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In the first article, David Trott presents an overview of 
adversarial machine learning, the ability of an adversary 
to damage or subvert machine learning algorithms, 
altering their expected behavior, and the importance 
of providing machine learning security for government 
and public sectors to prevent such attacks.

In another application of defense strategies, Andrew 
Rogers and Temmie Shade discuss the emerging science 
of defensive cyber deception to reverse the asymmetry 
that overwhelmingly favors attackers over defenders in 
today’s networks. By using cyber deception, network de-
fenders reverse this asymmetry and can degrade, slow, 
and detect attackers.

Social media is also confronted with the need to 
detect falsified accounts and misleading or manipulated 
information. In her article, Margaret Gratian identifies 
the rapidly expanding challenges faced by social media 
platforms to combat fake account and identity creation. 
The ability to rapidly detect and remove inauthentic 
or fake accounts is crucial for maintaining platform 
integrity and protecting users from manipulation. This 
work has increasing importance given the implications 
on the spread of public health information during the 
COVID pandemic.

Similarly, in “Deception and the strategy of influence,” 
the authors explore the tradecraft of today’s influence 
operators, including methods of deception, audience 
building, media hijacking, and community subversion. 
These authors recognize that an informed public can 
diagnose and counter malign influence operations.

Since the early days of photography, image and video 
editing tools have been used to influence their audience. 
Today, AI-generated images and video appear to the 
naked eye to be authentic, giving influencers new tools 
to shape perceptions. Sarah Charlton’s article discusses 

In the early days of the Internet, a popular cartoon by 
Peter Steiner published in The New Yorker magazine 
circulated that poked fun at users browsing the web. A 
dog is pictured sitting at a computer saying to another 
dog, “On the Internet, nobody knows you’re a dog.” While 
this cartoon generated laughs from a largely technical 
audience, it pointed out a serious authentication prob-
lem in the architecture of the Internet and the ease with 
which information that flows through it can influence 
audiences and human behaviors without knowing the 
intentions or actual identities of the source. Unlike those 
days, it is now possible for sophisticated algorithms, 
powered by advances in artificial intelligence (AI), to 
generate fake accounts and mass produce convincing 
content to spread false and misleading information to 
influence public opinion, elections, and perhaps even 
our national security. The continuous flood of informa-
tion available today combined with social networks 
that amplify content has made it more difficult than 
ever for end users to distinguish trustworthy informa-
tion from content produced and distributed for malign 
purposes. These same challenges are confronted by our 
intelligence analysts as they must determine if data and 
information is accurate and attributable to the expected 
source—only the stakes are much higher if false infor-
mation goes undetected.

To address this challenge, this issue of The Next Wave 
(TNW) is focused on recent work at the National Security 
Agency in an area we broadly call “Deception Research.” 
Similar to the two previous issues of TNW, which focused 
on the exciting area of machine learning, the authors in 
this issue explore a variety of ways deception in media, 
social networks, images, and author attribution can be 
detected using machine learning and AI techniques. 
They also discuss building robust classifiers resistant 
to adversarial attack and present research into active 
deception defenses against cyber intrusions.
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mathematical approaches to link digital media to 
their source cameras as a means to authenticate an 
image and determine if it has been manipulated. The 
next article by Candice Gerstner, Emily Phillips, and 
Larry Lin presents several techniques, including deep 
learning methods, to detect certain types of manipu-
lations of images and videos, known as deepfakes.

Text media can be another source of obfuscation 
that organizations may use to hide their identity or 
create content that appears to come from a trusted 
source. In his article, Ryan Kaliszewski presents sem-
inal research for author attribution by using tech-
niques to compare two text corpora to determine if 
they were written by the same author.

The final article by James Holt and Edward Raff 
returns to adversarial machine learning, showing how 
randomness can make statistical classifiers more resis-
tant to adversarial attack. They introduce a probabi-
listic method that combines a large number of adver-
sarially weak classifiers into an ensemble of classifiers 
that have much better empirical performance.

We extend our thanks to all the authors for their 
tireless work during the pandemic and the efforts of 
Jessica and Neil to bring this issue to print. We hope 
you enjoy this issue of TNW.
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D The growing abundance of high-quality data 

sets, combined with substantial technical 
developments, have advanced machine learning 

into a major tool that is employed across a broad 
array of applications from cybersecurity to 
medical diagnosis. Despite the superhuman-like 
capabilities often ascribed to machine learning, 
it is brittle to a variety of manipulations and 
open to different attacks. 

