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Editor’s column

M a r k  E .  S e g a l

C h i e f ,  C o m p u t e r  a n d  I n f o r m a t i o n  S c i e n c e s 
R e s e a r c h  G r o u p  |  R e s e a r c h  D i r e c t o r a t e  |  N S A

The economics of computing continues to change in ways 

that allow larger computational problems to be solved at 

lower costs. Dramatic increases in commodity computing 

power, high-density disks that can store vast amounts of 

data, and very high-speed networks capable of moving infor-

mation long distances very quickly are all making it possible 

to analyze the contents of massive data repositories and de-

rive new insights from them. Many people refer to this state 

of technological evolution, coupled with the development of 

sophisticated new data-analysis algorithms, as the era of “Big 

Data.” Big Data o�ers the promise of being able to detect 

trends in large data sets in ways that were not possible with 

older technologies. 

Big Data capabilities can be applied to a wide variety of 

problems in many di�erent domains. For example, in a Big 

Data world, it may be possible to provide better health care 

by detecting how diseases propagate in large populations. 

Big Data capabilities may also allow companies to spot new 

consumer trends in order to make products that people 

want to buy, and manufacture them in su�cient quantities 

so that everyone who wants the product can buy it when 

they want it. 

In the scienti�c world, Big Data capabilities are making it 

possible to sift through vast quantities of data from sen-

sors, such as weather satellites and particle accelerators, to 

increase our understanding of the physical world. Big Data 

capabilities can enhance national security by allowing our 

military to gain better situational awareness before and 

during a battle. Big Data capabilities may also be used to 

analyze potential actions by a country or terrorist organiza-

tion hostile to the United States and prevent those actions 

from taking place.

In this issue of The Next Wave (TNW), NSA researcher Paul 

Burkhardt provides an overview of Big Data, some of the 

key technologies behind it, and some of the key innovators 

in the �eld. One technological aspect of Big Data that is rel-

evant to a wide variety of problems is the ability to analyze 

very large graphs. Burkhardt’s second article discusses these 

“Big Graphs,” showing how large-graph algorithms can be 

applied to several kinds of Big Data problems. 

For the results of Big Data analysis to be useful to humans 

trying to solve di�cult real-world problems, they must be 

put into a form that humans can understand and process. In 

the third article in this issue, NSA researchers Randall Rohrer, 

Celeste Paul, and Bohdan Nebesh explore this topic and dis-

cuss the connection between data visualization and analysis.

As Big Data analytics become more ubiquitous, concerns 

naturally arise about how data is collected, analyzed, and 

used. In particular, people whose data is stored in vast data 

repositories, regardless of who owns the repositories, are 

worried about potential privacy rights violations. Although 

privacy issues are not discussed in detail in this issue of TNW, 

an excellent overview of the relevant issues may be found 

in a report titled “Big Data and privacy: A technological per-

spective” authored by the President’s Council of Advisors on 

Science and Technology and delivered to President Obama 

in May 2014 [1]. Another useful resource on this topic and 
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other topics related to Big Data is the article “Big Data and its 

technical challenges” by H. V. Jagadish et al. published in the 

July 2014 issue of Communications of the ACM [2].

According to a 2012 study by the International Data 

Corporation, there will be approximately 1022 bytes of data 

stored in all of the computers on Earth by 2015 [3]. To put 

that number in perspective, that’s more than the estimated 

7.5 x 1018 grains of sand on all of the beaches of the Earth [4], 

and almost as much as the estimated 1022 to 1024 stars in the 

Universe [5, 6]. Let’s harness the tools and algorithms cur-

rently being used to process Big Data to solve some of our 

planet’s most critical problems. We hope you �nd this issue 

of TNW interesting, informative, and thought-provoking. 
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An overview of

P a u l  B u r k h a r d t

W
hat is Big Data?

Readers have probably heard or read about Big Data, 
but what is it exactly? According to O’Reilly Media, 

the term was coined in 2005 and refers to “a wide range of 
large data sets almost impossible to manage and process using 
traditional management tools—due to their size, but also their 
complexity” [1]. Gartner de�nes it as “high-volume, high-velocity 
and high-variety information assets that demand cost-e�ective, 
innovative forms of information processing for enhanced insight 
and decision making” [2]. The International Data Corporation 
(IDC) states “Big data technologies describe a new generation 
of technologies and architectures, designed to economically 
extract value from very large volumes of a wide variety of data, by 
enabling high-velocity capture, discovery, and/or analysis” [3].
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�e three Vs—volume, velocity, and variety—are 
what many use to describe characteristics of Big 
Data. �e consensus is that Big Data comes from 
many sources, is of any type, and the scale in both 
size and speed make it di�cult to process and ana-
lyze. �e National Institute of Standards and Tech-
nology (NIST) does not have an o�cial de�nition 
of Big Data, but at their Joint Cloud and Big Data 
Workshop held in 2013, the NIST Director, Patrick 
Gallagher, agreed that key aspects of Big Data 
include notions of volume, velocity, and complexity. 
Gallagher went on to say, “We are really looking at 
a new paradigm, a place of data primacy where ev-
erything starts with consideration of the data rather 
than consideration of the technology” [4].

The Big Data era

If the last decade of computing could be envi-
sioned as a journey through a landscape of roll-
ing hills, dark forests, and winding paths, then a 
wayward traveler will encounter an uncertain and 
rough terrain, strewn with artifacts of IT e�ciency 
and computer modernization, such as service-
oriented architecture, grid computing, and web ser-
vices. Below the surface are the fossils from the Big 
Iron era, huge mainframes that once bellowed and 
lumbered across the lands. At the end, the traveler 
will reach the Mountain of Data. It is steep, impos-
ing, and so big that clouds shroud its peak, but 

FIGURE 1. Research Trends found that the number of research publications on Big Data 
exceeded an exponential rate of growth starting around 2008. (Image from [5].) 

exponential rate of growth starting around 2008 
(see �gure 1).

As the web became a more important platform 
for both social and business needs, the amount of 
information began to grow dramatically. �ere were 
also signi�cant advances in science which drove 
data production. �e National Human Genome Re-
search Institute reports that, in early 2008, the �eld 
of genomics developed second-generation sequenc-
ing platforms that began reducing the cost of DNA 
sequencing at a rate faster than Moore’s Law—CPU 
performance doubles every 18 months—dramati-
cally increasing the production of genomic data 
(see �gure 2). �e Large Hadron Collider spun up 
in September 2008, generating about 15 petabytes 
of data per year, leading to the 2012 discovery of a 
Higgs Boson particle.

�e Big Data era is far from over. Smaller, smart-
er, web-enabled devices are becoming prevalent, 
from mobile phones to pacemakers. �e �rst wire-
less pacemaker made by St. Jude Medical Inc. came 
online in 2011. Mundane appliances and systems 
such as your kitchen refrigerator and home security 
systems are also transmitting over the web. �ese 
interconnected devices and sensors make up the 
Internet of �ings, resulting in greater information 
creation and consumption. �e world is becom-
ing more connected and mobile. �e International 
Telecommunication Union predicts the number of 

yonder lies the horizon . . .

�e beginning of the Big 
Data era is not marked by a 
de�nitive epoch, but it has 
been a persistent tide since 
the dot-com era which gave 
us the Amazon Elastic Com-
pute Cloud (EC2), Wikipe-
dia, Skype, and the map-
ping of the human genome. 
Google Trends indicate “big 
data” web searches were 
steady between 2004 and 
2010 before it began increas-
ing sharply. �e September 
30, 2012 issue of Research 
Trends found that the num-
ber of research publications 
on Big Data exceeded an 

5
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FIGURE 2. The National Human Genome Research Institute reports 
that, in early 2008, the �eld of genomics developed second-generation 
sequencing platforms that began reducing the cost of DNA sequencing at 
a rate faster than Moore’s Law, dramatically increasing the production of 
genomic data. (Image from [6].)

mobile phone subscriptions will exceed 
the world population in 2014, which is 
over seven billion [7], and on January 
2014, the IDC Worldwide Quarterly 
Mobile Phone Tracker reports that over 
one billion smartphones were shipped 
in a single year for the �rst time [8].

By 2017 the annual global Internet 
protocol tra�c will top 1.4 zettabytes 
(ZB, i.e., 1021) [9], and by 2018 global 
mobile data tra�c will reach 15.9 
exabytes (EB, i.e., 1018) per month, 
according to Cisco (see �gure 3) [10]. 
In 2014, Cisco also forecasts that 90% 
of all global mobile data tra�c will be 
due to cloud applications by 2018 and 
that mobile cloud tra�c will grow at 
a compound annual rate of 64% from 
2013 to 2018 [10]. �e forecast also 
predicts the number of mobile devices 
will reach 10 billion by 2018, with eight 
billion being personal devices, and 
over half of these mobile devices will 

FIGURE 3. Cisco predicts that by 2018 global mobile data 
tra�c will reach 15.9 EB per month, and the annual global 
Internet protocol tra�c will top 1.4 ZB. (Image from “Cisco 
Visual Networking Index: Global mobile data tra�c forecast 
update, 2013–2018” [10].)

How “big” is Big Data?

�e growth of sensors and devices, coupled with 
social media and scienti�c breakthroughs, all 
sharing and transmitting over the same networks, 
contribute to the data deluge. According to an IDC 
study, “Extracting value from chaos,” information 
is doubling every two years while metadata, data 
about data, is growing two times faster than data. 
A 2011 study of the world information capacity 
[11] estimated there were 295 EB of storage, 1.9 
ZB of broadcast data (i.e., TV, radio) and 65 EB of 
telecommunication data (i.e., �xed phone, mobile 
phone, Internet)—in 2007. 

�e 2012 acting director of the Defense Ad-
vanced Research Projects Agency (DARPA), 
Kaigham J. Gabriel, used this analogy, “�e Atlan-
tic Ocean is roughly 350 million cubic kilometers 
in volume, or nearly 100 billion, billion gallons of 
water. If each gallon of water represented a byte 
or character, the Atlantic Ocean would be able 
to store, just barely, all the data generated by the 
world in 2010. Looking for a speci�c message or 
page in a document would be the equivalent of 
searching the Atlantic Ocean for a single 55-gallon 
drum barrel” [12]. 

be smart devices accounting for more than 95% of 
global mobile data tra�c (see �gure 4) [10].
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�e total digital information capacity, according 
to a 2012 IDC study, will reach 40 ZB by 2020 [13]. 
�is projects approximately 1022 bytes of digital 
information in less than 10 years. By comparison, 
the number of stars in the universe is on order of 
1022, and the number of atoms in a mole is on order 
of 1023 (i.e., Avogadro’s number). We are living in an 
era in which we have more data than resources to 
store and analyze it all. 

Big Data in government 

In March 2012, the White House announced the 
National Big Data Research and Development 
Initiative [14] to help address challenges facing the 
government, in response to the President’s Coun-
cil of Advisors on Science and Technology, which 
concluded the “Federal Government is under-
investing in technologies related to Big Data.” With 
a budget of over $200 million and support of six 
federal departments and agencies, this initiative was 
created to:  

 Advance state-of-the-art core technologies 
needed to collect, store, preserve, manage, 
analyze, and share huge quantities of data; 

FIGURE 4. Cisco predicts the number of mobile devices will reach 10 billion by 2018, with eight billion being personal 
devices, and over half of these mobile devices will be smart devices accounting for more than 95% of global mobile data 
tra�c. (Image from “Cisco Visual Networking Index: Global mobile data tra�c forecast update, 2013–2018” [10].)

 Harness these technologies to accelerate the 
pace of discovery in science and engineering, 
strengthen our national security, and trans-
form teaching and learning; and  

 Expand the workforce needed to develop and 
use Big Data technologies. 

