
Configuring the SELinux Policy
Stephen Smalley

NSA

sds@epoch.ncsc.mil

This work supported by NSA contract MDA904-01-C-0926 (SELinux)
Initial: February 2002, Last revised: January 2003

NAI Labs Report #02-007

Table of Contents
1. Introduction ..2

2. Architectural Concepts and Definitions...2

2.1. Flask Concepts..2
2.2. Flask Definitions...4

3. Security Model...4

3.1. TE Model..4
3.2. RBAC Model...5
3.3. User Identity Model..6

4. Policy Language and the Example Policy Configuration...6

4.1. TE and RBAC Configuration Overview..7
4.2. TE Statements...7
4.3. RBAC Statements..17
4.4. User Declarations..19
4.5. Constraint Definitions...20
4.6. Security Context Specifications..21
4.7. File Contexts Configuration..24

5. Building and Applying the Policy...25

5.1. Compiling and Loading the Policy...25
5.2. Applying the File Contexts Configuration..26

6. Security-Aware Applications..27

6.1. Modified Daemons..27
6.2. New Utilities...27
6.3. Modified Utilities..28
6.4. Application Configuration Files..28

7. Customizing the Policy..30

7.1. Adding Users...30
7.2. Adding Permissions..30
7.3. Adding Programs to an Existing Domain...31
7.4. Creating a New Domain..32
7.5. Creating a New Type...33

1

Configuring the SELinux Policy

7.6. Creating a New Role...34

References...34

1. Introduction
NSA Security-Enhanced Linux (SELinux) is an implementation of a flexible and fine-grained mandatory
access control (MAC) architecture called Flask in the Linux kernel[LoscoccoFreenix2001]. SELinux can
enforce an administratively-defined security policy over all processes and objects in the system, basing
decisions on labels containing a variety of security-relevant information. The architecture provides
flexibility by cleanly separating the policy decision-making logic from the policy enforcement logic. The
policy decision-making logic is encapsulated within a single component known as the security server
with a general security interface. A wide range of security models can be implemented as security
servers without requiring any changes to any other component of the system.

To demonstrate the architecture, SELinux provides an example security server that implements a
combination of Type Enforcement (TE)[BoebertNCSC1985] and Role-Based Access Control
(RBAC)[FerraioloNCSC1992]. These two security models also provide significant flexibility through a
set of policy configuration files. An example security policy configuration was developed to demonstrate
how SELinux can be used to meet certain security goals and to provide a starting point for users
[SmalleyNAITR2001][LoscoccoOLS2001].

This technical report describes how to configure the SELinux security policy for the example security
server.Section 2explains concepts defined by the Flask architecture that are important to configuring the
policy. Section 3describes the security model implemented by the example security server. The policy
language and the example policy configuration are described inSection 4. Section 5explains how the
policy is built and applied to the system. Security-aware applications and their configurations are
discussed inSection 6. Section 7describes how to customize the policy for various purposes.

* This report has not been updated yet to reflect the reworking of the SELinux module by NSA for inclusion in mainline Linux 2.6, or

other recent changes to SELinux. Stay tuned for further updates.

2. Architectural Concepts and Definitions
The Flask operating system security architecture provides flexible support for mandatory access control
(MAC) policies[SpencerUsenixSec1999]. The SELinux implementation of the Flask architecture is
described in [LoscoccoFreenix2001]. This section discusses concepts defined by the Flask architecture
that are important to configuring the SELinux policy. It then discusses definitions specified by the Flask
architecture that are used by both the policy enforcing code and by the policy configuration.

2.1. Flask Concepts
Every subject (process) and object (e.g. file, socket, IPC object, etc) in the system is assigned a collection
of security attributes, known as a security context. A security context contains all of the security
attributes associated with a particular subject or object that are relevant to the security policy. The content
and format of a security context depends on the particular security model, so a security context is only
interpreted by the security server. In order to better encapsulate security contexts and to provide greater

2

Configuring the SELinux Policy

efficiency, the policy enforcement code of SELinux typically handles security identifiers (SIDs) rather
than security contexts. A SID is an integer that is mapped by the security server to a security context at
runtime. SIDs are nonpersistent and local identifiers, and must be translated to security contexts for
labeling persistent objects such as files or for labeled networking. A small set of SID values are reserved
for system initialization or predefined objects; these SID values are referred to as initial SIDs.

When a security decision is required, the policy enforcement code passes a pair of SIDs (typically the
SID of a subject and the SID of an object, but sometimes a pair of subject SIDs or a pair of object SIDs),
and an object security class to the security server. The object security class indicates the kind of object,
e.g. a process, a regular file, a directory, a TCP socket, etc. The security server looks up the security
contexts for the SIDs. It then bases its decision on the attributes within the security contexts and the
object security class. The security server provides two major kinds of security decisions to the policy
enforcement code: labeling decisions and access decisions.

Labeling decisions, also referred to as transition decisions, specify the default security attributes to use
for a new subject or a new object. A process transition decision is requested when a program is executed
based on the current SID of the process and the SID of the program. An object transition decision is
requested when a new object is created based on the SID of the creating process and the SID of a related
object, e.g. the parent directory for file creations. These default labeling decisions can be overridden by
security-aware applications using the new SELinux system calls. In either case, the use of the new label
must be approved by an access decision or the operation will fail.

The policy enforcement code is responsible for binding the labels to subjects and objects in the system.
For transient objects such as processes and sockets, a SID can be associated with the corresponding
kernel object. However, persistent files and directories require additional support to provide persistent
labeling. A persistent labeling mapping is stored in each filesystem that specifies the security context for
each file and directory in that filesystem.

The persistent label mapping is partitioned into two mapping files, one that maps inodes to integer
persistent security identifiers (PSIDs) and one that maps PSIDs to security contexts. The mapping is
initialized by a utility calledsetfilesfrom a file contexts configuration that specifies security contexts for
files based on pathname regular expressions. Subsequently, the mapping is maintained dynamically by
the policy enforcing code to reflect create, delete, and relabel operations.

The file contexts configuration is logically separate from the policy configuration. The file contexts
configuration is only used by thesetfilesutility and it is only needed when initializing or resetting the
persistent label mapping. The persistent label mapping is used at runtime by the policy enforcing code.
The policy configuration is used by the security server and is needed to obtain security decisions. The
policy configuration specifies security decisions based entirely on security attributes, whereas the file
contexts configuration specifies security contexts for files based on pathnames.

Access decisions specify whether or not a permission is granted for a given pair of SIDs and class. Each
object class has a set of associated permissions defined to control operations on objects with that class.
These permission sets are represented by a bitmap called an access vector. When an access decision is
requested, the security server returns an allowed access vector containing the decisions for all of the
permissions defined for the object class. These access vectors are cached by a component of the Flask
architecture called the Access Vector Cache (AVC) for subsequent use by the policy enforcement code.
The AVC component provides an interface to the security server to support cache management for policy
changes.

In addition to providing an allowed access vector, the security server provides two access vectors related
to auditing. An auditallow decision indicates whether a permission check should be audited when it is

3

Configuring the SELinux Policy

granted. For example, if a permission is associated with a highly sensitive operation, it may be desirable
to audit every use of that operation. An auditdeny decision indicates whether a permission check should
be audited when it is denied.

2.2. Flask Definitions
A small set of configuration files are shared between the SELinux kernel module and the example policy
configuration. These files define the Flask security classes, initial SIDs, and access vector permissions.
This information is not specific to any particular security model, and should rarely change. Changes to
these files require recompilation of the module and policy, and will typically require updates to the
module and policy to use the new values. These files do not need to be modified to configure the security
model implemented by the example security server.

The meaning of the security classes and access vector permissions in the original SELinux
implementation was described in [LoscoccoNSATR2001] and [LoscoccoFreenix2001]. Changes made
for the LSM-based SELinux implementation are described in [SmalleyModuleTR2001].

The source for these files is located in theflask subdirectory of the SELinux module (in
security/selinux of the LSM-patched kernel tree). These files are installed into
/usr/local/selinux/flask and are used when the example policy configuration is compiled. The
Flask configuration files are listed inTable 1.

Table 1. Architecture Configuration Files

Filename Description

security_classes Declares the security classes.

initial_sids Declares initial SIDs.

access_vectors Defines the access vector permissions for each
class.

3. Security Model
The example security server implements a security model that is a combination of a Type Enforcement
(TE) model and a Role-Based Access Control (RBAC) model. The TE model provides fine-grained
control over processes and objects in the system, and the RBAC model provides a higher level of
abstraction to simplify user management. This section describes each of these two models, and then
discusses the concept of user identity in SELinux.

3.1. TE Model
A traditional TE model binds a security attribute called a domain to each process, and it binds a security
attribute called a type to each object. The traditional TE model treats all processes in the same domain
identically and it treats all objects that have the same type identically. Hence, domains and types can be

4

Configuring the SELinux Policy

viewed as security equivalence classes. A pair of access matrices specify how domains can access types
and how domains can interact with other domains. Each user is authorized to operate in certain domains.

A TE model supports strong controls over program execution and domain transitions. A program, like
any other object, is assigned a type, and the TE access matrix specifies what types can be executed by
each domain. Furthermore, the TE access matrix specifies what types can be executed to initially enter a
domain. Hence, a domain can be associated with a particular entrypoint program and optionally with
particular helper programs and/or shared libraries. This characteristic of TE is useful in associating
permissions with a particular set of code based on its function and trustworthiness and in protecting
against the execution of malicious code.

The SELinux TE model differs from the traditional TE model in that it uses a single type attribute in the
security context for both processes and objects. A domain is simply a type that can be associated with a
process. A single type can be used both as the domain of a process and as the type of a related object, e.g.
the /proc/PID entries for a process. A single access matrix specifies how types can access or interact with
other types in terms of the permissions defined by the Flask architecture. Although the example TE
configuration often uses the term domain when referring to the type of a process, the SELinux TE model
does not internally distinguish domains from types.

The SELinux TE model also differs from the traditional TE model in that it uses the security class
information provided by the Flask architecture. A SELinux TE transition or access decision is based on a
type pair and on the security class. Hence, the policy can treat objects that have the same type but
different security classes differently. For example, the policy can distinguish a TCP socket created by a
domain from a raw IP socket created by the same domain.

