 5,000 digraphs of Table 6-A, accompanied by the logarithms of their assigned probabilities, arranged alphabetically according to their final letters

	F	L18(F)	(2F)	F		Lu(F)	L: 4 (217)	F	L ₁₀ (Г)	Last (217)	r	Lu(I')	L(2F)
RA MA EA DA	39 36 35 32 28	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	80 78 78 76 74	EE 42 LE 3' DE 3 CE _ 32	2 : 7 : 8 : 2 :	1 62 1 57 1 52 1 51	81 79 77 76	EN111 ON . 77 IN 75 AN 64	2 05 1 89 1 88 1.81	99 92 92 .89	ES 54 AS 41 IS 35 RS . 31	$ \begin{array}{r} 1.78 \\ 1 & 61 \\ 1 & 54 \\ 1 & 49 \end{array} $.86 80 78 75
TA	28 28	1 45	74	TH _ 78	3	1 89	92	TO _ 50	1 70	84	NT 82 ST 63	1.91 1 80	93 88
EC	32	1 51	76	TI 4	5	1 65	82	CO _ 41 IO _ 41	1 61	.80	AT. 47 RT. 42	1 67	83 81
ED ND	60 52	1 78 1 72	88 .85	FI 3 SI 34 HI 3	1 : 1 : 3 :	$ \begin{array}{ccc} 1 & 59 \\ 1 & 53 \\ 1 & 52 \\ \end{array} $	80 77 77	FO _ 40 RO _ 28	1 60 1 45	80 74	ET 37 HT 28	1 57 1 45	79 74
RE TE	98 71	199 185	96 .91	NI 30 RI 30) :) :	$\begin{array}{c}1 & 48\\1 & 48\end{array}$	75 75	ER 87	1 94	94	OU _ 37 TW 36	1 57	79 78
NE VE	57 57	176 176 160	87 87 84	AL. 32	2	1 51	76 74	OR _ 64 AR _ 44	1 81 1 64	89 .82	TY41	1 61	.80
. 20 	489	1.09	04		<u>'</u>	1 40	(4	UK. 81	1 49	10	2,490		

(2) AND ACCORDING TO THEIR ABSOLUTE FREQUENCIES

TABLE 9-D —The 122 digraphs composing 75% of the 5,000 digraphs of Table 6-A, accompanied by
the logarithms of their assigned probabilities, arranged alphabetically according to their final letters
(1) AND ACCORDING TO THEIR INITIAL LETTERS

F	L _{it} (F)	L::4 (2F)	F	L _{i0} (F)	Lri (21 ⁻)	F	L10(F)	L ₁₂₄ (2F)	F	L _R (F)	L214 (2Г)
F CA 20 DA 32 EA 35 HA . 20 LA 28 MA 36 NA 26 PA 14 RA 39 SA . 21	La(F) 1 30 1 51 1 54 1 30 1 45 1 56 1 41 1 15 1 59 1 38 1 41	た時 ・67 76 78 67 74 78 72 61 80 71	F ND 52 RD 17 BE . 18 CE . 32 DE 33 EE 42 GE . 14 HE 20 IE . 13 LE . 37	$\begin{array}{c} L_{10}(F) \\ \hline 1 & 72 \\ 1 & 23 \\ 1 & 26 \\ 1 & 51 \\ 1 & 52 \\ 1 & 62 \\ 1 & 15 \\ 1 & 30 \\ 1 & 11 \\ 1 & 57 \end{array}$	Lari 85 64 66 76 77 81 61 67 59 79	F EF 18 OF 25 IG 19 NG 27 CH _ 14 GH 20 SH _ 26 TH _ 78	Lu0(F) 1 26 1 40 1 28 1 43 1 15 1 30 1 41 1 89	(25) 66 72 67 73 61 67 72 .92	F SI 84 TI 45 AL 82 EL 29 IL 29 IL 23 LL 27 OL 19 AM 14	Lu(F) 1 58 1 65 1 51 1 46 1 36 1 43 1 28 1 15	上野 77 82 76 .74 70 73 67 61
AC - 14 EC 32 IC 22 NC 19 AD - 27 ED - 60	$ \begin{array}{c} 1 & 45 \\ 1 & 15 \\ 1 & 51 \\ 1 & 31 \\ 1 & 28 \\ 1 & 43 \\ 1 & 78 \\ \end{array} $	61 76 69 67 73 88	ME 26 NE 57 PE 23 RE 98 SE 98 SE 49 TE 71 VE 57 WE 22	1 41 1 76 1 36 1 99 1 69 1 85 1 76 1 34	72 87 70 96 84 91 87 69	AI 17 DI 27 EI 27 FI. 39 HI33 LI 20 NI 30 RI30	1 23 1 43 1 43 1 59 1 52 1 30 1 48 1 48	64 73 73 80 77 67 75 75	EM _ 14 OM _ 25 AN 64 EN 111 IN_ 75 ON 77 UN _ 21	1 15 1 40 1 81 2 05 1 88 1 89 1 32	.61 72 89 99 92 92 68

RESTRICTED

RESTRICTED

TABLE 9-D, Contd -The 122 digraph	s composing 75% of the 5,000 digraphs of Table 6-A, a	ic-
companied by the logarithms of their	r assigned probabilities, arranged alphabetically according	to
their final letters		

	F	L10(F)	[.424 (21)	Г	L10(I')	L ₂₂₄ (21 ⁻)	r	L10(T)	L ₂₂₄ (2F)	F	L ₁₀ (F)	L _{2 4} (2F)
CO DO FO HO IO LO _ NO _ PO _ RO _ SO TO WO	41 16 40 20 41 13 18 17 28 15 50 19	$ \begin{array}{c} 1 & 61 \\ 1 & 20 \\ 1 & 20 \\ 1 & 20 \\ 1 & 20 \\ 1 & 30 \\ 1 & 30 \\ 1 & 11 \\ 1 & 26 \\ 1 & 23 \\ 1 & 45 \\ 1 & 18 \\ 1 & 70 \\ 1 & 28 \\ 1 & 30 \\ 1 & $	(21) 80 63 80 67 80 59 66 64 74 62 84 67 67	AR - 44 ER - 87 HR - 17 IR - 27 OR - 64 PR - 18 TR - 17 UR 31 AS - 41 DS - 13 ES - 54 IS - 35	$ \begin{array}{c} 1 & 64 \\ 1 & 94 \\ 1 & 23 \\ 1 & 43 \\ 1 & 26 \\ 1 & 23 \\ 1 & 49 \\ 1 & 61 \\ 1 & 11 \\ 1 & 73 \\ 1 & 54 \\ 1 & 28 \\ \end{array} $	(217) 82 94 64 73 89 66 64 75 80 59 86 78 71	RS 81 SS - 19 TS 19 TS 19 AT 47 CT - 14 DT 15 ET 37 HT 28 IT 27 NT 82 OT 19 ET 49	$ \begin{array}{c} 1 & 49 \\ 1 & 28 \\ 1 & 28 \\ 1 & 28 \\ 1 & 28 \\ 1 & 15 \\ 1 & 15 \\ 1 & 45 \\ 1 & 45 \\ 1 & 43 \\ 1 & 91 \\ 1 & 28 \\ 1 & $	(2F) 75 67 67 83 61 62 79 74 73 93 67	TT 19 YT 15 AU 13 OU . 87 QU 15 EV. 20 IV 25 TW 36 IX . 15 TY 41	L ₄₀ (F) 1 28 1 18 1 11 1 57 1 18 1 30 1 40 1 56 1 18 1 61	67 62 59 79 62 67 72 78 62 78 62 80
EP 0P	20 25	1 30 1 40	67 72	NS - 24 0S - 14	1 38 1 15	71 61	RT - 42 ST 63	$\begin{array}{c c}1 & 62\\1 & 80\end{array}$	81 88	3,745		

(1) AND ACCORDING TO THEIR INITIAL LETTERS-Concluded

(2) AND ACCORDING TO THEIR ABSOLUTE FREQUENCIES

	F	L ₁₀ (F)	(2F)	F	L ₁₀ (Г)	L-24 (2Г)	F	L10(F)	L ₂₂₄ (21 ⁻)	F	L ₁₀ (Γ)	L234 (2F)
RA MA EA DA LA TA NA SA CA	39 36 35 32 28 28 28 26 24 20	1 59 1 56 1 54 1 51 1 45 1 45 1 45 1 45 1 41 1 38 1 30	(2F) 80 78 78 76 74 74 72 71 67	RE 98 TE 71 NE 57 VE . 57 SE 49 EE . 42 LE . 37 DE. 33 CE 32	$ \begin{array}{c} 1 & 99 \\ 1 & 85 \\ 1 & 76 \\ 1 & 76 \\ 1 & 69 \\ 1 & 62 \\ 1 & 57 \\ 1 & 52 \\ 1 & 51 \\ \end{array} $	(21) 96 91 87 87 87 84 81 79 77 76	TH. 78 SH 26 GH. 20 CH 14 TI 45 FI. 39 SI 34 HT 83	$ \begin{array}{c} 1 & 89 \\ 1 & 41 \\ 1 & 30 \\ 1 & 15 \\ 1 & 65 \\ 1 & 59 \\ 1 & 53 \\ 1 & 52 \\ \end{array} $	(27) 92 72 67 61 82 80 77 77	OM 25 AM 14 EM 14 EN 111 ON 77 IN 75 AN . 64 UN 21	$ \begin{array}{c} 1 & 40 \\ 1 & 15 \\ 1 & 15 \\ 2 & 05 \\ 1 & 89 \\ 1 & 88 \\ 1 & 81 \\ 1 & 32 \end{array} $	(2F) 72 61 61 99 92 92 92 89 68
HA PA PA PA PA PA PA PA PA PA _ P	20 14 32 22 19 14	1 30 1 15 1 51 1 34 1 28 1 15	67 61 76 69 67 61	ME _ 26 PE _ 23 WE _ 22 HE _ 20 BE _ 18 GE _ 14 IE 13	1 41 1 36 1 34 1 30 1 26 1 15 1 11	72 70 69 67 66 61 59	NI _ 30 RI _ 30 DI _ 27 EI _ 27 LI _ 20 AI_ 17	1 52 1 48 1 48 1 43 1 43 1 30 1 23	75 75 73 73 67 64	TO 50 CO 41 IO 41 FO 40 RO 28 HO 20 WO 19	1 70 1 61 1 61 1 60 1 45 1 30	84 80 80 80 74 67
ED ND AD RD	60 52 27 17	1 78 1 72 1 43 1 23	88 85 73 64	OF _ 25 EF 18 NG _ 27 IG _ 19	1 40 1 26 1 43 1 28	72 66 73 67	AL - 32 EL - 29 LL - 27 IL - 23 OL - 19	1 51 1 46 1 43 1 36 1 28	76 74 73 70 67	NO 19 NO_ 18 PO 17 DO _ 16 SO 15 LO 13	1 28 1 26 1 23 1 20 1 18 1 11	67 66 64 63 62 59

2-27

RESTRICTED

.

.

TAE	LE 9-D,	Concluded		digraphs	composing	75% of	the 5,000	digraphs of	Table 6	;A,
	accompo	anied by the	logarıthms (of therr ass	agned proba	brlrtres, c	arranged a	lphabetically	accordin	g to
	therr fin	al letters								

F	L10(F)	L214 (217)	F	L ₁₀ (F)	L ₂₂₄ (2F)	F	L ₁₀ (F)	L114 (2F)	F	L ₁₀ (F)	L124 (2F)
OP 28 EP 20	1 40 1 80	72 67	ES 54 AS 41 IS . 35	$ \begin{array}{c} 1 & 73 \\ 1 & 61 \\ 1 & 54 \\ \end{array} $	86 80 78	NT 82 ST 63 AT . 47	1 91 1 80 1 67	93 88 83	0U. 37 QU 15 AU. 13	1 57 1 18 1 11	79 62 59
ER _ 87 OR 64 AR 44	1 94 1 81 1 64	94 89 82	RS_ 31 NS 24 SS 19 TS 19	1 49 1 38 1 28	75 71 67 67	RT. 42 ET 37 HT 28 TT 27	1 62 1 57 1 45 1 45 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 48	81 79 74 73	IV 25 EV _ 20 TW 36	1 40 1 80	72 67 78
UR. 31 IR. 27 PR. 18	$ \begin{array}{c} 1 & 49 \\ 1 & 43 \\ 1 & 26 \end{array} $	75 73 66	OS 14 DS. 13	1 15 1 11	61. 59	OT _ 19 TT _ 19 DT _ 15	1 28 1 28 1 18	67 67 62	IX 15	1 18	62 80
HR 17 TR 17	1 23 1 23	64 64				YT 15 CT 14	1 18 1 15	62 61	3,745		

(2) AND ACCORDING TO THEIR ABSOLUTE FREQUENCIES-Concluded

TABLE 9-E —All the 428 different digraphs of Table 6-A, arranged alphabetically first according to their final letters and then according to their initial letters

(SEE TABLE 6-A -READ DOWN THE COLUMNS)

TABLE 10-A —The 56 trigraphs appearing 100 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

F	L10(F)	L114 (2F)	F	L ₁₀ (F)	Lm (2Γ)		F	L10(Г)	Lm. (2F)
ENT. 569	2 76	99	TOP 174	2 24	82	EIG	135	2 13	79
ION 260	2 41	88	NTH 171	2 23	82	FIV	135	2 13	79
AND	2 36	86	TWE 170	2 23	82	MEN	131	2 12	78
ING 226	2 35	86	TWO 163	2 21	81	SEV	131	2 12	78
IVE 225	2 35	86	ATI 160	2 20	81	ERS	126	2 10	78
TIO 221	2 34	85	THR 158	2 20	81	UND	125	2 10	78
FOR 218	2 34	85	NTY 157	2 20	81	NET	118	2 07	77
OUR 211	2 32	85	HRE 153	2 18	80	PER	115	2 06	76
THI 211	2 32	85	WEN 153	2 18	80	STA	115	2 06	76
ONE 210	2 32	85	FOU 152	2 18	80	TER	115	2 06	76
NIN 207	2 32	85	ORT 146	2 16	80	EQU	111	2 06	76
STO 202	$2 \ 31$	84	REE 146	2 16	80	RED	113	2 05	76
EEN. 196	2 29	84	SIX . 146	2 16	80	TED	112	2 05	76
GHT 196	2 29	84	ASH 143	2 16	80	ERI	109	2 04	76
TNE 192	2 28	83	DAS 140	2 15	79	HIR .	106	2 03	75
VEN 190	2 28	83	IGH 140	2 15	79	IRT	105	2 02	75
EVE 177	2 25	82	ERE 138	2 14	79	DER	101	2 00	74
EST 176	2 25	82	COM 136	2 13	79	DRE	100	2 00	74
TEE _ 174	2 24	82	ATE _ 185	2 13	79				