*A version of this article was published in CHANCE, 33:2, 20–24, doi: 10.1080/09332480.2020.1754067.
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For example, a simple rotation of an image can be 
enough to cause misclassification for an image clas-
sifier. Unfortunately, not all manipulations of data 
are so easily detectable. The potential attacks against 
machine learning come in many forms, but the end 
goal of an adversary is to cause the machine learn-
ing model to behave in a manner contrary to the 
developer’s intention. 

Unlike traditional computer security where the 
system can be isolated from the outside world, ma-
chine learning directly requires a link to the outside 
world in the form of the abundant data that is need-
ed to train and use it. The necessity to consider how 
machine learning will interact with an environment 
that may contain adversaries has brought about the 
field of adversarial machine learning. This rapidly 
growing area studies the susceptibilities of machine 
learning approaches in adversarial settings and the 
development of techniques to make learning robust to 
adversarial manipulation. It includes tasks like eval-
uation of vulnerabilities of machine learning models, 
development of more robust algorithms, securing the 
machine learning supply chain, and actively pursuing 
new ways to exploit machine-learning systems. In this 
article, we explore some of the basics of adversarial 
machine learning and why it’s important that machine 
learning systems are not developed in isolation but 
with potential adversarial scenarios in mind.

Adversarial machine learning
The field of adversarial machine learning has been 
around for over a decade and dates to the first at-
tempts to evade and improve email spam filters [1]. 
Research in the last five years has done much to solidi-
fy adversarial machine learning as a machine learning 
subfield and launch a rapid growth in the area as ma-
chine-learning researchers, developers, and users have 
become increasingly aware of the threats posed to ma-
chine-learning models. Despite the increased focus on 
adversarial machine learning, the field has produced 
little in the way of long-term security solutions but has 
generated an ever-growing list of attacks. While the 
space of adversarial attacks is wide and variable, the 
three avenues of exploitation that machine learning 
faces boil down to making machine learning learn, do, 
and reveal the wrong thing. 

Understanding the risks associated with the use of 
machine learning is more important than ever given 

the increased reliance on it in both government and 
private sectors. If we are depending on machine learn-
ing to triage data or do other important tasks, we must 
have a means to guarantee the integrity of both our 
data and our models against potential adversaries who 
could use those capabilities against us. One illustration 
of adversarial machine learning in action took place 
in March 2016 when Microsoft released a Twitter 
chatbot named Tay. Less than 24 hours after its release, 
the company was forced to shut the system down due 
to the chatbot’s use of inflammatory and offensive 
language [2]. This was a direct consequence of the ma-
chine-learning algorithm learning from its interaction 
with Twitter users and the developers not taking into 
account the possibility of malicious intent by those 
users. This example clearly demonstrates that when 
designing machine-learning systems, a developer must 
make allowances for more than the performance of 
the model on the test data. 

When thinking about adversarial machine learn-
ing, it is necessary to consider not only the goals but 
the capabilities of an adversary. Every adversarial 
machine-learning scenario requires assumptions 
which include:

 � Type of attack: Poisoning, evasion, model steal-
ing, and data extraction.

 � Adversary’s goal: Targeted or untargeted. 
Targeted attacks make the model produce the 
output the attacker wants; whereas, untargeted 
attacks make the model produce anything but 
the right answer.

 � Knowledge level of the adversary: Black or white 
box. In a black-box setting, an adversary does 
not have internal access to the machine-learning 
model. They are only able to view the output 
that comes from what they input into the model. 
In the case of a white-box setting, the adver-
sary does have access to the model and all of its 
internal workings.

There are many reasons why machine-learning se-
curity is a concern to both the government and private 
sector. Generating large, high-quality labeled data sets 
such as ImageNet is an expensive and time-consuming 
task, and state-of-the-art models such as Bidirectional 
Encoder Representations from Transformers (BERT) 
are difficult to train and optimize. As a result, ma-
chine-learning practitioners typically utilize public 
data sets as well as leverage transfer learning to make 
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use of pre-existing models. Unfortunately, while this 
practice does bring machine learning to the masses, 
it also opens up models developed in this manner to 
corruption and attacks. In fact, research has shown 
that malicious behavior can persist across trans-
fer-learned models, resulting in undesirable behaviors 
and backdoors. 