A third difference between the SELinux TE model and the traditional TE model is that the SELinux TE
model does not directly associate users with domains. Instead, SELinux uses the RBAC model to provide
an additional layer of abstraction between users and domains. This approach is discussed further in the
next subsection.

A TE transition rule for a process specifies the new domain based on the current domain of the process
and the type of the program. A TE transition rule for an object specifies the new type based on the
domain of the creating process, the type of the related object, and the object security class. If no
matching rule is found in the TE configuration, then the SELinux TE model provides a default behavior
appropriate for the class of object. For a process, the domain of the process is left unchanged across the
program execution. For an object, the type of the related object (e.g. the parent directory for files) is used
for the new object.

A TE access vector rule specifies an access vector based on the type pair and object security class. Rules
can be specified for each kind of access vector, including the allowed, auditallow, and auditdeny vectors.
These access vector rules define the TE access matrix. If no matching rule is found in the TE
configuration, then the SELinux TE model defines a default behavior for each kind of access vector.
Permissions are denied unless there is an explicit allow rule. No permissions are audited when granted
unless there is an explicit auditallow rule. Permissions are always audited when denied unless there is an
explicit dontaudit rule.

3.2. RBAC Model
A traditional RBAC model authorizes users to act in certain roles, and assigns a set of permissions to
each role. The SELinux RBAC model authorizes each user for a set of roles, and authorizes each role for

5

Configuring the SELinux Policy

a set of TE domains. A role dominance relationship can optionally be specified in the RBAC
configuration to define a hierarchy among roles. The assignment of permissions is primarily deferred to
the TE configuration. This approach combines the ease of management provided by the RBAC model
with the fine-grained protections provided by the TE model.

The SELinux RBAC model maintains a role attribute in the security context of each process. For objects,
the role attribute is typically set to a genericobject_r role and is unused. Role transitions for processes
are controlled through a combination of the RBAC and TE models. The RBAC configuration specifies
authorized transitions between roles based on the pair of roles. However, it is also desirable to limit role
transitions to certain programs to ensure that malicious code cannot cause such transitions. Hence, role
transitions are typically limited to certain TE domains in the policy configuration.

3.3. User Identity Model
The Linux user identity attributes are unsuitable for use by SELinux. Linux uids are often changed
simply to express a change in permissions or privileges as opposed to a change in the actual user, posing
problems for user accountability. Linux uids can be changed at any time via the set*uid calls, providing
no control over the inheritance of state or the initialization of the process in the new identity. Linux uids
can be arbitrarily changed by superuser processes.

Rather than imposing new restrictions on the Linux user identity attributes, SELinux maintains a user
identity attribute in the security context that is independent of the Linux user identity attributes. By using
a separate user identity attribute, the SELinux mandatory access controls remain completely orthogonal
to the existing Linux access controls. SELinux can enforce rigorous controls over changes to its user
identity attribute without affecting compatibility with Linux uid semantics.

The policy configuration limits the ability to change the SELinux user identity attribute to certain TE
domains. These domains are associated with certain programs, such as login, crond and sshd, that have
been modified to call new library functions to set the SELinux user identity appropriately. Hence, user
login sessions and cron jobs are initially associated with the appropriate SELinux user identity, but
subsequent changes in the Linux uid may not be reflected in the SELinux user identity. In some cases,
this is desirable in order to provide user accountability or to prevent security violations.

Since the SELinux user identity is independent of the Linux uid, it is possible to maintain separate user
identity spaces for SELinux and Linux, with an appropriate mapping performed by the programs that set
the SELinux user identity. For example, rather than maintaining a separate entry for each Linux user in
the SELinux policy, it may be desirable to map most Linux users to a single SELinux user that is
unprivileged. This approach is suitable when it is not necessary to separate these users via the SELinux
policy.

4. Policy Language and the Example Policy Configuration
The policy configuration is specified using a simple declarative language, originally documented
informally in [LoscoccoNSATR2001]. An example security policy configuration was written in this
language to demonstrate how SELinux can be used to meet certain security goals and to provide a
starting point for users. The example policy configuration was originally documented in
[SmalleyNAITR2001] and was also discussed in [LoscoccoOLS2001]. This section describes the policy

6

Configuring the SELinux Policy

language, using the example configuration when possible to illustrate the language constructs. This
section also describes the logically separate file contexts configuration.

The complete grammar for the policy language is specified in the
module/checkpolicy/policy_parse.y file. This section includes excerpts from the grammar,
edited in some cases for readability or to omit obsolete elements. The example policy configuration files
are located in thepolicy directory. Sincem4 macros are extensively defined and used within the
example policy configuration to ease specification, this section also describes some of the commonly
used macros. The macro definitions can be found in thepolicy/macros/global_macros.te file
unless otherwise noted.

A policy configuration consists of the following top-level components: Flask definitions, TE and RBAC
declarations and rules, user declarations, constraint definitions, and security context specifications. The
Flask definitions were discussed inSection 2.2. The TE and RBAC declarations and rules specify the
policy logic for the TE and RBAC models. The user declarations define the users for the user identity
model and authorize each user for particular roles. The constraint definitions specify additional
restrictions on permissions that can be based on a combination of information from the user identity, TE,
and RBAC models. The security context specifications provide security contexts for certain entities, such
as initial SIDs, unlabeled filesystems, and network objects. The top-level production for a policy is:

policy -> flask te_rbac users opt_constraints contexts

4.1. TE and RBAC Configuration Overview
The TE and RBAC configuration declares the roles, domains, and types and defines the labeling and
access vector rules for the TE and RBAC models. The policy language permits the TE and RBAC
configuration to be intermingled freely. The syntax of the TE and RBAC declarations and rules is shown
below:

te_rbac -> te_rbac_statement | te_rbac te_rbac_statement
te_rbac_statement -> te_statement | rbac_statement
te_statement -> attrib_decl |

type_decl |
type_transition_rule |
type_change_rule |
te_av_rule |
te_assertion

rbac_statement -> role_decl |
role_dominance |
role_allow_rule

A TE statement can be an attribute declaration, a type declaration, a type transition rule, a type change
rule, an access vector rule, or an assertion. A RBAC statement can be a role declaration, a role
dominance definition, or a role allow rule. The TE statements are described inSection 4.2, and the
RBAC statements are described inSection 4.3.

7

Configuring the SELinux Policy

4.2. TE Statements

4.2.1. Attribute Declarations

A type attribute is a name that can be used to identify a set of types with a similar property. Each type
can have any number of attributes, and each attribute can be associated with any number of types.
Attributes are associated with types in type declarations, described in the next section. Prior to the first
use of an attribute in a type declaration, the attribute must be explicitly declared. The syntax for an
attribute declaration is as follows:

attrib_decl -> ATTRIBUTE identifier ’;’

Several examples of attribute declarations are shown below:

attribute domain;
attribute privuser;
attribute privrole;

An attribute name can be used throughout the policy configuration to express the set of the types that are
associated with that attribute. Attribute names exist within the same name space as types. However, an
attribute name cannot be used in the type field of a security context. Except for certain attributes that are
significant to the optional MLS policy, attributes have no implicit meaning to SELinux. The meaning of
all other attributes are completely defined through their usage within the configuration, but should be
documented as comments preceding the attribute declaration.

4.2.2. Type Declarations

The TE configuration language requires that every type be declared. However, forward references to
types are accepted, since the policy compiler performs two passes. Each type declaration specifies a
primary name for the type, an optional set of aliases for the type, and an optional set of attributes for the
type. The syntax for a type declaration is as follows:

type_decl -> TYPE identifier opt_alias_def opt_attr_list ’;’
opt_alias_def -> ALIAS aliases | empty
aliases -> identifier | ’{’ identifier_list ’}’
identifier_list -> identifier | identifier_list identifier
opt_attr_list -> ’,’ attr_list | empty
attr_list -> identifier | attr_list ’,’ identifier

The primary name and any of the alias names can be used interchangeably within the TE configuration.
During runtime, the example security server always uses the primary name to identify the type when it
returns the security context for a SID. An application can use the primary name or any of the alias names
to identify the type when requesting a SID for a context. Aliases can be used to provide shorthand forms
or synonyms for a type, but have no significance from a security perspective. Primary names and alias
names exist in a single type name space and must all be unique.

8

Configuring the SELinux Policy

Several type declarations from the example policy configuration related to the secure shell daemon are
shown below:

type sshd_t, domain, privuser, privrole, privlog, privowner;
type sshd_exec_t, file_type, exec_type, sysadmfile;
type sshd_tmp_t, file_type, sysadmfile, tmpfile;
type sshd_var_run_t, file_type, sysadmfile, pidfile;

Thesshd_t type is the domain of the daemon process. Thesshd_exec_t type is the type of thesshd

executable. Thesshd_tmp_t andsshd_var_run_t types are the types for temporary files and PID
files, respectively, that are created by the daemon process. Each of these types has a set of associated
attributes that are used in rules within the TE configuration.

4.2.3. TE Transition Rules

As described inSection 3.1, TE transition rules specify the new domain for a process or the new type for
an object. In either case, the new type is based on a pair of types and a class. For a process, the first type,
referred to as the source type, is the current domain and the second type, referred to as the target type, is
the type of the executable. For an object, the source type is the domain of the creating process and the
target type is the type of a related object, e.g. the parent directory for files. A TE transition rule for a
process or an object uses the following syntax:

type_transition_rule -> TYPE_TRANSITION source_types target_types ’:’ classes new_type ’;’
source_types -> set
target_types -> set
classes -> set
new_type -> identifier
set -> ’*’ | identifier | ’{’ identifier_list ’}’ | ’~’ identifier | ’~’ ’{’ identifier_list ’}’

The syntax permits concise specification of multiple TE transition rules through the optional use of sets
for the source type, target type, or security class fields. Type attribute names can also be used to specify
the source or target type fields to represent all types with that attribute. The tilde (~) character can be
used to indicate the complement of a set. The asterisk (*) character can be used to represent all types or
classes. If multiple rules are specified for a given type pair and class, then warnings are issued by the
policy compiler and the last such rule is used.

