
[Photo credit: diuno/iStock/Thinkstock]

Machine Learning

Vol. 22 | No. 1 | 2018

J o e M c C l o s k e y & D a v i d J . M o u n t a i nEditor’s columnGU
ES

T

Machine learning—often described as

artificial intelligence or deep learning—is in

the news today, almost everywhere. The MIT

Technology Review did a special issue on the

topic for their November/December 2017

issue. The New York Times has done a series

of articles on the topic, most recently in a

New York Times Magazine article published

November 21, 2017, titled “Can A.I. be

taught to explain itself.”

Additionally, it was the focus of a special

panel discussion at the November 2017

IEEE International Conference on Rebooting

Computing titled “AI, cognitive information

processing, and rebooting computing:

When will the new sheriff come to tame the

wild, wild, west?” As this last item suggests,

there can be considerable difficulty in

separating fact from fiction, and reality from

hype, in this technical field.

In this, the first of two special issues of The

Next Wave on machine learning, we hope

to provide you with a reasoned look at this

topic, highlighting the various facets of NSA

research and collaborations in the field.

In our first article, NSA researcher

Steve Knox gives “Some basic ideas and

vocabulary in machine learning.”

“Machine learning for autonomous cyber

defense,” by NSA researcher Ahmad Ridley

provides insight into a strategically valuable

mission application of these techniques.

NSA researchers Mark Mclean and

Christopher Krieger focus our attention

on how these techniques might alter

computing systems in “Rethinking

neuromorphic computing: Why a new

paradigm is needed.”

In “How deep learning changed computer

vision,” NSA researchers Bridget Kennedy

and Brad Skaggs help us understand the

particular mechanisms that made these

techniques so ubiquitous.

“Deep learning for scientific discovery,”

by Pacific Northwest National Laboratories

researchers Courtney Corley et al.

present several topic areas in which

modern representation learning is

driving innovation.

We finish this issue with an article

noting some pitfalls in the use of machine

learning, “Extremely rare phenomena

and sawtooths in La Jolla,” by researchers

at the Institute for Defense Analyses’

Center for Communications Research in

Contents

Vol. 22 | No. 1 | 2018

The Next Wave is published to disseminate technical

advancements and research activities in telecommunications

and information technologies. Mentions of company names

or commercial products do not imply endorsement by the

US Government. The views and opinions expressed herein

are those of the authors and do not necessarily reflect

those of the NSA/CSS.

This publication is available online at http://www.

nsa.gov/thenextwave. For more information,

please contact us at TNW@tycho.ncsc.mil.

2 Some Basic Ideas and Vocabulary in

Machine Learning
Steven Knox

7 Machine Learning for Autonomous

Cyber Defense
Ahmad Ridley

15 Rethinking Neuromorphic

Computation: Why a New Paradigm

is Needed
Mark R. McLean

Christopher D. Krieger

23 How Deep Learning Changed

Computer Vision
Bridget Kennedy

Brad Skaggs

27 Deep Learning for Scientific Discovery
Courtney Corley

Nathan Hodas, et al.

32 Extremely Rare Phenomena and

Sawtooths in La Jolla
Anthony Gamst

Skip Garibaldi

38 AT A GLANCE: Machine Learning

Programs Across the Government

41 FROM LAB TO MARKET: AlgorithmHub

Provides Robust Environment for NSA

Machine Learning Research

La Jolla, California, Anthony Gamst and

Skip Garibaldi.

Our intent with this special issue

is to enhance your understanding of

this important field and to present the

richness of our research from a variety

of perspectives. We hope you enjoy our

perspective on the topic.

Joe McCloskey

Deputy Technical Director

Research Directorate, NSA

David J. Mountain

Advanced Computing Systems

Research Program

Research Directorate, NSA

http://www.nsa.gov/thenextwave
mailto:TNW@tycho.ncsc.mil
http://www.nsa.gov/thenextwave

2

b y S t e v e n K n o x

1. We avoid circular reasoning here by assuming the reader is not a machine.

Some basic
ideas and
vocabulary
in machine
learning

W
hat is Machine Learning? Machine learning

(ML) is a difficult, perhaps impossible, term

to define without controversy. It is tempting

to avoid defining it explicitly and just let you, the read-

er, learn a definition inductively by reading, among

other sources, this issue of The Next Wave.1 You could

then join the rest of us in any number of arguments

about what ML is and what ML is not.

For the present purpose, a machine is an artificial

device (hardware, software, or an abstraction) which

takes in an input and produces an output. Phrased

another way, a machine takes in a stimulus and pro-

duces a response. Machine learning (ML) refers to a

process whereby the relationship between input and

output (or stimulus and response) changes as a result

of experience. This experience may come in the form

of a set of stimuli paired with corresponding desired

responses, or in the form of sequential stimuli accom-

panied by rewards or punishments corresponding to

the machine’s responses. This definition, while perhaps

not entirely satisfying, has at least the advantages of

being very general and being in accordance with early

references [1, 2].

In this introduction we shall think of a machine as

a mathematical abstraction, that is, simply as a func-

tion which maps inputs to outputs. This function may

be deterministic, or it may be in some respect ran-

dom (i.e., two identical inputs may produce different

[Photo credit: Besjunior/iStock/Thinkstock]

 The Next Wave | Vol. 22 No. 1 | 2018 | 3

FEATURE

outputs). Working at this level of abstraction enables

us to use precise mathematical language, to apply use-

ful, thought-clarifying ideas from probability, statis-

tics, and decision theory, and most importantly, to

address with generality what is common across a wide

variety of applications.2 In keeping with this abstrac-

tion, the goal of ML is to solve

The Problem of Learning. There are a known set

X and an unknown function f on X. Given data,

construct a good approximation f of f. This is

called learning f.

There is a lot packed into this simple statement.

Unpacking it will introduce some of the key ideas and

vocabulary used in ML.

Key Ideas. The domain of the unknown function

f, the set X, is called feature space. An element X X

is called a feature vector (or an input) and the coor-

dinates of X are called features. Individual features

may take values in a continuum, a discrete, ordered

set, or a discrete, unordered set. For example, an

email spam filter might consider features such as the

sender’s internet protocol (IP) address (an element

of a finite set), the latitude and longitude associated

with that IP address by an online geolocation service

(a pair of real numbers), and the sender’s domain

name (a text string). Features may arise naturally as

the output of sensors (for example, weight, tempera-

ture, or chemical composition of a physical object)

or they may be thoughtfully engineered from un-

structured data (for example, the proportion of words

in a document which are associated with the topic

“machine learning”).

The range of the unknown function f, the set

f(X), is usually either a finite, unordered set or it is a

continuum. In the first case, learning f is called clas-

sification and an element Y f(X) is called a class. In

the second case, learning f is called regression and an

element Y f(X) is called a response. The bifurcation

of terminology based on the range of f reflects dif-

ferent historical origins of techniques for solving the

problem of learning in these two cases.

Terminology also bifurcates based on the nature of

the observed data, in particular, whether or not the

range of f is observed directly. If the observed data

have the form of matched stimulus-response pairs,

(x
1
, y

1
), . . . , (x

n
, y

n
) X × f(X),

then the data are called marked data and learning f is

called supervised learning (“supervised” because we

observe inputs x
1
, . . . , x

n
 to the unknown function f

and also the corresponding, perhaps noisy, outputs

y
1
, . . . , y

n
 of f). If the observed data have the form

x
1
, . . . , x

n
 X,

then the data are called unmarked data and learning

f is called unsupervised learning. While unsupervised

learning may, on its face, sound absurd (we are asked

to learn an unknown function based only on what

is put into it), two cases have great utility: when the

range of f is discrete, in which case unsupervised

learning of f is clustering; and when x
1
, . . . , x

n
 are a

random sample from a probability distribution with

density function f, in which case unsupervised learn-

ing of f is density estimation. A situation in which both

marked and unmarked data are available is called

semi-supervised learning.

We generally consider data to be random draws

(X, Y) from some unknown joint probability distri-

bution3 P(X, Y) on X × f(X). This is true even if the

outputs of f are unobserved, in which case we can

think of the unobserved Y ’s as latent variables. This is

not to say that we believe the data generation process

is intrinsically random—rather, we are introducing

probability P(X, Y) as a useful descriptive language for

a process we do not fully understand.

An approximation f of f could be considered “good”

if, on average, the negative real-world consequences

of using f in place of f are tolerable. In contrast, an

approximation f of f could be considered “bad” if the

negative real-world consequences are intolerable,

either through the accumulation of many small er-

rors or the rare occurrence of a disastrous error. The

consequences of errors are formalized and quantified

2. Of course, an ML solution for any given application must be realized in actual hardware and software, or the whole exercise is point-

less. It is hard to overstress the importance of good hardware and software.

3. The joint distribution P(X, Y) can be factored into the conditional distribution of Y given X, P(Y | X), times the marginal distribution

of X, P(X), which is the distribution of X once Y has been “averaged away”. That is, P(X, Y) = P(Y | X)P(X). It can also be factored the

other way, P(X, Y) = P(X | Y)P(Y). Both factorizations are useful and inform the design of ML algorithms.

4

Some basic ideas and vocabulary in machine learning

by a loss function, L(y, f(x)). At a point x in feature

space X , L(y, f(x)) compares the true class or re-

sponse y = f(x) to the approximation f(x) and assigns

a non-negative real number to the cost or penalty

incurred by using f(x) in place of y. Commonly

used loss functions in regression are squared-error

loss, where L(y, f(x)) = (y − f(x))2, and absolute-error

loss, where L(y, f(x)) = |y − f(x)|. A commonly used4

loss function in classification is zero-one loss, where

L(y, f(x)) = 0 if y = f(x) and L(y, f(x)) = 1 if y ≠ f(x). In

classification with C classes; that is, when the range

f(X) can be identified with the set of labels {1, . . . , C},

an arbitrary loss function can be specified by the cells

of a C × C loss matrix L. The loss matrix usually has

all-zero diagonal elements and positive off-diagonal

elements, where L(c, d) is the loss incurred for predict-

ing class d when the true class is c for all 1 ≤ c, d ≤ C

(so correct classification incurs no loss, and misclas-

sification incurs positive loss).5

Some techniques, such as neural networks, solve a

C-class classification problem by estimating a con-

ditional probability distribution on classes 1, . . . , C,

given a feature vector X,

((Y = 1 | X) , . . . , (Y = C | X)).

In these techniques, which essentially translate a

classification problem into a regression problem,

an observed class label y is identified with a degen-

erate probability distribution on the set of classes

{1, . . . , C}. Called a one-hot encoding of y, this is a

C-long vector which has the value 1 in position y

and 0 elsewhere. A loss function commonly used to

compare an estimated probability distribution to a

one-hot encoding of a class label is cross-entropy loss,

L(y, ((Y=1 | X), . . . , (Y=C | X))) = − log (Y=y | X),

although squared-error loss is also used sometimes in

this setting.

The choice of loss function is subjective and prob-

lem dependent. Indeed, it is the single most important

control we have over the behavior of ML algorithms6

because it allows us to encode into the algorithm our

values with respect to the real-world application: spe-

cifically, by stating the cost of each possible type of er-

ror the algorithm could make. That said, loss functions

are often chosen for convenience and computational

tractability.7 When approximations f are obtained by

fitting statistical models, squared-error loss and cross-

entropy loss can be derived in certain situations from

the (subjective) principle that the best approximation

f in a class of models is one which assigns maximal

likelihood to the observed data.

To rephrase, then, an approximation f of f could be

considered “good” if its use incurs small loss on aver-

age as it is applied to data drawn from the joint prob-

ability distribution P(X, Y). The average loss incurred

by approximation f is its risk. There are at least three

different types of risk, depending on what is consid-

ered fixed and what can vary in future applications of

f. The risk of approximation f at point x X is the ex-

pected loss incurred by using f(x) in place of Y for new

data (X, Y) such that X = x, E
Y | X=x

[L(Y, f(x))].8 The

response Y is treated as random, with the conditional

distribution P(Y | X = x), while the input X = x and

trained classifier f are treated as fixed. Choosing an

approximation f to minimize the risk of f at a specific

point (or finite set of points) in X is called transductive

learning. It is of use when the entire set of points at

which predictions are to be made is known at the time

that f is constructed. The risk of approximation f is the

expected loss incurred by using f(X) in place of Y for

new data (X, Y), E
X,Y

[L(Y, f(X))]. Data point (X, Y)

is treated as random while the trained classifier f is

treated as fixed. Choosing an approximation f to mini-

mize the risk of f is done when the points at which f
is to make a prediction are not known at the time that

f is constructed, but will be drawn from the marginal

distribution P(X) on X at some future time. This is the

typical situation in applied ML.

4. Zero-one loss is commonly used in textbook examples. It is rarely, if ever, appropriate in applications.

5. In the spam-filtering example, “loss” is measured in inconvenience to the email recipient. If we define the inconvenience of reading a

spam email as one unit of loss, then the loss incurred by labeling a spam email as not spam is L(spam, not spam) = 1. Relative to this, dif-

ferent recipients may have different opinions about the inconvenience of having a non-spam email labeled as spam. That is, L(not spam,

spam) = c, where each recipient has his or her own value of c > 0: some users might have c = 10, some c = 20, and perhaps some might

even have c < 1.

6. In this statement, we are ignoring for the moment the critically important issue of optimization required for training most

ML algorithms. Another control available in some, but not all, ML methods, is the marginal (or prior) distribution on classes,

(P(Y = 1), . . . , P(Y = C)).

 The Next Wave | Vol. 22 No. 1 | 2018 | 5

FEATURE

An approximation method is a function which maps

training data sets to approximations of f. It maps a set

of n observed data S = ((x
1
, y

1
), . . . , (x

n
, y

n
)) (X × f

(X))n to a function f
S
 , where f

S
 is a function that

maps X → f(X). Actually, approximations f
S
 lie in a

method-specific proper subset of the set of func-

tions X → f(X), about which more will be said later.

