“TOUP-SECRETF—

Computer Virus Infections: Is NSA Vulneljéble?

(b} (3)-P.L.

This paper is concerned with computer viruses — a potentially dangerous attack
on computer systems. The virus is a special case of the trojan horse problem,

. distinguis ili i i i
programs.

86-36

INTRODUCTION

What is a computer virus? A computer virus is a self-pmpagatmg trojan
horse.’ A computer virus has three main parts: a mission component, a trigger
mechanism, and a self-propagation component. The miseion comf;onent. is the
executor of the deed the virus is designed to accomplish, e.g., erasure of all data on
a computer system. The mission component lies dormant until activated by the
trigger mechanism. The trigger mechanism tests one or more a'spects of the
system state such as the current date to determine whether to! activate the
mission component. For example, a possible virus may be of the form if today's
date is 10/01/85 then erase all accessible data on the computer system otherwise
propagate self. Indeed an actual simple virus is not much longer or complicated
than this. The third part of the virus, the self-propagation component allows the
virus te quickly spread to other programs to which the virus is not already

attached. I call this the process of “viral infection.”

4

1. A trojan horse, in the most general sense, is & computer program which, in addition to performing
8 desired function, causes a malicious side effect when run by an unsuspecting user.' Even though the
trojan horae problem is widely recognized, trojan horse identification is difficult.

.47 ~FOR-SEERE—

'V(b) 13)-P.L.

FOP-SEEREF CRYPTOL(IGIC QUARTERLY

DISCUSSION

86-36 (b) (3)-P.L. 88-36

The question of whether or not an algorithm exists to decide whether a

I_nmz:a.mqa_i.n.cgd.gld with a virus appears to be unresolv onsultation with Dr
and a number of colleagues within has indicated that a

i formalization of the meaning of “infected” is required in order to make any
' rigorous statements about virusés. A theory of viral infection is required to

characterize properties associated with viruses and ultimately to prove whether
or not a decision algorithm exists. - o

Based on Rice's Theorem,? it is the author's. mtultlon that a decision algﬂrithm
to determine whether or not a program is 1nfected does not exist. Infact, evenifit
is proved that such an algorithm exists, there is no guarantee that the actual
algorithm can be found. If the algorithm does not exist or cannot be found, it
would not mean that the problem is hupeless 1t would mean only that its general
solution is not open to mathematically rigorous proof. This result would leave two
approaches: (1) restrict the computer system specification so that ‘a general
solution is not required or (2) solve the problem heuristically, acknowledgmg that
the solution is not rigorously complete The second method seems to ‘provide the
cheapest and easiest approach w1thout. drastically changing t,he operatmnal
environment. -

The thrust of the recommended actions proposed in this paper is to provide
‘mechanisms to make the virus attack more difficult and efxpenswe to a
penetrator. This method is known as increasing the work factor -1 the amount of
resources the attacker must expend to_accomplish a successful penetratmn The
cost is measured in terms of both time and money. Ifthe time requu'ed to mount a
virus attack agamst a given system exceeds the life of the system then the system
is effectively secure. Similarly, if the cost is made high enough the attacker will
divert his resources to a more fruitful target. In either case, an effective solution
is reached /

,4'2 Rice’s Theorem states that any nontrivial property of the recurawe]y enumerable sets is
" undecidable. A property is “trivial” if it is either true of all members'in the set ur of no members in
the get. Since the set of all possible aigorithms is a recursively enamerable set, it would seem to
follow that the nontrivial property of being infected would be undecu:lable For further reeding on
Rice’s Theorem, see Hopcroft (cited in the bibliography). :

COMPUTER VIRUS INFECTIONS +OP-SECRET—

‘Attack Classes

The three major types of computer attacks are compromise, spoofing, and
denial of services. They are discussed in detail in the following paragraphs,

a_Compromise - the unauthorized disclosure of classified data. |

b. Spoofing - the wunauthorized alteration of clas]siﬂed data.