Several TE transition rules from the example policy configuration related to the secure shell daemon are
shown below:

type_transition initrc_t sshd_exec_t:process sshd_t;
type_transition sshd_t tmp_t:{ dir file lnk_file

sock_file fifo_file } sshd_tmp_t;
type_transition sshd_t shell_exec_t:process user_t;

The initrc_t type is the domain entered when theinit process runs the/etc/rc.d scripts. The first
rule specifies that this domain should transition to thesshd_t domain when it executes a program with
thesshd_exec_t type. Thetmp_t type is the type of the/tmp directory. The second rule specifies that
when thesshd_t domain creates a file in a directory with this type, the new subdirectory or file should
be labeled with thesshd_tmp_t type. Theshell_exec_t type is the type of shell programs. The last

9

Configuring the SELinux Policy

rule specifies that thesshd_t domain should transition to theuser_t domain when it executes a
program with the typeshell_exec_t .

It is often desirable to specify a single TE transition rule that specifies the new type for a set of related
classes, e.g. all file classes. Hence, a set of macros are defined for related classes, as shown inTable 2.
Any one of these macros can be used in the class field of a TE transition rule, as shown in the following:

type_transition sshd_t tmp_t:notdevfile_class_set sshd_tmp_t;
type_transition cardmgr_t tmp_t:devfile_class_set cardmgr_dev_t;

Table 2. Class Macros

Macro Name Description

dir_file_class_set All directory and file classes.

file_class_set All file classes (excludes dir).

notdevfile_class_set Non-device file classes.

devfile_class_set Device file classes.

socket_class_set All socket classes.

dgram_socket_class_set Datagram socket classes.

stream_socket_class_set Stream socket classes.

unpriv_socket_class_set Unprivileged socket classes (excludes rawip,
netlink, packet, key).

Since each TE transition rule requires a set of corresponding TE access vector rules to authorize the
operation, macros are provided that expand to common combinations of TE labeling rules and TE access
vector rules. These macros are typically used instead of directly specifying TE transition rules. The
domain_auto_trans macro is defined for domain transitions, and thefile_type_auto_trans

macro is defined for file type transitions. Thedomain_auto_trans macro takes the current domain, the
program type, and the new domain as its parameters. Thefile_type_auto_trans macro takes the
creating domain, the parent directory type, and the new file type as its parameters. The initial set of
example transition rules shown earlier in this section are specified indirectly in the example policy
configuration by using these macros, as shown below:

domain_auto_trans(initrc_t, sshd_exec_t, sshd_t)
file_type_auto_trans(sshd_t, tmp_t, sshd_tmp_t)
domain_auto_trans(sshd_t, shell_exec_t, user_t)

4.2.4. TE Change Rules

In addition to supporting TE transition rules, the TE configuration language also permits specification of
TE change rules. These rules are not used by the kernel, but can be obtained and used by security-aware
applications through thesecurity_change_sid system call. A TE change rule specifies the new type
to use for a relabeling operation based on the domain of a user process, the current type of the object, and
the class of the object. In the example policy configuration, these rules are used to specify the types to

10

Configuring the SELinux Policy

use when system daemons relabel terminal devices for user sessions. The syntax is the same as a TE
transition rule except for the use of thetype_change keyword.

Several examples of TE change rules are shown below:

type_change user_t tty_device_t:chr_file user_tty_device_t;
type_change sysadm_t tty_device_t:chr_file sysadm_tty_device_t;
type_change user_t sshd_devpts_t:chr_file user_devpts_t;
type_change sysadm_t sshd_devpts_t:chr_file sysadm_devpts_t;

The first pair of rules specify the types for user and administrator terminals for ordinary terminal devices.
The login process obtains and uses the decisions specified by these rules when creating local user
sessions. The second pair of rules specify the types for user and administrator terminals for
pseudo-terminal devices that were initially allocated by thesshd daemon.

4.2.5. TE Access Vector Rules

A TE access vector rule specifies a set of permissions based on a type pair and an object security class.
These rules define the TE access matrix, as discussed inSection 3.1. Rules can be specified for each kind
of access vector, including the allowed, auditallow, and auditdeny vectors. The syntax of an access vector
rule is:

te_av_rule -> av_kind source_types target_types ’:’ classes permissions ’;’
av_kind -> ALLOW | AUDITALLOW | DONTAUDIT
source_types -> set
target_types -> set
classes -> set
permissions -> set
set -> ’*’ | identifier | ’{’ identifier_list ’}’ | ’~’ identifier | ’~’ ’{’ identifier_list ’}’

As with TE transition rules, the syntax permits concise specification of multiple TE access vector rules
through the optional use of sets for the source type, target type, class, or permission fields. Type attribute
names can be used in any of the type fields. The tilde (~) character and the asterisk (*) character can be
used in any of the fields. The identifierself can be used in the target type field to indicate that the rule
should be applied between each source type and itself. If multiple classes are specified in the class field,
then each permission in the permission field must be defined for that class. If multiple allow, auditallow,
or dontaudit access vector rules are specified for a given type pair and class, then the union of the
permission sets is used.

Several TE access vector rules from the example policy configuration related to the secure shell daemon
are shown below:

allow sshd_t sshd_exec_t:file { read execute entrypoint };
allow sshd_t sshd_tmp_t:file { create read write getattr setattr link unlink rename };
allow sshd_t user_t:process transition;

The first rule specifies that thesshd_t domain can read, execute, and be entered via a file with the
sshd_exec_t type. The second rule specifies that the domain can create and access files with the
sshd_tmp_t type. The third rule specifies that the domain can transition to theuser_t domain.

11

Configuring the SELinux Policy

As with TE transition rules, a class macro can be used in the class field of a TE access vector rule. Care
should be taken in using these macros to avoid granting unintended accesses, e.g. using the
file_class_set macro instead of thenotdevfile_class_set macro in a rule will grant
permissions to all file classes, including device files. Since SELinux defines a large number of
fine-grained permissions for each class, macros are also defined for common groupings of permissions.
As with the class macros, care should be taken when using these macros to avoid granting unintended
accesses. Some of these macros are shown inTable 3, Table 4, andTable 5. Any one of these macros can
be used in the permissions field of a TE transition rule, as shown in the following:

allow sshd_t sshd_tmp_t:notdevfile_class_set create_file_perms;
allow sshd_t sshd_tmp_t:dir create_dir_perms;

Table 3. File Permission Macros

Macro Name Description

stat_file_perms Permissions to call stat or access on a file.

x_file_perms Permissions to execute a file.

r_file_perms Permissions to read a file.

rx_file_perms Permissions to read and execute a file.

rw_file_perms Permissions to read and write a file.

ra_file_perms Permissions to read and append to a file.

link_file_perms Permissions to link, unlink, or rename a file.

create_file_perms Permissions to create, access, and delete a file.

r_dir_perms Permissions to read and search a directory.

rw_dir_perms Permissions to read and modify a directory.

ra_dir_perms Permissions to read and add entries to a directory.

create_dir_perms Permissions to create, access, and delete a
directory.

mount_fs_perms Permissions to mount and unmount a filesystem.

Table 4. Socket Permission Macros

Macro Name Description

rw_socket_perms Permissions to use a socket.

create_socket_perms Permissions to create and use a socket.

rw_stream_socket_perms Permissions to use a stream socket.

create_stream_socket_perms Permissions to create and use a stream socket.

Table 5. IPC Permission Macros

Macro Name Description

r_sem_perms Permissions to read a semaphore.

rw_sem_perms Permissions to create and use a semaphore.

12

Configuring the SELinux Policy

Macro Name Description

r_msgq_perms Permissions to read a message queue.

rw_msgq_perms Permissions to create and use a message queue.

r_shm_perms Permissions to read shared memory.

rw_shm_perms Permissions to create and use shared memory.

As discussed inSection 4.2.3, macros are defined for common groupings of TE transition rules and TE
access vector rules, e.g.domain_auto_trans andfile_type_auto_trans . In some cases, it is
desirable to grant the necessary permissions for a domain transition or file type transition without making
it the default behavior. For example, by default,sshd_t transitions touser_t when executing the shell,
but it is also permitted to explicitly transition tosysadm_t . Hence, macros are also provided that expand
to the necessary TE access vector rules without any TE transition rules:domain_trans and
file_type_trans . The following example shows how the two domain transition macros are used for
the secure shell daemon:

domain_auto_trans(sshd_t, shell_exec_t, user_t)
domain_trans(sshd_t, shell_exec_t, sysadm_t)

Other macros are also defined for common groupings of TE access vector rules. Some of the macros are
listed inTable 6. As with other macros, care should be taken when using these macros to avoid granting
unintended permissions.

Table 6. TE Access Vector Rule Macros

Macro Name Parameters Description

general_domain_access The current domain. Authorizes a domain to access
processes, /proc/PID files, file
descriptors, pipes, Unix sockets,
and System V IPC objects within
the domain. Also grants a few
other common permissions for
domains.

general_proc_read_access The current domain. Authorizes a domain to read
most of /proc, excluding the
/proc/PID files and certain
sensitive files.

general_file_read_access The current domain. Authorizes a domain to read
many system file types.

general_file_write_access The current domain. Authorizes a domain to write a
small set of system file types,
e.g. /tmp, /dev/null, etc. Derived
types should be defined for
shared directories.

13

Configuring the SELinux Policy

Macro Name Parameters Description

uses_shlib The current domain. Authorizes a domain to execute
the types for the dynamic linker
and system shared libraries.

can_network The current domain. Authorizes a domain to create
UDP and TCP sockets and to
access the network.

every_domain The current domain. Authorizes a domain for many
common operations, including
all of the above macros.

domain_trans and
domain_auto_trans

The current domain.
The executable type.
The new domain.

Authorizes a domain transition,
and makes it the default in the
latter macro.

file_type_trans and
file_type_auto_trans

The creating domain.
The parent directory type.
The new file type.

Authorizes a file type transition,
and makes it the default in the
latter macro.

can_exec The current domain.
The file type.

Authorizes a domain to execute a
type without changing domains.

can_exec_any The current domain. Authorizes a domain to execute
the types for a variety of system
files.

can_unix_connect The client domain.
The server domain.