The probability distribution on X × f(X) extends to

training data sets S and thence to approximations f
S
 ,

so approximations f
S
 are random variables. The risk of

an approximation method (trained on data sets of size

n) is the expected loss incurred by drawing a random

training set S of size n, constructing an approximation

f
S
 from it, and using f

S
(X) in place of Y for new data

(X, Y), E
S,X,Y

[L(Y, f
S
(X))]. Choosing an approxima-

tion method S → f
S
 to minimize the risk of the ap-

proximation method is done by algorithm designers,

whose goal is to produce approximation methods that

are useful in a wide variety of as-yet-unseen applied

problems. Note that there is some tension between the

goal of the algorithm designer, who wants to obtain

low-risk approximations f
S
 from most data sets S, and

the goal of the applied ML practitioner, who wants to

obtain a low-risk approximation f from the single data

set he or she has to work with in a given application.

Risk estimation, model training, and

model selection

Since the joint probability distribution P(X, Y) is un-

known—it is, after all, simply a name for an unknown

process which generates the data we observe—the ac-

tual risk of approximation f, in any of the three senses

above, cannot be computed. Solving an ML problem

in practice means searching for an approximation f
that is optimal according to a computable optimal-

ity criterion, which is an approximation of, or sur-

rogate for, the true risk. The risk of f can be estimated

in multiple ways, each of which has advantages and

disadvantages. There is the training estimate of risk,

, where (x
1
, y

1
), . . . , (x

n
, y

n
) are the

data used to produce approximation f; there is the vali-

dation (or test) estimate of risk, ,

where (x
1
, y

1
), . . . , (x

n
 , y

n
) are hold-out data which

are not used to produce approximation f; and

there is the k-fold cross-validation estimate of risk, f

, where S
1
 · · · S

k

is a partition of the set {(x
1
, y

1
), . . . , (x

n
, y

n
)} into k

subsets and approximation f
k
 is produced using all of

the data except those in S
k
, which is treated as hold-

out data for f
k
. In addition to computable estimates

of risk, other computable optimality criteria include

surrogates derived from asymptotic behavior as n → ∞,

such as Akaike’s Information Criterion [3], and com-

putable upper bounds for the true risk.

Given a computable optimality criterion, the practi-

cal problem of finding an approximation f which is

exactly or approximately optimal with respect to that

criterion must be solved. Each concrete method for

solving the problem of learning specifies (explicitly or

implicitly) a set F of functions which map X → f(X)

and provides a method for searching the set F for

an optimal member. For example, in classical linear

regression, X = Rm for some m ≥ 1 and the set F is the

set of all affine functions Rm → R; that is, all functions

of the form f (x
1
, . . . , x

m
) =

0
 +

1
x

1
 + · · · +

m
x

m
.

Using squared-error loss and using the training

estimate of risk, the computable optimality criterion

is (y
i
 −

0
 −

1
x

i,1
− · · · −

m
x

i,m
)2. Finding the

optimal approximation f F , which is equivalent to

finding optimal values of the parameters
0
, . . . , β

m
,

can be done approximately by using an iterative

gradient descent method (the optimal f actually has

a closed-form solution in this case, but closed-form

solutions are not typical in ML).

Specification of a ML method, and hence specifying

the set of functions F to be searched, is called model

7. Many ML methods require solving optimization problems through iterative numerical procedures because no closed-form solutions are

known. It has been found empirically that some loss functions lead to easier optimization problems than others, and that sometimes chang-

ing a loss function to make an optimization problem easier, say by replacing cross-entropy loss with squared-error loss in a neural network,

results in a better solution, even in terms of the original loss function.

8. Recall that the expected value is an integral or sum with respect to the appropriate probability distribution. If Y is real-valued (re-

gression),

p g p

, while if Y takes values in the discrete set {1, . . . , C} (classification), g

.

6

Some basic ideas and vocabulary in machine learning

selection. Searching a set F for an approximately opti-

mal member is called training a model. If the functions

in F are all described by a finite number of parameters

which does not depend on the number of data, n, then

the method is called parametric, and otherwise it is

called nonparametric. An important concern in model

selection is to specify a set of functions F such that

the optimal member f is sufficiently well adapted to

the training data (i.e., it is not underfit to the data) but

at the same time is not too well adapted, essentially

memorizing the correct outputs to the given inputs

but unable to generalize (i.e., not overfit to the data).

Avoidance of overfitting can be done by regularization,

which essentially means modifying the loss function

to penalize model complexity in addition to penalizing

model inaccuracy.

Machine learning and statistics

From the way it has been presented in this intro-

duction, ML appears very statistical. One might ask

whether there is, in fact, any meaningful difference be-

tween ML and statistics. An answer to this is that there

is considerable overlap in methodology (indeed, many

ML techniques are based upon statistical models),

but the applied focus tends to be different: Statistics

References

[1] Hartree DR. Calculating Instruments and Machines.

Urbana (IL): University of Illinois Press; 1949. p. 70.

[2] Turing AM. “Computing machinery and intelligence.”

Mind. 1950;59(236):454–460.

[3] Akaike H. “Information theory and an extension of

the maximum likelihood principle.” In: Kotz S, Johnson

NL (editors). Breakthroughs in Statistics. Springer Series

in Statistics (Perspectives in Statistics). New York (NY):

Springer; 1992. p. 610–624.

[4] Breiman L. “Statistical modeling: The two cultures.”

Statistical Science. 2001;16(3):199–231.

9. Consistency, reliability, scalability, speed, deployment in specific environments, etc.

is more often about producing human insight from

data about an incompletely understood process (the

unknown function f), while ML is more often about

producing an automatic means of decision-making

which, for a variety of reasons,9 might be preferred to

human decision making [4]. On some level, debat-

ing whether a particular model or method is statistics

or ML is like debating whether a sledgehammer is a

construction tool or a demolition tool—the answer

depends on what one hits with it, and why.

 The Next Wave | Vol. 22 No. 1 | 2018 | 7

DEPT NAME

Imagine networks where zero day cannot happen to anybody, where

zero day does not guarantee a hacker’s success, where defenders work

together with guardian machines to keep networks safe. Imagine getting

a text message from the system that protects your business, letting you

know it just learned about a new flaw in your document reader and

synthesized a new patch all on its own.

Mike Walker, Defense Advanced Research Projects Agency (DARPA) Program Manager,
Remarks at opening of the DARPA Grand Cyber Challenge, August 4, 2016

b y A h m a d R i d l e y

T
he number and impact of cyberattacks continue to increase every year. The NSA

Research Directorate aims to build an autonomous cyber defense system that

will make enterprise networks, and their associated missions and services, more

resilient to cyberattacks. Such a system should choose appropriate responses to help

these networks achieve their mission goals and simultaneously withstand, anticipate,

recover, and/or evolve in the presence of cyberattacks. Through automation, the sys-

tem should make decisions and implement responses in real time and at network scale.

Through adaptation, the system should also learn to reason about the best response

based on the dynamics of both constantly evolving cyberattacks and network usage

and configurations.

In this article, we present our research methodology and investigate a branch of machine

learning (ML) called reinforcement learning (RL), to construct an autonomous cyber-

defense system that will control and defend an enterprise network.

he number and impact of cyberattacks continue to increase every year. The NSA

Research Directorate aims to build an autonomous cyber defense system that

will make enterprise networks, and their associated missions and services, more

resilient to cyberattacks. Such a system should choose appropriate responses to help

these networks achieve their mission goals and simultaneously withstand, anticipate,

recover, and/or evolve in the presence of cyberattacks. Through automation, the sys-

tem should make decisions and implement responses in real time and at network scale.

Through adaptation, the system should also learn to reason about the best response

based on the dynamics of both constantly evolving cyberattacks and network usage

and configurations.

In this article, we present our research methodology and investigate a branch of machine

learning (ML) called reinforcement learning (RL), to construct an autonomous cyber-

defense system that will control and defend an enterprise network.

Machine learning
for autonomous
cyber defense

[Photo credit: ChakisAtelier/iStock/Thinkstock]

8

Machine learning for autonomous cyber defense

Cyber-resilience research methodology

We seek to change the enterprise network defense

paradigm by integrating autonomous (i.e., automated

and adaptive) cyber defense within the defensive capa-

bilities of large and complex mission network systems.

We define cyber resilience as the ability of missions and

services to maintain a certain level of performance de-

spite the presence of sophisticated cyber adversaries in

the underlying enterprise network [1]. Cyber-defense

strategies that engage potential adversaries earlier in

the cyber kill chain are fundamental to cyber resil-

ience. The cyber kill chain is a model of the various

stages of a cyberattack, listed in increasing order of

severity for the defender. Early adversary engagement

allows the defender to increase detection confidence

and disambiguate malicious from nonmalicious ac-

tors. Ultimately, we must develop a scientific method

to measure cyber-resiliency and understand the effects

of cyber responses on those measurements. Such de-

velopment is critical to the evolution of our research.

Cyber-resiliency research presents a set of chal-

lenges, detailed in table 1 below, including:

TABLE 1. Cyber-Resiliency Challenges: Fundamental assumptions, principles, and hard problems

Fundamental Assumption Guiding Principle Hard Problem

Adversary can always get inside

the system but cannot hide from

all vantage points

Utilize diverse sensors from across the en-

vironment to form a holistic and contextual

understanding of adversary activities

Dynamic information collection and control

of diverse sensors

Real-time fusion and contextualization

of events from diverse and disparate

data sources

Humans cannot quickly identify

and react to adversarial behavior

Automated reasoning and adaptive response

mechanisms are needed to mitigate damage

from attacks at adversarial speed and

enterprise scale

Representing and reasoning over system

state and response effects on systems

and adversaries

Apply automated responses to increase

certainty and situational understanding

Automated reasoning and response in the

face of uncertain and missing data

Developing a common language for

automated orchestration of responses

Cyber defenders have

asymmetric disadvantage

Defensive deception and adaptive response

can improve the asymmetric imbalance

Determining how best to use deception—

where, when, and what kind

Create metrics and experiments to

evaluate the effectiveness and impact on

attacker behavior based on principles from

human science

Autonomous systems are

still in research phase across

many disciplines

Adaptive cyber-defense systems must

allow for operation with varied levels of

human interaction

Establishing human trust in automated

cyber systems

Developing secure design methodology for

adaptive cyber-defense systems

1. Detecting the presence and movement of a so-

phisticated cyber attacker in a network,

2. Automating the speed at which human analysts

can react to a large volume of cyber alerts,

3. Mitigating the imbalance in workload between

defender and attacker, and

4. Allowing for the fact that autonomous sys-

tems are still in the research phase across

many disciplines.

Autonomous cyber defense

Our research focuses on reasoning and learning

methods to enable automated and self-adaptive deci-

sions and responses. A cyber-defense system based

on this research is autonomous, which will allow it to

effectively improve the cyber resilience of a mission or

service. Once the system receives data, analytic results,

and state representation of the network, its decision

engine must reason over the current state knowledge,

attacker tactics, techniques, and procedures (TTPs),

potential responses, and desired state. The system will

determine a response strategy to best achieve the goals

 The Next Wave | Vol. 22 No. 1 | 2018 | 9

FEATURE

State of
System

Observable
Data

Data
Analysis

Reasoning
Response

Orchestration

FIGURE 1. Monitoring feedback loop: Sensors collect observ-

able data, data are analyzed to gain insight, system state

is formed, the decision is made about optimal response to

mitigate attacks, and a response is implemented. Sensors collect

more information and next state is formed, providing feedback

to reasoning process about impact on mission, service, or goal.

of the mission or service, which rely on the underly-

ing enterprise network. This reasoning must account

for incomplete and untrustworthy data from host and

network sensors. To make sequential decisions in the

presence of this uncertainty, the system should receive

full-loop feedback about its decisions and responses

by selecting and taking responses, observing the ef-

fects, and learning from these observations to improve

performance over time.

To maximize the benefits of full-loop reasoning and

response, sensors collect observable data, such as host

logins or network connections between machines.

The data is analyzed to extract key system features and

conditions, such as unexpected internet connections

or an unusual number of failed authentications. These

features and conditions are combined to create a sys-

tem state. Decisions are made based on the quality of

this state, such as the frequency or severity of unwant-

ed conditions, and responses are employed to optimize

the quality of state subject to the cybersecurity and/

or mission goals. Finally, by collecting new, observ-

able data, the sensors provide feedback to the reasoner

about the effectiveness of its decisions and responses.

If the new state, formed from the newly collected data,

is better than the old state, the reasoner learns that the

previous response was effective in moving the system

closer towards achieving the cybersecurity and, ulti-

mately, the mission goal. See figure 1.

Architecting a system to do all of the above is an

enormous research challenge. We divide the work

across several government laboratories, academic

partners, and other government organizations inside

and outside of NSA to create the foundational re-

search, practical techniques, capabilities, and experi-

ments to address the challenge. Our architecture must

unify the results of these supporting research efforts

into a single functional system to perform full-loop,

autonomous reasoning and response. At the same

time, this system must be initially designed with solid

security principles, minimizing the chances that it

can be exploited or subverted by an attacker, espe-

cially one employing adversarial machine learning

(ML) methods.

Reinforcement learning: Overview

Reinforcement learning (RL) is one of the subfields of

ML. It differs from other ML fields, such as supervised

and unsupervised learning, because it involves learn-

ing how to map situations to actions in order to maxi-

mize a numerical reward signal [2]. RL is founded on

the idea that we learn by interacting with our environ-

ment, which is a foundational idea underlying nearly

all theories of learning and intelligence [2]. Thus, an

RL learner, or agent, discovers on its own the optimal

actions to achieve its goal based on immediate reward

signals from the environment. In fact, actions taken in

one state of the system may affect not only immediate

rewards, but also all subsequent rewards. Thus, trial-

and-error action search and delayed reward are two of

the most important distinguishing features of RL [2].

Another interesting feature is the trade-off between

exploration and exploitation [2]. An RL agent must

exploit situations it has already learned from experi-

ence that produce rewards, but also explore new situa-

tions for possibly better rewards (see figure 2).

Beyond the agent and environment, an RL system

features four main elements: policy, reward function,

value function, and optionally, a model of the envi-

ronment. A policy is a mapping from observed states

of the environment to actions to take when in those

states [2]. A reward function defines the goal of the

RL problem. It maps each state, or state-action pair,

10

Machine learning for autonomous cyber defense

to a single number (i.e., a reward) indicating the im-

mediate, intrinsic quality of that state [2]. By contrast,

the value function specifies the long-run goodness

of a given state. The value of a state is the cumulative

amount of reward an agent can expect to receive over

the future, starting from that state [2]. Finally, a model

basically predicts the next state and reward from

the given state and action. While in some dynamic,

complex environments, such as computer networks, a

sufficient model may not exist, RL can still be effective

in solving problems in those “model-free” situations.