2 - 28

-RESTRICTED

RESTRICTED

accordi	ng to	the	num nra	s, and bsolute fr	equencies, accor	npanı	uy ed i	acc by th	e logarıti	o their initial teach hms of their assigned	8, 1 p10	babr	inen litres
	F	La	a(L)	(21 ⁻)		F	L	ы(Г)	L124 (2F)	F	L	»(I')	L-114 (2F)
AND	228	2	36	86	GHT	196	2	29	84	REE 146	2	16	80
ATI	160	2	20	81						RED 113	2	05	76
ASH	143	2	16	80	HRE	153	2	18	80		1		
ATE	135	2	13	79	HIR.	106	2	03	75	STO 202	2	31	84
			i							SIX 146	2	16	80
COM	136	2	13	79	ION	260	2	41	88	SEV131	2	12	78
		_			ING	226	2	35	86	STA 115	2	06	76
DAS	140	2	15	79	IVE	225	2	35	86				
DER	101	2	00	74	INE	192	2	28	83	TIO 221	2	84	85
DRE	100	2	00	74	IGH	140	2	15	79	THI 211	2	82	85
	-		~~~		IRT	105	2	02	75	TEE	$\overline{2}$	24	82
ENT	569	2	76	99		4 - 4				TOP	2	24	82
EEN	196	Z	29	84	MEN	131	2	12	78	TWE 170	2	23	82
EVE	177	2	25	82		0.07				TWO 163	2	21	81
EST	170	Z	20	82	NIN	207	z	32	85	THR 158	2	20	81
EKE	139	2	14	79	NTH	171	Z	23	82	TER 115	2	06	.76
EIG	100		10	79	NTY	110	2	20	81	TED 112	2	05	76
ERO	120	2	10	78 76	NET	118	Z	07	77				
EQU	100	40	00	(0 76	OUD	011	0	90	05	UND	2	10	78
ERT	TOA	4	V4	10		211	20	22	60 95		-		
RUR	218	2	34	85		146	2	16	80 80	VEN	2	28	83
FOU	152	2	18	80	VIN4	7-40	"	10	00		[
FTV	185	2	13	.79	PER	115	2	06	76	WEN 159	2	18	80
	200	-	-0			210		~~			12		

TABLE 10-B — The 56 trigraphs appearing 100 or more times in the 50,000 letters of Governmental plan-text telegrams arranged first alphabetecally according to them emitted letters and then

TABLE 10-C -The 56 trigraphs appearing 100 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged first alphabetically according to their central letters, and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

	F	L	(T)	L ₂₂₄ (2F)		 F	L	•(I')	L ₁₂₄ (2Γ)	F	L	(T)	L224 (2F)
DAS	140	2	15	79	IGH	 140	2	15	79	ENT 569	2	76	99
EEN_	196	2	29	84						AND 228	2	36	86
VEN	190	2	28	83						ING	2	35	86
ហធាជា	171	5	21	82	THI	 211	2	82	85	ONE 210	2	32	85
	150	5	10	02	GHT	 196	2	29	84	INE 192	2	28	.83
WEIN-	100	4	10	00	TUD	 150	5	20	Q1	UND	2	10	78
REE	146	2	10	80	107 -	 100	4	20	01		[
MEN	131	2	12	78			[1	
SEV	131	2	12	78			ſ			1	[
NET	118	2	07	77	TIO	 221	2	34	85		1	1	
PER	115	2	06	76	NIN_	 207	2	32	85	ION 260	2	41	88
TER	115	2	06	76	SIX .	 <u>1</u> 46	2	16	80	FOR 218	2	34	85
RED	113	2	05	76	EIG	 135	2	13	79	TOP 174	2	24	82
TED	112	2	05	76	FIV_	 135	2	13	79	FOU 152	2	18	80
DER	101	2	00	74	HIR_	 106	2	03	75	COM 136	2	13	79

2-29

RESTRICTED

ī,

TABLE 10-C, Concluded —The 56 trigraphs appearing 100 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged first alphabetically according to their central letters, and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

	F	La	ь(Г)	L24 (21)				r	L	(T)	L ₂₂₄ (2Г)			 F	L	10(F)	L2.4 (217)
EQU	114	2	06	76	EST		-	176	2	25	82	JO	JR	 211	2	32	85
-					ASH		-	143	2	16	80						
HRE	153	2	18	80				i							{		
ORT	146	2	16	80	STO		-	202	2	81	84	II	E.	 - 225	2	35	86
ERE	138	2	14	79	NTH	-		171	2	23	82	E/	Έ.	 177	2	25	82
ERS	126	2	10	78	ITA			160	2	20	81				[
ERI	109	2	04	76	NTY			157	2	20	81	ļ			1		
IRT	105	2	02	75	ATE			135	2	13	79	TV	Æ	. 170	2	28	82
DRE	100	2	00	74	STA			115	2	06	76	TV	10	 . 163	2	21	81

TABLE 10-D —The 56 trigraphs appearing 100 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged first alphabetically according to their final letters, and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

	F	Lis(F)	(2F)	F	L ₁₈ (F)	L _{2M} (2F)	F	L ₁₈ (F)	L#4 (2F)
STA	115	2 06	76	THI 211 ATI 160	$\begin{array}{c} 2 & 32 \\ 2 & 20 \end{array}$	85 81	TER 115 HIR 106	$\begin{bmatrix} 2 & 06 \\ 2 & 03 \end{bmatrix}$	76 75
AND	228	2 36	86	ERI 109	$\tilde{2}$ $\tilde{0}\tilde{4}$	76	DER 101	2 00	74
RED	125 113 112	$ \begin{array}{c} 2 & 10 \\ 2 & 05 \\ 2 & 05 \end{array} $	76 76 76	COM 136	2 13	79	DAS 140 ERS 126	$\begin{array}{c} 2 & 15 \\ 2 & 10 \end{array}$	79 78
IVE	225	2 85	86	ION 260	2 41	88	ENT 569	2 76	99
ONE	210 192	2 32 2 28	85	EEN. 196	2 32 2 29	85 84	GHT 196	2 29	84
EVE	177 174	$\begin{array}{c}2&25\\2&24\end{array}$	82 82	VEN_ 190 WEN _ 153	2 28 2 18	83 80	ORT 146	2 16	80
TWE HRE	170 153	2 23 2 18	82 80	MEN 131	2 12	78	IRT 118	2 07	75
REE	146 138 135	$ \begin{array}{ccc} 2 & 16 \\ 2 & 14 \\ 2 & 13 \\ \end{array} $	80 79 79	TIO 221 STO 202 TWO 163	2 34 2 31 2 21	85 84 81	FOU 152 EQU 114	2 18 2 06	80 .76
ING	100 226	2 00 2 35	74 86 70	TOP 174	2 24	82	FIV 135 SEV - 131	$\begin{array}{c} 2 & 13 \\ 2 & 12 \end{array}$	79 78
NTH	171	2 23	82	FOR 218 OUR _ 211	2 34 2 32	85 85	SIX - 146	2 16	80
IGH	$143 \\ 140$	$\frac{2}{2}$ 16	80 79	PER 158	2 20 2 06	81 76	NTY 157	2 20	81

2-30

-RESTRICTED

REF ID:A56892 -

RESTRICTED ,

of their of	assig	med pr	robabılıtı	68						
	F	L ₁₀ (F)	1.424 (2F)	F	Lu(F)	<u>L</u> 74 (2Г)	1	ŀ	$L_{ta}(\Gamma)$	1 114 (217)
TION 2	218	2 34	99	THIR 104	2 02	87	ASHT	64	1 81	.79
EVEN 1	168	2 23	95	EENT 102	2 01	87	HUND	64	1 81	79
TEEN 1	168	2 21	94	REQU 98	1 99	86	DRED	63	1 80	79
ENTY 1	161	2 21	94	HIRT 97	1 99	86	RIOD.	63	1 80	.79
STOP 1	154	2 19	93	COMM 93	1 97	85	IVED -	62	1 79	78
WENT1	158	2 18	93	QUES 87	1 94	84	ENTS .	62	1 79	78
NINE 1	158	2 18	93	UEST 87	1 94	84	FFIC .	62	1 79	78
TWEN 1	152	2 18	93	EQUE _ 86	1 98	84	FROM	59	1 77	78
THRE 1	149	2 17	98	NDRE _ 77	1 89	82	IRTY	59	1 77	78
FOUR 1	144	2 16	92	OMMA 71	1 85	81	RTEE	59	1 77	78
IGHT 1	140	2 15	92	LLAR 71	1 85	81	UNDR	59	1 77	78
FIVE 1	185	2 13	91	OLLA 70	1 85	81	NAUG	56	1 75	77
HREE 1	134	2 13	91	VENT	1 85	81	OURT	56	1 75	.77
DASH 1	182	2 12	91	DOLL 68	1 83	80	UGHT	56	1 75	77
EIGH 1	182	2 12	91	LARS 68	1 83	80	STAT	54	1 73	76
SEVE 1	121	2 08	89	THIS 68	1 83	80	AUGH	52	1 72	76
ENTH 1	114	2 06	89	PERI 67	1 83	80	CENT	52	1 72	76
MENT1	111	2 05	88	ERIO 66	1 82	80	FICE .	50	1 70	75

TABLE 11-A — The 54 tetragraphs appearing 50 or more times in the 50,000 letters of Governmental plan-text telegrams, arranged according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

TABLE 11-B — The 54 tetragraphs appearing 50 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged first alphabetically according to their initial letters, and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

				-	-		-	
F	L ₁₀ (F)	L74 (217)	F	Lio(F)	L114 (2F)	F	Lu(F)	(2F)
ASHT : 64	1 81	79	HREE _ 134	2 13	91	REQU 98	1 99	86
AUGH 52	1 72	76	HIRT 97	1 99	86	RIOD 63	1 80	.79
COMM 98	1 97	85	HUND 64	1 81	79	RTEE 59	1 77	78
CENT 52	1 72	76	IGHT. 140	2 15	92	STOP 154	2 19	98
DASH 132	2 12	91	IVED 62	1 79	78	SEVE 121	2 08	89
DOLL 68	1 83	80	IRTY 59	1 77	78	STAT 54	1 78	76
DRED 63	1 80	79	T.T.AR 71	1 85	81			
EVEN	2 23	95	LARS 68	1 88	.80	TION 218	2 34	99
ENTY 161	2 21	94	21110 - 00	1 00		TEEN 163	2 21	94
EIGH 182	2 12	91	MENT 111	2 05	88	TWEN 152	2 18	93
ENTH 114	2 06	89				THRE 149	2 17	98
EENT 102	2 01	87	NINE _ 153	2 18	93	THIR 104	2 02	87
EQUE 86	1 93	84	NDRE	1 89	82	THIS _ 68	1 83	80
ERTO 66	1 82	80	NAUG 56	1 75	77		[
ENTS 62	1 79	78	00084 771	1 05	01	UEST	1 94	84
2MIN 02	1 10		$0mmA_{} 71$	1 00	10	UNDR 59	1 77	78
FOUR 144	2 16	92	ULLA	1 85	81	UGHT 56	1 75	77
FIVE 185	2 13	91	00KT 56	1 75			ļ	
FFIC 62	1 79	78	PERT 67	1 82	80	VENT 70	1 85	81
FROM 59	1 77	78		- 00			1	
FICE 50	1 70	75	QUES	1 94	84	WENT. 153	2 18	93

2-31

Ţ

ı

ļ

I

	F	L	10(F)	L114 (2F)	F	L	10(F)	L ₂₂₄ (21 ⁻)	F	L ₁₀ (F)	(21)
DASH	132	2	12	91	TION_ 218	2	34	99	HREE 134	2 13	91
LARS	68	1	83	80	NINE 153	2	18	93	ERIO 66	1 82	80
NAUG	56	1	75	77	FIVE 135	2	13	91	DRED 63	1 80	79
NDRE	77	1	89	82	EIGH 132 HIRT 97	2 1	12 99	91 86	FROM 59 IRTY 59	$ \begin{vmatrix} 1 & 77 \\ 1 & 77 \end{vmatrix} $	78 78
TEEN	163	2	21	94	RIOD 63	1	80	79		1	1
WENT	153	2	18	98	FICE 50	1	70	75	ASHT	1.81	79
SEVE	121	2	08	89						ŧ.	
MENT.	111	2	05	88	LLAR 71	1	85	81	STOP 154	2 19	93
EENT	102	2	01	87	OLLA _ 70	1	85	81	RTEE 59	1 77	78
REQU .	98	1	99	86					STAT	1 78	76
UEST.	87	1	94	84	OMMA . 71	1	85	81			
VENT	70	1	85	81			~ -		QUES 87	1 94	84
PERI	67	1	83	80	ENTY . 161	2	21	94	HIND 64	1 81	79
CENT	52	1	72	76	ENTH 114	2	06	89	OURT 56	1 75	77
FFIC	62	1	79	78	ENTS 62 UNDR 59	1 1	79 77	78 78	AUGH _ 52	1 72	76
IGHT	140	2	15	92			10	00	EVEN 168	2 23	95
UGHT	56	1	75	77	$\begin{array}{cccc} FUUK & 144 \\ COMM & 02 \end{array}$		10	92 05	IVED 62	1 79	78
THRE	149 104	2	17 02	93 87	DOLL 68		83	80	TWEN 152	2 18	93
THIS	68	1	83	80	EQUE 86	1	93	84			

TABLE 11-C — The 54 ietragraphs appearing 50 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged first alphabetically according to their second letters, and then ac cording to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

TABLE 11-D — The 54 tetragraphs appearing 50 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged first alphabetically according to their third letters, and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

	F	L	a(F)	L#24 (2F)	ŀ	I	110(F)	L224 (2F)			F	La	•(F)	L 124 (2Г)
LLAR STAT	71 54	1 1	85 73	81 76	EIGH 13 AUGH 5	2 2 2 1	12 72	91 76	COMM OMMA	 	93 71	1 1	97 85	85 81
FICE	50	1	70	.75	IGHT 14	02	15	92	WENT		$153 \\ 153$	2	18	93 93
UNDR	59	1	77	78	ASHT 6 UGHT 5	$\begin{array}{c c} 4 & 1 \\ 6 & 1 \end{array}$	81 75	79 77	MENT		111	2	05	88
EVEN	168	2	23	95					EENT	~	102	2	01	87
TEEN	168	2	21	94	THIR 10	4 2	02	87			70 61	1	00 Q1	70
TWEN	152	2	18	93	THIS 6	8 1	83	80			59	1	79	76
HREE	134	2	13	91	ERIO 6	6 1	82	80	CENT	-	04	1	14	10
QUES	87	1	94	84	FFIC6	2 1	79	78	TION		218	2	34	99
DRED	63	1	80	79					STOP		154	2	19	93
IVED.	62	1	79	78	OLLA 7	0 1	85	81	RIOD		63	1	80	79
RTEE	59	1	77	78	DOLL 6	8 1	83	80	FROM	-	59	1	77	78

.

TABLE 11–D, Concluded —The 54 tetragraphs appearing 50 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged first alphabetically according to their third letters, and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

	F	L10	(T)	L ₂₁ (2F)	F	L19(F)	Lτι (2Γ)	Г	L ₁₀ (F)	Lни (2Г)
REQU	98	1	99	86	DASH 132 UEST 87	$ \begin{array}{c} 2 & 12 \\ 1 & 94 \end{array} $	91 84	FOUR 144 EQUE 86	2 16 1.93	92 84
THRE _ HTRT	149 97	2	17 99	93 86				NAUG 56	1 75	77
NDRE	77	1	89	82	ENTY 161	2 21	94			
PERI	68 67	1	83 83	80 80	ENTH 114 ENTS 62	2 06	89 78	FIVE 135	2 13	91
OURT	56	1	75	77	IRTY 59	1 77	78	SEVE 121	2 08	89

TABLE 11-E — The 54 tetragraphs appearing 50 or more times in the 50,000 letters of Governmental plain-text telegrams, arranged first alphabetically according to their final letters, and then according to their absolute frequencies, accompanied by the logarithms of their assigned probabilities

	F	L ₁₀ ((Г)	L ₂₂₄ (2F)		г	L	ı(F)	L224 (2F)	F	L	10(F)	L224 (2Г)
OMMA	71	1	85	81	DASH _	132	2	12	91	QUES 87	1	94	84
OLLA .	70	1	85	81	EIGH _	132	2	12	91	THIS 68	1	83	80
					ENTH _	114	2	06	89	LARS 68	1	83	80
DETO	00	-	70	70	AUGH _	52	1	72	76	ENTS	1	79	78
F.F.T.C	6Z	T	79	78									
					PERI	67	1	83	80	WENT 159	0	10	02
HUND	64	1	81	79						TOUT 140	0	15	90 00
DRED	63	1	80	79	DOLL	68	1	88	80	MENT 111	10	10	<i>74</i> 00
RIOD	63	1	80	79	COM	0.0	-	077	or		10	00	00
TVED	62	1	79	78		90		91	00 70		4	00 UT	01
,		-			FROM _	09	LΤ	-77	18	HIRT 97		99	80
					TTON	218	2	84	99	UEST 87	1	94	84
NINE	153	2	18	93	EVEN	168	2	23	95	VENT70		80	81
THRE	149	2	17	93	TEEN	163	2	21	94	ASHT 64	1	81	79
FIVE	135	2	13	91	ידשבאו	159	5	10	02	OURT 56	1	75	77
HREE	134	2	13	91	TATOTA	104	2	10	00	UGHT 56	1	75	77
SEVE .	121	2	80	89	ERIO _	66	1	82	80	STAT 54	1	73	76
EQUE	86	1	93	84	-			1		CENT 52	1	72	76
NDRE _	77	1	89	82	STOP	154	2	19	93		1		
RTEE	59	1	77	78		444	6	10	0.0	REQU	1	99	86
FICE	50	1	70	75	FUUR	144		TO	94		-		
					THIR	104	Z	02	01			~ 1	
					LLAK	71	1	85	81	ENTY 161		21	94
NAUG	56	1	75	77	UNDR	59	1	77	178	1RTY 59	1	77	78

Number of letters m word x	Number of times x-letter word appears	Number of letters
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{r} 378\\973\\1,307\\1,635\\1,410\\1,143\\1,009\\717\\476\\274\\161\\86\\23\\23\\23\\4\end{array}$	$\begin{array}{r} 378\\ 1,946\\ 3,921\\ 6,540\\ 7,050\\ 6,858\\ 7,063\\ 5,736\\ 4,284\\ 2,740\\ 1,771\\ 1,032\\ 299\\ 322\\ 60\\ \end{array}$
	9,619	50,000

TABLE 12 — Average length of words and messages

Average length of words______5 2 letters
 Average length of messages______217 letters
 Modal (most frequent) length______105-114 letters
 It is extremely unusual to find five consecutive letters without at least one vowel

2 - 34

-

(5) The average number of letters between vowels is two

RESTRICTED

.

1

				(Based	l on a coun	t of 5 000 di	raphs]			
			P 1					Cı		
A	L	В	C	D	E	244	225	375	394	197
F	r,	G	н	ΙJ	К	125	98	193	271	95
I	J	М	N	0	Ρ	229	199	188	350	251
6	2	R	S	т	U	148	162	258	427	295
V	T	W	X	Y	Z	42	12	34	91	97
21	2	317	358	308	249	A	В	C	D	E
12	20	108	216	256	85	F	G	Н	ΙJ	К
21	6	140	152	435	269	L	М	N	0	Р
20)6	121	306	364	284	Q	R	S	т	U
8	88	29	21	147	43	v	W	x	Y	Z
L			C 2					P 2		

TABLE 13 — Checkerboard individual frequencies¹

¹ The numbers in the $C_1 C_2$ squares represent the frequency of the individual components of the cipher digraph used to replace a given $P_1 P_2$ digraph in accordance with a digraphic checkelboard system where P_1 and P_2 are the plain-text squares

a

-RESTRICTED-

											i	SE	CON	D LB	TTD	ĸ											
		A	B	C	D	Е	F	G	Н	I	J	к	L	М	N	0	P	Q	R	s	т	U	v	W	X	Y	Z
	A	48	78	115	143	00	60	78	30	123	00	30	151	115	181	30	108	*	164	161	167	111	85	48	*	108	*
	в	60	*	*	*	126	*	*	*	30	00	*	78	00	*	60	*	*	30	00	00	30	*	*	*	85	*
	C	180	*	48	00	151	00	*	115	85	*	60	70	00	00	161	*	*	60	00	115	60	*	00	*	00	*
	D	151	60	60	90	152	90	30	30	143	00	*	48	70	60	120	70	80	108	111	118	70	48	60	*	00	*
	E	154	60	151	178	162	126	60	85	143	00	*	146	115	205	108	130	108	194	173	157	48	180	85	85	60	00
	F	70	*	30	00	100	104	00	*	159	*	*	30	00	*	160	00	*	95	48	104	48	*	00	*	00	*
	G	85	*	30	00	115	30	00	130	70	00	*	30	00	48	78	80	*	70	48	60	80	*	00	*	*	*
	H	130	00	48	30	130	70	*	*	152	*	*	00	30	48	130	00	00	123	60	145	90	*	00	*	00	*
	I	90	80	135	78	111	100	128	*	*	*	30	136	95	188	161	85	*	143	154	143	*	140	*	118	*	80
	J	00	*	*	*	80	*	*	*	*	*	*	*	*	*	30	*	*	*	*	*	80	*	*	*	*	*
	к	00	*	00	*	78	*	*	×	80	*	*	00	*	00	*	*	*	*	00	*	*	*	*	*	*	*
ER	L	145	48	48	95	157	48	00	00	180	*	*	143	80	00	111	48	*	80	78	90	80	80	80	*	100	*
LE II	M	156	78	48	00	141	00	*	00	95	*	*	*	111	*	100	90	*	80	60	80	30	*	*	*	30	*
	N	141	30	128	172	176	95	43	60	148	00	30	70	70	90	126	48	00	60	138	191	85	48	48	*	70	*
E F	0	85	60	90	108	48	140	80	48	70	00	30	128	140	189	78	140	*	181	115	128	157	85	90	00	80	*
	Р	115	00	00	00	186	30	*	48	78	*	*	111	60	00	128	104	*	126	78	90	48	00	00	*	00	*
	Q	*	*	*	*	*	*	*	*	*	*	*	*	00	*	*	*	*	00	*	*	118	*	*	*	*	*
	R	159	80	95	123	199	78	85	48	148	00	00	70	95	85	145	111	*	104	149	162	70	70	60	*	95	*
	ន	138	48	111	70	169	108	30	142	158	*	00	30	48	60	118	100	*	70	128	180	104	00	60	*	00	*
	T	145	48	78	78	185	85	00	189	165	*	*	70	78	85	170	30	00	123	128	128	70	*	156	*	161	00
	U	70	48	48	48	104	00	90	*	70	*	*	78	70	182	00	80	*	149	108	108	*	00	*	*	*	*
	V	78	*	*	*	176	*	*	*	108	*	*	*	*	*	00	*	*	*	*	00	*	*	*	*	*	*
	W	108	*	*	*	134	*	*	60	111	*	*	00	*	30	128	*	*	00	00	*	*	*	*	*	00	*
	x	30	*	30	00	00	00	*	00	30	*	*	*	*	00	00	30	*	00	00	85	*	*	*	*	*	*
	Y	78	30	60	60	95	104	00	00	48	*	*	30	30	78	100	48	*	60	104	118	00	*	00	*	*	*

TABLE 14 — Relative logarithmic values of frequencies of English digraphs [Based on a count of 5,000 digraphs. To obtain logarithm to base 10 (Log 10) divide by 100]

SECOND LETTER

*In computations, assign a value of -100 as the log for these digraphs These combinations do not usually occur in 5,000 digraphs Do not assign "0" to these combinations as that is the logarithmic value for a frequency of one, and these combinations have a frequency of less than one

* * * * * * * * * * * * * * * * * *

00 * *

00 *

Z

*

*

30 *

* *

RESTRICTED

											1	Seco	DND	Le	ftef	e											
		A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
	A [88	45	61	78	13	88	45	25	64	13	25	76	61	89	25	58	0	82	80	88	59	48	83	0	58	0
	в	38	0	0	0	66	0	0	0	25	13	0	45	13	0	88	0	0	25	18	18	25	0	0	0	48	0
	C	67	0	83	13	76	18	0	61	48	0	38	42	13	13	80	0	0	38	18	61	88	0	13	0	18	0
	D	76	88	88	51	77	51	25	25	73	13	0	33	42	88	63	42	0	58	59	62	42	38	88	0	18	0
	E	78	38	76	88	81	66	88	48	73	18	0	74	61	99	58	67	58	94	86	79	88	67	48	48	38	13
	F	42	0	25	18	55	56	18	0	80	0	0	25	18	0	80	13	0	53	33	56	83	0	13	0	18	0
	G	48	0	25	18	61	25	13	67	42	18	0	25	13	83	45	25	0	42	83	38	25	0	13	0	0	0
	н	67	18	88	25	67	42	0	0	77	0	0	18	25	83	67	13	18	64	38	74	51	0	18	0	13	0
	I	51	25	69	45	59	55	67	0	0	0	25	70	53	92	80	48	0	73	78	73	0	72	0	62	0	25
	J	18	0	0	0	25	0	0	0	0	0	0	0	0	0	25	0	0	0	0	0	25	0	0	0	0	0
	ĸ	13	0	18	0	45	0	0	0	25	0	0	13	0	13	, 0	0	0	0	13	0	0	0	0	0	0	0
Hall	L	74	88	33	58	79	88	13	13	67	0	0	73	25	13	59	33	0	25	45	51	25	25	25	0	55	0
191	M	78	45	88	18	72	13	0	18	58	0	0	0	59	0	55	51	0	25	88	25	25	0	0	0	25	0
HS1	N	72	25	67	85	87	53	73	38	75	18	25	42	42	51	66	88	18	88	71	98	48	88	38	0	42	0
4	0	48	88	51	58	33	72	25	83	42	13	25	67	72	92	45	72	0	89	61	67	79	48	51	18	25	0
	P	61	13	18	13	70	25	0	88	45	0	0	59	38	18	64	56	0	66	45	51	83	18	18	0	18	0
	Q	0	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	13	0	0	62	0	0	0	0	0
	R	80	25	59	64	96	45	48	83	75	18	18	42	53	48	74	59	0	56	75	81	42	42	88	0	53	0
	S	71	88	59	42	84	58	25	72	77	0	18	25	88	88	62	55	0	42	67	88	56	19	88	0	13	0
	T	74	83	45	45	91	48	18	92	82	0	0	42	45	48	84	25	18	64	67	67	42	0	78	0	80	18
	U	42	38	33	33	56	18	51	0	42	0	0	45	42	68	13	25	0	75	58	58	0	18	0	0	0	0
	v	45	0	0	0	87	0	0	0	58	0	0	0	0	0	18	0	0	0	0	18	0	0	0	Ó	0	0
,	W	58	0	0	0	69	0	0	38	59	0	0	18	0	25	67	0	0	18	18	0	0	0	0	0	13	0
	x	25	0	25	13	13	13	0	18	25	0	0	0	0	13	13	25	0	18	13	48	0	0	0	0	0	0
	Y	45	25	38	88	53	56	18	18	83	0	0	25	25	45	55	83	0	88	56	62	13	0	18	0	0	0
	Z	13	0	0	0	25	0	0	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE 15 — Relative logarithmic values (Log. 222) of frequencies of English digraphs * [Based on a count of 5,000 digraphs]

*See pages 11-12 for details

-RESTRICTED

芝

* *`*REF^{*}ID:A56892

SPECIAL-PURPOSE DATA

Table 16-A .-- Frequency distribution of digraphs, based on 64,365 letters of decrypted U. S. Government messages in which Z was used as a word-separator and X was used for both Xp and Zp. د ام

		A	в	C	D	E	F	G	H	I	J	к	L	M	N	0	Р	ର	R	S	Т	ប	v	W	х	Y	Z
	A	28	154	14.2	137	17	90	aa	11	119		47	220	157	4.77	10	112		125	C7/	247	61	62				Cert)
	в	43	14	7	-	10 %	-			4.7	72	173		137	10		2		59	17	571	36	32	~0	2		19
	с.		-							T3		40	178		19	414	-			• •	6	13				60	
	n n	125		19	8	200	22	28	185	115		48	-15	510	3	417			65	66	161	47		5	3	27	122
	u m	540		55	20	270	•	16		141	2	1	7	<i>\$</i> -	6	102	11	11	33	32	34	38	38	17	<u> </u>	11	1024
	Ei T	180	34	226	385	620	131	35	13	275	3	6	185	144	758	75	118	91	857	329	187	40	210	28	76	29	1715
	Ъ.	44	16	10	- 3	100	122	4	1	365	2		28	23	4	536	68		114	8	32	34	1	•	2.	3	343
	G	78	2.9	7	18	258	5	31	260	25		1	4	5	31	20	18		73	29	17	25	2			•	275
	H	194	<u> </u>	6	12	193	14-	1	24	213	3	9	7	2	24	93	3	24	2.29	2,6	257	17	2	6	l	73	428
	Ι	85	10	209	30	152	53	330	5	5		46	181	40	704	200	92	ł	128	303	217	2	272	2	เาร	l	56
	J	26		3	2	31	3		1	18	20		3	ł	4	35	1		5	2.	18	7	2	1		2	19
	K	28		2	6	108	2			54	3	20	h	3	10	9		L	L	9	2	1	1	2	t	10	59
	L	159	6	6	48	328	14		4	194	2	1	237	20	65	120	5		5	41	25	f 1	5		1	71	296
Ę	М	581	68	36	12	198	1	58	1	92	4-	1	2	62	4	43	101		10	53	20	17	•	3	6	86	231
<u>*</u>	N	112	13	157	286	733	77	244	4	234		14	15	9	76	169	16	16	13	135	267	64	10	7	7	14	910
	0	2.5	67	44	100	56	317	66	26	23	6	23	161	230	873	59	57	2	418	129	143	413	49	59	92	13	916
	P	304	5	8	363	169	1-	2	37	27	3		75	46	9	145	104	3	153	26	551	44	2	2		4	122
	ର	2	1	1		7			4	1			1	5	11	ł	I	9	5	7		117		l			46
	R	261	5	44	86	967	26	59	5	191	5	30	61	122	45	570	310	4	72	208	174	60	19	14	13	74	733
	ទ	- 143	14	66	6	389	85	52	426	334	1	16	16	34	6	99	47	13	5	143	305	138	13	12	1	43	788
	т			67	22	357	32	6	572	275	2	10	27	18	49	372	9	2	119	99	156	37	1	313	10	48	1106
	U	45	48	26	60	87	4	61	2	35	1	3	56	61	96	32	38		453	140	48	S	S	5	1	1	44
	v	39		10	2	496	ī	1		91		1	3	1	8	19	4	1	3	4	7	l	9	1	1	7	- 34-
	W			3	7	34	1	11	33	107	2	•	10		12	367	7	2	3	11	5			13	13	2	30
	x	9		8	7	350	9		2	10	1	2		2.	2	10	20	3	12	9	32				32	3	203
	Y	8	3	6	3	14	6	3	2	5			4	9	10	49	27		3	18	8	4		1		8	432
	z	902	261	1058	 613	364	844	12.0	171	328	98	69	135	274	349	750	<u> </u>	36	700	768	1046	130	46	278	271	12	-
		K02)	168	12000	245 0	, ⁶¹ ,	glett ,	,227	190 A	319	0 ⁴ .	43HES 1	Laa .	639	560 ⁶⁰ 1	estate .	a ⁴¹	1222 1	FICT .	,19 ³	3272 Y	SSK.	we .	197-	13° 1	25	on and

In the text which gave rise to this and the following two tables, the frequently-used punctuation signs "comma" and "period" were sobrevisted as CMA and PD, respectively, and the procedure term "repeat" was abbreviated as RFT; thus, the digraphs CN, FD, FT, and RP, which usually do not occur frequently (see Table 6-A), are of relatively high frequency here.

-RESTRICTED

-RESTRICTED-

ъ

REF ID:A56892

Table 16-B.--Frequency distribution of digraphs, based on the text used for Table 16-A, from which the Z word-separator has been omilted (total 53,866 letters).

													2	4 Lt	r												
		А.	B	C	D	E	F -	G	H	I	J	K	L	M	N	0	P 	ବୃ_	R	S	Т ,	U	V	W	X	Y,	Z
	Ą	78	175	190	164	10	136	u	26	129	19	52	227	166	439	58	147	3	657	619	395	65	58	40	23	67	
	в	63	14	9	2	193	5		1	43	32		119	6	18	62	2		62	17	13	15	2	3	3	60	
	C	133	1	31	20	263	32	29	184	119		48	98	393	ti	416	8	2	78	79	180	41	ł	6	4	27	
	D	443	66	102	74	307	86	26	13	183	7	5	23	32	22	151	97	16	142	(18	153	59	40	55	2	18	
	E	299	70	381	481	690	283	48	37	326	21	12	2.01	190	855	181	278	93	931	476	367	53	215	87	134	34	
	F	60	19	42	25	109	137	7	2	380	3	1	39	25	10	582	80	۱	148	56	67	19	3	9	3	7	
	G	102	39	20	59	266	19	32	262	37	5	2	12	10	41	45	38	4	91	53	38	31	2	3	7	1	
	H	270	8	34	28	215	54	13	31	220	14	11	8	13	34	139	14	23	239	64	315	18	3	16	5	3	
	I	86	10	213	41	154	55	330	8	5	1	46	182	40	705	202	96	1	148	303	218	2	270	3	196	1	
	J	28		7	2	31	7		1	21	2.0		3	1	५	36	2		6	2	19	7	2	2		2	
	K	35	4	٦	10	108	10	2		56	3	20	11	4	13	12	7	1	6	11	5	2	1	4	1	10	
Ŀ	L	197	21	38	61	338	47	2	13	207	٦	1	243	26	68	134	19		21	59	50	44	8	14	1	72	
5	М	595	72	66	18	2.06	22	64	4	96	6	1	6	67	17	63	123	3	2.6	61	4 0	22	2	10	15	86	
is.	N	213	27	280	336	748	139	254	12	263	6	19	31	47	86	234	92	24	66	292	352	75	23	28	28	17	
	0	63	82	191	155	93	42.6	72	47	37	13	27	172	252	910	99	112	2	473	204	214	417	51	68	170	17	
	P	341	7	16	388	170	5	3	40	29	4		76	46	11	150	111	3	179	37	365	44	2	2	1	5	
	ର	14	4	3		7	2		4	5		1	2	5	"	8	2	9	10	10	2	117		3	1		
	R	298	12	131	146	loll	84	66	14	207	17	40	69	142	59	639	369	8	103	2.66	263	67	19	29	30	74	
	ន	237	37	143	31	396	149	55	453	369	5	19	25	60	36	173	129	16	62	178	382	144	14	34	2	43	
	Т	277	30	167	70	400	97	21	592.	308	14	16	43	67	100	463	95	5	195	150	282	52	12	338	30	57	
	U	48	48	33	61	88	7	61	2	36	<u></u>	4	56	61	97	35	40		454	148	50	6	5	6	6	•	
	V	41		13	5	499	7	1		92		2	4	3	8	21	6	2	4	9	8	l	9	•	1	7	
	W	113	6	6	9	37	2	12	35	107	3	1	10	1	14-	367	10	2	3	11	6	1		13	13	4	-
	X	18	2	23	22	361	20		4	12	3	10	2	9	11	24	41	` å	26	29	47	4	1		54	3	_
	Y	59	14	s7 	37	19	33	18	5	22		4	7	22	25	74	77	1	31	36	38	10	1	18		13	
	Z						. K												L_								' _
		، ج م	1	20.	з ^к ,	s.,	3 ° .	() ⁻ ()	<u>ر سرک</u>	\$ ³	^ ^{0*} /	ь ^{ка} ,	ر ²⁷ ,	رقق	3 ⁶⁰⁻ ,	، حولي	e ⁴ .	A.	61 ¹⁶³ .	s1170	S.	5°.	م بلا د .	~~~ .	15°	1 22	

-RESTRICTED

Table 16-C.--The 53 digraphs from Table 6-A which comprise 50% of the total, arranged according to frequencies reduced to a base of 5,000 digraphs, shown with the corresponding frequencies of the same digraphs from Table 16-B (also reduced to a base of 5,000).¹

Dig.	<u>6-A</u>	<u>16-B</u>	Dig.	<u>6-A</u>	<u>16-B</u>	
ENE REITH NITEN REITONNEN SED ES DO ET I REET AS CO	19872877714430777420975442211	794635863446596441377914479	FO FI RA ET LE OU MA TW EA IS SI DE HI AL CE DA EC RS UR IN RI EL HI AR OU NI RI EL HI AR OU	40999777766555433322221100988882	54 558 34 1 95 51 888 4 92 1 4 1 6 5 2 4 9 1 9 8 9 1 1 9 8 9 1 9 1 9 8 9 1 9 1 9	
ту Т	41 41	51	111	20	20	

¹ With the exception of AL, EL, HI, IO, LA, RI, TY, the digraphs of this table are all from among the 65 digraphs from Table 16-B which comprise 50% of the total.

RESTRICTED

3

-

-RESTRICTED

APPENDIX 3

•

WORD AND PATTERN LISTS - ENGLISH

2	Section	<u>n</u>	Pages
	A.	List of words used in military text arranged alphabeti- cally according to word length	2-10
	в.	List of words used in military text arranged in rhyming order according to word length	11-19
	C.	List of words used in military text arranged alphabeti- cally according to word pattern	20-37
	D,	Digraphic idiomorphs: general	38-39
	E.	Digraphic idiomorphs: Playfair	40-42
	F.	Digraphic idiomorphs: four-square	43-45

۱_

A. LIST OF WORDS USED IN MILITARY TEXT ARRANGED ALPHABETICALLY ACCORDING TO WORD LENGTH

.

TWO LETTER WORDS						
AM	ВҮ	EM	IN	MM	OK	то
AN	CO	GO	IS	MP	ON	US
AS	CP	HE	IT	МҮ	OR	WD
AT	CQ	HQ	MC	NO	QM	WE
BE	DO	IF	ME	OF	S 0	WO
BN						
		THREE	LETTER WORD	S		
ACT	BID	DUN	HAS	MIX	PVT	TEN
ADD	BIG	EAT	HER	NAN	QMC	THE
ADJ	BOX	END	HIM	NET	RED	TIN
AGE	BUT	EYE	HIS	NEW	RID	TON
AGO	BUY	FAR	HOW	NOT	ROB	T 00
AID	CAM	FEW	ILL	NOW	RUN	TOP
AIM	CAN	FIT	ITS	OFF	SAW	TRY
AIR	CAR	FIX	JIG	OLD	SAY	TUB
ALL	CAV	FOR	JOB	ONE	SEA	TWO
AND	COL	FOX	KEG	QUR	SEE	USE
ANY	CPL	GAL	LAW	OUT	SET	VAT
APT	CUT	GAS	LAY	OWE	SGT	WAR
ARC	CWT	GEN	LET	OWN	SHE	WAS
ARE	DAY	GET	LOT	PAR	SIX	WAY
ARM	DID	GHQ	LOW	PAY	SPY	WET
ASK	DIE	GOT	MAJ	PEN	SUM	WGT
BAD	DOG	GUN	MAN	PER	SUN	WON
BAG	DRY	нар	MAT	PIN	TAN	YET
BAR	DUE	HAM ~	MEN	PUT	TAX	YOU
		FOUR L	ETTER WORDS			
ABLE	BOTH	EACH	FLEE	HIGH	LATE	MAIN
AIDE	BULB	EAST	FORM	HILL	LEAD	MANY
ALLY	BULK	EASY	FOUR	HITS	LEAK	MASK
ALSO	CALL	EDGE	FROM	HOLD	LEFT	MASS
AREA	CELL	EYES	FULL	HOOK	LESS	MEAT
ARMY	CITY	FALL	FUSE	INTO	LIEU	MEET
ASIA	CODE	FARM	FUZE	ITEM	LINE	MESS
AWAY	COOK	FAST	GUNS	JOIN	LIST	MIKE
AXIS	DARK	FEEL	HALF	JULY	LOAD	MILE
BACK	DASH	FEET	HALT	JUNE	LONG	MINE
BASE	DATE	FELL	HAND	JUST	LOOK	MORE
BEEN	DAYS	FILE	HARD	KEEP	LOSS	MOVE
BLUE	DIRT	FIRE	HAVE	KIND	LOST	MTCL
BODY	DOWN	FIRM	HEAD	KING	LOVE	MULE
BOMB	DRAW	FIVE	HERD	LAND	MADE	NAVY
BOOK	DUMP	FLAG	HERE	LAST	MAIM	NEAR

-RESTRICTED-

FOUR LETTER WORDS-Continued

NEXT	PARK	REAR	SHO	T	TEAM	TOOK	WEST
NINE	PASS	RIOT	SII)E	TENT	TOOL	WHAT
NOON	PIPE	ROAD	SOM	Æ	TEXT	TOWN	WHEN
NOTE	PLAN	ROUT	SOC	ON	THAN	TYPE	WILL
OBOE	POST	RULE	STO)P	THAT	UNIT	WIRE
OMIT	PUMP	RUSH	SUN	١K	THEM	VARY	WITH
ONCE	PUSH	SAID	TAF	Œ	THEN	VERY	XRAY
ONLY	RAID	SAME	TAI	LK .	THEY	WEAK	YOKE
OPEN	RAIL	SANK	TAN	NK	THIS	WEEK -	ZERO
ORAL	RAIN	SEEN	TAF	RE	TIME	WELL	ZONE
OVER	RANK	SHIP	TAS	SK	TONS	WERE	
1			- FIVE LETTH	R WORDS			
ABOUT	BOATS	DECKS	FIGHT	LATER	PRIOR	SHIPS	TITLE
AFTER	BOMBS	DEFER	FIRES	LEAST	PROOF	SHORE	TODAY
AGAIN	BOOTH	DELAY	FIRST	LEAVE	PROVE	SIEGE	TOTAL
AGENT	BREAK	DEPOT	FLANK	LEVEL	QUEEN	SIGHT	TRACT
ALARM	BRIBE	DEPTH	FLARE	LIGHT	QUICK	SIXTH	TRAIN
ALERT	BROKE	DOCKS	FLATS	LIMIT	QUIET	SIXTY	TROOP
ALIGN	BURST	DRAWN	FLEET	LOCAL	RADIO	SLOPE	TRUCE
ALINE	CANAL	DRESS	FOGGY	MAJOR	RAFTS	SMALL	TRUCK
ALLOW	CASES	DRILL	FORCE	MARCH	RAIDS	SMOKE	UNDER
ALONG	CAUSE	DRIVE	FORTY	METER	RALLY	SOUTH	UNION
AMONG	CEASE	EAGER	FRESH	MILES	RANGE	SPEED	UNITS
ANNEX	CHECK	EARLY	FRONT	MOTOR	RAPID	SPELL	USUAL
APPLY	CHIEF	EIGHT	GATES	NAVAL	REACH	SPLIT	VALOR
APRIL	CLEAR	ENEMY	GAUGE	NIGHT	READY	SQUAD	VISIT
AREAS	CLERK	ENTER	GIVEN	NINTH	REFER	STAFF	VITAL
ARMOR	CLOSE	EQUAL	GOING	NORTH	REPEL	STAKE	VOCAL
ASSET	COAST	EQUIP	GROUP	ORDER	RIDGE	START	VOICE
AWAIT	COLON	ERASE	GUARD	OTHER	RIGHT	STEEL	WAGON
AWARD	COMMA	ERROR	GUEST	PACKS	RIGID	SUGAR	WEIGH
BAKER	CORPS	ETHER	HEAVY	PAIRS	RIVER	TAKEN	WHEEL
BANKS	COUNT	EVERY	HONOR	PARTY	ROGER	TANKS	WHERE
BARGE	COVER	FATAL	HORSE	PETER	ROUTE	TENTH	WHICH
BEACH	CREEK	FEARS	HOURS	PLACE	SCALE	THEIR	WIDTH
BEGIN	CREST	FERRY	HOUSE	PLAIN	SEIZE	THERE	WIPED
BEING	CROSS	FIELD	ISSUE	PLANS	SEVEN	THESE	WOODS
BLACK	CURVE	FIFTH	JAPAN	POINT	SHELL	THIRD	YARDS
BLIND	DAILY	FIFTY	LARGE	PRESS	SHIFT	THREE	ZEBRA

-RESTRICTED-

2 -

يدر معطومة

3-3

6 × × ×

.

ŀ

. . . .

RESTRICTED

SIX LETTER WORDS							
ACCEPT	BOMBED	DEGREE	FIERCE	LESSON	I OTHERS	RESUME	SUFFER
ACCESS	BOMBER	DEPART	FILING	LETTEF	. OUTPUT	RETIRE	SUMMER
ACROSS	BOTTOM	DEPEND	FINISH	LINING	PANAMA	RETURN	SUMMIT
ACTION	BRANCH	DEPLOY	FIRING	LIQUID	PARADE	REVIEW	SUMMON
ACTIVE	BREACH	DESERT	FLIGHT	LITTER	PARLEY	RIDING	SUNDAY
ADJUST	BREEZE	DETACH	FLYING	LITTLE	PASSED	ROCKET	SUNKEN
ADVICE	BRIDGE	DETAIL	FOLLOW	LOCATE	PASSES	ROUTED	SUNSET
ADVISE	BROKEN	DEVICE	FORCES	LOSSES	PATROL	ROUTES	SUPPLY
AFFAIR	BUREAU	DEVISE	FORMAL	MANAGE	PERIOD	RUBBER	SURVEY
ALASKA	CANADA	DIRECT	FORMED	MANNER	PICKET	RUNNER	SWITCH
ALLEGE	CANCEL	DIVERT	FOUGHT	MANUAL	PINCER	SALARY	SYSTEM
ALLIED	CANNOT	DIVIDE	FOURTH	MEAGER	PISTOL	SCHEME	TABLES
ALLIES	CANVAS	DOCTOR	FRIDAY	MEDIUN	I PLACES	SCHOOL	TANKER
ALWAYS	CASUAL	DOLLAR	FUTURE	MEMBER	PLANES	SCORED	TARGET
ANIMAL	CAUSED	DOWNED	GARAGE	METHOD	POINTS	SCREEN	TATTOO
ANNUAL	CENTER	DRYRUN	GEORGE	METRIC	POISON	SEAMAN	TERROR
ANYWAY	CHANGE	DUGOUT	GREASE	MINING	POLICE	SEAMEN	THIRTY
APPEAR	CHARGE	DURING	GROUND	MINUTE	PONTÖN	SEARCH	1HOUGH
ARABIA	CHEESE	EFFECT	GUNNER	MIRROR	POSTAL	SECOND	TREAT
ARMIES	CHURCH	EFFORT	HALTED	MOBILE	PREFER	SECTOR	TRAINS
ARMORY	CIPHER	EIGHTH	HAMMER	MONDAY	PROMPT	SECURE	TRENCH
ARREST	CIRCLE	EIGHTY	HAPPEN	MORALE	PPOPER	SELECT	TROOPS
ARRIVE	COFFEE	EITHER	HARBOR	MORTAR	PURSUE	SERIAL	TURRET
ASSETS	COLORS	ELEVEN	HELPER	MOVING	RADIAL	SETTLE	TWELVE
ASSIST	COLUMN	EMBARK	HIGHER	MURDER	RAIDED	SEVERE	TWENTY
ASSURE	COMBAT	EMPLOY	HOURLY	MUZZLE	RATION	SHELLS	UNABLE
ATTACH	COMMIT	ENCODE	INDEED	NAUGHI	' RAVINE	SIGCOM	UNITED
ATTÄCK	COMMON	ENGAGE	INFORM	NEARER	RECORD	SIGNAL	UNLESS
ATTAIN	CONVEY	ENGINE	INLAND	NINETY	REDUCE	SINGLE	VALLEY
AUGUST	CONVOY	ENROLL	INTEND	NORMAL	REFILL	SLIGHT	VERBAL
BANNER	COURSE	ENTIRE	INTENT	NOTING	REFUGE	SPHERE	VERIFY
BARBED	CREDIT	ERASER	INVENT	NOUGHT	REFUSE	SPOOLS	VESSEL
BARGES	CRISIS	ESCORT	ISLAND	NOVICE	REJECT	SPOONS	VICTIM
BATTEN	CRITIC	EUROPE	ISSUES	NOZZLE	RELIEF	STATES	VICTOR
BATTLE	DAMAGE	EXCEPT	KEEPER	NUMBER	REMAIN	STATUS	VISITS
BEETLE	DEBARK	EXCESS	KILLED	OCCUPY	REMEDY	STRAFE	VISUAL
BEFORE	DECIDE	EXCITE	LADDER	OFFEND	REPAIR	STREET	WEIGHT ~
BETTER	DECODE	EXPECT	LANDED	OFFICE	REPORT	STRESS	WIRING
BEYOND	DECREE	EXPELS	LAUNCH	OPPOSE	RESCUE	STRIPS	WITHIN
BILLET	DEFEAT	EXPEND	LEADER	ORDERS	RESIST	SUBMIT	WOODED
BITTER	DEFECT	EXTEND	LEAGUE	ORIENT	RESULT	SUDDEN	ZIGZAC
BODIES	DEFEND	EXTENT					
		s	FVEN LETT	'ER WORD	S		
	AT 384374 7		A (177 A 7	T A	UTAMOD		DEMONSTAT
ABANUUN	ALMANAC	APPOINT	ASIA	LTC I	AVLATUK	DATTERY	BETWEEN
ABSENCE	AMMETER	APPROVE	ASSAL			BATTLES	BICICLE
ADDKESS	ANALYZE	AKMUKED	ATTA	JKS E	SAGGAGE	BEAKING	BINDING

ANOTHER

ANTENNA

ARRANGE

ARRIVAL

ADVANCE

AGAINST

۱

ATTEMPT

AVERAGE

BALLOON

BARRAGE

BECAUSE

BEDDING

4

BIVOUAC

BOMBARD

ı

RESTRICTED

1

SEVEN LETTER WORDS-Continued

BOMBERS	DEBOUCH	FITTING	LANDING	PACKAGE	REQUEST	SUPPOSE
BOMBING	DECIDED	FOGHORN	LEADING	PASSAGE	REQUIRE	SURPLUS
BOYCOTT	DECLARE	FORCING	LECTURE	PASSIVE	RESERVE	SUSPEND
BRIBERY	DECODED	FORGING	LIAISON	PATROLS	RESPECT	TACTICS
BRIGADE	DEFENSE	FORWARD	I IBRARY	PAYROLL	RESPOND	TALKING
CALIBER	DELAYED	FOXHOLE	LICENSE	PLACING	RFTIRED	TARGETS
CALIBRE	DELIVER	FUELOIL	LIFTING	PLATOON	RETREAT	TERRAIN
CAPTAIN	DERRICK	FURNISH	LUADING	POUNDER	REVENUE	THATTHE
CAPTIVE	DESTROY	FURTHER	LOGICAL	PRAIRIE	REVERSE	THROUGH
CARRIER	DETRAIN	GASSING	LOOKOUT	PRECEDE	REVOLVE	TOBACCO
CAVALRY	DETRUCK	GENERAL	MACHINE	PREPARE	ROUTINE	TONIGHT
CENTRAL	DEVELOP	GETTING	MANDATE	PRESENT	RUNNING	TONNAGE
CHANGES	DIAGRAM	GLASSES	MANNING	PRESSED	SAILORS	TORPEDO
CHANNEL	DISCUSS	GRADUAL	MAPPING	PRIMARY	SATISFY	TRACTOR
CHARLIE	DISEASE	GRENADE	MARCHED	PROCEED	SECRECY	TRAFFIC
CHASSIS	DISMISS	GUARDED	MARSHAL	PROGRAM	SECTION	TRAWLER
CIRCUIT	DISTILL	HALTING	MARTIAL	PROMOTE	SECTORS	TRIGGER
CLIPPER	DROPPED	HASBEEN	MAXIMUM	PROPOSE	SERVICE	TUESDAY
COASTAL	EASTERN	HEADING	MEDICAL	PROTECT	SESSION	TWELFTH
COLLECT	ECHELON	HEAVIER	MESSAGE	PROTEST	SETBACK	UNKNOWN
COLLEGE	ELEMENT	HIGHEST	MESSING	PROVOST	SEVENTH	UNUSUAL
COLONEL	ELEVATE	HOLDING	MILITIA	PURPOSE	SEVENTY	USELESS
COMMAND	EMBASSY	HORIZON	MINIMUM	PURSUIT	SEVERAL	UTILITY
COMMEND	ENCODED	HOSTILE	MISFIRE	PUSHING	SHELLED	VACANCY
COMMENT	ENEMIES	HUNDRED	MISSING	QUARTER	SHORTLY	VARYING
COMMUTE	ENFORCE	ICEBERG	MISSION	QUICKLY	SIGNIFY	VESSELS
COMPANY	ENGAGED	ILLEGAL	MORNING	RADIATE	SIMILAR	VICTORY
COMPASS	ENTENTE	ILLNESS	NATURAL	RAIDING	SIMPLEX	VILLAGE
CONCEAL	ENTRAIN	INCLUDE	NEAREST	RAILWAY	SINKING	VISIBLE
CONDEMN	ENTRUCK	INFLICT	NIGHTLY	RAINING	SIXTEEN	VISITOR