Authorizes one domain to
connect to another via a Unix
stream socket. A separate allow
rule is needed to grant access to
the type for the socket file.

can_unix_send The sending domain.
The receiving domain.

Authorizes one domain to send
to another via a Unix datagram
socket. A separate allow rule is
needed to grant access to the type
for the socket file.

can_tcp_connect The client domain.
The server domain.

Authorizes one domain to
connect to another via a TCP
socket. This domain-to-domain
check is only possible on
loopback or with labeled
networking. Otherwise, the
can_network macro is sufficient
for network access.

14

Configuring the SELinux Policy

Macro Name Parameters Description

can_udp_send The sending domain.
The receiving domain.

Authorizes one domain to send to
another via a UDP socket. This
domain-to-domain check is only
possible on loopback or with
labeled networking. Otherwise,
the can_network macro is
sufficient for network access.

can_sysctl The current domain. Authorizes a domain to modify
any sysctl parameters.

can_create_pty The current domain’s prefix
(without the _t).

Defines a type transition for
/dev/pts files and authorizes the
domain for the pty type.

can_create_other_pty The creating domain’s prefix.
The other domain’s prefix.

Authorizes a domain to create
ptys for another domain.

4.2.6. TE Access Vector Assertions

The TE configuration language allows the policy writer to define a set of access vector assertions that are
checked by the policy compiler. An access vector assertion specifies permissions that should not be in an
access vector for a given type pair and class. If any of the specified permissions are in an access vector
for that type pair and class, then the policy compiler will reject the TE configuration. Assertions can be
used to detect errors in the TE access vector rules that may not be evident from a manual inspection of
the rules, due to the use of sets, macros, aliases, and attributes.

At present, assertions can only be defined for the allowed access vectors, but support for assertions on
the other kinds of access vectors could be easily added. Assertions on the allowed access vector are
specified using theneverallow keyword and otherwise use the same syntax as an access vector rule.
Some examples of assertions are shown below:

neverallow domain ~domain:process transition;
neverallow ~{ kmod_t insmod_t rmmod_t ifconfig_t } self:capability sys_module;
neverallow local_login_t ~login_exec_t:file entrypoint;

Thedomain attribute is associated with all types that are used as domains in the example policy
configuration, and expands to that set of types when used in this rule. The first assertion verifies that a
domain can never transition to a non-domain. This ensures that every type that is used for a process is
properly tagged with thedomain attribute. The second assertion verifies that only certain domains can
use thesys_module capability. The third assertion verifies that thelocal_login_t domain can only
be entered via a program with thelogin_exec_t type.

4.2.7. Unused TE Rules

The TE configuration language defines another kind of TE rule: type member rules. Type member rules
specify the type for a member of a polyinstantiated object based on the domain of the process and the

15

Configuring the SELinux Policy

type of the polyinstantiated object. Since SELinux does not yet implement polyinstantiation, these rules
are not currently used and this report does not discuss them in detail. The syntax of a type member rule is
identical to a TE transition rule except for the use of atype_member keyword. Polyinstantiation is
discussed in [SpencerUsenixSec1999].

4.2.8. Example TE Configuration

Since the TE configuration specifies the fine-grained protections for processes and objects, it is the largest
component of the example policy configuration. The TE configuration is organized into a collection of
files to ease management. However, this internal structure is not imposed by the policy language and can
be changed if desired. The only ordering restriction is that them4 macros must be defined prior to use.

The TE configuration files are listed inTable 7. Themacros directory contains m4 macros that are used
by the TE configuration. Theattrib.te file declares the type attributes. Thetypes directory contains
declarations for general types and rules specifying relationships between these types. Thedomains

directory contains the declarations and rules for each domain, and is further subdivided into several
logical groupings. Types that are associated with a particular domain are declared in the appropriate
domain definition file within this directory rather than in thetypes directory. Theassert.te file
specifies TE assertions.

Table 7. TE Configuration Files

Filename Description

macros/global_macros.te Defines global macros.

macros/user_macros.te Defines macros for user domains.

macros/admin_macros.te Defines macros for admin domains.

macros/program/*_macros.te Defines macros for program domains.

attrib.te Defines type attributes.

types/*.te Defines general types.

domains/user.te Defines unprivileged user domains.

domains/admin.te Defines administrator domains.

domains/httpadm.te Defines web administrator domains.

domains/program/*.te Defines domains for programs.

domains/misc/*.te Defines domains for special processes like kernel
threads.

assert.te Defines assertions on the TE configuration.

The example TE configuration is focused on protecting the integrity of the base system, confining and
protecting system processes, and protecting administrator processes. It also includes an example of how
to confine a user’s browser. Other kinds of security goals, such as trusted pipelines or data confidentiality,
can be achieved through the TE configuration, but are not currently demonstrated in the example TE
configuration.

The example TE configuration defines types to protect the integrity of the kernel, system software,
system configuration information, and system logs. It defines domains for a large number of system

16

Configuring the SELinux Policy

processes and several privileged user programs, along with corresponding types for objects accessed by
these processes. Two domains are defined for user processes: theuser_t domain for ordinary users and
thesysadm_t domain for system administrators. These domains are associated with the user’s initial
login shell. These domains automatically transition to other domains to gain or shed permissions when
user programs with certain types are run.

4.3. RBAC Statements

4.3.1. Role Declarations and Dominance

Roles are declared and authorized for particular domains (types) through role declarations and optionally
through the role dominance relationship. A role declaration specifies the name of the role and the set of
domains for which the role is authorized. The syntax for a role declaration is as follows:

role_decl -> ROLE identifier TYPES types ’;’
types -> set
set -> ’*’ | identifier | ’{’ identifier_list ’}’ | ’~’ identifier | ’~’ ’{’ identifier_list ’}’

The RBAC configuration language uses thetypes keyword in the role declaration because the SELinux
TE model uses a single type abstraction. However, specifying any type that is not a domain serves no
purpose (but also does no harm). Multiple role declarations can be specified for a single role, in which
case the union of the types will be authorized for the role. This feature in combination with the ability to
intermingle RBAC and TE statements permits a role declaration for each domain to be located with the
definition of the domain in the TE configuration if desired. This approach is used in the example policy
configuration. Some examples of role declarations are shown below:

role system_r types { kernel_t initrc_t getty_t klogd_t };
role user_r types { user_t user_netscape_t };
role sysadm_r types { sysadm_t run_init_t };

Role dominance definitions can optionally be used to specify a hierarchy among roles. A role
automatically inherits any domains that are authorized for any role that it dominates in the hierarchy in
addition to any domains specified in role declarations. A role can be defined solely through a role
dominance definition if desired, in which case the role will only be authorized for the domains of roles
that it dominates. Role dominance definitions are not used in the example policy configuration. The
syntax for a role dominance statement is as follows:

role_dominance -> DOMINANCE ’{’ roles ’}’
roles -> role_def | roles role_def
role_def -> ROLE identifier ’;’ | ROLE identifier ’{’ roles ’}’

17

Configuring the SELinux Policy

4.3.2. Role Allow Rules

A role allow rule specifies authorized transitions between roles based on the pair of roles. Unlike domain
transitions, the RBAC policy does not control role transitions based on the type of the entrypoint
program. However, role transitions can be restricted based on type attributes using the constraints
configuration, as discussed inSection 4.5. The syntax of a role allow rule is:

role_allow_rule -> ALLOW current_roles new_roles ’;’
current_roles -> set
new_roles -> set
set -> ’*’ | identifier | ’{’ identifier_list ’}’ | ’~’ identifier | ’~’ ’{’ identifier_list ’}’

In the example policy configuration, role allow rules serve little purpose, since most pairings of roles
need to be authorized to support normal transitions from system daemons to user or administrator shells,
from user shells to administrator shells (vianewrole), and from administrator shells to system daemons
(via run_init). The example policy configuration uses the constraints configuration to limit role
transitions to certain TE domains that are associated with processes such aslogin andnewrole .
Examples of role allow rules are shown below:

allow system_r { user_r sysadm_r };
allow user_r sysadm_r;
allow sysadm_r system_r;

4.3.3. Obsolete RBAC Rules

The RBAC configuration language defines one other kind of RBAC rule: role transition rules. A role
transition rule specifies the new role of a process based on the current role of the process and the TE type
of the executable. If no matching rule is specified, then the process remains in the same role by default.
Role transition rules are deprecated due to their limitations and will be removed from the language in the
future. The preferred technique for automatically changing permissions upon program execution is to
define a domain transition while remaining in the same role. Role changes should only occur explicitly at
the request of the user. The syntax of a role transition rule is:

role_transition_rule -> ROLE_TRANSITION current_roles types new_role ’;’
current_roles -> set
types -> set
new_role -> identifier
set -> ’*’ | identifier | ’{’ identifier_list ’}’ | ’~’ identifier | ’~’ ’{’ identifier_list ’}’

4.3.4. Example RBAC Configuration

The example RBAC configuration consists of role declarations co-located with the domain declarations
in the TE configuration and a separaterbac file for role allow statements. The example RBAC
configuration does not specify any role dominance declarations or any role transition rules.

18

Configuring the SELinux Policy

The example RBAC configuration defines three roles for processes. All system processes run in the
system_r role. This role is authorized for each of the domains defined for system processes. The
user_r andsysadm_r roles are defined for ordinary users and administrators, respectively. Each of
these roles is authorized for the correspondinguser_t or sysadm_t domain, as well as for domains for
appropriate user programs. Anewroleprogram was added to support role changes within a user session
and arun_init program was added to support runningrc scripts in the proper role and user identity.

4.4. User Declarations
The user declarations define each user recognized by the policy and specifies the set of authorized roles
for each of these users. Only the user identities specified in this configuration can be used in a security
context. The user configuration has the following syntax:

users -> user_decl | users user_decl
user_decl -> USER identifier ROLES set ’;’
set -> ’*’ | identifier | ’{’ identifier_list ’}’ | ’~’ identifier | ’~’ ’{’ identifier_list ’}’

The user identity attribute in the security context remains unchanged by default when a program is
executed. Security-aware applications, such as the modifiedlogin or sshd programs, can explicitly
specify a different user identity using theexecve_secure system call. The ability to transition to a
different user identity can be controlled based on the TE domain through the constraints configuration, as
discussed inSection 4.5. There are no user transition or user allow rules in the policy language.
Examples of user declarations are shown below:

user system_u roles system_r;
user root roles { user_r sysadm_r };
user jdoe roles user_r;

The example user configuration is located in theusers file. It defines a system user identity, a generic
user identity, a root user identity, and a couple of example users. The example users should be removed
during installation, as mentioned in the installationREADME. Each of the other users are discussed further
below.