As part of the Big Data Initiative, the National 
Science Foundation (NSF) and the National Insti-
tutes of Health are funding a joint Big Data solici-
tation to “advance the core scienti�c and techno-
logical means of managing, analyzing, visualizing, 
and extracting useful information from large and 
diverse data sets.” In addition, the NSF is funding 
the $10 million Expeditions in Computing project 
led by University of California at Berkeley, to turn 
data into knowledge and insight, and funding a $2 
million award for a research training group to sup-
port training for students in techniques for analyz-
ing and visualizing complex data.

�e Department of Defense (DoD) is also invest-
ing $250 million annually to “harness and utilize 
massive data in new ways” and another $60 million 
for new research proposals. DARPA, the research 
arm of the DoD, will invest $25 million annually 

7
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under its XDATA program for techniques and tools 
to analyze large volumes of data, including

 Developing scalable algorithms for processing 
imperfect data in distributed data stores, and

 Creating e�ective human-computer interac-
tion tools for facilitating rapidly customizable 
visual reasoning for diverse missions.

�e Department of Energy is similarly provid-
ing $25 million in funding to establish the Scalable 
Data Management, Analysis and Visualization 
Institute to develop new tools for managing and 
visualizing data.

What is all of this data? 

Much of the “big” in Big Data comes unsurprisingly 
from web data. Web browsing activities are tracked 
in clickstream data that can be used to market the 
latest fads and trends. Social media also populates 
web data where Facebook, Twitter, and YouTube 
enable users to easily post, upload, and tweet about 
their daily activities.

Over 90% of digital information is unstructured 
[5]—data which has not been converted for orga-
nized analysis. Unstructured data is raw informa-
tion created by ad hoc activities and can consist 
of images, video, logs, and documents. Unstruc-
tured data can be rich in semantic and relational 
information that must be parsed, interpreted, and 
transformed into canonicalized formats to �t neatly 
into catalogs and databases. In 2012, IDC believed 
23% of information in our “digital universe” has 
Big Data value, increasing to one third by 2020, but 
only if the data is tagged and analyzed.

Who is creating all of this data? 

Individuals are responsible for 75% of all digital 
information [15], half of which is generated by an 
individual through their activities, such as e-mails, 
phone calls, vacation photos, and video uploads. 
�e other half is generated about an individual, a 
person’s digital shadow, such as their web-browsing 
habits, �nancial transactions, surveillance footage, 
medical database, and GPS tracking.

Big Data economy 

Big Data is Big Business—a January market report 
by Transparency Market Research claims the 2012 
global Big Data market was worth $6.3 billion and 
will grow to $48.3 billion by 2018 [16], while IDC 
forecasts Big Data market revenue will grow at 
31.7% per year, reaching $23.8 billion in 2016 [17]. 
�is global economy includes cloud technologies 
centered around Apache Hadoop so�ware, which 
was inspired by Google’s approaches to solving their 
internal Big Data dilemma. �e value inherent in 
data can only be unlocked through analysis, which 
requires the right tools and infrastructure, but 
traditional methods are inadequate for Big Data, 
creating the necessity for innovation.

Can we process Big Data? 

�e volume and velocity of Big Data is exceeding 
our rate of physical storage and computing capac-
ity, creating scalability demands that far outpace 
hardware innovations. Just as multicore chips were 
designed in response to the limits of clock speeds 
imposed by Moore’s Law, cloud technologies have 
surfaced to address the impending tidal wave of 
information. �e new cloud architectures pioneered 
by Google and Amazon extended distributed com-
puting from its roots in high-performance com-
puting and grid computing, where hardware was 
expensive and purpose-built, to large clusters made 
from low-cost commodity computers, ushering the 
paradigm of “warehouse” computing. �ese new 
cloud data centers containing thousands of comput-
er cabinets are patrolled by administrators on mo-
torized carts to pull and replace failed components.

On the so�ware side, new parallel program-
ming frameworks, like Hadoop MapReduce, help 
us crunch vast batches of data locally and inde-
pendently by minimizing data dependency and 
the cost of transferring data between systems. 
Relational databases are being replaced by NoSQL 
and “eventually consistent” (key, value) stores such 
as Accumulo and MongoDB in order to scale with 
data demands.
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Is Big Data secure?

�e studies from IDC found that less than a third of 
the digital information was secured, and of the data 
requiring protection, only 20% was actually protect-
ed [3]. More than 80% of data about an individual 
will have passed through a commercial organiza-
tion, a liability that is quietly ignored [3]. �e lack 
of security is partly due to deference, but as data 
becomes more ubiquitous and available in commer-
cial clouds, the need for security will become more 
imperative. Currently, the only open-source cloud 
database that o�ers cell-level security is Accumulo, 
a BigTable variant initially developed here at the 
National Security Agency (NSA).

Past the mountain of data

�e DoD is leveraging the cloud infrastructure to 
consolidate 15,000 military networks, a potential 
annual savings of $680 million [18]. At NSA, the 
Big Data challenge is compounded by the need for 
security and compliance where data must be com-
partmentalized and audited as part of the oversight 
requirements to protect the Fourth Amendment. 

�is requires cell-level security and provenance. 
�e challenges for NSA are not limited to infra-
structure; analysis is still the primary tradecra� of 
the Agency. �e mountain of data must be pro-
cessed into intelligence products that will safeguard 
national security. �e need for Big Data analytics 
will be at the core of this tradecra�.

In today’s Big Data era, information is exploding 
as networks converge and more devices come on-
line in the Internet of �ings. �e scale of Big Data 
poses immense challenges, and with our unrelent-
ing consumption of information, this is likely to 
persist. Addressing Big Data challenges will require 
e�orts from government, academia, and industry. 

About the author
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A 
graph is a group of associated 
objects represented by a network 
of vertices and edges, where a 

P a u l  B u r k h a r d t

Our brain is a Big Graph, a 
network of trillions of neurons 
connected by synapses, 
whose topology shares 
common characteristics with 
other graphs, such as social 
networks. Can we unlock 
the secrets of our neural 
processing using graph theory 
and Big Data technologies? 
(Image reprinted from [1].)

vertex is an object and an edge connects a vertex to another vertex to denote their pairwise 
relationship. Graphs arise naturally from physical networks, such as the roads and highways 
connecting our cities, the power grid that transfers electricity to our homes, and the �ight 
paths between airports (see �gure 1). Biological systems also exhibit graphs, such as the 
interactions between proteins (see �gure 2) and the conformational topology of polymers. 
The neurons in our brain send signals over synapses, forming one of the largest natural 
networks in existence. We also engineer networks from the minute electronic circuitry in 
microprocessors to the massive digital network of the Internet, displayed as a graph in �gure 
3, facilitating communication between computers all over the world. 

FIGURE 1. Graphs arise naturally from physical 
networks, such as the �ight paths between airports. 
(Design: Thirst. Project: O’Hare Terminal 5 Mezzanine 
Mural. Client: West�eld Development. Illustration built 
using Processing Data by http://OpenFlights.org [2].) 
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FIGURE 2. (a) Biological systems also exhibit graphs, such as the interaction between 
proteins. Above is a yeast protein interactome. (Graph created with Gephi, http://
www.gephi.org.) (b) Above is a Mycobacterium tuberculosis interactome. (Image 
reprinted from [3].)

FIGURE 3. We engineer networks, such as the digital 
network of the Internet, displayed above as a graph. 
(Image from [4].)

Graphs are everywhere

A graph can also be constructed from abstract and 
less obvious sets of relationships. For example, 
this article can be visualized as a graph of words. 
While reading this sentence, connect any pair of 
words co-occurring in a span of four words but 
counting only nouns and verbs. Our simple word 
graph in �gure 4(a) reveals a number of cliques 
with a maximum size of four vertices. A clique is 
a group of vertices that are all pairwise connected, 
indicating the vertices are closely associated be-
cause each vertex is directly connected to any other. 
An interesting structure emerges where two of the 
largest cliques around the predicates connect and 
counting share the words vertex, thus tying any 
pair of vertices in this structure by two edges or 
less (see �gure 4(b)). We can infer that connecting 
pairs of words in the sentence is closely associated 
with counting nouns and verbs, but reading is not 
closely associated to nouns and verbs in this context 
because reading is separated by no less than three 
edges to either nouns or verbs , despite the obvious 
grammatical relationship. 

Word co-occurrence graphs are an abstract 
representation of written language that can help ex-
pose semantic meaning by machines. Another less 
obvious utilization of graphs is solving the short-
est superstring problem—the task of creating the 
shortest string that contains each substring from a 
set of n substrings. If the length of the superstring 
did not matter, then the problem is trivially solved 

by concatenating all the 
substrings. Constructing the 
shortest superstring that con-
tains each substring exactly 
once is much harder but has 
applications in data compres-
sion and genome assembly. 
A brute-force method that 
shortens a superstring by the 
overlap between substrings 
must do so for all n! possible 
superstrings, which quickly 
becomes intractable (e.g., 15! 
is over one trillion). 

�e shortest superstring 
problem can be solved by 
creating a graph where 

vertices are the n substrings and all pairs of verti-
ces are connected by edges with a weight given by 
the longest su�x of one vertex that is equal to the 
pre�x of the other and a direction in that order, 
then �nding a Hamiltonian path that visits each 
vertex once while maximizing the overlap (also 
known as the Traveling Salesman Path Problem). 
But �nding a Hamiltonian path is in the class of 
NP-complete (i.e., nondeterministic polynomial 
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(a) Word graph

connect pair

sentence words counting
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(b) Word cliques

FIGURE 4. (a) Texts can be visualized as a graph of words, such as the graph above of the co-occurrence of words in a sen-
tence from this article. (b) These word cliques (a clique is a group of vertices that are all pairwise connected) from �gure 4(a) 
reveal associations between words. Here, they reveal that connecting pairs of words in the sentence is closely associated with 
counting nouns and verbs.

time-complete) problems for which e�cient solu-
tions are not known. 

A special case where each substring has length 
k over an alphabet of size n is more tractable. �is 
problem can be solved by constructing a de Bruijn 
graph where each k-length substring is an edge that 
begins from its (k-1)-length pre�x and ends at its 
(k-1)-length su�x, then finding a Eulerian cycle—a 
path that traverses each edge exactly once before 
returning to the origin. (Eulerian cycles are inspired 
by Euler’s 1735 solution to crossing the Seven 
Bridges of Königsberg over the river Pregel which 
started the study of graph theory.) �e de Bruijn 
graph in �gure 5 admits a Eulerian cycle, just follow 
the labeled edges in order and concatenate the first 
symbol in each edge to construct the cyclic super-
string 0000110010111101, representing all sixteen 
k=4 length substrings for an alphabet of 0 and 1. 
�e graph by de Bruijn is an important method 
used in DNA sequencing where possibly billions of 
k-mers (i.e., substrings of k-length) must be assem-
bled to construct the final genome sequence. 
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FIGURE 5. This de Bruijn graph admits a Eulerian cycle—a 
path that traverses each edge exactly once before return-
ing to the origin. This type of graph can be used to solve 
the shortest superstring problem and is used in DNA 
sequencing. (Image reprinted by permission from Macmillan 
Publishers Ltd: Nature Biotechnology, available at http://www.
nature.com/nbt/index.html, Compeau PE, Pevzner PA, Tesler 
G, “How to apply de Bruijn graphs to genome assembly,” doi: 
10.1038/nbt.2023, �g. 2, 2011 [5].)
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What can graphs tell us? 

A graph can be a beautifully complex and intrigu-
ing topology of interconnected pathways, alluding 
to hidden meaning and secrets available only to the 
intrepid willing to walk the edges. O�en the graph 
resembles little more than a hair ball, such as the 
graph of the World Wide Web in �gure 6, obfus-
cating insight by the seemingly infinite number of 
circuitous paths. But Google’s search engine, for ex-
ample, is based roughly on the concept of randomly 
following links from one web page to another in a 
gigantic web graph, ranking each page according 
to the popularity of the pages that link to it, and 
returning surprisingly accurate search results. 