CONDUCT	ENVELOP	INITIAL	NOTHING	RAPIDLY	SLOPING	WARFARE
CONFINE	EXCLUDE	INQUIRE	NUMBERS	REACHED	SMOKING	WARSHIP
CONTACT	EXPLAIN	INQUIRY	OBSERVE	RECEIPT	SOLDIER	WEATHER
CONTAIN	EXPRESS	INSPIRE	OCTOBER	RECEIVE	STARTER	WESTERN
CONTROL	EXTRACT	INSTALL	OFFENSE	RECOVER	STATION	WHETHER
CORRECT	EXTREME	INSTANT	OFFICER	RECRUIT	STEAMER	WILLIAM
COUNCIL	FALLING	INVADED	OMITTED	REDUCED	STOPPED	WINDAGE
COURIER	FARTHER	ISLANDS	OPERATE	REFUGEE	STORAGE	WITHOUT
COVERED	FEDERAL	ISSUING	OPINION	REGULAR	SUCCESS	WITHTHE
CROSSED	FIFTEEN	JANUARY	ORDERED	RELEASE	SUGGEST	WITNESS
CRUISER	FIGHTER	JUMPOFF	OUTPOST	RELIEVE	SUMMARY	WOUNDED
CURRENT	FILLING	KITCHEN	OUTSIDE	REPAIRS	SUNRISE	WRECKED
CYCLONE	FINDING	KILLING	PACIFIC	REPLACE	SUPPORT	WRITTEN
DAMAGĘD	FISHING					
		EIGH	T LETTER W	ORDS		
ACTIVITY	ADVANCEĎ	AIRBORNE	AIRPLANE	ANNOUNCE	APPROACH	ASSEMBLE
ACTUALLY	ADVANCES	AIRCRAFT	ALTITUDE	ANTITANK	APPROVAL	ASSEMBLY
ADJACENT	ADVISING	AIRDROME	AMERICAN	APPARENT	ARMAMENT	ASSIGNED
ADJUTANT	ADVISORY	AIRFIELD	ANALYSIS	APPEARED	ARRESTED	ASSOONAS

_RESTRICTED

....

EIGHT LETTER WORDS—Continued

ATLANTIC	CRITIQUE	DRIFTING	FORENOON	MEDICINE	PRIORITY	SERGEANT
ATTACKED	CROSSING	EASTERLY	FORTRESS	MEMORIAL	PRISONER	SHELLING
ATTEMPTS	CRUISERS	EASTWARD	FOURTEEN	MERCIFUL	PROBABLE	SHIPPING
AVIATION	DAMAGING	ECONOMIC	FRONTAGE	MESSAGES	PROBABLY	SIGHTING
BARRACKS	DARKNESS	EFFECTED	FUSELAGE	MIDNIGHT	PROGRESS	SKIRMISH
BARRAGES	DAYLIGHT	EFFICACY	GARRISON	MILITARY	PROHIBIT	SOLDIERS
BATTERED	DECEMBER	EIGHTEEN	GROUNDED	MISFIRES	PROTESTS	SOUTHERN
BATTLING	DECIPHER	ELEMENTS	GROUPING	MISSIONS	PROTOCOL	SPECIFIC
BESEIGED	DECISION	ELEVENTH	GUARDING	MOBILIZE	PURPOSES	SPOTTING
BILLETED	DECISIVE	ELIGIBLE	HAVEBEEN	MONOPOLY	QUARTERS	SOUADRON
BOUNDARY	DECLARED	EMPLOYEE	HINDERED	MOUNTAIN	RAILHEAD	STANDARD
BREAKING	DECREASE	EMPLOYER	HOSPITAL	MOVEMENT	RAILROAD	STATIONS
BUILDING	DEDICATE	ENCIPHER	HOWITZER	NATIONAL	RALLYING	STRATEGY
BULLETIN	DEFEATED	ENCIRCLE	IDENTIFY	NAUTICAL	RECEIVER	SUFFERED
BUSINESS	DEFENDED	ENFILADE	IGNITION	NINETEEN	RECORDER	SUITABLE
CALAMITY	DEFENDER	ENGAGING	TMPROPER	NORTHERN	REDCROSS	SUPERTOR
CAMPAIGN	DEFENSES	ENGINEER	IMPROVED	NOVEMBER	REENLIST	SUPPLIES
CANTSTER	DEFERRED	ENLISTED	TNCTDENT	OBSERVED	REGIMENT	SURPRISE
CAPACITY	DEFINITE	ENORMOUS	TNDTCATE	OBSERVER	REGISTER	SURROUND
CAPTURED	DELAYING	ENROLLED	INDIRECT	OBSOLETE	REJECTED	SURVIVED
CARELESS	DEMANDED	ENTERING	TNFANTRY	OBSTACLE	REJECTOR	SUSPENSE
CARRIAGE	DEPARTED	ENTRENCH	INFECTED	OCCUPTED	REMEDTES	SWEEPING
CARRTERS	DEPLOYED	ENVELOPE	INTTIATE	OFFENDED	REMEMBER	SWIMMING
CARRYING	DEPORTED	FOUALTZE	TNSECURE	OFFICERS	REPAIRED	TACTICAL.
CASHALTY	DESCRIBE	EQUIPAGE	TNSTGNIA	OFFICIAL	REPEATER	TAXATION
CAUSEWAY	DESERTED	ESCORTED	INSTRUCT	OPERATOR	REPELLED	TELEGRAM
CEMETERY	DESERTER	ESTIMATE	INTEREST	OPPOSING	REPLACED	TERRIBLE
CENTERED	DESPATCH	EUROPEAN	INTERIOR	OPPOSITE	REPORTED	TERRIFIC
CHAPLAIN	DETACHED	EVACUATE	INTERNAL	ORDINATE	REPULSED	THATHAVE
CHEMICAL	DETECTOR	EXCAVATE	INTRENCH	ORDNANCE	REQUIRED	THIRTEEN
CIRCULAR	DETONATE	EXCHANGE	INVADING	OUTBOARD	RESEARCH	THOUSAND
CITATION	DEVELOPE	EXERCISE	INVASION	OUTGUARD	RESERVES	THURSDAY
CIVILIAN	DICTATED	EXPANDED	INVENTED	OUTPOSTS	RESPECTS	TOMORROW
CLERICAL	DICTATOR	EXPEDITE	JETPLANE	PAINTING	RESTORED	TOTALING
CODEBOOK	DIMINISH	EXPELLED	JUNCTION	PARALLAX	RETIRING	TRAILERS
COMMANDS	DIRECTOR	EXPENDED	LANGUAGE	PARALLEL	RETURNED	TRAINING
COMMENCE	DISARMED	EXPENSES	LATITUDE	PASSPORT	REVIEWED	TRANSFER
COMMERCE	DISASTER	EXTENDED	LETTERED	PLANNING	REVOLVER	TRAVERSE
COMPLETE	DISLODGE	EXTERIOR	LIMITING	POLITICS	RIGOROUS	TRAWLERS
COMPOSED	DISPATCH	FACTIONS	LOCATION	PONTOONS	SABOTAGE	VEHICLES
CONCLUDE	DISPERSE	FATALITY	LUMINOUS	POSITION	SANITARY	VICINITY
CONCRETE	DISTANCE	FEBRUARY	MAINTAIN	POSITIVE	SATURDAY	VIGOROUS
CONFLICT	DISTRESS	FERRYING	MANDATED	POSSIBLE	SCHEDULE	WARSHIPS
CONGRESS	DISTRICT	FIGHTERS	MANEUVER	POSTPONE	SEABORNE	WESTERLY
CONTINUE	DIVIDING	FIGHTING	MARCHING	PREPARED	SEALEVEL	WESTWARD
CONTRACT	DIVISION	FINISHED	MARITIME	PRESERVE	SELECTED	WINDWARD
CORPORAL	DOCTRINE	FLANKING	MATERIAL	PRESSING	SENTENCE	WIRELESS
CORRIDOR	DOMINANT	FLEXIBLE	MATERIEL.	PRESSURF	SENTINEI.	WITHDRAW
COVERING	DRESSING	FOOTHOLD	MECHANIC	PRINTING	SEPARATE	WITHDREW
CRITICAL						

RESTRICTED

-

NINE LE FTER WORDS

ACCESSORY	CENTERING	DEVELOPED	FORMATION	MOVEMENTS	PROTECTOR
ACCOMPANY	CHALLENGE	DIETITIAN	FORTIFIED	MUNITIONS	PROTESTED
ACCORDING	CHARACTER	DIFFERENT	FRONTLINE	NAVALBASE	PROVISION
ADDRESSED	CHAUFFEUR	DIFFICULT	GROUPMENT	NECESSARY	PROXIMITY
ADDRESSES	CHRONICAL	DIMENSION	GYROMETER	NECESSITY	RADIATION
ADMISSION	CIGARETTE	DIRECTION	HOSTILITY	NEGLIGENT	RADIOGRAM
ADVANCING	CIRCULATE	DIRIGIBLE	HURRICANE	NEWSPAPER	READINESS
ADVANTAGE	CIVILIANS	DISAPPEAR	IDENTICAL	NORTHEAST	REARGUARD
AERODROME	CLEARANCE	DISCUSSED	IMMEDIATE	NORTHERLY	REBELLION
AEROPLANE	COALITION	DISINFECT	IMPORTANT	NORTHWARD	RECEIVING
AFTERNOON	COLLAPSED	DISMISSAL	IMPRESSED	NORTHWEST	RECOGNIZE
AGREEMENT	COLLISION	DISPERSED	INCENTIVE	NUMBERING	RECOMMEND
AIRDROMES	COMBATANT	DISTRICTS	INCIDENCE	OBJECTION	REENFORCE
ATRPLANES	COMMANDED	DIVISIONS	INCIDENTS	OBJECTIVE	REFERENCE
ALLOTMENT	COMMANDER	DOMINANCE	INCLINING	OBTAINING	REFILLING
ALLOWANCE	COMMITTEE	DOMINATED	INCLUDING	OCCUPYING	REGARDING
ALTERNATE	COMPANIES	ECHELONED	INCLUSIVE	OFFENSIVE	REINFORCE
AMBULANCE	COMPELLED	EFFECTIVE	INCREASED	OFFICIALS	REINSTATE
AMUSEMENT	COMPLETED	EFFICIENT	INDEMNITY	OPERATING	REMAINDER
ANNOUNCED	CONDEMNED	ELABORATE	INDICATED	OPERATION	REMAINING
ANONYMOUS	CONDENSED	ELEVATION	INFLATION	OSCILLATE	REPRESENT
APPARATUS	CONDITION	ELSEWHERE	INFLICTED	OUTSKIRTS	REPRISALS
APPOINTED	CONFERRED	EMBASSIES	INFLUENCE	PARACHUTE	REQUESTED
ARBITRARY	CONFIDENT	EMERGENCY	INHABITED	PARAGRAPH	REQUIRING
ARTILLERY	CONFLICTS	EMPLOYING	INSTANTLY	PARTITION	RESOURCES
ASCENSION	CONQUERED	ENDURANCE	INTEGRITY	PASSENGER	RESTRAINT
ASSAULTED	CONTINUAL	ENGINEERS	INTENSIVE	PATRIOTIC	RETENTION
ASSISTANT	 CONTINUED 	ENLISTING	INTENTION	PENETRATE	RETURNING
ASSOCIATE	CONTINUES	ENTRAINED	INTERCEPT	PERMANENT	REVIEWING
ASSURANCE	COOPERATE	EQUIPMENT	INTERDICT	PERSONNEL	SCREENING
ATTACKING	CORRECTED	ESTABLISH	INTERFERE	PLACEMENT	SEAPLANES
ATTEMPTED	CRITICISE	ESTIMATED	INTERMENT	POLITICAL	SECRETARY
ATTENTION	CRITICISM	ESTIMATES	INTERPOSE	POPULATED	SEMICOLON
AUTOMATIC	DEBARKING	EXCESSIVE	INTERRUPT	POSITIONS	SEMIRIGID
AVAILABLE	DECREASED	EXCLUSION	INTERVENE	PRACTICAL	SEPTEMBER
BALLISTIC	DEFECTIVE	EXCLUSIVE	INTERVIEW	PRECEDING	SERIOUSLY
BAROMETER	DEFENSIVE	EXECUTIVE	INVENTION	PREFERRED	SERVICING
BATTALION	DEFICIENT	EXERCISES	IRREGULAR	PREMATURE	SEVENTEEN
BATTERIES	DEPARTURE	EXHIBITED	KILOMETER	PREPARING	SHELLFIRE
BEACHHEAD	DEPENDENT	EXPANSION	LAUNCHING	PRESIDENT	SITUATION
BEGINNING	DESCRIBED	EXPANSIVE	LIABILITY	PRINCIPAL	SIXTEENTH
BLOCKADED	DESIGNATE	EXPENSIVE	LOGISTICS	PRINCIPLE	SOUTHEAST
BOMBARDED	DESTITUTE	EXPLOSION	LONGITUDE	PRISONERS	SOUTHWARD
BRIGADIER	DESTROYED	EXPLOSIVE	MAINTAINS	PROCEDURE	SOUTHWEST
BUILDINGS	DESTROYER	EXTENDING	MANGANESE	PROCEEDED	SPEARHEAD
CABLEGRAM	DETENTION	EXTENSION	MECHANISM	PROJECTOR	STANDARDS
CAMPAIGNS	DETERMINE	EXTENSIVE	MEMORANDA	PROMOTION	STATEMENT
CANCELLED	DETONATED	FIFTEENTH	MESSENGER	PROPOSALS	STRAGGLER
CARTRIDGE	DETRAINED	FIREALARM	MOTORIZED	PROTECTED	STRATEGIC

ł

RESTRICTED

.

-

-RESTRICTED

NINE LETTER WORDS-Continued

SUBMITTED	SUSPENDED	TELEPHONE	THEREFORE	UNTENABLE	WEDNESDAY			
SUCCEEDED	SUSPICION	TENTATIVE	TRANSPORT	VARIATION	WITNESSES			
SURRENDER	TECHNICAL	TERRITORY	TWENTIETH	WATERTANK	YESTERDAY			
SUSPECTED	TECHNIQUE							
	TEN LETTER WORDS							
ACCEPTABLE	COLLISIONS	5 DESPAT	CHES	EXPENDABLE	MAINTAINED			
ACCEPTANCE	COMMANDANT	r destro	YERS	EXPERIENCE	MANAGEMENT			
ACCIDENTAL	COMMANDEEF	r detachi	MENT	EXPERIMENT	MECHANIZED			
ACCORDANCE	COMMANDING	determ:	INED	EXPLOSIGNS	MEMORANDUM			
ACTIVITIES	COMMISSARY	C DETONA	FION	EXTINGUISH	MILLIMETER			
ADDITIONAL	COMMISSION	I DETRAII	NING	FACILITIES	MOTORCYCLE			
AIRCONTROL	COMMITMENT	r detruci	KING	FLASHLIGHT	NATURALIZE			
AIRSUPPORT	COMMUNIQUE	G DIFFER	ENCE	FORMATIONS	NAVIGATION			
ALLEGIANCE	COMPENSATE	E DIPLOM	ATIC	FOUNDATION	NEGLIGENCE			
ALLOCATION	COMPLETELY	DIRECT.	IONS	FOURTEENTH	NEWSPAPERS			
AMBASSADOR	COMPRESSEI	D DISCIP	LINE	FRONTLINES	NINETEENTH			
AMMUNITION	CONCERNINC	discus:	SION	GEOGRAPHIC	OBJECTIVES			
ANTEDATING	CONCESSION	I DISPAT	CHED	GONIOMETER	OCCUPATION			
ANTICIPATE	CONCLUSION	I DISPAT	CHER	GOVERNMENT	ONEHUNDRED			
APPARENTLY	CONDITIONS	5 DISPAT	CHES	GYROSCOPIC	OPERATIONS			
APPEARANCE	CONFERENCE	E DISPER	SION	HYDROMETER	OPPOSITION			
APPROACHED	CONFESSION	I DISTRES	SSED	HYGROMETER	OVERCOMING			
ARMOREDCAR	CONFIDENCE	E DISTRI	BUTE	ILLITERATE	PATROLLING			
ARTIFICIAL	CONNECTING	DIVEBO	MBER	ILLUMINATE	PERMISSION			
ASPOSSIBLE	CONNECTION	I DOMINA'	FION	ILLUSTRATE	PERSISTENT			
ASSEMBLIES	CONSPIRACY	C EFFICI	ENCY	IMPASSIBLE	PHOSPHORUS			
ASSESSMENT	CONSTITUTE	E EIGHTE	ENTH	IMPOSSIBLE	POPULATION			
ASSIGNMENT	CONTINGENT	ELEMEN'	TARY	IMPRESSION	POSSESSION			
ASSISTANCE	CONTINUOUS	5 EMPLOYI	MENT	IMPRESSIVE	POSTOFFICE			
ATOMICBOMB	CONTRABAND	ENCIPH	ERED	INCENDIARY	PRECEDENCE			
ATTACHMENT	CONVENIENT	ENCIRC	LING	INDICATING	PREFERENCE			
ATTAINMENT	COORDINATE	C ENEMYTA	ANKS	INDICATION	PRESCRIBED			
ATTEMPTING	CORRECTION	I ENGAGE	MENT	INDIVIDUAL	PROHIBITED			
AUDIBILITY	CREDENTIAL	ENLIST	MENT	INFLICTING	PROPORTION			
AUTOMOBILE	CROSSROADS	S ENROLL	MENT	INSECURITY	PROTECTION			
BALLISTICS	DEBOUCHING	ENTERPI	RISE	INSPECTION	PROVISIONS			
BATTLESHIP	DECIPHERED	D ENTRENO	CHED	INSTRUCTED	QUARANTINE			
BEENNEEDED	DECORATION	I ENTRUCI	KING	INSTRUCTOR	RECEPTACLE			
BRIDGEHEAD	DEDICATION	EQUIVAL	LENT	INSTRUMENT	RECREATION			
CAMOUFLAGE	DEFICIENCY	ESTIMA	LION	INTERNMENT	RECRUITING			
CAPABILITY	DEFINITION	EVACUA	FING	INVITATION	REENFORCED			
CASUALTIES	DEMOBILIZE	EVACUA'	LTON	IKRIGATION	REENLISTED			
CENSORSHIP	DEPARTMENT	EVALUA	LION	KILOMETERS	REGIMENTAL			
CENTRALIZE	DEPENDABLE	E EXCAVA	LION	LABORATORY	REGULATION			
CIRCUITOUS	DEPLOYMENT	EXCITE	MENT	LIEUTENANT	REINFORCED			
COASTGUARD	DEPRESSION	EXHIBI	LTON	LIMITATION	RESISTANCE			
COLLECTING	DESIGNATED	EXPEDI	LUNG	LOCOMOTIVE	RESPECTFUL			
COLLECTION	DESPATCHED	D EXPEDI	LION	MACHINEGUN	RESTRICTED			

-RESTRICTED-

-

RESTRICTED

TEN JEILER WORDS-Continued

X

REVOLUTION	SUBMISSION	SUSPENSION	TRANSPORTS	UNEXPENDED
SANITATION	SUBSTITUTE	SUSPICIONS	TRANSVERSE	UNSUITABLE
SEPARATION	SUCCESSFUL	SUSPICIOUS	TROOPSHIPS	VICTORIOUS
SIGNALLING	SUCCESSIVE	THIRTEENTH	TWENTYFIVE	VISIBILITY
SIMILARITY	SUFFICIENT	THREATENED	UNDERSTAND	WILLATTACK
STATISTICS	SUPPORTING	TRAJECTORY	UNDERSTOOD	WITHDRAWAL
SUBMARINES	*			

ELEVEN LETTER WORDS

ACCESSORIES	CONCENTRATE	EMPLACEMENT	intercerpts	REAPPOINTED			
AERONAUTICS	CONFINEMENT	ENCOUNTERED	INTERESTING	RECOGNITION			
ALTERNATING	CONSTITUTED	ENEMYPLANES	INTERFERING	RECOMMENDED			
APPLICATION	CONSUMPTION	ENFORCEMENT	INTERPRÉTER	RECONNOITER			
APPOINTMENT	CONTINENTAL	ENGAGEMENTS	INTERRUPTED	REPLACEMENT			
APPROACHING	CONTROVERSY	ENGINEERING	INTERVENING	REQUIREMENT			
APPROPRIATE	COOPERATION	ESTABLISHED	INVESTIGATE	REQUISITION			
APPROXIMATE	CORPORATION	ESTIMATEDAT	LEGISLATION	RESERVATION			
ARBITRATION	CORRECTNESS	EXAMINATION	LIGHTBOMBER	RESIGNATION			
ARMOREDCARS	CREDENTIALS	EXPLANATION	MAINTENANCE	RESPONSIBLE			
ARRANGEMENT	CUSTOMHOUSE	EXTENSIVELY	MANUFACTURE	RESTRICTION			
ASSESSMENTS	DEBARKATION	EXTERMINATE '	MEASUREMENT	RETALIATION			
ASSIGNMENTS	DEMONSTRATE	FINGERPRINT	NATIONALISM	RETROACTIVE			
ASSOCIATION	DESCRIPTION	FIRECONTROL	NATIONALITY	SCHOOLHOUSE			
BATTLEFIELD	DESCRIPTIVE	HEAVYBOMBER	NAVALATTACK	SEVENTEENTH			
BATTLESHIPS	DESIGNATION	HEAVYLOSSES	NAVALBATTLE	SEVENTYFIVE			
BELLIGERENT	DESTRUCTION	HOSTILITIES	NAVALFORCES	SIGNIFICANT			
BLOCKBUSTER	DETERIORATE	IMMEDIATELY	NECESSITATE	SMOKESCREEN			
BOMBARDMENT	DEVELOPMENT	IMMIGRATION	OBSERVATION	STRATEGICAL			
CATASTROPHE	DISAPPEARED	IMPEDIMENTA	OVERWHELMED	SUBSISTENCE			
CERTIFICATE	DISCONTINUE	IMPROVEMENT	PARENTHESIS	SUITABILITY			
CIRCULATION	DISCREPANCY	INCOMPETENT	PARENTHESES	SUPERIORITY			
COEFFICIENT	DISINFECTED	INDEPENDENT	PENETRATION	SURRENDERED			
COINCIDENCE	DISPOSITION	INFLAMMABLE	PERFORMANCE	SYNCHRONIZE			
COMMUNICATE	DISTINCTION	INFORMATION	PHILIPPINES	TEMPERATURE			
COMMUNIQUES	DISTINGUISH	INSPIRATION	PHOTOGRAPHY	THERMOMETER			
COMPARTMENT	DYNAMOMETER	INSTITUTION	PREARRANGED	TOPOGRAPHIC			
COMPETITION	ECHELONMENT	INSTRUCTION	PREPARATION	TRADITIONAL			
COMPOSITION	EFFECTIVELY	INSTRUMENTS	PRELIMINARY	TRANSFERRED			
COMPUTATION	ELECTRICITY	INTELLIGENT	PROGRESSIVE	WITHDRAWING			
CONCEALMENT	EMBARKATION	INTERCEPTED	RANGEFINDER				
TWELVE LETTER WORDS							
ADVANTAGEOUS	CARELESSNESS	CONCENTRATED	CONSIDERABLE	COORDINATION			

ADVANTAGEOUS	CARELESSNESS	CONCENTRATED	CONSIDERABLE	COORDINATION
AGRICULTURAL	COMMENCEMENT	CONCILIATION	CONSTITUTING	DECENTRALIZE
ANNOUNCEMENT	COMMENDATION	CONFIDENTIAL	CONSTITUTION	DECIPHERMENT
ANTIAIRCRAFT	COMMISSIONED	CONFIRMATION	CONSTRUCTION	DEMONSTRATED
ANTICIPATION	COMMISSIONER	CONFISCATION	CONTINUATION	DEPARTMENTAL
BREAKTHROUGH	COMPENSATION	CONFORMATION	CONVALESCENT	DIFFICULTIES
CANCELLATION	COMPLETENESS	CONSCRIPTION	CONVERSATION	DISORGANIZED

RESTRICTED

TWELVE LETTER WORDS—Continued

DISPLACEMENT	HYDROGRAPHIC	INTRODUCTION	PRESERVATION	SIGNIFICANCE
DISSEMINATED	ILLUMINATING	INTRODUCTORY	PRESIDENTIAL	SIMULTANEOUS
DISTRIBUTING	ILLUMINATION	IRREGULARITY '	PROCLAMATION	SOUTHWESTERN
DISTRIBUTION	ILLUSTRATION	LIGHTBOMBERS	PSYCHROMETER	SUBSTITUTION
EMPLACEMENTS	INAUGURATION	MARKSMANSHIP	RADIOSTATION	SUCCESSFULLY
ENCIPHERMENT	INCOMPETENCE	MEASUREMENTS	RECREATIONAL	TRANSFERRING
ENTANGLEMENT	INEFFICIENCY	MEDIUMBÓMBER	REENLISTMENT	TRANSMISSION
ENTERPRISING	INSTRUCTIONS	MOBILIZATION	REGISTRATION	TRANSPACIFIC
FIGHTERPLANE	INTELLIGENCE	NONCOMBATANT	REPLACEMENTS	UNIDENTIFIED
GENERALALARM	INTERDICTION	NORTHWESTERN	RESPECTFULLY	UNITEDSTATES
GENERALSTAFF	INTERFERENCE	OBSTRUCTIONS	ROADJUNCTION	UNSUCCESSFUL
GEOGRAPHICAL	INTERMEDIATE	ORGANIZATION	SATISFACTORY	VERIFICATION
HEADQUARTERS	INTERRUPTION	PREPARATIONS	SEARCHLIGHTS	VETERINARIAN
HEAVYBOMBERS	INTERVENTION	PREPAREDNESS	SHARPSHOOTER	

THIRTEEN LETTER WORDS

ACCOMMODATION	CORRESPONDING	DISTINGUISHED	INSTANTANEOUS	REENFORCEMENT
APPROXIMATELY	COUNTERATTACK	ENTERTAINMENT	INTERNATIONAL	REIMBURSEMENT
CHRONOLOGICAL	DECENTRALIZED	ESTABLISHMENT	INVESTIGATION	REINFORCEMENT
CIRCUMSTANCES	DEMONSTRATION	EXTERMINATION	MEDIUMBOMBERS	REINSTATEMENT
COMMUNICATION	DEPENDABILITY	EXTRAORDINARY	MISCELLANEOUS	REVOLUTIONARY
CONCENTRATING	DETERMINATION	FIGHTERPLANES	PRELIMINARIES	SPECIFICATION
CONCENTRATION	DISAPPEARANCE	IMPRACTICABLE	QUALIFICATION	TRANSATLANTIC
CONGRESSIONAL	DISCREPANCIES	INDETERMINATE	QUARTERMASTER	WARDEPARTMENT
CONSIDERATION	DISSEMINATION	INSTALLATIONS	REAPPOINTMENT	

FOURTEEN LETTER WORDS

ADMINISTRATION	DEMOBILIZATION	IRREGULARITIES	RECONSTRUCTION
ADMINISTRATIVE	DISCONTINUANCE	METEOROLOGICAL	REORGANIZATION
CENTRALIZATION	DISTINGUISHING	NATURALIZATION	REPRESENTATIVE
CHARACTERISTIC	IDENTIFICATION	RECOMMENDATION	RESPONSIBILITY
CIRCUMSTANTIAL	INTERPRETATION	RECONNAISSANCE	SATISFACTORILY
CLASSIFICATION	INVESTIGATIONS	RECONNOITERING	TRANSPORTATION
CORRESPONDENCE			

١

-RESTRICTED-

.

B. LIST **OF** WORDS USED IN MILITARY TEXT ARRANGED IN RHYMING ORDER ACCORDING TO WORD LENGTH

THREE LETTER WORDS

SEA	SEE	MAJ	TAN	TOP	EAT	APT	TAX
JOB	AGE	ADJ	GEN	GHQ	MAT	BUT	FIX
ROB	SHE	ASK	MEN	BAR	VAT	CUT	MIX
TUB	THE	GAL	PEN	CAR	ACT	OUT	SIX
QMC	DIE	ALL	TEN	FAR	GET	PUT	BOX
ARC	ONE	ILL	PIN	PAR	LET	PVT	FOX
BAD	ARE	COL	TIN	WAR	NET	CWT	DAY
HAD	USE	CPL	TON	HER	SET	YOU	LAY
ADD	DUE	CAM	WON	PER	WET	CAV	PAY
RED	OWE	HAM	DUN	AIR	YET	LAW	SAY
AID	EYE	AIM	GUN	FOR	SGT	SAW	WAY
BID	OFF	HIM	RUN	1'OUR	WGT	FEW	ANY
DID	BAG	ARM	SUN	GAS	FIT	NEW	SPY
RID	KEG	SUM	OWN	HAS	GOT	HOW	DRY
OLD	BIG	CAN	AGO	WAS	LOT	LOW	TRY
AND	JIG	MAN	T 00	HIS	ŇOT	NOW	BUY
END	ĐOG	NAN	TWO	ITS			
		- •	+				,
			FOUR LET	FFR WORDS			
AREA	MIKE	BASE	WEEK	FELL	JOIN	PASS	LIST
ASIA	YOKE	FUSE	TALK	WELL	NOON	LESS	LOST
BULB	ABLE	DATE	BULK	HILL	SOON	MESS	POST
BOMB	FILE	LATE	RANK	WILL	DOWN	LOSS	JUST
HEAD	MILE	NOTE	SANK	FULL	TÓWN	HITS	ROUT
LEAD	MULE	BLUE	TANK	TOOL	ZERO	DAYS	NEXT
LOAD	RULE	HAVE	SUNK	TEAM	ALSO	MEAT	TEXT
RQAD	SAME	FIVE	BOOK	_ THEM	INTO	🔪 THAT	LIEU
RAID	TIME	LOVE	COOK	ITEM	KEEP	WHAT	DRAW
SAID	Some .	Ŭ	HOOK	MAIM	SHIP	FEET	XRAY
HOLD	LIŃE	FUZE	LOOK	FROM	DUMP	MEET	AWAY
HAND	MINE	HALF	TOOK	FARM	PUMP	LEFT	BODY
LAND	NINE	FLAG	DARK	FIRM	STOP	OMIT	THEY
KIND	ZONE	KING	PARK	FORM	NEAR	UNIT	ALLY
HARD	JUNE	LONG -	MASK	THAN	REAR	HALT	ONLY
HERD	OBOE	EACH	TASK	PLAN	OVER	TENT	JULY
ONCE	PIPE	HIGH	ORAL	BEEN	FOUR	SHOT	ARMY
MADE	TYPE	DASH	MTCL	SEEN	EYES	RIOT	MANY
AIDE	TARE	PUSH	FEEL	THEN	THIS	DIRT	VARY
SIDE	HERE	RUSH	RAIL	WHEN	AXIS	EAST	VERY
CODE	WERE	WITH	CALL	OPEN	TONS	FAST	EASY
FLEE	FIRE	BOTH	FALL	MAIN	GUNS	LAST	CITY
EDGE	WIRE	LEAK	CELL	RAIN	MASS	WEST	NAVY
TAKE	MORE	BACK					

-RESTRICTED

۲ }

-

N
RESTRICTED

			FIVE LETT	er words	ι		
COMMA	SCALE	AL.ONG	CANAL	WAGON	PRIOR	DRESS	START
ZEBRA	TITLE	AMONG	FATAL	UNION	MAJOR	PRESS	ALERT
SQUAD	ALINE	BEACH	VITAL	COLON	VALOR	CROSS	LEAST
SPEED	SLOPE	REACH	TOTAL	DRAWN	ARMOR	FLATS	COAST
WIPED	FLARE	WHICH	EQUAL	RADIO	HONOR	BOATS	CREST
RIGID	THERE	MARCH	USUAL	EQUIP	ERROR	RAFTS	GUEST
RAPID	WHERE	WEIGH	NAVAL	TROOP	MOTOR	UNITS	first
FIELD	SHORE	FRESH	WHEEL	GROUP	AREAS	TRACT	BURST
BLIND	CEASE	WIDTH	STEEL	CLEAR	BOMBS	FLEET	About
GUARD	ERASE	FIFTH	REPEL	SUGAR	RAIDS	QUIET	ALLOW
AWARD	THESE	TENTH	LEVEL	UNDER	WOODS	ASSET	ANNEX
THIRD	CLOSE	NINTH	APRIL	ORDER	YARDS	Shift	TODAY
BRIBE	HORSE	BOOTH	SMALL	DEFER	MILES	EIGHT	Delay
PLACE	CAUSE	DEPTH	SHELL	REFER	FIRES	Fight	READŸ
VOICE	HOUSE	NORTH	SPELL	EAGER	CASES	LIGHT	FOGGY
FORCE	ROUTE	South	DRILL	ROGER	GATES	NIGHT	DAILY
TRUCE	ISSUE	SIXTH	ALARM	ETHER	PACKS	RIGHT	RALLY
THREE	LEAVE	BREAK	JAPAN	OTHER	DECKS	SIGHT	APPLY
RIDGE	DRIVE	BLACK	QUEEN	BAKÉR	-Docks	AWAIT	EARLY
SIEGE	PROVE	CHECK	TAKEN	LATER	BANKS	SPLIT	ENEMY
RANGE	CURVE	QUICK	SEVEN	METER	TANKS	LIMIT	EVERY
BARGE	SEIZE	TRUCK	GIVEN	PETER	PLANS	VISIT	FERRY
LARGE	CHIEF	CREEK	ALIGN	AFTER	SHIPS	AGENT	FIFTY
GAUGE	STAFF	FLANK	AGAIN	ENTER	CORPS	POINT	PARTY
STAKE	PROOF	CLERK	PLAIN	RIVER	FEARS	FRONT	FORTY
SMOKE	BEING	LOCAL	TRAIN	COVER	PAIRS	CQUNT	SIXTY
BROKE	GOING	VOCAL	BEGIN	THEIR	HOURS	DEPOT	HEAVY
			SIX LETT	ER WORDS			
CANADA	HALTED	DEVICE	CHARGE	SEVERE	ARRIVE	TRENCH	MANUAL.
ARABIA	ROUTED	NOVICE	GEORGE	RETIRE	ACTIVE	LAUNCH	ANNUAL
ALASKA	LIQUID	FIERCE	REFUGE	ENTIRE	TWELVE	SEARCH	CÁSUAL
PANAMA	INLAND	REDUCE	MÖRALE	BEFORE	BREEZE	CHURCH	VISUAL
METRIC	ISLAND	PARADE	UNABLE	SECURE	RELIEF	Switch	CANCEL
CRITIC	DEFEND	DECIDE	CIRCLE	ASSURE	ZIGZAG	THOUGH	VESSEL
BOMBED	OFFEND	DIVIDE	SINGLE	FUTURE	RIDING	FINISH	DETAIL
BARBED	DEPEND	DECODE	MOBILE	GREASE	FILING	EÏGHTH	REFILL
RAIDED	EXPEND	ENCODE	BEETLE	CHEESE	LINING	FOURTH	ENROLL
LANDED	INTEND	COFFEE	BATTLE	ADVISE	MINING	ATTACK	SCHOOL
WOODED	EXTEND	DECREE	SETTLE	DEVISE	FIRING	DEBARK	PATROL
' INDEED	SECOND	DEGREE	LITTLE	OPPOSE	WIRING	EMBARK	PISTOL
ALLIED	BEYOND	STRAFE	NOZZLE	COURSE	DURING	VERBÁL	SYSTEM
KILLED	GROUND	ENGAGE	MUZZLE	REFUSE	NOTING	RADIAL	VICTIM
FORMED	METHOD	DAMAGE	SCHEME	LOCATE	MOVING .	SERIAL	SIGCOM
DOWNED	PERIOD	MANAGE	RESUME	EXCITE	FLYING	ANIMAL	BOTTOM
SCORED	RECORD	GARAGE	ENGINE	MINUTE	BREACH	FORMAL	INFORM
PASSED	OFFICE	BRIDGE	RAVINE	RESCUE	DETACH	NORMAL	MEDIUM
CAUSED	POLICE	ALLEGE	EUROPE	LEAGUE	ATTACH	SIGNAL	SUDDEN
UNITED	ADVICE	CHANGE	SPHERE	PURSUE	BRANCH	POSTAL	SCREEN

T

1

-RESTRICTED

SIX LETTER WORDS-Continued

							,		
	SUNKEN	MORTAR	RUNNER	FORCES	COLORS	TARGET	CANNOT	MONDAY	
	BROKEN	RUBBER	KEEPER	BARGES	ACCESS	PICKET	ACCEPT	SUNDAY	
	SEAMEN	MEMBER	HELPER	BODIES	EXCESS	ROCKET	EXCEPT	ANYWAY	
	HAPPEN	BOMBER	PROPER	ALLIES	UNLESS	BILLET	PROMPT	REMEDY	
	BATTEN	NUMBER	NEARER	ARMIES	STRESS	TURRET	DEPART	VALLEY	
	ELEVEN	PIÑCER	ERASER	TABLES	ACROSS	SUNSET	DESERT	PARLEY	
1	REMAIN	LEADER	CENTER	PLANES	ASSETS	WEIGHT	DIVERT	CONVEY	
	ATTAIN	LADDER	BETTER	PASSES	VISITS	FLIGHT	ESCORT	SURVEY	
	WITHIN	MURDER	LETTER	LOSSES	POINTS	SLIGHT	EFFORT	VERIFY	-
	COLUMN	PREFER	BITTER	STATES	STATUS	NAUGHT	ⁱ report	SUPPLY	
	RATION	SUFFER	LITTER	ROUTES	ALWAYS	FOUGHT	ARREST	HOURLY	-
	ACTION	MEAGER	AFFAIR	ISSUES	COMBAT	' NOUGHT	/ RESIST	DEPLOY	
	COMMON	HIGHER	REPAIR	CRISIS	DEFEAT	CREDIT	/ ASSIST	EMPLOY	÷
	SUMMON	CIPHER	HARBOR	SHELLS	THREAT	i SUBMIT	/ AUGUST	CONVOY	•
	POISON	EITHER	TERROR	SPOOLS	DEFECT	COMMIT/	ADJUST	OCCUPY	
	LESSON	TANKER	MIRROR	TRAINS	EFFECT	SUMMIT	DUGOUT	SALARY	
	PONTON	HAMMER	SECTOR	SPOONS	REJECT,	RESULT	OUTPUT	ARMORY	
	RETURN	SUMMER	VICTOR	STRIPS	SELECT	ORIENT	BUREAU	NINETY	
	DRYRUN	BANNER	DOCTOR	TROOPS	EXPECT	INTENT	REVIEW	EIGHTY	
	TATTOO	MANNER	CANVAS	ORDERS	DIRECT	EXTÉNT	FOLLOW	TWENTY	
	APPEAR	GUNNER	PLACES	OTHERS	STREET	INVENT	FRIDAY	THIRTY	
	DOLLAR								~
			S	EVEN LETT	RR WORDS	4			
							*		4
	MILITIA	COVERED	REFUGEE	WARF	ARE PI	ROMOTE	FORGING	VARYING	
	ANTENNA	RETIRED	WINDAGE	DECL	ARE CO	OMMUTE	FISHING	ICEBERG	
	ALMANAC	ARMURED	BAGGAGE			SVENUE	PUSHING	DEBOUCH	
	BIVUUAC	PRESSED	PACKAGE	UALI		SLIEVE	NUTHING	THROUGH	ì
	TRAFFIC	CRUSSED	VILLAGE	MLSF.		eçelve Aggium	TALKING	FURNISH	•
	PACIFIC	OMITTED	TUNNAGE	INSP.		ADDITUD	SINAING	TWELFTH	
	ASIATIC	DELAIED	AVERAGE	REQU.		APTIVE	SMUKING 1	SEVENTH	
	REDUCED	COMMAND	DADDAOE			GAOPAG GAOPAG	FALLING	SETBACK	
	INVADED	CUMMEND	DANNAGE			FFRUVE Deterbitet	F LLLLING	DERRICK	
	DECTDED	DEGDOND	Troopde Meiggace	ngle <i>i</i>	101 101	Pordur	DATNITNO	DEIRUCA	x
	FNCODED	ROMBARD	COLLECE	SUNR			MANNTNO "	MEDICON	•
	WOINDED	AWKWARD	ARRANCE	LTCEN	JSE .11	IMPOFF	RINNTNC	LOGTCAL	
	CHARDED	FORWARD	WTTHTHE	DEFE		OMBING	MORNTNG	CONCEAT.	
	PROCEED	REPLACE	THATTHE	13730	ise pi	ACTNG	SLOPTNG	TLLEGAL	٠
	ENGAGED	SERVICE	CHARLIE	PROP	SE / F	ORCING	MAPPING	MARSHAL	
	DAMAGED	ADVANCE	PRAIRIE	SUPPO	DSE HI	EADING	BEARING	TNTTTAL.	
	BEACHED	ABSENCE	VISIBLE	PURPO	DSE LI	EADING	GASSING	MARTIAL.	
	MARCHED	ENFORCE	BICYCLE	REVER	rse L	OADING	MESSING	FEDERAL	-
	WRECKED	BRIGADE	HOSTILE	BECAU	JSE [†] BI	EDDING	MISSING	GENERAL	
	SHELLED	GRENADE	EXTREME	MAND	ATE R	AIDING	LIFTING	SEVERAL.	
	DROPPED	PRECEDE	CONFINE	RADIA	ATE HO	OLDING	HALTING	CENTRAL.	
	STOPPED	OUTSIDE	MACHINE	OPER/	ATE L	ANDING	GETTING	NATURAL	
	HUNDRED	INCLUDE	ROUTINE	ELEV	TE B	INDING	FITTING	COASTAL	
	ORDERED	EXCLUDE	CYCLONE	ENTEN	TE F:	INDING	ISSUING	GRADUAL	

-RESTRICTED

r

1

SEVEN LETTER WORDS-Continued

UNUSUAL	ENTRAIN	ENVELOP	STARTER	SUCCESS	ASSAULT	RAILWAY
ARRIVAL	CONTAIN	SIMILAR	QUARTER	USELESS	INSTANT	SECRECY
CHANNEL	CAPTAIN	REGULAR	DELIVER	ILLNESS	ELEMENT	VACANCY
COLONEL	CONDEMN	CALIBER	RECOVER	WITNESS	COMMENT	SIGNIFY
COUNCIL	ABANDON	OCTOBER	AVIATOR	ADDRESS	CURRENT	SATISFY
FUELOIL	OPINION	OFFICER	TRACTOR	EXPRESS	PRESENT	RAPIDLY
INSTALL	SESSION	POUNDER	VISITOR	DISMISS	APPOINT	QUICKLY
DISTILL	MISSION	TRIGGER	TACTICS	DISCUSS	RECEIPT	NIGHTLY
PAYROLL	STATION	WEATHER	ISLANDS	TARGETS	ATTEMPT	SHORTLY
CONTROL	SECTION	WHETHER	CHANGES	SURPLUS	SUPPORT	COMPANY
WILLIAM	ECHELON	ANOTHER	ENEMIES	RETREAT	SUGGEST	DESTROY
DIAGRAM	BALLOON	FARTHER	BATTLES	EXTRACT	HIGHEST	PRIMARY
PROGRAM	PLATOON	FURTHER	GLASSES	CONTACT	NEAREST	SUMMARY
MINIMUM	LIAISON	SOLDIER	CHASSIS	COLLECT	PROTEST	LIBRARY
MAXIMUM	HORIZON	CARRIER	ATTACKS	RESPECT	REQUEST	JANUARY
HASBEEN	EASTERN	COURIER	VESSELS	CORRECT	AGAINST	BRIBERY
FIFTEEN	WESTERN	HEAVIER	PATROLS	PROTECT	OUTPOST	BATTERY
SIXTEEN	FOGHORN	TRAWLER	BOMBERS	INFLICT	PROVOST	INQUIRY
BETWEEN	UNKNOWN	STEAMER	NUMBERS	CONDUCT	BOYCOTT	CAVALRY
KITCHEN	TOBACCO	CLIPPER	REPAIRS	TONIGHT	WITHOUT	VICTORY
WRITTEN	TORPEDO	CRUISER	SAILORS	CIRCUIT	LOOKOUT	EMBASSY
EXPLAIN	WARSHIP	AMMETER	SECTORS	RECRUIT	SIMPLEX	UTILITY
TERRAIN	DEVELOP	FIGHTER	COMPASS	PURSUIT	TUESDAY	SEVENTY
DETRAIN						

LIGHT LETTER WORDS

INSIGNIA	EXPELLED	DICTATED	STANDARD	LANGUAGE	ENVELOPE	OPPOSITE
SPECIFIC	ENROLLED	EFFECTED	OUTBOARD	DISLODGE	INSECURE	CONTINUE
TERRIFIC	DISARMED	INFECTED	OUTGUARD	EXCHANGE	PRESSURE	CRITIQUE
ECONOMIC	ASSIGNED	REJECTED	WINDWARD	PROBABLE	DECREASE	THATHAVE
MECHANIC	RETURNED	SELECTED	EASTWARD	SUITABLE	EXERCISE	DECISIVE
ATLANTIC	APPEARED	BILLETED	WESTWARD	ELIGIBLE	SURPRISE	POSITIVE
RAILHEAD	DECLARED	INVENTED	DESCRIBE	TERRIBLE	SUSPENSE	PRESERVE
RAILROAD	PREPARED	DEPARTED	ORDNANCE	POSSIBLE	DISPERSE	EQUALIZE
REPLACED	HINDERED	DESERTED	DISTANCE	FLEXIBLE	TRAVERSE	MOBILIZE
ADVANCED	SUFFERED	ESCORTED	COMMENCE	ASSEMBLE	DEDICATE	INVADING
DEMANDED	CENTERED	DEPORTED	SENTENCE	OBSTACLE	INDICATE	DIVIDING
EXPANDED	BATTERED	REPORTED	ANNOUNCE	ENCIRCLE	INITIATE	BUILDING
DEFENDED	LETTERED	ARRESTED	COMMERCE	SCHEDULE	ESTIMATE	GUARDING
OFFENDED	REPAIRED	ENLISTED	ENFILADE	MARITIME	ORDINATE	ENGAGING
EXPENDED	REQUIRED	SURVIVED	CONCLUDE	AIRDROME	DETONATE	DAMAGING
EXTENDED	RESTORED	IMPROVED	LATITUDE	AIRPLANE	SEPARATE	MARCHING
GROUNDED	DEFERRED	OBSERVED	ALTITUDE	JETPLANE	EVACUATE	BREAKING
BESIEGED	CAPTURED	REVIEWED	EMPLOYEE	MEDICINE	EXCAVATE	FLANKING
DETACHED	REPULSED	DEPLOYED	CARRIAGE	DOCTRINE	OBSOLETE	TOTALING
FINISHED	COMPOSED	AIRFIELD	FUSELAGE	POSTPONE	COMPLETE	SHELLING
OCCUPIED	MANDATED	FOOTHOLD	EQUIPAGE	SEABORNE	CONCRETE	BATTLING
ATTACKED	DEFEATED	THOUSAND	FRONTAGE	AIRBORNE	EXPEDITE	SWIMMING
REPELLED	REPEATED	SURROUND	SABOTAGE	DEVELOPE	DEFINITE	TRAINING

RESTRICTED

_

REF ID:A56892

EIGHT LETTER WORDS-Continued

						and the bank was see . 5 . 500
PLANNING	ELEVENTH	CAMPAIGN	PRISONER	VEHICLES	5 RESPECTS	WITHDRAW
SWEEPING	ANTITANK	CHAPLAIN	IMPROPER	MISFIRES	S ELEMENTS	WITHDREW
SHIPPING	CODEBOOK	MAINTAIN	REPEATER	DEFENSES	5 ATTEMPTS	TOMORROW
GROUPING	CHEMICAL	MOUNTAIN	DESERTER	EXPENSES	S PROTESTS	PARALLAX
ENTERING	CLERICAL	BULLETIN	DISASTER	PURPOSES	5 OUTPOSTS	SATURDAY
COVERING	TACTICAL	INVASION	REGISTER	RESERVES	5 ENORMOUS	THURSDAY
RETIRING	CRITICAL	DECISION	CANISTER	ANALYSIS	s l'uminous	CAUSEWAY
ADVISING	NAUTICAL	DIVISION	RECEIVER	BARRACK	S RIGOROUS	EFFICACY
OPPOSING	OFFICIAL	LOCATION	REVOLVER	MISSION	S VIGOROUS	IDENTIFY
DRESSING	MATERIAL	AVIATION	OBSERVER	STATIONS	5 CONTRACT	STRATEGY
PRESSING	MEMORIAL	CITATION	MANEUVER	FACTIONS	S INDIRECT	PROBABLY
CROSSING	NATIONAL	TAXATION	EMPLOYER	PONTOONS	5 CONFLICT	ASSEMBLY
DRIFTING	INTERNAL	JUNCTION	HOWITZER	WARSHIPS	5 DISTRICT	ACTUALLY
FIGHTING	CORPORAL	IGNITION	CORRIDOR	OFFICERS	5 INSTRUCT	MONOPOLY
SIGHTING	HOSPITAL	POSITION	SUPERIOR	SOLDIERS	5 AIRCRAFT	EASTERLY
LIMITING'	APPROVAL	FORENOON	INTERIOR	CARRIERS	5 DAYLIGHT	WESTERLY
PAINTING	MATERIEL	SQUADRON	EXTERIOR	TRAILERS	S MIDNIGHT	BOUNDARY
PRINTING	PARALLEL	GARRISON	OPERATOR	TRAWLERS	5 PROHIBIT	MILITARY
SPOTTING	SENTINEL	NORTHERN	DICTATOR	CRUISERS	S SERGEANT	SANITARY
DELAYING	SEALEVEL	SOUTHERN	REJECTOR	FIGHTERS	5 DOMINANT	FEBRUARY
BALLYTNG	PROTOCOL.	CTRCULAR	DIRECTOR	QUARTERS	S ADJUTANT	CEMETERY
CARRYING	MERCIFUL.	DECEMBER	DETECTOR	CARELES	S ADJACENT	ADVISORY
FERRYTNC	TELECRAM	REMEMBER	ASSOONAS	WTRELES	S TNCTDENT	TNFANTRY
APPROACH	AMERICAN	NOVEMBER	POLTTICS	BUSTNES	S ARMAMENT	CAPACTTY
FNTRENCU	FUROPEAN	DEFENDER	COMMANDS	DODINES	S MOURMENT	FATAL TTV
TNEEDNOL	CTUTI TAM	DEFCODDED	ADVANCES	CONCERS		
TRIVENCU	UAVEREEN	FNCINFFR	BARBACES	PROCEES		UTOTNTTV
DECONTOL	NTNETEN	TRANSFER	MESSACES	FORTERS		DDIUDIULI
DESTRICH	rtauten Rtauten	DECIERES	REMEDITES	DISTRES	S INTERFST	AGTTATA
CUTOMICU	TUTDTEN	FNCTPUER	SUPPLIES	BEDCROS	S REFNITST	CASUATTY
DIMINICU	POIDTETN	13140-11 1317	NOT A LILLIN	TED OT ON		OUCOURT 1
DIMINION	FOOLIGEN					1
		NINE	E LETTER W	ORDS		·
MEMORANDA	CANCELLE	D IMPRES	SED AT	rempted	ASSURANCE	AERODROME
STRATEGIC	COMPELLE	D DISCUS	SED PR)TESTED	ALLOWANCE	HURRICANE
AUTOMATIC	DETRAINE	D INDIČA	TED RE	QUESTED	INCIDENCE	AEROPLANE
PATRIOTIC	ENTRAINE	D POPULA	TED SU	BMITTED	REFERENCE	INTERVENE
BALLISTIC	CONDEMNE	D ESTIMA	TED CO	TINUED	INFLUENCE	FRONTLINE
BEACHHEAD	ECHELONE	D DOMINA	TED DE	STROYED	REENFORCE	DETERMINE
SPEARHEAD	DEVELOPE	D DETONA	TED MO	FORIZED	REINFORCE	TELEPHONE
DESCRIBED	CONQUERE	D SUSPEC	TED SE	MIRIGID	LONGITUDE	INTERFERE
ANNOUNCED	PREFERRE	D CORREC	TED RE	COMMEND	COMMITTEE	ELSEWHERE
BLOCKADED	CONFERRE	D PROTEC	TED RE	ARGUARD	ADVANTAGE	SHELLFTRE
SUCCEEDED	DECREASE	D INFLIC	TED NO	RTHWARD	CARTRIDGE	THEREFORE
PROCEEDED	INCREASE	COMPLE	TED SO	JTHWARD	CHALLENGE	PROCEDURE
COMMANDED	CONDENSE) INHART	TED AM	BULANCE	AVATLABLE	PREMATURE
SUSPENDED	COLLAPSE	D EXHTRT	TED DO	TNANCE	UNTENABLE	DEPARTURE
ROMRARDED	DISPERSE		TED CL	TARANCE	DTRTCTRLE	NAVALRACE
FORTTTT	ADDRESSE		TED FN	NIRANCE	PRINCIPLE	MANCANECE
LOUTTLTTD	20011000El			I (6311 VII)	a aluanvel 1411	WELL CELLUCY

3-15

•

NINE LETTER WORDS-Continued

CRITICISE	REGARDING	PERSONNEL	INVENTION	CONTINUES ~	STATEMENT
INTERPOSE	ACCORDING	CABLEGRAM	PROMOTION	BUILDINGS	EQUIPMENT
ASSOCIATE	INCLUDING	RADIOGRAM	SEMICOLON	OFFICIALS	GROUPMENT
IMMEDIATE	LAUNCHING	FIREALARM	AFTERNOON	REPRISALS	INTERMENT
OSCILLATE	ATTACKING	CRITICISM	DISAPPEAR	PROPOSALS	ALLOTMENT
CIRCULATE	DEBARKING	MECHANISM	IRREGULAR	CIVILIANS	PERMANENT
DESIGNATE	REFILLING	DIETITIAN	SEPTEMBER	CAMPAIGNS	DIFFERENT
ALTERNATE	SCREENING	SEVENTEEN	COMMANDER	MAINTAINS	REPRESENT
COOPERATE	REMAINING	SUSPICION	SURRENDER	DIVISIONS	RESTRAINT
ELABORATE	OBTAINING	BATTALION	REMAINDER	MUNITIONS	INTERCEPT
PENETRATE	INCLINING	REBELLION	PASSENGER	POSITIONS	INTERRUPT
REINSTATE	BEGINNING	COLLISION	MESSENGER	ENGINEERS	TRANSPORT
CIGARETTE	RETURNING	PROVISION	BRIGADIER	PRISONERS	NORTHEAST
PARACHUTE	PREPARING	EXPANSION	STRAGGLER	READINESS	SOUTHEAST
DESTITUTE	NUMBERING	ASCENSION	NEWSPAPER	CONFLICTS	NORTHWEST
TECHNIQUE	CENTERING	DIMENSION	CHARACTER	DISTRICTS	SOUTHWEST
EXPANSIVE	REQUIRING	EXTENSION	KILOMETER	INCIDENTS	INTERVIEW
DEFENSIVE	OPERATING	EXPLOSION	BAROMETER	MOVEMENTS	YESTERDAY
OFFENSIVE	ENLISTING	ADMISSION	GYROMETER	OUTSKIRTS	WEDNESDAY
EXPENSIVE	RECEIVING	EXCLUSION	DESTROYER	ANONYMOUS	EMERGENCY
INTENSIVE	REVIEWING	RADIATION	PROJECTOR	APPARATUS	NORTHERLY
EXTENSIVE	EMPLOYING	VARIATION	PROTECTOR	DISINFECT	SERIOUSLY
EXPLOSIVE	OCCUPYING	INFLATION	CHAUFFEUR	INTERDICT	INSTANTLY
EXCESSIVE	PARAGRAPH	FORMATION	LOGISTICS	DIFFICULT	ACCOMPANY
INCLUSIVE	ESTABLISH	OPERATION	STANDARDS	COMBATANT	ARBITRARY
EXCLUSIVE	TWENTIETH	SITUATION	RESOURCES	IMPORTANT	NECESSARY
TENTATIVE	FIFTEENTH	ELEVATION	COMPANIES	ASSISTANT	SECRETARY
DEFECTIVE	SIXTEENTH	OBJECTION	BATTERIES	CONFIDENT	ARTILLERY
EFFECTIVE	WATERTANK	DIRECTION	EMBASSIES	PRESIDENT	ACCESSORY
OBJECTIVE	TECHNICAL	CONDITION	AIRDROMES	DEPENDENT	TERRITORY
INCENTIVE	CHRONICAL	COALITION	SEAPLANES	NEGLIGENT	LIABILITY
EXECUTIVE	PRACTICAL	PARTITION	AIRPLANES	DEFICIENT	HOSTILITY
RECOGNIZE	POLITICAL	DETENTION	EXERCISES	EFFICIENT	PROXIMITY
SERVICING	IDENTICAL	RETENTION	WITNESSES	PLACEMENT	INDEMNITY
ADVANCING	PRINCIPAL	INTENTION	ADDRESSES	AGREEMENT	INTEGRITY
PRECEDING	DISMISSAL	ATTENTION	ESTIMATES	AMUSEMENT	NECESSITY
EXTENDING	CONTINUAL				
		TEN LETTER	WORDS		
ATOMICBOMB	APPROACHED	O , COMPRES	SSED	UNDERSTOOD	CONFIDENCE
GEOGRAPHIC	ENTRENCHED	DISTRES	SSED	COASTGUARD	NEGLIGENCE
GYROSCOPIC	DESPATCHED	DESIGNA	ATED	POSTOFFICE	EXPERIENCE
DIPLOMATIC	DISPATCHED	D RESTRIC	CTED	ACCORDANĆE	PREFERENCE
BRIDGEHEAD	THREATENED	D INSTRU	CTED	ALLEGIANCE	DIFFERENCE
PRESCRIBED	MAINTAINED	D PROHIB	ITED	APPEARANCE	CONFERENCE
REENFORCED	DETERMINED) REENLIS	STED	ACCEPTANCE	CAMOUFLAGE
REINFORCED	ONEHUNDRED	D MECHAN	IZED	RESISTANCE	DEPENDABLE
BEENNEEDED	DECIPHERED	, CONTRAI	BAND	ASSISTANCE	EXPENDABLE
UNEXPENDED	ENCIPHERED	O UNDERS	TAND	PRECEDENCE	UNSUITABLE

.

-RESTRICTED-

-RESTRICTED

ø

TEN LETTER WORDS-Continued

ACCEPTABLE	EVACUATING	ALLOCATION	GONIOMETER	CONTINGENT
IMPASSIBLE	COLLECTING	FOUNDATION	HYDROMETER	SUFFICIENT
IMPOSSIBLE	CONNECTING	RECREATION	HYGROMETER	CONVENIENT
ASPOSSIBLE	INFLICTING	IRRIGATION	AMBASSADOR	EQUIVALENT
RECEPTACLE	EXPEDITING	NAVIGATION	INSTRUCTOR	ENGAGEMENT
MOTORCYCLE	RECRUITING	REGULATION	BALLISTICS	MANAGEMENT
AUTOMOBILE	ATTEMPTING	POPULATION	STATISTICS	EXCITEMENT
DISCIPLINE	SUPPORTING	ESTIMATION	CROSSROADS	DETACHMENT
QUARANTINE	EXTINGUISH	DOMINATION	DESPATCHES	ATTACHMENT
ENTERPRISE	NINETEENTH	DETONATION	DISPATCHES	EXPERIMENT
TRANSVERSE	EIGHTEENTH	OCCUPATION	ASSEMBLIES	ENROLLMENT
COORDINATE	THIRTEENTH	SEPARATION	FACILITIES	ASSIGNMENT
ILLUMINATE	FOURTEENTH	DECORATION	ACTIVITIES	ATTAINMENT
ANTICIPATE	WILLÁTTACK	LIMITATION	CASUALTIES	INTERNMENT
ILLITERATE	ARTIFICIAL	SANITATION	FRONTLINES	GOVERNMENT
ILLUSTRATE	CREDENTIAL	INVITATION	SUBMARINES	ASSESSMENT
COMPENSATE	ADDITIONAL	EVACUATION	OBJECTIVES	COMMITMENT
DISTRIBUTE	ACCIDENTAL	EVALUATION	ENEMYTANKS	DEPARTMENT
SUBSTITUTE	REGIMENTAL	EXCAVATION	SUSPICIONS	ENLISTMENT
CONSTITUTE	INDIVIDUAL	COLLECTION	COLLISIONS	INSTRUMENT