Thesystem_u user identity is defined for system processes and objects. There should be no
corresponding Linux user identity in/etc/passwd for system_u , and a user process should never be
assigned this identity. This user identity is authorized for thesystem_r role.

Theuser_u user identity is a generic user identity for unprivileged users that do not need to be separated
by the policy. This concept was introduced inSection 3.3. There should be no corresponding Linux user
identity in /etc/passwd for this user. The modified daemons will map Linux users who do not have a
particular entry defined in theusers file to this generic user identity for the SELinux security context.
This user identity is authorized for theuser_r role for ordinary users. This identity can be removed if
the administrator does not wish to grant any access to users who lack specific entries in theusers file.

The remaining users listed in the configuration correspond to Linux user identities in/etc/passwd .
These user identities are assigned to user processes when the login shell or cron job is created. Entries
are not required for pseudo users who do not perform logins or run cron jobs. Furthermore, if the

19

Configuring the SELinux Policy

user_u user identity is retained in this file, then entries are only required for users who should have
administrator access (or who otherwise need to be separated by the policy from other users, e.g. if
additional roles and domains are defined for users).

Theroot user identity is authorized for theuser_r and thesysadm_r roles. It is important to note that
processes that have the Linux root uid do not necessarily have the SELinuxroot user identity, since
these identities are independent. The SELinux user identity can only be set by certain TE domains such
as the domain forlogin . The SELinuxroot user identity is not assigned to setuid root programs or to
system processes. It is also not set by thesuprogram.

4.5. Constraint Definitions
The constraint definitions specify additional constraints on permissions in the form of boolean
expressions that must be satisfied in order for the specified permissions to be granted. The boolean
expressions can be based on the user identity, role, or type attributes in the pair of security contexts. The
syntax of the constraints configuration is as follows:

opt_constraints -> constraints | empty
constraints -> constraint_def | constraints constraint_def
constraint_def -> CONSTRAIN classes permissions cexpr ’;’
classes -> set
permissions -> set
cexpr -> ’(’ cexpr ’)’ | not cexpr | expr and expr | expr or expr |

U1 op U2 | U1 op user_set | U2 op user_set |
R1 role_op R2 | R1 op role_set | R2 op role_set
T1 op T2 | T1 op type_set | T2 op type_set

not -> ’!’ | NOT
and -> ’&&’ | AND
or -> ’||’ | OR
op -> ’==’ | ’!=’
role_op -> op | DOM | DOMBY | INCOMP
user_set -> set
role_set -> set
type_set -> set
set -> ’*’ | identifier | ’{’ identifier_list ’}’ | ’~’ identifier | ’~’ ’{’ identifier_list ’}’

The same constraint can be imposed on multiple classes and permissions by optionally specifying sets
for the class or permission fields. If multiple classes are specified, then each permission must be defined
for each of the specified classes. The boolean expression must then evaluated to true in order for the
specified permissions to be granted. Several primitives are supported in the boolean expression. The user
identity attributes of the pair of security contexts, represented byu1 andu2, can be compared with each
other or with a particular set of user identities. Likewise, the role attributes, represented byr1 andr2 ,
can be compared with each other or with a particular set of roles. In addition to simple equality
comparisons, the roles can be compared based on the dominance relationship. The type attributes,
represented byt1 andt2 , can be compared with each other or with a particular set of types.

The example constraints configuration is located in theconstraints file. The example policy
configuration uses constraints to restrict the ability to transition to different roles or user identities to
certain TE domains. To ease specification of these constraints, the example policy configuration defines

20

Configuring the SELinux Policy

type attributes for domains that are privileged with respect to setting the user identity on processes (the
privuser attribute), domains that are privileged with respect to setting the role on processes (the
privrole attribute), and domains that are privileged with respect to setting the user identity on files (the
privowner attribute). These attributes are then associated with the proper set of domains and used in the
constraints configuration. Example constraints are shown below:

constrain process transition (u1 == u2 or t1 == privuser);
constrain process transition (r1 == r2 or t1 == privrole);
constrain dir_file_class_set { create relabelto relabelfrom }

(u1 == u2 or t1 == privowner);

The first constraint requires that the user identity remain the same on a process transition unless the
current domain of the process is in the set of types with theprivuser attribute. The second constraint
likewise prevents role changes unless unless the current domain of the process is in the set of types with
theprivrole attribute. The last constraint prevents a process from creating or relabeling a file with a
different user identity unless it has theprivowner attribute.

4.6. Security Context Specifications
The security contexts specifications provide security contexts for various entities such as initial SIDs,
pseudo filesystem entries, and network objects. It also specifies the labeling behavior to use for each
filesystem type. Each of these entities and the corresponding configuration is discussed in the following
subsections. The top-level production for the security contexts configuration is:

contexts -> initial_sid_contexts fs_uses opt_genfs_contexts net_contexts

4.6.1. Initial SID Contexts

As discussed inSection 2, initial SIDs are SID values that are reserved for system initialization or
predefined objects. The initial SID contexts configuration specifies a security context for each initial SID.
A security context consists of a user identity, a role, and a type. The syntax of the initial SID contexts
configuration is shown below:

initial_sid_contexts -> initial_sid_context_def |
initial_sid_contexts initial_sid_context_def

initial_sid_context_def -> SID identifier security_context
security_context -> user ’:’ role ’:’ type
user -> identifier
role -> identifier
type -> identifier

The example initial SID contexts configuration is located in theinitial_sid_contexts file. A
separate domain or type is defined for each initial SID so that the TE configuration can distinguish
among the initial SIDs. All of the initial SID contexts use thesystem_u user identity, since they
represent system processes and objects. Initial SID contexts for processes use thesystem_r role, while

21

Configuring the SELinux Policy

those for objects use theobject_r predefined role. Several examples of initial SID contexts entries are
shown below:

sid kernel system_u:system_r:kernel_t
sid init system_u:system_r:init_t
sid proc system_u:object_r:proc_t

4.6.2. Filesystem Labeling Behaviors

When a filesystem is mounted by the SELinux kernel, the security server is consulted to determine the
proper labeling behavior for inodes in the filesystem based on the filesystem type. The labeling behavior
for a filesystem type can be specified using thefs_use configuration or using thegenfs_contexts

configuration. If no labeling behavior is specified for a filesystem type, then all inodes in that filesystem
will be labeled with the security context associated with theunlabeled initial SID.

For conventional filesystem types that have unique and persistent inode numbers, SELinux can use a
persistent label mapping to determine the security context of inodes within the filesystem and the
security context of the filesystem itself. This behavior is specified using afs_use_psid statement with
the filesystem type name. Several examples are shown below:

fs_use_psid ext2;
fs_use_psid ext3;
fs_use_psid reiserfs;

For pseudo filesystem types representing pipe and socket objects, SELinux typically assigns the context
of the creating process to the inode that represents the object. This behavior is specified using the
fs_use_task statement with the filesystem type name and a security context to use for the filesystem
itself. Two examples are shown below:

fs_use_task pipefs system_u:object_r:fs_t;
fs_use_task sockfs system_u:object_r:fs_t;

For pseudo filesystems representing pseudo terminals and shared memory objects, SELinux typically
assigns a context derived from both the context of the creating process and a context associated with the
filesystem type. These derived contexts are determined based on type transition rules within the
configuration. This behavior is specified using thefs_use_trans statement with the filesystem type
name and a security context to use for the filesystem itself. Two examples are shown below:

fs_use_trans devpts system_u:object_r:devpts_t;
fs_use_trans tmpfs system_u:object_r:tmpfs_t;

The syntax of thefs_use configuration is:

fs_uses -> fs_use_def | fs_uses fs_use_def
fs_use_def -> FS_USE_PSID fstype ’;’ |

22

Configuring the SELinux Policy

FS_USE_TASK fstype security_context ’;’
FS_USE_TRANS fstype security_context ’;’

4.6.3. Genfs Contexts

For filesystem types that cannot support persistent label mappings or use one of the fixed labeling
schemes specified infs_use , thegenfs_contexts configuration is consulted to determine a security
context based on the filesystem type, the file pathname, and optionally the file type. The filesystem is
labeled with the same security context as the root directory when this configuration is used. Pathnames
are specified relative to the root of the filesystem. The specification with the longest matching pathname
prefix and (if specified) a matching file type is used. The file type is specified using the character shown
in the mode field byls. The syntax of the genfs contexts configuration is shown below:

opt_genfs_contexts -> genfs_contexts | empty
genfs_contexts -> genfs_context_def | genfs_contexts genfs_context_def
genfs_context_def -> GENFSCON fstype pathprefix ’-’ file_type security_context |

GENFSCON fstype pathprefix security_context
file_type -> ’b’ | ’c’ | ’d’ | ’p’ | ’l’ | ’s’ | ’-’

The example genfs contexts configuration is located in thegenfs_contexts file. It provides example
definitions for several pseudo filesystem types, includingproc , devfs , usbdevfs , anddriverfs .
Since labeling for NFS filesystems has not yet been addressed, it also provides a definition for NFS
filesystems.