Reinforcement learning for

autonomous cyber defense:

Experiment

Our goal is to train a single RL agent to defend a

sample enterprise network of 18 nodes (see figure 3)

from being compromised by a cyber adversary. Each

node has the same level of importance to a given mis-

sion and the same types of vulnerabilities. Achieving

our goal in this simple scenario will provide proof-

of-concept that RL can be used to develop an autono-

mous cyber-defense system. Recent advances in ML

and RL have not focused on reasoning and response

for autonomous cyber defense. Most current advances

aim to improve detection of cyberattacks instead of

reasoning about the best response to a cyberattack.

Thus, we must transform the autonomous network

defense scenario into a RL problem. We make the

standard assumption that the RL agent learns using a

Markov decision process (MDP), which models the

random transitions between pairs of states. In an MDP,

M is formally characterized as a 5-tuple, so M= (S, A, R,

P, γ), where [3]:

1. S is a set of states, with individual states denoted

with lowercase s;

2. A is a set of actions, with individual actions

denoted with lowercase a;

3. R is a reward function, written as R(s, a, s’) to

indicate the reward gained from being in state s,

taking action a, and moving directly to state s’;

4. P is a transition probability function, written

as P(s’|s; a) to represent the probability of be-

ing in state s’ after starting in state s and taking

action a;

5. γ is the discount factor, which represents how

much future rewards are valued, γ has a value in

the interval [0,1]. If γ is close to 1, then future

rewards are highly valued. If γ is close to zero,

then future rewards are not valued at all.

The MDP formulation allows us to find a high-

quality policy function : S A. A policy is a

function that, for each state, identifies a corresponding

action to perform. In short, a policy, is a probabil-

ity distribution function that maps states to actions.

The optimal policy is one that, if followed, maxi-

mizes the expected sum of discounted rewards [3]. To

reduce the initial scenario complexity, we assume all

nodes are equal with the same level of importance to

the mission.

The most common class of RL algorithms is

based on Q-Learning. These algorithms utilize state-

action values denoted as Q(s, a), which represent the

FIGURE 3. Enterprise network configuration with 18 nodes [4].

Agent

Environment

Action

A
t

State

S
t

Reward

R
t

R
t+1

S
t+1

FIGURE 2. Given a state, the agent chooses an action that tran-

sitions the system to a new state and generates a reward from

the environment. By accumulating these rewards over time, an

agent learns the best actions for a given state or situation [2].

 The Next Wave | Vol. 22 No. 1 | 2018 | 11

FEATURE

expected sum of discounted rewards when the agent

starts at state s, takes action a, and from thereafter,

chooses actions optimally. Once Q(s,a) is known, the

optimal action for each state is the action that maxi-

mizes Q(s,a). By choosing the optimal action at each

state to reach a given goal, the RL agent forms an

optimal policy *.

The RL agent must learn the maximum Q(s, a), or

Q*(s, a), values. In standard Q-Learning, this is ac-

complished by first initializing all of the Q(s, a) values

at random. Then, the agent explores the state space,

according to some policy. The most common of these

is a greedy-epsilon policy, where epsilon, represents

some small probability that the agent will choose a

random action at a given state, instead of the best,

or greedy, action. This provides some guarantee that

the agent, during its training phase, explores a large

enough number of states such that its learned policy

works sufficiently well during the testing phase on new

states. This learning generalization, or transfer learn-

ing, problem is much studied in all fields of ML. So,

at each time step the agent will take a random action

with probability , or pick the current best action for

the state with probability 1 - . The “current best ac-

tion” is only “best” with respect to the current Q(s, a)

values; later iterations of the algorithm can cause Q(s,

a) value changes that would alter the best action when

the same state s is encountered in the future [4].

Also, at each time step, the agent will receive a sam-

ple “state, action, reward, next state”-tuple, namely (s,

a, r, s’) from its environment. These samples are used

to update the Q(s, a) values using a moving average

update [4]. Eventually, the updated Q(s, a) values will

converge to the optimal Q*(s, a) values, under some

theoretical assumptions [3].

For our experiment, we assume that a given

node can take on the following assignments

or conditions [4]:

 Assignment 0. This represents being safe and

non-isolated. The RL agent receives positive

rewards for this node type.

 Assignment 1. This represents being compro-

mised by an attacker and nonisolated. Since the

node is nonisolated, the attacker could use it to

spread to adjacent nodes.

 Assignment 2. This represents being compro-

mised and isolated. The node does not represent

a further threat to adjacent nodes.

Thus, our state of the network, and thus MDP,

consists of the current node assignment of all 18

nodes simultaneously. Thus, the size of our state space

is 3n where n = 18. This implies that our state space

is extremely large, with 318 = 387,420,489 possible

states, even for a (relatively) small enterprise network

size. In such large state space cases, the state-action

value function, Q(s, a) will be approximated, using

a linear combination of a set of network features,

instead of directly computed to enhance the speed of

the Q-Learning algorithm. We used features such as

the number of 0, 1, or 2 nodes, longest path of 0, 1, or

2 nodes, and maximum degree of any 0 node in our

example [4]. Choosing the most important features

for a state-action value function, or so-called feature

extraction, is another challenging problem in all fields

of ML. These features can be computed based on the

sensor data collected and analyzed in the feedback

loop described earlier.

We trained our RL agent using the following

three actions:

1. DO NOTHING: At any given time step, the agent

can choose to do nothing. Although there is no

immediate cost to the agent for this action, the

action can become costly if the adversary has

compromised a node and spreads to neighbor-

ing nodes before the agent takes action to fix a

compromised node.

2. ISOLATE: The agent disconnects a compromised

node from the network. This action incurs an

immediate cost, and is more expensive than

PATCH. It also costs the agent another time step

to reconnect the node.

3. PATCH: The agent fixes a compromised node,

whether or not it is isolated. If the node was

isolated, then this action returns the node to safe

status. If not, the compromise has some chance

of spreading before the agent completes the fix.

This action is less expensive than ISOLATE, but

could ultimately be more costly depending on

amount of attacker spreading.

Ideally, our agent should use RL to learn the cost-

benefit trade-off between choosing the ISOLATE and

PATCH actions. Instead of using a predefined set of

static decision rules to determine the correct action,

the agent learns the best actions by trial-and-error

based on the rewards received from the environment.

In our example, the reward is the difference between

12

Machine learning for autonomous cyber defense

the number of uncompromised nodes and the cost

of the current action. In other words, R(s, a, s’) =

N(s) – C(s) where N(s) is the number of uncompro-

mised nodes in the current state s and C(s) is the cost

of the action performed in state s. We used the nu-

merical values of 10, 5, and 0 for the cost of the isolate,

patch, and do nothing actions, respectively [4].

The state transitions in our MDP are stochastic,

because there is no certainty about which node the

attacker will compromise next. Thus, when the agent

chooses an action, the next state is not known with

certainty. Our MDP is effectively modeling a two-play-

er game. At each turn, the adversary has two options

to influence the network state:

1. Spreading: For each unsafe (i.e., compromised)

and non-isolated node, the attacker has some

probability p of also compromising an adjacent

node that is safe and independent of other nodes.

For instance, suppose p = 0.25 and the network

contains only three connected nodes, where

only one is unsafe. Then the attacker has a 0.252

chance of compromising the other two nodes, a

0.375 chance of compromising exactly one of the

adjacent nodes, and a 0.752 chance that none of

the other nodes are compromised [4].

2. Random Intrusion: For each node, the attacker

has some probability of randomly compromising

FIGURE 4. The performance of an RL agent defending the network autonomously, measured in terms of the average number of

safe nodes out of 18. The left plot shows training with the annealed greedy- epsilon policy; the right plot shows testing with fixed

 = 0.05. We use 10k and 1k training and testing episodes, respectively. The black curve is a smoothed version of the blue curve [4].

it, independent of the other nodes. For example,

if the probability is 0.1 and the network state has

three nodes that are all safe, then there is a 0.13

chance that the attacker manages to get in all the

nodes at once. This action is applied during each

attacker’s turn after it has attempted to spread as

described previously [4].

These two actions come with different probabili-

ties. In general, we set the probability of the intrusion

spreading to a node adjacent to a compromised one to

be much higher than the probability of a cyberattack,

i.e., intrusion, compromising a random node. With

the network of 18 nodes, a good starting value is 0.15

for the intrusion “spreading” probability, and 0.01 for

the probability of random compromise. These prob-

abilities will have to be modified appropriately as the

number of network states changes, since we assume

that the RL agent can only act on one node per turn.

If the spreading probability is too high, the RL agent

effectively cannot protect the network even if it per-

formed the optimal actions [4].

Reinforcement learning for cyber

defense: Initial results

To evaluate our agent’s performance for a single

episode of 100 turns, we compute the number of safe

nodes (out of a total of 18) after each turn, and then

 The Next Wave | Vol. 22 No. 1 | 2018 | 13

FEATURE

average those numbers across all turns. The average

number of safe nodes is a performance metric that ac-

counts for the entire episode of 100 turns and should

smooth out unlucky turns when the attacker’s “ran-

dom intrusion” compromises many more nodes than

expected. In the RL literature, these episodes are also

known as “rollouts” or “trials” [2]. See figure 4.

To evaluate the RL agent’s overall performance, we

compute the whole sequence of average number of

safe nodes for each test set episode. Note that because

of the attacker’s intrusion ability, the odds of an agent

scoring a perfect 18 for any one episode are exceed-

ingly remote. For instance, based on our chosen prob-

ability of compromise and probability of spreading

values, the attacker has basically a zero probability, i.e.,

((0.9818)100 ~ 0, of never compromising any node dur-

ing every turn of one episode. Therefore, an agent has

basically a zero probability of keeping all 18 nodes safe

during every turn [4].

For our testing the performance of our RL agent,

we used a standard value of = 0.05. However, other

choices of may be better for our RL agent, and we

would also like to find a suitable range of values

that reaches consistent testing performance. Figure

5 shows our results, starting from the top left and

FIGURE 5. Testing performance plots for various values of . All six subplots were generated using performance results computed

across 1,000 total episodes [4].

moving clockwise, for in the set {0.0; 0.05; 0.1; 0.2;

0.4; 0.6} [4]. In figure 5, we recomputed the testing

performance results for the same = 0.05 value used

in figure 4 as a sanity check. The = 0.0 case means

we never randomly choose actions. In other words,

we only choose the best actions for the given state.

We see that the three smaller values result in simi-

lar performance. The quality of RL agent noticeably

decreases with = 0.2, and worsens, as expected, as

 increases. The worst performance is obtained when

 reaches 1, representing the agent always choosing a

random action for a given state. Figure 5 displays the

exact performance values that are best for our ex-

ample and indicates that = 0.05 is reasonable for our

greedy-epsilon policy [4].

We now attempt to achieve the best test perfor-

mance possible. Using the information learned from

previous sections, we maintain the greedy-epsilon

policies for training and testing and do not use weight

normalization. We also run Q-Learning for 200,000

trials, a 20-fold increase over our previous number

of trials.

Our RL agent results are shown in figure 6 in terms

of performance. The performance plots show that

the agent has successfully learned how to control the

14

Machine learning for autonomous cyber defense

network to a large degree. The average value over all

200,000 trials is 15.919, with a standard deviation

of 0.650. Despite all the training trials, however, the

basic experiment with 10,000 training trials actually

performed better with a mean score of 16.265 (though

with a higher standard deviation). The best perform-

ing version of the RL agent uses = 0.0 (average value

of 16.600), though we caution that this is likely be-

cause of the limited actions in this scenario. In a more

complicated domain, such as Atari 2600 games, play-

ing random actions in practice might be necessary.

Conclusions

We demonstrated a nontrivial computer network

defense scenario and trained an RL agent that success-

fully protects the network from a randomized adver-

sary. Moreover, our agent has to reason when selecting

actions, because they are designed to have competing

trade-offs between safety and cost. We presented an

18 node scenario, using a plain graph where all nodes

had equal value. As evidenced by the results over

many testing episodes, the agent consistently keeps a

significant number of nodes safe. However, the pri-

mary weakness of this scenario is that it assumes very

simplistic models for the attacker and defender. The

most obvious direction for future work is therefore to

design more realistic cyber attacker-defender models.

FIGURE 6. The performance of the RL agent measured in terms of the number of safe nodes out of 18. The performance is similar to

that presented in figure 4, except with more (i.e., 200k) training episodes [4].

Moreover, we showed that RL can be used to devel-

op an autonomous cyber defense system that improves

the resilience of an enterprise network to cyberattacks.

As noted, more research is required to show that RL

can be effective in larger, more complicated enterprise

network configurations, where nodes vary in type and

potential vulnerabilities, and in environments with

sophisticated attacker behavior. As an initial research

study, though, the results are promising.

References

[1] Bodeau D, Graubart R, Heinbockel W, Laderman E.

“Cyber resiliency engineering aid—The updated cyber

resiliency engineering framework and guidance on ap-

plying cyber resiliency techniques.” (Technical report

MTR140499R1). May 2015. The MITRE Corporation.

[2] Barto AG, Sutton RS. Reinforcement Learning: An

Introduction. Cambridge (MA): MIT Press; 1998.

[3] Beaudoin L, Japkowicz N, Matwin S. “Autonomic com-

puter network defence using risk state and reinforcement

learning.” Cryptology and Information Security Series, 2009.

[4] Seita D. “DanielCanProtectIt: An AI agent that learns

how to defend a computer network system using reinforce-

ment learning.” (Technical Report). August 2016. NSA

Research Directorate.

 The Next Wave | Vol. 22 No. 1 | 2018 | 15

DEPT NAME

M
ore than

80 years

ago, Alan

Turing developed a

computational paradigm

that enabled machines to

perform operations humans are not

adept at—fast, precise math. Today, highly

optimized central processing units (CPUs)

and graphics processing units (GPUs) can do

trillions of precise mathematical operations

per second. Now researchers are trying to

use these processors in a different way—to

do tasks that humans are good at. This field

of research is called machine learning (ML) or

artificial intelligence (AI), and their associated

algorithms are providing these new capabilities.