Social interactions can be symbolized by graphs 
(e.g., the Twitter graph in �gure 7) and inspire col-
loquial phrases such as small world and six degrees 
of separation, indicating that we are all connected 
by just a few associates. �e topology of our social 
networks was discovered to be more resistant to 
failure when nodes or links are removed, which 
can result in the dissociation of communities 
or the disruption of pathways, and to be better 

FIGURE 6. Some graphs, such as this World Wide Web graph, 
are so complex that they resemble little more than a hair 
ball. (Image from [6].)

FIGURE 7. Social interactions, like those on Twitter, can be 
symbolized by graphs. (Graph created with Gephi, http://
www.gephi.org.)

at disseminating information than other graph 
topologies [7, 8]. �ese small-world graphs have 
more cliques and shorter paths, but it is the severe 
inequities among the vertices that explain why ru-
mors and disease quickly spread throughout these 
networks. Because a few vertices incur the vast 
majority of edges, acting as hubs, many low-degree 
vertices with only a few direct neighbors are able to 
exchange information easily [8]. 

Such small-world graphs can be found in many 
real-world networks. For example, the hub struc-
ture can be found in the network of US airports 
where, according to 2012 data, 80% of passengers 
are serviced by only 50 out of nearly 20,000 airports 
[9, 10]. �e small-world graph properties can also 
be found in neural networks, such as that of the 
soil nematode Caenorhabditis elegans (shown in 
�gure 8), implying these graph properties have an 
evolutionary benefit [7]. �us, out of complex, un-
ordered, and decentralized interactions, logic and 
purpose arise. Small-world graphs develop natu-
rally without any centralized control or predefined 
order but rather from preferential attachment where 
popular nodes become more popular over time—
just as our network of roads started as decentralized 
clusters localized to cities and towns, eventually 
connecting to other clusters creating hubs around 
the big cities. 

Graphs are truly everywhere and can be liter-
ally constructed from any data. But graphs do 
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FIGURE 8. Small-world graph properties can also be found 
in neural networks, such as this one of the soil nematode 
Caenorhabditis elegans, implying that these graph properties 
have an evolutionary benefit [7]. (Graph created with Gephi, 
http://www.gephi.org.)

not by themselves add information; instead, they 
help to organize data as a collection of (key, value) 
pairs that e�ectively encode binary relationships 
which, when analyzed in whole, can reveal surpris-
ing insight to complex interactions. Algorithms 
that discover cues from navigating the graph have 
been studied since the days of Euler and the Seven 
Bridges of Königsberg (only two bridges from his 
day still stand) nearly three centuries ago. Searching 
a complex network is an exemplary application of 
graph algorithms and one familiar to us each time 
we use GPS navigation to compute the best route 
from one location to another. But graph algorithms 
are computationally challenging because of their 
irregular structure and combinatorial expansion. 

One of the simplest data structures is a binary 
tree in which each node begets two more nodes. 
�e branches of this graph expand in powers of 
two, so a�er just 16 generations, there are already 
131,071 nodes, and another 16 generations later, 
there are over eight billion nodes. In most graphs, 
the branches are not regular and expand much 
more quickly. In many real-world graphs, the 
disparity in degree distribution creates significant 
resource contention during computation. �e 
powerful analytic capability of graph algorithms has 

motivated the design for e�cient parallel process-
ing of graphs in high-performance computing 
(HPC) systems. Fields such as genomics, molecular 
dynamics, and data science are utilizing many of 
these HPC graph algorithms to analyze their large 
and complex data sets. �e rising tide of Big Data 
has created interest in applying graph-theoretic 
approaches in these fields and many others. But as 
data sets get larger, the challenges to graph process-
ing increase to a point where even the most power-
ful HPC systems will buckle under the task of graph 
analysis on Big Data. 

Big Graphs 

�e introduction to Big Data gives a sense of the 
massive scale of some of these data sets which 
would create very big graphs. On any given day 
the web contains about 50 billion web pages (cf. 
http://www.worldwidewebsize.com), and if we 
estimate an average of 20 URL links per page, the 
web graph would have one trillion edges. In 2008, 
Google had already claimed to have indexed a total 
of one trillion pages. In October of 2012, Facebook 
announced that their social media site had reached 
one billion active monthly users, connecting one 
out of seven people on the planet, and since 2004, 
there have been 140.3 billion friend connections. 
In early 2013, Facebook announced their Facebook 
Graph Search to harness the Big Data graph in-
formation collected in their social network which 
could include the more than one trillion “likes” 
made by their users. 

�e computational resources for searching the 
web or the Facebook network are hidden in secret 
data centers built by Google and Facebook. But 
in 2010, Google published their Pregel paper for 
processing large-scale graphs [11]. In this paper, 
Google described their distributed-memory ap-
proach, which follows the bulk synchronous parallel 
(BSP) model of computing rather than the parallel 
random access machine (PRAM) model tradition-
ally favored for graph algorithms. A distributed-
memory system is a cluster of machines, each with 
their own private memory, and data residing in the 
memory of one machine must be explicitly commu-
nicated to another machine. Increasing the memory 
of such a distributed-memory system only requires 
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connecting more machines. In contrast, a shared-
memory system has a single pool of memory that 
is accessible to all machines, while each machine 
also has a small portion of private memory. Com-
municating data changes to all machines, therefore, 
simply requires updating the data in the pool. But 
a protocol must be enforced to ensure data remains 
consistent, especially when one machine has loaded 
data into its own private cache but, before it can 
process that data and replace the modifications in 
the pool, another may have already made changes. 
�is cache-coherency protocol makes it much more 
di�cult to scale shared-memory computers. 

Another limiting factor is that a central process-
ing unit (CPU) has a memory address limit. For ex-
ample; the Intel Xeon E5 has a 46-bit address space 
[12]; therefore, a system comprised of these CPUs 
can have no more than 64 terabytes (TB) of global-
ly-shared memory. It is not surprising that Google’s 
Pregel favors the distributed-memory model. But 
the Big Graph challenge does not end here. 

The problem with big brains 

One of the largest physical networks is our own 
neural network, the human connectome, depicted 

in �gure 9. If we count neurons as vertices and syn-
apses as edges, there are approximately 10 trillion 
vertices and 100 trillion edges in the human brain 
graph. If each edge were stored in 16 bytes, our 
brain graph would occupy over one petabyte (PB)—
that exceeds the practical memory capacity of any 
computing platform today. As described below, 
the largest memory capacity in a supercomputer is 
1.5 PB.

The human brain graph stored in bytes would occupy  
over one petabyte. How large is that?

(1,024)3 bytes = 1 gigabyte (GB)

1,024 GB = 1 terabyte (TB)

1,024 TB = 1 petabyte (PB)

Leaving the memory issue aside, if we traversed 
edges at a pace of one every millionth of a second 
(microsecond) it would us take over three years 
to visit each neuron without ever retracing a step. 
�is rate of one million edges per second is clearly 
impractical, but considering the fastest network 
technologies available have microsecond latency 
between one network interface to another, it will re-
quire careful implementation on a many-processor 

FIGURE 9. One of the largest physical networks is our own neural network, the human connectome. Copyright © 2011 
Gerhard, Daducci, Lemkaddem, Meuli, Thiran, Hagmann [13]. 
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supercomputer to overcome the latency costs 
incurred by traversing all the edges. 

A typical CPU, the “brain” we are familiar with 
in our personal computers, can operate at gigahertz 
(GHz) frequency where the CPU can perform an 
instruction every nanosecond (ns) or a billionth of 
a second; in one microsecond, the CPU will have 
cycled 1,000 times. �ere is also a speed limitation 
forced upon us by physics (despite recent excite-
ment in the now debunked “faster-than-light” neu-
trinos) that light travels approximately 0.3 meters 
every nanosecond. A graph with trillions of edges 
will necessarily be distributed across many com-
pute racks so the distance between racks at the far 
ends will be a factor. �is is the paradox—scaling a 
system to keep up with increasing data can make it 
more di�cult to process that data! 

As graphs scale with Big Data, increasing the 
physical memory to fit the graph may not always 
be practical or environmentally feasible. �e 
Cray Titan supercomputer installed at Oak Ridge 
National Laboratory was the world’s most powerful 
supercomputer in 2012 according to the Top500.org 
November list of that year [14]. �e $97 million Ti-
tan requires 8.2 megawatts (MW) of power [14] and 
over 4,300 square feet of space—an NBA basketball 
court is 4,700 square feet—but with a total memory 
capacity of 710 TB, it does not have enough mem-
ory to store the human connectome. �e second 
most powerful supercomputer on the November 
2012 list, the IBM Sequoia installed at Lawrence 
Livermore National Laboratory, requires 7.9 MW of 
power [14] and over 3,000 square feet of space. �e 
Sequoia has 1.5 PB of memory, just enough to store 
the human connectome, but leaves no memory for 
applications that could analyze the brain graph. At 
a hypothetical 10 cents per kilowatt-hour, it would 
cost about $7 million per year to power either of 
these supercomputers ($100⁄

MW 
x 8,760 h⁄

y
). 

Idle time on these systems is very costly, but en-
suring all CPUs are performing useful work when 
processing a Big Graph is a daunting challenge. A 
single Sequoia 1.6 GHz CPU can perform 204.8 
operations per nanosecond (i.e., 1.6 cycles/ns × 16 
cores × 8 operations/cycle per core) [15], but if it 
is requesting data from another CPU that is con-
nected 10 meters away, at least 33 ns will pass—due 
to the speed of light limit—before it can perform 

useful work. �at is a waste of 6,831 operations for 
just one CPU; there are 98,304 CPUs in Sequoia! 

Graphs at Big Data scales will demand substan-
tial system resources for processing and storing, but 
reality forces limitations on budget, which includes 
the up-front cost of an installation, lifecycle support 
and maintenance, and the power required to keep 
the lights blinking, disks whirring, and fans hum-
ming. �ese systems will inevitably face hardware 
and so�ware failures, making fault tolerance more 
imperative because restarting an algorithm on a 
petabyte or larger graph is very costly in time and 
resources. We need new approaches if we are to 
analyze Big Graphs. 

Exception! Out of memory 

In addition to the limitations of power, space, and 
cooling, there are hardware constraints to scaling 
the memory capacity of a system. Data is processed 
by entering through the CPU pins that interface 
the CPU to the memory bus. �e number of pins 
is physically limited, which results in a memory 
bandwidth wall. In addition, a memory controller 
that mediates the data between main memory and 
the CPU has a fixed number of memory chan-
nels for transferring data because of the electrical 
constraints in the circuitry. �ese constraints force 
a hard ceiling on the maximum memory capac-
ity for a processing unit. Using the Intel Xeon E5 
again as an example, it supports four channels with 
each channel supporting three memory slots for a 
total of 12 slots per CPU, and at 8 GB per slot [12], 
such a dual Xeon motherboard would have 192 GB 
of memory.

An adjacency list is a common graph data 
structure that uses an array for storing vertices and 
a doubly-linked list for storing the adjacency or 
neighborhood of each vertex. �is adjacency list 
requires on order of n + 4m memory locations for 
n vertices and m edges, and for large graphs, each 
location would require 8 bytes. To store the brain 
graph entirely in memory using the adjacency list 
(using 100 trillion = 2m), a system would need over 
8,000 of these Intel Xeon E5 motherboards and 
204 racks to house them; there are 200 racks in the 
Titan supercomputer. �e cost in memory alone for 
this system would be almost $20 million at $100 per 
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memory slot. �e 96-rack Sequoia supercomputer 
supports a maximum of 64 GB of memory per CPU 
with 1,024 CPUs per rack, which will be useful in 
the event that we discover a life form with a 6 PB 
brain graph . . . but no bigger! 