The example genfs contexts configuration assigns a single type to most of/proc , with distinct types
assigned to thekmsg andkcore files as examples of finer-grained access. The/proc/PID directories
and/proc/sys tree do not use this configuration, since their contexts are implicitly derived from the
context of the associated process or the corresponding sysctl variable, respectively. Example entries for
/proc are shown below:

genfscon proc / system_u:object_r:proc_t
genfscon proc /kmsg system_u:object_r:proc_kmsg_t
genfscon proc /kcore system_u:object_r:proc_kcore_t

The example genfs contexts configuration seeks to provide similar types fordevfs entries as for the
ordinary/dev entries in the file contexts configuration. Several examples of devfs contexts entries are
shown below:

genfscon devfs / system_u:object_r:devfs_t
genfscon devfs /null system_u:object_r:null_device_t
genfscon devfs /console system_u:object_r:console_device_t
genfscon devfs /kmem system_u:object_r:memory_device_t
genfscon devfs /scsi -c system_u:object_r:fixed_disk_device_t
genfscon devfs /scsi -b system_u:object_r:fixed_disk_device_t

23

Configuring the SELinux Policy

4.6.4. Network Object Contexts

The network object contexts configuration permits the specification of security contexts for ports,
network interfaces, and nodes (hosts). With the original SELinux kernel patch, it was also possible to
specify security contexts for NFS files based on the NFS server, but this support has not yet been adapted
to the LSM-based SELinux. The security context associated with a port is used in permission checks to
control the ability to bind to a given port. A network interface has two associated security contexts: the
context of the interface and the default context to assign to unlabeled packets received on the interface. A
node has a single security context. The security contexts of network interface and nodes are used in the
networking permission checks and can be used to control network traffic. For each of these objects, an
appropriate initial SID is defined to use as a default context if no matching entry is found in the
configuration. The syntax of the network object security contexts configuration is shown below:

net_contexts -> opt_port_contexts opt_netif_contexts opt_node_contexts
opt_port_contexts -> port_contexts | empty
port_contexts -> port_context_def | port_contexts port_context_def
port_context_def -> PORTCON protocol port security_context |

PORTCON protocol portrange security_context
protocol -> ’tcp’ | ’udp’
port -> integer
portrange -> port ’-’ port
opt_netif_contexts -> netif_contexts | empty
netif_contexts -> netif_context_def | netif_contexts netif_context_def
netif_context_def -> NETIFCON interface device_context packet_context
device_context -> security_context
packet_context -> security_context
opt_node_contexts -> node_contexts | empty
node_contexts -> node_context_def | node_contexts node_context_def
node_context_def -> NODECON ipv4_address ipv4_mask security_context

The example network contexts configuration is located in thenet_contexts file. Security contexts are
defined for a few port numbers as examples, with most port numbers defaulting to theport initial SID.
Likewise, examples are provided for security contexts for network interfaces and nodes. Several
examples of network contexts entries are shown below:

Ports
portcon tcp 80 system_u:object_r:http_port_t
portcon tcp 8080 system_u:object_r:http_port_t
Network interfaces
netifcon eth0 system_u:object_r:netif_eth0_t system_u:object_r:netmsg_eth0_t
netifcon eth1 system_u:object_r:netif_eth1_t system_u:object_r:netmsg_eth1_t
Nodes
nodecon 10.33.10.66 255.255.255.255 system_u:object_r:node_zeus_t
nodecon 10.33.10.0 255.255.255.0 system_u:object_r:node_any_t

24

Configuring the SELinux Policy

4.7. File Contexts Configuration
As explained inSection 2.1, the security contexts of persistent files are maintained using a persistent
label mapping in each filesystem. The persistent label mapping is initialized during installation using the
setfilesprogram. This program reads the file contexts configuration that specifies security contexts for
files based on pathname regular expressions. It then creates or updates the persistent label mapping.

The file contexts configuration is located under thepolicy/file_contexts subdirectory. It is
generated from one base configuration file (types.fc) and a collection of configuration files specific to
each program domain (program/*.fc). Each specification within these configuration files has the
syntax:

file_context_spec -> pathname_regexp opt_security_context |
pathname_regexp ’-’ file_type opt_security_context

file_type -> ’b’ | ’c’ | ’d’ | ’p’ | ’l’ | ’s’ | ’-’
opt_security_context -> <<none >> | user ’:’ role ’:’ type
user -> identifier
role -> identifier
type -> identifier

By default, each pathname regular expression is an anchored match on both ends, i.e. a caret (^) is
prepended and a dollar sign ($) is appended automatically. This default can be overridden by using .* at
the beginning and/or end of the expression. The optional file type field specifies the file type as shown in
the mode field byls. If specified, then the specification must match both the pathname regular expression
and the file type. The value of ’<<none>>’ indicates that matching files should not be relabeled. The
last matching specification is used. If there are multiple hard links to a file that match different
specifications, then a warning is displayed by thesetfilesutility but the file is still labeled based on the
last matching specification other than ’<<none>>’

Several examples of file contexts specifications are shown below:

/bin(|/.*) system_u:object_r:bin_t
/bin/login system_u:object_r:login_exec_t
/bin/bash system_u:object_r:shell_exec_t
/dev/[^/]*tty[^/]* system_u:object_r:tty_device_t
.*/lost\+found(|/.*) system_u:object_r:lost_found_t

5. Building and Applying the Policy
The policy configuration is compiled into a binary representation that can be loaded by the example
security server. In addition to compiling and loading the policy, filesystems must be labeled appropriately
in order for the policy to be applied to a system. This section describes how the policy is compiled and
loaded, and how the file contexts configuration is applied to the filesystem.

25

Configuring the SELinux Policy

5.1. Compiling and Loading the Policy
The example policy configuration must be compiled into a binary representation before it can be read by
the example security server. The compilation is performed by runningmake in thepolicy directory.
The compilation involves three steps. First, the example policy configuration files are concatenated
togther. Second, them4 macro processor is applied to the resulting concatenation to expand macros,
yielding thepolicy.conf file. Thecheckpolicypolicy compiler is then run on this file to generate the
binary representation in thepolicy.VERSION file, where VERSION represents the version number.

Thepolicy.VERSION file can be installed into the/etc/security/selinux directory by running
make install. The policy will then be loaded by the example security server when the kernel is next
rebooted. If a runtime policy change is desired (and authorized by the policy configuration), then the
make loadcommand can be run to load the policy into a running kernel. In the example policy
configuration, dynamically reloading the policy can only be done by thesysadm_t domain.

5.2. Applying the File Contexts Configuration
The file contexts configuration must be applied to the filesystem, creating or updating the persistent label
mappings, before it is used by the kernel. The persistent label mappings can be created or updated by
runningmake relabel in thepolicy directory. This command involves two steps. The file contexts
configuration files under thefile_contexts subdirectory are first concatenated together to form the
file_contexts/file_contexts specification file. Thesetfilesutility is run on this specification file,
applying the file security contexts to all mounted ext2, ext3, or reiserfs filesystems. This is initially done
during installation.

After SELinux has been installed, the persistent label mapping in each filesystem is maintained
dynamically by the SELinux kernel to reflect create, delete, and relabel operations. However,make
relabel can be run on the SELinux kernel to update the persistent label mappings with a new file contexts
configuration or to reset the mappings to the original configuration. When run on a SELinux kernel, the
setfilesutility uses the new SELinux system calls to set the file security contexts rather than directly
accessing the mapping. Naturally, directly accessing the mapping would be dangerous, since it would not
update the kernel’s internal state and it could conflict with accesses by the kernel.

A variant of themake relabelcommand is themake resetcommand. This command runs thesetfiles
utility with the -R option, which forces it to directly create new mappings from scratch even when
running on a SELinux kernel. Any existing mappings are moved aside and will continue to be used by a
running SELinux kernel until the kernel is rebooted. If an ordinary Linux kernel is running and no
mappings already exist, thenmake resetis equivalent tomake relabel. This command is used by the
installation procedure to initialize the mappings for the newly installed (but not yet loaded) policy
regardless of whether the existing system is running an ordinary Linux kernel or a SELinux kernel with
an older policy. When the system is subsequently rebooted, the new policy and the new mappings take
affect together. This approach avoids potential problems with incompatibilities between the old and new
policies during the installation.

Thesetfilesutility can be run with the-s option to read a list of pathnames from standard input and only
relabel the listed files based on the file contexts configuration rather than traversing an entire filesystem.
This option is useful for relabeling a specific set of files, e.g. upon installing or upgrading a package. The
chconfile utility or thechsid test program can also be used to set the security context of a file when
running on the SELinux kernel. These programs use the new SELinux system calls and only work on a
SELinux kernel. The usage of these programs is similar to thechownor chmodutilities. However, it is

26

Configuring the SELinux Policy

generally desirable to update the file contexts configuration to reflect any changes made using these
programs so that these changes will not be lost upon subsequent executions ofmake relabel.

6. Security-Aware Applications
SELinux includes a set of modified daemons and new and modified utilities that have some degree of
awareness of the mandatory access controls. Some of these daemons and utilities require their own
application configuration files that are related to the policy. This section describes these security-aware
applications and their configuration files.

6.1. Modified Daemons
SELinux includes three modified daemon programs:login , sshd andcrond . Each of these daemons
was modified to transition to an appropriate security context for user processes. The appropriate security
context for a user session or cron job is determined based on a combination of the security policy and
default configuration files, as described inSection 6.4, or can optionally be explicitly specified by the
user in the case oflogin . The transition is performed using theexecve_secure system call. An
explicit transition is required in order to set the user identity and role attributes in the security context
based on the authenticated user.

The login andsshd daemons were further modified to relabel the user’s terminal device. The security
context for the terminal device is obtained using thesecurity_change_sid system call. This call
determines the new terminal context based on the user process context and the original terminal context.
Rules for terminal relabeling can be specified in the policy configuration via the TE change rules, as
discussed inSection 4.2.4. When the session ends, the daemons relabel the terminal to its original
context.

Thecrond daemon was further modified to perform anentrypoint permission check between the user
process context and the context of the crontab file. This check would be handled by the kernel if crontab
files were executable scripts rather than configuration files. Sincecrond does not directly execute the
crontab files, this check is performed by the daemon to verify that the user process context can be entered
via commands from the crontab file. Domains are defined for thecrontab program to ensure that
crontab files are typed based on the creating user’s domain. The permission check is intended to reduce
the risk that a user can cause commands to be executed by a security context for which the user is not
authorized by tampering with another user’s crontab file, even if the user obtains superuser access.

6.2. New Utilities
SELinux includes a number of new utility programs. Simple utilities that can be used to invoke the new
system calls are located in thelibsecure/test directory and are installed into
/usr/local/selinux/bin . Other utility programs can be found within theutils directory and are
likewise installed. This section describes the new utilities that are important from the perspective of the
policy.