Paradoxically, the type of program in which the virus lies can tell
much about the system. Using a biological analogy, a human who ﬁ.i'lds himself in
an alien environment knows a great deal about that environment by virtue of the
fact that he is alive, e.g., there is enough oxygen to breath,| the ambient
temperature is within the human-tolerable range, etc. By the same token, a C
language program, for example, “knows” with a high degree of certamty that it
will be running in a UNIX-type environment. If the host program in which a
virus hides will not run in a given computer system, there is no reason to ever
import that program. If it is imported, it will not execute and presents ne direct
threat to the computer system. The following two scenarios exemphfy the
spoofing attack. The scenarios are not intended to be of suﬂ'ic;ent detail to be
beyond criticism, but to give a flavor for attacks that might be p0551b1e

49 TOPSECREF—

-P.L. 86-36

(b (

(b} (3/-0.L. 96-36

1

)

FOP-SECREF— CRYPTOLOGIC QUARTERLY

¢. Denial of Service - the unauthorized use of system refsources to the
exclusion of suthorized users. Examples of denial-cf-service attacks include
“unfair” CPU utilization or “excessive” disk storage space usage by a user or
process to a degree that negatively impacts the other users on the ‘system. More
concretely, if a user gets control of the CPU scheduling process, the computer can
be directed to execute only his process to the exclusion of all others. |
At first glance, the infection process itself may seem to represent a
denial-of-service attack. To a small extent this is true; however, a vfiable infection
must conceal itself by minimizing the time required to accomplish the infection
process before executing the legitimate program. Specifically, the}infection time
required must be small compared to the time required to execute the legitimate
program so that the user does not notice the delay. Indeed, once all of the
programs have been infected, a process which can oceur exponentially fast, the
infection process consumes no more system resources until its mission component
is activated.
The denial-of-service attack is similar to the spoofing attack but uses

more brute force. Instead of providing false information during times of crises,
programs are instructed to bring the system o a halt. |

FOP-HEERET— 50 '

COMPUTER VIRUS INFECTIONS FOP-SBERET—

The threat of computer virus attack 1s very real. Fred Cohen's
preliminary investigations reported in the paper cited in the bibliography,
involving the actual production of working viruses on systems which included the -
Univac 110B, TOPS-20, VM/370, and VMS, demenstrates viral production times
ranging from 6 to 30 hours. The average time to acquisition of full system
privileges giving the virus unchallenged access to any data on the computer
system was 30 minutes after virus introduction to the targeted computer.

Virus Uniqueness “

What makes the computer virus problem different from the more general
trojan horse problem? The difference is analogous to the dlfference between
having one traitorous soldier in your ranks versus an infectious d1sease which
converts your soldiers tc enemy soldiers. The effect of one bad solcher is usually
limited to his own group. The effect of the infectious disease is likely to be the loss
of the entire war.

Current computer security research suggests that good | security is
accomplished by the separation of the computer system into small, isolated groups
of related programs. Should a problem occur, this limits the damage to within
that group. This is analogous to the bulkhead separation of compartments in
ships and submarines to prevent uncontrolled flooding from a single Ieak

The virus and the trojan horse, in any given partition, are 1ndlstmgulshable
in terms of the amount of damage they can cause. The difference is in the ability
of the infections to escape the partition. The trgjan horse is active only within the
partition. The virus, on the other hand, has the potential to spread 1tself to other
partitions as well. The virus quxckly infects virtually all programs in the
partition. The process is very simple and very fast. When the original infected
program is run, it first finds an executable file, appends a copy of Ltself to the file,
executes ity mission eomponent if the triggering event has occurred and then

~ executes the program body of the host program. ' ~

When a program runs in the user’s space, it runs with the same’access as the

‘user himself, The algorithm for infection requires only reads, writes, and file

renaming. For example, the algorithm could be to copy the vn’-us part to a
temporary file, append the reloaded executable program code to the virus code,
delete the old program version, and then rename the temporary file to the name of

51 J-FGP-SEGRET—

|

“FOP-SECRET CRYPTOLOGIC QUARTERLY

the old program. At this point, there would be two infected programs, the original
and the program the virus infected. The accesses required for these operations are
almost universally allowed to the owner of the files and, hence, are available to
the virus when run in the user’s space: The collection of programs to which a
virus has the required access to propagate when executed by a given user will be
called a “partition.”