If the graph cannot fit in the aggregate memory, 
it cannot be processed. �e conventional solution is 
to increase the system size (i.e., add more compute 
boards), but that will exacerbate the latency costs, 
making it harder to send data from CPU to CPU to 
keep them busy. Bottom line: It will be di�cult to 
scale memory in this manner if data continues to 
increase at exponential rates. 

We can store and process Big Graphs on mod-
est computing clusters where the graph data itself 
resides on disk. If the graph gets too big, then more 
or bigger disks can be easily added since disks have 
much greater data capacity than memory modules 
and many more drives can be attached (possibly 
over 100 with port multipliers). But accessing data 
on disks can be one million times slower than ac-
cessing it in memory. Algorithms for graphs on disk 
must amortize the higher latency of disk access by 
increasing the throughput of data. �ese algorithms 
minimize the amount of random access to avoid a 
frenzy of mechanical movement from disk heads 
seeking for data sectors. To do this e�ectively, the 
algorithms organize data in large sequential blocks 
because disk heads can e�ciently scan data in this 
manner. �is external memory (i.e., out-of-core) 
processing was first developed in the 1980s to cope 
with the growing disparity in both cost and perfor-
mance between disk and memory, so the problem 
of insu�cient memory is not new [16]. Process-
ing graphs too big to fit in memory appeared 
in the 1990s as streaming [17] and parallel disk 
model [18, 19] applications. 

Big Graphs in the cloud 

Open-source cloud technologies inspired by Google 
publications [20, 21] are being leveraged to solve 
Big Data problems in both industry and govern-
ment. �e Apache Accumulo project (http://
accumulo.apache.org), originally an internal 
research project at the National Security Agency 
(NSA), can be used as a graph database that can 
scale with disk capacity while providing security, 
availability, and fault tolerance. A Big Graph can 

be stored in Accumulo as a collection of sorted 
edges and queried using the Accumulo interfaces 
for scanning records. �e Hadoop MapReduce 
(http: //hadoop.apache.org) programming frame-
work can be combined with Accumulo for added 
processing power. A straightforward approach 
is to filter out edges from Accumulo (i.e., ex-
tract a subgraph) which can then be analyzed by 
MapReduce applications. 

Storing a graph as edges is natural in (key, value) 
repositories, like Accumulo, since an edge is a ver-
tex pair (i.e., the end points). Tables in Accumulo 
are distributed as a set of tablets, o�en many tablets 
on a single host in a cluster of multiple hosts. Each 
table is stored on disk in the Hadoop Distributed 
File System (HDFS), which replicates all data across 
the cluster to tolerate faults. Accumulo keeps track 
of the location of all tablets and can rebalance 
the distribution on demand. �e tablets can mi-
grate from one host to another depending on the 
load distribution or host failures. �e (key, value) 
records are sorted in each tablet, and tablets can be 
grouped dynamically so scans can e�ciently access 
only relevant subsets of data. 

In real-world graphs such as the social and neu-
ral networks discussed earlier, the degree for a few 
vertices can be much larger than the rest, resulting 
in skew distribution of tablets. �is skew creates a 
hot spot or bottleneck since the majority of queries 
will access only a few of the tablets. Additionally, 
adjacencies would be larger for Big Graphs, increas-
ing the time needed to scan all entries in a tablet. 
In Accumulo, a large adjacency can be distributed 
across multiple tablets to enable greater parallel 
processing, and the tablet sizes can be controlled 
for better latency and less resource contention. �e 
locality can be set—that is, tablets can be grouped 
based on types of edges (i.e., scan blue versus green 
edges)—to skip over data that is not relevant to 
the query. 

Updating edges in the Accumulo edge table can 
be accomplished using the online ingest interface 
or the o�ine bulk load operation. �e latter, as 
the name suggests, is reserved for large, wholesale 
updates that are completed in bulk. �e ingest 
interface provides a timely, low-latency mechanism 
which inserts updates that are globally sorted in 
periodic compaction operations; deleted edges are 
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removed a�er the compaction step. In the event 
that a tablet fails before sorting its entries, the up-
dates can be recovered from the write-ahead logs. 

�e MapReduce programming model is e�ective 
for distributed problems that can be decomposed 
into many independent tasks. �e map step pro-
cesses input data into a collection of (key, value) 
pairs which are then sorted and combined in the re-
duce step. By minimizing interdependency between 
processing elements, the amount of communication 
over the network is decreased and more time can 
be spent on actual processing—maximizing the 
computation-to-communication ratio. Increasing 
the number of compute resources should propor-
tionately decrease the processing time to just about 
the time required to communicate data between the 
map and reduce steps. 

�e canonical example of an embarrassingly 
parallel MapReduce algorithm that minimizes 
communication is the simple word-count pat-
tern described in the seminal MapReduce article 
by Google [21]. �e algorithm counts the occur-
rence of every word in a large corpus of documents 
where each document is split into blocks of lines 
and distributed to many processing elements. �e 
blocks are processed simultaneously by many inde-
pendent map tasks which output (word, 1) pairs for 
each word. �ese pairs are collected and summed 
in the reduce tasks to calculate the count for each 
word. You could run the MapReduce word-count 
algorithm on this article to output how many times 
the words “big,” “data,” and “graph” were used, but 
the e�ectiveness of MapReduce is better realized 
on very large data sets where the latency from disk 
access can be amortized. 

Developing e�ective graph algorithms in the 
MapReduce programming model requires “think-
ing in MapReduce,” which may seem unnatural 
at first. But this recasting of conventional graph 
algorithms into counting (key, value) pairs in 
MapReduce can make it possible to analyze mas-
sive graphs residing on disk [22, 23] by exploit-
ing locality. �e complexity involved in explicitly 
communicating and sharing data to analyze large 
graphs in BSP and PRAM systems is eliminated in 
MapReduce because the framework manages the 
data movement. �e result of this simpler pro-
gramming interface is that it can be more di�cult 

to express e�cient algorithms in MapReduce. But 
combining both Accumulo and MapReduce is 
a practical approach for storing, extracting, and 
analyzing Big Graphs. Here in the Computer and 
Information Sciences Research Group at NSA, we 
used this approach to demonstrate a breadth-�rst 
search at brain scale, traversing more than 70 tril-
lion edges on a 1 PB graph [24]. �is brain-size 
graph was nearly 20 times larger than the memory 
capacity in our moderate-size cluster, yet the rate 
of processing at this scale was the same at the 
scale of just one trillion edges, which �t entirely 
in memory.  
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Visual 
analytics 

for Big 
Data

~Anonymous analyst~

Big Data. Big Data 
is everywhere. Big 
Data is good. Let’s 
get more data.

”

“

Introduction

Randomly browse nearly any publication from 
nearly any domain in today’s information-saturated 
world and you’ll read about Big Data. �e term 
permeates scienti�c journals, technical magazines, 
newspapers, social sciences, and to some extent 
pop culturea. Many areas of science and govern-
ment have been wrestling with Big Data for years. 
However, as the information age fully radiates into 
nearly all areas of society and application domains, 
Big Data problems have pushed into these areas as 
well. It is common to hear people simultaneously 
propose that they have a Big Data problem as well as 
a Big Data opportunity. 

Certainly, new possibilities exist for better solu-
tions and better understanding by successfully 
analyzing more complete, cross-correlated data 
sources. Big Data potentially provides an opportu-
nity for better and more complete analysis. How-
ever, the growing size and complexity of data also 
obfuscates and complicates these desired outcomes 
on many levels. �ere are obvious complicating 
technical issues related to data management, infor-
mation systems, and algorithms. Much of the Big 
Data publicity and splash focuses on these techni-
cal issues of management, access, and computa-
tion. �ere are many e�orts aimed at devising new, 
improved, and more complete analytic capabilities 

a. Big Data has been the focus of a number of comics such as 
Dilbert and XKCD.
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by taking advantage of these technical advances. Big 
Data technology and Big Data analytics are right-
fully important research focuses.

�e problems and opportunities of Big Data af-
fect many domains and applications. An important 
but under-examined repercussion of the Big Data 
surge is its e�ect on analysis. Does (or should) our 
approach to analysis change when entering this 
“brave new world” of Big Data? Can we use tried 
and true analytic approaches on an exponentially 
increasing scale? Or do we need to approach Big 
Data analytics in new or di�erent ways to e�ectively 
deal with such size and complexity? �is is not just 
a technical question but also a human performance 
question. Does (or should) the shi� to Big Data 
signi�cantly alter the human cognitive and sense-
making approach to analysis? 

�ese are big, hard, long-term research ques-
tions that are not easily answered in the immediate 
future. Each domain, application, and task deal-
ing with Big Data will likely need to examine such 
questions. Perhaps some general design guidelines 
and principles can be teased out of the generic 
problem. �e point is that Big Data is not just a 
technologic issue but also a human cognition and 
sense-making issue. �e human factor is equally 
important whether you view Big Data as a problem, 
an opportunity, or both. How can people best ana-
lyze or cope with Big Data?

We must address our ability to understand and 
analyze Big Data and not just our ability to “get” 
and store more of itb. With this larger context in 
mind, this article narrows its focus to visual ana-
lytics for Big Data. How can visual analytics be 
e�ectively adapted and applied to Big Data prob-
lems? We want to “see” the overall shape, context, 
and details of our data and be able to analyze 
and understand the embedded detailed relation-
ships. A�er �rst discussing visual analytics and the 
characteristics of Big Data, we examine issues that 
Big Data imposes on visualization. �ere are many 
interesting research questions and challenges intro-
duced by Big Data that a�ect visual analytics. We 
then discuss a number of approaches and strategies 

for Big Data visualization that o�er promise for ad-
dressing these problems. 

Unfortunately, this discussion will mostly pose 
open research questions with suggestions for ap-
proach rather than validated �ndings and solutions. 
�ese research questions, suggested approaches, 
and analytic needs have inspired us to establish 
a rather broad research agenda to examine these 
issues. We will close this article with an overview 
of our visual analytics research program at the 
National Security Agency (NSA) that aims to ad-
dress both the problems and opportunities of visual 
analytics for Big Data. 

Visual analytics

Visual analytics is a relatively new �eld of study 
that focuses on the tight integration of visualiza-
tion and analytics. �e name was coined by the 
noteworthy research report Illuminating the Path: 
�e Research and Development Agenda for Visual 
Analytics, published by the National Visualization 
and Analytics Center (NVAC) in 2005 [1]. NVAC 
was a Department of Homeland Security (DHS) 
sponsored research program that aimed to de�ne a 
long-term research agenda in visual analytics with 
the intent of improving analysis capabilities. To 
accomplish and guide its mission, NVAC convened 
a panel of experts to de�ne a research and develop-
ment agenda for visual analytics. �e result was 
Illuminating the Path, which continues to motivate 
this �eld. 

As de�ned in this report, “visual analytics is the 
science of analytical reasoning facilitated by in-
teractive visual interfaces” [1]. �e panel chose its 
words carefully to focus on analytics that are sup-
ported by interactive visualization; analytics is the 
focus. One very important factor that di�erentiates 
visual analytics from its supporting �elds of infor-
mation visualization and human-computer interac-
tion (HCI) is its emphasis on analytical reasoning. 
Traditional visualization focuses on visual represen-
tations and visual mappings of data. HCI focuses 
on e�ective human interaction in terms of usability 
and utility. 

b. One might imagine the Ark of the Covenant tucked away in 
some inaccessible government Big Data warehouse as depicted 
in the �lm Raiders of the Lost Ark.
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However, the way interactive visualizations best 
�t into the analytic cognitive process is o�en over-
looked. �e act of using visualization may disrupt 
an analyst’s cognitive work model and interfere 
with their analytic “�ow” if not properly integrated. 
Visual analytics focuses on analytical reasoning and 
attempts to integrate visualization throughout the 
analytic process without violating the analyst’s cog-
nitive work�ow. Visualization is not just used for 
presentation or viewing at the end of analysis but 
rather throughout the entire analytic process.