This article describes our search to identify

extremely efficient hardware architectures that

execute ML algorithms, and how it ended up

leading our research in an unanticipated direction.

by Mark R . McL e an and Chr is topher D. Kr ieger

Rethinking neuromorphic
computation: Why a new
paradigm is needed

[Photo credit: monsitj/iStock/Thinkstock]

16

Rethinking neuromorphic computation: Why a new paradigm is needed

ML applications deviate from the traditional computer

programming methods in that they learn from data.

They learn so well, in fact, that they provide better

solutions for some tasks than our smartest program-

mers. Face recognition, speech recognition, and even

autonomous driving are just a few applications for

which ML algorithms surpass human ability to di-

rectly program a better solution. As a result of the re-

markable capabilities ML provides, billions of dollars

are being spent by industry to develop new or modify

current processors to provide more efficient computa-

tion of ML algorithms. These ML-focused computa-

tional processors are more commonly referred to as

neuromorphic processors (NMPs). Realizing the capa-

bility NMPs could provide to NSA, the Laboratory for

Physical Sciences (LPS) launched the Neuromorphic

Computation Research Program (NCRP).

Evaluating neuromorphic processors

The primary goal for the NCRP is to explore novel

NMP architectures that could provide revolutionary

computational efficiency, which we define as being

greater than two orders of magnitude improvement

in classifications/watt. In pursuit of this goal, we have

explored a large number of the current and proposed

NMPs from nearly all the major processor vendors.

These NMP designs use similar complimentary metal-

oxide semiconductor (CMOS) process technologies,

so they rely on architectural design changes to provide

a competitive advantage.

One of the NMP architectures we evaluated was the

Google tensor processing unit (TPU) [1]. The TPU is

an application-specific hardware design that focuses

on providing efficient inference for Google’s ML ser-

vices. Recently, NVIDIA compared the TPU and the

NVIDIA P40 GPU to better evaluate the performance

of both designs. Directly comparing these NMPs is

difficult because the two products were designed for

different purposes; the P40 was designed as a more

general-purpose computational system than the TPU.

Considering this, the inference comparison shows the

TPU to be only 6.3 times more power efficient than

the P40. While this efficiency gain is very respectable

within our highly optimized computation domain, it is

not close to our desired revolutionary efficiency gains.

Moreover, it demonstrates that even with an en-

tirely new application-specific design, the TPU could

not surpass a general-purpose GPU efficiency by a

single order of magnitude (see figure 1).

We also evaluated the IBM TrueNorth processor,

which was developed under the Defense Advanced

Research Projects Agency’s Systems of Neuromorphic

Adaptive Plastic Scalable Electronics (SyNAPSE)

program. This processor is unique because it simulates

spiking neurons and is supposed to be very power

efficient. In our evaluation, we compared a low-power

GPU, the NVIDIA Jetson TX2, to TrueNorth and

ran the same benchmarks as the IBM TrueNorth

paper [2]. When all the power required to make a

deployable system (e.g., random-access memory,

complex programmable logic device) was taken into

account, the TrueNorth processor was no better and

sometimes even less efficient than the inexpensive

NVIDIA Jetson TX2.

We concluded that spiking networks, using current

algorithms, were not likely to provide revolutionary ef-

ficiency. Additionally, we evaluated a number of future

architectural designs from leading computer processor

companies, and we expect them to provide steady but

incremental improvements in efficiency. The evalua-

tion of this broad range of NMP designs indicates that

evolutionary architectural changes will not provide a

disruptive efficiency benefit.

Evaluating memristors

As a result, we decided to explore nontraditional

computing approaches. We spent three years conduct-

ing in-depth evaluations involving a radically different

way to perform multiply and accumulate operations

(MACCs) [3]. Since the MACC operation is a funda-

mental computation for a number of neural networks,

the expectation was that an efficiently computed

MACC operation might provide our desired improve-

ment. The research focused on the use of memristors

connected in a crossbar, which is the focus of many re-

search groups [4]. Memristors were theorized by Leon

Chua in 1971 [5] and arguably discovered by Hewlett

Packard’s Stan Williams in 2009 [6]. Memristors are a

two-terminal device that if given enough energy can

increase or decrease their resistance; while at lower

energies, they can be read without resistance change.

Our interest in memristors was fueled by wanting

to determine if they could replace the synaptic weights

of a neural network. When applying low voltages,

 The Next Wave | Vol. 22 No. 1 | 2018 | 17

FEATURE

FIGURE 1. Hyper-optimized processor space is constraining computational advancements. [Figure credit: Oliver Mitchell, Robot

Rabbi blog, http://robotrabbi.com]

memristors act like fixed resistors, and by leveraging

Ohm’s law, a multiply operation can be performed.

The accumulate operation would be performed by

having all the memristors connect to a single metal

line in a wired “OR” configuration. Combining these

devices into high-density memristive crossbars would

enable billions of MACC operations to be computed

in parallel.

In the summer of 2016, our team conducted an

analysis to test the benefits of memristor-based cross-

bar computation. We created a simulation program

with integrated circuit emphasis (SPICE)-level netlist

of a two-layer neural network that evaluated an

MNIST-trained model; MNIST (Modified National

Institute of Standards and Technology) is a simple and

standard ML data set that has images of handwrit-

ten digits from 0 to 9 represented in a 32 by 32 array.

For baseline comparison, we also designed a SPICE

netlist for a CMOS adder-based neural network. Both

netlists provided inference capability and used the

same weights from offline training. After completing

multiple SPICE simulations of both architectures, we

found that using memristors for computation would

provide approximately a four times improvement in

compute efficiency (i.e., classifications/watt); unfortu-

nately, this was nowhere near our goal. Furthermore,

the four times improvement was derived from the

computational efficiency in isolation, but a compu-

tational system must also expend energy on input-

output communication (I/O).

To compare the efficiency benefit that memristors

provide at a system level, we calculated the energy

required to transfer information to the memris-

tive crossbars. For our computation, we used one of

the most efficient memories available (i.e., Micron’s

Hybrid Memory Cube), which consumes only 10

picojoules per bit. These calculations revealed that

the system-level efficiency provided by memristors

would result in only a 1% power savings. Evaluating

the system-level efficiency highlighted the depen-

dency of I/O and also emphasized that it is the largest

energy consumer. Putting this into perspective, in a

presentation at the 2011 International Conference on

Parallel Architectures and Compilation Techniques,

Intel Fellow Shekhar Borkar showed that for the

LINPACK benchmarks, processor I/O consumes two

http://robotrabbi.com

18

Rethinking neuromorphic computation: Why a new paradigm is needed

thirds of the system power, and compute consumed

only one third [4]. The implication is that—even if

computation energy could be reduced to nothing—the

resulting system-level efficiency would be improved

by only 33%. This revealed a hard constraint: To make

a revolutionary impact on power efficiency, both I/O

and compute power need to be orders of magnitude

more efficient.

We decided to step back and look at the facts. We

had explored the broad domain of current and future

NMP designs, and we did not find any that had the

potential to meet our efficiency goals. Furthermore,

current computation advances are also being con-

strained by a number of physics limitations, just

one example is scaling current CMOS technologies.

Transistors will likely not scale down much further,

but even if they could, thermal density will limit the

number that can be used. We also explored more

novel computation using memristors and found they

provide no substantial advantage. Additionally, we

realized we couldn’t just focus our search on effi-

cient computation; our solution had to also include

efficient I/O.

While we were discouraged by our inability to find

a solution, our evaluations provided further insight

into defining what a solution would require. We

are fairly confident that a solution can exist. Why?

Because the human brain provides a tangible realiza-

tion of our goal. While examining the constraints that

the solution would require major efficiency advance-

ments to both compute and I/O, we wondered if ML

tasks could be accomplished using multiple orders

of magnitude less compute and I/O operations. This

would enable us to meet our efficiency goals. But

was there an underlying principle that could provide

this reduction?

Inspired by the brain: Computing

on concepts

Our search for a solution led us to look at the one of

the most useful ML algorithms, called a convolutional

neural network (CNN). CNNs were developed by

Yann LeCun [7], and variations of these networks have

held the highest marks for accuracy on a number of

1. See https://www.youtube.com/watch?v=AgkfIQ4IGaM, or just search for deep visualization toolkit.

standard ML data sets. An aspect of CNNs of par-

ticular interest is that they employ a deep hierarchy of

computational layers. To understand the functional-

ity hierarchy provides, we leveraged research from

Jason Yosinski at Cornell University [8]. Yosinski and

his team developed a deep visualization toolkit that

enables visualization of what the different layers in

the hierarchy learn. There is a short video of this on

YouTube1 showing that as information propagates

through the hierarchy, each consecutively higher layer

is learning a more abstract representation of the previ-

ous layer. For example, at the lower layers, the CNN

is learning edges, the next layers are learning shapes

and parts of objects, and by the fifth layer, individual

neurons are representing abstract concepts like faces,

dogs, and text.

If computations could be performed on these con-

cepts rather than all the bits of information that they

represent, it would significantly reduce both compute

and I/O. Our preliminary investigations indicated that

computing on concepts could provide a mechanism to

significantly increase computational efficiency, but we

realized that it could require the development of a new

information processing paradigm that is inspired by

the brain.

As a society, we have been trying to understand

how the brain works for centuries, yet there is no uni-

fied theory of how the brain processes information.

We have amassed so much data about the brain that

it can be interpreted to support contradictory ideas,

making knowledge extraction difficult. As a result, we

are bounding our investigation of the brain to improve

our chances of success. Our focus is on understand-

ing the high-level information processing paradigm

used by the brain. While this is certainly a lofty goal, it

does attempt to remove the biological implementation

details. We are emphasizing the functionality—how

the brain transforms information—and attempting to

leave behind the complexity of how it does it. While it

is impossible to completely overlook implementation,

staying as removed from it as possible will improve

our ability to piece together this paradigm. This ap-

proach has enabled us to extract a number of prin-

ciples that we feel are essential elements of the brain’s

information processing paradigm.

https://www.youtube.com/watch?v=AgkfIQ4IGaM

 The Next Wave | Vol. 22 No. 1 | 2018 | 19

FEATURE

Brain evolution

Before discussing these principles, it is important to

discuss the mechanisms that guided the development

of our brain. Let’s start by describing some of the

mechanisms and constraints that led to the existence

of our current human brain. The brain as an informa-

tion processing system has taken millions of years to

evolve. Evolution progresses from the success of its

previous generation; it can’t scrap a design and start

from scratch like Google with their TPU. Evolution’s

main optimization constraint is survival of the organ-

ism’s genetic code. Survival is the ability of the organ-

ism to get the required energy to keep its life processes

functioning and enable procreation. This puts con-

siderable constraints on what the organism expends

energy on.

Evolution, moreover, is not directed and is kept

in check by our physical environment. For example,

dinosaurs emerged by evolution placing a priority

on size and strength and not on intellect. When the

Earth’s environment changed rapidly, the dinosaurs

didn’t have enough intelligence to adapt to the situa-

tion, and a large percentage of them died. This ex-

emplifies the interaction between evolution and the

environment; the environment can scrap bad designs.

When this rapid environmental change occurred,

organisms that could adapt survived and procreated,

and this is how evolution and the environment started

to favor organisms with more intelligence.

However, evolution is constantly balancing the re-

quired intelligence of an organism against the energy

it consumes. Additionally, there is no evolutionary

motivation to improve intellect beyond the organism’s

survival. It is the competition between other animals

that continued to push intellectual improvement. Even

with this competition, evolution is slow and incremen-

tal; reusing features that work and constantly balanc-

ing complexity with the energy it requires. This is the

optimization landscape that our brain evolved under,

and it provides an essential foundation for unraveling

its information processing paradigm.

Brain information processing paradigm

Our goal is to uncover the information processing

paradigm implemented by the brain, and as such,

FIGURE 2. Silhouettes provide critical, spatially correlated infor-

mation enabling object recognition regardless of scale. [Image

credit: Vecteezy.com]

we have to define the information it processes. Our

brain did not evolve to process numbers, so what

does it process? To answer this we need to look at

our environment. Through evolution, organisms had

to survive in our world. Our world resides in three-

dimensional space and time, and our brains evolved to

efficiently process information and survive within this

space. A few of the main brain functions that devel-

oped were object recognition and prediction. Objects

need to be recognized at different distances and in

different lighting conditions.

In our world, all objects are three dimensional and

contiguous, and the largest feature of an object is its

outline or silhouette. To illustrate how much informa-

tion these structures contain, see how easy it is for us

to recognize objects only by their silhouette (see figure

2). There is no real color information; there is just a

two-dimensional representation that contains relative

structural information. The silhouette is an example of

spatially correlated change (i.e., edges), which is a type

of information our brain processes.

Support for this idea comes from the functional-

ity of our retina. At the input to our visual cortex, the

retina removes redundant information and extracts

the spatial structure of the object; a simplified func-

tional description is that it is an edge detector. From

the very start of information processing, edge detec-

tion greatly reduces the amount of information our

https://www.vecteezy.com

20

Rethinking neuromorphic computation: Why a new paradigm is needed

brain must compute and communicate. The retina

contains approximately 100 million rods and cones,

while the optic nerve has only about one million neu-

rons [9]. The retina reduces the amount of informa-

tion reaching our brain by two orders of magnitude.

This has profound implications on how reducible

natural signals are and provides valuable insight into

what information is important. Vision is just one of

our senses that provide information to the brain, and

creating relationships between different senses may

be accomplished using temporally correlated events.

If you see a change and you hear a noise at the same

time, you tend to link the events together. Spatially

and temporally correlated events are the structured

information our brains process.

The requirement to process simultaneous spatial

and temporal events provides strong support that our

brain uses spatial computation and is event driven.

Moreover, the retina passes edges, and these edges

are spatially correlated change—this implies the brain

computes on changes. Spatial computation, event-

driven processing that only computes on change cre-

ates a completely adaptive power-saving mechanism.

Energy is consumed only when there is information

to be processed and then only the locally affected

neurons use energy to process it. That being said, if

the brain is an event-driven architecture, then it also

requires a method of prioritizing the processing of

these events.

The priority for events should be directly related

to the information the event contains; this leads us

to believe that new information and rapid spatial

change are events that contain high-priority infor-

mation. It also follows that these events would have

higher spiking frequencies and consume more energy.