Execution of either of the two infected programs can infect other programs in
the partition. Given that programs in the partition are run with some regularity,
the number of infected programs increases geometrically until all programs are
infected. Furthermore, information flows must also occasionally take place across
partitions by operational necessity. When upgrading system software facilities,
software systems such as data base managers or editors developed on other
computers must be loaded on the computer system. Programs often need to be
copied from one partition to another in order to share the benefits of a program
developed by users on the system. Since a]l programs within the virus-infected
partition are potentially infected, the probability of transmission of the virus is
greatly increased.

With the infeetiousness of viruses established, I turn to the question of
virulence. Even though the potential damage within a partition is equivalent
between the virus and the trojan horse, the reliability and ease with which the
damage can be done is greatly increased in the case of a virus. Gwen a fairly large
number of programs within a partition, a virus infection obviously has many more -
traitorous agents doing its bidding. This could mean either a large number of
agents (programs) attempting the exact same subversive task or possibly
cooperating in subtle ways to accomplish a larger integrated task. [The first case
yields a high reliability of task suecess by simple redundancy. The second case is
much more theoretical and sophisticated but provides the potential for more
subtle tasks to be achieved.

The infecticusness and virulence unique to a virus arises from its ability to
propagate itself, Seolutions should address this particular feature in order to
demote the virus to a trojan horse subject to the correspondmg protection
mechanisms, inadequate as they may be. Specific solutions are offered later in the

paper.

Specific Vulnerabilities = ' |

“ToP-3fCRET 52

COMPUTER VIRUS INFECTIONS | ZORSECREF

SOLUTIONS

The nature of the virus problem requires the simultaneous pursult of several
different solutions. First, both long- and short-term solutions should be sought,
Immediate stopgap countermeasures should be taken to mmumze the risk from
this threat. Furthermore, some long-term, fundamental research is required to

53 ‘ TOP-SECREF

FOP-SECREF- CRYPTOLOGIC QUARTERLY

investigate the offensive potential of and defensive mechanisms for sophisticated

viral attacks.

Before I recommend specific solutions, [must preface my remarks with some
cautions. Persons using the computers should carefully evaluate these
suggestions, along with any others made as a result of the virus problem, in terms
of operational impact. Knee-jerk reactions can cause more problems than they
solve. Perfect computer security can be achieved by hermetically sealing all
computers, but they could then do no useful work. Clumsy, complicated
procedures and policies are more likely to be ignored than followed.

The cost and benefit of each suggestion should be compared -and properly
weighed and, in turn, compared to the risk. I suggest that formal'techniques of
risk analysis be applied to the problem to establish a procedure of measuring this
trade-off.

Considering the above mentioned specific vulnerabilities, the steps towards
preventing trojan horse importation are as follows:

COMPUTER VIRUS INFECTIONS

Virus-specific Countermeasures

55

~FOR-SEERE— CRYPTOLOGIC QUARTERLY

Operational Ramifications ' ‘ (

I
This section may be more appropriately labeled, “What does th{is all mean to
e"" This paper shouId have an 1mmed1ate effect on operatmn as wel] as,Leses

BTy urged. "
This paper is essentially a call to arms for alleomputer systeml research and
support groups to focus attention on this-very real problem. The solutions
proposed are in various stages of- development. Each should| be analyzed,
implemented, and tested. New ideas should be generated. More resources should
be dedicated to the _problem to find viable solutions for both the long and short
term.