Thespasswdcollection of utilities are wrapper programs for thepasswd, chsh, chfn, vipw, useradd,
anduserdelprograms. Each of these utilities ensures that the/etc/passwd and/etc/shadow files are

27

Configuring the SELinux Policy

labeled properly after updates based on thepasswd_context andshadow_context application
configuration files. Thespasswd, schsh, andschfnutilities enable ordinary users to change their own
information while preventing a process with the Linux root uid from changing the information for
arbitrary users. These three utilities run in thepasswd_t domain when executed by any user domain.
Thesvipw andsadminpasswdutilities enable authorized administrators to change the information of
any user. These programs run in thepasswd_t domain when executed by thesysadm_t domain. The
suseraddandsuserdelutilities enable administrators to add and remove accounts, running in the
useradd_t domain when executed by thesysadm_t domain.

Thenewroleutility can be used to transition to a different role within a user session. It obtains the
default domain for the new role from thedefault_type application configuration file described in
Section 6.4. Alternatively, the user can explicitly specify the new domain on the command line. The
newroleprogram requires the user to reauthenticate to ensure that role changes only occur with user
consent. The authentication is based on the user identity in the SELinux security context rather than the
unreliable Linux uid. Like thelogin daemon, thenewroleprogram also relabels the terminal based on
the new security context. This program runs in thenewrole_t domain.

Therun_init utility can be used to run init scripts from the same security context as theinit process.
This is necessary to ensure that any processes started by these scripts run with the proper user identity,
role, and domain when the scripts are run manually by an administrator. The program obtains the
security context from theinitrc_context application configuration file described inSection 6.4. As
with newrole, this program requires the user to reauthenticate to ensure that such transitions only occur
with the consent of the user. This program runs in therun_init_t domain, which can only be entered
from thesysadm_t domain.

Therunas utility can be used to run a program with a specified security context. This utility does not run
in its own domain, so the calling domain must have the appropriate permissions to perform the transition
to the new security context. This utility is typically used only to transition to a different domain, since
user identity and role transitions are limited to privileged domains.

Thesetfilesandchconutilities can be used to change the security context of a file. These utilities were
discussed inSection 5.2.

Theavc_enforcingutility can be used to check whether SELinux is in permissive mode or enforcing
mode. Theavc_toggleutility can be used to toggle SELinux between permissive and enforcing modes if
SELinux was built with the development module option. The development module option is discussed in
the installationREADMEand in the kernel configuration help. Only the domains for administrators and for
the rc scripts are authorized to useavc_toggle, so only those domains can toggle back into permissive
mode once the system is in enforcing mode.

6.3. Modified Utilities
Modified user utilities (e.g.ls, mkdir , ps, id, find, etc.) are provided that permit users to display or
specify security contexts. However, these utilities do not run in their own domains and are not important
from a policy perspective. The only modified utility that is relevant to the policy is the modifiedlogrotate
program. This program was modified to preserve the security context on log files when they are rotated.
A logrotate_t domain was defined for this program and granted the appropriate permissions.

28

Configuring the SELinux Policy

6.4. Application Configuration Files
The modified daemons and new utilities described in the preceding sections rely on a set of application
configuration files. Examples for each of these files can be found in theutils/appconfig directory in
theselinux tree. These files are copied into the/etc/security directory during installation. Each
file is discussed below.

6.4.1. Default_Contexts

The modified daemons ask the security server for the set of legal SIDs for a given user that are reachable
from the current process SID (i.e. the SID of the login, sshd, or crond process) and then apply a
prioritization based on an optionaldefault_contexts configuration to determine the default SID. Any
context in a default_contexts configuration that is not within the set of legal SIDs for the user that can be
reached from the current process SID will be ignored.

Thedefault_contexts file defines the default security contexts for user login or ssh sessions and for
user cron jobs. Each line of the default_contexts file specifies an entry consisting of a partial context for
the system process followed by a list of one or more partial contexts for users in the desired prioritization
order. A partial context is a context without a user identity value. Partial contexts are used in the list of
user contexts since the user identity can be inferred (it is the user who was authenticated or whose
crontab file was read). Partial contexts are used for the system process context to support future use by
user-executed programs, like newrole, where the user identity will also be inferred. In the simplest form,
an entry identifies the system process context and then provides a single user context to use as the default.

In the example default_contexts file, login and ssh sessions default to user_r:user_t. Users can then use
newrole to change to a different role. System cron jobs default to system_r:system_crond_t, while user
cron jobs default to user_r:user_crond_t. A derived domain (user_crond_t) is used so that the policy can
grant different permissions to user cron jobs than to user sessions.

Each user can also have a $HOME/.default_contexts file that specifies their own preferred default
contexts. However, only contexts for which the user is authorized in the policy will be used.

6.4.2. Default_Type

Thedefault_type file defines the default type (domain) for each role. Each line specifies a role:type
pair, and the appropriate type is selected by matching the role field. This file is used by the modified
login program to automatically provide a default domain when the user selects a role, and it is used by
thenewrole program to automatically provide a new domain based on the new role. If no entry is
specified, then the user must explicitly specify a domain.

6.4.3. Initrc_Context

The initrc_context file defines the security context for running/etc/rc.d scripts via therun_init
program. It consists of a single line specifying the proper security context. Therun_init program
transitions to this security context and then runs the specified script. This ensures that the scripts are
executed from the same context as when they are run byinit .

29

Configuring the SELinux Policy

6.4.4. Passwd_Context and Shadow_Context

Thepasswd_context andshadow_context files define the context to be assigned to the
/etc/passwd and/etc/shadow files. These files are used by thespasswdcollection of utilities to
relabel /etc/passwd and /etc/shadow after updating these two files so that they retain the correct context.

7. Customizing the Policy
This section describes how to customize the policy. It discusses how to perform various common changes
to the policy, from adding users and permissions to defining entirely new domains, types, and roles.

7.1. Adding Users
When a user is added to the system, the policy may need to be updated to recognize the user. As
discussed inSection 3.3andSection 4.4, it may be appropriate to simply map the new user to the generic
user_u user identity if the new user only requires unprivileged access and does not need to be separated
from other such users by the policy. In that case, no updates to the policy are required.

If the user must be recognized by the policy, then the administrator must add the user to the
policy/users file, specifying the set of authorized roles for the user, and reload the policy viamake
load in thepolicy directory.

As an example, suppose that the administrator has added a usersteve to the system who should be
authorized for both theuser_r andsysadm_r roles. To update the policy, the administrator would add
an entry to thepolicy/users file as shown below, and runmake loadto reload the policy:

user steve roles { user_r sysadm_r };

7.2. Adding Permissions
After installing SELinux, the administrator may discover that additional permissions must be allowed in
order for the system to function properly. It is advisable to run SELinux in permissive mode initially and
to exercise the standard operations of the system in order to generate audit messages for all operations
that would have been denied by the example policy. These messages can typically be found in thedmesg
output or/var/log/messages with the prefixavc: denied . A couple of example audit messages
that might be generated during the execution of system cron jobs are shown below:

avc: denied { rename } for pid=26878 exe=/usr/sbin/logrotate
path=/var/log/messages.4 dev=03:02 ino=1345261
scontext=system_u:system_r:system_crond_t
tcontext=system_u:object_r:var_log_t tclass=file

avc: denied { create } for pid=26878 exe=/usr/sbin/logrotate
path=/var/log/messages dev=03:02 ino=1345261
scontext=system_u:system_r:system_crond_t

30

Configuring the SELinux Policy

tcontext=system_u:object_r:var_log_t tclass=file

The critical fields of each avc denied message are the list of permissions, the source security context
(scontext), the target security context (tcontext), and the target security class (tclass). These example
audit messages show that thesystem_crond_t domain is being denied permissions to rename and
create files with thevar_log_t type. The other fields in each audit message provide any information
about the specific processes and objects that can be determined when the audit message is generated.
These messages show that the process was running thelogrotate program and was attempting to access
files in the/var/log directory.

The audit messages should be carefully reviewed to determine whether the denied permission should be
allowed via a TE allow rule (described inSection 4.2.5). The contributedscripts/newrules.plscript
provides an example of how to automatically convert the audit messages to TE allow rules that grant the
denied permissions, but these rules should be reviewed to ensure that they do not violate the desired
security goals. Other options include placing the process into a different domain or placing the object
into a different type, possibly requiring the definition of new domains and/or types. It is also sometimes
desirable to continue denying the permission, but to disable auditing of the permission via a TE dontaudit
rule.

In the case of the example audit messages, the denied permissions could be allowed by adding the
following rule to thepolicy/domains/program/crond.te file:

allow system_crond_t var_log_t:file { rename create setattr unlink };

However, granting these permissions to thesystem_crond_t domain allows all system cron jobs to
access these files. A better approach would be to define a separate domain for thelogrotate program
that has these permissions. This approach is discussed further inSection 7.4.

Not all permission denials can be solved simply through modifying the TE configuration. It may be
necessary to modify the RBAC configuration (described inSection 4.3) or the constraints configuration
(described inSection 4.5) as well. In the example policy, these configurations are relevant for the process
transition permission when the role or user identity changes and for the file create or relabel permissions
when the user identity of the file differs from the process.

After updating the policy configuration to allow the denied permissions, the administrator must then
build and load the new policy by runningmake load in thepolicy directory. The permissions should
then be granted on subsequent operations. If the same denials persist, then it is likely that the permission
is being denied by the RBAC or constraints configuration and that these configurations were not updated
by the administrator.

7.3. Adding Programs to an Existing Domain
An administrator may wish to add a program to an existing domain that is already being used for related
programs that require similar permissions. First, the administrator should locate an appropriate domain
by examining the existing program domains underpolicy/domains/program and by examining how
existing programs are associated with the executable types for those domains in
policy/file_contexts/program . After selecting an appropriate domain, the administrator should
verify that a domain transition is defined from the desired starting domain to the new domain. If not, then

31

Configuring the SELinux Policy

an appropriatedomain_auto_trans rule should be added to the domain’s.te file and the policy
should be reloaded viamake load.