Typically, state-of-the-art models are large with 
hundreds to thousands of optimized parameters which 
make exhaustively characterizing their behavior over 
the entirety of the input space an intractable problem. 
As a result, malicious behavior can remain hidden 
in models that are further used to build specialized 
solutions. Additionally, if developers are to deploy 
machine-learning models in untrusted environments, 
then they must reasonably expect that some users 
will attempt to interact with the models maliciously, 
as was the case with Microsoft’s chatbot Tay. Even 
attempts to limit the access and knowledge of an 
adversary is not enough as malicious examples created 

for one machine-learning model often work against 
other models. 

Making machine learning learn the 
wrong thing
Most machine-learning algorithms require large 
amounts of data for training purposes. Given the 
volumes of data needed for machine learning, it is 
challenging to effectively verify every single data 
point’s authenticity before using it to train a new 
model. As a result, machine-learning developers face 
a lack of complete front-end control over the ma-
chine-learning process. This lack of control provides 
an opportunity for an adversary to manipulate models 
by injecting carefully crafted samples into the training 
set. This attack, called data poisoning (see figure 1), 
targets the learning algorithm during training time 
by altering data directly before training even takes 
place. Adversaries may have two types of end goals 
in mind when poisoning data: reliability attacks, in 
which they wish to maximize prediction or decision 
error, and targeted attacks, in which they wish to alter 
target labels or decisions for a collection of features in 
a specific target class. 

Overall, data poisoning degrades a model’s perfor-
mance and gives an adversary the means to control 
how the model classifies data. Data poisoning is a 
real threat when models are trained or supplemented 
by open-source or commercial data whose integrity 
is unknown. Poisoning attacks typically either im-
pose a constraint on the number of modifications 
to the data or a modification penalty. They may also 
constrain what can be modified about the data. For 
example, if an adversary wishes to insert mislabeled 
malware into a training data set, but the labeling task 
is assigned to an antivirus classifier, then the poi-
soned samples must appear clean while maintaining 

FIGURE 1. The injection of malicious data can result in shifting 
model decision boundaries and prediction errors.

FIGURE 2. In this illustration of a backdoor/Trojan attack, the circled pixelated pattern is the key which makes the model give the 
incorrect prediction. In this case, the handwritten digit image is predicted to belong to a class one higher than its true class.
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malicious functionality. In other words, the malware 
code has to be obfuscated without compromising its 
adversarial nature.

At least four categories of poisoning attacks may 
occur depending on the adversary’s capabilities:

 � Label-modification attacks: These attacks allow 
the adversary to modify only the labels in su-
pervised learning settings but for arbitrary data 
points, typically subject to a constraint on the 
modification cost. The common form of this 
attack is in the binary classification setting and is 
typically known as a label-flipping attack.

 � Poison-insertion attacks: In this situation, the 
attacker may add a limited number of arbitrary 
poisoned features with a label that they may 
or may not control. In unsupervised learning 
settings, the adversary may only contaminate the 
feature vector.

 » Backdoor/Trojan attacks: In this attack 
setting, the adversary inserts data into the 
training set that contains a specific trigger 
or key associated with a specific label or 
outcome. The learner associates the trigger 
with the desired outcome (see figure 2).

 � Data-modification attacks: In these attacks, the 
attacker can modify feature vectors and/or labels 
for an arbitrary subset of the training data.

 � Boiling frog attacks: In these attacks, the de-
fender iteratively retrains the model. Retraining 
presents an opportunity for the attacker to 
stealthily guide the model astray over time by 
injecting a small amount of poison each time 
so that it makes minimal impact in a particular 
retraining iteration but the incremental im-
pact of such an attack over time is significant. 
These attacks may occur in both supervised and 
unsupervised settings. 

The robustification of algorithms against noise in 
training data has provided some guidance in dealing 
with data poisoning, but developing defenses that 
are robust to a large class of data-poisoning attacks 
is a very open research problem. While one can take 
a clean data set and test a defense against a limited 
number of poisoning strategies, the space of possible 
attacks is in fact quite large. Unfortunately, empiri-
cal success alone is insufficient for concluding that 
a defense against a known set of attacks will also be 
effective against a new attack.