COMMUNIQUE	WITHDRAWAL.	CONNECTION	PROVISIONS	DEPLOYMENT
TWENTYFIVE	AIRCONTROL.	INSPECTION	EXPLOSIONS	EMPLOYMENT
SUCCESSIVE	SUCCESSFUL	CORRECTION	FORMATIONS	PERSISTENT
TMPRESSIVE	RESPECTFUL.	PROTECTION	OPERATIONS	ATRSUPPORT
LOCOMOTIVE	MEMORANDUM	EXHIBITION	DIRECTIONS	CONSPIRACY
CENTRALIZE	SUSPENSION	EXPEDITION	CONDITIONS	DEFICIENCY
NATURALIZE	DISPERSION	DEFINITION	TROOPSHIPS	EFFICIENCY
DEMOBILIZE	CONCESSION	AMMUNITION	NEWSPAPERS	COMPLETELY
COMMANDING	CONFESSION	OPPOSITION '	KILOMETERS	APPARENTLY
DEBOUCHING	DEPRESSION	PROPORTION	DESTROYERS	INCENDIARY
DETRUCKING	IMPRESSION	REVOLUTION	TRANSPORTS	COMMISSARY
ENTRUCKING	POSSESSION	MACHINEGUN	SUSPICIOUS	ELEMENTARY
ENCIRCLING	SUBMISSION	BATTLESHIP	VICTORIOUS	LABORATORY
SIGNALLING	COMMISSION	CENSORSHIP	CIRCUITOUS	TRAJECTORY
PATROLLING	PERMISSION	ARMOREDCAR	CONTINUOUS	CAPABILITY
OVERCOMING	DISCUSSION	DIVEBOMBER	PHOSPHORUS	AUDIBILITY
DETRAINING	CONCLUSION	COMMANDEER	FLASHLIGHT	VISIBILITY
CONCERNING	DEDICATION	DISPATCHER	COMMANDANT	SIMILARITY
INDICATING	INDICATION	MILLIMETER	LIEUTENANT	INSECURITY
ANTEDATING				
	EL	EVEN LETTER WOR	DS	
IMPEDIMENTA	SURRENDERED	CONSTITUTED	INFLAMMABLE	CERTIFICATE
TOPOGRAPHIC	ENCOUNTERED	BATTLEFIELD	RESPONSIBLE	COMMUNTCATE
RECOMMENDED	TRANSFERRED	PERFORMANCE	NAVALBATTLE	INVESTICATE
PREARRANGED	DISINFECTED	MAINTENANCE	TEMPERATURE	APPROPRIATE
ESTABLISHED	REAPPOINTED	COINCIDENCE	MANUFACTURE	APPROXIMATE
OVERWHELMED	INTERCEPTED	SUBSISTENCE	SCHOOLHOUSE	EXTERMINATE
DISAPPEARED	INTERRUPTED	CATASTROPHE	CUSTOMHOUSE	DETERIORATE

۶¢

e

-RESTRICTED

ELEVEN LETTER WORDS—Continued

. . . . _

CONCENTRATE	SMOKESCREEN	DISTINCTION	PHILIPPINES	CONFINEMENT
DEMONSTRATE	APPLICATION	DESTRUCTION	PARENTHESES	REQUIREMENT
NECESSITATE	ASSOCIATION	INSTRUCTION	HEAVYLOSSES	MEASUREMENT
DISCONTINUE	RETALIATION	RECOGNITION	COMMUNIQUES	IMPROVEMENT
SEVENTYFIVE	DEBARKATION	REQUISITION	PARENTHESIS	CONCEALMENT
PROGRESSIVE	EMBARKATION	COMPOSITION	CREDENTIALS	ECHELONMENT
RETROACTIVE	LEGISLATION	DISPOSITION	BATTLESHIPS	DEVELOPMENT
DESCRIPTIVE	CTRCULATION	COMPETITION	ARMOREDCARS	APPOTNTMENT
SYNCHRONTZE	TNFORMATION	DESCRIPTION	CORRECTNESS	COMPARTMENT
APPROACHTNG	EXPLANATION	CONSUMPTION	ENGACEMENTS	BELLTGERENT
TNTERVENTNC	DESTONATION	TNSTTTUTTON	ASSTONMENTS	TNCOMPETENT
FNOTNEEDTNO	RESTONATION	I TOUTBOMBER	Accessments	FINCERPRINT
TNUEDEEDTNC	TUNIONALION	NEAUVDONDEN	TNOTOTIMENTO	DIGODED MICY
AT DEPONADITIO	BUTUR TON	DANCEETNDEN	TINDINUDUID	DIOMOCD & DUV
ALIGANALING	COODED MITON	RANGEF LINDER	THIERCERLIC	THOTOGRAPHI
THIGUEDITNG	TUNTODATION	DINAMUMEIER	COLTRIAL COAL	LWWEDLAIELI INWENCTURI V
WITHDRAWING	IMMIGRATION	THERMUMETER	SIGNIFICANT	EXTENSIVELY
DISTINGUISH	INSPIRATION	INTERPRETER	INDEPENDENT	EFFECTIVELY
SEVENTEENTH	CORPORATION	RECONNOTTER	INTELLIGENT	PRELIMINARY
NAVALATTACK	PENETRATION	BLOCKBUSTER	COEFFICIENT	CONTROVERSY
STRATEGICAL	ARBITRATION	AERONAUTICS	BOMBARDMENT	ELECTRICITY
TRADITIONAL	COMPUTATION	NAVALFORCES	REPLACEMENT	NATIONALITY
CONTINENTAL	OBSERVATION	ACCESSORIES	EMPLACEMENT	SUITABILITY
FIRECONTROL	RESERVATION	HOSTILITIES	ENFORCEMENT	SUPERIORITY
NATIONALISM	RESTRICTION	ENEMYPLANES	ARRANGEMENT	
	TWE	LVE LETTER WORDS	ŝ	
TRANSPACIFIC	CONSTITUTING	ILLUMINATION	CONSTITUTION	EMPLACEMENTS
HYDROGRAPHIC	BREAKTHROUGH	ANTICIPATION	NORTHWESTERN	MEASUREMENTS
UNIDENTIFIED	GEOGRAPHICAL	REGISTRATION	SOUTHWESTERN	ADVANTAGEOUS
COMMISSIONED	CONFIDENTIAL	ILLUSTRATION	MARKSMANSHIP	SIMULTANEOUS
DISSEMINATED	PRESIDENTIAL	TNAUGURATION	MEDIUMBOMBER	ANTIATRCRAFT
CONCENTRATED	RECREATIONAL	COMPENSATION	COMMISSIONER	NONCOMBATANT
DEMONSTRATED	ACRTCHLTURAL	CONVERSATION	PSYCHROMETER	CONVALESCENT
DISORGANIZED	DEPARTMENTAL.	RADTOSTATION	SHARPSHOOTER	DISPLACEMENT
STONTETCANCE	UNSUCCESSFUL	CONTINUATION	DIFFICULTIES	COMMENCEMENT
TNTELLTCENCE	CENERALALARM	PRESERVATION	INTTEDSTATES	ANNOUNCEMENT
TNTERFFRENCE	VETERTNARTAN	MOBIL TZATION	PREPARATIONS	FNTANCL EMENT
TNCONDETENCE	WDANGMTOOTON	OPCANTZATION		DECTOUEDMENT
THOOMLETENCE	TIVHNOWTOOTOM	TIMEDITOTION	TNEEDIGETONS	
	AUNILL TOUTION	THIERDICITON	TUSIKUUIIUNS	DEENI TOTMENT
T LGHTEKPLANE	CONFIDUATION	TIMPODUCTION	LIGUIDOMDEDO	VEGULTO IMENI
INTERMEDIATE	COMMENDATION	TNIKODOCITON		TNELLTOTENCI
DECENTRALIZE	CONCLLIATION	CONSTRUCTION	HEADQUARTERS	DECOECSPICE
GENERALSTAFF	CANCELLATION	INTERVENTION	PREPAREDNESS	RESPECTFULLY
TRANSFERRING	PROCLAMATION	CUNSCRIPTION	COMPLETENESS	SATISFACTORY
ENTERPRISING	CONFIRMATION	INTERRUPTION	CARELESSNESS	TNIKODOCLORA
TTTTIMTNAMTNA			A	
TREOMINALING	CONFORMATION	DISTRIBUTION	SEARCHLIGHTS	IRREGULARITY

-RESTRICTED

THIRTEEN LETTER WORDS

TRANSATLANTIC	CHRONOLOGICAL	DETERMINATION	FIGHTERPLANES	ESTABLISHMENT
DISTINGUISHED	CONGRESSIONAL	EXTERMINATION	INSTALLATIONS	ENTERTAINMENT
DECENTRALIZED	INTERNATIONAL	CONSIDERATION	MEDIUMBOMBERS	REAPPOINTMENT
DISAPPEARANCE	SPECIFICATION	CONCENTRATION	MISCELLANEOUS	WARDEPARTMENT
IMPRACTICABLE	QUALIFICATION	DEMONSTRATION	INSTANTANEOUS	APPROXIMATELY
INDETERMINATE	COMMUNICATION	QUARTERMASTER	REENFORCEMENT	EXTRAORDINARŸ
CORRESPONDING	ACCOMMODATION	CIRCUMSTANCES	REINFORCEMENT	REVOLUTIONARY
CONCENTRATING	INVESTIGATION	DISCREPANCIES	REIMBURSEMENT	DEPENDABILITY
COUNTERATTACK	DISSEMINATION	PRELIMINARIES	REINSTATEMENT	
				-

FOURTEEN LETTER WORDS

CHARACTERISTIC	RECONNOITERING		ADMINISTRATION	REORGANIZATION
RECONNAISSANCE	METEOROLOGICAL		INTERPRÉTATION	RECONSTRUCTION
DISCONTINUANCE	CIRCUMSTANTIAL	_	TRANSPORTATION	IRREGULARITIES
CORRESPONDENCE	CLASSIFICATION		CENTRALIZATION	INVESTIGATIONS
ADMINISTRATIVE	IDENTIFICATION		NATURALIZATION	SATISFACTORILY
REPRESENTATIVE	RECOMMENDATION		DEMOBILIZATION	RESPONSIBILITY
DISTINGUISHING				

1

-

X

.

t

ļ

4

- 1

C. LIST OF WORDS USED IN MILITARY TEXT ARRANGED ALPHABETICALLY ACCORDING TO WORD PATTERN

PATTERN AA									
A	CC	EPT	FA	LL		MĂ	NN	ER	
A	CC	ORDING	FE	LL		A	NN	EX	
- 0	CC	UPY	FU	LL		CA	NN	OT	
Ā	DD		HI	LL		Т	00		
SU	DD	EN	I	LL		W	00	DS	
LA	DD	ER	INSTA	LL		PR	00	F	
BE	DD	ING	PAYRO	LL		В	00	К	
FL	EE		REFI	LL		C	00	К	
S	EE		SHE	LL		н	00	K	
THR	EE		SMA	LL		L	00	K	
PROC	EE	D	SPE	LL	•	Т	00	K	
SP	EE	D	WE	LL		SCH	00	L	
CR	EE	К	WI	LL		Т	00	L	
W	EE	к	VI	LL	AGE	PLAT	00	N	
F	EE	L	CO	LL	APSED	S	00	N	
ST	EE	L	DO	LL	AR	TR	00	PS	
WH	EE	L	OSCI	LL	ATE	C	00	RDINATE	
В	EE	N	KI	LL	ED	В	00	ТН	
FOURT	EE	N	BI	LL	ET	ST0	PP	ED	
HASB	EE	N	BU	LL	ETIN	HA	PP	EN	
QU	EE	N	VA	LL	EY	CLI	PP	ER	
SCR	EE	N	A	LL	IED	MA	PP	ING	
S	EE	N	A	LL	IES	А	PP	LY	
SIXT	EE	N	FA	$\mathbf{L}\mathbf{L}$	ING	- SU	PP	LY	
R	EE	NLIST	PATRÓ	$\mathbf{L}\mathbf{L}$	ING	A	\mathbf{PP}	OINT	
K	EE	Р	SHE	LL	ING	А	PP	OINTED	
SW	EE	PING	A	$\mathbf{L}\mathbf{L}$	OW	SU	\mathbf{PP}	ORT	
F	EE	Т	A	$\mathbf{L}\mathbf{L}$	Y	SU	PP	ORTING	
FL	EE	T	RA	$\mathbf{L}\mathbf{L}$	Y	A	PP	ROVE	
М	EE	Т	•C0	MM	A,	TE	RR	AIN	
JUMPO	FF		CO	MM	AND	CU	RR	ENT	
0	FF		CO	MM	ANDER	A	RR.	EST	
STA	FF		SU	MM	ARŸ	HU	RR	ICANE	
0	FF	END	CO	MM	END	DE	RR	ICK	
SU	FF	ER	CO	MM	ENT	GA	RR	ISON	
TRA	FF	IC	HA	MM	ER	A	RR	IVE	
0	FF	ICE	SU	MM	ER	CA	RR	Y	
0	FF	ICER	CO	MM	IT	FE	RR	У	
E	FF	ORT	SU	MM	IT	ACRO	SS		
FO	GG	Y	SU	MM	ON	COMPA	SS		
A	LL		CO	MM	UTE/	CONGRE	SS		
CA	$\mathbf{L}\mathbf{L}$		TO	NN	AGE	CRO	SS		
CE	LL		CHA	NN	EL	DARKNE	SS		
DRI	LL		BA	NN	ER	DRE	SS		
ENRO	LL		GU	NN	ER	LE	SS		

RESTRICTED

_

-

ī

١

X

PATTERN AA—Continued

LO SS MA SS ME SS PA SS PRE SS UNLE SS WITNE SS PA SS ED A SS EMBLY A SS ET PO SS IBLE		A CRO DRE ME PA LE I A EMBA OMI SUBMI	SS IGNED SS ING SS ING SS IVE SS ON SS UE SS UE SS URE SS Y TT ED TT ED		BA TT EN WRI TT EN BI TT ER LI TT ER BA TT ERY SPO TT ING BA TT LE BA TT LESHIP MU ZZ LE NO ZZ LE
		MISCELLAN	EOUS PATTERNS		-
AABA	AGR	EEME NT	AABCB	SU	FFICI ENT
AABA	K	EEPE R	AABCB	A	LLEGE
AABA	CH	EESE	AABCB	CO	LLEGE
AABA	BR	EEZE	AABCB	BI	LLETE D
AABA	MA	NNIN G	AABCB	Ā	MMETE R
AABA	PLA	NNIN G	AABCB	W	OODED
AABA	RU	NNIN G	AABCB	TE	RRIFI C
AABA	L	OOKO UT	AABCB	BA	TTERE D
AABA	Е	RROR	AABCBDEB	DI	FFERENCE
AABA	MI	RROR	AABCC	A	CCESS
AABA	TE	RROR	AABCC	A	CCESS ORY
AABA	GLA	SSES	AABCC	CO	MMISS ARY
AABA	LO	SSES	AABCCB	WI	LLATTA CK
AABA	PA	SSES	AABCCDD	CO	MMITTEE
AABA	CHA	SSIS	AABCCDEFBC	A	CCESSORIES
AABA	A	SSIS T	AABCDA	I	LLEGAL
AABAACB	A	SSESSME NT	AABCDA	Α	TTEMPT
AABAACBDEA	A	SSESSMENTS	AABCDAB	A	TTEMPTE D
AABAB	PROC	EEDED	AABCDB	0	FFENSE
AABB	CO	FFEE	ABCDB	CHA	LLENGE
AABB	BA	LLOO N	ÅABCDB	' BA	LLISTI C
AABBAACAC	В	EENNEEDED	AABCDB	A	RRESTE D
AABBCBC	SU	CCEEDED	AABCDB	PA	SSENGE R
AABCA	В	EETLE	AABCDB	BA	TTERIE S
AABCA	А	NNOUN CE	AABCDBA	នប	RRENDER
AABCA	F	OOTHO LD	AABCDBABD	SU	RRENDERED
AABCA	CA	RRIER	AABCDBC	CO	MMANDAN T
AABCA	A	SSETS	AABCDBD	0	FFENDED
AABCA	I	SSUES	AABCDBEC	BA	LLISTICS
AABCÁDEC	CQ	MMITMENT	A'ABCDC	E	FFICAC Y
AABCADEC	A	TTENTION	ABCDD	A	DDRESS
AABCADEFEA	A	NNOUNCEMEN T	A'ABCDD	I	LLNESS
AABCB	Sor	EENIN G	AABCDDCA	A	DDRESSED
AABCB	ຣ ເ	FFERE D	AABCDDCD	A	DDRESSES
AABCB	DI	FFERE NT	AABCDEB	CO	MMUNIQU E
AABCB	0	FFICI AL	AABCDEB	TR	OOPSHIP

.

_RESTRICTED

ı ı

I

MISCELLANEOUS PATTERNS—Continued

- 1

AABCDEB	A	SSEMBLE	ABA	INVA	DED	
AABCDEBC	TR	00PSHIPS	ABA	LAN	DED	
AABCDEC	CO	MMANDIN G	ABA	RAI	DED	
AABCDECB	BA	TTLEFIEL D	ABA	WOUN	DED	
AABCDED	CO	MMANDED	ABA		DID	
AABCDEDFÖ	A	MMUNITION	ABA	IC	EBE	RG
AABCDEE	CO	MMANDEE R	ABA	PR	ECE	DING
AABCDEFA	R	EENLISTE D	ABA	R	ECE	IPT
AABCDEFA	I	RREGULAR	ABA	CR	EDE	NTIAL
AABCDEFB	0	FFENSIVE	ABA	F	EDE	RAL
AABCDEFBA	A	SSEMBLIES	ABA	D	EFE	AT
AABCDEFC	Α	LLOTMENT	ABA	D	EFE	CT
AABCDEFC	C	OOPERATE	ABA	D	EFE	R
AABCDEFD	I	LLUSTRAT E	ABA	SI	EGE	
AABCDEFD	А	SSIGNMEN T	ABA	R	EJE	CT
AABCDEFDGA	Α	SSIGNMENTS	ABA	S	ELE	CT
AABCDEFGA	C	OOPERATIO N	ABA	T	ELE	GRAM
AABCDEFGABF	R	EENLISTMENT	ABA		ELE	VATION
AABCDEFGD	BA	TTLESHIPS	ABA	SCH	EME	
AABCDEFGDAE	C	OORDINATION	ABA	R	EME	DY
AABCDEFGDE	A	PPOINTMENT	ABA	DISPLAC	EME	NT
ABA		AGA IN	ABA	PLAC	EME	NT
ABA		AGA INST	ABA		ENE	MY
ABA	C	ALA MITY	ABA	G	ENE	RAL
ABA		ALA RM	ABA	R	EPE	L
ABA	S	ALA RY	ABA	Н	ERE	
ABA	D	AMA GE	ABA	SPH	ERE	
ABA	М	ANA GE	ABA	TH	ERE	
ABA	C	ANA L	ABA	W	ERE	
ABA		ANA LYZE	ABA	WH	ERE	
ABA	J	APA N	ABA	CONQU	ERE	D
ABA	P	ARA CHUTE	ABA	COV	ERE	D ·
ABA	P	ARA DE	ABA	TH	ESE	
ABA	SEP	ARA TION	ABA	PR	ESE	NT
ABA	F	ATA L	ABA	D	ESE	RT
ABA	N	AVA L	ABA	COMPL.	ETE	
ABA	N	AVA LFORCES	ABA	KILOM	ETE	R
ABA	C	AVA LRY	ABA	M	ETE	R
ABA	EXC	AVA TION	ABA	P	ETE	R
ABA		AWA IT	ABA	D	EVE	LOP
ABA		AWA RD	ABA	S	EVE	N
ABA		AWA Y	ABA	S	EVE	NTH
ABA	PRO	BAB LE	ARA	S	EVE	NTY
ABA	PRO	BAB LY	ABA	S	EVE	RAL
ABA	BI	CYC LE	ABA		EVE	RY
ABA		CYC LONE	ABA		EYE	
ABA	BLOCKA	DED	ABA		FIF	TH
ABA	GROUN	DED	ABA	_	FIF	TY
ABA	GUAR	DED	ABA	EIG	HTH	

-RESTRICTED-

r

PATTERN AA-Continued

-

LO	SS		A	SS	IGNED	BA	TT	EN
MA	SS		CRO	SS	ING	WRI	\mathbf{TT}	EN
ME	SS		DRE	SS	ING	BI	\mathbf{TT}	ER
PA	SS		ME	SS	ING	LI	TT	ER
PRE	SS		PA	SS	IVE	BA	\mathbf{TT}	ERY
UNLE	នន		LE	SS	ON	SP0	\mathbf{TT}	ING
WITNE	SS		I	SS	UE	BA	\mathbf{TT}	LE
PA	SS	ED	A	SS	URE	BA	\mathbf{TT}	LESHIP
A	SS	EMBLY	EMBA	SS	Y	MU	$\mathbf{Z}\mathbf{Z}$	LE
A	SS	ET	OMI	\mathbf{TT}	ED	NO	$\mathbf{Z}\mathbf{Z}$	LE
PO	SS	IBLE	SUBMI	TT	ED			

MISCELLANEOUS PATTERNS

AGR	EEME NT	AABCB	SU	FFICT ENT
ĸ	EEPE R	AABCB	Ā	LLEGE
СН	EESE	AABCB	co	LLEGE
BR	EEZE	AABCB	BI	LLETE D
MA	NNIN G	AABCB	Ā	MMETE R
PLA	NNIN G	AABCB	Ŵ	OODED
RU	NNIN G	AABCB	TE	RRIFI C
L.	OOKO UT	AABCB	BA	TTERE D
E	RROR	AABCBDEB	DI	FFERENCE
MÍ	RROR	AABCC	A	CCESS
TE	RROR	AABCC	Α	CCESS ORY
GLA	SSES	AABCC	CO	MMISS ARY
LO	SSES	AABCCB	WI	LLATTA CK
PA	SSES	AABCCDD	CO	MMITTEE
CHA	SSIS	AABCCDEFBC	A	CCESSORIES
A	SSIS T	A ABCDA	I	LLEGAL
A	SSESSME NT	AABCDA	Α	TTEMPT
A	SSESSMENTS	ABCDAB	Α	TTEMPTE D
PROC	EEDED	AABCDB	0	FFENSE
CO	FFEE	ÅABCDB	CHA	LLENGE
BA	LLOO N	ÀABCDB	BA	LLISTI C
В	EENNEEDED	ÅABCDB	A	RRESTE D
SU	CCEEDED	AABCDB	PA	SSENGE R
В	EETLE	AABCDB	BA	TTERIE S
A	NNOUN CE	AABCDBA	SU	RRENDER
F	OOTHO LD	AABCDBABD	SU	RRENDERED
CA	RRIER	AABCDBC	CO	MMANDAN T
Α	SSETS	AABCDBD	0	FFENDED
I	SSUES	AABCDBEC	BA	LLISTICS
eq	MMITMENT	A'ABCDC	E	FFICAC Y
A	TTENTION	ABCDD	A	DDRESS
A	NNOUNCEMEN T	AABCDD	I	LLNESS
SOR	EENIN G	AABCDDCA	A	DDRESSED
SJ	FFERE D	AABCDDCD	Α	DDRESSES
DI	FFERE NT	AABCDEB	CO	MMUNIQU E
0	FFICI AL	AABCDEB	TR	OOPSHIP
	AGR K CH BR MA PLA RU L E MI TE GLA LO PA CHA A PROC CO BA B SU B A F CA A I GQ A SOF SJ I O	AGR EEME NT K EEPE R CH EESE BR EEZE MA NNIN G PLA NNIN G RU NNIN G L 00K0 UT E RROR MI RROR TE RROR GLA SSES LO SSES PA SSES CHA SSIS A SSIS T A SSESSME NT A SSESSME NT A SSESSME NT A SSESSMENTS PROC EEDED CO FFEE BA LLOO N B EENNEEDED SU CCEEDED B A LLOO N B EETLE A NNOUN CE F 00THO LD CA RRIER A SSETS I SSUES GQ MMITMENT A TTENTION A NNOUNCEMEN T SQR EENIN G SJ FFERE D DI FFERE NT O FFICI AL	AGREEMENTAABCBKEEPERAABCBBREEZEAABCBMANNINGAABCBPLANNINGAABCBRUNNINGAABCBLOOKOUTAABCBERRORAABCBDEBMIRRORAABCCGLASSESAABCCGLASSESAABCCGLASSESAABCCDCHASSISAABCCDEFBCASSISTAABCDAAASSESSMENTAABCDAAASSESSMEPASSESSMESABCDAASSESSMEASSESSMENTSAABCDBPROCEEDEDAABCDBBEENNEEDEDAABCDBBEETLEAABCDBBEETLEAABCDBBEETLEAABCDBBSSETSAABCDBAFOOTHOAAABCDBCASSETSAABCDBCASSETSAABCDBCASSETSAABCDBCASSETSAABCDBCASSETSAABCDBCASSETSAABCDBCAASSETSAABCDBCAAAAABBB<	AGREEMENTAABCBSUKEEPERAABCBACHEESEAABCBBIMANNINGAABCBAPLANNINGAABCBWRUNNINGAABCBTELOOKOUTAABCBBAERRORAABCBDIMIRRORAABCCATERRORAABCCAGLASSESAABCCCOLOSSESAABCCCOLOSSESAABCCDCOCHASSISAABCCDAIASSESSMENTAABCDAIASSESSMEAABCCDAIASSESSMENTSAABCDAAASSESSMENTSAABCDBAPROCEEDEDAABCDBAPROCEEDEDAABCDBABEENNEEDEDAABCDBABEETLEAABCDBABSETSAABCDBABSETSAABCDBSUCARRIERAABCDBSUCARRIERAABCDBCOISSUESAABCDBCBAANNOUN CEAABCDBASUCARRIERAABCDBCBAANNOUN CEAABCDBASUCARRIERAABCDCEAMITMENTAABCDDAASUESAABCDDCO <td< td=""></td<>

RESTRICTED

Т

1

MISCELLANEOUS PATTERNS—Continued

1

AABCDEB	А	SSEMBLE	ABA	INVA	DED	
AABCDEBC	TR	00PSHIPS	ABA	LAN	DED	
AABCDEC	CO	MMANDIN G	ABA	RAI	DED	
AABCDECE	BA	TTLEFIEL D	ABA	WOUN	DED	
AABCDED	CO	MMANDED	ABA		DID	
AABCDEDFÖ	A	MMUNITION	ABA	IC	EBE	RG
AABCDEE	ĊO	MMANDEE R	ABA	PR	ECE	DING
AABCDEFA	R	EENLISTE D	ABA	R	ECE	IPT
AABCDEFA	I	RREGULAR	ABA	CR	EDE	NTIAL
AABCDEFB	0	FFENSIVE	ABA	F	EDE	RAL
AABCDEFBA	A	SSEMBLIES	ABA	D	EFE	AT
AABCDEFC	А	LLOTMENT	ABA	D	EFE	СТ
AABCDEFC	C	OOPERATE	ABA	D	EFE	R
AABCDEFD	I	LLUSTRAT E	ABA	SI	EGE	
AABCDEFD	A	SSIGNMEN T	ABA	R	EJE	CT
AABCDEFDGA	Α	SSIGNMENTS	ABA	S	ELE	CT
AABCDEFGA	C	OOPERATIO N	ABA	Т	ELE	GRAM
AABCDEFGABF	R	EENLISTMENT	4BA		ELE	VATION
AABCDEFGD	BA	TTLESHIPS	ABA	SCH	EME	
AABCDEFGDAE	C	OORDINATION	ABA	R	EME	DY
AABCDEFGDE	A	PPOINTMENT	ABA	DISPLAC	EME	NT
ABA		AGA IN	ABA	PLAC	EME	NT
ABA		AGA INST	ABA		ENE	MY
ABA	C	ALA MITY	ABA	G	ENE	RAL
ABA		ALA RM	ABA	R	EPE	L
ABA	S	ALA RY	ABA	Н	ERE	
ABA	D	AMA GE	ABA	SPH	ERE	
ABA	М	ANA GE	ABA	TH	ERE	
ABA	C	ANA L	ABA	W	ERE	
ABA		ANA LYZE	ABA	WH	ERE	
ABA	J	APA N	ABA	CONQU	ERE	D
ABA	Р	ARA CHUTE	ABA	COV	ERE	D ~
ABA	Р	ARA DE	ABA	TH	ESE	
ABA	SEP	ARA TION	ABA	PR	ESE	NT
ABA	F	ATA L	ABA	D	ESE	\mathbf{RT}
ABA	N	AVA L	ABA	COMPL	ETE	
ABA	N	AVA LFORCES	ABA	KILOM	ETE	R
ABA	C	AVA LRY	ABA	M	ETE	R
ABA	EXC	AVA TION	ABA	P	$\mathbf{E}\mathbf{T}\mathbf{E}$	R
ABA		AWA IT	ABA	D	EVE	LOP
ABA		AWA RD	ABA	S	EVE	N
ABA		AWA Y	ABA	S	EVE	NTH
ABA	PRO	BAB LE	ABA	S	EVE	NTY
ABA	PRO	BAB LY	ABA	ន	EVE	RAL
ABA	BI	CYC LE	ABA		EVE	RY
ABA		CYC LONE	ABA		EYE	
ABA	BLOCKA	DED	ABA		FIF	TH
ABA	GROUN	DED	ABA		FIF	TY
ABA	GUAR	DED	ABA	EIG	HTH	

-RESTRICTED

RESTRICTED

. . .

MISCELLANEOUS PATTERNS-Continued

ABA	L	IAI	SON	ABA	CA	RTR IDGE
ABA	PROH	IBI	Т	ABA	D	RYR UN
ABA	SERV	ICI	NG	ABA	DI	SAS TER
ABA	RA	IDI	NG	ABA	CA	SES
ABA	R	IDI	NG	ABA	RE	SIS T
ABA	R	IGI	D	ABA		SUS PEND
ABA	F	ILI	NG	ABA		SYS TEM
ABA	М	ILI	TARY	ABA	S	TAT ION
ABA	MOB	ILI	ZE	ABA	DIC	TAT OR
ABA	ន	IMI	LAR	ABA		TIT LE
ABA	L	IMI	т	ABA	AL	TIT UDE
ABA	PROX	IMI	TY	ABĂ	LA	TIT UDE
ABA	F	INI	SH	ABA		TOT AL
ABA	F	IRI	NG	ABA		TOT ALING
ABA	RET	IRI	NG	ABA	A	ugu st
ABA	W	IRI	NG	ABA		USU AL
ABA	v	ISI	BLE	ABA	F	UTU RE
ABA	D	ISI	NFECT	ABA	SUR	VIV ED
ABA	ADV	ISI	NG	ABAA	HAV	EBEE N
ABA	DEC	ISI	ON	ABAA		SESS ION
ABA	v	ISI	Т	ABAACC		TATT00
ABA	v	ISI	TOR	ABAB	DETRA	ININ G
ABA	POL	ITI	CS	ABAB	L	ININ G
ABA	CR	ITI	QUE	ABAB	М	ININ G
ABA	POS	ITI	VE	ABAB	OBTA	ÍNIN G
ABA		MEM	ORIAL	ABAB	RA	ININ G
ABA		NAN		ABAB	REMA	ININ G
ABA	DOMI	NAN	CE	ABAB	TRA	ININ G
ABA	ORD	NAN	CE	ABAB	CR	ISIS
ABA	DOMI	NAN	T	ABAB	WI	THTH E
ABA		NIN	E	ABAB	PAR	TITI ON
ABA		NTN	ETY	ABACA	C	ANADA
ABA	MOR	NIN	G	ABACA	P	ANAMA
ABA		NIN	TH	ABACA	PR	ECEDE
ABA	0	ORO	E	ABACA		ELEME NT
ABA	U	OLU	N	ABACA		ELEME NTARY
ABA	SEMIC		N	ABAUA	a	BLEVE N ENERE DV
ABA	U A 1107	ONO ONO	NO DTI E	ADAGA	U 9	EMETE KI
ABA	AUI	OMO	DTPD	<u>а</u> даја 1010-101	G CITA	SYERE TOTIT WV
	רה	ONO	20 16		AUD	TOTOT II
	n VTC	000	110	ADACA	ean V	TOTNT WV
	VIG M	OTO	2	ABACA	v M	TLTTT A
ADA Ada	18	010	RTZPD	ABACA	ከ የሌር	TITTT FC
ADA Ada	M ממ	Otto	S.L.	ΔΡΔΛΛ	FAU Tr	TMINI CU
ADA ARA	rn	PTP	E	ABACA	D T	TMTTT NA
ΔRÅ		PUD	፲፱ ፲፱፻.ልሞድቦ	ABACA	L)	ΤΝΤΤΤ ΔΙ.
	I.TR	RAR	V	ARACA	ਸਾਜ਼ਰ	TNTTT ON
ADA ARA		RUB	- OME	ABACA	קנוע	TRICT BLE
aua	A.L.	*****	~ 41111		<i>D</i>	

MISCELLANEOUS FATTERNS-Continued

EQU C	ISITI ON	ABACDA	U	NKNOWN
C				
~	IVILI AN	ABACDA''	PR	OMOTIO N
D	IVISI ON	ABACDAÁC	ន	EVENTEEN
L	OCOMO TIVE	ABACDÅACD	ន	EVENTEENT H
М	ONOPO LY	ABACDAC	D	ESERTER
PR	OTOCO L	ABACDAD	D	EFENSES
ons	TITUT E	ABACDAED		AVAILABL E
	UNUSU AL	ABACDAEEC	N	AVALBATTL E
V	ISIBILI TY	ABACDB	F	ATALIT Y
DEF	INITION	ABACDB	A	NONYMO US
PR	ECEDENCE	ABACDB	C	OLONEL
	INITIAT É	ABACDBA	TH	EREFORE
MPL	ETENESS	ABACDC	R	ECEIVI NG
N	AVALATTA CK	ABACDC	DYNA	MOMETE R
D	IVISIONS	ABACDCA	L	IMITATI ON
V	ACANC Y	ABACDCCA		NINETEEN
OMB	ATANT	ABACDCCAD		NINETEENT H
C	ATAST ROPHE	ABACDCEA	S	TATEMENT
D	ETECT OR	ABACDCECFGHIE	М	ETEOROLOGICAL
V	ISITS '	ABACDD		FIFTEE N
	MEMBE R	ABACDD	FO	RTRESS
D	ETENTION	ABACDDEC		FIFTEENT H
R	ETENTION	ABACDEA		ELEVATE
	NONCOMBATANT	ABACDEA	D	EVELOPE
Ŕ	EBELL ION	ABACDEA	VER	IFICATI ON
N	ECESS ARY	ABACDEA	S	IMILARI TY
N	ECESS ITY	ABACDEAD		SUSPENSE
CAR	ELESS	ABACDEAFGE		SUSPENSION
NIR	ELESS	ABACDEB	EXPL	ANATION
Ρ	ARALLA X	ABACDEB	Т	OPOGRAP HIC
R	EPELLE D	ABACDEBFA	R	ECEPTACLE
т	OMORRO W	ABACDEC		ABANDON
CAR	ELESSNESS	ABACDEC	Ď	AMAGING
Р	ARALLEL	ABACDEC	QU	ARANTIN E
N	ECESSITATE	ABACDECA	P	ENETRATE
I	ALASKA	ABACDECFBA	D	ETERIORATE
	ARABIA	ABACDECFGB	P	ENETRATION
N	AVALBA SE	ABACDED	C	APABILI TY
R	ECEIVE	ABACDED	М	OTORCYC LE
D	ECEMBE R	ABACDED		SUSPICI ON
D	EFENSE	ABACDEDEDC	G	ENERALALAR M
R	EJECTE D	ABACDEDFBA		SUSPICIOUS
R	ELEASE	ABACDEDFGA		SUSPICIONS
S	ELECTE D	ABACDEFA	D	EFECTIVE
R	EMEDIE S	ABACDEFA	D	EFENSIVE
	EMERGE NCY	ABACDEFA	Т	ELEPHONE
	ENEMIE S	ABACDEFA	D	ETERMINE
R	EPEATE D	ABACDEFA	D	EVELOPME NT
	CDLMRS VFR LNDVBCDV DR RNNRRPRTRPN' NRDDRRSR R CMI CMI CMI CMI CMI CMI CMI CMI CMI CMI	C IVILI AN D IVISI ON L OCOMO TIVE M ONOPO LY PR OTOCO L DNS TITUT E UNUSU AL V ISIBILI TY DEF INITION PR ECEDENCE INITIAT É MPL ETENESS N AVALATTA CK D IVISIONS V ACANC Y DMB ATANT C ATAST ROPHE D ETECT OR V ISITS MEMBE R D ETENTION R ETENTION R ETENTION R ETENTION NONCOMBATANT R EBELL ION N ECESS ARY N ECESS ITY DAR ELESS P ARALLA X R EPELLE D T OMORRO W CAR ELESSNESS P ARALLEL N ECESSITATE ' ALASKA ARABIA 1 N AVALBA SE R ECEIVE , D ECEMBE R D EFENSE R ELEASE ' S ELECTE D R ELEASE ' S ELECTE D R EMEDIE S EMERGE NCY ENEMIE S R EPEATE D	C IVILI AN ABACDA' D IVISI ON ABACDAAC L OCOMO TIVE ABACDAACD M ONOPO LY ABACDAC PR OTOCO L ABACDAD UNUSU AL ABACDAED UNUSU AL ABACDAEEC V ISIBILI TY ABACDB PR ECEDENCE ABACDB INITIAT É ABACDBA WPL ETENESS ABACDC N AVALATTA CK ABACDC D IVISIONS ABACDCA V ACANC Y ABACDCA V ACANC Y ABACDCA V ACANC Y ABACDCA C ATAST ROPHE ABACDCCA D ETECT OR ABACDCCA C ATAST ROPHE ABACDCCA D ETECT OR ABACDCCA D ETECT OR ABACDCCA D ETECT OR ABACDCCA MEMBE R ABACDD D ETENTION ABACDDC R ETENTION ABACDECA NONCOMBATANT ABACDEA NONCOMBATANT ABACDEA N ECESS ITY ABACDEA N ECESS ITY ABACDEA N ECESS ITY ABACDEA N ECESS ARY ABACDEA R EPELLE D ABACDEB R EPELLE D ABACDEFA R ELESS ABACDEC N AVALBA SE ABACDEC R ELESS ABACDEC R ELESS ABACDED R ELESS ABACDEFA R ELEASE ' ABACDEFA R EMEDTE S ABACDEFA	C IVILI AN ABACDA' 'FR D IVISI ON ABACDAAC S L OCOMO TIVE ABACDAACD S M ONOFO LY ABACDAC D PR OTOCO L ABACDAC D PR OTOCO L ABACDAED ' UNUSU AL ABACDAEEC N V ISIBILI TY ABACDB F DEF INITION ABACDB A PR ECEDENCE ABACDB C INITIAT É ABACDBA TH WPL ETENESS ABACDC R N AVALATTA CK ABACDC DYNA D IVISIONS ABACDCA L V ACANC Y ABACDCA L V ACANC Y ABACDCCAD ' C ATAST ROPHE ABACDCEA S D ETECT OR ABACDCCAD ' N USITS 'ABACDCA S D ETECT OR ABACDCEA S D ETECT OR ABACDCEA S D ETECT OR ABACDCCAD ' MEMBE R ABACDCA S D ETECT OR ABACDCCAD ' NONCOMBATANT ABACDCCA S N ECESS ARY ABACDC ' R ETENTION ABACDEC ' R ETENTION ABACDEA ' NONCOMBATANT ABACDEA ' N ECESS ARY ABACDEA ' N ECESS ITY ABACDEA ' N ECESS ITY ABACDEA ' N ECESS ARY ABACDEA ' N ECESS ABY ABACDEC ' N AVALBA SE ABACDEB ' N AVALBA SE ABACDEC ' N AVALBA SE ABACDEC ' N AVALBA SE ABACDEC ' N ECEMBE R ABACDEC G R EJECTE D ABACDECFGB P N AVALBA SE ABACDED ' N ECEMBE R ABACDEC G R EJECTE D ABACDEFFA ' N EVELY ', ABACDEFFA ' N AVALBA SE ABACDEA ' N ECEMBE R ABACDEC G R ELESS ' N ABACDEFFA ' N AVALBA SE ABACDEC G R EJECTE D ABACDEFFA ' N AVALBA SE ABACDEFFA ' N AVALBA SE ABACDEA ' N EVENTE S ABACDEFFA ' N ABACDEFFA ' N ABACDEFFA ' N ABACDEFFA ' N ABACDEFFA ' N A

-RESTRICTED-

7

MISCELLANEOUS PATTERNS-Continued

AHAICDEFA	-	EXER	CISE	ABBA	SH	IPPI NG
ABACDEFAF	~	EXER	CISES	ABBA	М	ISSI NG
ABACDEFB		DEDI	CATE	ABBA	ADM	ISSI ON "
ABACDEFB		ENEM	YTAN KS	ABBA	M	ISSI ON
ABACDEFC		DEDI	CATI ON	ABBA	PERM	ISSI ON
ABACDEFCDFE	v	ETERI	INARIAN	ABBA	F	ITTI NG
ABACDEFCFD	-	ELECT	TRICIT Y	ABBA	AFTER	NOON
ABACDEFD		SUSPI	ECTE D	ABBA		NOON
ABACDEFDF		SUSPI	ENDED	ABBA	F	OLLO W
ABACDEFE		ANAL	VSIS	ABBA	Ċ	OMMO N
ABACDEFGA		EXEC	JTIVE	ABBA	÷	OPPO SE
ABACDEFGB		POPUI	LATIO N	ABBA -		OPPO SITE
ABACDEEGBA		ENEMY	PLANE S	ABBA ·	- B	ОТТО М
ABACDEFGBA	S	EVEN	TYFIVE	ABBAB	B	AGGAG E
ABACDEFGBEHF	Ď	ETER	NTNATTON	ABBAB	WTTN	ESSES
ABACDEFCDHH	G	ENER	ALSTAFF	ABBACA	**===	APPARA TUS
ABACDEFGE		MEMOR	RANDA	ABBACA	T.	ETTERE D
ABACDEFCHA		MEMOR	RANDUM	ABBACB	v	ESSELS
ABACDEFCHTA	ם	ECEN	TRALTZE	ABBACDA	м	ESSENCE R
ARRA	2		TR	ABBACDA	111	EFFECTE D
			RENT	ABBACDB	м	TSSTONS
ABBA		ΔΡΡΔ	RENTLY	ABBACDEÅ	747	TRRICATT ON
ABRA	R	ARRA	CKS	ABBACDED		OPPOSTTTO N
λεεγ	R	ABBV	CE	ABBACDERÍA		7071100710
	D	VDDV	NCF	ABBACDEFA	л	
ABBA	q	A22V	CE	ABBACOEFA	D	TMMTCRATT ON
ABBA	•	ASSA	HI.T	ABBACDEFC		TLL.TTERATE
ARRA		ΔΤΤΔ	CH	ABBACDEFD		ATTATNMENT
ARRA		ΔΤΤΑ	CK	ABBACDEFEC		ARRANGEMEN T
ABRA		ል፹፹ል	TN	ABBACDEFC		ATTACHMENT
ABBA	B	ልቸጥል	L.TON	ABBCA		ANNUA T.
ARRA	TN	CEED	22011	ABBCA		APPEA R
ARRA		THE	CT	ABBCA	DTS	APPEA R
ARRA	COMP	ELLE	D	ABBCA	C	ARRTA CE
ABBA	SH	FLLE	D	ABBCA	ŝ	ETTIE
ABBA	CONF	ERRE	D	ABBCA		TSSUT NG
ABBA	COMPR	ESSE	D	ABBCA	FOUR	TEENT H
ABBA	TMPR	ESSE	D	ABBCA	STX	TEENT H
ABBA	PR	ESSE	D	ABBCA	CHA	UFFEU R
ABBA	v	ESSE	I.	ABBCA	S	URROU ND
ABBA	CIGAR	ETTE	-	ABBCADAEFC	~	APPEARANCE
ABBA	B	ETTE	R	ABBCÁDAEÉC	DIS	APPEARANCE
ABBA	Ē	ETTE	R	ABBCADC		APPEARE D
ABBA	D	ITTI	CULT	ABBCBBDA	P	OSSESSIO N
ABBA	W	TLLT	AM	ABBCBDA	-	ASSTSTA NCE
ABBA	י. ק	ILL.J	NG	ABBCBDAED		ASSISTANT
ABBA	Ř	ILLI	NG	ABBCCDAB		ASSOONAS
ABBA	REF	ILLI	NG	ABBCDA		ALLOWA NCE
ABBA	SW	IMMI	NG	ABBCDA		APPROA CH
					~ *	

ABACE ABACE ABACE ABACI ABACE ABACE ABACI ABACE ABACD ABACD ABACE ABACE ABACD ABACE ABACE ABACE ABBA ABBA

RESTRICTED

ABBA

ABBA

ABBA

1

_

RESTRICTED

MISCELLANEOUS PATTERNS-Continued

ABBCDA		ARRIVA L	ABCA		ADVA	NCE
ABBCDA		ASSURA NCE	ABCA	DI	AGRA	М
ABBCDA	M	ESSAGE	ABCA	EV	ALUA	TION
ABBCDA		ILLUMI NATE	ABCA		ALWA	ys
ABBCDAB	М	ESSAGES	ABCA	C	AMPA	IGN
ABBCDAB	C	ORRIDOR	ABCA	М	ANDA	TE
ABBCDAEA	В	ELLIGERE NT	ABCA	М	ANUA	L
ABBCDAEFC		ALLOCATIO N	ABCA	J	ANUA	RY
ABBCDAEFC		IMMEDIATE	ABCA	C	ANVA	S
ABBCDAEFGAE		ILLUMINATIN G	ABCA	CH	APLA	IN
ABBCDAEFGAHE		ILLUMINATION	ABCA	C	APTA	IN
ABBCDAEFGAHE	D	ISSEMINATION	ABCA		AREA	
ABBCDBCEA		APPROPRIA TE	ABCA	DEB	ARKA	TION
ABBCDCA		EFFICIE NT	ABCA	EMB	ARKA	TION
ABBCDCA	C	OLLISIO N	ABCA		ASIA	-
ABBCDCAED		EFFICIENC Y	ABCA	CO	ASTA	L
ABBCDCAED	C	OLLISIONS	ABCA	C	ASUA	L
ABBCDCEFA		ADDITIONA L	ABCA	C	Asua	LTY
ABBCDDCA	C	OMMISSIO N	ABCA		AVIA	TOR
ABBCDDCA	C	OMMISSIO NER	ABCA		BARB	ED
ABBCDDCEAFGC		ACCOMMODATIO N	ABCA		BOMB	
ABBCDEA		ACCOMPA NY	ABCA		BOMB	ARD
ABBCDEA		APPROVA L	ABCA		BOMB	ER
ABBCDEA		ASSOCIA TE	ABCA	LIGĤT _,	BOMB	ER
ABBCDEA	SH	ELLFIRE	ABCA		BRIB	Е
ABBCDEA	T	ERRIBLE	ABCÁ		BULB	
ABBCDEAFB		ACCORDANC E	ABCA		CANC	EL
ABBCDEAFB		REENFORCE	ABCA		CHEC	K
ABBCDEAFBC		ACCEPTANCE	ABCA		CIRC	LE
ABBCDEAFBGBC		REENFORCEMEN T	ABCA		CIRC	ULATE
ABBCDEAFD		APPLICATI ON	ABCA		CONC	EAL
ABBCDEAFEC		ASSOCIATIO N	ABCA		CONC	LUDE
ABBCDEAFGC		ACCEPTABLE	ABCA	HUN	DRED	
ABBCDEAFGC		ALLEGIANCE	ABCA	Ĺ	EADE	R
ABBCDEAFGHF	C	ORRESPONDIN G	ABCA		EAGE	R
ABBCDEFGA		ACCIDENTA L	ABCA	M	EAGE	R
ABBCDEFGA		APPROXIMA TE	ABCA	S	EAME	N
ABBCDEFGA		OCCUPATIO N	ABCA	ST	EAME	R
ABBCDEFGBAHAC		IRREGULARITIE S	ABCA	N	EARE	ST
ABBCDEFGBA		IRREGULARI TY	ABCA	C	EASE	
ABBCDEFGEA		ILLUSTRATI ON	ABCA	GR	EASE	
ABBCDEFGHAD	C	OMMENDATION	ABCA	INCR	EASE	D
ABCA	Р	ACKA GE	ABCA	L	EAVE	
ABCA	EV	ACUA TING	ABCA		ECHE	LON
ABCA	EV	ACUA TION	ABCA	WR	ECKE	D
ABCA	R	ADIA L	ABCA	INF	ECTE	D
ABCA	R	ADIA TE	ABCA		EDGE	
ABCA		ADJA CENT	ABCA	S	EIZE	
ABCA	GR	ADUA L	ABCA	R	ELIE	F

RESTRICTED

١.

~ **•**

•

-RESTRICTED-

MISCELLANEOUS PATTERNS-Continued

•

ı.

ABCA	н	ELPE	R		ABCA	I	NFAN	TRY
ABCA	TW	ELVE			ABCA	CO	NFIN	E
ABCA	NOV	EMBE	R		ABCA	Ŭ	NION	
ABCA	ABS	ENCE			ABCA	SU	NKEN	
ABCÀ	LIC	ENSE			ABCA	FLA	NKIN	G
ABCA	Ċ	ente	R		ABCA	I	NLAN	Ď
ABCA		ENTE	R		ABCA	· - I	NTEN	Ď
ABCA		ENVE	LOP		ABCA	' co	NTIN	UAL
ABCA	R	EQUE	ST		ABCA	CO	NTIN	UE
ABCA	FI	ERCE			ABCA	I	NVEN	T
ABCA	S	ERGE	ANT		ABCA	-	OCTO	BER
ABCA	MAT	ERIE	L		ABCA	D	OCTO	R
ABCA	REV	ERSE			ABCA	F	OGHO	RN
ABCA	OBS	ERVE			ABCA	P	OISO	N
ABCA	R	ESPE	CT		ABCA	C	OMPO	SED
ABCA	W	ESTE	RLY		ABCA	C	ONVO	Y
ABCA	W	ESTÉ	RN		ABCA	EN	ORMO	US
ABCA		ETHE	Ŕ		ABCA	EXPL	OSIO	N
ABCA	MAN	EUVE	R		ABCA		PUMP	
ABCA	R	EVIE	W		ABCA		PURP	OSE
ABCA		EXCE	PT		ABCA	HA	RBOR	
ABCA		EXPE	CT		ABCA	IA	RBOR	NE
ABČĄ		EXPE	ND		ABCA	MU	RDER	
ABÇA		EXTE	ND	ġ.	ABCA	0	RDER	
ABCA	4	GAUG	E	T	ABCA	0	RDER	S
ABCA		GEOG	RAPHI(ABCA		REAR	
ABCA	FOR	GING	•		ABCA		RECR	UIT
ABCA	W	HICH		1	ABCA	COU	RIER	
ABCA	n.	HIGH			ABCA	Р	RIOR	
ABCA	4	HIGH	ER		ABCA	SUPE	RIOR	
ABCA		HIGH	EST		ABCA	A	RMOR	
ABCA	V	ICTI	М		ABCA	A	RMOR	Y
ABCA	M	IDNI	GHT		ABCA	P	ROGR	AM
ABCA	DR	IFTI	NG		ABCA	MO	RTAR	
ABCA	L	IFTI	NG		ABCA	QUA	RTER	-
ABCA	S	IGNI	FY		ABCA	QUA	RTER	S
ABCA	BU	ILDI	NG		ABCA	FEB	RUAR	Y
ABCA		TNDT	CATE		ABCA	FU	RWAR	D
ABCA	DECOD	TUNT	REUT		ABGA	- CEN	SORS	HIP
ABCA	DESCR	TUL	UN		ABCA	70000	SUNS	ET
ABCA	يا م	TOOT	U ET D		ABCA	IMPUR	TANT	
ADUA	A	TULT	љњи Teat		ADUA	S EDDO	TAKT	
ADUA	14	TOPT	TOUL		ADUA	PRO	TEUT	
ABUA	IM F	TOLT	KE MC		ADUA		TENT	1 7
ADUA	f W	TUNT	MUT M		ADUA ADUA	אממ	TENT	п
ADCA	त देखे स्टा	TULL	74		ABCA	rku	TEOT	
ABOR	rOE	MATM			ABCA		TRVT	
ABOA	T A	MINTN	a		ÉRCA	¢	TURT	FOTO
ADOW	LA	111/114	4		H DOW	3	IUUI	むなてい

-RESTRICTED

MISCELLANEOUS PATTERNS-Continued

ABCA	S	TRAT EGY	ABCAC	Р	RAIRI E
ABCA	D	UGOU T	ABCAC	PRO	TESTS
ABCA		UNSU ITABLE	ABCACA	D	IETITI AN
ABCA	P	URSU E	ABCACB	0	RDERED
ABCA	Р	URSU IT	ABCACBDEC		PROPORTIO N
ABCA	0	UTGU ARD	ABCACDEFD		PROPOSALS
ABCAA	D	ECREE	ABCADA		ALMANA C
ABCAA	D	EGREE	ABCADA	R	ELIEVE
ABCAA	В	ETWEE N	ABCADA	C	ENTERC D
ABCAA	DI	SCUSS	ABCADA	В	ESIEGE D
ABCAA	A	SPOSS IBLE	ABCADA	R	EVIEWE D
ABCAAB	Р	ONTOON	ABCADAB	CO	NTINENT AL
ABCAAB		THATTH È	ABCADAC	ន	EALEVEL
ABCAACDEB	Р	REARRANGE D	ABCADÁC		INDIVID UAL
ABCAB	W	ARFAR E	ABCADAEC		IGNITION
ABCAB	S	ECREC Y	ABCADÁEFB		TENTATIVE
ABCAB	OBS	ERVER	ABCADAEFC	ន	IGNIFICAN T
ABCAB	W	HETHE R	ABCADAEFCE	S	IGNIFICANC E
ABCAB	В	INDIN G	ABCADAEFGHF		SUBSISTENCE
ABCAB	F	INDIN G	ABCADB		ATLANT -IC
ABCAB	S	INKIN G	ABCADB		BRIBER Y
ABCAB	PĂ	INTIN G	ABCADB		CIRCUI T
ABCAB	PR	INTIN G	ABCADB	W	EDNESD AY
ABCAB	I	NTENT	ABCADB	LOG	ISTICS
ABCAB	P	ONTON	ABCADB	EXPL	OSIONS
ABCAB	Ċ	ORPOR AL	ABCADB		PREPAR ING
ABCAB	-	RECRE ATION	ABCADB	IM	PROPER
ABCAB	Р	RIORI TY	ABCADB		PROPER
ABCAB	SUPE	RIORI TY	ABCADBA		INSIGNI A
ABCAB	DI	SEASE	ABCADBC		PREPARE
ABCAB	PRO	TECTE D	ABCADBCEFCGG		PREPAREDNESS
ABCAB	PRO	TESTE D	ABCADBD		PREPARA TION
ABCAB	0	UTPUT	ABCADBEFD		CIRCUITOU S
ABCABA	INT	ERFERE	ABCADC	R	ADIATI ON
ABCABB	D	ISMISS	ABCADC	ST	ANDARD
ABCABB	D	ISMISS AL	ABCADC	V	ARIATI ON
ABCABC		THATHA VE	ABCADC		ASIATI C
ABCABCA		ENTENTE	ABCADC		AVIATI ON
ABCABDA	S	ENTENCE	ABCADC	R	EVIEWI NG
ABCABDB		REPRESE NT	ABCADC		EXTENT
ABCABDBEFGFHIB		REPRESENTATIVE	ABCADC	I	NVENTE D
ABCABDBEFGFHIED		REPRESENTATIONS	ABCADC		TACTIC S
ABCABDC		RETREAT	ABCADC	ន	TARTER
ABCABDED	М	ANGANESE	ABCADC		ZIGZAG
ABCABDEFA	C	ORPORATIO N	ABCADCA	CO	NVENIEN T
ABCABDEFGHD		RECREATIONA L	ABCADCB	CO	NDENSED
ABCAC		ARMAM ENT	ABCADCB		TACTICA L
ABCAC	N	EARER	ABCADCEFBGABC		ENTERTAINMENT
ABCAC		PROPO SE	ABCADCĖFGED		CONCENTRATE
			1		

-RESTRICTED

'n

ł

ł

-RESTRICTED

ABCADCEFGEHC ABCADCEFGEHBC

ABCADD ABCADD ABCADD

ABCADD ABCADD ABCADDA ABCADDA ABCADDECCFA MISCELLANEOUS PATTERNS-Continued

æ

	1			
	CONCENTRATIN G	ABCADEFA		ENVELOPE
	CONCENTRATION	ABCADEFA		EXPEDITE
D	EPRESS ION	ABCADEFA		EXPERIME NT
-	EXCESS	ABCADEFAB		INDICATIN G
D	ISTIL.	ABCADEFAB	D	ISTINGUIS H
P	OSTOFF TCE	ABCADEFABGADE	D	TSTINGUISHING
B	OVCOTT	ABCADEFACE		TNDTCATTON
5	AMBASSA DOR	ABCADETB		ADVANCED
	FYPFILE D		EXT	RAORDINAR V
	Inqueerssent I	ABCADEFC	EV1	ROMBARDM FNT
	FYORGETVE	ABCADEFC		
	ADAVANAY GE	ADCADEFC	11	Normadi E
	ADVANIA GEOIIS	ADCADEFO	0	
~	ADVANIA GEUUS			ADVANOTN C
ע ק	EUREADE Domondot D	ADGADEFD		ADVANCIN G
5	EFTEMBE R	ABCADEFD		EXTENDIN G
R	EQUESTE D	ABCADEFD		EXTERIOR
D	ISCIPLI NE	ABCADEFE		CONCRETE
CO	NTLNGENT	ABCADEFE		EXPEDITI NG
	EXPENDED	ABCADEFE		EXPEDITI ON
	EXPENSES	ABCADEFE		OBSOLETE
	EXTENDED	ABCADEFE	G	ONIOMETE R
	ELSEWHERE	ABCADEFE		PURPOSES
	EXPERIENCE	ABCADEFE		RECRUITI NG
C	ENTERIN G	ABCADEFEA	C	OMPOSITIO N
	ENTERIN G	ABCADEFGA		EXPENSIVE
R	ESPECTS	ABCADEFGA		EXTENSIVE
	INCIDEN T	ABCADEFGAF		ECHELONMEN T
М	ISFIRES	ABCADEFGB	C	ASUALTIES
	INCIDENCE	ABCADEFGB		CIRCULATI ON
M	ANDATED	ABCADEFGBC		CONCLUSION
S	ECRETAR Y	ABCADEFGC		INDICATED
GYR	OSCOPIC	ABCADEFGC	S	TRATEGICA L
	REARGUAR D	ABCADEFGD		EXTENSION
D	ISTINCTION	ABCADEFGDC		CONCEALMEN T
	CONCERNIN G	ABCADEFGE		REPRISALS
CO	NFINEMEN T	ABCADEFGF		BOMBARDED
	INVITATION	ABCADEFGHAB	Ç	ONFORMATION
	SUBSTITUT E	ABCADEFGHCA		EXTERMINATE
	SUBSTITUTI ON	ABCADEFGHCFIG		EXTERMINATION
LI	EUTENANT	ABCADEFGHEIGCF		REORGANIZATION
	ENTERPRISE	ABCADEFGHH	R	ESPECTFULL Y
	CONCILIATION	ABCADEFGHIAJF		CIRCUMSTANCES
	ENTERPRISIN G	ABCADEFGHIB		RETROACTIVE
Р	ROGRESS	ABCADEFGHIE		GEOGRAPHICA L
	CANCELLATION	ABCADEFGHIGBH		CIRCUMSTANTIA L
	CANCELLE D	ABCBA	COMP	LETEL Y
	CONCESSION	ABCBA		AWKWA RD
P	ROGRESSIVE	ABCBA		CAPAC ITY
	ECHELONE D	ABCBA	PA	CIFIC

ABCADDEFA
ABCADEA
ABCADEAB
ABCADEAE
ABCADEAE
ABCADEAE
ABCADEAFA
ABCADEAFGA
ABCADEB
ÁBCADEBCE
ABCADEC
ABCADEC
ABCADEC
ABCADECA
ABCADECAFD
ABCADECFC
ABCADEDA
ABCADEDAFB
ABCADEDBD
ABCADEDBDE
ABCADEDC
ABCADEDFGA
ABCADEDFGDBC
ABCADEDFGFB
ABCADEE
ABCADEEBFGHC
ABCADEED
ABCADEEFBC
ABCADEEFGD
ABCADEFA

.

-RESTRICTED-

MISCELLANEOUS PATTERNS-Continued

ABCBA SPR	CTETC	ABCBDEBA		BECETVER
ABCBA HTM	DERED	ABCBDEBA		REPEATER
ABCBA	DTVID F	ABCBDEFA		REJECTOR
ABCBA	GARAG E	ABCBDEFA		STATIONS
ABCBA	TTATT ON	ABCBDEFBA		DEVELOPED
ABCBA	LEVEL.	ABCBDEFGA	R	ESTSTANCE
ABCBA	REFER	ABCBDEFCBA		DETERMINEL)
ABCBA	REFER	ABCBDEFGHFA		DISINFECTED
ABCBA	RESER VATION	ABCBDEFGHIJBA		DECENTRALIZED
ABCBA	RESER VATION	ABCCA		LITTL F
ABCBA	TAXAT ION	ABCCA		PASSP ORT
ABCBA HOS	TILIT Y	ABCCA	ន	TREET
ABCBA	TILIT Y	ABCCABDEC	Ĉ	ROSSROADS
ABCBA AC	TIVIT Y	ABCCBADED	•	MILLIMETE R
ABCBAA U	SELESS	ABCCBCA	BE	GINNING
ABCBAAB	REFERRE D	ABCCBDA	INF	LAMMABL E
ABCBAB	DIVIDI NG	ABCCDA		COLLEC T
ABCBAB AC	TIVITI ES	ABCCDA		CORREC T
ABCBABDEB	REFERENCE	ABCCDA	Т	RIGGER
ABCBABDEB	REFERENCE	ABCCDA	-	RUBBER
ABCBADA	MINIMUM	ABCCDA		RUNNER
ABCBADB F	RESERVE	ABCCDA		SPOOLS
ABCBADB	RESERVE	ABCCDA		SPOONS
ABCBADB	REVERSE	ABCCDA		SUGGES T
ABCBADBC	RESERVES	ABCCDA		SUPPOS E
ABCBADEB SPE	CIFICATI ON	ABCCDA		TURRET
ABCBCDBA	REMEMBER	ABCCDAA		SUCCESS
ABCBDA	DEFEND	ABCCDAAEB		SUCCESSFU L
ABCBDA	DEPEND	ABCCDAAEBFF		SUCCESSFULL Y
ABCBDA MU	NITION S	ABCCDAAEFD		SUCCESSIVE
ABCBDA	RESEAR CH	ABCCDAB	Р	RESSURE
ABCBDA	STATES	ABCCDAEC		TERRITOR Y
ABCBDA	STATUS	ABCCDAED		CORRECTE D
ABCBDA IN	TEREST	ABCCDAEFB		COLLECTIO N
ABCBDAB	DEFENDE R	ABCCDAEFB		CORRECTIO N
ABCBDAB E	NGAGING	ABCCDAEFBC		CONNECTION
ABCBDABA	DEFENDED	ABCCDAEFC		CONNECTIN G
ABCBDABD	DEPENDEN T	ABCCDAEFDGG		CORRECTNESS
ABCBDABDEA	STATISTICS	ABCCDEA		GASSING
ABCBDAEFGB	DEPENDABLE	ABCCDEA		GETTING
ABCBDAEFGHG	DEPENDABILI TY	ABCCDEA	ST	RAGGLER
ABCBDCBA	PARAGRAP H	ABCCDEA	IN	TERRUPT
ABCBDDBA	DEFERRED	ABCCDEAB	IN	TERRUPTE D
ABCBDEA E	CONOMIC	ABCCDEAD		COMMENCE
ABCBDEA	DAMAGED	ABCCDEAD		COMMERCE
ABCBDEA PO	LITICAL	ABCCDEADCDE		COMMENCEMEN T
ABCBDEAEC	MANAGEMEN T	ABCCDEBFGHDA		DISSEMINATED