These higher firing rates could also be used to direct

our attention. The brain is always trying to minimize

energy consumption and uses our attention as a tool

to achieve this. Processing the high-frequency events

first minimizes energy and prioritizes the informa-

tion we process. A tangible example of this principle is

how a magician commands your attention by mak-

ing large gestures with one hand while he makes the

subtle switch with his other hand. The large gestures

evoke high spatial change on the retina and cause

more neurons to fire; thus, the large gestures draw

your brain’s attention in an attempt to minimize its

energy consumption.

We previously mentioned that computing on

concept is a foundational principle of the informa-

tion processing paradigm of the brain. We have seen

from the deep visualization toolbox that CNNs create

abstract concepts as information propagates up the

hierarchy. The idea of using a hierarchy to process

information is very different compared to our cur-

rent computational paradigm. There is considerable

research supporting the idea that the brain processes

information in a hierarchy [10, 11]. However, un-

like the CNN structure, we believe each layer in the

hierarchy also connects to a central point. This point

would be similar to the thalamus/hippocampus in the

brain, and this additional connectivity is what enables

the brain to easily use varying degrees of abstraction

to accomplish tasks or recognize objects.

Prediction is another foundational principle of

the information processing paradigm of the brain.

Research on the inferior temporal cortex of monkeys

shows how, after learning a sequence of patterns, the

monkey’s predictions minimize neural firing [12]

(see figure 3).

Novel sensory information is passed up the hierar-

chy, and these features evoke a hierarchical prediction

back down. As the prediction passes down the hier-

archy, differences between the prediction and sensory

input are calculated at each level. If these differences

are small, then at some level of abstraction within the

hierarchy, we “understand” what we are seeing. If we

“understand” by choosing a good predictive model,

then the firing rate of neurons—and hence the energy

consumption of the brain—decreases. In addition, the

difference between sensory input and prediction may

play a crucial role in the learning algorithm. With a

good prediction, there may not be enough available

energy to learn, but with a bad prediction, there are

still a number of neurons firing at a high frequency,

and this additional energy may enable learning.

Furthermore, this additional energy would then draw

your attention to the prediction errors, which would

be the highly discriminant information. An example

of this is if a person has a unique feature on their face,

we tend to fixate on it and learn to associate that fea-

ture to better identify the person.

We have described how both prediction and atten-

tion combine to minimize neural firing and thereby

minimize energy consumption. In the visual cortex,

there is a ventral (what) and a dorsal (where) pathway.

 The Next Wave | Vol. 22 No. 1 | 2018 | 21

FEATURE

FIGURE 3. Row B shows neural firing reduction on trained sequences. Row C illustrates neural firing patterns on untrained object

sequences. Figure from [12].

Information propagating through the “what” hierarchy

is reduced into a concept and then associated in the

“where” space. What we believe is happening, is that

the brain is creating a personal reality. New objects

are identified and added to this reality. As our atten-

tion moves over objects in our reality, predictions are

propagated down the hierarchy and compared with

our sensory information. Only the differences are

communicated to the thalamus/hippocampus, and our

personal reality gets updated at the level of abstraction

that is needed to achieve the current task. The creation

of a personal reality would provide the substrate to

achieve our energy efficiency goals by utilizing the

concepts we create with our hierarchy.

Conclusion

This article has summarized the NCRP’s search for

highly efficient NMP architectures. From our broad

evaluation of this computational landscape, we don’t

believe it is possible for evolutionary design changes

to meet our disruptive efficiency goals. Ultimately, the

solution must significantly reduce both I/O and com-

pute power, and computing on concepts may provide

that reduction. This hypothesis directed our research

to the development of a different information pro-

cessing paradigm that is guided by the way our brain

processes information. As we attempt to develop this

new paradigm, we have to be careful not to get stuck

in biological implementation details and stay focused

on how information is transformed as it propagates

through the brain.

Initial investigations are leading us to explore the

possibility that this paradigm creates a personal reality

where higher-level computations occur; however, the

exact nature of these computations is still being deter-

mined. We are just starting to develop this paradigm,

and we hope within the next few years to develop an

initial framework, have a more detailed analysis about

potential energy savings, and define suitable appli-

cations. Due to the vast complexities of the human

brain, this framework will only capture a small subset

of human brain behavior. Motor control, emotions,

motivation, and higher-level reasoning are just a few

of the functionalities that we are not addressing.

A parting perspective is that the majority of NMP

research uses a computational paradigm designed for

22

Rethinking neuromorphic computation: Why a new paradigm is needed

high-speed precise math—which humans are not good

at—to simulate tasks humans excel at. Precise math

can be used to accurately simulate physical systems,

such as CPUs; however, this approach is very compu-

tationally inefficient compared to using the CPU itself.

Without the guidance from a new computational

paradigm, NMPs will essentially be relegated to being

hardware-based simulators. We expect that our new

paradigm will integrate the principles discussed in this

article and likely require more we have yet to uncover.

That being said, if we are successful, it is possible we

will achieve more than just highly efficient computa-

tion. This paradigm could provide the blueprints for

designing a system with the fundamental abilities to

understand, seamlessly work with multiple levels of

abstract concepts, and inherently extract knowledge

from data.

References

[1] Jouppi N, Young C, Patil N, Patterson D, Agrawal

G, Bajwa R, Bates S, Bhatia S, Boden N, Borchers

A, et al. “Datacenter performance analysis of a ten-

sor processing unit.” 2017. Cornell University Library,

arXiv:1704.04760v1.

[2] Esser S, Merolla P,, Aurthur J, Cassidy A, Appuswamy

R, Andreopoulos A, Berg D, McKinstry J, Melano T, Barch

D, et al. “Convolutional networks for fast, energy-efficient

neuromorphic computing.” Proceedings of the National

Academy of Sciences of the United States of America.

2016;113(41):11441-11446. Available at https://doi.

org/10.1073/pnas.1604850113.

[3] Yokopcic C, Hasan R, Taha T, McLean M, Palmer

D. “Efficacy of memristive crossbars for neuromorphic

processors.” In: International Joint Conference on Neural

Networks; 2014 Jul 6-11; Bejing, China. doi:10.1109/

IJCNN.2014.6889807.

[4] Mountain D, McLean M, Krieger C. “Memristor

crossbar tiles in a flexible general purpose neuromorphic

processor.” In: IEEE Journal on Emerging Technologies

and Selected Topics in Circuit Systems; 2017; PP(99):1–1.

doi: 10.1109/JETCAS.2017.2767024.

[5] Chua L. “Memristor—The missing circuit element.” In:

IEEE Transactions on Circuit Theory; 1971;18(5):507–519.

doi: 10.1109/TCT.1971.1083337.

[6] Strukov D, Snider G, Stewart D, Williams S. “The

missing memristor found.” Nature. 2008;453(1):80–82.

doi:10.1038/nature06932.

[7] LeCun Y, Haffner L, Bottu L, Bengio Y. “Object recog-

nition with gradient-based learning.” In: Shape, Contour,

and Grouping in Computer Vision. Berlin, Heidelberg:

Springer; 1999.p. 319–345. Available at: https://doi.

org/10.1007/3-540-46805-6_19.

[8] Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H.

“Understanding neural networks through deep visualiza-

tion.” In: International Conference on Machine Learning;

2015 Jul 6–11; Lile, France.

[9] “Chapter 11, Vision: The eye.” In: Purves D, Augustine

G, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO,

Williams MS, editors. Neuroscience 2nd edition. Sunderland

(MA): Sinauer Associates; 2001.

[10] Riesenhuber M, Poggio T. “Hierarchical models of

object recognition in the cortex.” Nature Neuroscience.

1999;2(11):1019–1025.

[11] Lee TS, Mumford D. “Hierarchical baysian infer-

ence in the visual cortex.” Journal of the Optical Society of

America. 2003;20(7):1434–1448.

[12] Meyer T, Olsen C. “Statistical learning of visual

transitions in monkey inferotemporal cortex.” Proceedings

of the National Academy of Sciences of the United States of

America. 2011;108(48):19401–19406.

[13] Borkar S. “The exascale challenge.” In: 20th

International Conference on Parallel Architectures and

Compilation Techniques; 2011 Oct 10–14; Galveston

Island, TX.

[14] Huth A, Nishimoto S, Vu A, Gallant J. “A continuous

semantic space describes the representation of thou-

sands of object and action catagories across the human

brain.” Neuron. 2012;76(6):1210–1224. doi: 10.1016/j.

neuron.2012.10.014.

[15] Meyer T, Olsen C. “Statistical learning of visual transi-

tions in the monkey inferotemporal cortex.” In: Proceedings

of the National Academy of Sciences of the United States of

America. 2011;108(48):19401–19406. Available at: https://

doi.org/10.1073/pnas.1112895108.

https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1073/pnas.1112895108
https://doi.org/10.1073/pnas.1112895108
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1007/3-540-46805-6_19

[Photo credit: ktsimage/iStock/Thinkstock]

CHANGED COMPUTER VISION

HOW

b y B r i d g e t K e n n e d y a n d B r a d S k a g g s

I
f you are aware of the term deep learning, you

are likely also aware of where deep learning has

been most disruptive—that is, the field of com-

puter vision (CV)—the study of teaching a com-

puter to identify the content of an image or video.

Problems in this area range from facial recogni-

tion to object recognition, scene understanding,

geolocation of an image given only the objects in

the image, and three-dimensional reconstruction

from two-dimensional images. The majority of CV

research is focused on imbuing a machine with a

sufficient level of recognition so as to automati-

cally sort large quantities of images and videos by

their visual content.

Deep learning has been transformative in CV for

a number of reasons, and the speed with which

CV went from what one might perceive as primi-

tive analytics to highly sophisticated capabilities

as a result of leveraging deep learning offers les-

sons for other domains seeking to produce game-

changing analytics in new areas.

24

How deep learning changed computer vision

Before deep learning

CV is a subfield of computer science. It has a past

that predates the current excitement surrounding the

apps that allow you to turn a picture of yourself into a

Picasso drawing [1] and tools that allow you to search

and sort your pictures by visual concepts such as cats,

children, parties, and so on [2, 3, 4, 5].

What did people used to do before deep con-

volutional neural networks disrupted the field?

Understanding this process may help to understand

the shift in design that was allowed by the use of

deep nets.

The standard procedure for analyzing an image or

the pixels within a video frame starts by running an

algorithm that looks for “interesting” local regions

within an image (i.e., local pieces that stand out from

the rest—corners, edges, bright or dark regions with

strong visual gradients). After interesting points are

located, one describes these local regions using feature

vectors. Some common image feature vectors, such

as SIFT, SURF, BRIEF, ORB [6, 7, 8, 9], and so on,

are handmade and were painstakingly developed by

experts in the field. In designing these feature vectors,

researchers performed years of research to ensure that

their features were robust and unaffected by changes

in lighting, scale, and rotation.

After descriptions of the local areas in an image

are made, a process of dimension reduction, pooling,

clustering, and/or classification of these regions are

performed, allowing one to describe an image both

locally and generally. The general classifications are

the most important for semantic labeling tasks, such

as teaching a computer to recognize that an object is

a cat. These methods, and the overall flow from pixels

to classes, were optimized and improved, and the field

was incrementally moved forward one PhD disserta-

tion at a time.

The goal of all this work was often the same: How

do we teach computers to see as a human being sees?

How do we teach it to go from pixels to cats? The

process of going from low-level features to seman-

tic or high-level concepts was still being thought

out by researchers working with features such as

SURF when deep convolutional neural networks

became ubiquitous.

What does deep mean?

The power of deep learning for CV comes from the

ability of a deep network to learn features in a layered

fashion, ranging from edges and gradients to semantic

concepts like ears, faces, writing, and so on. No longer

would one need to spend years coming up with the

best way to detect and describe local regions of inter-

est or to determine how best to glue these low-level

ideas together to approximate semantic ideas. Instead,

one could merely push millions of images through a

deep network structure, and learn the optimal way to

separate these images into classes using a target clas-

sifier and fast learning algorithms. The deep network

would learn how to transition from the low-level to

the semantic. This is really critical. Deep learning

eliminated the need to hand design feature vectors at

the same time it learned how to build semantic feature

vectors, thus changing the way the community works.

The mantra became: Learn features directly from your

data—never design a feature vector by hand.

One of the most interesting pieces of a deep convo-

lutional neural network trained on CV tasks—such as

those trained on the large ImageNet [10] corpus with

1,000 classes and over a million images—is that the

semantic feature vector encodings of images can be

recycled. That is, even if a particular category wasn’t

present in the original training categories, there are

enough high-level (semantic) categories pulled out or

learned in the process of building the deep networks

for ImageNet classification, that these feature vectors

can be quickly transferred to new tasks. For example,

one of the basic examples when learning how to use

TensorFlow [11] is a transfer learning task, where one

uses the deep features learned on ImageNet to quickly

learn a classifier on a small data set. The typical first

transfer learning task is one to classify flower types by

training on the Oxford Flowers data set [12], but an

extremely effective bird classifier is also easily ob-

tained using Caltech Birds (CUB-200) [13] and can be

learned in minutes.

There are many arguments about what makes

something deep learning. Is it the size of the network?

If so, how deep is deep? ResNet-101 [5], where 101 is

the number of layers, was the standard net for about

a year—the life span of a reigning champ deep net. A

 The Next Wave | Vol. 22 No. 1 | 2018 | 25

FEATURE

better rule of thumb should be how well do features

learned in the training process transfer to different

but related tasks—like the easy transfer of the deep

Inception features trained on ImageNet to a general

flower classifier. Did your network learn shallow or

deep concepts? Low-level or semantic concepts?

Applying deep learning in other fields:

Three lessons from CV

While some of the dramatic improvements that

deep-learning CV applications have seen might be a

result of the unique nature of CV problems, there are

certainly lessons to be gleaned for achieving success in

other fields beyond vision.

Adopt standard, sharable data sets

The CV community has a de facto ladder of standard

data sets of increasing complexity. The most frequently

used data set for basic testing of a model architec-

ture for image classification is the MNIST (Modified

National Institute of Standards and Technology)

database of handwritten digits [14]. An algorithm

successful on MNIST might next be validated on

the CIFAR-10 or CIFAR-100 (Canadian Institute for

Advanced Research) [15] data sets with 10 or 100

object categories more complex than digits. The final

rung of the ladder is testing on ImageNet, which has

roughly 14 million images (one million with bounding

boxes) in 1,000 categories [10].