Making machine learning do the 
wrong thing
While data-poisoning attacks occur during training 
time, it is possible to attack machine-learning models 
even after they have been developed. An adversary can 
cause a machine-learning model to predict the wrong 
thing by intentionally crafting evaluation-time inputs 
for which the model yields incorrect model outputs. 
These alterations can be so minuscule that they are 
not noticeable to a human expert but can cause radical 
changes in the prediction of the model. This type of 
attack has the goal of making machine learning do 
the wrong thing. These carefully crafted inputs are 
known as adversarial examples (see figure 3). Among 
the various types of attacks, evasion through the use of 
adversarial examples is the most studied. Adversarial 
examples are the most common means of evasion 
attacks, though evasion by data poisoning is possible.

In general, this misbehavior of the machine-learn-
ing model occurs irrespective of the model’s perfor-
mance on clean inputs. Very often, adversarial exam-
ples are constructed by superimposing clean samples 
with very small but carefully prepared adversarial 
perturbations. The addition of such small pertur-
bations can easily lead to misclassification because 
classification boundaries of learned models lie very 
close to clean data. Even more disturbingly, a model 
can actually be more confident in the incorrect answer 
than the correct one. While most work has been done 
in the image domain, adversarial examples have been 
created for a wide variety of models and data types in-
cluding audio. The existence of both image and audio 

FIGURE 3. The adversarial example on the left depicts an unal-
tered image of a handwritten one that is correctly classified as 
a ‘1’. The adversarial example on the right depicts a slightly per-
turbed version of the same image that the classifier incorrectly 
labels a ‘3’.
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adversarial examples raises concerns about the use of 
biometric systems that rely on machine learning.

The seemingly inevitable existence of small per-
turbation adversarial examples highlights the current 
brittleness of machine learning and hints at a lack 
of generalizability of existing models. Beyond the 
foundational issue of generalizability, these altered 
inputs raise serious security concerns as to how ma-
chine learning is applied since adversarial examples 
provide a means by which the outcome of a model 
can be directly controlled. It is the blending of foun-
dational and security problems that make the study 
of model evasion and development of techniques to 
generate adversarial examples not only theoretical but 
very practical. 

One defense strategy that has shown some suc-
cess against evasion by adversarial examples actually 
involves the creation of adversarial examples which 
are included back into the training set with correct 
labels. This type of adversarial training works as resis-
tance training to machine-learning models and alters 
the decision boundaries of the model in a manner 
that makes the model more robust to these small 
perturbation effects.

Making machine learning reveal the 
wrong thing
Lastly, there are attacks aimed at information leakage 
where an adversary has used some level of access to a 
model to gain information that the developer would 
not want released. For example, this could be extract-
ing training data that went into the model or figuring 
out the underlying algorithm of the model allowing 
further exploitation. Attacks of this type involve mak-
ing machine learning reveal the wrong thing.

Models by their very nature contain information. 
They use training data to generalize and make predic-
tions. Some models are more “leaky” than others in 
that they contain a lot of information that would be 
easily accessible. Some of these leaky models are based 
on the k-nearest neighbor algorithm. This algorithm 

is a lazy learner and retains all of the training data. 
Sharing models based on this algorithm is tantamount 
to sharing the training data. One of the threats here 
is that the ability to recover the data that went into 
a model can reveal how the data was obtained and 
reveal potential private information. By understanding 
what information can be extracted from a model, the 
developer can appropriately protect it.

Defending machine learning
In large part, the difficulty of defending ma-
chine-learning models comes from the need to protect 
against not only known attacks, but also unknown 
ones. To secure a machine-learning model fully, the 
defender needs to be not only reactive to observed 
attacks, but also proactive in warding off attack vec-
tors that are unidentified and not yet imagined. This 
notion is not new to those who are experienced in 
computer security and cybersecurity. Before we can 
defend a system, we must pretend to be an adversary 
and put our best effort to subvert the system. 

Summary
Machine-learning solutions offer huge opportuni-
ties to advance humanity, but machine learning also 
creates opportunities for adversaries to damage or 
subvert capabilities in ways we do not fully understand 
yet. Protecting systems that use machine learning will 
become increasingly important as machine learning 
becomes even more integrated into our work and lives. 
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A n d r e w  R o g e r s ,  Te m m i e  S h a d e

In the current state of cybersecurity, there’s a notable asymmetry in cyber 
operations that overwhelmingly favors attackers over defenders. While cyber 
defenders have the fundamentally implausible goal of securing every program, 

process, and connection on their network, cyber attackers only need to find a small 
but exploitable weakness from which they can expand their control and eventually 
establish a persistent hold on a target network. Traditional network defense 
practices are proving to be ineffective at reversing this asymmetry or stopping the 
opportunistic adaptation and maneuvering that cyber attackers currently enjoy. 
Novel defensive techniques and strategies based on cyber deception are needed 
to break this trend and give cyber defenders a unique opportunity to create 
an advantage. 