ABCBDEBA	DEFEATED	ABCCDEFA		COMMUNIC ATE
ABCBDEBA	DESERTED	ABCCDEFA		SUPPLIES

-RESTRICTED-

-RESTRICTED

×

11 ABCCDEFA ABCCDEFB ABCCDEFG ABCCDEFG ABCDA ABCDA

> ABCDA ABCDA

> ABCDA ABCDA

.

GHFBE		COMMUNICA	TTON	ABUDA			TN2LT	RE
GHDGAD		CORRESPON	IDENCE	ABCDA			LOCAL	
A	R	EAPPOINTE	Ð	ABCDA		LAU	NCHIN	G
HAFG	R	EAPPOINT	IENT	ABCDA		CO	NDEMN	
	ន	ABOTA GE		ABCDA	1	MACHI	NEGUN	
	R	AILWA Y		ABCDA			NOTIN	G
		ANIMA L		ABCDA		EXPA	NSION	
	S	ANITA RY		ABCDA		CO	NTAIN	
	M	ARSHA L		ABCDA		MOU	NTAIN	
	М	ARTTA L		ABCDA		I	NTERN	AL
	E	ASTWA RD		ABCDA		FRO	NTLIN	E
	Ñ	ATURA L		ABCDA		I	NTREN	СН
	พ	ATURA LTZ	7.F:	ABCDA		- C	ONTRO	I.
	ΥR	CHNTC AL.		ARCDA		ч	ORTZO	N
		COUNC TL.		ARCDA		**	OUTRO	
	R	EACHE D		ABCDA			PROMP	ጥ
	T.	EACHE		ABCDA			RECOR	ñ
		EASTE RIJ	,	ABCDA			REPOR	Ţ
		FACTE DN		VDUDY			PETTIR	Ň
	127			ADODA		ъ	DTMAD	v
	11 11	EATLE N		ADODA		r	DINED	1
	П Тыс	CAVIE N		ADUDA			DUUED UT A DU	
	CNT	ECURE		ADODA		171 A	DURDU	
	ы С	ECURE		ADUDA		ra Tut		
	N N	EDUCE		ADUDA		FU		T 37
	SCH	EDULE		ABCDA		NU	CANTE	LI
	<i>B</i>	BFURE					CUIDC	r I
	л П	er uge Deuce					OUTLO	
	R B	EFUSE FOTME NO				WAR	MUTOM	v
	Л	EGIME NI FOTME NUM	. T			WT		T
	п	EGIME NIA	11-			EV NT		
	EIT ICI					Ęv	TUNCI	
	GUI			ADODA		TNC		
	U CTD	ELIVE C		ADODA		DILIC CNT	TRUCI	TON
	GR	ENADE				DFO	TRUCT	TON
	0.11	Eraoe FDATE				ď	TINGINI	I
		ECALE		ADODA	•	D	WEICHW	ADD
		ESCUE NO		ADODA	Į.	В	NEDICE!	AND T
	FR	ESTOE NI				л Л		3 7 7 7
	R	EDUME ENTOR				ט זות	OULDOU	
	ע	EVICE BUICE					OTNFOX	2 7
	ע	EV TOP				DT	SIVE?	3
	m	GOING		ADODAA		T	ODENO	כ זור
	1	HUUGH			,	r	DEGID	
	U T	TOUNDT NO		ADODAD				
	F.					CD		م ۸
	pvn.	TNCHT CL		ABODAD		זט מ	BANDE!	
	L'U'I	TNOUT DE				n	FNTRFI	บาน
		THEOT NE		VBUDYD				R OFI
		THROT UT		UDODUD				

.

-RESTRICTED

RESTRICTED

MISCELLANEOUS PATTERNS-Continued

.

ABCDAB		GE
ABCDAB		PO
ABCDAB		RE
ABCDAB	ES	TI
ABCDABA		DE
ABCDABAB		IN
ABCDABC	М	AI
ABCDABC	М	AI
ABCDABCEFD		PH
ABCDABEFA		EN
ABCDAC	L	AN
ABCDAC		AN
ABCDAC	GOV	ER
ABCDAC	I	NS
ABCDAC	I	NS
ABCDAC	DI	SP
ABCDAC	RES	TR
ABCDAC	PA	TR
ABCDACB	CO	ND
ABCDACDAEFGB	I	NS
ABCDACEFDAF	-	CO
ABCDAD		MO
ABCDAD	A	MU
ABCDAD	••	RT
ABCDADC	S	AN
ABCDADEDAFR	~	TN
ABCDADEFEACC		AN
ARCDAEA		EX
ΔΒΟΟΔΕΔ		MA
ABCDAEAR	SU	TT
ABCDARABD	INT	TE
ABCDAEAE	PAR	EN
ABCDAER	म स	TC
ABCDAEB	s	TG
ABCDAEB	~	RA
ABCDARB		RE
ABCDAED		RE
ABCDAED		TR
	TNS	קית
ADUDAED	THO	고고
	הבי	T T T
		NT
	0	NT.
ADODAEDru		ATZ
ABUDALU	л	AV.
	U	10
		00
ABUDAEUA	Ŧ	T.M.
ABCDAECAB	L T	NT TC
ABCDAECB	ע	τŊ

ORGE	ABCDAECD
STPO NE	ABCDAECE
TIRE	ABCDAECFD
MATI ON	ABCDAED
CIDED	ABCDAEE
CLININ G	ABCDAEE
NTAIN	ABCDAEE
NTAIN ED	ABCDAEEFAB
OSPHORUS	ABCDAEFA '
TRENCHE D	ABCDAEFAB
GUAG E	ABCDAEFB
YWAY	ABCDAEFBE
NMEN T	ABCDAEFC
TANT	ABCDAEFC
TANT LY	ABCDAEFC
ERSE	ABCDAEFCA
ICTI ON	ABCDAEFCA
IOTI C	ABCDAEFD
EMNED	ABCDAEFD
TANTANEOUS	ABCDAEFD
TNCTDENCE	ABCDAEFD
VEME NT	ABCDAEFDB
SEME NT	ABCDAEFDE
GORO US	ABCDAEFE
TTATI ON	ABCDAEFE
STITUTION	ABCDAEFEGE
TTATRCRAFT	ABCDAEFF
TREME	ABCDAEFGAHB
XTMUM	ABCDAEFGC
ABTLIT Y	ABCDAEFGD
DSTATES	ABCDAEFGFE
THESES	ABCDAEFGHC
HTING	ABCDAEFGHFBC
HTING	ABCDBA
TLROA D	ABCDBA
PORTE D	ABCDBA
TURNE D	ABCDBA
ACTOR	ABCDBA
UCTOR	ABCDBA
CORDER	ABCDBA
ΝΔΤΤΩΝ	ABCDBAA
DENTIFIED	ABCDBAAEDBC
TISFACT ORY	ABCDBAB
TRACE	ABCDBAD
TOT	ABCOBAEAD
TPOST	ABCDBAEBE
TTOUT	ARCDRRA
ERNMENT	ARCOBRA
TRICTS	ABCOBBDEA

	1.1

L	ABORATOR Y
	OUTPOSTS
EX	AMINATION
Т	RAVERSE
	ACTUALL Y
	EXPRESS
	THIRTEE N
	THIRTEENTH
ov	ERWHELME D
	INFLICTIN G
P	RESCRIBE D
0	NEHUNDRED
М	ANUFACTU RE
PR	ESIDENTI AL
D	ISTRIBUT E
D	ISTRIBUTI NG
D	ISTRIBUTI ON
F	LASHLIGH T
C	ONTROVER SY
A	SCENSION
	WINDWARD
	RESTRICTE D
	RESTRICTI ON
PAR	ENTHESIS
	RETURNIN G
RE	SPONSIBILI TY
	REDCROSS
	INSPIRATION
	REGARDING
	RESTRAINT
TR	ANSPACIFIC
	TWENTYFIVE
	CONSCRIPTION
PR	ACTICA L
W	ATERTA NK
DIV	EBOMBE R
	ENGINE
ន	ENTINE L
R	EVOLVE
ន	ITUATI ON
	ENGINEE R
	ENGINEERING
	LIABILI TY
RE	TALIATI ON
D	ISPOSITIO N
U	NEXPENDED
	ANTENNA
D	ISCUSSI ON
TRA	NSMISSION

RESTRICTED

٠

-RESTRICTED

MISCELLANEOUS PATTERNS—Continued

	INTENTION	ABCDCEBA		ELIGIBLE
Α	ERODROME	ABCDCECA	D	ESTITUTE
	INCENDI ARY	ABCDCECDA	CO	NSTITUTIN G
PR	OTECTIO N	ABCDCEFGAB		PHOTOGRAPH Y
IN	TERCEPT	ABCDCEFGCA	DEM	OBILIZATIO N
IN	TERCEPTE D	ABCDCEFGCA	М	OBILIZATIO N
C	ONTINUOU S	ABCDDA	R	ECOMME ND
	INVENTION	ABCDDA	Т	OBACCO
QU	ARTERMASTER	ABCDDA		SHELLS
	INCENTIVE	ABCDDAB	В	EACHHEA D
	INTENSIVE	ABCDDAEACBE	_	INEFFICIENC Y
Е	NCIRCLIN G	ABCDDAEFAF	R	ECOMMENDED
-	ENTANGLEMENT	ABCDDAEFGHTCE	R	ECOMMENDATION
	TEMPERATURE	ABCDDEA		DROPPED
	DECREASED	ABCDDEA	AT	RSUPPOR T
C	ONTINIATION	ABCODEA	Δ	RTTLLER V
v	VESTERDAV	ABCDDEAEC	4	COFFETCIE NT
		ABCODECOEA		SCHOOT HOUS E
	DTOUTNOUTOUED	ADODDEGODIA ADODDEGOOLA	МТ	Soficiations H
ъ	DISTINGUISIND	ABCODEFERACCE	111-1-	OULDEANEOUD
1		ABCDDEFERCEDBA	g	CLASSIFICALL ON
	ATTOLA FI	ADCODEF GGEDDA	U	AEDONIA IMTOG
	CUTITO VI	ADODEA	T	ADRUNA DILLOS
R	DETOTE NU		л	ATLICA D
D	EFICLE NT	ABCDEA		ALKELA NE
Б	ENGAGE	ABCDEA		AMBULA NUL
ק	OUTSTO N	ABUDEA	CO	ASTGUA RD
PA ET	UVIDIU IV	ADUDEA	C IVI	AIERIA L
гт	REALAR M Dutitodt Neg	ADUDEA	о л	AIURDA I
	ANDIDAN V	ADODEA	U NT	AUDEWA I
т	ANTITAN A NOFOENDEN Ø		IN	AUTICA L
7	NDEFENDEN I		MIR	DLUCAD USIER
	CRITICI SE	ABUDEA	ME	CHANLU CUENTO AL
	CRITICI SM	ABCDEA		CHEMIC AL
		ABCDEA		CUNDUC T
	ENGAGEMEN T	ADODEA		DIGLUD GE
r 5	USTITIONS N	ADUDEA	R	DOWNED
ע	EFICIENC I	ABCDEA	ם ח	ECAUSE BOIDUE D
PR	ONTOTOTO ONTOTOTO	ADODEA	ע	EULFRE K
	CHARAUTER	ADUDEA		ECLARE
ተእ፣	CHARACIERIOTIC			ECITAE
TIN	TERFREIER		17 17	EUTURE FUTOIE C
DH	STILITIES	ABCDEA	v	ENTOPE 9
DKI	DGEHEAD		COMP	ENCODE
M	EDICINE	ABCDEA	COMP	ENDATE
U C	EFINITE EDADAME	ABUDEA	÷	
3	GLARATE	ADUDEA	K S	BLAUB RDUICE D
	DUKLKTO R	ADUDEA	R	ELOTOF D
ພູບ	ALLFICATI UN		CONSTD	eradle Eddocei
۲	FUSTOLENL	ADUUEA	TN.1.	FUDE

ī

_

-RESTRICTED

MISCELLANEOUS PATTERNS-Continued

ABCDEA	ន	ERVICE	ABCDEABFD		NATIONALI SM
ABCDEA		EUROPE	ABCDEABFDC		NATIONALIT Y
ABCDEA		EUROPE AN	ABCDEABFE		MARKSMANS HIP
ABCDEA		EXCITE	ABCDEABFFGHD		SHARPSHOOTER
ABCDEA	т	HROUGH	ABCDEABFGDHF	W	ARDEPARTMENT
ABCDEA		IDENTI CAL	ABCDEAC		AUTOMAT IC
ABCDEA		IDENTI FY	ABCDEAC	AI	RCONTRO L
ABCDEA		INHABI TED	ABCDEACFB		ANTEDATIN G
ABCDEA	D	IRECTI ON	ABCDEAD		CONTACT
ABCDEA		MEDIUM	ABCDEAD	v	ICTORIO US
ABCDEA	SY	NCHRON IZE	ABCDEAD	C	RUISERS
ABCDEA	JU	NCTION	ABCDEADFD		THREATENE D
ABCDEA	CO	NFIDEN T	ABCDEAE		ENCODED
ABCDEA		NOTHIN G	ABCDEAE	P	ERMANEN T
ABCDEA	E	NTRAIN	ABCDEAE		FORTIFI ED
ABCDEA	L	OCATIO N	ABCDEAE		REQUIRI NG
ABCDEA	REV	OLUTIO N	ABCDEAEFGC		TRADITIONA L
ABCDEA	DEC	ORATIO N	ABCDEAFA	R	EPLACEME NT
ABCDEA	Т	ORPEDO	ABCDEAFAGE		EXCITEMENT
ABCDEA		OVERCO MING	ABCDEAFAGHEAID		IDENTIFICATION
ABCDEA	т	RAILER S	ABCDEAFB		CLERICAL
ABCDEA	Т	RAWLER	ABCDEAFB		INVASION
ABCDEA	DI	RECTOR	ABCDEAFBC		RESOURCES
ABCDEA		REPAIR	ABCDEAFC	DES	IGNATION
ABCDEA	NO	RTHWAR D	ABCDEAFC	RES	IGNATION
ABCDEA	C	RUISER	ABCDEAFC	CO	NFIDENTI AL
ABCDEA	I	SLANDS	ABCDEAFD	D	IMENSION
ABCDEA		STRIPS	ABCDEAFE		ADJUTANT
ABCDEA		SUNRIS E	ABCDEAFE		INTERIOR
ABCDEA		TARGET	ABCDEAFE	I	NFLUENCE
ABCDEA	NOR	THEAST	ABCDEAFF	R	EADINESS
ABCDEA		THREAT	ABCDEAFGA	D	ECIPHERME NT
ABCDEA	NOR	THWEST	ABCDEAFGAFB		MEDIUMBOMBE R
ABCDEA		TWELFT H	ABCDEAFGD		LEGISLATI ON
ABCDEA	L	UMINOU S	ABCDEAFGE	C 0	MPARTMENT
ABCDEAA		EIGHTEE N	ABCDEAFGEE		SMOKESCREE N
ABCDEAAE		SUBMISSI ON	ABCDEBA		DELAYED
ABCDEAAFED		EIGHTEENTH	ABCDEBA	D	ETONATE
ABCDEAB		INVADIN G	ABCDEBA		INDEMNI TY
ABCDEAB	F	LEXIBLE	ABCDEBA	D	ISPERSI ON
ABCDEAB		NATIONA L	ABCDEBA		RECOVER
ABCDEAB		REQUIRE	ABCDEBA		SURPLUS
ABCDEAB		RESTORE D	ABCDEBAB		ARBITRAR Y
ABCDEAB	UO	TSKIRTS	ABCDEBAED		ARBITRATI ON
ABCDEABA		DEMANDED	ABCDEBFA	В	RIGADIER
ABCDEABD		IMPEDIME NTA	ABCDEBFAGA		ENCOUNTERE D
ABCDEABE	AT	OMICBOMB	ABCDEBFCAGBF		INTERNATIONA L
ABCDEABF		REPAIRED	ABCDEBFDGA		NAVIGATION
ABCDEABFB		REQUIREME NT	ABCDEBFGAF	н	EADQUARTER S
		-		-	· · · · · · · · · · · · · · · · · · ·

-RESTRICTED-

-

RESTRICTED-

A,

MISCEI I ANEOUS PATTERNS-Continued

ABCDEBECHA	R	ESPONSTRI F			
ABCDEBECHBCCTA		NATURAL TZATTON	ABCDEFA	a	EDRONNE I
ABCDECA	R	NI TOWIN C	ABODEEA	Ľ	TNDACCT DIF
ABCDECA	4		ADODEEA		IMPAGET DIE
ABCDECA		PRINCIP IF	ABCDEEACB	q	TONALLING
ABCDECA		SKIDNIS U		N	
ABCDECAR	т	NTERMENT	ADODEEAFDDO ADODEEAFDDO		TNTELLIGENI TNTEI I TCENCE
ABCDECAC	т. Т	ΝΠΕΙΛΗΕΝΤ	ADODEEAF DDGD		THIEFFIGENCE
ABODECAC	M N	A Third M Angle			DECOMMOLIER
	141				RECOMMOLIERIN G
ADODECALODA		INANGAILANI IU		~	ONFEGETON
ADODEODA		NEGLIGEN I DEVOIVED	ADUDEEF AD	U U	UNP LOOLUN EMD A COTEC
ABODECBA	G		ADCUEEFAE		CMDAOOTEO DTCADDDADDD
ADUDEUDA	r	NEOL TOENOE	ABCDEEFDGFA		DISAPPEARED
ADODECOALD		NEGLIGENCE	ABCDEEFGCAHB	~	INTERROPTION
ABUDEUUFA	~	DISCUSSED	ABUDEFA	C	ABLEGRA M
ABCDECDCAFC	" T	NTERFERENCE	ABCDEFA	~	AMERICA N
ABCDECFA		ENCIRCLE	ABCDEFA	C	AMOUFLA GE
ABCDECFA		EVACUATE	ABCDEFA		CHRONIC AL
ABCDECFBA		SEAPLANES	ABCDEFA		CONFLIC T
ABCDECFEA		STANDARDS	ABCDEFA	DIS	CREPANC Y
ABCDEDA	N	EWSPAPE R	ABCDEFA	S	EABORNE
ABCDEDA		MARITIM E	ABCDEFA		EMPLOYE R
ABCDEDA	CO	NTRABAN D	ABCDEFA		ENCIPHE R
ABCDEDA	C	OALITIO N	ABCDEFA		ENFORCE
ABCDEDA	BA	ROMETER	ABCDEFA		ENLISTE D
ABCDEDA	GY	ROMETER	ABCDEFA	D	EPLOYME NT
ABCDEDA	HYD	ROMETER	ABCDEFA		EQUIPME NT
ABCDEDA	HYG	ROMETER	ABCDEFA	FIGHT	ERPLANE
ABCDEDA	PSYCH	ROMETER	ABCDEFA		ESCORTE D
ABCDEDAB	C	ONDITION	ABCDEFA	D	ESCRIBE
ABCDEDAC	REC	OGNITION	ABCDEFA	J	ETPLANE
ABCDEDAFC	N	EWSPAPERS	ABCDEFA		EXCLUDE
ABCDEDFA		DICTATED	ABCDEFA		INCLUSI VE
ABCDEDFA		EXCAVATE	ABCDEFA'		LOGICAL
ABCDEDFA		EXHIBITE D	ABCDEFA	F	ORMATIO N
ABCDEDFAC		ANTICIPAT E	ABCDEFA	Т	RANSFER
ABCDEDFAC		CLEARANCE	ABCDEFA		REGULAR
ABCDEDFACDGB		ANTICIPATION	ABCDEFA	P	RISONER
ABCDEDFCAB		INTERESTIN G	ABCDEFA		SAILORS
ABCDEDFCGAHB		INAUGURATION	ABCDEFA		SECTORS
ABCDEDFDA	_	ARTIFICIA L	ABCDEFA		SERIOUS LY
ABCDEDFDEAB	C	ONSTITUTION	ABCDEFA	E	STABLIS H
ABCDEDFDGHAIF		CHRONOLOGICAL	ABCDZFA		TONIGHT
ABCDEDFGA	PR	OCLAMATIO N	ABCOEFAA		EMPLOYEE
ABCDEDFGA	P	RELIMINAR Y	ACDEFAAF	T	RANSFERRE D
ABCDEDFGABHED		INDETERMINATE	ABCDEFAAGC	Т	RANSFERRIN G
ABCDEDFGADB	Р	RELIMINARIE S	ABCDEFAB		INCLUDIN G
ABCDEDFGHAGD		ADMINISTRATI VE	ABCDEFAB		RADIOGRA M
ABCDEDFGHAGDIE		ADMINISTRATION	ABCDEFAB	P	REMATURE

-RESTRICTED

-RESTRICTED

REF ID:A56892

MISCELLANEOUS PATTERNS—Continued

ABCDEFABA
ABCDEFAC
ABCDEFAC
ABCDEFACB
ABCDEFACD
ABCDEFACGF
ABCDEFAD
ABCDEFADB
ABCDEFADF
ABCDEFAE
ABCDEFAEGHEC
ABCDEFAF
ABCDEFAF
ABCDEFAFCD
ABCDEFAGA
ABCDEFAGAB
ABCDEFAGB
ABCDEFAGBDB
ABCDEFAGBHBD
ABCDEFAGC
ABCDEFAGCAHB
ABCDEFAGE
ABCDEFAGEC
ABCDEFAGFD
ABCDEFAGHAB
ABCDEFAGHEBC
ABCDEFAGHFD
ABCDEFAGHFAIB
ABCDE 'AGHFAIBE
ADODEFAGHIF
Aduderda Abuderda
ADUDEFDA
Aduder da Archefra
ABCDEFBA
ABCDEFBA
ABCDEFBA
ABCDEFBA
ABCDEFBAB
فسلاتك تستاله مستده

	EMPLACEME NT
	INTEGRIT Y
P	RISONERS
IN	TRODUCTOR Y
	ALTERNATE
	ALTERNATIN G
	CONTRACT
D	ESTROYER
	INTERVIE W
	OPERATOR
FI	RECONTRO L
Р	ROCEDURE
D	ESTROYERS
T	RANSVERSE
D	ISCONTIN UE
D	ISCONTINUANC E
	EXPANDED
I	MPROVEME NT
R	ADIOSTATIO N
	ENCIPHERE D
	ENFORCEMEN T
	AEROPLANE
D	ETACHMENT
	INFLATION
	REINFORCE
	TRAJECTOR Y
	REIMBURSEME NT
	REINFORCEMEN T
	INTERDICT
	INTERDICTION
D	EPARTMENT
D	EPARTMENTA L
	REGISTRATI ON
	ENCIPHERMEN T
	CONFISCATION
	INVESTIGATE
	INVESTIGATION
_	INVESTIGATIONS
В	REAKTHROUGH
	DECLARED
	DEPARTED
	DEPLOYED
	DEPORTED
	DETACHED
	EMPLOIME NT
	ENTRAINE D
_	REGISTER
Р	KUJECTUR
	MEASUREME NT

ABCDEFBABGHD
ABCDEFBGA
ABCDEFBGBA
ABCDEFCA
ABCDEFCA
ABCDEFCAB
ABCDEFCAD
ABCDEFCAGFC
ABCDEFCBA
ABCDEFCCFA
ABCDEFCEA
ABCDEFCGA
ABCDEFDA
ABCDEFDAB
ABCDEFDBAB
ABCDEFDBCAGB
ABCDEFDEAB
ABCDEFDGAB
ABCDEFDGAHCD
ABCDEFDGHA
ABCDEFEA
ABCDEFEAB
ABCDEFEAGACE
ABCDEFEAGDB
ABCDEFECACD
ABCDEFECAE
ABCDEFECAE ABCDEFEDCGCAHB
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEFA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEFA ABCDEFEGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEFA ABCDEFEGA ABCDEFEGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEFA ABCDEFEGA ABCDEFEGA ABCDEFFA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEFA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEFA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEFA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFAGE ABCDEFFEDAGBC
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEFA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFAGE ABCDEFFEDAGBC ABCDEFFGAB
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEFA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFAGE ABCDEFFEDAGBC ABCDEFFGAB ABCDEFFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEFA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFAGE ABCDEFFEDAGBC ABCDEFFGAB ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEFA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFAGE ABCDEFFAGE ABCDEFFGAB ABCDEFGA ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFAGE ABCDEFFEDAGBC ABCDEFFGAB ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFAGE ABCDEFFEDAGBC ABCDEFFGAB ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFAA ABCDEFFGAB ABCDEFFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFAA ABCDEFFCAB ABCDEFFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFAGE ABCDEFFAGE ABCDEFFGAB ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFAGE ABCDEFFGAB ABCDEFFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFAGE ABCDEFFGAB ABCDEFFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFAA ABCDEFFAAB ABCDEFFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFAA ABCDEFFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFECAE ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFAA ABCDEFFAA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA
ABCDEFECAE ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFAA ABCDEFFAA ABCDEFGA
ABCDEFECAE ABCDEFEDCGCAHB ABCDEFEGA ABCDEFEGA ABCDEFEGA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFA ABCDEFFAA ABCDEFFAA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA ABCDEFGA

ENDURANCE DECIPHERED ESTIMATE NORTHERN ESTIMATES D OMINATION ESTIMATEDAT DETONATED DISTRESSED DISPERSED ELABORATE **D** EPARTURE C USTOMHOUS E INTERVENIN G INTERVENTION INTERFERIN G DEM ONSTRATION INTERMEDIATE HYDROGRAPH IC R EINSTATE F INGERPRIN T R EINSTATEMENT CERTIFICATE THERMOMETER CONFERENCE INTERPRETATION C OMPETITIO N D EMOBILIZE C OMPUTATIO N **UN DERSTOOD** IMPRESSI ON IMPRESSIVE INSTALLATIONS C ONGRESSION AL DISARMED M ECHANIZE D T ECHNIQUE R ECOGNIZE ENFILADE EQUALIZE EQUIPAGE EQUIVALE NT D ESIGNATE EXCHANGE GROUPING GUARDING INSECURI TY D IPLOMATI C

.

~

MEASUREMENTS

RESTRICTED

RESTRICTED

.

.

MISCELLANEOUS PATTERNS-Continued

ABCDEFGA	E NTRUCKIN G /
ABCDEFGA	NUMBERIN G /
ABCDEFGA	OBJECTIO N /
ABCDEFGA	OPERATIO N $'$
ABCDEFGA	SOLDIERS
ABCDEFGA	DI SPATCHES /
ABCDEFGA	WITHDRAW /
ABCDEFGA	WITHDREW
ABCDEFGAB	D ESPATCHES
ABCDEFGAB	U NDERSTAND
ABCDEFGAB	WITHDRAWI NG
ABCDEFGABF	ENLISTMENT
ABCDEFGAC	I NSTRUMENT
ABCDEFGAC	F OUNDATION
ABCDEFGACB	I NSTRUMENTS
ABCDEFGAD	SOUTHEAST
ABCDEFGAD	SOUTHWEST
ABCDEFGADG	SOUTHWESTE R
ABCDEFGAEHBC	CONSTRUCTION
ABCDEFGAFE	IMPRACTICA B
ABCDEFGAG	WITHDRAWA L
ABCDEFGAHB	INSPECTION
ABCDEFGAHCGIDE	RECONSTRUCTI
ABCDEFGBA	DESCRIBED
ABCDEFGBA	DESTROYED
ABCDEFGBA	DETRAINED
ABCDEFGBA	REMAINDER
ABCDEFGBA	TRANSPORT
ABCDEFGBACAHGD	TRANSPORTATI
ABCDEFGBAE	TRANSPORTS
ABCDEFGBHA	ESTABLISHE D
ABCDEFGBHIAKC	ESTABLISHMEN
ABCDEFGCAG	CONFIDENCE
ABCDEFGCHEA	RANGEFINDER
ABCDEFGDAHB	INSTRUCTION
ABCDEFGDAHBC	INSTRUCTIONS
ABCDEFGDBFHA	CE NTRALIZATION
ABCDEFGDHAIC	OBSTRUCTIONS

; /	ABCDEFGDHFAE		ORGANIZATION
¥ /	ABCDEFGEA	H	EAVYBOMBE R
1 /	ABCDEFGEHA	D	ESCRIPTIVE
τ/	ABCDEFGFABF	I	NCOMPETENCE
	ABCDEFGFAG	I	NCOMPETENT
	ABCDEFGGAG	Н	EAVYLOSSES
	ABCDEFGHA		CONSPIRAC Y
	ABCDEFGHA		DOMINATED
	ABCDEFGHA	C	ENTRALIZE
	ABCDEFGHA		EXCLUSIVE
NG	ABCDEFGHA		EXPANSIVE
P	ABCDEFGHA		EXPLOSIVE
	ABCDEFGHA		MECHANISM
	ABCDEFGHAB	C	ONSUMPTION
5	ABCDEFGHADB		INFORMATION
	ABCDEFGHAGC		CONVALESCEN T
	ABCDEFGHBA		DESIGNATED
E RN	ABCDEFGHBA		DESPATCHED
CON	ABCDEFGHBIKA		DISORGANIZED
A BLE	ABCDEFGHCAEB		INTRODUCTION
L	ABCDEFGHCAEB	D	ISCREPANCIES
1	ABCDEFGHDAB	C	ONFIRMATION
TION	ABCDEFGHDGCA		NORTHWESTERN
	ABCDEFGHDIKA		REVOLUTIONAR Y
	ABCDEFGHEEHA		COUNTERATTAC K
	ABCDEFGHFA	D	EMONSTRATE
	ABCDEFGHFCAG		AGRICULTURAL
	ABCDEFGHIA		DISPATCHED
ATION	ABCDEFGHIA		OBSERVATIO N
5	ABCDEFGHIÁ		SUBMARINES
D	ABCDEFGHIAB	C	ONVERSATION
MENT	ABCDEFGHIAE	C	OMPENSATION
2	ABCDEFGHIAF	R	OADJUNCTION
ER	ABCDEFGHIDAB	C	ONSIDERATION
ON	ABCDEFGHIFKA		SEARCHLIGHTS
DNS	ABCDEFGHIGBA		DEMONSTRATED
EON	ABCDEFGHIJDA		SIMULTANEOUS
ons			

RESTRICTED

ł

`

D DIGRAPHIC IDIOMORPHS GENERAL

AB AB	AB — AB
-GENERALALAR M-	THEREFERENCE
	WUER FV FR
	-C AP FI FS SN FS S.
-D EI MAIN IN G-	SC 60 OL HOUS E-
-M IN IN G-	T LI. UM IN AT IN G-
OB TA IN IN G	IN CL IN E-
QU IN IN E-	-F IR IN GL IN E-
RA IN IN G-	MA IN TA IN
RE MA IN IN G-	-I NF AL LI BI LI TY
SH IN IN G-	-A ME ND ME NT
-T RA IN IN G-	SO ME TI ME
CR IS IS	-O NE NI NE
PO SI TI ON ON	NO TK NO WN
-A RE RE EN FO RC ED	NO WK NO WN
-A SU SU AL	-A PP OI NT ME NT
BO TH TH E-	-C ON TE NT ME NT
WI TH TH E-	-COM PR OM IS E-
-P AR TI TI ON	-PON TO ON
RE PE TI TI ON	-T HR OU GH OU T-
VI VI(D-	-N OW KN OW N-
	PH OS PH OR US
AB — AB	PO ST PO NE
••••••••••••••••••••••••••••••••••••••	TR 00 PS HI PS
-MALNT ALN-	PA KA PH KA SE
RE AR GO AR D	-F NE FE NE NC E
	T HE RE FO RE
	-P RE PA RE
DT VT DT NG	RE TI RE
SP EA RH EA D-	RE VE RE NT
-R ED UC ED	-C RO SS RO AD S-
-S CH ED UL ED	CA RE LE SS NE SS
-B EE NN EE DE D-	AT TE MP TE D
EM BL EM	TH AT TH E-
AM EN DM EN T-	-F OR TH WI TH
CO NT EN TM EN T-	-INVES TI GATION
-S EV EN TE EN	ES TI MA TI ON
-S EV EN TE EN TH	-D ES TI NA TI ON
EN TR EN CH	AC TI VI TI ES
ER AS ER	,-H'UM DR UM

-RESTRICTED-

3-38

...

RESTRICTED

										١.										
			AB	••••••		AB							A	B	<u> </u>	<u> </u>		AB		
				• •																
		-P	AN	AM	AC	AN	AL						A	R	MO	RE	DC	AR		
			AR	BI	TR	AR	Y-						E	N	FO	RC	EM	EN	T	
			AS	SO	ON	AS						R	E E	N	FO	RC	EM	EN	TS	
		AC	CE	PT	AN	CE							I	N	DE	TE	RM	IN	AT	E
			EM	PL	AC	EM	EN	T					I	N	TE	RE	ST	IN	G	
Q	UA	RT	ER	MA	ST	ER							I	N	ΤE	RF	ER	IN	G	
	-I	NT	ER	PR	ET	ER							I	N	TE	RV	EN	IN	G	
	-A	CC	ES	S0	RI	ES							I N	C	OM	PE	TE	NC	E	
			IN	CL	UD	IN	G-						C 0	N	GR	ES	SI	ON	AL	
		-D	IR	EC	ΤF	IR	E				D	E	MO	N	ST	RA	TI	ON		
		TO	MO	RR	OW	MO	RN	IN	G—				C 0	N	SU	MP	TI	ON		
		PA	NA	MA	CA	NA	L-						P	Η	$\mathbf{0T}$	OG	RA	PH		
		-I	NT	ER	ME	NT							T	H	IR	ΤE	EN	TH		
		-I	NT	ER	VE	NT	IO	N												
		CO	NT	IN	GE	NT							۸R					_ ΔF	z	
		-C	ON	DI	TI	ON						5							-	
	-T	OM	OR	RO	WM	OR	NI	NG				τl	NS	۳A	T.T	. <u>A</u> 7	г т) NS	21	
			RĄ	DI	OG	RA	M—				-	<u>c</u> li	ON	CE.	. N7	א י	ነ ጥገ		3	
			RE	AS	SU	RE					_	č	ON	নের দেশ	Δ(ነ ጥገ	τ Ο1	J	
		-P	RE	MA	TU	RE						c	ON	ST			1 TT		J	
D	EF	EN	SI	VE	P0	SI	TI	ON				•1	011						•1	
		IN	TE	RD	IC	TE	D													
	QU	AR	TE	RM	AS	TE	R							AB		- AE	3 AF	3		
		IN	TE	RP	RE	TE	R							-				. I		
		IN	TE	RR	UP	TE	D-							IN	CI	'II	I I	1 G-	-	
	-F	OR	ΤI	FI	CA	TI	ON]	MA	IN	T/	II II	1 II	1 G-	-	

,

N

•

RESTRICTED

, r

,

; -

· RESTRICTED

Ą

	-

۲

E	DIGRAPHIC	IDIOMORPHS	PLAYFAIR
---	-----------	------------	----------

.

١

							AB	BA									
	SC	AB	BA	RD						I	SH	EI.	LE	D-			
		AF	FA	BL	E					ı	—Н	EM	ME	DI	N		
		AF	FA.	IR							ST	EM	ME	D			
	B	AG	GA	GE							ST	EP	PE	D			
-Н	AW	AI	IA	N-							ΑV	ER	RE	D			
		AL	LA	RE	AS			l		CO	NF	ER	RE	D			
	B	AL	LA	ST				1		-I	NT	ER	RE	D-			
	-F	AL	LA	CY				,		-R	EF	ER	RE	D			
IN	\mathbf{ST}	AL	LA	TI	ON	S			-	ł		ES	SE	NC	E-		
P	AR	AL	LA	X				I				ES	SE	NT	IA	L	
		AP	PA	RA	TU	S-				AD	DR	ES	SE	S			
		AP	PA	RE	L				C	QМ	ΡR	ES	SE	D			
		AP	PA	RE	NT					ĊO	NF	ES	SE	D-			
		AP	PA	RE	NT	LY				IΜ	PR	ES	SE	D			
		AR	RA	NG	E					ł	-L	ES	SE	N			
	:	AR	RA	Y						•	М	ES	SE	NG	ER		
	B	AR	RA	CK	S –						PR	ES	SE	D-			
	B	AR	RA	GE		١				PR	OF	ES	SE	D-			
-E	MB	AR	RA	SX	SE	D			P	RO	GR	ES	SE	D-			
	N	AR	RA	TI	ON					S	TR	ES	SE	D			
	1	AS	SA	IL	AN	T				S	TR	ES	SE	S			
		AS	SA	UL	Т—					_	-V	ES	SE	L			
A	MB	AS	SA	DO	R					WI	TN	ES	SE	S			
-I	MP	AS	SA	BL	E				-		AB	ET	TE	D			
	M	AS	SA	CR	E				C	IG	AR	ET	TE	S-			
	-P	AS	SA	GE							B	ET	TE	R			
		AT	TA	CH						_	-L	ET	TE	R			
	I	AT	TA	CK						<u>E</u>	IG	HT	TH	RE	E		
	_	AT	TA	IN							~-K	TB	BT BT	NG			
	-B	AT	TA	LI	UN					FO	RB	TD	DT	NG	*		
	R	AT	TA	N	-	-					D	Τ₽.	F.T.	CU	ΓT		
		BO	OB	X.I.	RA	P					B		1.1.	ON			
	TN	DE	ED								#'		노고	NG			
	W	EB	BE	U							K		<u>т</u> т	NG		-	
		EF.	FE	CT		-					W		* T	ME	ТE	K	
~~	wb	E.F.	P.E.	CT.	τv	E-					M		노니	NG			
CO	MP	EL.			17						-M	14		NO			
Ľi	XU	EL.	나타	NU	<u>H</u>						SH			NG			
-Ľ	XC	비	나면	NT							ວr 	11 77		NG			
Ľ	AP ND	EL TT		<u>–</u>							-1	ᅶᅸ		NG			
-1	MP	붠니	나방	1 <i>1</i>							W	ᆉ	1-1	AM			
	-1	반나	나타	1-							W			NG	4 2 4	m	
PK	UP	붠니		μ <u>–</u>								ML TN	MT	GR	AN	Т— то	17
K	ЕΡ	ЪЪ	Ľ۲	μ <u>–</u>								ΤW	MT	GK	AT.	τŭ	N
																	Ŧ

RESTRICTED

ı,

Ņ

J

-RESTRICTED

1

			AB	BA									AB	•	BA		
			IM	MI	NE	NT						PR	AC	TI	CA	BL	E-
		SW	IM	MI	NG							PR	AC	TI	CA	L	
	-В	EG	IN	NI	NG							-T	AC	TI	CA	L-	
		SP	IN	NI	NG						-D	IV	EB	OM	BE	R	
		-W	IN	NI	NG								EN	GI	NE	ER	
		CL	IP	PI	NG							G	EN	UI	NE		
		SH	IP	PI	NG						-I	NT	ER	FE	RE		
	S	TR	IP	PI	NG						-I	NT	ER	FE	RE	NC	E
			IR	RI	GA	TI	ON				-P	EN	ET	RA	TE		
		—М	IS	SI	NG							–R	EV	OL	VE	R	
		—М	IS	SI	ON								IN	FI	NI	TE	
	-A	DM	IS	SI	ON							D	IS	P0	SI	TI	ON
		EM	IS	SI	ON							S	IT	UA	TI	ON	
		-H	IS	SI	NG							CA	NA	DI	AN		
	PE	RM	IS	SI	ON					VE	ΤE	RI	NA	RI	AN		
TR	AN	SM	IS	SI	ON							NI	NE	ΤE	EN		
		EM	IT	ΤI	NG							NI	NE	ΤE	EN	TH	
		$-\mathbf{F}$	IT	ΤI	NG								PE	RC	EP	TI	ON
	S	PL	IT	TI	NG							P	RE	MI	ER		
	PE	RM	IT	TI	NG						S	UR	RE	ND	ER		
-A	\mathbf{FT}	ER	NO	ON							0	UR	SE	LV	ES		
	FO	RE	NO	ON							TH	EM	SE	LV	ES		
			NO	ON	TI	ME						DE	SE	RV	ES		
		-F	OL	LO	W—							RE	SE	RV	ES		
		-H	OL	LO	W								SE	RV	ES		
		-C	OM	MO	N-												
	~ -		OM	MO	TI	ON	-										
PU	ST	TI	ON	NU	RT T	HO	ħ.—										
	-R	EC	NU OD	NU	TT	EK											
						UN	<u>р</u>	₹ V									
				PO PO	CP.	UN	77	1									
]		PO	CT 2	an ar											
			0P	ρΩ	ST	ጥፐ	ON										
				RU	RO	RΛ	UN TTT										
			OR	RO		1/17	111										
	T	OM	OR	RO	W_												
	-	B	OT	то	M												
		C	OT	TO	N-												
		CA	RE	ER													
		-S	UC	CU	MB	ED											

RESTRICTED

.

•

ŧ

,

\$

--

1

,

	AB			BA		-		AB				BA	
	AB DE DE DE DE DE DE DE	BA CL FE MA PA PL PO	RK AR ND ND RT OY RT	BA ED ED ED ED ED ED ED ED		-	D S	AB DE DE EN EN ET EV IR	SE SI SP ER ER ER ER	CR GN AT YP IO TY GU	AT AT CH LA RA FI LA	BA ED ED NE TE VE RI	S
	DE	SE	RT	ED				NO	MI	NA	TI	ON	
	DE	TA	CH	ED				SU	SP	IC	IO	US	
PR	EC	ED	EN	CE									
	EM	PL	ΟY	ME	NT			AB		_		B	Δ
	EN	TR	AI	NE	D		-		p				<u> </u>
	ME	AS	UR	EM	EN	T	[]	DE MO) NS	S T	RA	ΤE	D
	NE	GL	IG	EN	CE		1	IT 08	[F]	C C	ΑТ	I 0	N
	NO	TA	ΤI	ON									-
	PA	RA	GR	AP	H								
	RE	CE	IV	ER									
	RE	CO	RD	ER									
	RE	GI	ST	ER									
	RE	PE	АT	ER									
	RE	PO	\mathbf{RT}	ER									
	RE	vo	LV	ER									
-P	RO	JE	\mathbf{CT}	OR									
AS	SE	MB	LI	ES									

3-)2

2 }

RESTRICTED

-RESTRICTED-

F. DIGRAPHIC IDIOMORPHS: FOUR-SQUARE¹

(Grouped by number of significant letters in the idiomorphic pattern)

Two letters

				A	A				1			A-	A						A-			A-			
	в	IO	CK	AD	ED							SQ.	ŪA	DR	ON				MO	VE	ME	MT			
		I	NV	AD	ED					FI	GH	TΈ	RP	TA	NE	1		Е	MP	TA	CE	ME	MF		
		-	D	AM	AG	E			[MO	ΨO	RT	7.E	D			-	PE	RS	ON	NE	T.		
		CO	MM	AN	DS	-			D	RP	AR	गगा	RE					Α	RU	TT.	TE	RY	-		
		Ť	ST.	AN	DS				Ĩ ~		****	TIN	TIS	ττα	т.			**	1. A.L.		فيبيليك	~ . ~			
	۵	TR	PT.	ΔN	ES				l			OT/	00	VII					Δ_				Δ		
77	NIT	MV	DT	AN	ES				ł		۸		۸						<u><u><u></u></u></u>	MM	TIN	TC		то	MS
	TOF	GT.	CM	Δm	TTT					g	Â	OT	<u>A</u>	ਸ਼ਾ					co.	MC	TEN	AUD.	ΔŢ	TC TC	110
	77	GW DT	TM	٨m	T				h	U.		TIM	TIN	ក				Ð	100	DU DU	ATT	T72	٨m	τ∩	N
	r		TU	VW VT	עניג				"	707	AC AC	ייידד	TRA	4				T	TT	L G TIT	THE	MTA	1011 1011	70	74
	7	ИD		AT		υv				п	TO A	106	DIN AT	$\tau \circ$	T .T		ŀ	20	MC	04.	TIC	MA MA	UM 111		
			11	ATT	AT AT	ĽΪ					DA	11	HL TO	TO	11			00	140	ΤU	00	1.1.	ON		
		ъ	PO IN	AV	AL DIT	ਸ਼ਾਹ						ND CTT	AT	mт	TRO		1		٨					٨	
		F	NUL LO	CE CE	DU.	70 10	1013				CA MA	ວບ	AL AT	1.7	co				<u></u>	101		07	ONT	A.	
		778	102		AD	121 177	TO V				CA CA		ALL	TI			ļ		00	MUN	10	οı	OW	ъv	
		1.1%	DAL?	DD DT	ATT	فارتار	T		[20		AT	7 .7		a	1				-	~			
		W.L.	1.11	DR DR	AW								DT		7.12	ð				****	-B	-1			
		WT	тп	DR	ъw тато	A E	110	77			DT	UE UE	OT AM	TO	14		[~~	014	AB	نظير د در م			
	Ŧ	-	****	LEIM	E.F.	G Bi	NC	X	ł	107	DT	SP	AT.		77177				OB	ST	AC	نظيا. ۲۳۵	****	771	
	ىد	<u>FR</u>	OT.	EN		T Tava	37			MDC	DT		BO	MB	ER						AD	VA AT	NC	ж m	
				L.T.	ET.	1515	14		5	^ ^	D7 DT	VE	BO	MB	ER					Ð	AG		GNT	T	
				E.T	DT DT	n v			п	UA T	DJ	UN TA	CT.	TO	14		1		-	N TTD	AL	THE.	EA	D	
		7979	-	L.T.	FT.	1 AD			ļ	R	EP	LA		ME	74.7.				PR	EP CC	AR	AT.	TO	и	
		Ъл	цп.	GEi	HE:	AD	27			Л	E.L.	KE TAD	AT:						A T	55	DA	TU.			
			V 77	10	TTN	TT	L VT			а тт	TeA TeA	ER	AL						B	OM	BA	RD	**		
		٨	W		HD TO	RA	ਮ -		1	90	NC	TT	UN	mт	677				A	LR	BO	RN	E:		
	۸	A	עע	T.T.	10	AVI.	Ц			00	TATA.	70	MA	TT	ON N			٨	5	EA.	BO	TAIN	Ľi		
	A	IATA	MU	<u>T.T.</u>	10	11				1 7	MF.	UR	191A 7 7	T.T.	MO	1 21		A	D¥	MA NT	CT.	1VG			
	1713	00		7.1.	10	11 11			[7	MT.	LL mD	71	۹'n	TAC:	e.				νŦ	CT	TAT.	TI		
	RĽi	CU	GIN	1.T.	TO	11					PA	TA		A13							DE	TA	CH	3.00	5272
			Ľ	تليا. ۲۸۳	ME	INT.	3775		[DA OT	BU	TA	GĽ			[TT	477	DE	TA	UH W	ME	IXT.
				MT	ᆎᅏ	TA MIT	RI M			۸đ	05 80 T	V LL VT	nr mv						EL M	AV	LD Trive	Lifi	iN m		
				NT	74.7	ΜU	M		1	AU AU		V L TOTAT	11	ON			1		М	01	LUNI	TOTA	T. Tr		
			ъ	<u>О</u> . ТиТ	10.1	п			1	A. C	11	1.012	TT CC	UIN Trait	τŦ	v				Ð	2017 1017	E MI	1		
			Г m	OT	MT.	ЪŌ	T. T			þ	00	65	90	τU	فللبل	1				Д	Co TO TO TO TO TO TO TO TO TO TO TO TO TO	24A	715 7.15		
			Т	DM DO		UU UU	W		1		۸			٨						U	101	ANT.	11 72		
				FU Dm	TAT.	TON OIN	61					mT	.	- 	v		Į				L L	AN	17 17		
				UD DD	0,9	до TD	т m		İ.			T.T.	20	EU.	т		1		ъ	10	101	77	OW		
			כד	L D L	ಳೆಗೆ ಗೆಗೆ		ш СГ		ł	Ð	H.L.	111	OUC CUC	n E					d.	AG	7755 757	CE CD	ਜ਼ਾਜ਼	ħŦ	
			ב הת	UT UT	UG mb	A INT	л От			D D	2023 72727	10 10 10	0n 0D	10	1.607	1111		aa	pΛ	10	AD. TT	20	E.E.	17	
	n	TO	170 170	OT OT	OT MT	UM FUN	ςEι			л		Thur Thur	mT T	U Linv	1,107	TAT.		LL DD		HU TTC	<u>пт</u>	1117			
	IJ	τŊ	TU DO	OT OT	TT mt	MO MO			ſ		ער	1DV TOTA	27	1.17	TD		1	تتا <i>لد</i> ۲			<u>11</u>	TACL TACL			
			гU	QU DT	1.T	UI TT			1		ти ти	DU EH	00	מד	ישע יעד			ם ד	MU	טאנ. תיסד	TT T	រាច	Υ 7 5		
				υc	OT.	п			1		لانت	τV	50	هد	نابد		L	Т	ъм	ыIJ	LA	11	لاملا		

¹ See subpar. ____, Section IX.

RESTRICTED

\$

•

ł

_ *

.

-RESTRICTED-

_

Two letters (cont.)

	-B-B PER SONN EL	
मा मा मा मा	ES TT MA TE DA T	M EC HA NT ZE D
TE RR IT OR Y	P LA TO ON	D EP LO YM EN T
S IX TY	S UP PL Y	M ES SE NG ER
M IS CE LL AN EO US	S UP PO RT	d es tr oy er
E LE VA TI ON	NA VA LB AS E	A IR SU PP OR T
E LE VE N	F OR WA RD	V 1S IB IL IT Y
LI AI SO N	WI ND WA RD	ME SS EN GE R
DA MA GE		I MP AS SI BL E
MO RN IN G	-BB	1 MP OS SI BL E
U NU SU AL		C OM MA ND TH C
		OF THE AT TO M
C OL ON FT.	CENTERAT.	PR TS ON FR
SIL PE BI OB TT Y	U TT. TA TT AC K	PR OC ED IR E
M OT OR TZ ED	T RA NS MT SS TO N	RE EN FO RC E
OU TS KI RT S	R EC OG NI TI ON	TR AN SP OR TA TI ON
EQ UI PM EN T	T RO OP SH IP	YE ST ER DA Y
A VE RA GE	re gi mc nt	
B ÁR RA GE	CA RR IE RS'	<u>-BB</u>
AI RC RA FT	MI SS IO NS	R EC OM ME ND ED
AN TI AI RC RA FT	TW EN TY	HE AV YL OS SE S
RE MA IN	r eq ve st ed	R EC OM ME ND AT IO N
R EQ UI RE ME MI		C OM MU NI CA TI ON
M TO OT NG		I BE DELE CAME AND THE DEBE TAME OF
	· · · · · · · · · · · · · · · · · · ·	
	Three letters	
A- A- A-	Three letters	-B -B -B
N AV AL BA SE	<u>Three letters</u> <u>A- A A-</u> RE QU ES TE D	B OM BA RD ME NT
A-A-A- N AV AL BA SE R EQ UI SI TI ON	<u>Three letters</u> <u>A- A A-</u> RE QU ES TE¦D	B OM BA RD ME NT EL EM EN TS
N AV AL BA SE R EQ UI SI TI ON	<u>Three letters</u> <u>A- A A-</u> RE QU ES TE¦D	B OM BA RD ME NT EL EM EN TS EN GA GE ME NT
N AV AL BA SE R EQ UI SI TI ON	<u>Three letters</u> <u>A- A A-</u> <u>RE QU ES TE</u> ;D <u>Four letters</u>	B OM BA RD ME NT EL EM EN TS EN GA GE ME NT
AB AB	Three letters <u>A- A A-</u> <u>RE QU ES TE</u> ;D <u>Four letters</u> <u>A- AB -B</u>	B OM HO II II. II. U. U. B OM BA RD ME NT EL EM EN TS EN GA GE ME NT AB AB
A- A- A- N AV AL BA SE R EQ UI SI TI ON AB AB H EA DQ UA RT ER S	<u>Three letters</u> <u>A- A A-</u> <u>RE QU ES TE</u> D <u>Four letters</u> <u>A- AB -B</u> <u>AD DI TI ON AL</u>	<u>-B -B -B</u> B OM <u>BA RD ME</u> NT EL EM EN TS EN GA GE ME NT <u>AB AB</u> M OR NI NG
A- A- A- N AV AL BA SE R EQ UI SI TI ON H EA DQ UA RT ER S EL EV EN	Three letters <u>A- A A-</u> <u>RE QU ES TE</u> D <u>Four letters</u> <u>A- AB -B</u> <u>AD DI TI ON AL</u>	<u>-B -B -B</u> B OM <u>BA</u> RD ME NT EL EM EN TS EN GA GE ME NT <u>AB AB</u> M OR NI NG P OS TP OH E
N AV AL BA SE R EQ UI SI TI ON H EA DQ UA RT ER S EL EV EN	Three letters <u>A- A A-</u> <u>RE QU ES TE</u> 'D <u>Four letters</u> <u>A- AB -B</u> <u>AD DI TI ON AL</u> <u>A- ABB</u>	AB AB M OR NI NG P OS TP OH E
$\begin{array}{c} A-A-A-\\ N \overline{AV \ AL \ BA \ SE}\\ R EQ \ UI \ SI \ TI \ ON \end{array}$ $\begin{array}{c} AB \ A- \ -B \\ H \ EA \ DQ \ UA \\ EL \ EV \ EN \end{array}$ $\begin{array}{c} AB \ -B \ A- \end{array}$	Three letters <u>A- A A-</u> <u>RE QU ES TE</u> 'D <u>Four letters</u> <u>A- AB -B</u> <u>AD DI TI ON AL</u> <u>A- ABB</u> <u>SO UT H/ ES T</u>	B OM HO IL II. LI C B OM BA RD ME NT EL EM EN TS EN GA GE ME NT $\frac{AB AB}{OR NI NG}$ P OS TP OH E AB -B A-
$\begin{array}{c} \underline{A- \ A- \ A-}\\ N \ \overline{AV \ AL \ BA \ SE}\\ R \ EQ \ UI \ SI \ TI \ ON \end{array}$ $\begin{array}{c} \underline{AB \ A- \ -B}\\ H \ \overline{EA \ DQ \ UA \ NT \ ER \ S}\\ EL \ EV \ EN \end{array}$ $\begin{array}{c} \underline{AB \ -B \ A-}\\ \overline{CA \ NC \ EL} \end{array}$	Three letters <u>A- A A-</u> <u>RE QU ES TE</u> 'D <u>Four letters</u> <u>A- AB -B</u> <u>AD DI TI ON AL</u> <u>A- ABB</u> <u>SO UT HN ES T</u>	$\frac{-B}{B} - B - B}{B} - B$ $B OM \overline{BA} RD ME NT$ $EL EM EN TS$ $EN GA GE ME NT$ $\frac{AB}{OR} AB$ $M \overline{OR} NI NG$ $P OS TP OH E$ $\frac{AB}{RE} - B A$ $RE CO IM OI TE R$
$\frac{A-A-A-}{N \text{ AV AL BA SE}}$ R EQ UI SI TI ON $\frac{AB AB}{EA DQ UA} \text{ RT ER S}$ $\frac{AB -B A-}{CA NC EL}$ RE CO NN AI SS AN CH	Three letters <u>A- A A-</u> <u>RE QU ES TE</u> D <u>Four letters</u> <u>A- AB -B</u> <u>AD DI TI ON AL</u> <u>A- ABB</u> <u>SO UT HN ES T</u> <u>A- AB -B</u>	$\frac{-B}{B} - \frac{B}{B} - \frac{B}{B}$ $B OM \overline{BA} RD ME NT$ $EL EM EN TS$ $EN GA GE ME NT$ $\frac{AB}{OR} AB$ $M \overline{OR} NI \overline{NG}$ $P OS TP OH E$ $\frac{AB}{RE} - B A$ $RE CO IIN OI TE R$
$\frac{A-A-A-}{N \times AV} \xrightarrow{AV} AL \xrightarrow{BA} SE$ R EQ UI SI TI ON $\frac{AB AB}{EA DQ UA} \xrightarrow{RT} ER S$ EL EV EN $\frac{AB -B A-}{CA NC EL}$ RE CO NN AI SS AN CH	Three letters <u>A- A A-</u> <u>RE QU ES TE</u> 'D <u>Four letters</u> <u>A- AB -B</u> <u>AD DI TI ON AL</u> <u>A- ABB</u> <u>SO UT HN ES T</u> <u>A- A- A- B -B</u> <u>W IT HD RA WA L</u>	$\frac{-B}{B} - \frac{B}{B} - \frac{B}{B}$ $B OM \overline{BA} RD ME NT$ $EL EM EN TS$ $EN GA GE ME NT$ $\frac{AB}{OR} AB$ $M \overline{OR} NI NG$ $P OS TP OH E$ $\frac{AB}{RE} - \frac{AB}{RE}$ $RE CO IN OI TE R$ $\frac{AB}{RE} AB$
$\frac{A-A-A-}{N \text{ AV AL BA SE}}$ $R EQ UI SI TI ON$ $H EA DQ UA RT ER S$ $EL EV EN$ $\frac{AB -B A-}{CA NC EL}$ $RE CO NN AI SS AN CH$ $\frac{AB -B -A -}{D VA VA VA DD}$	$\frac{\text{Three letters}}{\text{Re QU ES TE}}$ $\frac{\text{A- A A-}}{\text{Re QU ES TE}}$ $\frac{\text{Four letters}}{\text{A- AB -B}}$ $\frac{\text{A- ABB}}{\text{AD DI TI ON AL}}$ $\frac{\text{A- ABB}}{\text{SO UT HV ES T}}$ $\frac{\text{A- ABB}}{\text{SO UT HV ES T}}$ $\frac{\text{A- ABB}}{\text{IT HD RA WA}}$	B OM HO II II. II. C B OM BA RD ME NT EL EM EN TS EN GA GE ME NT $\frac{AB AB}{OR NI NG}$ P OS TP OH E $\frac{AB -B A-}{RE CO IIN OI TE R}$ $\frac{AB AB}{II. TE RD IC T}$