For an approach claiming state-of-the-art in image

classification, reporting results on at least the upper

rungs of the MNIST/CIFAR/ImageNet ladder is neces-

sary for publishable work in image classification. In

fact, even nonclassification tasks often leverage data

derived from these standard data sets.

For a field to adopt common evaluation data sets,

practitioners must address the legal complexities of

licensing large, diverse data sets derived from many

sources. ImageNet handles this problem by provid-

ing URLs pointing to known locations of the images;

it is up to each research team to download them for

themselves, or else download them from the ImageNet

curators after agreeing to several restrictions on use.

As an example from the text processing community,

a purpose-built question/answer data set was built by

crowdsourcing humans to ask and answer questions

about Wikipedia [16]; since the text of Wikipedia arti-

cles is under a Creative Commons license, this derived

data set can be shared freely with few restrictions.

Use expressive deep-learning frameworks

The gradient-based optimization problems that arose

in adopting deep-learning approaches in CV were

originally solved by hand-coded routines for calcu-

lating loss functions and their gradients, and using

either general-purpose or hand-coded optimization

schemes. While good hand-coded implementations

would perform sufficiently well in practice, they

were often complicated to modify, making not-trivial

changes to the model or to the training process dif-

ficult to implement.

Modern deep-learning frameworks are now built

around a computation graph abstraction; the loss

function being optimized is built up in a declarative

fashion recursively from a library of fundamental

functions, and the gradient is automatically calcu-

lated by the framework using automatic differentia-

tion. Rather than using a general-purpose optimi-

zation routine, a machine learning (ML)-specific

algorithm like AdaGrad [17] is often used for the

subgradient optimization.

Using modern frameworks makes it much easier for

a researcher or ML engineer to modify existing mod-

els and to mix and match different architectural choic-

es, for example, to better explore the hyperparameter

space of model structures. These frameworks also

make it easier to transition code from research proto-

types or exploratory models to production-ready code.

Share (at least some of) your code

The adoption of flexible frameworks makes it possible

to share code with the understanding that it can be

run by other researchers, and perhaps repurposed for

other problems. Building off of the arXiv (https://arxiv.

org), a repository of preprints that often is the debut

location for new deep-learning techniques and appli-

cations, GitXiv (http://www.gitxiv.com/) links articles

to GitHub code repositories of implementations of the

https://arxiv.org
https://arxiv.org
http://www.gitxiv.com/

26

How deep learning changed computer vision

algorithms in the preprints, often authored by other

people than the original authors of the articles.

The sharing of code based on common frameworks

lends itself to combining components in new ways,

much like interlocking plastic toy bricks. For example,

many image captioning systems can be concisely

described as simply plugging a convolutional neural

network used for image representation into a recur-

rent neural network used for language modeling.

References

[1] Gatys LA, Ecker AS, Bethge M. “Image style trans-

fer using convolutional neural networks.” In: 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR); 2016 Jun 27–30; Las Vegas, NV: doi: 10.1109/

CVPR.2016.265.

[2] Krizhevsky A, Sutskever I, Hinton GE. “ImageNet

classification with deep convolutional neural networks.” In:

Pereira F, Burgess CJC, Bottou L, Winberger KQ, editors.

Advances in Neural Information Processing Systems (NIPS

2012). Neural Information Processing Systems Foundation,

Inc.; 2012.

[3] Simonyan K, Zisserman A. “Very deep convolutional

networks for large-scale image recognition.” 2014. Cornell

University Library. arXiv:1409.1556.

[4] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov

D, Erhan D, Vanhoucke V, Rabinovich A. “Going deeper

with convolutions.” In: 2015 IEEE Conference on Computer

Vision and Pattern Recognition; 2015 Jun 7–12; Boston,

MA. doi: 10.1109/CVPR.2015.7298594.

[5] He K, Zhang X, Ren S, Sun J. “Deep residual learn-

ing for image recognition.” In: 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR); 2016 Jun

27–30; Las Vegas, NV. doi: 10.1109/CVPR.2016.90.

[6] Lowe D. “Distinctive image features from scale-

invariant keypoints.” International Journal of Computer

Vision. 2004;60(2):91–110. Available at: https://doi.

org/10.1023/B:VISI.0000029664.99615.94.

[7] Bay H, Ess A, Tuytelaars T, Van Gool L. “Speeded-

up robust features (SURF).” Computer Vision and Image

Understanding. 2008;110(3):346–359. Available at: https://

doi.org/10.1016/j.cviu.2007.09.014.

[8] Calonder M, Lepetit V, Strecha C, Fua P. “Brief: Binary

robust independent elementary features.” In: Computer

Vision—ECCV 2010; 2010 Sep 5–11; Crete, Greece:

pp. 778–792.

[9] Rublee E, Rabaud V, Konolige K, Bradski G. “ORB: An

efficient alternative to SIFT or SURF.” In: Proceedings of the

2011 International Conference on Computer Vision; 2011

Nov 6–13; Barcelona, Spain: pp. 2564–2571. doi:10.1109/

ICCV.2011.6126544.

[10] Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L.

“ImageNet: A large-scale hierarchical image database.”

In: IEEE Conference on Computer Vision and Pattern

Recognition; 2009 Jun 20–25; Miami, FL. doi: 10.1109/

CVPR2009.5206848.

[11] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z,

Citro C, Corrado GS, Davis A, Dean J, Devin M, et al.

“Tensorflow: Large-scale machine learning on hetero-

geneous distributed systems.” 2016. Cornell University

Library. arXiv:1603.04467.

[12] Nilsback ME, Zisserman A. “A visual vocabulary

for flower classification.” In: 2006 IEEE Conference on

Computer Vision and Pattern Recognition; 2006 Jun 17–23;

New York, NY. doi: 10.1109/CVPR.2006.42.

[13] Welinder P, Branson S, Mita T, Wah C, Schroff F,

Belongie S, Perona P. “Caltech-UCSD Birds 200.” California

Institute of Technology. 2010. CNS-TR-2010-001.

[14] LeCun Y, Bottou L, Bengio Y, Haffner P. “Gradient-

based learning applied to document recognition.”

Proceedings of the IEEE. 1998;86(11):2278–2324.

doi:10.1109/5.726791.

[15] Krizhevsky A, Hinton G. Learning Multiple Layers of

Features from Tiny Images. 2009. Available at: http//www.

cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[16] Rajpurkar P, Zhang J, Lopyrev K, Liang P. “SQuAD:

100,000+ questions for machine comprehension of text.”

2016. Cornell University Library. arXiv:1606.05250.

[17] Duchi J, Hazan E, Singer Y. “Adaptive subgradient

methods for online learning and stochastic optimization.”

Journal of Machine Learning Research. 2011;12:2121–2159.

Available at: https://dl.acm.org/citation.cfm?id=2021068.

https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1016/j.cviu.2007.09.014
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://dl.acm.org/citation.cfm?id=2021068
https://doi.org/10.1023/B:VISI.0000029664.99615.94

 The Next Wave | Vol. 22 No. 1 | 2018 | 27
[Photo credit: agsandrew/iStock/Thinkstock]

b y C o u r t n e y D. C o r l e y, N a t h a n O. H o d a s , E n o c h Ye u n g , A l e x a n d e r Ta r t a k o v s k y,

To b i a s H a g g e , S u t a n a y C h o u d h u r y, K h u s h b u A g a r w a l , C h a r l e s S i e g e l , a n d

J e f f D a i l y

111111111000000000011111111111111111111000000000001111111111000000000001111111111100000111111111110000000000011111111000000111110000000111111110000001111111000000000000111111111111111000001111111110000000000111111111111111111110000000000111111111100000000000111111111110000001111111111100000000000111100000011111000000111111100000011111100000000000011111111111111100000

28

Deep learning for scientific discovery

Model-driven discovery in

deep learning

Scientific computing is all about predictions—predict-

ing properties of materials, behavior of systems, etc.

From a physics point of view, predictions are possible

because all natural and engineered systems follow

conservation laws. Traditionally, parameters and

rates in these laws are estimated from data, rigorous

mathematical techniques, and/or expert knowledge.

Neural networks are trained on data, which can only

come from the past and present. Therefore, making

accurate predictions of systems using deep learning in

the absence of tight coupling with conservation laws

depends on the ability of a neural network itself to

learn conservation laws. At present, this remains an

open question.

Conservation laws manifest themselves as a set

of algebraic or dynamical constraints. There are

two direct methods that can be used to incorporate

conservation laws into neural networks. One direct

method is to use deep learning as a part of a solu-

tion of conservation equations to directly incorporate

conservation laws into neural networks [10]. Another

direct method is to develop dedicated modules within

a larger network that approximate the system response

defined by the scientific law. For example, when

describing local behavior of a nonlinear system, it is

possible to use the layers of a convolutional neural

network (CNN) to directly encode the system dynam-

ic response as a part of the network.

Another approach to enforce scientific conser-

vation laws is to modify the objective function for

training. The unconstrained objective function for a

deep neural network restricts the input-output map

of the deep neural network to match the input-output

relationships observed in the data. However, one

can impose conservation laws as a constraint on the

optimization problem. Since constrained optimization

problems can be formulated using objective functions

with Lagrangian multipliers, simply modifying the

objective function to incorporate a conservation law,

g(x) = 0, enforces learning of the conservation law

during training.

Deep learning has positively impacted fields in which

perceptive tasks are paramount, such as computer

vision and natural language processing. Tremendous

strides have also been made in deep reinforcement

learning towards robotics and gaming. Given the suc-

cess in these fields, it is apparent that deep learning

may also accelerate scientific discovery. Herein, we

discuss several topic areas in which modern represen-

tation learning is driving innovation. This article de-

scribes learning nonlinear models from data, learning

scientific laws from models, deep learning on graphs,

and approaches to scalable deep learning.

Data-driven discovery and deep

Koopman operators

Scientists possess powerful tools to deal with linear

models, where the output of the system is directly

proportional to its inputs. But, the world is not linear.

Yet for as long as science has existed, we have had

limited capabilities to probe and understand nonlinear

models. Huge swaths of reality remain inaccessible.

In 1931, B. O. Koopman proposed the existence of a

mathematical function that turned a nonlinear system

into an infinite dimensional linear system [1], a func-

tion we now call the Koopman operator. He did not

show how to find it; for generations, the Koopman

operator proved to be too difficult to compute.

Recently, advanced computational methods such as

dynamic mode decomposition (DMD) [2, 3, 4] have

renewed interest in finding the Koopman operator

[5–7]. DMD requires the scientist to choose certain

dictionary functions, based on their experience or

imagination; a poor choice results in an inaccurate

Koopman operator. New methods, based on deep

learning [8] and shallow learning [9], provide a way

to automatically update dictionaries during training.

While previous methods rely on static dictionaries,

this new approach allows for dynamic editing and

real-time updating of dictionaries during the training

process—thus finding a high-fidelity Koopman opera-

tor as the dictionaries are refined (see figure 1).

Deep Koopman operators have the potential to be

transformational in data-driven scientific discovery

in applications ranging from synthetic biology to

control theory.

 The Next Wave | Vol. 22 No. 1 | 2018 | 29

FEATURE

K
x

t
)

t+1
)

1
x

t
)

2
x

t
)

m
x

t
). . .D =

y p

1
x)

y p

2
x)

y p

m
x). . .

Test & evaluation:
multi-step prediction

y

y
1

 pred
y

1
 act

y
2

 pred
y

2
 act

Manual evaluation &
dictionary refinement

Extended Dynamic Mode Decomposition
CURRENT METHOD

Extended Dynamic Mode Decomposition

K
x

t
) est t+1

)

1
x

t
)

2
x

t
)

m
x

t
). . .DNN =

1
x

t
)

j
x

t
)

. . .

m
x

t
)

Deep Dynamic Mode Decomposition

Time-series data

Automated dictionary learning

x
t

x
t+1

act t+1
)

DNN

DNN

act est
) Loss

Function

 -

OUR APPROACH

Deep Dynamic Mode Decomposition

FIGURE 1. This schematic illustrates the state-of-the-art approach versus a deep learning approach for Koopman operator learning.

In existing methods, the scientist postulates a variety of reasonable dictionary functions to include in their analysis (e.g., Hermite

or Legendre polynomials, thin-plate radial basis functions). If the model is not predictive, the burden is on the scientist to postulate

new functions to include in the dictionary. In our approach, the entire lifting map is specified as the output or outputs of a deep

artificial neural network. The deep neural network can be a multilayer feed-forward network, a convolutional network, a recurrent

network, etc. The prediction error is then used to compute the loss function and refine the dictionary automatically. Regardless of

the structure, the network learns the most efficient dictionary for the given system.

Deep learning for graphs

One other vital area in scientific discovery in which

deep learning can make an impact is the ability to

reason about and learn over graphs. Introduced by

Leonhard Euler in 1736, graphs have emerged as a

critical tool for modeling a large number of real-world

data sources we deal with today. These include data-

bases containing relationships between many enti-

ties such as computer or social networks as well as

semantic networks involving entities that are instan-

tiations of different concepts (e.g., people, locations,

organizations), and the relationships or interactions

between these entities. All prominent graph algo-

rithms seek to extract different types of information

from this web of relationships, such as connecting

entities (graph search), grouping entities with simi-

lar behavior (clustering), predicting the relationship

between two entities (link recommendation or graph

completion), or finding entities that interact closely

(community detection).

Application of machine learning (ML) techniques

into graph-oriented tasks typically begins with learn-

ing a set of features for every entity (or node) in the

graph. We translate a graph into a tabular repre-

sentation where the features learned on every node

preserve the topological properties associated with

its neighborhood. This idea was first proposed by

Scarselli et al. [11] and more recently improved upon

by DeepWalk [12] and node2vec [13]. These repre-

sent an innovation in representation learning, where

task-independent features are learned in a data-driven

fashion as opposed to manual feature engineering,

and where their algorithmic accuracy closely matches

task-specific approaches.

30

Deep learning for scientific discovery

Recently, a wave of research has demonstrated the

effectiveness of deep learning-based approaches for

graph-based tasks. Algorithms that traditionally relied

on graph walks are naturally adopted towards recur-

rent neural networks and its variants for tasks such as

knowledge base completion and probabilistic reason-

ing [14], shortest-path queries, and deductive reason-

ing [15]. CNNs are a natural choice for algorithms that

treat graphs as matrices [16] or where operations on a

node and its neighborhood are key [17]. Combining

these individual building blocks to reflect the hierar-

chical structure that naturally exists in data is an-

other emerging area of research [18]. The potential to

leverage graph-based deep learning is only now being

realized for scientific discovery.