The administrator must then relabel the program with the executable type for the domain. This relabeling
can be performed either usingchconor by updating the file contexts configuration and runningmake
relabel, as discussed inSection 5.2. If a process is already running the program, the administrator must
then restart the process in order to place it into the domain, typically usingrun_init for system processes.

As an example, suppose that an administrator wants to add a new filesystem administration utility to the
system that requires similar permissions to thefsck program. Looking at the file contexts configuration,
the administrator would see thatfsck is labeled with thefsadm_exec_t type. Looking under the
policy/domains/program directory, the administrator would find thefsadm.te file with the
definitions for the correspondingfsadm_t domain. After verifying that this domain is appropriate for
the new utility, the administrator can add an entry topolicy/file_contexts/program/fsadm.fc

for the new utility and runmake relabelor usechcon.

7.4. Creating a New Domain
After installing SELinux or after installing a new software package, the administrator may discover that
some system processes are left in theinitrc_t domain in the output ofps -e --context. These system
processes should either be disabled or placed into an appropriate domain. This may simply involve
adding the program to an existing domain, as discussed inSection 7.3, or it may require creating a new
domain. The administrator may also discover that new domains are needed to address denied
permissions, as discussed inSection 7.2, for system processes or user programs. New domains are also
needed when new roles are defined.

To create a new domain, the administrator should first create a new.te file under thepolicy/domains

directory and populate it with appropriate TE declarations and rules. As an example, the creation of the
policy/domains/program/logrotate.te file for the logrotate program will be discussed. The
need for a separate domain for thelogrotate program was introduced inSection 7.2. The domain
definition begins by declaring the domain and its executable type using type declaration rules (described
in Section 4.2.2), as shown below:

type logrotate_t, domain, privowner;
type logrotate_exec_t, file_type, sysadmfile, exec_type;

To grant the new domain permissions to many common operations, theevery_domain macro
(described inTable 6in Section 4.2.5) can be used as shown below:

every_domain(logrotate_t)

For least privilege purposes, it may be desirable to instead use macros that only grant a subset of this
macro (also described in the table) or to individually define specific rules tailored for the new domain.

If the program is known to create files in shared directories, e.g./tmp files, then the administrator can
declare types for these files and file type transition rules (described inSection 4.2.3). An example type
declaration and file type transition rule for temporary files created bylogrotate is shown below:

type logrotate_tmp_t, file_type, sysadmfile, tmpfile;
file_type_auto_trans(logrotate_t, tmp_t, logrotate_tmp_t)

32

Configuring the SELinux Policy

Likewise, if the program is known to require certain permissions, then these permissions can be allowed
by the administrator. Since the administrator knows that the program requires permissions to the
/var/log files, the following rules might be initially specified:

allow logrotate_t var_log_t:dir rw_dir_perms;
allow logrotate_t var_log_t:file create_file_perms;

To cause the domain to be entered automatically from system cron jobs and from administrator shells
whenlogrotate is executed, domain transition rules (described inSection 4.2.3) should be added for
the appropriate domains. These rules can either be placed in the new domain’s.te file or in the files for
the source domains. Typically, if the source domain transitions to many different domains (e.g. every
daemon or many programs), it is preferable to place the rule in the target domain to ease adding new
domains and provide better encapsulation. Examples of these rules are shown below:

domain_auto_trans(system_crond_t, logrotate_exec_t, logrotate_t)
domain_auto_trans(sysadm_t, logrotate_exec_t, logrotate_t)

After providing a minimal definition of the domain and transitions into the domain, the administrator
should authorize roles for the domain. Role declarations (described inSection 4.3.1) can be placed either
in the domain’s.te file or in thepolicy/rbac file. The former approach is preferable in order to
encapsulate the domain’s definition. Role declarations for thelogrotate_t domain are shown below:

role system_r types logrotate_t;
role sysadm_r types logrotate_t;

The updated policy configuration can then be compiled and loaded by runningmake load in thepolicy

directory. The administrator should then add the program to the file contexts configuration and runmake
relabel in thepolicy directory or runchcon. A policy/file_contexts/program/logrotate.fc

configuration file forlogrotate is shown below:

/usr/sbin/logrotate system_u:object_r:logrotate_exec_t

The administrator can then try running the program in its new domain to discover whether additional
permissions are required. If the program is to be run as a system process, the administrator should use
run_init to start it, as discussed inSection 6.2. If additional permissions are required, then the steps in
Section 7.2can be followed to complete the domain.

7.5. Creating a New Type
New types can be created to provide distinct protection for specific objects. An administrator may also
discover that new types are needed to address denied permissions, as discussed inSection 7.2. To create
a new type, the administrator should first add a type declaration (described inSection 4.2.2) to the TE
configuration. If the type is associated with a particular domain, then the declaration should be placed in
the domain’s.te file. If the type is a general type, then the declaration can be placed in one of the files
underpolicy/types .

33

Configuring the SELinux Policy

If automatic transitions to this type are desired, then the administrator should define type transition
(described inSection 4.2.3) rules for the appropriate domains. The administrator should add appropriate
TE allow rules to the TE configuration to permit authorized domains to access the type. The
administrator can then build and reload the policy viamake load. After updating the policy, the
administrator can then apply the type to a file by updating the file contexts configuration and running
make relabelor by usingchcon.

As an example, consider the/dev/initctl named pipe, which is used to interact with theinit

process. Theinitctl_t type was defined for this file in thepolicy/domains/program/init.te

file, as shown below:

type initctl_t, file_type, sysadmfile;

Since this file is created at runtime, a file type transition rule must be specified to ensure that it is always
created with this type. The file type transition rule for this type is:

file_type_auto_trans(init_t, device_t, initctl_t)

Two other domains need to access this object: the domain for the/etc/rc.d scripts and the domain for
the system administrator. Hence, the following TE allow rules are added to the
policy/domains/program/initrc.te andpolicy/domains/admin.te files:

allow initrc_t initctl_t:fifo_file rw_file_perms;
allow sysadm_t initctl_t:fifo_file rw_file_perms;

The policy can then be reloaded viamake load. The administrator would then add the following entry to
policy/file_contexts/program/init.fc and relabel the file:

/dev/initctl system_u:object_r:initctl_t

7.6. Creating a New Role
New roles can be created to provide separation among users beyond the simple division between
ordinary users and administrators. To add a new role, the administrator should first create a new domain
to be used as the initial login domain for the role, and any related domains for programs to be executed
by the user that require different permissions than the initial login domain. The administrator may be
able to leverage the existinguser_domain macro to instantiate multiple user domains. Role declarations
should then be defined for the role, either centrally inpolicy/rbac or individually placed with each
domain’s file. Role allow rules should be added topolicy/rbac to permit transitions to the new role.
Appropriate users should be authorized for the new role inpolicy/users . The policy can then be
reloaded viamake load.

After updating the policy, the administrator should add an entry for the role to the
/etc/security/default_type application configuration file.

34

Configuring the SELinux Policy

References

[BoebertNCSC1985] W. Boebert and R. Kain, “A Practical Alternative to Hierarchical Integrity
Policies”,Proceedings of the Eighth National Computer Security Conference, 1985.

[FerraioloNCSC1992] David Ferraiolo and Richard Kuhn, “Role-Based Access Controls”,Proceedings
of the 15th National Computer Security Conference, October 1992.

[LoscoccoFreenix2001] Peter Loscocco and Stephen Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System”,Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, The USENIX Association, June 2001.

[LoscoccoOLS2001] Peter Loscocco and Stephen Smalley, “Meeting Critical Security Objectives with
Security-Enhanced Linux”,Proceedings of the 2001 Ottawa Linux Symposium, July 2001.

[LoscoccoNSATR2001] Peter Loscocco and Stephen Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System”,NSA Technical Report, February 2001.

[SmalleyNAITR2001] Stephen Smalley and Timothy Fraser, “A Security Policy Configuration for the
Security-Enhanced Linux”,NAI Labs Technical Report, February 2001.

[SmalleyModuleTR2001] Stephen Smalley, Chris Vance, and Wayne Salamon, “Implementing SELinux
as a Linux Security Module”,NAI Labs Report #01-043, December 2001.

[SpencerUsenixSec1999] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen,
and Jay Lepreau, “The Flask Security Architecture: System Support for Diverse Security Policies”,
Proceedings of the Eighth USENIX Security Symposium, The USENIX Association, August 1999.

35

	Table of Contents
	1. Introduction
	2. Architectural Concepts and Definitions
	2.1. Flask Concepts
	2.2. Flask Definitions

	3. Security Model
	3.1. TE Model
	3.2. RBAC Model
	3.3. User Identity Model

	4. Policy Language and the Example Policy Configuration
	4.1. TE and RBAC Configuration Overview
	4.2. TE Statements
	4.2.1. Attribute Declarations
	4.2.2. Type Declarations
	4.2.3. TE Transition Rules
	4.2.4. TE Change Rules
	4.2.5. TE Access Vector Rules
	4.2.6. TE Access Vector Assertions
	4.2.7. Unused TE Rules
	4.2.8. Example TE Configuration

	4.3. RBAC Statements
	4.3.1. Role Declarations and Dominance
	4.3.2. Role Allow Rules
	4.3.3. Obsolete RBAC Rules
	4.3.4. Example RBAC Configuration

	4.4. User Declarations
	4.5. Constraint Definitions
	4.6. Security Context Specifications
	4.6.1. Initial SID Contexts
	4.6.2. Filesystem Labeling Behaviors
	4.6.3. Genfs Contexts
	4.6.4. Network Object Contexts

	4.7. File Contexts Configuration

	5. Building and Applying the Policy
	5.1. Compiling and Loading the Policy
	5.2. Applying the File Contexts Configuration

	6. SecurityAware Applications
	6.1. Modified Daemons
	6.2. New Utilities
	6.3. Modified Utilities
	6.4. Application Configuration Files
	6.4.1. DefaultContexts
	6.4.2. DefaultType
	6.4.3. InitrcContext
	6.4.4. PasswdContext and ShadowContext

	7. Customizing the Policy
	7.1. Adding Users
	7.2. Adding Permissions
	7.3. Adding Programs to an Existing Domain
	7.4. Creating a New Domain
	7.5. Creating a New Type
	7.6. Creating a New Role
	References