$\begin{array}{c} A-A-A-\\ N \overline{AV} \overline{AL} \overline{BA} \overline{SE} \\ R \overline{EQ} \overline{UI} \overline{SI} \overline{TI} \overline{ON} \\ \\ H \overline{EA} \overline{DQ} \overline{UA} \overline{NT} \overline{ER} \overline{S} \\ EL \overline{EV} \overline{EN} \\ \\ \overline{AB} \overline{-B} \overline{A-} \\ \overline{CA} \overline{NC} \overline{EL} \\ RE \overline{CO} \overline{NN} \overline{AI} \overline{SS} \overline{AN} \overline{CR} \\ \\ \overline{AB} \overline{-B} \overline{-A-} \\ \overline{AD} \overline{VA} \overline{NC} \overline{ED} \\ \\ \overline{EU} \overline{EN} \overline{VT} \overline{AU} \overline{VS} \end{array}$	$\frac{\text{Three letters}}{\text{A-} A A-}$ $\frac{\text{RE QU ES TE}}{\text{RE QU ES TE}}$ $\frac{\text{A-} AB - B}{\text{AD DI TI ON AL}}$ $\frac{\text{A-} AB B}{\text{SO UT HI ES T}}$ $\frac{\text{A-} AB B}{\text{SO UT HI ES T}}$ $\frac{\text{A-} A B - B}{\text{SO UT HI ES T}}$ $\frac{\text{A-} A B - B}{\text{IT HD RA VA}}$	$\frac{-B}{B} - \frac{-B}{B} - \frac{-B}{B}$ $B OM \overline{BA} RD ME NT$ $EL EM EN TS$ $EN GA GE ME NT$ $\frac{AB}{OR} AB$ $\frac{AB}{RE} - \frac{A - A}{RE}$ $\frac{AB}{RE} - \frac{AB}{CO}$ $\frac{AB}{RE} - \frac{AB}{CO}$ $\frac{AB}{RE} - \frac{AB}{CO}$ $\frac{AB}{RE} - \frac{AB}{CO}$
$\frac{A-A-A-}{N \text{ AV AL BA SE}}$ R EQ UI SI TI ON $\frac{AB AB}{EA DQ UA \text{ RT ER S}}$ $\frac{AB -B A-}{CA NC EL}$ RE CO NN AI SS AN CH $\frac{AB -B A-}{AD VA NC ED}$ EN EM YT AH KS	$\frac{\text{Three letters}}{\text{Re QU ES TE'D}}$ $A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-$	$\begin{array}{c} -B & -B & -B \\ B & OM & BA & RD & ME & NT \\ & EL & EM & EN & TS \\ EN & GA & GE & ME & NT \end{array}$ $\begin{array}{c} A- & -B & AB \\ M & OR & NI & NG \\ P & OS & TP & OH & E \\ \hline A- & -B & -B &A- \\ RE & CO & IM & OI & TE \\ \hline R & A- & -B &AB \\ \hline III & TE & RD & IC \\ \end{array}$
$\frac{A-A-A-}{N \text{ AV AL BA SE}}$ R EQ UI SI TI ON $\frac{AB AB}{EA DQ UA} \text{ NT ER S}$ $\frac{AB -B A-}{CA NC EL}$ RE CO NN AI SS AN CH $\frac{AB -B -A-}{AD VA NC ED}$ EN EM YT AH KS $ABA -B$	$\frac{\text{Three letters}}{\text{Re QU ES TE}}$ $\frac{A-AA-}{\text{Re QU ES TE}}$ $\frac{A-AB-B}{\text{AD DI TI ON AL}}$ $\frac{A-ABB}{\text{SO UT HI ES T}}$ $W \frac{A-AB-B}{\text{IT HD RA VA}}$ $\frac{A-AB-B}{\text{CO INI AN DI IG}}$ $A-AB-B-B$	B OM BA RD ME MT EL EM EN TS EN GA GE ME NT AB AB M OR NI NG P OS TP OH E AB -B - A- RE CO IN OI TE R AB - AB II TE RD IC T S AT IS FA CT OR Y
$\begin{array}{c} A-A-A-A-\\ N \overline{AV} \overline{AL} \overline{BA} \overline{SE} \\ R \overline{EQ} \overline{UI} \overline{SI} \overline{TI} \overline{ON} \\ \\ H \overline{EA} \overline{DQ} \overline{UA} \overline{NT} \overline{ER} \overline{S} \\ \overline{EL} \overline{EV} \overline{EN} \\ \\ A\overline{B} -B \overline{A-} \\ \overline{CA} \overline{NC} \overline{EL} \\ \overline{RE} \overline{CO} \overline{NN} \overline{AI} \overline{SS} \overline{AN} \overline{CE} \\ \\ \overline{AB} -B \overline{A-} \\ \overline{AD} \overline{VA} \overline{NC} \overline{ED} \\ \overline{EN} \overline{EN} \overline{YT} \overline{AH} \overline{KS} \\ \\ \hline A\overline{B} -A \overline{A-B} \\ \overline{SI} \overline{GH} \overline{TI} \overline{HG} \end{array}$	$\frac{\text{Three letters}}{\text{RE QU ES TE}}$ $\frac{\text{A- A A-}}{\text{RE QU ES TE}}$ $\frac{\text{Four letters}}{\text{A- AB -B}}$ $\frac{\text{A- AB -B}}{\text{AD DI TI ON AL}}$ $\frac{\text{A- ABB}}{\text{SO UT HI ES T}}$ $\frac{\text{A- A B}}{\text{SO UT HI ES T}}$ $\frac{\text{A- A B}}{\text{CO INI AN DI NG}}$ $\frac{\text{A- A B}}{\text{RE CU IR EM EN T}}$	B OM \overrightarrow{BA} RD \overrightarrow{IL} \overrightarrow{LL} \overrightarrow{LL} \overrightarrow{L} B OM \overrightarrow{BA} RD \overrightarrow{ME} NT EL EM EN TS EN GA GE ME NT $\overrightarrow{A-}$ -B AB M \overrightarrow{OR} NI NG P OS TP OH E $\overrightarrow{A-}$ -B -B A- RE CO IIN OI TE R $\overrightarrow{A-}$ -B AB III TE RD IC T S $\overrightarrow{A-}$ -B AB S \overrightarrow{AT} IS FA CT OR Y $\overrightarrow{A-}$ A- C- C-
$\frac{A-A-A-}{N \text{ AV AL BA SE}}$ R EQ UI SI TI ON $\frac{AB AB}{EA DQ UA} \text{ NT ER S}$ $\frac{AB -B A-}{CA NC EL}$ RE CO NN AI SS AN CH $\frac{AB -B A-}{AD VA NC ED}$ EN EM YT AN KS $\frac{AB AB}{SI GH TI HG}$	$\frac{\text{Three letters}}{\text{A-} A A-}$ $\frac{\text{RE QU ES TE}}{\text{RE QU ES TE}}$ $\frac{\text{A-} AB - B}{\text{AD DI TI ON AL}}$ $\frac{\text{A-} AB - B}{\text{AD DI TI ON AL}}$ $\frac{\text{A-} AB B}{\text{SO UT HI} \text{ES T}}$ $\frac{\text{A-} A B}{\text{SO UT HI} \text{ES T}}$ $\frac{\text{A-} A B}{\text{CO III AN DI IG}}$ $\frac{\text{A-} A B}{\text{CO III AN DI IG}}$ $\frac{\text{A-} A B}{\text{RE QU IR LM EN T}}$	B OM BA RD ME NT EL EM EN TS EN GA GE ME NT EL EM EN TS EN GA GE ME NT $A^B AB$ M OR NI NG P OS TP OH E $A^B -B - A^-$ RE CO IIN OI TE R $A^B - AB$ III TE RD IC T S $A^B - A - B$ S AT IS FA CT OR Y $A^ A - C - C - C - DI SP AT CH ES$

-RESTRICTED-

_

1

_

-

-RESTRICTED

Four letters (cont.)

A- RO	AD J	- C- 1 NC	<u>A-</u> TI	C- ON	4	υ	-B NS	A- UC	CE	AB SS	FU	L	AI	$\frac{-B}{RS}$	-D UP	-D PO	-B RT				
DI	-1 SP 09 P 09	AB E E E E	A- 10 10	N N			-B ME	A- DI	UM	<u>A-</u> BO	-B MB	ER	c	-B IN ON	-D ST ST	RU RU	-D CT CT	- <u>B</u> 10 10	N N		
	PI RE PI	r es r es	EN EN	T T			-B VI	A- SI	BI	-B LI	A- TY		F	IG	HT	-B ER	PL	A- AN	AB ES		
RE	-B A PE A	- AB C ED					$\frac{-B}{IN}$	A- FO	Rh	AT	AB IO	N	E	-B	AB	A- LI	SH	ME	AB MP		
	-B A DE SI	- A-	-B YE	R			- <u>B</u> IN	A- ST	AL	LA	A- TI	-B ON		-B EN	<u></u>	-B	A- TE	A RE	D		
	-BA UN II	B	TI	A- FI	ED		$\frac{-B}{CR}$	-D OS	-B SR	0A	-Ð DS			-B RE	IN	FO	-B RC	-D EM	-D EN	T	
<u> </u>					<u> </u>]	Five	e 10	elte	ers	,									
	<u>A]</u> NA VA	A AB	TT	-B AC	ĸ		-B DI	A- ST	A- RI	BU	AB TI	ON		-B IN	-D ST	RU	-D CT	-B IO	-D NS		
R EC	AJ ON M	3 A IS	-B SA	AB NC	E	RE	$\frac{-B}{PL}$	A- AC	-B EM	AB EN	T										
								<u>S1</u>	<u>x le</u>	ette	ers										
P	AB CI OS I	<u>3 C-</u> 7 IO	A- NS					A- RE	A ର୍ଯ	-B IS	AB TT	A- IO N		A- ID	EN	CB TI	A- FI	CA	CB TI	ON	
C	AB -I ON D) -D [T] [0]	AB ON RA	м		ୡ	UA	$\frac{A}{RT}$	CB ER	MA	A- ST	CB ER	A	-B DM	AE IN	AD IS	-D TR	AT	IV	E	
	AUL D.		TUX	1.1				A- SC	CB HO	OL	CB HO	A- US E									

Seven letters

B	AD	متدر عس	-B	-D	AD	
RE	EN	FO	RC	EM	EN	Т

Eight letters

AB -B ADB AD	AB -B C - AB CB	AB -D C- AD CB
QU AR TE RM AS TE R	EM PL AC EM EN T	IN TE RD IC TI ON

RESTRICTED

_

(BLANK)

. . 1

الله المراجعين و يك المراجع التي المراجع المرا مراجع المراجع المحا مراجع المراجع المراح المراجع المراجع المراجع المراجع المراجع المراجع الم

2

APPENDIX 4

SERVICE TERMINOLOGY & STEREOTYPES

Familiarity with the style and peculiar phraseology which exist in military messages greatly facilitates the cryptanalytic recovery of the plain text of any such messages which have been encrypted. Thus, this appendix has been compiled to comprise notes on those idiosyncrasies present in military messages which are of particular interest and aid to the cryptanalyst. The notes which are applicable to the messages of all Services are grouped together in Section A, those which are applicable to messages of ground, naval, and air origin, respectively, constitute Sections B, C, and D; those which apply to special types of messages, such as weather messages, are contained in Section E; and remarks on stereotypic beginnings and endings of messages comprise Section F.

Although the notes contained herein derive primarily from U. S. military communications, many apply as well to the military communications of other countries. At the very least, this appendix indicates the types of information on message style and phraseology which, when known concerning the messages of any source, can be quite helpful in the cryptanalysis of such messages.

A. REMARKS APPLICABLE TOREESAGED DA 2008322/ICFS

1. When mention is made of time in military messages, it is conventionally specified in terms of the 24-hour clock system (ending at midnight), in which time is expressed as a group of four numerals. The first two numerals of the group denote the hour and the last two numerals, the minute after the hour; for example, 6:00 AM appears as 0600 and 6:00 PM appears as 1800. For any current month, the day may be indicated by prefixing the four-digit time group with a two-digit date group, indicating the day of the month; for example, 080600 denotes 6:00 AM on the 8th day of the month. In some instances, a four-digit time group or six-digit date-time group occurring in a message may be found with a literal suffix, giving rise to such groups as 1800Z, 080600Q, etc; this suffix may be any one of the letters A to I or K to Z and is a type of designator used in communications practices to refer to a particular one of the 24 time zones of the earth.

2. Administrative messages in general often contain many sequences of numbers, brought about by numerous references to previous messages and to various Service regulations (among other items), reference generally being made on the basis of identifying serial numbers and dates which such items usually bear; specific illustrations of this fact appear in several of the succeeding paragraphs in this appendix. Furthermore, administrative messages contain references to items having literal designations; to minimize errors in this connection such designations are often spelled out phonetically, by means of a phonetic alphabet, such as one of the following:

47	ABLE	JIG	SUGAR	ALFA	JULIETT	SIERRA
L	BAKER	KING	TARE	B RAVO	<u>K</u> ILO	TANGO
	CHARLIE	LOVE	UNCLE	COCA	LIMA	UNION
	DOG	MIKE	VICTOR	DELTA	METRO	VICTOR
	EASY	NAN	WILLIAM	ECHO	NECTAR	WHISKEY
-	FOX	OBOE	XRAY	FOXTROT	OSCAR	EXTRA
	GEORGE	PETER	YOKE	GOLF	PAPA	YANKEE
	HOW	QUEEN	ZEBRA	HOTEL	QUEBEC	ZULU
	ITFM	ROGER		INDIA	ROMEO	

3. The messages of all Services exhibit a high content of abbreviations; for this reason, the following list of frequently-encountered abbreviations is included:

ARMY, AIR OFFICER RANKS NAVY OFFICER RANKS FADM....fleet admiral GEN....general ADM....admiral LTGEN....lt. general MAJGEN...major general VADM vice admiral BRIGGEN..brigadier general RADM....rear admiral COMO....commodore COL....colonel LTCOL....lt. colonel CAPT....captain MAJ....major CDR....commander CAPT....captain LCDR....lt. commander 1ST LT...first lieutenant LT....lieutenant LTJG....lieut. jr. grade 2ND LT...second lieutaint ENS....ensign

PUNCTUATION

MISCELLANEOUS

とう おきっち 小田田 たくい

CLNcolon	CGcommanding general	HQheadquarters
CIAcomma	COcommanding officer	LAT.Jatitude
PARAparagraph	COMcommander	LONG, longitude
PAREN.parenthesis	COMDT.commandant	LIRletter
PDperiod	DETdetachment	MSG., message
RPT., repeat	ETAestimated time of arrival	NRnumber
	ETDestimated time of departure	REreference
	GMTGreenwich mean time	URyour

4. The identity of the person originating a military message may sppear as a signature at the end of a message and the addressee's identity may appear at the beginning; or either, or both, of these may be "buried" in the middle of the message, set off by parentheses. If the signature is at the end of the message, it may be preceded by STOP (or PERIOD or SIGNED, or bolh. The identification of the originator or addressee may consist merely of his command designation (e.g., COMMANDING GENERAL, FIRST ARMY) or it may consist of his name and rank, followed by COMMANDING or some other appropriate amplifying data (e.g., in the Army, his branch of service). 1 7 4

Examples:

ALESTER ANTER JONES, COLONEL, ARTILLERY COMMANDING OFFICER. THIRD REGIMENT COMMANDER, DESTROYER SQUADRON SIX SMITH, FLIGHT LEADER, SECOND SQUADRON

5. In military communications, long messages are often broken into parts, each part subsequently being treated as a separate message. Thus, messages arise which begin "PART (number) OF (number) PARTS", or "(number) PART MESSAGE PART (number)", often separated from the following message text by STOP or simply by an "X".

B. REMARKS ON ITEMS APPEARING IN GROUND (ARMY) MESSAGES

1. When mention of an army unit appears in a military message, its size (echelon) is indicated, generally preceded by a numerical or literal designation and, as further information concerning the unit, its branch of service may be included. The several echelons of the U.S. Army, listed in descending order of size, are: army, corps, division (DIV), brigade, regiment (REGT), battalion (BN), company¹ (CO), platoon. Some of the branches of service which may appear, as mentioned above, are: Infantry (INF), Artillery (ARTY), Signal Corps (SIG C), Armor, Ordnance (ORD), Engineers (ENG), Quartermaster (QM).

Examples of unit designations:

(a) "A" Company, 39th Infantry Regiment, 9th Infantry Division

An artillery unit at this echelon is termed a battery.

(b) 1st Armored Division

(c) 57th Signal Battalion

2. In connection with 1, above, an army is the normal command of a general (four stars); a corps being the command of a licutenant general, a division, the command of a major general; and a bright, the command of a brighter general. A regiment is normally commanded by a colonel, a battalion may be commanded by a 'lieutenant colonel or a major; a company, by a captain, and a platoon, by a lieutenant.

3. For reference purposes, when giving locations of units, recdilyrecognizable landmarks such as hills, crossroads and road junctions may be referred to in terms of their altitude above sea level (in number of feet), if such landmarks do not bear proper names which are suitable for the purpose. Thus, a reference, in a military message, to CROSSFOADS SIX FIVE ZERO would apply to that particular crossroads within c preselected area which is located at an altitude of 650 feet. If, within any preselected area of reference, there are two or more landmarks of any given type which are both at the same altitude, it is necessary to affix a distinctive letter or number to the altitude designation of each, in order to clearly identify a particular one, thus, such a reference as CROSSROADS SIX FIVE ZERO DASH /hyphen/ B may be encountered. In this connection, CROSSROADS may be found abbreviated as "CR", and ROADJUNCTION as "RJ".

4. The location of any particular unit may be specified in terms of its location with respect to a particular place or locality, or to a particular landmark. However, its location may also be specified by stating how it is located on a specific map or portion of a map. This gives rise in military messages to phrases such as COORDINATES ONE TIVE POINT TWO FOUR DASH ONE NINE FOUR POINT SEVEN, wherein the numbers before the "dash" indicate the unit's location with respect to the horizontal grid lines of a preselected map and the numbers after the "dash" indicate its location with respect to the vertical grid lines.

5. Specific highways, turnpikes, and other roadways are often identified in military messages by stating the place names of their terminal points; thus the highway running between Grizurbeto and Bolzano could be called the GRIZURBETO DASH /hyphen/ BOLZANO HIGHWAY. Similarly, when reference is made to an imaginary straight line across the terrain in a particular area, such a line may be identified by specifying any recognizable landmarks between which the line runs, for example, LIFE CROSSROADS THREE ONE FIVE DASH ROADJUNCTION TWO NINE EIGHT.

6. Included below is a brief list of frequent words appearing in low-cchelon ground traffic, the abbreviation for certain ones are appended in prentheses after them. In addition to the words listed below, numbers and ranks/titles will be found to have a high frequency of occurrence.

ACROSS	ADVANCE	AIRPLANE
ACTIVITY	ADVISE	ALCAUNITION (MA 0)
ADDITIONAL	AFTERNOON	AREA

ARMORID ARMY ARRIVE ARTILLERY (ARTY) ATTACK BARRAGE BAITALJON (BN) BRIDGE CAPTURE CASUALTIES COMMA COMMAND POST (CP) COMMUNICATION (COMM) COMPANY (CO) CONCENTRATION COUNTERATTACK CROSSROADS (CR) DATLY DASH DEFIIND DEFENSIVE DISPOSITION DIVISION (DIV) EAST FMPLACEMENTS ENEMY ENLISTED PERSONNEL FIRE FLANK FORCE FROM (FM) HEADQUARTERS (HQ) HEAVY

HILL HOSTILE IDENTIFICATION (IDENT) IMMEDIATELY INFANTRY (INF) INFORMATION (INFO) LARGE LEFT LICHT LINE LOCATION MACHINEGUN (MG) MESSAGE (MSG) MORNING MORTAR MOUNTAIN MOVE MOVEMENT NEAR NEUTRALIZE NIGHT NORTH NOTHING _OBJECTIVE OFFENSIVE OFFICER ORDER PATROL PLANE POSITION PREPARE PRISONER PROCEED

RADIO RAILROAD READY RECEIVE RECONMAISSANCE (RCN) REFERENCE (RE) (REF) REGIMENT (REGT) REINFORCEMENTS REPORTS REQUEST REQUTRE REQUISITION RESERVES RIGHT RIVER ROAD ROADJUNCTION (RJ) ROCKET SEND SMALL SOUTH STOP SUPPLY SUPPORT TANKS TODAY TOMORROW TONJGHT TROOPS VICINITY WEST WOODS YESTERDAY

C. REMARKS ON ITEMS APPEARING IN NAVAL MESSAGES

1. Mention of various sized groupings of vessels are found in messages of naval origin, among which those mentioned below are quite frequently encountered. A major naval force is called a <u>fleet</u>, and the levels of echelonment (or subdivision) within a fleet are the <u>task force</u>, <u>task group</u>, and <u>task unit</u> (in descending order of size). The <u>basic unit</u> of all fleet vessels is termed a <u>division</u>, and is comprised of two or more vessels of the same type; in this connection, when mention is made of a division in a naval message, the particular type of vessel of which the division is made up is often specified; for example, CRUISER DIVISION. A squadron is made up of two or more divisions of submarines, destroyers, landing ships or other light vessels, and a <u>flotilla</u> comprises two or more such squadrons.

2. In connection with 1, above, a flect is normally commanded by an admiral (four stars), a task force being the command of a vice admiral: and a task group, the command of a rear admiral. Furthermore, in time of war the officer in command of a convoy or flotilla often holds the rank of commodore; the officer commanding an individual ship may range in rank from captain on down, depending on the type of ship.

3. A list of the main combat vessels is included below, the approximate maximum speed of each, which is expressed in KNOTS, is shown in parentheses.

BATTLESHIP	(35)
CARRIER	(35)
CARRIER ESCORT	(15)
CRUISER	(30)
DESTROYER	(35)
DESTROYER ESCORT	(25)
SUBMARINE	(20, on surface;
	10, submerged)

When a particular vessel is mentioned in a naval message, it may be identified by a numerical designation, by a group of letters, or by some proper name.

4. In naval messages, the direction of an object from a ship, or the course of a particular naval vessel or unit at sea is given as a compass bearing expressed in degrees (from 0 to 359), for example, BEARING ZERO LIGHT FIVE. In some instances the statement of a bearing will be followed by the word TRUE or MAGNETIC, indicating that the bearing is measured from the geographical pole (true north) or the magnetic pole (not corrected for variation), respectively.

5. The position of a particular naval vessel or unit at sea may be specified in a naval message by stating its latitude and longitude in degrees and minutes. The latitude may be from 0 to 90 degrees and the longitude from 0 to 180 degrees, a specified latitude is generally followed by NORTH or SOUTH (as appropriate) and, similarly, longitude is followed by EAST or WEST. For example, LATITUDE THREE ZERO DEGREES TWO ONE MINUTES NORTH LONGITUDE ONE FOUR TWO DEGREES ONE SIX MINUTES WEST, or more briefly LATITUDE THREE ZERO DASH TWO ONE NORTH LONGITUDE ONE FOUR TWO DASH ONE SIX WEST. If position is stated in conjunction with a bearing, it is not nccessary to state both latitude and longitude, and the location, NORTH or SOUTH, with respect to the equator or EAST or WEST with respect to Greenwich Meridian may be found omitted where no ambiguity arises. Positions arc also concurres save arc also conctimes given as a bearing and distance in miles from a specific e se e e e e e 1

m」 つきえいせいさい 「作いという」

. - -

ነሮ

مآي

- -

. X

1 11 1 1

5 105 0

1-101-

1 1 2

6. The following words may be expected to appear frequently in a selection of naval messages of various types:

AIRCRAFT ALTITUDE BEACH BLOCKADE BCHBED GABED	مع ۲ ۲ ۲ ۲ ۲	EXECUTE FLEZT FLIGHT FORMATION FUEL CHARDENC	-	++- - -	RADAR REJOIN RÊNDEZVOUS SAIL SÊA		
CHANNEL COASTAL COASTAL	a ⁻	HARBOR XNOTS LATITUDE	8 m - m	. • .	SALFT SHIP SORTY SQUADRON	· · -	1 197 14
CONTACT CONVOY CORRECTED		LONGITUDE MILES MINE (FIELD) MISSION		2	STARBOARD STRAFED STRAIT TABGET	: J	
CRAFT DEPART DEPLOY		NAVAL NAVI OPERATIONS	f	-tiph ⊥-*s	VESSELS VIA VOYAGE	دم ^{۲۰} ۳ د.	
ENBARK ESCORT		PILOT PORT		- '	WEATHER	ب اول	•

D. REMARKS ON ITEMS APPEARING IN AIR MESSAGES

1. The various elements of which an air force is composed and which may be mentioned in air messages are given below. The smallest grouping of aircraft, composed of one or more aircraft of a particular type, is called a flight. A squadron is two or more flights of the same type; a group is made up of two or more squadrons, a wing comprises two or more groups, an <u>air division</u> is composed of two or more wings, and two or more divisions constitute an air force.

2. In connection with 1, above, a flight is usually commanded by a major, a squadron being the command of a lieut. colonel, a group being the command of a colonel, a wing, the command of a brigadier general; and an air force, the command of a major general.

3. Some of the types of aircraft which may be mentioned frequently in air messages are listed below, an indication of the range of speed of each type, expressed in KNOTS, is shown in parentheses.

BCIBER	(250-400)
CARGO PLANE	(150-350)
FIGHTER	(250-500)
JET BOTBER	(350-600)
JET FIGHTER	(250-500)
LIAISON PLANE	(65-150)

4. The position of a particular aircraft may be specified in an air message by stating its latitude and longitude in degrees and minutes, sometimes in conjunction with its altitude in feet. (Latitude may be from 0 to 90 degrees and longitude from 0 to 180 degrees.)

4-7

E. RIMARKS ON SPECIAL TIPES OF MESSAGES

1. Weather messages. Any generalization on the specific elements which a weather message will contain would perforce be rather tenuous, the contents of a particular weather message generally being dependent on its source and purpose. However, there are certain elements which may be expected to appear in most weather messages, these are listed below with an indication of the terms in which each is generally expressed:

a. Identification of the originating station (by code number, or location).

b. Wind speed (knots) and direction (tens of degrees, from 00-36).

c. Amount of low_clouds (tenths of sky covered) and their height (hundreds of feet).

d. Types of low, medium, and high clouds (e.g., cumulus, stratus, cirrus, etc.).

e. Temperature of the air and temperature of the dew point (both in degrees Fahrenheit).

f. Present and past weather (e.g., clear, partly cloudy, cloudy or overcast, fog, drizzle, rain, snow, showers, thunderstorm, etc.).

g. Norizontal visibility (miles).

h. Atmospheric pressure (tens, units, and tenths digits in millibars) and barometric tendency (e.g., falling, steady, rising, etc.)

2. <u>Air-to-ground position reports</u>. Position reports made by aircraft in flight may be expected to contain the majority of the following elements of information:

a. Position of the aircraft (in latitude and longitude or with respect to some locality on the ground).

b. Time.

c. Speed.

d. Altitude.

e. Weather conditions.

f. Estimated time of arrival at next reporting point or at destination.

F. STEREOTYPIC BEGINNINGS AND ENDINGS

Within the confines of the comparatively limited scope of military messages, stereotypy of phraseology is inevitable. Particularly in the beginnings of messages is this limitation apparent; thus these positions lend themselves most readily to attack by the cryptanalyst. The following list of stereotypes have a high frequency of positional occurrence, and therefore may provide a fruitful source for cribs. It is to be noted that a stereotypic initial word often may suggest a whole opening phrase. For example, if a message of low-echelon ground origin begins with the word HEAVY, then it is not too unlikely that the opening phrase is "HEAVY ARTILLERY (FIRE, BARRAGE) (FALLING, INTERDICTING)...., which might be expanded into "HEAVY ARTILLERY FIRE FALLING ON OUR POSITIONS (NORTH, EAST, SOUTH, WEST) OF...."

BEGINNINGS

ACKNOWLEDGE ADVANCE ADVISE (THIS COMMAND) (THIS HEADQUARTERS) ARRIVE ATTACK ATTENTION CANCEL CITE COLLIANDING (GENERAL) CO. TUNICATION (OFFICER) COLCENTRATE (-ION OF) CONFIRM CONTINUE DEPART (-URE) DISCONTINUE EFFECTIVE ENEMY EQUIPMENT EXPEDITE (SHIPMENT) FOLLOWING (ARE) (IS) FOR FROM HEAVY HOSTILE INFORM (-ATION) IN REPLY (TO YOUR) (MESSAGE) LOCATION (OF)

NUMBERS (1, 1st, 2, 2d, etc.) ORDERS OUR PARAPHRASE PLEASE POSITION PREPARE (TO) (-ATIONS FOR) PROCEED RECEIPT RECEIVE RECOMMEND (-ATION) (-ED) REFER (-RING) (TO) (YOUR) REFERENCE (YOUR, MY) (MESSAGE, RADIO-GRAM, TELEGRAM) (NUMBER) (DATED, OF) REPEAT REPORT REQUEST REQUIRE RERAD REURAD SEND SITUATION REPORT STATUS REPORT SUPPLY VERIFY YOUR (COMMAND) (ORGANIZATION)

ENDINGS

ACKNOWLEDGE	PERIOD
ADVISE (IMMEDIATELY)	REPLY
CONFIRM	REFERENCE
END	REQUESTED
END OF MESSAGE	SIGNED (NAME)
IMMEDIATELY	STOP
NUMBERS (1, 1st, 2, 2d, etc.)	TITLES (MAJ, COL, etc.)

4-9

teres 20 h 14 -. ٤ , -ł ... I Ł 1 . 1 32 -1 % 7-~

- - - -- - -

\$

γ

J

(BLANK)

** * * * * ** x ~~ k

_*

t

APPENDIX 5

	LETI	ER FREQUENCY	DATA - FOREIGN	i tanquáç	nes ,		
		1	•	ی د و	- مَنْ -	-	د
		-	-	217	t renigner		~
		-	_			- ~	
Sectio	n					Pages	
A.	German lett	er frequency	data			3-6	
в.	French lett	er frequency	data			7-10	
c.	Italian let	ter frequency	data			11-14	
D.	Spanish let	ter frequency	data			15-18	
E.	Portuguese	letter freque	ncy data	- • • • • • • • • • •		19-22	
F.	Russian let	ter frequency	data	-		23-26	

- -

ł

٩

+

ĸ,

•_

٦

, ⋡,

The letter frequency data contained herein has been compiled from selected newspaper and magazine articles comprising war communiqués and other military-type text. In the material which was processed there were place names and words foreign to each particular language, these words account for the presence of certain non-characteristic letters in the data given herein for those languages which make use of the Roman alphabet.

A. GERMAN LETTER FREQUENCY DATA

1-a.	Ab	solute	fr	eque	nci	es o	f	sin	gle let	ters	oſ	Germ	an p	lain tex	t, an	ronf	sed.
alpha	bet	ically,	, b	ased	on	60,	04	51	.otters	of t	ext.	(1	he 1	etlers X	and	X ay	°@
deriv	ed	from fo	re	ign	WOI	ds c	on	laj	ned in	Germ	an p	lain	tex	t).			
												_		•	· · ·		
	A	3,601	.	G	l,	921	1	L,	1,988	ାର		6	V	523			
	В	1,023	}	Ħ	2,	477]]	4	1,360	R	4,	339	W	899			
	C	1,620		Ι	4,	879	1	V	6,336	S	4,	127	X	12			
	D	3,248	}	J		192	()	1,635	T	3.	447	Y	24			
	Е	10,778	3	к		747]	2	499	U	ຂ.	753	Z	654			
	F	958				• •				•			•	•			
														60,046			
														•			1
1-b.	Mo	nograph	je	kap	po,	plai	n,	Ge	rman le	ingua	ge -	.07	87				
l-c.	Fr	equency	r đ	isti	ibu	tion	. 0	ſ (ingle]	lette	ers t	ased	on	60,046 3	Letter	8 O	f
Germa	n p	lain to	ext	, re	duc	cd t	0],()00 let	ters,	an	ange	d ac	cording	to th	eir	_
relat	ive	freque	enc	ies.	•							7	,				
	Е	180		T		57	1 (G	32	F		16	P	8			
	N	100	5	D		54		0	27	W		15	J	3			
	Ι	83	L	U		46	1 (Ç	27	K		13	Y	-			~
	R	72	2	H		41		М	23	Z		11	X	-			
	ន	69	9	L		33		B	17	v		9	Q	~			
	A	60	5			•••	•		-	•		•	• •				
		÷												1,000			
1-d.	Pe:	rcentag	e (of v	owe	ls,	hi/	zh-	frequer	icy c	onso	mant	s. m	edium fr	.eoucn	cy (con-
sonan	ts,	and lo	W-	freq	uen	cy c	on	son	ants ir	<u>.</u> 60.	046	lett	ers	of Germa	n pla	in 1	text
Perce	nta	ge of 8	m	ost	fre	quen	t .	let	ters in	ı Ger	man	plai	n te	xt.			
												-					
	Vo	wels A,	Е,	Ī,0,	ΰ, Ť	and	Y :	≟ 3	9.4%							4	
	HL	gh-Fred	ue	ncy	Con	sona	nt	зD	N.R.S.	, and	. ም 🖷	. 35.	8%	-			
	Me	aium-Fr	ed	uenč	Ϋ́ C	onso	na	nts	B.C.F.	G.H.	L.M.	and	. W =	20.4%			
	Ļo	w-Frequ	ien	cy C	ons	onan	ts	J,	K,Ý,Q,V	í,x, í	and	Z =	4.4%			-	
	(1	n desce	nđ	ing	ord	• er ó	f :	fre	qvency))	7		•		,	*	•
	~	z]	-		_	-) •	•		~		يو. م	٠		
	81	most fr	ed.	uent	le	tter	8]	e,N	, I ,R,S,	, А, Т,	and	LD =	67.	9% '			
1-e.	АЪ	solute	fr	equē	nci	es o	f	sin	igle let	tters	85	inıt	ial	letters	of 9,	568	

		<u>,01000</u>						TCOOLD OT	221
words	in	German	plain	text, a	rranged	according	to their	frequencies	•
	-	(•						•
	n	1 716	1 11		7 .	343 I V	062 I 0	175	

U	Τ) (ΤΟ	U	220	Z	545	n.	203	0	132
Α	762	N	544	M	339	P	181	T	106
S	698	G	461	N	306	R	167	Е	22
Е	686	В	460	F	280	L	158	Q	2
I	581	v	408	H	265	J	135		

9,568

5-3

	German plain text, reduced to 5,000 digraphs.																										
		A	B	C	D	E	F	G	н	ĭ	J	ĸ	24 L	: Let M	ter N	0	P	Q	R	ន	T	ប	v	W	x	Ŷ	Z
	A	4	14	10	4	33	7	9	7	1	1	2	33	13	48		2		22	27	23	36	1	L			1
	B	6				48		1	•	5			3			3			11	2	1	3		1			•
(d								130			5															
•	D	29	2		8	127	1	2	2	60		1	3	2.	2	4	1		5	6	2	٩	2	2			2
•	E	13	22	10	31	13	12	32	24	90	2	6	28	2.5	235	3	6		195	68	28	24	9	15			7
	F	7	۱		3	15	7	2		2			2	1	1	3	_		10	2	10	12					
(G	10	1		8	78	1	2	2	8		2	7	1	3	1			11	8	5	8	2	۱			1
	H	29	ł		8	61	1	2	1	14		2	8	3	6	6	1		20	4	23	7	2	3			1
	I	3	1	39	۲	91	2	18	7	2		٦	12	μ	81	13	I		٦	53	41	1	2	١			1
	J	4				8																3					
	K	12	1		1	11		1	1	ł			5			9			10	1	5	4					
ler	L i	26	3	1	6	27	1	2		37		3	20	t	2	4				10	12	6	1				8
1	M	16	3		4	26	2	2	ł	14	١	2	1	H	1	8	5		8	3	3	9	1	1			1
<u>년</u>]	N	39	12	1	118	58	9	57	8	35	4	10	6	10	18	8	5		4	36	2.7	20	10	17			14
I	0	1	3	5	5	11	3	3	3			1	18	6	33	1	5		18	12	4	1	1	5			1
	P	10				s	4		•	2			1			7	2		7		1	1					
(ୟ			۰																		1					
]	R	34	11	5	35	60	9	12	9	37	2	11	6	8	12	19	3		6	22	18	26	6	8			5
l	6	14	6	55	13	46	3	7	3	30	1	5	+	7	3	16	6		2	40	57	9	5	5		-	5
0	r	25	3	•	17	88	2	4	6	40	1	3	7	3	4	4			14	20	7	16	2	10			13
1	σ	1	2	8	2	37	15	5	1			2	2	H	76		2		18	28	14	ł	1	2			1
٩	7	1				19				3						21											
١	W	16			_	24				20	3					٤						6					
	X																										
	Y																										
2	Z	1			1	8				5			١			2					+	27		4			
																				-					-		

2-a. Frequency distribution of digraphs based on 60,046 letters of German plain text, reduced to 5,000 digraphs.

5-4

,

565.B

-er# 6.5

2 / 1

3

2-b. Digraphic kappa plain, German language = .0111

2-c.	The	95 ā	lgrap	bs c	ompr	ising	; 759	of G	erma	n pla	in te	ext,	base	d on	the	
table	of	5,000	digr	aphs	(It	em 2-	·a),	arran	ged	accor	ding	to t	heir	rela	tive	
frequ	enci	es.			-					÷-						
-	EN ER CH DE ND IE EI TE IN GE UN ES HE	235 195 130 127 118 91 90 88 84 781 1236 76 68 64	RE DI NE ST SC IS BE AN SE IT SS TI IC	60 57 57 57 57 57 57 57 57 57 57	NA LI UE RI AU NS NI RD RA AC ON AL EG	39 37 37 36 36 35 35 34 33 2508 33 33 32	ED SI HA DA EL US LT AS LE NT ZU LA ME RU	31 30 29 28 28 28 27 27 27 26 26 26 26	TA EM EU WE RT AT EB VO NU WI TS	'ର ହୁ ଦୁ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ	HR LL VE RO OR UR NN KT OL IG NW TD SO	20 19 18 18 18 18 18 18 17 16 16	TU WA UF EW AB HI TR AB HI SA UT SD	16 15 15 14 14 14 14 13 3750	- }	
_				-	2			ι					. r . r .	r.	_	
2-d.	Fre	quent	digr	aphs	in beir	Germe	n p	Lain t	ext	whose tho t	rev	erse]	8 dr	e als	o fre	2-
(Item	1 2-a	.).	med	by t	nerr	irec	luciu	169 1	1.011		aute	01 7	,000	(11)51	ajino	
			-0										<u></u>	\$	12	
E	N 23	5 NE	58 60	IE	91 8)	EI	90	ES 6	8 5	E 46		48).h	INA OT	39 110		
D	E 12	7 ED	31	GE	78	EG	32	10 7	515	UC 10	1 11			ΨV		•
2-e. frequ (Item C	Fre ent, 2-a H 13	quent acco).	digr mpani 0	aphs ed b	in y th	Germa cir 1 DN	in p requ	lain t iencie NG 5	ext s fr	whose om th (rev ie ta	ersal ble c	<u>s ar</u> <u>f 5,</u> cs	e rar 000 d	e or ligraj	in- òhs
-							1			ني	1	6 L.M		-		
2-f.	Dou	blets	occu	<u>rrin</u>	g in	Gern	an j	lain	lext.	, arr	ange	d acc	ordi	ng to	thei	r
<u> 11equ</u>	encr	CS 11	·	e la	<u>ore</u>	<u>ر 1</u>	000	UTELC	<u>, ""</u>	Tren	2-0	L•			-	-
	SS LL WN	40 20 18	EE MM DD	13 11 8	FF TT	7 7	RR AA	6 4	GG 1I	່2 2	HH, HH,	 	00 00	1	•	,
	1474	10 (01	I							-,-	⊾ +		-	
2-g. 9,568 mienc	The wor	22 d ds in	igrey Gein	hs a an p	ppea lain	ring text	100 , ai	or mo range	d ac	imes cordi	as b ng t	erinr o the	ings ir-g	of w bsolu	te fi	in Ye-
ميرينين ميانده مريدين		6		.		÷ 1			·				. '		، يە	- 1
	DE DI UN AU	805 567 1 ₁₂₈ 318	EI GE BE	300 299 252	DA VO SI	244 214 197	WE VE WI	192 172 155	ER HA AL	153 140 134	ZU MI SN	124 117 112 -	ST IN SĘ,	112	- 	+ ¥ ~ *
	1	.	-	-	-					•	- - 1			•	2	· ~ .
	And a second				- 1- 4	and a second						1 7 m hotel				
	т 2	ve to	argu	apus	800	ve ti		Line c	ompo	se 25	% 01 d ~	Gern	an p	lain	text.	,