Scalable deep-learning algorithms on

extreme-scale architectures

Even when an accurate mathematical description of

a system of interest exists, numerically solving the

resulting equations can be difficult. This is especially

true when results are needed in real time. Deep neural

networks are difficult to train, so researchers are

increasingly turning to high-performance computing

(HPC) resources to scale their deep learning to match

the complexity of their problems. It is also important

to connect research solutions and users who would

like to use the systems without needing detailed

knowledge of the system architectures.

Recent developments, such as the Machine

Learning Toolkit for Extreme Scale (MaTEx), are

making progress by enabling a slew of algorithms to

scale ML algorithms on HPC systems by extending

References

[1] Koopman BO. “Hamiltonian systems and transforma-

tions in Hilbert space.” Proceedings of the National Academy of

Sciences of the USA. 1931;17(5):315–318. Available at: http://

www.pnas.org/content/17/5/315.

[2] Mezić I. 2005. “Spectral properties of dynamical systems,

model reduction and decompositions.” Nonlinear Dynamics.

2005;41(1–3):309–325. Available at: https://doi.org/10.1007/

s11071-005-2824-x.

[3] Williams MO, Kevrekidis IG, Rowley CW. “A data-driven

approximation of the Koopman operator: Extending dy-

namic mode decomposition.” Journal of Nonlinear Science.

2015;25(6):1307–1346.

[4] Proctor JL, Brunton SL, Kutz JN. “Dynamic mode decom-

position with control.” SIAM Journal on Applied Dynamical

Systems. 2016;15(1):142–161. Available at: https//doi.

org/10.1137/15M1013857.

1. See https://github.com/matex-org/matex/wiki.

publicly available single-node implementations of ma-

jor toolkits such as Caffe, PyTorch, TensorFlow, and

Keras1. The developments include: a) scalable imple-

mentations that use high-performance communica-

tion libraries, b) scalable implementations to overlap

communication with computation using layer-wise

gradient descent, c) techniques to adaptively prune

deep neural network (DNN) topologies on the fly, d)

methods to adaptively grow the DNNs from blue-

prints, and e) adaptively remove data samples that are

unlikely to contribute to model learning. These tools

encapsulate approaches to abstract the changes for

distributed memory from the users leveraging Google

TensorFlow and Keras.

Summary

Deep learning in the pursuit of scientific discovery

is showing great progress and promise for increasing

the predictive power and efficiency of computational

and data-driven models. A benefit of deep learning is

that humans are not needed for programming explicit

rules. Deep neural networks learn on their own, build-

ing representations and gathering information from

larger data sets, searching for patterns and anomalies

that humans wouldn’t normally find or know how to

process. There have been unprecedented investments

by industry, academia, and government, and many

challenges remain in the applicability of deep learning

outside of perception tasks. While a cautious approach

should be considered when leveraging these tech-

niques, we are optimistic that progress can and will be

made in the pursuit of scientific discovery.

http://www.pnas.org/content/17/5/315
http://www.pnas.org/content/17/5/315
https://doi.org/10.1007/s11071-005-2824-x
https://github.com/matex-org/matex/wiki
https://doi.org/10.1137/15M1013857
https://doi.org/10.1007/s11071-005-2824-x
https://doi.org/10.1137/15M1013857

 The Next Wave | Vol. 22 No. 1 | 2018 | 31

FEATURE

[5] Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson,

DS. 2009. “Spectral analysis of nonlinear flows.” Journal of

Fluid Mechanics. 2009;641:115–127. Available at: http://doi.

org/10.1017/S0022112009992059.

[6] Susuki Y, Mezić I. 2014. “Nonlinear Koopman modes

and power system stability assessment without models.”

IEEE Transactions on Power Systems. 2014;29(2):899–907.

doi:10.1109/TPWRS.2013.2287235.

[7] Mauroy A, Mezić I. “Global stability analysis using the

eigenfunctions of the Koopman operator.” IEEE Transactions

on Automatic Control; 2016 61(11):3356–3369. doi: 10.1109/

TAC.2016.2518918.

[8] Hodas N, Kundu S, Yeung E. “Learning deep neural

network representations for Koopman operators of nonlin-

ear dynamical systems.” 2017. Cornell University Library.

arXiv:1708.06850

[9] Li Q, Dietrich F, Bollt EM, KevrekidisI G. “Extended

dynamic mode decomposition with dictionary learning: A

data-driven adaptive spectral decomposition of the Koopman

operator.” 2017. Cornell University Library. arXiv:1707.00225.

[10] Hagge T, Stinis P, Yeung E, Tartakovsky AM. “Solving

differential equations with unknown constituent relations

as recurrent neural networks.” Cornell University Library.

arxiv:1710.02242.

[11] Scarselli F, Marco G, Tsoi AC. “The graph neural network

model.” IEEE Transactions on Neural Networks. 2009;20(1):61–

80. doi: 10.1109/TNN.2008.2005605.

[12] Perozzi B, Al-Rfou R, Skiena S. “Deepwalk: Online

learning of social representations.” In: Proceedings of the

20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining; 2014 Aug 24–27; New York, NY:

doi: 10.1145/2623330.2623732.

[13] Grover A, Leskovec. “node2vec: Scalable feature

learning for networks.” In: Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining; 2016 Aug 13–17; San Francisco, CA: doi:

10.1145/2939672.

[14] Graves A, Wayne G, Reynolds M, Harley T, Danihelka I,

Grabska-Barwinska A, Comenarejo SG, Ramalho T, Agapiou

J, Badia AP et al. “Hybrid computing using a neural network

with dynamic external memory.” Nature International Journal

of Science. 2016;538:471–476. doi: 10.1038/nature20101.

[15] Zhiling L, Liu L, Yin J, Ying L, Wu Z. “Deep learn-

ing of graphs with Ngram convolutional neural networks.”

2017 IEEE Transactions on Knowledge and Data Engineering.

2017;29(10):2125–2139. doi: 10.1109/TKDE.2017.2720734.

[16] Duvenaud D, Maclaurin D, Aguilera-Iparraguirre JA,

Gomez-Bombarelli RG, Hirzel T, Aspur-Guzik A, Adams RP.

“Convolutional networks on graphs for learning molecular fin-

gerprints.” 2015. Cornell University Library. arXiv:1509.09292.

[17] Yang Z, Yang D, Dyer C, He X, Smola AJ, Hovy EH.

“Hierarchical attention networks for document classification.”

In: Proceedings of NAACL-HLT. 2016 Jun 12–17.

[18] Niepert M, Ahmed M, Kutzkov K. “Learning convolu-

tional neural networks for graphs.” In: Proceedings of the 33rd

International Conference on Machine Learning. New York (NY):

JMLR W&CP;2016. Available at: http://proceedings.mlr.press/

v48/niepert16.pdf.

http://doi.org/10.1017/S0022112009992059
http://proceedings.mlr.press/v48/niepert16.pdf
http://doi.org/10.1017/S0022112009992059
http://proceedings.mlr.press/v48/niepert16.pdf

32

b y A n t h o n y C . G a m s t a n d S k i p G a r i b a l d i

M
achine learning (ML) problems faced by the NSA and Department of De-

fense (DoD) are different from those found in industry and academia. For

example, one often wants to develop classifiers with respectable true-posi-

tive rates at extremely low false-positive rates, far lower than what is routinely con-

sidered in other contexts. Inspired by such challenges, ML research at the Institute

for Defense Analyses’ Center for Communications Research in La Jolla, California has

focused on adapting commercial and academic techniques to this more austere re-

gime as well as the theoretical and foundational questions raised by that adaptation.

[Photo credit: monsitj/iStock/Thinkstock]

 The Next Wave | Vol. 22 No. 1 | 2018 | 33

FEATURE

How our problems are different

The ML challenges faced by the NSA, and more gener-

ally by the DoD, are somewhat different from those

faced by academia or industry. For example, the NSA

often wants to detect extremely rare phenomena, in

the sense that, of 10 million observations, only a few

will be true targets. In that situation, one has to aim

for an extremely low false-positive rate to ensure that

the number of observations that need to be checked

in greater detail (for example, by an analyst) is not im-

mense. The ML research we have done in La Jolla has

focused on addressing ML in that domain, and this

has in turn spurred more research on the foundations

of ML.

Achieving an extremely low false-

positive rate

Many immediate practical issues arise in building

a detector for extremely rare phenomena. Here is a

trivial one: A popular way to present the efficacy of

a detector is by its receiver operating characteristic

(ROC) curve, which is a plot with the false-positive

rate (FPR, the proportion of negative observations that

were marked as positive) on the horizontal axis and

the true-positive rate (TPR, the proportion of posi-

tive observations that were marked as positive) on the

vertical axis, where both axes run from 0 to 1.

When targeting extremely rare phenomena, one

is interested in the TPR when the FPR is, say, 10-6,

and comparing that with the TPR when the FPR is

10-7. Such distinctions are invisible on a normal ROC

curve. This illustrates how our problem regime is dif-

ferent from the usual problem regime one reads about

in ML publications; it also demonstrates that standard

characterizations of diagnostic accuracy, such as area

under the ROC curve, are too coarse to capture the

differences of interest to us. Of course, plotting the

ROC curve on a semi-log scale, where the horizontal

axis is log(FPR) as in figure 1, improves the visibility

of the low-FPR end of the ROC curve, and this helps

with analysis.

A more serious issue stems from the relative

proportions of the positive and negative items in the

training data. To train a detector, it is not reason-

able to use data occurring at the same frequencies

as it does in nature. Indeed, the power of a classifier

34

Extremely rare phenomena and sawtooths in La Jolla

is determined almost entirely by the proportion of

the training set made up of the smallest class, so one

needs approximately equal amounts (or at least similar

orders of magnitude) of both positive and negative

observations. Typically, one needs to synthesize data

for this. Of course, the goal of ML is to characterize

a particular data-generating process, and synthetic

data might be generated in a manner that differs in

important but unknown ways from the process of

interest. As a result, using synthetic data to train a

neural network, for example, might lead to a system

with excellent apparent accuracy in the lab but poor

performance in practice. Furthermore, in order to feel

any confidence at all about a detector’s performance

at an FPR of one-in-a-million, one needs millions of

negative examples in the test set and therefore a cor-

responding number of positive examples.

We generated training data for one practical prob-

lem in which the users required an FPR of 10-6 and

hoped for a TPR of 0.1 at that FPR. (Note the contrast

to more familiar settings, where the target FPR and

TPR are both larger.) When we got our hands on the

problem, the users had already trained a classifier us-

ing a random forest package. They thought their clas-

sifier might be sufficient but weren’t sure because they

had not yet accumulated enough test data. We tried a

variety of ML techniques, ranging from off-the-shelf

to invented in-house, and found that a small ensemble

of modestly sized neural networks performed best (see

figure 1). These networks are indeed quite modest:

Each had eight layers and about 1,800 nodes, which is

already tiny compared with AlexNet (small by current

standards but state of the art in 2012) with 650,000

nodes [1]. An ensemble of these modest networks

was produced by averaging their outputs rather than

applying more sophisticated methods such as bagging,

boosting, or arcing as described in chapter 16 of [2].

Figure 1 shows the performance goals were hand-

ily met, while the baseline random forest approach

was unable to even achieve the 10-6 FPR. The bound

in performance by the forest arose because the forest

scored at least 1-in-104 negative items at least as high

as the highest-scoring positive item.

One typical difficulty, which also appeared in this

problem, is that some of the features we wanted to

use for prediction had very poor statistical properties.

This is often addressed by examining a histogram or

summary statistics for each feature and deciding what

mitigations are warranted. (Google Facets [3] is one

well-publicized tool for this task.) However, this data

set had more than 2,200 features, making feature-by-

feature inspection tiresome, so we employed auto-

mated techniques to cull features that were constant

or mostly constant and features that had many

10-7 10-5

0.001 0.100

FPR

0.2

0.4

0.6

0.8

1.0

TPR

Baseline (random forest)

CCRL solution #1

CCRL solution #2

FIGURE 1. This semi-log plot shows the TPR and log FPR achieved by a detector for various choices of threshold. The goal is to get

the left-hand endpoint of the ROC curve as close as possible to the upper left corner.

 The Next Wave | Vol. 22 No. 1 | 2018 | 35

FEATURE

missing values. More interestingly, many features

had very large skewness or kurtosis, which would

not be mitigated by the usual “z-scoring” normaliza-

tion procedure in which one subtracts the mean and

divides by the standard deviation. We addressed this

deficiency by scaling and shifting the values so that the

25th percentile and 75th percentile values were set to

-1 and 1 respectively, and we then clipped the values

to lie between -10 and 10. Using this normalization

procedure outperformed both the naive z-scoring

procedure and a modification of the Box-Cox trans-

formation from [4]. Note that these procedures can be

applied in an automated fashion and the parameters of

the Winsorization—the clipping at -10 and +10—are

learned from the data.

Do you believe in ROC curves?

Should you?

In the discussion of ROC curves for extremely low

FPR, it is natural to wonder how much one should

trust the TPR asserted at an FPR of, say, 10-7. At the

very least, one would like to be able to determine

whether or not the ROC curve corresponding to one

technique is significantly different from that of an-

other technique, either over some range of FPRs or at

a specific FPR.

The paper [5] discusses bootstrap methods for con-

structing confidence bounds for ROC curves associ-

ated with ensemble methods, like random forests, and

uses those methods to study the accuracy of random

forests in a particular prediction problem in which the

desired FPR was one-in-a-million, as in the preceding

example. One advantage of the techniques discussed

in [5] is that, when the ensemble methods base their

decisions on votes made by individual weak classifiers,

the confidence bounds can be constructed without

resampling the training data or refitting the models,

producing significant computational savings.

Using these techniques, Gamst, Reyes, and Walker

[5] were able to determine the effect of increasing the

number of trees in the forest, increasing or decreasing

the amount of data used to fit the individual clas-

sification trees, increasing or decreasing the number

of features considered at each node of the individual

trees, selecting the depth of the individual trees, and

modifying the voting or splitting rules used by the

forest. These techniques were also used in a large-scale

study of various ML techniques—some new and

some off the shelf—applied to the same classification

problem, allowing us to determine whether any of the

models were significantly more accurate than any of

the others and which of the models made the most

accurate predictions.