Humans and computers have inherent strengths 
and weaknesses. Computers are good at algorith-
mic calculations at scale but lag behind humans’ 
ability in perceptual intelligent understanding. 
Some aspects of problems are best suited for fully 
automated algorithms while others are best ac-
complished with human-in-the-loop solutions. 
Humans are superb at visual recognition of subtle 
patterns, correlations, and di�erences [2]. Visu-
alization takes advantage of these human abilities 
and presents data in ways that are optimized for 
e�ective perception and understanding. Visual 
analytics tries to combine and optimize algorithmic 
analytics with human visual perception skills to our 
analytic advantage. 

Since analysis is very much a multidisciplinary 
endeavor, visual analytics is also multidisciplinary 
in nature. It draws heavily from a wide range of 
�elds including information visualization, inter-
action, cognitive science, knowledge discovery, 
computer science, mathematics, statistics, percep-
tion, and data management, as well as speci�c 
problem domains [1]. 

As a result of widespread, strong interest in 
visual analytics, a dedicated international academic 
conference known as the Institute of Electrical and 
Electronic Engineers (IEEE) Conference on Visual 
Analytics Science and Technology (VAST) was 
formed in 2006. �is annual conference is part of 
IEEE VIS  (formerly VisWeek), an IEEE-sponsored 
suite of uni�ed visualization conferences [3]. VAST 
is the premiere international conference dedicated 
to visual analytics and an excellent resource to gain 
insight and inspiration in the �eld.

Big Data

What is Big Data? How “big” is Big Data? Elsewhere 
in this issue, Paul Burkhardt provides a comprehen-
sive overview of Big Data and nicely describes the 
sobering sizes, characteristics, and complexities of 
this growing beast [4]. Big Data is sometimes char-
acterized in terms of the three Vs: volume, velocity, 
and variety. (Here, variety relates to complexity.) 
�e volume or size of Big Data is an obvious issue. 
Scientists in some domains now discuss problems 
and data set sizes in terms of petabytes (1015), exa-
bytes (1018), and zettabytes (1021). �ese are truly 
staggering sizes. 

�e velocity of data is also increasing. Stream-
ing data is being produced at increasingly fast rates, 
resulting in the need to dynamically process and 
analyze such data as it �ows. Storing streaming data 
is not always possible or desirable, and specialized 
streaming analytics may need to process data �ows 
on the �y. Bigger, faster streaming rates and vol-
umes of data impose challenging requirements on 
streaming analytics. Finally, variety, or complexity, 
is another issue of Big Data. As data-producing and 
-gathering processes become more sophisticated 
and problem domains become more complex, we 
are producing and collecting more complex, de-
tailed, multidimensional data sets. 

Ironically, some of the added complexity stems 
from our ability to combine or “mash-up”c disparate 
data sets and dimensions together in new ways in 
our attempt to perform more sophisticated and 
complete analytics. Because of newer innovations in 
�exible data management (i.e., cloud technologies, 
NoSQL schemaless databases, Hadoop Distributed 
File System) as well as distributed processing (i.e., 
MapReduce), there is a tendency and desire to 
dice data sets into smaller, �exible pieces that can 
be recombined and cross-correlated in new ways. 
�e result is that these new storage and processing 
technologies can produce new, fused data sets by 
mashing up parts of other data sets. �is complexity 
is useful for solving new problems but also com-
plicates analytics. It is ironic that the technologies 
used to address Big Data storage and processing can 
also add complexities in the process. 

c. A data “mash-up” is fused data from disparate data sources.
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In the past, the problems of Big Data were 
restricted to science and government. �ey were 
the main entities who had Big Data and needed to 
analyze it. Scienti�c �elds such as astronomy, phys-
ics, meteorology, and medicine produce huge data 
sets from sampling, experiments, and simulations. 
Government agencies also produce and acquire 
large volumes of data.  However, with the pervasive 
explosion of the information age and the Internet 
into all aspects of society, Big Data issues began ap-
pearing in many new application domains. 

For example, social sciences, business, and com-
munications now have Big Data issues. �e digital 
footprint of individuals actually accounts for 75% of 
all digital information [4]. Pervasive digital activi-
ties such as e-mail, phone calls, photos, videos, web 
browsing, social media, and �nancial transactions 
account for much of this explosion in data. Because 
of widespread in�uence of the digital age, Big Data 
has now become part of many, if not most, areas of 
human endeavor. Big Data is everywhere.

Challenges and research questions 
for Big Data visual analytics

Visual analytics is one of many approaches to analy-
sis. With increasingly complex problems, multiple 
analysis approaches are o�en required for success-
ful analysis and understanding of a single problem. 
For example, machine-learning algorithms might 
be applied to train analytics to automatically detect 
and �nd patterns in data, intelligence-value-estima-
tion algorithms might be applied to rank or score 
these results, and visual analytics might be inserted 
throughout this process to steer these algorithms or 
to present the results for interpretation. Visual pre-
sentation may allow one to see latent (i.e., hidden) 
relationships not detected in algorithmic processes. 
�e emergence of Big Data a�ects all of these ana-
lytic approaches and pieces of the analytic process. 
Adapting and applying visual analytics to Big Data 
problems presents new challenges and opens new 
research questions.

�e challenges presented by Big Data for large-
scale visual analytics are di�cult and numerous. 
Some are technological (e.g., computation, stor-
age, algorithms, rendering) and some are related 
to human cognition and perception (e.g., visual 

representation, data abstraction and summariza-
tion, complexity, scale). Like other human-comput-
er interactions, visual analytics is task-speci�c. �e 
speci�c visualizations, analytics, and interactions 
depend on the intended task. With the extreme 
scales and new data mash-ups introduced by Big 
Data, we now have the opportunity to ask di�erent 
questions of the data. We will likely need to contin-
ue to perform previous tasks, but we now have the 
opportunity and need to perform new tasks. 

In years past, we might have explored data rela-
tionships in a narrow time period within one data 
set or perhaps across a few correlated data sets or 
dimensions. Now with the availability of more com-
plete data and the ability to access all dimensions 
of data, we can ask the same question across larger 
and more complete time periods and across all 
fused dimensions. Perhaps we should now be ask-
ing di�erent questions of Big Data? Do we need to 
formulate and ask questions di�erently or under the 
guise of di�erent tasks? Can or should our analytic 
questions be expressed as higher-level, big-picture 
questions that are not con�ned to past restrictions 
of limited or incomplete data sets? �e advent of 
Big Data presents a new space of analysis that bears 
further study for optimizing our analytic opportu-
nities and analytic successes.

�e challenges that Big Data brings to visual ana-
lytics have been carefully examined by a number of 
leading experts. In fact, we point to several promi-
nent discussions that provide very good summaries 
of these issues [5, 6, 7, 8]. In 2012, a special theme 
issue of IEEE Computer Graphics & Applications 
was devoted to extreme-scale visual analytics. �is 
issue included a discussion of the top challenges 
that Big Data brings to visual analytics in the ar-
ticle, “�e top 10 challenges in extreme-scale visual 
analytics” [5]. �e challenges are listed as follows:

1.    In situ analysis (in-memory analysis);

2.    Interaction and user interfaces;

3.    Large-scale data visualization 
(visual representation);

4.    Databases and storage;

5.    Algorithms;

6.    Data movement, data transport, and 
network infrastructure;
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7.    Uncertainty quanti�cation;

8.    Parallelism;

9.    Domain and development libraries, and 
tools; and

10.    Social, community, and 
government engagements.

Many of the challenges suggested above are 
rather general and applicable to most areas of Big 
Data management, computation, and analytics. �e 
challenges that seem most relevant to visual analyt-
ics are visual representation and uncertainty. Visu-
alization of Big Data typically requires constructing 
abstract visual representations at multiple levels of 
abstraction and scale. In addition, highly scalable 
data-projection and dimension-reduction tech-
niques are needed to deal with extreme data scales. 

We must be careful that extreme projection and 
dimension reduction does not hinder the �delity 
or the interpretation of the transformed data. In 
addition, these data transformations will likely lead 
to more abstract visual representations. As pointed 
out by Wong et al., “More data projection and 
dimension reduction in visualization also means 
more abstract representations. Such representations 
require additional insight and interpretation for 
those performing visual reasoning and information 
foraging” [5]. Such error-prone interpretation can 
easily become a vicious cycle leading to ine�ective 
analytic thrashing and cognitive overload.

Uncertainty quanti�cation also poses an impor-
tant challenge. In order to adapt to Big Data, many 
analytic tasks rely on data subsampling, which 
introduces even greater uncertainty. Again Wong et 
al. states, “We must develop analytic techniques that 
can cope with incomplete data. Many algorithms 
must be redesigned to consider data as distribu-
tions” [5]. So, instead of treating data as discrete 
samples, we might need to treat sampled data as 
an aggregated distribution in order to cope with 
extreme scale.

 �e cumulative e�ects of projection, dimen-
sion reduction, and distribution representation 
may introduce new errors or uncertainty into data 
that likely already contained uncertainty prior to 
transformation. For this reason, it will be even more 
important for visualization to accurately convey 

uncertainty to help users understand risks and to 
minimize misleading results. Large high-resolution 
visual displays (e.g., power walls) can be used to aid 
in large-scale visualization for some tasks but are 
limiting and do not directly address all issues of Big 
Data visualization. Interaction and user-interface 
issues are an inseparable, intertwined problem with 
visualization. A key question is: How can users 
e�ectively interact with uncertain-laden abstract 
visual representations at multiple scales?

Interaction and user-interface challenges are 
critical aspects of visual analysis. Within the same 
publication and also expanded elsewhere, experts 
discussed interaction challenges in the article, “�e 
top 10 interaction and user interface (UI) chal-
lenges in extreme-scale visual analytics” [6, 7]. �e 
challenges are listed as follows:

1.    In situ interactive analysis,

2.    User-driven data reduction,

3.    Scalability and multilevel hierarchy,

4.    Representing evidence and uncertainty,

5.    Heterogeneous-data fusion,

6.    Data summarization and triage for 
interactive query,

7.    Analysis of temporarily evolved features,

8.    �e human bottleneck,

9.    Design and engineering development, and

10.    �e renaissance of conventional wisdom. 

Several of these interaction challenges are of 
particular interest. One suggested approach is to 
allow users to steer or control data-reduction steps 
based on their own practices or analytic needs. 
�is places an added burden on the user, but it 
does provide �exible control over how the data 
is transformed for di�erent tasks. Analysis of Big 
Data o�en requires the data to be organized into 
multilevel and multiscale hierarchies. As data scale 
and complexity grows, the depth and complexity of 
resulting hierarchies also grow. �is makes naviga-
tion of these hierarchies even more di�cult. If we 
can improve the mapping between the user task 
semantics and the fused data semantics, we could 
greatly improve analysis and make user-interface 
issues less problematic. 
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In 1996, Ben Shneiderman proposed the Visual 
Information-Seeking Mantra (also called the Infor-
mation Visualization Mantra), which o�ers a sum-
mary of visual design guidelines and a high-level 
framework for designing information visualization 
applications [9].  His experience showed that if 
one follows these simple visual design guidelines, 
chances are good that the resulting application will 
be an e�ective visualization for exploratory analysis. 
�ese guidelines embody the basic requirements for 
cra�ing a good exploratory visualization:

 Overview �rst,

 Zoom and �lter, and

 Details-on-demand.