3-a. The 102 trigraphs appearing REFor InDre ASA68 22 60,046 letters of German plain text, arranged according to their absolute frequencies.

ERC 313 | IVEN 198 | AUS 162 | IST 142 | HRE 124 | MAU 108 SCH 666 DER 602 ENS 270 SSE 191 TIS 159 STA 141 HER 122 '1SC 107 CHT 264 **KEI 190** DES 140 ACH 119 CHE 599 **DER 157** ENN JOG ERG 106 DIE 564 NGE 263 TER 188 ENI 157 FUE 139 GES 118 NDE 541 **REN 185** NTE 139 ABC 117 **RIT 106** NDI 259 ENG 155 **CIT 18**4 TON 154 **UER 138** ERA 117 EHR 105 EIN 519 IND 254 **EBE 178** END 481 BFN 116 CHA 104 ERD 248 SEN 152 ERU 137 **DEN 457** INE 247 FNE 175 TTI 151 TUN 136 1EN 115 VON 104 ICII 453 AND 246 LIC 175 AUF 149 SEI 133 RIE 112 SIC 103 TEN 425 IES 149 ESE 132 VER 110 RDE 239 EGE 173 ICE 102 ENA 214 DAS 172 ASS 148 ERT 128 LAN 109 ITE 101 UNG 377 EIW 148 ENB 108 HEN 332 ERS 212 ENU 171 NDA 127 ENZ 100 NUN 169 ENT 146 UND 331 EDE 209 IED 126 ESS 108 ERB 100 ERI 143 GEN 321 STE 205 NER 166 ERN 125 | LLE 108 | EUT 100 ISC 317 VER 204 RUN 163 EST 142

3-b. The 25 trigraphs appearing 50 or more times as beginnings of words in 9,568 words in German plain text, arranged according to their absolute frequencies.

EIN	21+2	DAS	79	SCH	73	AUF	64	DEU	61	UNT	57	UEB	53
VER	170	BRI	79	AUS	69	NER	63	GES	60	GRO	56	LOL	52
FUL	89	DIE	76	SEI	68	IID	62	GEG	59	AUC	55	WIR	51
SIC	86	NIC	73	STA	65	ALI.	61						

4. The 121 tetragraphs appearing 50 or more times in 60,046 letters of German plain text, arranged according to their absolute frequencies.

SCITE	398	TSCH	107	ENIN	80	RITI	66	WERD	61	DIEB	54
ISCH	317	NUND	106	NICH	80	ATIO	65	RSCH	60	EhZU	54
CHEN	296	TTIS	104	UNGD	80	GEND	65	EDEN	59	ITEN	54
NDFR	243	SICH	103	ETTE	79	TEND	65	ERGE	59	KRIE	54
EINE	218	RUNG	101	DEUT	78	EBER	64	ESSE	59	RIEG	54
ENDE	216	ANDE	100	FUER	78	GEGE	64	UNTE	59	SDIE	54
NDIE	176	UNGE	100	CHTE	77	FOLI	64	EICH	58	URCH	53
LICH	168	EREI	94	EGEN	76	SIND	64	TLIC	58	ALLE	52
ICHT	151	TION	93	NEIN	76	TUNG	64	INER	57	DERS	52
TISC	146	SEIN	92	ÍESE	75	FNSI	62	EBEN	56	EIWE	52
ERDE	144	IEDE	91	ERST	74	FUTS	62	ENDA	56	HABE	52
EIDI	141	LAND	91	RDIE	74	LITI	62	ENST	56	ONEN	52
NDEN	136	SSEN	90	ERDI	72	UEBE	62	IGEN	56	SCHI	52
RDEN	133	BRIT	89	STIN	72	UTSC	62	ONDE	56	DEND	51
ENUN	120	DASS	86	CIJER	71	AUCH	61	TENS	56	DISC	51
ICHE	120	NTER	86	INDI	71	DENS	61	EDIE	55	ENEN	51
INDE	111	EDER	83	REIN	71	EIND	61	ERTE	55	IIACH	51
NGEN	110	EREN	83	DERE	70	Orlt	61	HREN	55	INDAS	51
ERUN	109	ENGE	81	NGDE	70	SCHA	61	TDIE	55	UNGS	51
DIES	108	ENAU	80	ENBE	68	SCHL	61	ATEN	54	AVEN	50
					-					NBER	50

5-6,

5. Average length of words in German plain text = 6.3

_

_ _

.

B. FRENCH LETTER FREQUENCY DATA

	00000	ally u	useu (on 55,750	0 160	ters 01	coxc.	•			
	A B C D E F	4,480 406 1,944 2,198 9,334 646	G H J K	624 276 4,230 184 25	L M N O P	2,737 1,617 4,406 3,255 1,689	Q R S T U	616 4,117 4,564 4,057 3,045	V W X Y Z	801 6 317 100 84	ĩ
1-b.	Mono	graphic	kapp	a plaín,	Fren	ch langu	uge :	.0777			
1-c.	Free	uencv d	istri	bution o	f sin	gle lette	ers l	oased on '	55.75	- 58 letters in	
Frenc	h pla	in text	redu	ced to 1	,000	letters,	nid	arranged	acco	ording to the	3. X *
frequ	encie	s.		1	f					- JT 2	
		- 6	1							•	
	E C	167	T	73	C	35	G	- 11	J	3	
	۵ ۵	80		20 55	P M	30	γ ρ	11 7	1 77	2	
	n N	~79	Т.))]10	v	14	а Х	6	ĸ	1	
	Ĩ'	76	D	39	F	12	п	5	Ŵ	-	
	R	74	-	571	~			-		1,000	-
-			rrequi	ney con	sonan	ts 1n 55	758	letters	of Fr	rench plain t	ext.
Perce	ntago	of 8 m	ost f	requent	lette	ts in 55 rs in Fro	,758 ench	letters plain te	of Fr	rench plain t	<u>ext</u> .
-	Vowe High Medi Low-	of 8 m -Freques um-Freq Freques	I,Ó,U ncy Co uency cy Con	, and Y onsonants Consonants	= 43. s N.R ats C B.F,	ts in 55 rs in Fre 8% ,S, and 5 ,D,L,M, a G,H,J,K,(758 ench C = 3 and 1 2, V, V	letters of plain te 30.7% P = 18.3% N,X, and 2	z = 1	rench plain t	<u>ext</u>
-	Vowe High Medi Low-	descend	I,Ó,U ncy Co uency cy Con ing O	, and Y ponsonants Consonants rder of	= 43. s N.R ats C B.F, frequ	ts in 55 rs in Fro ,S, and 7 ,D,L,M, a G,H,J,K,O ency)	758 ench C = 3 and 1 Q,V,V	letters plain te 30.7% = 18.3% V,X, and	of Fraction $Z = T$	rench plain t	ext.
Perce	Vowe High Medi Low- (In 8 mo	descend	I, Ó, U ncy Co uency Co ing ou uent	, and Y onsonants Consonants rder of : letters J	= 43. s N.R ats C B.F. frequ	ts in 55 rs in Fre ,S, and J ,D,L,M, a G,H,J,K,(ency) ,N,I,R,T	,758 ench C = 3 and 1 2,V,V	letters of plain te 30.7% 2 = 18.3% 1,X, and 2 1 0 = 68.	$\frac{\text{of } Fi}{\text{xt}}$	rench plain t	<u>ext</u> .
- -	Vowe High Medi Low- (In 8 mo	descend	I count ost D I, Ó, U ncy Cou uency cy Cou ing ou uent	, and Y onsonants Consonants rder of : letters l	= 43. s N,R ats C B,F, frequ E,S,Å singl	ts in 55 rs in Fro S% ,S, and T ,D,L,M, a G,H,J,K,G ency) ,N,I,R,T e letters	758 ench C = 3 and 1 2, V, V , and 3 as	letters plain te 30.7% = 18.3% V,X, and 1 0 = 68. initial	of Fi xt. Z = 7 9% Lette	rench plain + 7.2 ers of 10,748	ext.
L-e.	vowe High Medi Low- (In 8 mo <u>Abso</u> in F	ls A,E, Freques um-Freques descend descend st freques lute freques	I count ost n I, ó, U ncy Councy cy Cou ing ou ing ou ing ou ing ou ing ou	, and Y onsonants Consonants rder of : letters l cies of text, ar	ietic = 43. s N,R ats C B,F, frequ E,S,Å singl	ts in 55 rs in Fro % ,S, and J ,D,L,M, a G,H,J,K,G ency) ,N,I,R,T, e letter d accord	758 r = 3 r =	letters plain te 30.7% = 18.3% V,X, and 1 0 = 68. initial to their	of Fi xt. Z = 7 9% lette	rench plain t 7.2 ers of 10,748 ucncies. (On	ext.
l-e. Words	Vowe High Medi Low- (In 8 mo <u>Abso</u> in F	of 8 m of 8 m -Freques um-Freques descend descend st freq lute freq rench p ds have	I cont in ost in ncy Cont uency Cont ing of uent in equent lain been	, and Y onsonants Consonants rder of : letters I cles of text, arr omitted	sonan lette = 43. s N,R ats C B,F, frequ E,S,Å singl range	ts in 55 rs in Fro S,S, and T ,D,L,M, a G,H,J,K,(ency) ,N,I,R,T <u>e letters</u> <u>d accord</u>	758 ench C = 3 and $10, V, V$, and s as 100, V, V	letters plain te 30.7% = 18.3% X, and 10 = 68. initial to their	of Fr xt. Z = 7 9% lette	rench plain t 7.2 ers of 10,7 ¹ 48 ucncies. (On	ext.
l-e. words lette	Vowe High Medi Low- (In 8 mo in F r wor D P E A C	ls A,E, Freques um-Freques descend descend st freques lute fi rench p ds have 1445 929 894 866 816	I count ost n I, 0, U ncy Councy ing of uency ing of uency ing of uency ing of uency ing of uency ing of uency ing of uency councouncy	requent , and Y onsonants Consonants consonants rder of letters I cies of text, arr omitted 784 664 394 389 337	sonan lette = 43. s N,R ats C B,F, frequ S,S,A singl range I F T N V	ts in 55 rs in Fro 8% ,S, and 7 ,D,L,M, a G,H,J,K,G ency) ,N,I,R,T e letters d accord: 315 313 305 278 263	758 ench E = 1 and I Q,V,V and s as ing f U O G B J	letters plain te plain te 30.7% = 18.3% V,X, and initial to their 240 177 146 115 98	of Fr xt. Z = 7 Photoe frequences K W Y	rench plain t 7.2 ers of 10,7 ¹ 48 ucncies. (On 67 7 5 3 3 3	ext.

Abgolute frequencies of single lettors of French plain text erronged 1-0

5-7

~

		2-	а.	Fr	equ	enc	y d	ist	rib	uti	.on	of	die	rap	hs	bas	ed	on	55,	758	<u>} le</u>	tte	rs	of		
		Fr	enc	h p	lai	n t	ext	, X	eđu	ceò	. to	<u>, 5</u>	000) di	gre	pha										
	•	~	~	~	-		~			-		24	La	iter	~	~	~	-	~			37	Ť.T		75	~
	A []	a T	,	ע ו	LE:	1 []	G	ы. Г	א. וו	لو -	K.	ملا ا	м. - Г		<u> </u>	P	Q [к Г.,	8	T	U	v	w 	. А 	I 	2
A	2	6	20	12	4	6	<u> </u>		50	1		36	12	68		21	3	41	17	46	29	13			2	
B	4]	4				4			12.			4			5	2	1	2					
C	15		6		47			11	20			5	L		48			4	1	8	8]
D	18			_	109			1	20	1			1		10	1		6	2		26					
E	30	4	49	48	30	15	14	3	13	5		56	58	105	4	38	12	81	154	58	2.7	17		8		3
F	10		2	1	9	6			8			1			8	1		10	1		1					
G	6				16		1		2			3	١	7	6			8		4	2]
H	6		[6			[4						3			1			4					
I	9	3	12	10	41	4	4			1		27	8	49	51	5	12	27	52	47		9		7		1
J	4	- 1	 		6										5						2			_		
к			-												1											
LĨ.	57			5	95	•		1	23			26		3	10	1			5	4	12				1	
11	22	9		1	52				23				13		8	9			1		4					{
-1-^ # N	19		29	40	54	9			20	1		3	2	10	19	6	4	3	53	99	4	7				
 Λ		5	; ;	3		1	2		21	1		10	21	109		7		27	13	8	52	2			2	
ч п	30			Ť	13		-	2	3						35	9		34		6	4	-				
r r				<u>⊢</u>				<u> </u>	-							·					54					
रू म	12		10	17	177		6		24			16		0	27	5	*	7	ንፋ	19	4	7				
м м	42	4		20	75	4						16	0	10	-1	24		- 0	41	77	24	4				
ສ 				52	13	3	2		56	· <u>4</u>				-	14	4		3	77							
T	40		17	22	78	- T		-	61			12	-r					T T	25	10	1	4				
U	,12	3	10	5	34	4	5		24	3		13	6	26		1 5		48	26	19		8		12		
V	9				24			L	16					<u>.</u>	16			5			2					-
W			ļ																							
x	4		3	3	3			1	•				1	, 1		4	1	1	2	3		l	 			
Y	2				2										1				2							
Z					3				1						1											

2-b. Digraphic kappa plain, French language = .0093

2-c. The 87 digraphs comprising 75% of French plain text, based on the table of 5,000 digraphs (Itom 2-a), arranged according to their relative frequencies.

, ES	154	ī	,2371	EC	49	ND	40	EE	30	SP	24	NI	20
RE	127	ĘT	58	TIL	49	2	,515	NC	29	SU	24	DT	20
QN	109	EM	58	FD	48	ТA	40	AU	29	RI	24	CI	20
DĒ	109	LA	57	CO	48	UE	39	IR	27	VE	24	AC	20
ÊN	105	EL	56	UR	48	EP	38	EU	27	TS	23	UT	19
NT	99	QU	54	CE	47	VL	36	IL	27	MI	23	I:O	19
LE	95	NE	54	IT	47	SI	36	RO	27	LI	23	\mathbf{RT}	19
\mathbf{ER}	89	NS	53	TA	46	PO	35	OR	27	SO	22	IIA	19
$T\bar{E}$	78	ME	52	TR	44	PR	34	DU	26	MΛ	22	DA	18
SE	75	IS	52	SA	42	ST	33	ΓĽ	26	TD	22	AS	17
AN	68	UO	52	IE	41	SD	32	US	26	ΛP	21	EV	17
TI	67	IO	51	AR	41	PA	30	UN	26	OI	21		
RA	62	AI	50	SS	41	EA	30	UI	Sjt	OM	21	3	,751

2-d. Frequent digraphs in French plain tert whose reversals are also , frequent, accompanied by their frequencies from the table of 5,000 digraphs (Item 2-a).

ES 154 | SE 75 | LE 95 | EL 56 | RA 62 ! AR 41 | IS 52 | SI 36 58 EH 58 HE 49 CE 47 RE 127 | LR 89 TE 78 ET 52 DC DE 109 ED 48 TI 67 IT 47 LA 57 AL 36 AT 46 | TA 40 EN 105 | NE - 54

2-e. Frequent digraphs in French plain text whose reversals are rarc or infrequent, accompanied by their frequencies from the table of 5,000 digraphs (Iton 2-a).

NT 99 TN 4 QU 54 UQ 1 NS 53 SN 6 OU 52 UO 1

2-f. Doublets occurring in French plain text, arranged according to their frequencies from the table of 5,000 digraphs (Item 2-a).

 SS
 41
 LL
 26
 NN
 10
 PP
 9
 CC
 6
 AA
 2
 GG
 1

 EE
 30
 MM
 13
 TT
 10
 RR
 7
 FF
 6
 DD
 1
 UU
 1

2-g. The 22 digraphs appearing 100 or more times as beginnings of words in 10, 748 words in French plain text, arranged according to their absolute frequencies.

168 | AU DE 501 | RE 283 PO 222 SU 150 DI 124 | SO 117 394 PA 178 CE 163 NO CO 268 I IN 133 AL 122 VO 112 347 178 ET 153 TR CU LE 240 SE 127 UN 122 FR 101 PR 291

¹ The 13 digraphs above this line compose 25% of French plain text. ² The 39 digraphs above this line compose 50% of French plain text.

3-a.	The 97	trigra	phs aj	ppearing	; 10	<u>) or n</u>	bre	times	in 5	<u>55,758</u>	<u>3 let</u>	ters	of		
Frencl	h plain	text,	arran	zed acco	ordi	ng to	thei	<u>r abs</u>	olute	: free	quenc	lics.	L .		
	ENT 588 ION 559 TIO 433 ONS 373 RES 367 QUE 338 DES 313 EDE 309 EME 288 ATI 287 LES 289 NIE 280 MEN 272	3CON5ERE3ANT3ESE7ELA3LLE3PAR5NDE6SDE7DEL4PRE0RAN2LRE	271 H 267 H 238 H 230 H 227 () 216 H 213 H 213 H 213 H 210 H 209 J 205 S 196 () 191 H	EST 188 ERA 185 ECO 184 ESD 179 DND 175 LEM 173 ELE 172 ESA 163 ELE 162 ESE 160 DNT 157 ENC 153	ESS AT POU TEL CON ESJ OUS ATS EM IEL NTS TES EQU IQU	5 151 5 147 5 146 4 143 5 139 5 139 5 137 A 136 5 135 5 135 1 131 1 131	NSE REN SQU AIR EPA QUI SET REC AND ETA SEN PRO ISE REP	130 127 124 123 120 120 120 120 119 118 118 118 117 116 116	EUR NTA SER ESO DEC EPR ALL ECE UNE RAI RLE SSI ENE SUR	115 115 115 115 110 100 109 109 108 106 106 105 105	TRA ISS INT TEN UEL ANS BLE GUA CES ETE ETR ONM TAT	105 104 103 102 101 101 101 100 100 100 100	·		• • •
3-b. in 10, freque	The 20 748 wor encies. CON 213 POU 144 PRE 135	trigra	phs ar French 129 F 105 F	PRA 93 PAR 87	i 50 text	or mo , arr , 75 , 72 , 69	ere t enge ETA DAN BED	<u>imes</u> <u>d acc</u> 69 68 65	es be ordin SER TRA BES	ginni g to 61 57	thei thei VOU FAI	of w r ab 56 50	ords solut	<u>te</u>	
4. <u>Tr</u> French	ne 82 te 1 plain TION 43 MENT 25 ATIO 22	tragraj text, i i CONS i EPAI 20 RESI 8 ENUT	phs ar arrang 3 98 R 98 E 96	pearing sed acco LEME QUEL LEMA DOET	50 rdir 83 83 80 80	or mo ng to ERAL ERES DANS	71 70 67	imes r abs EREN ESSE NOUS	in 55 olute 58 58 58	,758 free RESS IERE IRES	<u>lett</u> uenc 55 53	ers 188.	of		٠
	IONS 20EMEN 20POUR 13IQUE 12IQUE 12IOND 12DELA 12AIRE 11ONDE 10ECON 10ESDE 10ONSE 10	20 LILE 26 FRAI 28 PRES 24 ENTA 20 RANCO 27 SION 22 COMP 22 ELLE 21 NTEN	97 93 93 91 90 91 90 90 90 90 90 90 90 80 88 88 88 88 88 88 88 88 88 88 88 88	ENTS EPRE EDES ESET INTE ALLE ANTE MAND CENT QUES	78 77 76 76 76 75 75 75 75 72	EMAN SENT ANDE PART SDES ESEN RAIT ENTD SSIO ENCE	566632621166659	INES ENER NDES NSEI NTDE CAIS ESTI ITIO NEIE NERA	50 57 57 57 57 57 57 55 55 55 55 55	EQUE EQUE NDEI ECOM GENE SEII ELES ELES ETAI ILLE SQUE	522 522 522 51 51 51 51 50 50 50 50 50	-			

1

٩

5. Average length of words in French plain text = 5.2 letters.

-

2

- -

_ _ C. ITALIAN LETTER FREQUENCY DATA

-

	Tn	all cal	culat	,⊽, t ⊃⊃n arch		lottora b	9W0	boen co	ໜີວາກເ	d with th	•	
corre	espor	iding un	accen	tod leite	r.	Terrers T	<u> </u>	S I			<u>u</u>	~
	47.				- 	· · ·	- 0 7	e' e' ••••₹		··· ·	•	-
alpha	abeti	ically.	requa based	$\frac{\text{ncles of}}{\text{on 57.9}}$	$\frac{\text{single}}{06 \text{ let}}$	lers of t	oi i ext.	tallan	plair	1 text, ar	range	1
				- <u> </u>		~r` \		-		- ''	۴	
	A	6,771	G	1,168	L	3,592	ନୁ	227	V	1,024		
	ц В	2.367	T	493 6.568	M N	1,441 1,001	к g	4,037	W	13 13		
	Ď	2,258	Ĵ	18	Ô	5,022	Ť	4,139	Ŷ	14		
	E	6,784	к	28	P	1,616	U	1,547	z	527		-
	F	655	l l							57,906	•	
.			9	•	T 1 . N 4					•	هه ۲ -	Ĩ
T-p .	MOT	lographi	c kap	pa plain,	Itali	an Langua	<u>ce</u> =	.0745				7
l-c.	Fre	equency	distr	ibution o	f sing	le letter	s bo	used on	57,90	06 letters	in	
Ital:	lan j	plain te	xt, r	educed to	1,000	lotters	end	arrange	d acc	cording to	thei	r
Tred	lenci	Less						-	-		- ·	
	E	117	R	70	P	28	F	11	K			Ľ
	A	ນ7	L	62	U	27	В	9	J	-		
	0	87	C	51 41	G M	25	ъ н	У 9	W	~		
	Ť	72	D	39	v	18	ହି	í,	x	-		
	N	71	ł									
		1	1							1 000		
l-d.	Per	centage	of v	owels, hi	ah-fre	quency co	nsor	ants. r	ediun	1,000 n-frequenc	v con	-
l-d. sonar	Per nts,	centage and low	of v	owels, hi uency cop	gh-fre sonant	quency co s in 57,9	nsor 06 1	ants, m	ediur of II	1,000 n-frequenc Lelian pla	y con	-
l-d. sonar text.	Per nts, Pe	centage and low rcentag	of v -freq e of	owels, hi uency cop 8 most fr	gh-fre sonants equent	quency co s in 57,9 letters	nsor 06] 1n]	ants, m etters talian	ediur of II plair	1,000 n-frequenc Lelian pla	y con in	-
l-d. sonar text.	Per nts, Pe	centage and low ercentage	of v -freq c of	owels, hi uency cop 8 most fr U. and Y	gh-fre sonants equent = 46.19	quency co s in 57,9 letters	nsor 06] 1n]	ants, m etters talian	ediur of II plair	1,000 n-frequenc Lelian pla n text.	y con in	-
l-d. sonar text.	Per nts, Pe	ccentage and low ercentag wels A,E gh-Frequ	of v -freq e of ,I,O, ency	owels, hi uency cop 8 most fr U, and Y Consonant	gh-free sonant, equent = 46.19 s L,N,1	quency co s in 57,9 letters R, and T	nsor 06] 1n] = 27	ants, m otters talian	ediur of II plair	1,000 n-frequenc Lalian pla n text.	<u>y con</u> in	-
l-d. sonar text.	Per nts, Pe	ccentage and low cccntag rels A,E ch-Frequ lium-Fre	of v -freq c of ,I,0, ency quenc	owels, hi uency con 8 most fr U, and Y Consonant y Consona	gh-free sonants equent = 46.19 s L,N,1 nts C,1	quency co s in 57,9 letters R, and T D,G,M,P,S	$\frac{nsor}{06}$	ants, m etters talian .4% ad V = 2	edium of II plain 2.2%	1,000 n-frequenc Lelian pla n text.	y con in	-
1-d. sonar text	Per nts, Pe Von His Med Lor	ccentage and low ercentage (els A,E ch-Freque lium-Fre v-Freque	of v -freq c of ,I,0,1 ency quenc ncy C	owels, hi uency cop 8 most fr U, and Y Consonant y Consona	gh-free sonanti equent = 46.19 s L,N,1 nts C,1 B,F,H	quency co s in 57,9 letters R, and T D,G,M,P,S ,J,K,Q,W,	nsor 06 1 1n 1 = 27 , ar X, a	talian talian .4% ad V = 2 and Z = 4	edium of II plain 2.2% 4.3%	1,000 n-frequenc Lelian pla n text.	y con	-
1-d. sonar text	Per nts, Per Vow Hig Med Low	ccentage and low ercentage rels A,E th-Freque lium-Fre v-Freque	of v -freq c of ,I,0, quenc ncy C dosc	owels, hi uency cop 8 most fr U, and Y Consonant y Consona onsonants ending or	gh-free sonanti equent = 46.19 s L,N,1 nts C,1 B,F,H der of	quency co s in 57,9 letters R, and T D,G,M,P,S ,J,K,Q,W, frequenc	nsor 06] 1n] = 27 , ar X, a y)	ants, m otters talian .4% ad V = 2 and Z = 4	edium of II plain 2.2% 4.3%	1,000 n-frequenc Lelian pla n text.	<u>y con</u>	- ,
1-d. sonar text	Per rts, Per Vor Hig Med Lor (Li 8 n	ccentage and low ercentag (els A,E gh-Freque lium-Fre -Freque lated in	of v -freq c of ,I,0,1 ency (quenc) ncy C dosc	owels, hi uency con 8 most fr U, and Y Consonant y Consona onsonants ending or letters	gh-free sonanti equent = 46.19 s L,N,1 nts C,1 B,F,H der of E,A,I,	quency co s in 57,9 letters R, and T D,G,M,P,S ,J,K,Q,W, frequenc 0,T,N,R,L	nsor 06] 1n] = 27 , ar X, a y)	$x_{\rm o.8\%}$	ediur of II plain 2.2% 4.3%	1,000 n-frequenc Lelian pla n text.	y con	-
1-d. sonar text	Per nts, Per Vow Hig Med Low (L1 8 n Abs	ccentage and low ercentage (els A,E ch-Freque lium-Fre 	of v -freq c of ,I,0, quenc ney C dosc quent reque	owels, hi uency cop 8 most fr U, and Y Consonant y Consona onsonants ending or letters ncies of	gh-free sonanti equent = 46.19 s L,N,J nts C,J B,F,H der of E,A,I,6 single	quency co s in 57,9 letters R, and T D,G,M,P,S ,J,K,Q,W, frequenc O,T,N,R,L letters	nsor 06] 1n] = 27 , ar X, a y) - 7 as j	nants, m otters talian 1.4% ad V = 2 und Z = 0.8% nutial	ediur of II plain 2.2% 4.3%	1,000 n-frequenc a text.	<u>y con</u> <u>in</u> 481	-
l-d. sonar text.	Per nts, Pe Hig Med Low (Li 8 n <u>Abs</u> <u>1 n</u>	ccentage and low ercentage rels A,E gh-Freque lium-Fre 	of v -freq c of ,I,0, quenc ncy C dosc quent reque plai	owels, hi uency con 8 most fr U, and Y Consonant y Consona onsonants ending or letters ncies of n text, a	gh-free sonants equent = 46.19 s L,N,1 nts C,1 B,F,H der of E,A,I, single rrange	quency co s in 57,9 letters R, and T D,G,M,P,S ,J,K,Q,W, frequenc O,T,N,R,L letters d accordi	nsor 06] 1n] = 27 , ar X, a y) - 7 as 1 ng 1	ants, m etters talian v.4% ad V - 2 and Z = v.4% nut Z = v.4% nut ial co their	edium of I plain 2.2% 4.3%	1,000 n-frequenc celian plant n text.	<u>v con</u> 1n <u>481</u> (Onc	-
l-d. sonar text. letto	Por nts, Pe Vot Hig Med Lot (Li 8 n Abs 1 n	ccentage and low ercentag (els A,E gh-Freque lium-Fre -Freque lated in most fre solute fre italian ords hav	of v -freq c of ,I,0,1 quency ney C desc quent reque plai c bee	owels, hi uency con 8 most fr U, and Y Consonant y Consona onsonants ending or letters ncies of n text, a n omitted	gh-free sonanti equent = 46.19 s L,N,1 nts C,1 B,F,H der of E,A,I,0 single rrange	quency co s in 57,9 letters R, and T D,G,M,P,S ,J,K,Q,W, frequenc 0,T,N,R,L letters d accordi	nsor 06] 1n] = 27 , ar X, a y) - 7 as j ng t	x_{1}	edium of II plain 2.2% 4.3%	1,000 n-frequenc alian pla n text.	<u>y con</u> <u>1n</u> <u>481</u> (One	-
l-d. sonar text. lette	Per nts, Pe Vow Hig Med Low (Li 8 n (Li 8 n Abs 1 n er wc	rcentage and low prcentage rcentage rels A,E sh-Freque lium-Fre 	of v -freq c of ,I,0, ency (quenc ncy (dosc quent reque plai c bee	owels, hi uency con 8 most fr U, and Y Consonant y Consona onsonants ending or letters ncies of n text, a n omitted	gh-free sonants equent = 46.19 s L,N,1 nts C,1 B,F,H der of E,A,I,0 single rrange	quency co s in 57,9 letters R, and T D,G,M,P,S J,K,Q,W, frequenc O,T,N,R,L letters d accordi	$\frac{nson}{06 \ l}$ $= 27$ x, s $y)$ $= 7$ $\frac{nson}{ng \ t}$ U	pants, m etters talian talian 7.4% ad V = 2 and Z = 4 70.8% <u>initial</u> so their 217	edium of II plain 2.2% 4.3%	1,000 n-frequenc celian pla n text. n text.	<u>v con</u> 11n <u>481</u> (One	-
l-e. words lette	Per rts, Per Vor Hig Med Low (Li 8 m <u>Abs</u> <u>1 m</u> <u>Pr</u> Work D C	ccentage and low ercentage wels A,E gh-Freque lium-Fre v-Freque lated in most fre solute fi Italian ords hav 1,381 1,041	of v -freq c of ,I,O, quency ney C desc quent reque plai e bee L R	owels, hi uency com 8 most fr U, and Y Consonant y Consonant onsonants ending or letters <u>ncies of</u> <u>n text, a</u> <u>n omitted</u> 500 403	gh-free sonants equent = 46.19 s L,N,1 nts C,1 B,F,H der of E,A,I,0 single rrange .)	quency co s in 57,9 letters R, and T D,G,M,P,S ,J,K,Q,W, frequenc 0,T,N,R,L letters d accordi 337 333	$\frac{nsor}{06}$ $= 27$ x, a $y)$ $= 7$ $\frac{as}{ng}$ U Q	ants, m etters talian .4% ad V = 2 und Z = 70.8% <u>nitial</u> co their 217 172	edium of II plain 2.2% 4.3%	1,000 n-frequenc celian pla n text. n text. ers of 10, puencies. 13 9	<u>y con</u> 111 <u>481</u> (One	- - -
l-d. sonar text. letto	Per nts, Pe Vow Hig Med Low (Li 8 m Abs 1 m 2 m C S P	rcentage and low prcentage wels A,E sh-Freque lium-Fre v-Freque lated in most fre solute fi Italian ords hav 1,381 1,041 285 200	of v -freq c of ,I,0, quenc ncy C dosc quent reque plai c bee	owels, hi uency con 8 most fr U, and Y Consonant y Consona onsonants ending or letters ncies of n text, a n omitted 500 403 396 27/	gh-free sonants equent = 46.19 s L,N,1 nts C,1 B,F,H der of E,A,I,0 single rrange .)	quency co s in 57,9 letters R, and T D,G,M,P,S J,K,Q,W, frequenc 0,T,N,R,L letters d accordi 337 333 298 262	$\frac{nson}{06 \ l}$ $= 27$ x, s $y)$ $= 7$ $as i$ U B H	$\frac{1}{2}$	edium of Il plain 2.2% 4.3%	1,000 n-frequenc celian pla n text. n text. 213 puencies. 13 9 6 3	<u>v con</u> 11n <u>481</u> (One	-
l-d. sonar text. l-e. wordr lette	Per rts, Per Hig Med Low (Li 8 m Abs 1 m C S P A	ccentage and low ercentage rels A,E gh-Freque lium-Fre 	of v -freq c of ,I,O, quency desc quent reque plai e bee L R N E M	owels, hi uency com 8 most fr U, and Y Consonant y Consona onsonants ending or letters <u>ncies of</u> <u>n text, a</u> <u>n omitted</u> 500 403 396 374 371	gh-free sonants equent = 46.19 s L,N,1 nts C,1 B,F,H der of E,A,I,0 single rrange .) T G F V O	quency co s in 57,9 letters R, and T D,G,M,P,S ,J,K,Q,W, frequenc 0,T,N,R,L letters d accordi 333 298 263 235	$\frac{nsor}{06}$ $= 27$ x, c $y)$ $= 7$ $\frac{as}{ng}$ U B H Z	ants, m etters talian 7.4% ad V = 2 und Z = 70.8% nitial 217 172 153 69 29	edium of II plain 2.2% 4.3%	1,000 n-frequenc celian pla n text. ers of 10, puencies. 13 9 6 3 2	<u>v con</u> 111 <u>481</u> (One	
l-e. words lette	Per rts, Pe Vow Hig Med Low (Li 8 m Abs 1 m C S P A I Low A Low Low A Low A Low Low Low Low Low Low Low Low	rcentage and low ercentage vels A,E th-Freque lium-Fre v-Freque lated in most fre solute fi Italian ords hav 1,381 1,041 885 830 822 685	of v -freq c of ,I,0, ency (quenc) ncy (dosc quent reque plai e bee L R N E M	owels, hi uency com 8 most fr U, and Y Consonant y Consona onsonants ending or letters <u>ncies of</u> <u>n text, a</u> <u>n omitted</u> 500 403 396 374 371	gh-free sonants equent = 46.19 s L,N,1 nts C,1 B,F,H der of E,A,I,0 single rrange .) T G F V O	quency co s in 57,9 letters R, and T D,G,M,P,S ,J,K,Q,W, frequenc 0,T,N,R,L letters d accordi 337 333 298 263 235	nsor 06] 1n] = 27 , ar x, a y) - 7 as i ng t U Q B H Z	$\frac{1}{2}$	edium of Il plain 2.2% 4.3%	1,000 n-frequenc celian plantext.	<u>v con</u> 11n <u>481</u> (One	-
1-d. sonar text.	Per rts, Per Vow Hig Med Low (Li 8 m <u>Abs</u> <u>a in</u> C S P A I	ccentage and low ercentage rels A,E sh-Freque lium-Fre -Freque lated in most fre solute fr Italian ords hav 1,381 1,041 885 830 822 685	of v -freq c of , I, O,) quency C desc quent reque plai e bee L R N E M	owels, hi uency com 8 most fr U, and Y Consonant y Consonants ending or letters ncies of n text, a n omitted 500 403 396 374 371	gh-free sonants equent = 46.19 s L,N,1 nts C,1 B,F,H der of E,A,I,0 single rrange .) T G F V O	quency co s in 57,9 letters R, and T D,G,M,P,S J,K,Q,W, frequenc 0,T,N,R,L letters d accordi 333 298 263 235	nsor 06] 1n] = 27 , ar y) = 7 as fing t U Q B H Z	ants, m etters talian 7.4% ad V = 2 and Z = 70.8% <u>initial</u> 217 172 153 69 29	edium of I plain 2.2% 4.3% 1etta free W K Y X	1,000 n-frequence Lelian plant h text. ers of 10, puencies. 13 9 6 3 2 10,481	<u>v con</u> 111 <u>481</u> (One	-

•

7 --

_

		2-	а.	Fr	equ	enc	y đ	ist	rib	uti	on	of	dię	rap	hs	bas	ęd	on	57,	847	' <u>l</u> c	tte	rs	of		
		It	a11	an	pla	in	tex	t,	red	ucc	d t	<u>;o 5</u>	,00	0 d	1 <u>gr</u>	aph	5.		-							
	A	B	C	D	E	F	G	Ħ	I	J	ĸ	24 L	Le M	iter N	0	P	ନ୍	R	S	T	ប	<u>۷</u>	W	X	Y	Z
A	18	9	39	41	14	12	22	1	19			76	24	78	5	24	4	57	36	63	6	24-				12
B	10	7	F -	[7				10			1		3	4			4			-2		-			
C	32		10		20			33	33			2			6 4		١	5			6					
D	31		[1	65				67						23			2			9					
E	23	7	31	53	15	8	2.2	2	25			66	18	73	6	22	4	96	62	27	6	17				4
F	9				- 11	7			•1			1			10			6			3				Ī	
G	9		Γ_		11		8	2	20			17		8	9			11			6					
H	6				27				9																	
I	66	8	52	30	31	11	11	2	11			35	31	62	14	20	3	20	48	45	15	16				7
J																					1					
ĸ			[
βĽ	62	3	8	6	49	2	7		56			52	4	2.	21	5	1	3	6	15	7	3				
t n	31	5			35				17				4		18	13					2					
N 🕂	32	<u> </u>	15	26	51	6	h	1	37			3	4	10	S٥	4	٣	2	н	66	8	4				11
0	17	4	22	27	10	5	10	1	20			45	24	86	\$	25	2	55	40	14	3	18				2
P	23				30				14			2			28	11		23			7					
Q																					20					
Ŗ	64	1	8	8	71		7	<u> </u>	63			4	13	9	45	2		12	9	16	10	3				3
S	20		15	1	32	2			45			2	3		25	9			31	58	12	1				
T	83		1		65	1			59			1		1	56			43	1	37	10					
ប	12	2	4	3	15	1	3		10			6	3	24	8	6		9	11	15						1
V	2.6				23				23						10			2			2	2.				
W								L																		
X																										
Y																										
Z	13	<u> </u>			4				20	L					3											5

REF ID: A50892
2-b. Digraphic kappa plain, Italian language = .0081
2-c. The 89 digraphs comprising 75% of Italian plain text, based on the
table of 5,000 digraphs, (Item 2-a), arranged according to their relative frequencies.
ER 96 RI 63 LL 52 AC 38 MA 31 HE 25 VE 23 ON 86 IA 63 IC 51 TT 37 55 31 OP 25 OC 22
TA 78 LA 62 NE 50 2,4952 DA 31 AM 24 AG 22 AN 78 IN 62 NO 50 NT 37 EC 30 IN 24 EG 22
AL 76 1,2601 LE 49 ME 35 PE 30 EI 24 EP 22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
DE 65 ST 58 RO 45 CJ 33 OD 27 DO 23 SA 20
TE 65 AR 57 SI 44 NA 32 ET 27 VI 23 CE 20 EL 65 TO 56 IO 43 SE 32 VA 26 AP 23 QU 20
DI 64 LI 56 TR 43 CA 32 ND 26 PR 23 GI 20 CO 64 OR 55 OS 40 IM 31 SO 25 EA 23 3.762
AT 63 ED 52 AD 39
2-d. Frequent digraphs in Italian plain text whose reversals are also
(Item 2-a).
ER 96 RE 71 EL 66 LE 49 LI 56 IL 35
TA 83 AT 63 RA 64 AR 57 IC 52 CI 33
AN 78 NA 32 IN 62 NI 37 IS 48 SI 45 AL 76 LA 62 ES 62 SE 32 AD 41 DA 31
EN 73 NE 51 TI 59 IT 45 AC 39 CA 32
infrequent, accompanied by their frequencies from the table of 5,000 digraphs
2-f. Doublets occurring in Italian plain text, arranged according to their
frequencies from the table of 5,000 digraphs (Item 2-a).
IL 52 AA 18 II 11 NN 10 FF 7 MM 4 VV 2 TT 37 EE 15 PP 11 GG 8 ZZ 5 00 4 DD 1
SS 31 RR 12 CC 10 BB 7
2-g. The 26 digraphs appearing 100 or more times as beginnings of words in 10,481 words in Italian plain text, arranged according to their absolute
frequencies.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ST 222 AL 186 NE 169 PO 141 TR 121 SU 109 TE 103 DI 215 IN 185 RI 162 CA 132 DA 120
¹ The 18 digraphs above this line comprise 25% of Italian plain text.
4 The 43 digraphs above this line comprise 50% of Italian plain text.

- -

_

_ ____

3-a. The 90 t	rigraphs	appearing	100 or n	ore times	in 57,90	6 letters	öf
Italian plain	text, arr	anged acc	ording to	taeir ab	solute fr	equercies	•
DEL 348 ENT 348 ELL 314 CON 306 CHE 276 LLA 274 ION 265 ONE 247 PER 238 EDE 228 NTE 227 ICO 216 MEN 216	STA 215 ALT 213 EDI 212 ALL 201 ITA 198 ANO 197 OST 196 ERJ 187 ARE 186 TAL 184 LIA 180 IST 174 GLI 171	ERE 169 ZIO 166 ATO 165 NTI 165 ANT 163 ERA 163 TRA 160 ESS 158 ATT 157 NTO 156 ADE 155 EST 151 RES 146	ICA 145 RAN 145 STR 145 ALE 144 IDI 143 COM 139 ECO 137 LLE 137 ONT 136 TER 136 TAT 134 TTA 132 ATA 130	SSI 130 INEL J27 ACO 125 ATI 125 IDE 123 ADI 121 AND 121 TEN 120 ONO 119 ARI 117 NTR 117 PAR 116 TRO 116	ODI 114 ORI 114 R:A 114 AME 113 ETT 113 ODE 113 PRE 112 NDO 110 ONI 110 AZI 109 ENE 109 ELA 107 ERO 107	ESI 107 COR 106 IAN 106 TAN 105 ATE 104 NON 103 VER 103 ICA 101 OLA 101 STI 101 OCO 100 RIA 100	
3-b. The 19 t in 10,481 vord frequencies. DEL 217 CON 195 COM 137	STA 106 ALL 100 ITA 94	appearing ian plain QUA 81 PRO 75 QUE 74	50 or mo text, ar PRE 62 NEL 57	re times ranged ac DAL 57 ANC 56	as beginn cording t PER 55 RUS 55	ings of w o their a GRA 53 STO 51	ords bsolute
4. <u>The 57 tet</u> Italian plain	ragraphs a text, arra	appearing anged acc	50 or mo ording to	re times their ab	in 57,906 solute fr	<u>letters</u> equencies	of •
DELL 209 MENT 188 IONE 160 ELLA 150 ZION 147 TALI 125 AZIO 106 EDEL 106 ITAL 106 ENTE 105	ALIA 99 CONT 91 ADEL 92 OSTR 88 ENTO 87 AMEN 81 ALLA 81 ENZA 71 ONTR 75 ENTI 74	9 ICON 8 VANO 2 ECON 8 IONI 7 STAT 3 STRA 1 GLIA 5 ISTA 5 ODEL 4 ACON	74AGLI74ICHE73IDEL71ELLE70NELL70IMEN69ANTI68ATTA68PART6666	66LIAN66TORI64ALLE63ANDO63DALL61NTRO60OCHE60ANTE60EPER	59 OPE 59 RUS 58 TAT 58 TED 58 OCO 58 SIO 58 SIO 58 TAN 57 STO 57 NOS	R 56 S 55 E 55 N 53 F 52 F 51	
5. <u>Average le</u>	ngth of wo	ords in I	talıan pl	ain text	= 5.5 let '	ters.	

- - - -

_ _

D. SPANISH LETTER FREQUENCY DATA '

1-a. Absolute frequencies of single letters of Spanish plain text, arranged
alphabelically, based on 60,115 letters of text.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1-b. Monographic kappa plain, Spanish language 0747
1-c. Frequency distribution of single letters based on 60,115 letters in Spanish plain text, reduced to 1,000 letters, and arranged according to
their frequencies.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1-d. Percentage of vowels, high-frequency consonants, medium-frequency consonants, and low-frequency consonants in 60,115 letters of Spanish plain text. Percentage of 8 most frequent letters in Spanish plain text.
Vowels A,E,I,O,U, and Y = 46.3% High-Frequency Consonants N,R, and S = 22.6% Medium-Frequency Consonants C,D,L,M,P, and T = 24.5% Low-Frequency Consonants B,F,G,H,J,K,Q,V,W,X, and Z = 6.6%
(In descending order of frequency)
8 most frequent letters, E,A,O,I,N,R,S, and T = 69.9%
1-e. Absolute frequencies of single letters as initial letters of 10,129 words in Spanish plain text, arranged according to their frequencies. (One- letter words have been omitted).
P 1,128 L 435 Q 286 V 183 Y 27 C 1,081 R 425 I 281 F 177 W 19 D 1,012 M 403 H 230 O 169 Z 2 E 989 N 346 U 219 B 124 K 1 S 789 T 298 G 206 J 47 X - A 761 10,129
1 Includes N throughout all tables.

2 From foreign words appearing in Spanish plain text.

_

- ---

-

		2-	a.	Fr	equ	enc	y đ	ist	rib	uti	on	of	dig	rap	hs	bas	ed	on	60,	<u>115</u>	le	tte	rs	of		
		Spa	ani	sh j	pla	in t	tex	<u>t,</u>	redu	uce	<u>d</u> t	<u>o 5</u>	,00	<u>0 d</u>	igr	aph	<u>s</u> .									
	A	B	C	D	E	F	G	Ħ	I	J	ĸ	_24 _L	M	lter N	Q	P	ର	R	ន	T	U	v	W	X	Y_	Z
A	12	14	54	61	15	5	8	4	10	8		41	30	64	4	24	5	81	62	18	9	9			11	4
B	11				5				14	١		12			5			12.	2	•	3					
ġ	39		5		17			8	80			3			69			6		13	18					
D	32		i,	2	84			l	30					1	59	2	1	3	1		6				•	
E	20	5	47	26	-17	8	21	6	9	3		44	26	126	5	23	4	94	119	71	5	10	1	8	2	3
F	2				9				12			1			7			4			5	_				
Ģ	12				12				5			1		2	15			11		1	11					
H	15				3				5		L				6						1	_				
I	43	8	42	2.9	40	5	8			I		14	16	50	67	4	1	16	27	24	1	8			•	5
J	4				5										3						3					
К					ł																					
L	11		5	5	35	1	3		28			9	5	8	17	5	1	2	4	\$	5	3			1	
ЧM	32	10			12				30			<u> </u>			15	10					6					
N 🕂	41	2	33	37	41	10	6	2	28	۱		5	4	3	43	10	2	4	21	91	12	6			•	1
0	19	17	28	26	16	6	5	5	4	1		22	33	101	4	29	7	58	73	12	3	5		2	9	1
P	30		1		16				5			8			31			34	1	3	19					
ହ																					29					
R	74	1	12	10	94	•	12		45	1	1	6	IŠ	n	43	7	3	10	10	15	9	6			1	1
5	32	2	18	15	57	3	2	+	41	1		5	7	5	22	26	4	6_	10	57	23	2			4	
Ť	60		1		67				,35			l i			56			34			11					~
U	13	6	JI	5	52	1	3		9			9	6	34	1	3		9	10	4		•			ا ج	
v	12			1	15	-			15						7											
W	1				1						ļ											L			Ľ	
X			1						4							3_				2						
¥	5	1	3	2	5		1					1	1	1	5	2	1	1	3	1						<u> </u>
Z	6		1	1											3				L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2				i}	