Capacity of neural networks

Another direction of unclassified research in La Jolla

has concerned the expressiveness of neural networks.

It is well known as a theoretical result that sufficiently

large neural networks can represent essentially any

function. However, in practice, the range of functions

that can be approximated by any particular neural

network is less clear. For example, consider a neural

network with one input and one output, consisting of

D dense layers, each with W nodes and the commonly

used ReLU activation function. What functions can

such a network learn? Clearly the output is a linear

spline. How many knots can the spline have? Provably

the answer is O(WD) [6], but the average network ex-

hibits many fewer knots [7]. In fact, randomly initial-

ized networks almost always produce a function with

O(WD) knots.

These results describe a neural network just after

initialization, before training, and they show that the

untrained neural network tends to represent a func-

tion that is far less complex than what is possible in

the space of functions representable by the network.

(In fact, even after training, such networks tend to

produce functions with O(WD) knots, but the place-

ment of the knots is adapted to the underlying func-

tion the network is trying to learn; see [8].)

What about the complexity of functions represent-

ed by trained networks? Two La Jolla researchers [9]

handcrafted a network to represent a function whose

graph is a hump adorned with a sawtooth; the output

of this network is the blue plot in figure 2. They then

took a network with an identical architecture, initial-

ized its weights randomly (as is common practice),

and trained it to model the same function. The plot of

the output of the trained network is the green plot in

figure 2, and clearly does not precisely match the out-

put of the crafted network. This is either a plus (if you

view the sawtooth as noise in your true measurement

of the hump) or a minus (if you think the sawtooth

is part of the signal). The experiment was repeated

36

Extremely rare phenomena and sawtooths in La Jolla

50,000 times, and only the best fit is reported in the

figure, so it is clear that even the best fit from the

network has much lower complexity than the underly-

ing function, in spite of the fact that there is a set of

weights that leads this network to reproduce the bent

sawtooth function exactly. The point is that a trained

network does not fully explore the space of functions

that the network could produce.

This last result sheds light on two different threads

of outside research while not belonging to either. The

first thread is a series of papers giving lower bounds

on the complexity of a neural network that can ap-

proximate a given function well; see, for example, [10],

[11], [12], or [13]. These results are about networks

with handcrafted weights and do not attempt to give

lower bounds on the complexity of a trained neu-

ral network that can approximate a given function.

Indeed, the experiment described in the preceding

paragraph shows that the two questions are different—

trained neural networks are less expressive. So, while

it is possible to construct networks capable of learn-

ing wavelet-like basis functions on smooth manifolds

and carry the corresponding approximation-theoretic

results from the wavelet domain to the neural network

domain, it is unclear that such networks can actually

be trained to represent the functions of interest.

FIGURE 2. Input versus output of two neural networks. The blue sawtooth

is the output of a network with handcrafted weights. The green curve is the

output of a trained network, the best fit among 50,000 networks of identical

architecture trained on the output of the handcrafted network.

References

[1] Krizhevsky A, Sutskever I, Hinton GE. “ImageNet

classification with deep convolutional neural networks.”

In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, edi-

tors. Advances in Neural Information Processing Systems 25

(NIPS 2012). 2012. pp. 1097–1105.

[2] Hastie T, Tibshirani R, Friedman J. The Elements of

Statistical Learning: Data Mining, Inference, and Prediction,

Second Edition. Springer; 2009. ISBN: 978-1-4899-0579-2.

[3] Google Facets. Available at: http://github.com/

PAIR-code/facets.

[4] Box GEP, Cox DR. “An analysis of transforma-

tions.” Journal of the Royal Statistical Society B.

1964;26(1):211–252.

[5] Gamst AC, Reyes JC, Walker A. “Estimating the operat-

ing characteristics of ensemble methods.” 2017. Cornell

University Library. arXiv:1710.08952.

[6] Chen KK. “The upper bound on knots in neural net-

works.” 2016. Cornell University Library. arXiv:1611.09448.

The second thread of research dem-

onstrates that, under some hypotheses,

the local optima found when training

a neural network are “close to” global

optima; see papers such as [14] and [15].

These papers usually deal with somewhat

unrealistic idealizations of networks and,

as [14] says: “[do] not yet directly apply

to the practical situation.” The results

of [8], on the other hand, demonstrate

that it is easy to construct networks and

learning problems for which local optima

are far from global optima. As in [15], the

distance between local and global optima

is a function of the size of the network,

with larger networks being more expres-

sive and having a greater capacity for

overfitting. A natural question is: How

large a network do you need for the prob-

lem you actually have (and how can you

tell when your network is too large or too

small)? Of course, the answer depends

on the complexity of the function you are

trying to learn and how much data you have. Ongoing

research (including [8]) attempts to produce these and

other diagnostics.

http://github.com/PAIR-code/facets
http://github.com/PAIR-code/facets

 The Next Wave | Vol. 22 No. 1 | 2018 | 37

FEATURE

[7] Chen KK, Gamst AC, Walker A. “Knots in random

neural networks.” Presented at the Thirtieth Annual

Conference on Neural Information Processing Systems

(NIPS 2016), Workshop on Bayesian Deep Learning; 2016

Dec 5–10; Barcelona, Spain. Available at: http://bayesian-

deeplearning.org/papers/BDL_2.pdf.

[8] Chen KK, Gamst AC, Walker A. “The empirical size of

trained neural networks.” 2016. Cornell University Library,

arXiv:1611.09444.

[9] Gamst AC, Walker A. “The energy landscape of a

simple neural network.” 2017. Cornell University Library.

arXiv:1706.07101.

[10] Barron A. “Universal approximation bounds for

superpositions of a sigmoidal function.” IEEE Transactions

on Information Theory. 1993;39(3):930–945. doi:

10.1109/18.256500.

[11] Bolcskei H, Grohs P, Kutyniok G, Petersen P. “Optimal

approximation with sparsely connected deep neural net-

works.” 2017. Cornell University Library. arXiv:1705.01714,

2017.

[12] Schmitt M. “Lower bounds on the complexity of

approximating continuous functions by sigmoidal neural

networks.” In: Solla SA, Leen TK, Muller K-R, editors.

Advances in Neural Information Processing Systems 12

(NIPS 1999). The MIT Press; 2000. pp. 328–334.

[13] Shaham U, Cloninger A, Coifman RR. “Provable ap-

proximation properties for deep neural networks.” Applied

and Computational Harmonic Analysis (in press). Available

at: https://doi.org/10.1016/j.acha.2016.04.003.

[14] Kawaguchi K. “Deep learning without poor local

minima.” In: Lee DD, Sugiyama M, Luxburg UV, Guyon

I, Garnett R, editors. Advances in Neural Information

Processing Systems 29 (NIPS 2016); 2016.

[15] Choromanska A, Henaff M, Mathieu M, Arous GB,

LeCun Y. “The loss surfaces of multilayer networks.”

In: Proceedings of Machine Learning Research: Artificial

Intelligence and Statistics, 9–12 May 2015, San Diego, CA.

2015;38:192–204.

http://bayesian-deeplearning.org/papers/BDL_2.pdf
http://bayesian-deeplearning.org/papers/BDL_2.pdf
https://doi.org/10.1016/j.acha.2016.04.003

38

AT A GLANCE

IARPA Machine Intelligence from Cortical Networks program

Program Manager: David Markowitz

The Intelligence Advanced Research Projects Activity (IARPA) Machine Intelligence from

Cortical Networks (MICrONS) program aims to achieve a quantum leap in machine

learning by creating novel machine learning algorithms that use neurally inspired

architectures and mathematical abstractions of the representations, transformations,

and learning rules employed by the brain. To guide the construction of these algorithms,

researchers will conduct targeted neuroscience experiments that interrogate the

operation of mesoscale cortical computing circuits, taking advantage of emerging tools

for high-resolution structural and functional brain mapping. The program is designed

to facilitate iterative refinement of algorithms based on a combination of practical,

theoretical, and experimental outcomes. The researchers will use their experiences with

the algorithms’ design and performance to reveal gaps in their understanding of cortical

computation and will collect specific neuroscience data to inform new algorithmic

implementations that address these limitations. Ultimately, as the researchers incorporate

these insights into successive versions of the machine learning algorithms, they will

devise solutions that can achieve human-like performance on complex information

processing tasks with human-like proficiency. For more information on this program, visit

https://www.iarpa.gov/index.php/research-programs/microns.

 MACHINE LEARNING

 PROGRAMS ACROSS

 THE GOVERNMENT
[Photo credit: rashadashurov/iStock/Thinkstock]

https://www.iarpa.gov/index.php/research-programs/microns

[Photo credit: DARPA]

DARPA Lifelong Learning Machines program

Program Manager: Hava Siegelmann

The Defense Advanced Research Projects Agency (DARPA) Lifelong Learning Machines

(L2M) program considers inspiration from biological adaptive mechanisms as a

supporting pillar of the project. Biological systems exhibit an impressive capacity to learn

and adapt their structure and function throughout their life span, while retaining stability

of core functions. Taking advantage of adaptive mechanisms evolved through billions

of years honing highly robust tissue-mediated computation will provide unique insights

for building L2M solutions. The first technical area of the L2M program will focus on

functional system development and take inspiration from known biological properties.

The second technical area will involve computational neuroscientists and computational

biologists in identifying and exploring biological mechanisms that underlie real-

time adaptation for translation into novel algorithms. These will possibly lead to the

development of a plastic nodal network (PNN)—as opposed to a fixed, homogeneous

neural network. While plastic, the PNN must incorporate hard rules governing its

operation, maintaining an equilibrium. If rules hold the PNN too strongly, it will not be

plastic enough to learn, yet without some structure the PNN will not be able to operate at

all. For more information on this program, visit https://youtu.be/JeXv48AXLbo.

 The Next Wave | Vol. 22 No. 1 | 2018 | 39

https://youtu.be/JeXv48AXLbo

DARPA Explainable Artificial Intelligence program

Program Manager: Dave Dunning

The DARPA Explainable Artificial Intelligence (XAI) program goal is to create a suite

of machine learning techniques that can produce more explainable models while

maintaining a high level of learning performance (i.e., prediction accuracy), and enable

human users to understand, appropriately trust, and effectively manage the emerging

generation of artificially intelligent partners. The program will focus the development of

multiple systems on addressing challenge problems in two areas: 1) machine learning

problems to classify events of interest in heterogeneous, multimedia data and 2)

machine learning problems to construct decision policies for an autonomous system

to perform a variety of simulated missions. These two challenge problem areas were

chosen to represent the intersection of two important machine learning approaches

(i.e., classification and reinforcement learning) and two important operational problem

areas for the Department of Defense (i.e., intelligence analysis and autonomous

systems). For more information on this program, visit https://www.darpa.mil/program/

explainable-artificial-intelligence.

[Photo credit: DARPA]

At a Glance: Machine learning programs across the government

40

https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence

 The Next Wave | Vol. 22 No. 1 | 2018 | 41

News from the NSA Technology Transfer Program

FROM L B TO MARK T

AlgorithmHub provides robust environment for

NSA machine learning research

B
eing able to save time, money, and effort while

achieving mission can be easily classified as

a “win-win situation” for everyone involved.

Fortunately, researchers at NSA Hawaii (NSAH) are

doing just that to further develop their machine learn-

ing (ML) models.

Teams at NSAH are conducting research on the

training of ML models to provide a topical representa-

tion of foreign language content. The goal is to enable

any user to quickly assign a meaning and perspective

to text without having any prior knowledge of the

language in which it is written. Their work will further

develop program applications that will generate word

lists and eventually visual images of data organized

by topic. In need of a better way to continue their

research, NSAH discovered Hawaii-based start-up

AlgorithmHub at a speed networking event and quick-

ly saw potential in what the company had to offer.

To meet NSAH requirements, the NSA Technology

Transfer Program (TTP) finalized a Cooperative

Research and Development Agreement (CRADA)

with AlgorithmHub to apply their data science cloud

compute environment to NSA’s unclassified ML re-

search problems. The partnership with AlgorithmHub

allows NSA researchers to deploy algorithms in a

cloud environment without lengthy delays and costs

associated with provisioning and maintaining vir-

tual machines. AlgorithmHub’s unique Integrated

Development Environment (IDE) for commercial

cloud services provides data scientists with the ability

to experiment and share their data science algorithms

while leveraging the compute power and storage

capacity of the cloud. With NSA participating as a

beta test partner, the partnership will help boost the

company profile for AlgorithmHub and allows them

to test and determine the current limitations of their

cloud capability.

After a highly successful data science work-

shop with participants from NSA, the Lincoln

Laboratory (managed by the

Massachusetts Institute

of Technology), and the

Institute of Defense

Analysis, NSA hosted a

topic-modeling cohort,

subsequently extending

testing and evaluation

time in the AlgorithmHub

environment. An upcom-

ing workshop will be more

comprehensive and include broader

participation to further refine the model

for additional use of the AlgorithmHub platform for

data analytics by NSAH. This effort is developing a

potential model for continuing collaboration for data

analytics and tradecraft development for use across

the enterprise and with other researchers in academia

and industry.

John Bay, CEO of MathNimbus Inc., DBA

AlgorithmHub, said “Through our CRADA with

a data science team at the NSA, we have enhanced

efficiency and effectiveness in evaluating machine

learning algorithms for topic identification. Moreover,

based on features desired by the NSA data scientists,

we implemented support for large-scale hyperparam-

eter optimization and a collaborative Jupyter notebook

environment in our AlgorithmHub software platform.

These new features are not only valued by data scien-

tists at the NSA, but also with other AlgorithmHub

customers. The CRADA with the NSA has provided us

critical feedback and validation needed to continue to

evolve the AlgorithmHub platform into an innovative,

commercially viable product.”

The NSA TTP, located within the Research

Directorate, establishes partnerships with industry,

academia, and other government agencies to help ac-

celerate mission goals, advance science, foster innova-

tion, and promote technology commercialization.

https://www.nsa.gov/what-we-do/research/technology-transfer/
https://www.nsa.gov/what-we-do/research/technology-transfer/
https://www.nsa.gov/what-we-do/research/technology-transfer/

Defending Our Nation. Securing The Future

National Security Agency Central Security Service