In implementing these guidelines, “Overview 
�rst” implies that the entire data set should �rst be 
displayed to provide a high-level view. �is over-
view is likely abstracted and not every detail is ex-
plicitly visible. However, every detail should be rep-
resented in some way within the overview. Hence, 
you are providing the user with a global view of 
the entire data set. �e user can then inspect and 
interactively explore by zooming into subregions 
and �ltering on attributes of the data (“zoom and 
�lter”). At any point in time, the user should be 
able to inspect details of abstracted data or zoom to 
reveal more detail (“details-on-demand”). In the en-
suing years, the Information Visualization Mantra 
seemed to serve designers quite well. If you fol-
lowed these guidelines, chances were good that you 
were on the right path in designing a good visual-
ization. You were at least guaranteed a certain level 
of exploratory functionality.

 In the Visual Analytics Research Group at NSA, 
we have tried to follow these design guidelines. 
However, with the new challenges introduced by 
Big Data, the Information Visualization Mantra 
o�en falls short in providing e�ective guidelines for 
visualizing Big Data. Some researchers now suggest 
that we need to re-examine these principles and 
consider new guidelines and conventional wisdom 
in designing visual analytics for Big Data. Can we 
�nd or adapt new guidelines that de�ne a new vi-
sual analytics mantra that is e�ective for Big Data?

In addition to the aforementioned resources, 
we also recommend the 2012 book Expanding the 
Frontiers of Visual Analytics and Visualization, 

which lays out future directions, needs, and ideas 
for research and development in visual analytics [8]. 
�is book, compiled by leading researchers, directs 
much of its attention speci�cally to Big Data issues 
in visual analytics. It is a good resource for ideas 
and future directions and provides a nice summary 
of related issues. It is clear that many di�cult chal-
lenges and open research questions remain.

Approaches and strategies for Big 
Data visual analytics

In discussing research challenges, we have hinted 
at some approaches and strategies for developing ef-
fective visual analytics for Big Data. Certainly this is 
an ongoing research issue. Here, we o�er a number 
of ideas that show promise toward meeting this 
goal. Note that visualization is a cognitive process 
that happens in the human brain with support of 
the perceptual system. External visual cues that are 
embodied through graphics and display technolo-
gies help humans track and see abstracted visual 
representations of data. 

Good semantic mappings from external visual 
cues to internal cognitive processes support human 
understanding. �e better this semantic mapping 
is, the more likely humans are to bene�t from visual 
analysis. A primary goal is to help people detect and 
understand both explicit and latent relationships in 
data as well as to interpret how these relationships 
inform their analytic task. Visualization designers 
must use appropriate visual representations, inter-
actions, analytics, and task semantics to construct 
a visual analytics solution that directly supports the 
user’s intended task and problem semantics. A big 
part of this process is choosing appropriate visual 
representations at appropriate scales that match 
task semantics.

One of the main bene�ts of a well-constructed 
visualization is that it provides context for data and 
relationships within the semantic problem space. 
One can examine a focused subset of data within 
the full context of surrounding data. It is o�en this 
boundary where interesting useful relationships are 
discovered. As an example, it is o�en fruitful to see 
the results of a query or algorithm displayed within 
the context of surrounding data (i.e., data that does 
not directly satisfy the algorithmic criteria). Hidden 
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relationships are o�en revealed at the boundary of 
algorithmic analysis and visual analysis. Providing 
semantic context of data within the entire semantic 
problem space is a powerful analytic tool. In visual-
izing Big Data, context is even more important and 
more di�cult to achieve. �e approaches we take 
in developing visual analytics for Big Data should 
attempt to convey context of data within the whole 
semantic space.

Abstraction and aggregation

�ere are a number of strategies that are important 
or promising for visualizing Big Data. Perhaps the 
most relevant are abstraction and aggregation. 

Abstraction is the process by which data is 
de�ned with a representation similar in form to 
its meaning (i.e., semantics) while hiding away 
details. Abstraction attempts to reduce and factor 
out details without losing the semantic concept. 
We o�en refer to abstraction as graduated layers of 
detail with the lowest level containing full details 
and the highest level containing few details. For 
example, a subgraph within a full graph (e.g., node-
link diagram) might be “rolled up” or collapsed into 
a single node that denotes the entire subgraph. We 
would say that the subgraph has been abstracted 
into a single representative node (see �gure 1). Un-
like this simple example, abstraction may include 
complete changes in visual representation. For 
example, a collection of discrete points might trans-
form into an abstraction of an approximating sur-
face. Abstraction may apply to both data represen-
tation as well a corresponding visual representation.

Because of the size and complexity of Big Data, 
many visual abstractions might be constructed 
across many levels and scales. During visual analy-
sis, we need to arbitrarily traverse and navigate 
these abstractions at any level or scale. However, 
it can be tricky to visually show this multilevel 
navigation without disrupting the user’s analytic 
context or causing the user to lose context. �e 
key is to �nd a mapping that preserves semantics 
as faithfully as possible across all levels and scales 
of abstraction. 

Aggregation is a similar concept in that data 
within a certain bounded region is summarized. 
Multiple levels of aggregation may be applied into 
an organized complex structure. Again, as we 
traverse this structure, we must be careful to pre-
serve context and semantics across this multilevel, 
multiscale structure. Analytics must be designed 
to interpret aggregated data at any level within this 
structure with minimum loss of �delity and within 
acceptable error tolerance. Aggregation is a form 
of data reduction by summarizing subelements or 
subregions of data. Aggregation is a data summari-
zation process. One could think of aggregation as a 
form of abstraction. 

Alternative approaches

Constructing visual analytics for Big Data requires 
smart use of abstraction and aggregation for ad-
dressing size and complexity issues. In examining 
this problem, we also note several other approaches 
that appear promising. For example, Danyel Fisher 
et al. devised an approach using incremental ap-
proximate database queries or queries that operate 
on progressively larger samples from a database 
[10]. We can use approximate queries to drive 
approximate visualizations. By interacting with ap-
proximate visualizations, we can steer exploration, 
successive queries, and underlying analytics toward 
our analytic goals. �is approach uses incremental, 
interactive steering by the user to explore and re�ne 
approximate solutions toward acceptable ones. 

Another interesting approach is to transform 
data into a procedural or functional model. A 
mathematical procedural model is calculated to 
approximate a data set. Once the data is encoded in 
this functional form, the function can be evaluated 

A

B

C
D

A

FIGURE 1.  In this visual abstraction, subgraph A, B, C, D is 
collapsed into abstraction A.
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at any point in space to produce an approximation 
of the original values. Function evaluation can be 
performed to regenerate data at any arbitrary scale 
or aggregation. Procedural modeling has been used 
as a compression method for transmission and stor-
age. In some cases, transformations and operations 
in function space are easier and faster than in the 
original data space. 

We can construct analytics that directly operate 
on functional representations (i.e., function space) 
and evaluate the transformed functions or analytic 
results for visualization. Rendering can be done 
directly from the functional representation. For 
example, Yun Jang et al. demonstrated the use of 
procedural modeling for time-varying data visual-
ization of volumetric data [11]. �eir research uses 
radial basis functions (RBF) and ellipsoidal basis 
functions (EBF) to encode volumetric data from 
�uid dynamics simulations into a functional repre-
sentation. �e resulting function is then evaluated 
and rendered for selected scales of detail. Render-
ing performance is signi�cantly improved with the 
additional bene�t of selectable scale and detail. It is 
true that the nature of this data (i.e., time-varying, 
spatially coherent) is well suited for this approach. 
For other types of data, this approach may not be 
as bene�cial. However, we believe that functional 
modeling of Big Data poses an interesting approach 
that is worth exploring. 

In summary, we believe that smart use of ab-
straction and aggregation is required for e�ec-
tive Big Data visualization. Analytics should be 
designed to work on data distributions as well as 
discrete data. Visualization design should consider 
local and global context and semantics at multiple 
scales. Several alternative approaches like approxi-
mate queries and functional modeling show prom-
ise and are worth exploring.

Big Data visual analytics 
research agenda

Analysis of Big Data is a critical problem for many 
institutions, including NSA. We believe that visual 
analytics is an important and necessary part of Big 
Data analysis. In order to address analytic needs 

and answer relevant research questions, we have 
established a broad research program in visual ana-
lytics. We address analysis of Big Data from three 
fundamental perspectives: the ability to scale cogni-

tive, visual, and computational components. �ese 
three components are critical for visual analytics 
at scale. 

From a cognitive perspective, how does sense-
making di�er between traditional-sized data and 
Big Data? How can visual representations and user 
interactions scale to maintain e�ective visual meta-
phors and semantics? Finally, how can we leverage 
high-performance computing to enable large-scale 
analytics and visualization? We use this research 
framework as an overarching guide for our work in 
visual analytics. To explore research issues and test 
hypotheses and ideas, we build prototype systems 
and evaluate their e�ectiveness for analysis. Evalu-
ation includes both formal and informal surveys, 
experiments, and studies. Promising techniques 
and prototypes developed in the lab migrate to 
early-deployed versions of visual analytic solutions.

Our visual analytics research program is de-
signed to support analytic discovery, exploration, 
and situation awareness. It speci�cally includes 
ongoing research in graph visualization, text visu-
alization, situation awareness, and mental models 
of analysis. We are using this research to examine 
and address the larger research questions and chal-
lenges in Big Data visualization as well as improv-
ing analysis at NSA. Here, we highlight a selection 
of this work.

Green Hornet: Large scale graph 

visualization

Graphs are very useful for modeling and solving 
many analysis problems in many domains.  Else-
where in this issue, Paul Burkhardt describes Big 
Graphsd and their applications [12]. Current graph 
visualization so�ware is rather limiting in its ability 
to scale. Many of today’s systems struggle to inter-
actively display graphs comprised of 100,000 nodes/
links. With the advent of Big Data, it is important to 
scale graph visualization capabilities to much larger 
sizes to meet analytic need. 

d. Big Graphs are simply graphs that are based on Big Data.
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Recall that context is one of the main goals of vi-
sualization. We do not necessarily need to see every 
detail of the graph at once; much of the graph may 
be visually abstracted. However, the entire graph 
should be available for interactive exploration. It is 
important to see focused parts of the graph within 
the context of the entire graph. To address this 
speci�c problem of large-scale graph visualization 
and to address larger issues of Big Data analysis, 
we are collaborating with visual analytics research-
ers at the Paci�c Northwest National Laboratory, a 
Department of Energy lab [13]. 

Green Hornet is a prototype system that provides 
interactive visualization and navigation for graphs 
of size 10–15 million nodes/links (see �gures 2, 3, 
and 4). We recognize that this scale is not quite up 
to the true scale of Big Data, but it is more than 
an order of magnitude improvement over current 
capabilities, and it provides new analysis opportuni-
ties that were not previously possible. Interactive 

display and navigation is achieved by organizing 
the underlying data in a hierarchical structure with 
multiple levels of scale. Traversing this hierarchy at 
di�erent levels yields varying coarseness of scale. 

At high levels in the structure, we �nd ag-
gregated abstracted data of the subgraph at that 
location, while at the lowest levels of the structure, 
we encounter the full detailed graph structure. �is 
structure allows us to show multiple and arbitrary 
focus areas of interest within the entire graph. �at 
is, based on user navigation and interest, we show 
detail in some parts of the graph but abstract other 
parts of the graph by collapsing subgraphs into 
super nodes (i.e., aggregate nodes). In addition to 
these basic visualization features, we have added 
neighborhood chaining, metadata �ltering, and 
several useful graph analytics. Figure 4 shows a 
shortest path analytic computed within a �ctitious 
paper coauthorship data set. We are also investigat-
ing graphics processing unit (GPU) acceleration 

FIGURE 2. Green Hornet is a prototype system that provides interactive visualization and navigation for graphs of size 10–15 
million nodes/links. Here, it is visualizing �ctional paper coauthorship data.
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and other means to improve scaling. An early but 
more thorough description of Green Hornet may be 
found in [14].