1

5-16

٩

ı

¥ -

=

J.

_ _

-2-b. Digraphic kappa plain, Sparish language = .0091

2-0.	The	87 a	igra	phs d	cmpi	risi	ივ 79	57 o:	f Şpe	anis	h p]	ain	text	, bas	ed on t	the
tibl	e of ·	5,000	dig	raph	3, (1	Iten	2-2), 8	man	zea	acco	ordin	z to	thei	r rela	lve
freg	ucnci	es.				,			۰.		F.		1 1			
	EN E3	126 119	TE /N	67 G4	IN EC	50 47	NA TT	41	MA SA	32	IS EN	27 26	EA OA	20 19		
	ON	104	1,	2871	PI	45	2.5	5131	PO	31	SP	26	PU	19		
	ER	94	۸D	64	EL	44	CA	39	11	30	ED	26	SC	18		
	RE	94	I.S	62	LA	44	17D	37	PA	30	OD	26	TA	18		
	RT	91	ΤÁ	60	RO	43	TI	35	AD	30	AP	24	CU	18		
	UE UE	84	DO	59	TO	43	LE	35	DI	30	IT	24	EE	17		
	61 67	80	OK LT	20	1A TO	45	TR	34		29	LF	23	08	17		
	BV	74	CTT -	57	10	42	মন	24	0P	29	50	22		17		
	03	73	TO	56	AL	41	ОМ	33	LI	28	OL	22	IN	17		
	CO	69	AC	54	SI	41	NC	33	NI	28	1.5	21				
-	IO	67	ŪΈ	52	NE	41	DA	32	0C	28	EG	21	3,	753		
6 J	Ene		21	, 	ر و	0	-									_
z-u.	iont .	quent	u)//	raph	$\frac{10}{\sqrt{+1}}$	Spa	fred	pra mon		22 C fro	WDOE m +1		ble	of 5	re als	0 Tranha
7Ite	m 2-a)	aj/an		<i>y</i> 01		110	quen	400			10 00	010	<u>, , , , , , , , , , , , , , , , , , , </u>	000 41	ST ST DUG
	1	<u>,</u>	- +	÷, +	-	٦.	<u></u>				L					
1	EN 12	6 NE	41	AR	81	RA	74	Γ ΛS	62	; SA	32	2 ມ	44	AL	^41	
]	ES 11	9 SE	57	CI	80	IC IC	42	OR	- 58	RO	4	3 EI	, կե	LE	35	
(on 10	4 170	43	AN	64	INA	41		54	CA	39	9 M	32	MA j S	30	
1	ек 9	4 ; RE	94		64	i da	. 32	1							-	
2-e.	Fre	quent	dig	rarh	id	໌ Spo	nish	• pia	in to	ext	who	se re	vera	sals a	re rar	e or
infr	equen	t, ac	comp	anie	l by	the	ir fo	requ	enci	св f	rom	the	tab.	Le of	5,000	
digr	apho	(Item	2-a	<u>)</u> .			_									
,		<u>າ ເຫນາ</u>	· ^	1.00	C17	1 ma		יי דיירו ו	24	1 000		-			`_	
	r_0	1 : ΥΝ 7 : δτ	- L	DT.	24	1,12			51	1 DN			5	SICM	U	
	10 0	1101	.4	۱.	e *	•	-					-				
2-f.	Dou	blets	000	urri	ng in	n Sp	anis	h pl	ain ·	text	<u>, a</u>	rang	(ed a	accord	ing to	their
freq	uenc i	es fr	om t	he t	uble	of	5,000	0 d1	grap	hб (Iter	n 2-e	<u>.)</u> .			
	EE	א זב	A 12	RR	10	SS	10 1	LL 9	CC	5 [00 1	+	3	DD 2		
2-g.	The	21 d	igra	phs a	annes	arin	Ig 10	0 or	mor	- e ti	mes	as l	egir	nings	of wo	rds
in]	0,129	word	s in	Spa	nish	pla	in to	ext,	arr	ange	d ac	ccord	ling	to th	eir ab	solute
freq	uenci	es														
	~~	(0). I		T					~ . ~	1	~~~ -			~-		
	00 1917	225	rrg o	86	(A 20	23	SE IO	75	CA L		PE.		MA J		-	
	DE 201	322	ມນ 2 ດ11 2	86	. い 29 [N 29	35	יו מק	57	MT 1	17	HA .	108	SO 1	100		
		I		(~ 1 1 '		~ 1						
********	l T	— he 15	dig	raph	s abo	ove	this	lin	e co	mpri	.se 2	25% (of Sr	panish) plain	text.
	2 T	he 40	dig	- raph	s abo	ove	ihis	lin	e co	mpri	se j	50% c	of Sp	anish	plain	text.

.

-

3-a.	The	105	trig	caphs	appe	earir	1g 10	00 or	more	time	s in	60,13	15 I.	ette:	rs of
Spanis	sh p.	lain	text	, arra	anged	l acc	ord	ing to	the	ir ad	solut	e fre	quei	1010	5.
															-
	ENT	596	ARA	229	POR	176	OS]	5 147	ERO	131	NDE	121	PER	111	
	ION	564	ONE	227	TER	174	ON	5 144	ONT	131	RAN	121	ASE	109	
	CIO	502	ESE	217	ODE	168	REC	3] 44	ANA	130	STE	119	CAN	109	
	NTE	1+29	ADE	202	ERE	366	OR	5 143	ARE	130	REII	118	UNI	108	
	CON	415	PAR	193	ERA	165	000	0 142	UNT	129	ARI	117	OSI	107	
	EST	355	CIA	190	TRA	165	EDI	3 141	ANO	127	TEN	116	CEN	105	
	RES	335	ENC	190	AME	163	IC:	[140	TAR	127	OND	115	NCO	105	
	ADO	307	NCI	188	ERI	162	END) 139	ANT	126	RIA	115	RIO	105	
	QUE	294	PRE	184	MER	159	SEI	139	ESA	126	ECI	114	ERN	104	
	ACI	277	DEL	183	ELA	158	TA) 138	IER	126	\mathbf{IST}	113	OMI	104	
	NTO	270	NDO	183	PRO	155	ECO) 135	ADA	125	ONA	113	SCO	104	
	IEN	267	NES	183	ACO	153	STI	3 134	DEN	124	DAD	112	TES	103	
	COM	246	DOS	182	ENE	151	TO	3 133	AND	123	INT	112	BIE	101	
	ICA	242	MEN	181	UES	150		1 132	DES	121	NTR	112	NTI	100	
	STA	240	ITTA	176	ISP	149	SDI	3 132	IDO	121	ESI	111	TOR	100	
3-Ъ.	The	19 t	rigre	iphs :	appea	ring	<u>, 50</u>	or mo	re t	imes :	as he	ginn	ngs	of T	vords
in 10.	,129	word	s in	Span	ish j	plair	ı te.	ct, ar	rang	cã ac	cordi	ng to	o the	<u>ir</u>	
absolu	ate 1	requ	encio	35.									_	-	
										•		•		-	
	CON	298	PAR	154	PUN	23	IN	ן 72 ו	UIII	55	CUA	52	REP	51	÷
	COM	218	PRO	139	PER	80	RES	5 72	DES	53	TRA	52 I	ARG	50	
	EST	194	PRE	114	GOB	77	NUI	5 66	INF	53 I					
۰	~			•			~~					•			•
4. <u>T</u>	<u>ne oc</u>	tet	ragre	ipns a	apper	wine	<u>50</u>	or no	re t	imes	in 60	,115	lett	ers	of
Spanis	sh pl	lain	text,	, arra	angeo	1 acc	ord	ing to	the	ir ab	solut	e ire	quer	ncies	3.
	ATOX	τ 1.1.1	taax	ະດາ 🗤	. 1 1010	סזינ	70 1	A3.60710	70 1	TRATING I	60	l moon		-	
	VULC	1 444 1 050					13	APES	12	TONN	02	E631	:))	· -	· _
	TO LC	0 272		n 95			10	TRIAD	72	SENT	62	SCON	55	5	
	ENTE	9 233 170	PUL	ir y		2015	10		71	ICIO	61	SIDE	55	5	
	LOIN	λ 1/4 λ λΓΩ	ANL			AMA Dom	11	ENDO	70	ONTR	60	CIEN	54	ŀ	
	TOW	5 177	TAL	<u>10</u> 91		ST.	11	ERIC	70	SION	60	NFOF	: 54	ŀ	
	MISIAT	: 170 	AUU	M 90		USR	70	MTOS	70	CCIO	_ 59	OPOR	: 54	F	
	ONES	5 <u>1</u> 40	ANI			AIN	76	MIEN	69	GENT	58	RESF	54	ŀ	
	TEIM	: 141	N.L.F	ir oʻ		55E	76	IOND	67	COMA	57	ARIC	53	3	
	LINC) T3.(TWT	.15 04	F GC)RT	75	MERI	67	ESDE	57	ESTF	53	3	
	ENC]	128	NTE NTE	35 6 2		SIE A	75	NTRA	67	ORES	57	ARGE	51	-	
	PARA	117	ADC	15 81		ON	74	DELA	65	RECI	57	ECTO	51	L.	
	EMPA	115	AME	IN 8	L RO	EN	73	EMTI	64	AQUE	56	PARI	51	-	
	ACTA	115	000	M 81		CA	73	NTIN	64	IONP	56	POSI	51	_	
	PRES	; 111	ESE	N 80) SI	'AD	73	COMI	63	QUES	56	EPRE	50)	
	UNIC) 111	I ONI)E 80											

5. Average length of words in Spanish plain text = 5.9 letters

E. PORTUGUESE LETTER FREQUENCY DATA

1-a.	Abs	olute	ی یار بار تر مینیونیندنین			-	_						and the second se				A DESCRIPTION OF TAXABLE PARTY OF TAXABLE P			
oluba	beti	cally	<u>[]]]</u>	ased	on /	15,1	06	let	ters	1 01 .	text	•				r	1	,	۲	
	Α	5.2	362 1	a l	,	79lı	ł	τ.	٦.	245			348	l v	5	737			1	
	B	- 1	+70	н		304		M	1	699	Ŕ	3.	292	W		24				
	ĉ	2.2	85	Τ	3	214		N	2	012	ŝ	3	400	x	1	66				
	Ď	1.9	200	J		160		õ	5.	001	Ť	2.	679	Y	-	22				
	E	.5.1	41	ĸ	•	17		P	1.	377	Î	1	491	7.	2	207				
	F	5	520			;	L	-	~,			•••							•	
				-			۲								45,	106				
1- b .	Mon	ograj	hic	kap	pa p	lain	, I	?ort	ugue	ese 1	angu	oge	= . 0'	746					•	
1-c.	Fre	quenc	:y d:	istr:	ibut:	ion	of	sin	glc	lott	ors	base	d on	45,	1 0 6 1	lett	ers	of	•••	
Portu	gues	e ple	in	text	rec	duce	d t	:0 l	,000) let	ters	•						-	~	
	Е	7	121	N		65	1	- 11		33	च		11	۲X	F	4				
•	Ā	7	OF	m		50		p		30	B		10	Л		3				
	Ô	ב. ר	ni	â		51		T.		28	ã		8	w		ĭ				
-	- Š	-	76	D		42		v		16	н		7	Ŷ						
-	ĩ		73	M		38		Ġ		16	z		5	Гĸ						
	R		73			5-	I						-	 					_	
			12 1)				-							1.0	000			-	-
L-d. sonan text.	Per ts, Pe:	cents and 1 rcent	Low 1 Low 1	of vo freq of 8	wels aency mos	s, h y co st f	igh nsc 100	uen	eque is i t le	ncy n 45 tter	cons ,106 3 11	onar let Por	nts, i iters rtugu	medi Of ese	um-fr Portu plain	eque ague 1 to:	ency se p xt.	r co plai	<u>n</u>	
l-d. sonen text.	Per ts, Pe: Vow Hig	cents and 1 rcent els A h-Fre	Low 1 Low 1 Low 1 Low 1 Low 1 Low 1	of vo frequence of a I,O,U	Jencz mos	s, h y co st f nd Y	igh nsc 1 cc 1 cc	45. N,R	eque is i t le 8%	ncy n 145 etter	cons ,106 3 1n = 21	onar let Por	rts, ters	medi of ese	un-fr Portu plain	eque	encj se i xt.	r co olai	<u>n</u>	
1-d. sonan text.	Per ts, Pe: Vow Hig Med Low	cents and 1 rcent els A h-Fre ium-F	isc (low 1 age i,E,I aquer requ juence	of vo freq of { I,0,1 hcy (uenc; cy Co	J, er Consor	s, h y co st f nd Y onan ason	igh nsc 100 = ts ant s F	45. N,R	equa ls 1 t la 8% , an ,D,L G,H,	ncy n 145 ettern ad S .,M,P	cons ,106 3 1n = 21 , an 2,V,	onar let Por .3% d T	rtugu - 24	nedi of ese .8% nd Z	un-fr Portu plain	eque	enc; se 1 xt.	olai	<u>n</u>	
l-d. sonan text.	Per ts, Pe: Vow Hig Med Low (In	cents and 1 rcent els A h-Fre ium-F -Freq desc	Low 1 Low 1 2830 1,E,J 1,E,J 1,equer 1 require 1 uence :endi	of vo frequency i,0,1 hcy (uency cy Co ing (J, an Consor J, consor J,	s, h y co st f nd Y onan nant r of	igh nsc icc = ts ant s fr	45. N,R S,F,	eque is i t le 8% , an ,D,L G,H, ency	ancy (n 145 sttern ad S , M, P , J, K, (cons ,106 3 in = 21 , an 2, V,	onar let Por .3% d T W,X,	rters rtugu - 24 Y, a	nedi of esc .6% nd Z	um-fi Portu plain = 8	eque	encj se i xt.	<u>co</u> olai	<u>n</u>	
l-d. sonan text.	Perotes, Perotes, Vow Hig Med Low (In 8 m	cents and 1 rcent els A h-Fre ium-F -Freq desc ost f	ige (low 1 ;age i,E,] ;quei frequence :end: :end:	of vo frequence of { ing of uence cy Co ing of uent	J, an Consor Disor Disor Disor Disor	s, h y co st f nd Y onan nant r of ters	igh nsc lec ts ant s F fr E,	45. N,R S,F, equ	eque ls 1 t le 8% , an ,D,L G,H, ency ,S,I	ncy n 45 tter d S , M, P J, K, (r)	cons ,106 3 1n = 21 , an 2, V,	onar let Por .3% d T W,X,	nts, 1 sters rtugu • 24 Y, a • 69	nedi of esc .8% nd Z	um-fr Portu plain = 8.	eque igue 1 te:	encj se i xt.	r co plai	<u>n</u>	
l-d. sonan text.	Perotes, Perotes, Vow Hig Med Low (In 8 m	cents and 1 rcent els A h-Fre ium-F -Freq desc ost f	iendi	of vo frequency of { ing of uency cy Co ing of uent	J, ar Consor Consor Data Data Data	a, h y co st f nd Y onan nant r of ters	igh nsc icc ts ant s fr E,	45. N,R S C S,F, equ	eque ts 1 t le 8% , an ,D,L G,H, ency ,S,I e le	ncy n 45 tter d S ,M,P ,J,K, (,R,N	cons ,106 3 1n = 21 , an 2, V, , an	onar let Por .3% d T W,X, d T	e 24 Y, a • 69	nedi of ese .8% nd Z	um-fr Portu plain = 8.	.1%	7.0	58 w	n n -	8
l-d. sonan text. in Po	Per Pe: Vow Hig Med Low (In 8 m <u>Abs</u> rtug	cents and 1 rcent els A h-Fre ium-F -Freq desc ost f olute uese	ipe (low : page i,E,] squei frequent iend: reque trequent iend:	of vo frequence of { I,O,I hey (uence cy Co ing o uent equent in to	J, an Consor Donsor Donsor Donsor Donsor Donsor Lett Lett Lett	a, h y co st f ad Y onan ason ason ant r of ters s of arr	igh nsc icc = ts ant fr E, si anf	45. N,R S,F, equ A,O	eque ts 1 t lc 8% , an , D, L G, H, ency , S, I e le acco	ncy n 45 rtter d S .,M,P .J,K, r) I,R,N rtter ordin	cons ,106 3 1n = 21 , an 2, V, , an s as s to	onar let Por .3% d T W,X, d T int	e 24 Y, a 69 1tial	.8% nd Z	un-fr Portu plain = 8	of	7,05	7 co plai	n n -	5
l-d. sonan text. l-e. in Po	Per ts, Pe: Vow Hig Med Low (In 8 m Abs rtug	cents and] rcent els A h-Fre ium-F -Frec desc ost f olute uese	Loc (low : ;age ;age ;age frequent requent : end: : requent : end: : requent : end:	of vo frequencies of a second second ing of a second secon	J, sr Consor Drđen lett ncies	s, h y co st f nd Y onan nant r of ters s of arr	igh nsc icc icc icc icc icc icc icc icc icc i	1-fr man uen 45. N,R s C 3,F, equ A,O ingl	eque ts 1 t le 8% , an ,D,L G,H, ency ,S,I e le acco	ancy (in 45 ettern ad S ,M,P J,K,(r) (,R,N ettern ordin	cons ,106 3 1n = 21 , an 2, V, , an s as s to	onar let Por .3% d T W,X, d T int	e 24 . 24	nedi of esc .8% nd Z .7% let requ	ters	of	7,05	j8 w	n- n	<u>5</u>
l-d. sonan text. in Po	Per ts, Pe: Vow Hig Med Low (In 8 m Abs rtug	cents and] rcent els A h-Fre ium-F -Frec ost f olute uese	Loc (Low : ;age ;age ;age freques ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	of vo frequence of E I,O,U hey C uence oy C uent ing o uent in te	J, encies	a, h y co st f nd Y onan nant r of ters a of arr	igh nsc icc icc icc icc icc icc icc icc icc i	45. N,R S,F, equ A,O	eque ls i t lc 8%, an ,D,L G,H, ency ,S,I e lc acco	ncy n 45 rtter d S ,M,P J,K, r) (,R,N r) r) rtter ordin	cons ,106 3 1n = 21 , an 2, V, , an s as s to B	onar let Por .3% d T W,X, d T	- 24 Y, a - 69 <u>itial</u> - 113	.8% nd Z	ters	of 14	encj se i xt.	<u>58</u> w	n n orda	5
l-d. sonan text. l-e. in Po	Perotes, Perotes, Perotes, Perotes, Perotes, Medi Low (In 8 m Absortug P C F	cents and] rcent els A h-Fre ium-F -Frec desc ost f olute uese	Age Low : age 1,E,I iquei frequent iend: irequent ifrequen	of vo frequences of a l,O,U hey (uences cy Co uent equent in to B	J, en Consor Drden lett ncies	a, h y co st f ad Y onan ason nant r of ters arr 405 348	ight nsc lec = ts ant fr E, s : s :	45. N,RC, N,RC, A,O	eque ts 1 t lc 8% , an , D, L G, H, ency , S, I e le acco	ncy n 45 rtter d S .,M,P J,K, r) I,R,N r) rtter ordin 264 222	cons ,106 3 1n = 21 , an 2, V, , an s as s to B G T	onar let Por .3% d T W,X, d T ini	e 24 Y, a e 69 itial ill 20	esc .8% nd Z .7% let requ	ters	equi igue 1 te: 1% of 25.	7,05	j8 w	n n ords	5
l-d. sonan text. l-e. in Po	Perotes, Perotes, Perotes, Perotes, Ned Low (In 8 m Abs. rtug PC Es	cents and] rcent els A h-Fre ium-F -Frec desc ost f olute uese	Loc (Low : Low : Low : Low : Prequent Prequent req req requent req requent re requent requent requent requent	of vo frequences of { I,O,U hey (uences oy Co ing o uent equent in to R W	J, ar Consor Drden lett acies	a, h y co st f ad Y onan nant r of ters arr 405 348 316	ight nsc icc = ts ant fr E, st	45. A,0 ingl FQ	eque ts 1 t lc 8% , an ,D,L G,H, ency ,S,I e lc acco	incy (in 45 stter d S ,M,P J,K, r) stter ordin 264 222 222 187	$\frac{2}{3} \frac{106}{3} \frac{1}{10}$	onar let Por .3% d T W,X, d T int	• 24 • 24 • 69 • 113 • 113 • 111 92	ese .0% nd z .7% let required W K	ters	equi igue 1 te: 1 te: 1%	7,0	j8 w		5
l-d. sonan text.	Perotes, Perotes, Perotes, Perotes, Ned: Low (In 8 m (In 8 m C E S A	cents and] rcent els A h-Fre ium-F -Frec desc ost f olute uese	Loc (Low : Low : Lage Prequent Prequent requent requent requent requent 247 31 08 01 001	of vo frequence of { I,O,U hey (uence cy Co ing o uent equent m T R N V	J, ar Consor Draen lett	a, h y co st f nd Y nann nant r of ters arr 405 348 316	ight nsc icc = ts ant fr E, sh ang	4-fr inan iuen 45. N,R S,F, required ingel I F Q O L	eque ts 1 t le 8% , an ,D,L G,H, ency ,S,I e le acco	ency (n 45 tter d S ,M,P J,K, 7) c,R,N etter 264 222 187 142	$\frac{2000}{3}$	onar let Por .3% d T W,X, d T int	• 24 • 24 • 7, a • 69 • 113 • 113 • 111 92 77 60	esc of esc .8% nd Z .7% let requ K .Y	ters	equa 1700 1 to: 1 to: 1% 0f 135. 14 11 7 4 2	7,0	<u>7 co</u> plai	n n ord:	5
l-d. sonan text.	Perotes, Perotes, Perotes, Perotes, Ned Low (In 8 m (In 8 m C E S A D	cents and] rcent els A h-Fre ium-F -Frec desc ost f olute uese	Loc (Low : iage i,E,I iquei frequent requent requent requent frequent frequent frequent i i i i i i i i i i i i i i i i i i i	of vo frequence of a l, 0, 1 hey (uence cy Co ing o uent m t R N V	J, ar Consor Drđen leti	a, h y co st f nd Y onan nant r of ters arr 405 348 316 299 271	ight nsc icc icc icc icc icc icc icc icc icc i	1-fr man uen 45. N,R s C A,O ingl I F Q L	eque ts 1 t le 8%, an ,D,L G,H, ency ,S,I e le acco	ency (n 45 tter d S ,M,P J,K, 7) 1,R,N etter 264 222 187 143	$\frac{2000}{3}$	onar let Por .3% d T W,X, d T int	• 24 • 24 • 7, a • 69 • 113 • 113 • 111 92 77 60	esc of esc .8% nd Z .7% let requ K .Y .X	ters	equa 17 1 to: 16 16 17 14 11 7 4 2	7,0	<u>7 co</u> plai	n n ord:	5
l-d. sonan text.	Perotes, Perotes, Perotes, Perotes, Medi Low (In 8 m Absortug PC ESA D	cents and] rcent els A h-Fre ium-F -Frec desc ost f olute uese	Loc (Low : ;age ;end: request req request req request request request request request request	of vo frequences of a l, 0, 1 hey (uences cy Co uent ing o uent M T R N V	J, enconsor J, enc	a, h y co st f nd Y onan nant r of ters arr 405 348 316 299 271	ight nsc icc = ts ant fr E, st	45. A,O ingl FQOL	eque ts 1 t lc 8% , an ,D,L G,H, ency ,S,I e lc acco	ency (n 45 (tter) (J,K,V)) (J,K,V (J,K,V)) (J,K,V (J,K,V)) (J,K,V) (J,K	$\frac{\cos s}{106}$	onar let Por .3% d T W,X, d T int	- 24 - 24 - 69 - 69 - 113 - 113 - 113 - 113 - 77 - 60	esc of esc .8% nd Z .7% let requ K Y X	ters	of 14 11 7 4 158	7,0	58 W	n n ord:	
l-d. sonan text.	Perotes, Perotes, Perotes, Ned Low (In 8 m (In 8 m C E S A D	cents and] rcent els A h-Fre ium-F -Frec desc ost f olute uese	Loc (Low : iage i,E,I iquen frequent requent requent frequent frequent frequent frequent in frequent frequent in frequent in	of vo frequence of a l, 0, U here to be a construction of a constr	J, ar Consor Drđen leti	a, h y co st f nd Y nant nant r of ters arr 405 348 316 299 271	ight nsc icc icc icc icc icc icc icc icc icc i	45. A,O ingl I F Q L	eque ts 1 t le 8%, an ,D,L G,H, ency ,S,I e le acco	ency (n 45 (tter) (J,K,N,P) (J,K,N)	$\frac{2000}{3}$	onar let Por .3% d T W,X, d T int	• 24 • 24 • 7, a • 69 • 113 • 113 • 111 92 77 60	esc of esc .8% nd Z .7% let requ K .Y X	ters iencia	of 14 17 14 11 7 4 2 58	7,0°	j8 w	n n ord:	5
l-d. sonan text.	Perotes, Perotes, Perotes, Ned Low (In 8 m Absortug PC ESA D	cents and] rcent els A h-Fre ium-F -Frec ost f olute uese	Loc (Low : age ,E,] quer requer requer : end: requer : pla: 308 501 597 506	of vo frequence of a L,O,L hey (uence oy Co ing o uent m t R N V	J, sr J, sr	a, h y co st f nd Y onan nant r of ters s of arr 405 348 316 299 271	ight nsc iects ts ant fr E, si ang	45. A,O ingl IF Q L	eque ts 1 t le 8%, an ,D,L G,H, ency ,S,I e le acco	ency (n 45 (tter) (J,K,M,P (J,K,M)	sons 106 106 1 10 10 10 10 10 10 10 10 10 10 10 10 1	onar let Por 3% d T w,X, d T	113 111 92 77 60	ese .8% nd Z .7% let requ K Y X	tters	of 14 11 14 14 11 7 4 2 58	T,O	j8 w	ord:	5
l-d. sonan text. ln Po	Perotes, Perotes, Perotes, Ned Low (In Absortugy PCESAD	cents and] rcents els A h-Fre ium-F -Frec ost f olute uese 8 7 6 5 5	Age Low : age year request req	of vo frequences of a second second ing of a second	J, encies	a, h y co st f nd Y nant nant r of ters arr 405 348 316 299 271	ight nsc icc icc icc icc icc icc icc icc icc i	45. A,C A,C A,C A,C A,C A,C A,C A,C A,C A,C	eque ts 1 t le 8% , an ,D,L G,H, ency ,S,I e le acco	ency (n 45 rtter d S ,M,P J,K, 7) 1,R,N etter prdin 264 222 264 222 187 143	sons 106 106 106 10 106 10 10 10 10 10 10 10 10 10 10 10 10 10	onar let Por .3% d T w,X, d T	- 24 - 24 - 69 - 69 - 113 - 113 - 111 - 92 - 77 - 60	esc .8% nd Z .7% let requ X K X	ters	of 14 17 14 17 14 11 7 4 2 58	encj se i xt.	<u>58</u> w	orda	

_

_

÷."

		2- Po	a. rtu	Fr gue	equ se	enc pla	y đ in	ist tex	rib t,	uti rcd	on ucc	of d t	di e 0 5	, rap	hs 0 d	bas igr	cd aph	on s,	44,	<u>921</u>	. le	tte	rs	of.		
												21	1.0	iter												
	, A	B	C	D	E	F	G	, H	, I	្ស	ĸ	Ĺ	, <u>M</u>	N 1	0	P	ନ୍	R	S	Ţ	U	V	W.	, X	Ϋ́,	Z
Α	11	<u>+1</u>	52	60	15	9	14	2	18	2		38	36	56	49	23	8	68	72	22	8	16	1			5
B	11			1	10				5			2	1		9			9	2		2					
C	60		2		30			4	39		, 	5		1_	85			7		8	12					
D	45				61	-	 	L	33				1		61			2	1	1	S					
E	15	5	<u>+8</u>	22	<u>n</u>	<u> </u>	23	1	27	6	1	31	44	97	6	18	6	76	95	20	7	12	1	15		5
F	9				14				13			1	L		15			2			3					
G	15		<u> </u>		14				4			1		1	14			17			15					
H	10				8				3				_ .		11						1					
I	42	3	34	31	6	7	9		1			16	22	53	2.6	5	2	25	39	27	2	10		2		7
J	7				2		L						<u> </u>		2						7					
ĸ																										
յւ	24	١	4	4	24	ł	5	9	21			2	4	2	14	4	2.	1	4	7	6	2				
ы Би	41	10	3	4	51	1			26	1		1	2	1	16	15	1	3	5	2	6	2				
U N	31		29	35	14	7	8	12	18						25	ł			19	117	4	4				1
0	21	9	32	25	27	10	7	3	20	4		20	36	79	5	35	8	71	85	18	12	22	1	8	l	1
P	26		2		25				2			4		1	60	1	1	28	J	1	3					
ୟ					1																37					
R	75	2	14	9	86	3	7	1	46	1	_	2	18	8	34	7	3	11	8	18	4	6				١
ន	41	6	22	10	62	6	3	2	23	2		3	12	5	23	35	7	4	40	47	18	5				
T	65	_	1	1	69	1			26					1	88			33		1	13					
U	22	5	5	7	26	1	4		18	ł		14	11	17	2	4		9	6	11		1				2.
۷	11				37				23						9			1								
W																										
х	10		3		1				2							3				1						
Y					[
Z	7		1		9				2				1		1		1	1								-
	4 د-د روغیر در ر	- Lagellindar -	ب يحددنها ه		•	~	 						-			¥	~		 1	6		·,	•••••	،ا		
						3	<u>د</u> ۲	27				\$				·			-					-		
	- 1 -		-	_		-1	("i	••_	,			`									د					
			1 <u>4 (</u>			-	2			-		•				1	57				-					

5-20

٠,

2-b. Digraphic kappa plain, Portuguese language = .0084

2-c. The 91 digraphs comprising 75% of Portuguese plain text, based on the table of 5,000 digraphs (Item 2-a), arranged according to their relative frequencies.

NT	114	TA	65	ST	47	AM	36	CE	30	OD	25	AT	22
EN	97	ĩ	,2241	RI	46	2	,5052	NC	Ž9	NO	25	UA	22
ES	95	SE	62	DA	45	ND	35	PR	28	LA	24	AO	21
OT	88	DO	61	EH	44	OP	35	IT	27	LE	24	LI	21
RE	86	DE	61	IA	42	SP	35	OE	27	AP	23	OL	20
CO	85	AD	60	MA	41	RO	34	EI	27	EG	23	ET	20
OS	85	FO	60	SA	41	IC	34	UE	26	VI	23	OI	20
ON	79	CA	60	SS	40	TR	33	MI	26	50	23	ns	19
ER	76	AN	56	CI	39	DI	33	IO	26	SI	23	SU	18
- RA	75	IN	53	IS	39	00	32	PA	26	VO	22	RT	18
AS	72	AC	52	AL	38	EL	31	TI	26	SC	22	EP	18
OR	71	ME	51	VE	37	ID	31	PE	25	IM	22	UI	18
TE	69	AO	49	QU	37	NA	31	IR	25	ED	22	3	,755
AR	68	EC	48	OM	36					٠			
	_			-				_					

2-d. Frequent digraphs in Portuguese plain text whose reversals are also frequent, accompanied by their frequencies from the table of 5,000 digraphs (Item 2-a).

es	95 SE	62 OR	71 RO	34 ME	51 EM	44
Re	86 ER	76 CA	60 AC	52 EC	48 CE	30
Co	85 OC	32 AD	60 DA	45 MA	41 AM	36
Ra	75 AR	68 PO	60 OP	35 CI	39 IC	34
NS	72 SA		56 NA	31 DI	33 ID	31

2-e. Frequent digraphs in Portuguese plain text whose reversals are rare or infrequent, accompanied by their frequencies from the table of 5,000 digraphs (Iten 2-a).

NT 114 | TN 1 | ST 47 | TS 0 | ND 35 | DN 0

2-f. Doublets occurring in Portuguese plain text, arranged according to their frequencies from the table of 5,000 digraphs (Item 2-a).

SS 40 EE 11 00 5 LL 2 II 1 PP 1 TT 1 AA 11 RR 11 CC 2 MM 2

2-g. The 20 digraphs appearing 100 or more times as beginnings of words in 6,803 words in Portuguese plain text, arranged according to their absolute frequencies.

CO 464 | RE 276 | IN 188 PA 143 MA 130 | ME 111 | TR 103 386 DE 259 ES 173 NA 133 PE 122 MI 105 DI 102 PO SE 333 QU 220 PR 169 TE 132 VE 115 NO 104

¹ The 15 digraphs above this line compose 25% of Fortuguese plain text. ² The 42 digraphs above this line compose 50% of Portuguese plain text. 5-21

٠

đ

3-а.	The	59 ti	rigra	phs	appea	ring	; 100	orm	ore	times	in b	5,10	5 let	ters;	of
Portu	guese	pla	in te	xt,	arrai	nged	acco	rding	to	their	abso	lute	frec	menci	les.
	EIT 1 NTO 1 ONT 3 NTE 2 CON 2 CAO 2 ADO 2 MEN 2	474 457 303 284 255 236 227 211 205	TOS EST ACA RES GUE NTA POR ACO COM	191 186 182 181 172 167 159 158 154	ERE CIA ADE STA ICA OCO ARA DOS OES	150 145 143 143 142 140 136 134 134	IDA TER OPC SPC ADA TRA NDO ENC	133 132 130 130 129 129 127 126	OSE ARE ESE OVE SSA DES ECO ODE	126 125 124 124 124 124 123 121 118	ECE NCI REC PAR ESS DAD ORE EDI	115 114 113 112 110 109 108 107	ASE ITO ELE ERI PRO AME OSS IME	105 104 103 103 102 101 101 100	
3-b. in 6, absol	The 497 wo ute fr	19 tı ords reque	igra in P ncie	phs ortu s.	appes guesc	ering pla	50 1 1 1	or mo ext,	re t arra	imes nged	as be accor	ginn ding	ings to t	of wo heir	orđs
	CON 2 PON 2 COM 2	224 213 136	QUE EST PAR	109 105 93	PRO POR NAO	93 88 86	QUA DES SER	83 71 70	TRA MIL REF	66 61 56	VEX IND	53 52	RES REC	52 51	
4. <u>T</u> Portu	he 38 guese	tet: plai	agra In te	phs xt,	appec arrai	uring nged	50 2000	or mo rding	re t to	imes their	in 45 abso	,106 lute	lett	ers cuenci	f les.
	ONTO PONT MENT ENTO ENTE ACAO NTOS	233 221 183 173 147 142 141	ENT. NCL POR DAD EST. ENC SPO	A 9 F 8 E 8 I 8 N 8	7 AM 5 P/ 7 CC 6 II 5 CE 3 II 3	ien Jra Des Dad Int Te	81 81 73 71 70 70	CONT FORM OCON ELEG ADOS IMEN	68 67 66 61 60 60	CONS NTES ANDO ANTE ORMA VEXA	58 58 57 57 54 54	REN TELI EGRA NFOI OPOI LEGI	52 55 52 53 51 7 51 7 51 7 51 7 50	-	

5. Average length of words in Portuguese plain text = 6.48

.

ूब ब्रिस च

> -1 -

,

,

-

-

 ⇒ r

F. RUSSIAN LETTER FREQUENCY DATA

1-a. Absolute frequencies of single letters of Russian plain text, arranged alphabetically, based on 67,850 letters of text.

86854E	5,122 З	1,280 H	4,463 у	1,578 щ	257
	1,095 и	4,923 O	8,078 ф	127 ы	1,421
	3,543 й	961 II	1,815 ×	941 ь	960
	1,141 к	2,324 P	3,427 ц	369 э	173
	2,076 л	2,747 C	3,917 ч	902 ю	455
	5,537 м	1,936 T	4,041 ш	554 я	1,185
ガヤ	2021				67.850

1-b. Monographic kappa plain, Russian language = .0568

1-c. Frequency distribution of single letters based on 67,850 letters of Russian plain text, reduced to 1,000 letters, arranged according to their relative frequencies.

0 E A 1 H T	119 82 75 73 66 60	В 52 П Р 50 У Л 40 Ы К 34 3 Д 31 9 М 29 Г	27 23 21 19 17 17	Е х т Ха	16 ** 11; 10 11; 10 11; 10 11; 10 11; 10 11; 10 12; 10 13 13 8 4	7 7 5 4 3 2
С	- 50			-	_	1,000_

1-d. Percentage of voucls, high-frequency consonants, moduum-frequency consonants, and low-frequency consonants in 67,850 letters of Russian plain text. Percentage of 10 most frequent letters in Russian plain text.

10 most frequent letters (in descending order of frequency) O, E, A, N, H, T, C, B, P, and J = 67.5%

1-e.	Abso	oluto	fre	quen	cies	of	single	e J	leiters	as	ini	tial	let	ters	of	10,	601
words	in F	lussi	an p	lain	toxt	, a	rrange	ed	accord	ing	to	their	fr	eque	201	98.	
(One-	lette	er wo	rds)	nave	bcen	om	illed	<u>)</u>									

n	1,210 凡	496 n	321 ×	120 4	58
C	983 M	446 г	292 A	116 ц	47
н	800 P	429 y	229 E	92 9	41
в	731 T	418 4	182 💥	72 ю	34
0	650 3	404 >	147 m	63 I щ	2°
κ	555 G	344 л	146	•	

10,601

2-a. Frequency distribution of digraphs based on 67,850 letters of Rucsian plain text, reduced to 5.000 digraphs.

REF ID:A56892

		2ª Letter																													
	A	<u>Б</u>	ß	Г.	<u>д</u>	E	*	3	И,	Ň	K.	Л	M	H	0	<u>, n</u>	9	C	T	<u>_</u> Y_	¢	×_	щ	<u></u> , Ч	щ	щ,	ы	, <mark>Ь</mark>	2	ю	Я
P	2	12	35	8	11	7	G	15	7	7	19	27	19	15	5	11	26	31	27	3	1	10	6	7	10	1			2	6	2
E	5					9	1		6			6		2	21		8	1		6						1	11				2
ß	35	1	5	3	3	32		2	17		7	10	3	9	58	6	6	19	6	7		1	1	2	4	1	18	1	2		3
r	• • 7				3	3			5		1	5		1	50		7			2											
Ļ,	25		3	1	1	29	1	1	13		1	5	L	13	22	3	6	8	1	10			1	1	1		5	1			1
E	2	9	18	11	27	7	5	10	6	15	13	35	24	63	7	16	39	37	33	3	J	8	3	7	3	3			1	1	2
¥	f 5	1			6	12			5					6				t													_
3	35	1	7	1	5	3			4		2	1	2	9	9	1	3	1		2							4				4
И	1	G	22	5	10	21	2	23	19	11	19	21	20	32	8	13	11	29	29	٦	1	17	3	11	1	1			1	3	17
й	1	1	4	1	3		1	2	4		5	1	2	7	9	7	З	10	2				1	3	2						
ĸ	24	1	4	1		4	1	1	26		1	4	1	2	66	2	10	3	7	10			1								
J	25	1	1	1	1	33	2	1	36		1	2	1	8	30	2		3	1	6		4		1			2	30		1	9
M	18	2	4	1	1	21	1	2	23		3	1	3	7	19	5	2	5	3	9	1			2			5	1	1		3
Į. Н	54	1	2	3	3	34			58		3		1	24	67	2	1	9	9	7	1		5	2			36	3			5
2 C	T	28	84	32	47	15	7	18	12	29	19	41	38	30	9	18	13	50	39	3	2	5	2	12	4	3			2	3	2
<u></u> п	7					15			4			9		1	46		41	1		6							2				2
™ P	55	1	4	4	3	37	3	1	24		3	1	3	7	56	2	1	5	9	16		1	1	1	2		8	3			5
C	8	1	7	1	2	25			6		40	13	3	9	27	11	4	11	82	6		1	1	2	2		1	8			17
Т	35	1	27	1	3	31		1	28		5	1	1	11	56	4	26	18	2	10				1			11	21			1
>	1	4	4	4	11	2	6	3	2		8	5	5	5	1	5	7	14	7			1		8	3	2				9	1
¢	2					2			2						1		1	1													
×	4	1	4	1	3	1		2	3		4	3	3	4	18	5	3	4	2*	2	1			1							
ц	3					7			10		2				1					1							1				
Ч	12					23			13		2			6					7	1					1			1			
u	5					11			14		1	<u>_</u> 2		2	2					1								1			
L	3					8			6					1						1											
Ы		1	9	1	3	12		2	4	7	3	6	6	3	2	10	3	9	4	1		16		1	2						
b		2	4	1	1	2	Π	2	2		6		3	13	2	4	1	11	3					1	4				1	3	1
Э	4				\square		Π				1			1				1	9												
ю		2	1	2	1		Π	3	1		1		1	1	1	3	1	1	7				1	1		4					
Я	1	3	9	1	3	3	1	5	3	2	3	3	4	6	3	6	3	6	10			2	1	4	1	1			1	1	1

_

-- -

-

2-b. Digraphic kappa plain, Russian language = .0052

2-c.	The	<u>= 159</u>	digr	aphs	compr	isin	<u>z 75%</u>	of I	Russia	n pla	ain te	ext, d	ascd	on t	he
table of 5,000 digraphs (Item 2-a), arranged according to their relative															
free	frequencies.														
OB	84	LP	39	ло	30	EM	24 I	AM	19	АД	14	ИP	11	ВΠ	10
CT	82	OM	38	JIP	30	РИ	24	OK	19	IIIN	14	CC	11	AU	10
HO	67	L L R	37	ДЕ	29	HH	24	TC	18	УC	14	ШE	11	RIL	9
ко	66		258	I NT	29	ИЗ	23	Вы	18	ЬН	13	ΛΠ	11	PT	9
EH	63	EC	37	ОЙ	29	पम्	_23_	03	18	СЛ	13	ИЧ	11	ЯB	9
НИ	58	ЛИ	36	I NC	29	2	492°	MA	18	ДН	13	TH	11	BH	9
BO	58	ны	36	TN	28	МИ	23	XO	18	ДИ	13	ИЙ	11	HC	9
PO	56	BΛ	35	OB	28	ДО	22	ОП	18	EK	13	УД	11	БE	9
TO	56	BA	35	AT	27	ИD	22	EB	18	דיא	13	EΓ	11	ЗH	9
РΛ	55	ЕЛ	35	TB	27	ИЛ	21	СЛ	ן 7 נ	ЧИ	13	ДИ	10	ЕБ	9
HA	54	AB	35	ЕД	27	ть	21	NX	17	ОИ	TS	E3	10	MУ	9
ro	50	ТЛ	35	АЛ	27	ME	21	RN	17	ЖE	12	i nc	10	ыB	9
OC	50	HE	34	CO	27	ИE	21	ВИ	17	ΛБ] 2	មា	10	HT	9
AH	48	ET	33	КИ	26	БО	21	РУ	16	ЧΑ	12	VX	10	ЭT	9
ОД	47	JIE	33	AP	26	ИМ	20	ЕΠ	16	ЫE	12	ЦИ	10	RA	9
по	46	Or	32	TP	26	BC	19	ЫΧ	16	ОЧ	12	ЯT	10	CH	ē
OP	43	BE	32	ДА	25	ИИ	19	ПЕ	15	ТЫ	11	КУ	10	y 10	9
ΠP	41	ИН	32	CE	25	MO	19	AЗ	15	СП	11	ДУ	10	30	9
ОЛ	41	TE	31	JIA	25	АК	19	ΕЙ	15	ЪC	11	KP	10	00	9
СК	40	AC	31	КA	24	ИК	19	0E	15	БЫ	11	ТУ	10	3	750
\mathbf{OT}	39	OH	30					•				•		-	
		-													
2-d.	2-d. Frequent digraphs in Russian plain text whose reversals are also														
frequent, accompanied by their frequencies from the table of 5,000 digraphs															
(Item 2-a).															
	- 1 -						1						÷		
OB	84	BO	58	PO	56	OP	43	ΓO	- 50 j	OL	32	BA	35	AB	35
HO	67	OH	30	TO	56	OT	39	ОЛ	41	JIO	30	EJI	35	JIE	33
EH	63	HE	34	HA	54 i	AH	45	EP	39	PE	37	ET	33	TE	31
ни	58	NH	32												
•	-			•						•		-		*	
2-е.	Fre	quen	t dig	raphs	in H	ussie	in pla	ain 1	cext w	nose	revei	CGQ18	are	rare	
or 1	nirec	lucut	, acc	ompan	iea b	y the	eir i	reque	ncles	110	n the	table	01	5,000	•
algr	apns	(lter	n 2-a	2.							_				
				π	h = 1	דומ	2	are	h 0 !	T.0.01	5				
				ПР	41	PII	4	CR	40 ;	RU	3				
0.2	Dev				- <u>1</u> -	Ducci		lata	tort	c 1999	maad		dt na	+- +	haim
2-1.		ID Lets	3 000	urrin	g_{1n}	RUSS	$\frac{\operatorname{an} \mathbf{p}}{\overline{\mathbf{p}}}$	Lain	text,	arra	ingeo	accor	aing	<u>to t</u>	neir
Ireq	uenci	.08 11	COM U	ne ta	DTG 0	1 2,0	100 u.	RIAL		tem 2	(-a).				
ਸ਼ੁਸ਼	2/1		77	चच	7 1	3/16/	2	ππ	21	ππ	٦	סס ו	٦	1 00	r
INN	10			BB			2	1111	2	иц Vu	- <u>+</u> -	1 2 2	4	1111	*
8 14 I	-7		צ		21	nn	د، ا	ماد باد.		1111	*	۱ <u> </u>	r		
				-								-	-		
	- 1 -	ine 2 ^l	+ dig:	raphs	abov	e thi	is lin	ne co	mpose	25%	of Ru	issian	p'n	in ic	xt.
	2 T	'he 66	5 dig	raphs	abov	e thi	is lin	ne co	mose	50%	of Ru	ussian	pla	in te	xi.

5-25
REF ID:A56892

_

iş ₩													
2-g.	The	24 di	graphs	appe	aring	100	or por	e tire	es as b	eginn	ings (of wo:	rds in
10,601 words in Russian plain text, arranged according to their absolute													
frequencies.													
ΠР	470)	PA	250	ГО	169	1 05	146	до	120	КA	1101	ME	107
по	405	HA	246	CE	167	ЛE	137	or	115	ΠE	110	BC	101
ЗA	292	CO	220	CT	16i	HE	122	ЭТ	111	TO	108	MA	101
ко	287	BÖ	179	BH	159	1					•		
	• •			•		•							
3-a. The 09 trigraphs appearing 100 or more tires in 67,850 letters of													
russian plain text, arranged according to their absolute flequencies													
OLO	318	ТЕЛ	188	TOP	152	TIPV	[137]	РОД	128	POB	116	ЧЕБ	104
ЕНИ	295	HOB	181	ЛРН	151	PED	[137	ког	123	СТИ	115	ИНА	103
CKO	270	EЛР	176	пол	149	ETC	135	ABO	119	ILIIII	113	TBO	103
CTB	267	OBA	169	JIEH	146	HHH	135	TIEP	119	ACT	112	АБО	101
OCT	260	OPO	167	ных	145	OBF	: 134	TBE	110	AHA	111	UCT	101
ПРО	233	CTP	165	HIE	143	KOE	130	3AB	118	HNE	110	TPA	101
CTA	217	FOT	150	मान्न	143	HHC	130	BAH	117	0.TL	1101	7.18	100
ÓBO	201	ΔHU	168	KOV	1.30	COF	130	кол	117	ΠOC	iiol	OBC	100
вол	203	CKN	158	UTE	1.38	TUDE	120	HON	177	CTO	110	PAB	100
ння	108	TOB	158	HOC	138	HOT	128	TQT	116	EFO	104	1 10	700
		202	2)0		200		240			~. •			
3-b. The 20 trigraphs appearing 50 or more times as beginnings of words													
in 10,601 words in Russian plain text, arranged according to their													
absol	lute f	reque	ncies										
ПРО	205	ПРИ	95		81	1 BHL	[73	ПОД	61	CTA	591	год	51
ПРЕ	116	COB	87	TEP	78	PAE	5 72	БОЛ	60	РАЗ	53	ΓOP	50
ЗАВ	108	кол	84	пол	74	HAF	, 71 71	РАЙ	60	KOH	52		-
4. The 58 tetragraphs appearing 50 or more times in 67,850 letters of													
Russian plain text, arranged according to their absolute frequencies													
HOLO) 114		3E 8	7 E	ЛЪН	78	ВЛЕН	68	ПРОИ	60	0M3	в 5 ¹	ł
TEJI	5 111	AB	од в	6 C	TBO	78	СКОЙ	66	РОИЗ	60	KOT	0 5:	3
NTEJ	I 107	I 3AI	30 8	5 И	ЧЕC	76	CTAB	66	OTOB	59	HHU	X 5	3
KOLC) gġ	CTI	BE 8	4 0	BET	74	АРОД	65	BETC	56	БОД	σ 5	2
HOCI	98	ЛЫ	HO E	З Ч	ECK	74	EJILC	65	TOPO	56	ETC	K 5	2
ЕНИЯ	1 07	по	III F		HOB	72	ECTB	64	ATEJ	55	OTO	PŚ	L
EHHC	5 95	CK	or ë	2 0	CTA	70	CTAH	64	гото	55	BCK	0 .5)
EHUI	3 88	EHI	मा ह	u l č	TPO	70	HAPO	63 l	ЕТСЯ	55	NITO	0 50)
IIPE	I 87	AB	or a	O B	EHH	69	OBAH	62	CTBA	55	CKN	й 5	0
РАБС	5 87	JIE	EN RE	O T	BEH	69	CTPA	61		~~~		-)	
	- •		_										
5. 1	verag	<u>e len</u>	gth o	C word	<u>ls_in_</u>	Russi	an pla	in te:	xt = 6	_ 4			

.

REF ID:A56892

The following are in preparation:

•

۲

APPENDIX 6

LIST OF FREQUENT WORDS - ENGLISH AND FOREIGN LANGUAGES

APPENDIX 7

CRYPTOGRAPHIC SUPPLEMENT

APPENDIX 8

LESTER S. HILL ALGEBRAIC ENCIPHERMENT

APPENDIX 9

CONCEALMENT SYSTEMS

APPENDIX 10

COMMUNICATION INTELLIGENCE OPERATIONS

APPENDIX 11

PRINCIPLES OF CRYPTOSECURITY

APPENDIX 12

BIBLIOGRAPHY; RECOMMENDED READING

APPENDIX 13

PROBLEMS - MILITARY CRYPTANALYTICS, PART I

APPENDIX 14

FOREIGN LANGUAGE PROBLEMS

INDEX

REF ID:A56892

(27.4.W)