COMPUTER VIRUS INFECTIONS “FOP-SEERET~

Implications to Computer Security Criteria

All right then, how about adding Biba’s® integrity extensions to the
mandatory model requirements in the Criteria, The addition of inte'grity levels to
the mandatory access control mechanisms is certainly a step|in the right
direction. This additional control, however, is not a panacea, in fact, it is only
anether measure to increase the work factor of viral penetrations.

The integrity dual model suggests the segregation of all of the programs on a
computer system based on the degree of trust that the program does exactly what
it is designed to accomplish and nothing more. For example, if the designing
software engineers were all Top Secret cleared, the software :was formally
specified and verified correct, and a large panel of experts reviewed the final code,

3. Biba suggested the additien of the integrity dual of simple security and the *-property proposed by
Bell and LaPadula, In sum the model requires (1) ne writing “up” in integrity (simple integrity) and
{2) no reading "down” in integrity (integrity *-property). Note that here, read and execute may be
considered equivalentaccesses.

1) (1) 57 FJORSRCRET—
{b) (3)-P.L. 86-35

FOR-GEEREF CRYPTOLOGIC QUARTERLY

such a program might be placed in the class of “high integrity” programs.
Conversely, if a program’s origin is no longer known and the source code is not
available for inspection, then such a program might be placed in the “"low
integrity” class of programs. All programs would be labeled as to which class they
belong. Now, if the system prevents all "low integrity” programs from accessing
any "high integrity” programs, then there is some measure of protection against
the spread of viral infection from lower integrity levels to higher integrity levels.

The establishment of a hierarchy of integrity levels requires some way of
determining the relative degree of reliability. With respect to the virus problem,
this corresponds to determining the probability of an algorithm being infected or
its susceptibility of infection. The method of such a determination is unclear and
may itself be unreliable. If the method were implemented as an algorithm on the
computer system, it too would be susceptible to the very same viral attacks as the
other programs.

There is no way of guaranieeing ‘that the routines labeled as “highest
integrity” are not infected if a decision algorithm to detect viruses does not exist
or cannot be found. Infection of the highest integrity routines could then
eventually lead to a system-wide infection. This would make the whole integrity
structure useless and could give a false sense of assurance. Therefore, the
addition of integrity levels into mandatory access can only be a part of an
integrated strategy to combat the virus attack.

CONCLUSION ’ r

It appears that a large variety of inexpensive measures canl be taken to
counteract a large percentage of the potentlal viral attacks. Furthermore, other
countermeasures can be adopted to increase the work factor of any virus

attempting system penetration. . \

How to increase work factors to the extent of making this attack ‘mfeaable 1sa
matter for more research. I suspect the solution will be heuristic in nature, and
the final protection system will probably come to resemble| the human
immunological system in approach. In general, I believe pattern recogmtxon and
artificial intelligence will play a key role in long-term research into thlS problem.

COMPUTER VIRUS INFECTIONS

Trovor

BIBLIOGRAPHY

Bell, D. E. and L. J. LaPadula. “Secure Computer Systems: Unified Exposition
and Multics Interpretation,” MTR-2997 Rev. 1, MITRE Corporation, Bedford,
Massachusetts, March 1976. '

Biba, K. J. “Integrity C‘onsideratiohs for Secure Computer Systems,” ESD-TR-76-
372, Electronic Systems Division, AFSC, Hanscom AFB, Bedford, Massachusetts,
April 1977, ‘ ' ‘

Cohen,.Fred. “Computer Viruses: Theory a>nd Experiﬁents,” 7th DOD/NES
Computer Security Conference Proceedings, 1984.

Department of Defen;se Trusted Computer System Evoluation Criteria, DOD
Computer Security Center, Fort Meade, Maryland, 15 August 1983l

Hoperoft, John E. and Jeffrey Ullman. Introduction to Automaia Theory,
Languages, and Computation, Addison-Wesley, 1979, pp. 177-213.

. 86-36 o 59 FOR-OFHCHALHSE-ONEY-