In order to further explore graph visualization 
of Big Data, we have connected Green Hornet to 
back-end cloud data sources such as Apache Accu-
mulo [15] as well remote analytic services based on 
Hadoop MapReduce [16]. Integrating these cloud 
services provides direct access and analytics for Big 
Data. Green Hornet provides a good test bed for ex-
ploring graph analytics and visual analysis at scale.

Typograph: Visualizing large 

text repositories 

In another research thrust, we are exploring the 
visualization of very large text repositories. Text 
is pervasive and an important basis for a lot of 
analysis. Text may be unstructured (i.e., free-form), 
structured, or a combination of both. To fully ex-
plore and evaluate our visual analytics, we use a test 
data source that is large (over 14 million articles), 
multilingual (over 200 languages), evolving, and 

FIGURE 3. Although Green Hornet is not quite up to the true scale of Big Data, it is more than an order of magnitude 
improvement over current capabilities. Here is a close-up of �gure 2, wherein Green Hornet is visualizing �ctional paper 
coauthorship data.
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complex (structured and unstructured text, im-
ages, numeric tables). �is realistically complex and 
large test bed serves a good evaluation platform for 
our research. 

Typograph is a prototype for visualizing large 
text repositories that uses a spatial semantic map 
metaphor. One can think of it as a “geographic” 
map of the semantic space of the text collection. 
It allows global views of an entire text corpus and 
highlights important terms and regions of interest 
for further exploration. For our test-bed example 
data set, we �rst scan and parse text articles and 
store the immediate results for subsequent analysis. 
Text analytics compute the most signi�cant terms 
and organize results into a multilevel, multiscale 
cluster hierarchy. 

We then visualize the resulting term clusters, ex-
posing related clusters and levels. Users may explore 
and navigate this semantic space by roaming and 
zooming in and out of the term space. Zooming 

into cluster regions exposes more information in-
cluding text snippets until detailed document con-
tent is revealed at the lowest level. Novel interaction 
features include semantic interaction and steering 
by users, landmark navigation based on important 
terms, and topic queries. Semantic interaction 
allows a user to indirectly steer the underlying ana-
lytics and clustering algorithms with simple direct 
manipulation actions in the visualization [17]. 

We are pleased with the current results for 
interactive exploration of large text repositories, 
based on our test data set, and have begun using 
Typograph for exploring other text collections as 
well. In addition to its direct analytic use, Typo-
graph is a good way to examine how users interact 
with and use Big Data in text analysis. Figure 5 
shows an early design of Typograph prior to our 
current implementation. Figure 6 shows the current 
Typograph prototype with an overview of the entire 
test data set. 

FIGURE 4. Here, Green Hornet is visualizing the shortest path between two nodes (highlighted in yellow) within a �ctional 
paper coauthorship data set.
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FIGURE 5. This is 
an early conceptual 

design of Typograph, 
a prototype for 

visualizing large text 
repositories that uses 

a spatial semantic 
map metaphor.

FIGURE 6. This image 
shows Typograph’s 

visual overview of the 
entire test data set.
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FIGURE 7. This image shows Typograph’s detailed view of the “football” region of the data set after interactive navigation.

Figure 7 shows a more detailed view as one 
navigates and zooms into more detailed regions of 
the information space (in this case the “football” 
region). Finally, in �gure 8, underlying details of 
the “Australian Rules football” region emerge as text 
snippets of associated articles appear. We continue 
to develop Typograph and use it to study visual 
analytics of Big Text Data. 

VAST Challenge: Visualizing large 

computer networks for cyber 

situation awareness

�e IEEE Visual Analytics Science and Technol-
ogy (VAST) Challenge is an annual contest hosted 
by the IEEE VIS conference [18]. �e VAST Chal-
lenge is designed to provide realistic data scenarios 
for researchers, academics, students, and industry 
to develop and test cutting-edge visual analyt-
ics tools. For the past three years (i.e., 2011, 2012, 
2013), NSA has provided problems that were 
focused on the challenges of situation awareness 
for computer networks. Each year, we designed 
larger and more complex data sets that pushed the 
limits of data processing, data analytics, and visual 
display technology.

Additionally, in 2013 we introduced a new 
design-focused challenge to encourage creative 
problem solving, good visual design practices, and 
participation from the art community. Contest 
participants were asked to design a visualization 
to support situation awareness of a large network 
without a complete or sample data set. Instead, they 
were provided a short story that described a typical 
day in a network operations center. Participants 
were free to imagine a network as large and com-
plex as they wanted and were rewarded for creative 
approaches grounded in reason. �is design-�rst 
approach forced participants to focus on solv-
ing the human analysis problem rather than the 
technology problem.

�e VAST Challenge has resulted in a number 
of signi�cant contributions to the visual analytics 
community. Many submissions become the early 
prototypes for long-term research projects. Several 
techniques developed for the VAST Challenge have 
been integrated into longer-term visualization proj-
ects [19]. We have also used the results to inform 
our own research in the Visual Analytics Research 
Group. Figure 9 depicts a visualization design for 
situation awareness of large computer networks that 
is based on results from a related design challenge. 
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FIGURE 9. This visualization design for situation awareness of large computer networks was submitted by Gong Szeto 
Design O�ce.

FIGURE 8. This image shows Typograph’s view of the “Australian rules football” region with article details (i.e., text snippets).

Using this initial contest design as a basis, we then 
developed a prototype application for cyber situ-
ation awareness of a large computer network. �e 
evolving prototype is shown in Figure 10.

Big Data mental models

Current approaches to visual analytics work well for 
data that is of reasonable volume and complexity. 
However, our data challenges go beyond reasonable 

data volume and complexity into the realm of 
Really Big Data. As we have discussed, there are a 
number of challenges associated with analyzing Big 
Data, even when using supporting visual analytics. 
How an analyst develops a theory and explores data 
is dependent on his mental model—an abstract un-
derstanding and representation—of what he thinks 
is in the data. �is model becomes skewed or even 
useless as the data becomes so big and complex 
that it is beyond imagining. Simply scaling visual 
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analytics does not address the added visual and 
cognitive complexity that more data introduces. Big 
Data is not simply a more data problem, but a dif-
ferent data problem. Does the size of data a�ect the 
way we think about data?

We are exploring how sense-making in Big Data 
analysis changes as the volume and complexity 
of data increases. For example, for those of you 
old enough, think back to what the world was 
like before the Internet. Your mental model of the 
world’s knowledge might have been metaphorically 
the size of a 20-volume encyclopedia or the size of 
the Library of Congress. Now think about the size 
of the world’s knowledge a�er the Internet. �e 
Library of Congress is insigni�cant compared to 
the vast amounts of information available by a click 
and keystroke. �e way we think about data has 
changed in less than a generation, and Moore’s Law 
[20] suggests it will change again within our life-
times. Understanding how we form mental models 
of Big Data will be essential for developing new 
visual paradigms to support future Big Data visual 
analytics. We will then be able to develop new vi-
sual analytics that take advantage of understanding 

FIGURE 10. Using the visualization design from �gure 9, we created this visualization prototype for cyber-situation 
awareness of large computer networks. 

how people think about di�erent volumes, veloci-
ties, or varieties of data. 

Conclusions

Big Data is pervasive. It presents numerous prob-
lems for analysis but also opens new opportunities. 
We contend that visual analytics is important for 
analysis of Big Data. In this article, we examined 
the issues and challenges of visualizing Big Data as 
well as o�ered a number of strategies and approach-
es for e�ective analysis. Finally, we highlighted our 
current research program in visual analytics. It is 
an interesting, if not exciting, time to be living in 
the age of Big Data. Technical issues of data man-
agement, storage, and computation are certainly 
important. However, supporting analysis of Big 
Data is most important. We encourage you to share 
your ideas and your experiences in exploiting visual 
analytics for understanding Big Data.

Big data. Big data is everywhere. Big Data is 
good. Let’s use visual analytics to understand 
Big Data. 
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GLOBE AT A GLANCE
The Graph500 top 11 supercomputers 
The Graph500 list ranks supercomputers based on their ability to handle data-intensive 
loads, also known as Big Data. While the TOP500 list also ranks supercomputers, it ranks them 
by measuring how fast they can solve linear equations—a good metric for evaluating how 
a computer system will perform traditional modeling and simulation tasks. But computer 
scientists are increasingly using supercomputers to analyze massive data sets, and the 
Graph500 list ranks computer systems using a benchmark that addresses this speci�c task. 
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Site: EDF R&D

No. of Nodes: 4,096

No. of Cores: 65,536

Problem Scale: 36

GTEPS: 1,427

Specs: IBM

16C

7  Zumbrota

Specs: IBM BlueGene/Q, Power BQC 

16C 1.6 GHz

Country: France

Site: CNRS/IDRIS-GENCI

No. of Nodes: 4,096

No. of Cores: 65,536

Problem Scale: 36

GTEPS: 1,427

Specs:7 Turing



For the benchmark, each supercomputer is given a massive set of data to crunch, called a 
graph. A graph consists of several interconnected sets of data, with vertices and edges, similar 
to what a map of your Facebook network might look like. A user would represent a vertex, 
while the connection between two users would represent an edge. Starting with one vertex, a 
supercomputer is charged with discovering all other vertices in the graph by following each edge. 
The speed with which a supercomputer accomplishes this task, measured in gigateps (GTEPS), 
or billions of traversed edges per second, determines how high it ranks on the Graph500 list. The 
following ranking is from June 2014; the list in its entirety is available at www.graph500.org.

Specs: IBM BlueGene/Q, Power BQC 

16C 1.6 GHz

Country: Germany

Site: Forschungszentrum Juelich

No. of Nodes: 16,384

No. of Cores: 262,144

Problem Scale: 38

GTEPS: 5,848

Specs: IB

16

4 JUQUEEN

Specs: IBM BlueGene/Q, Power BQC 

16C 1.6 GHz

Country: Italy

Site: Cineca

No. of Nodes: 8,192

No. of Cores: 131,072

Problem Scale: 37

GTEPS: 2,567

Specs5Fermi

Specs: Fujitsu custom supercomputer

Country: Japan

Site: RIKEN Advanced Institute for 

Computational Science

No. of Nodes: 65,536

No. of Cores: 524,288

Problem Scale: 40

GTEPS: 17,977.1

Specs: Fujits1 K computer

Specs: National University of 
Defense Technology - MPP

Country: China

Site: Changsha, China

No. of Nodes: 8,192

No. of Cores: 196,608

Problem Scale: 36

GTEPS: 2,061.48

Specs: N
D

6 Tianhe-2

Specs: IBM BlueGene/Q, Power BQC 

16C 1.6 GHz

Country: Australia

Site: Victorian Life Sciences 

Computation Initiative

No. of Nodes: 4,096

No. of Cores: 65,536

Problem Scale: 36

GTEPS: 1,427

Specs:7 Avoca

          GLOBE AT A GLANCE: The Graph500 top 11 supercomputers
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NSA nurtures growth of a 
science of security community

The National Security Agency (NSA) actively supports research to develop a scienti�c 
approach to cybersecurity. Currently, NSA has several initiatives to stimulate and 
encourage advanced work on the emerging �eld termed a science of security (SoS). 

First, the Research 
Directorate announced 
the winner of the 2013 
Science of Security 
(SoS) Best Scienti�c 
Cybersecurity Pa-
per Competition in 
August 2014. �e 
competition re�ects 
the Agency’s desire to 
increase scienti�c rigor 
in cybersecurity.

principled and secure 
manner. Second, it 
establishes a scien-
ti�c foundation for 
the use of ORAM in 
programs. It provides 
a valuable and exciting 
direction toward mak-
ing ORAM practical.

Of the 35 papers 
nominated, one paper 
received honorable 

d 

r

�is year’s winner, “Memory Trace Oblivious 
Program Execution,” was a research paper present-
ed at the 2013 IEEE Computer Security Foundation 
written by Chang Liu, Dr. Michael Hicks, and Dr. 
Elaine Shi. �eir research centered on a scienti�c 
foundation for the use of oblivious random-access 
memory, or ORAM, in programs. Two aspects of 
the paper were compelling to the reviewers: First, it 
builds a bridge between cryptographic research and 
information �ow research, and shows how the lat-
ter can help one apply cryptographic advances in a 

mention, “Rethinking SSL Development in an 
Appi�ed World” by Sascha Fahl, Marian Harbach, 
Henning Perl, Markus Koetter, and Dr. Matthew 
Smith from the Distributed Computing and Se-
curity Group at Leibniz University in Hannover, 
Germany. �eir paper was presented at the 2013 
ACM Conference on Computer and Communica-
tions Security. �e paper studies the possible causes 
of SSL problems on appi�ed platforms. �e results 
show that the root causes are not simply careless 
developers, but also the limitations and issues of the 
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current SSL development paradigm. �e authors 
took an unusual step which was highly important—
they systematically contacted developers who had 
produced insecure code.

Additional details about this year’s competition 
can be found at the SoS Virtual Organization 
website (http://cps-vo.org/group/sos/
papercompetition).

Second, NSA has become more involved in aca-
demic collaborations, such as the Symposium and 
Bootcamp on the Science of Security (Hot SoS), 
hosted in April 2014 by the North Carolina State 
University SoS lablet, and held in Raleigh, North 
Carolina. Hot SoS is a research event centered on 
developing an SoS that addresses the fundamental 
problems of cybersecurity. Cybersecurity has been 
intensively studied, but previous research o�en 
emphasizes the engineering of speci�c solutions 
without �rst developing a scienti�c understand-
ing of the problem. All too o�en, cybersecurity 
research conveys the �avor of identifying speci�c 
threats and removing them one at a time. �e 
motivation behind the nascent SoS is to develop 
basic cybersecurity properties using scienti�c rigor 
to understand how to determine trust in systems. 
At Hot SoS, researchers from all over the country 
presented 12 papers and 23 posters. �ese presenta-
tions can be found at http://www.hotsos.org/2014/
proceedings.html. 

�ird, NSA provided $8.2 million in direct 
support to Carnegie Mellon University, North 
Carolina State University, the University of Illinois 
at Urbana-Champaign, and the University of 
Maryland for SoS research lablets. Within this pro-
gram, each lablet (i.e., a small lab) will be conduct-
ing basic foundational research, building a growing 
community of researchers from multidisciplines 
and various universities, and championing the 
need for an SoS. �ey will be identifying scienti�c 
principles upon which to base trust in cyberse-
curity. �e overarching goal is to bring scienti�c 
rigor to research in the cybersecurity domain. �e 
research will focus on �ve hard problem areas: 1) 
scalability and composability, 2) policy-governed 
secure collaboration, 3) security metrics, 4) resilient 
architectures, and 5) understanding and accounting 
for human behavior. 

Carnegie Mellon University SoS lablet

�e Carnegie Mellon University (CMU) SoS lablet 
addresses cybersecurity challenges related to all �ve 
hard problems with particular emphasis on scale 
and composability of modeling and reasoning, and 
human behavior and usability for developers, evalu-
ators, operators, and end users. One anticipated re-
sult is progress in identifying and sharing the most 
e�ective theoretical and experimental approaches 
to address the scienti�c challenges within the �ve 

NSA is funding SoS lablets at 
Carnegie Mellon University, 
North Carolina State University, 
the University of Illinois at 
Urbana-Champaign, and the 
University of Maryland to 
advance cybersecurity science. 
In this photo (from left to 
right): Mr. Gil Nolte, chief of 
NSA Trusted Systems Research; 
Dr. Jonathan Katz, principal 
investigator for the UMD SoS 
lablet; Dr. Laurie Williams, 
principal investigator for the 
NC State SoS lablet; Dr. David 
Nichol, principal investigator 
for the UIUC SoS lablet; and 
Dr. William Scherlis, principal 
investigator for the CMU 
SoS lablet. 
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hard problems. A second anticipated result is a 
better understanding of how to design and choose 
appropriate modeling abstractions in cybersecurity 
research. A third anticipated result is the identi�ca-
tion of patterns and best practices in the way we 
carry out cybersecurity research, including ap-
proaches to data gathering, analysis, nomenclature, 
and means to promote reproducibility, enabling 
more rapid advances in the scienti�c �eld. Dr. 
William Scherlis is the principal investigator for the 
CMU SoS lablet. 

�e CMU SoS lablet projects include

 Safe programming languages,

 Binary and source code analysis, 

 Data-intensive systems analysis,

 Self-healing and resilient architecture, 

 Assured application programming interface 
(API) and framework compliance,

 Sociotechnical ecosystems,

 Development environments,

 Trusted computing, 

 Speci�cation and veri�cation, 

 Concurrent and distributed systems, 

 Requirements and policy,

 Usable security and privacy, 

 Intrusion and malware detection,

 Dynamic network analysis,

 Model checking,

 Secure coding practice, 

 Secure process separation, and 

 Veri�cation of cyberphysical systems.

North Carolina State University 
SoS lablet

�e North Carolina State University (NC State) SoS 
lablet is housed in the Institute for Next Generation 
IT Systems and will contribute broadly to the 
development of an SoS while leveraging NC State’s 
expertise and experience in analytics, including 
the extensive expertise available in the NC State 
Institute of Advanced Analytics. �e lablet’s work 
draws on several fundamental areas of computing 

research and on the related analytics. Some ideas 
from fault-tolerant computing will be adapted 
to the context of cybersecurity. Strategies from 
control theory will be extended to account for the 
high variation and uncertainty that may be pres-
ent in systems when they are under attack. Game 
theory and decision theory principles will be used 
to explore the interplay between attack and defense. 
Formal methods will be applied to develop formal 
notions of cybersecurity resiliency. End-to-end 
system analysis will be employed to investigate 
resiliency of large systems against cyberattack. �e 
lablet’s work will draw upon ideas from other areas 
of mathematics, statistics, and engineering. Dr. 
Laurie Williams is the principal investigator for the 
NC State SoS lablet. 

�e NC State SoS lablet projects include

 Understanding attack surface vulnerabilities,

 Policy complexity and norms,

 Resilience requirements,

 Human information processing, and

 Metrics for security models.

University of Illinois at Urbana-
Champaign SoS lablet

�e University of Illinois at Urbana-Champaign 
(UIUC) SoS lablet, housed in the Information Trust 
Institute, addresses each of the �ve hard problems. 
Dr. David M. Nicol, the lablet’s principle investiga-
tor, explains, “We have a portfolio of projects that 
will advance the science of security in both experi-
mental and theoretical methodologies, and includes 
explicit consideration of both mechanized and 
human elements in SoS models.”

�e UIUC SoS lablet projects include

 Models and analysis of resiliency to intrusion 
in cyberphysical systems;

 Models of system and attacker behavior 
based on data analytics, with application to 
detecting the presence of intrusion prior to 
full-scale attack;

 Methodologies for supporting experimental 
evaluation of network security properties 
across network layers;
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Models and analysis of system and human be-
havior to support decision making in security 
contexts; and

A science of human circumvention of security.

University of Maryland SoS lablet

�e University of Maryland (UMD) SoS lab-
let leverages the resources of the Maryland 
Cybersecurity Center and brings together 15 UMD 
faculty from �ve departments, in collaboration 
with six external faculty from other universities, 
to focus on developing scienti�c foundations of 
cybersecurity. Principal investigator Dr. Jonathan 
Katz, professor of computer science and director 
of the Maryland Cybersecurity Center, says the 
lablet will “establish mathematical models that can 
be used to address cybersecurity threats broadly, 
carry out empirical studies to help validate those 
models, and develop formal techniques for reason-
ing about the security of large systems built from 
multiple components.”

Particular research strengths of the lablet include 
using mathematical and formal tools for study-
ing the veri�cation and composition of security 
properties; conducting empirical studies based on 
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real-world data about vulnerabilities, exploits, and 
end-host con�gurations; and understanding the 
role of human behavior in cybersecurity, both from 
the perspectives of honest users as well as attack-
ers. Beyond the research, the lablet will also work 
to grow the SoS community by sharing its results 
with the broader public and holding workshops 
and tutorials.

�e UMD SoS lablet projects include

 Veri�cation of hyperproperties;

 Trustworthy and composable so�ware systems 
with contracts;

 Empirical models for vulnerability exploits;

 Human behavior and cyber vulnerabilities;

 Whether the presence of honest users a�ects 
intruders’ behavior;

 User-centered design for security;

 Understanding developers’ reasoning about 
privacy and security;

 Trust, recommendation systems, and 
collaboration; and

 Reasoning about protocols with human par-
ticipants. 
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Finding and correcting 

errors in Big Data

SPIN UTS
News from the Technology Transfer Program

“Linear interpolative coding” invention helps �nd 

and �x errors in garbled, missing, or repeated data

Even under the best of circumstances, it can be 
di�cult to �nd errors in data sets—especially when 
those data sets contain millions or billions of re-
cords. �e problem becomes worse when the errors 
are not overt, and even “look right.” (�ink of all 
the times, for example, when spell-check so�ware 
passes over words used incorrectly—such as their 
for there or principal for principle—because each of 
those items appears in the dictionary.)

An NSA researcher has developed a way to 
resolve this issue by estimating a data point’s cor-
rect value based on surrounding data. US Patent 
8,539,307 was recently granted for a “Device for 

and method of linear interpolative coding.” �is 
involves �nding a set of numbers that can be 
multiplied by the data points to the right and le� of 
the targeted sample. �e system can then use this 
contextual data to “interpolate” or infer the target’s 
true value. �is makes it easier to detect and correct 
garbled data, missing or deleted data, and added or 
repeated data. (For examples, see table 1.)

For this approach to work properly, the data can-
not be totally random—that is, they must contain 
natural “context” information that can be modeled 
in linear fashion. Data must also be statistically 
stationary or vary only slowly over time.

A recent NSA invention will improve the quality of large data sets by detecting and 
correcting errors even in a datum or value that lacks explicit error-correcting code. 

[Photo credit: alphaspirit/iStock/Thinkstock]

44



 The Next Wave | Vol. 20 No. 4 | 2014

          SPINOUTS: Finding and correcting errors in Big Data

For example, the sentence in table 1should read, 
“�ere are lots of possibilities.” �e kinds of errors 
that the invention could detect and correct are sum-
marized in table 1.

�e technique described in the patent has 
been used in real situations involving all the 
scenarios described in the table. �e invention 

TABLE 1. “Linear interpolative coding” error detection

Error Type Detected The Processing Problem Example

Garbled Data Datum is present, but its value is incorrect 
(e.g., transmission error due to noise in 
transmission channel).

“There ade lots of possibilities.”

Missing or Deleted Data Datum is supposed to be present, but is not 
(e.g., synchronization error between transmitter 
and receiver).

“There ae lots of possibilities.”

Added or Repeated Data Datum is present, but is not supposed to be 
(e.g., perceived synchronization error between 
transmitter and receiver).

“There arre lots of possibilities.”

would bene�t data acquisition and forwarding, 
as well as telecommunications equipment that 
interfaces between di�erent timing and commu-
nications systems. To arrange a demonstration, 
please contact the Technology Transfer Program at 
tech_transfer@nsa.gov or 1-866-680-4539. 
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