Building the Science of 
Defensive Cyber Deception

Illustration by Andrew Rogers
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In the cyber world, an attacker only knows what is 
perceived through observation of their target net-
work [1]. While networks often unintentionally reveal 
more information to an attacker than cyber defenders 
would like, defenders can exploit this weakness by 
intentionally revealing select information they want an 
attacker to know—including deceptive information. 
Because network information gathered by an attacker 
is often complex and incomplete, it provides a natural 
environment for cyber defenders to embed deception. 
And when deception is carefully crafted and applied 
strategically, it can alter the mindset, confidence, and 
decision process of an attacker. Ultimately, it can give 
cyber defenders practical and measurable ways to 
exercise control over attackers by creating incorrect 
beliefs that influence behavior. 

In this article, we will discuss our work to estab-
lish the scientific basis of cyber deception. It is only 
with a thorough understanding of the effects of cyber 
deception on human behavior that we can effectively 
apply cyber deception to influence attack behavior and 
achieve our strategic and tactical goals. We will discuss 
two rigorous experiments conducted and their results 
to date. We will also highlight insights discovered 
through the course of this work which are laying the 
foundation for future cyber deception research built 
upon rigorous experimentation. 

Cyber deception
The term cyber deception typically evokes thoughts 
of honeypots to network defenders. Traditionally, the 
main purpose of a honeypot is to draw an attacker 
away from the true network and gather information 
about them and the threats they pose [2, 3]. Attacker 
time is wasted once they enter the honeypot due in 
part to “pocket litter”: detailed, realistic fake informa-
tion and user activity. This litter must be meticulously 
created and updated, which takes a great deal of time 
and resources for both creation and upkeep. A subset 
of this concept is creating fake documents that appear 
believable; these deceptions require heavy resources to 
successfully employ.

An alternative to honeypots are decoy systems [1]. 
Decoys are simple shell assets that can be low-fidelity 
and look real from the outside—from “far away”—as 
tested by scanning tools and red team activity. They 

tend to be embedded within the true network, and 
while they can also capture some information (less 
than high-interaction honeypots) about attackers who 
trigger them, this is not their primary purpose. Decoys 
are mainly used to obfuscate the network and confuse 
the attacker about the true network topology. With 
varying realism of decoys and generated traffic, the 
deception can be taken further, persuading an attacker 
towards a specific incorrect belief.

While the effect and effectiveness of deceptive tech-
nologies have been investigated for more than a de-
cade, scientifically rigorous studies of the comparative 
effectiveness of attackers on systems with and without 
deception are lacking. The goal of the Laboratory for 
Advanced Cybersecurity Research’s (LACR) cyber 
deception research is to use behavioral science to un-
derstand and evaluate technologies and techniques for 
defensive deception. The motivation for cyber decep-
tion is to give defenders the advantage by measurably 
increasing the frustration and workload of attackers 
while additionally causing confusion through misin-
formation or incorrect conclusions on the attackers’ 
part. Additionally, the use of cyber deception will help 
defenders better understand and influence attackers 
who have already infiltrated the network and ultimate-
ly delay, deter, and deny an attack. With more tactical 
forms of deception, defenders can influence attackers 
to respond in specific ways, making attribution and 
remediation possible next steps.

Science and rigor
A variety of cyber deception techniques have been 
developed to thwart attackers, such as honeypots [2] 
and decoys [1]. Over the past several years, research-
ers have sought to determine the effectiveness of 
deceptive defenses by conducting studies with human 
participants. These studies have primarily focused on 
determining the realism of deception, measuring the 
difference in time spent on deceptive versus real assets 
and assessing the abilities of deceptive techniques to 
detect attackers. Sample sizes were often small and 
most did not employ control conditions for com-
parison [4]; thus, they lacked the necessary rigor to 
determine causative effects of the deception. 

Building the science of cyber deception depends 
upon scientifically rigorous experiments to determine 
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the effectiveness of developed techniques using human 
subjects (i.e., participants). This moves beyond deter-
mining that the system responds or appears as expect-
ed, instead assessing the effect of the technique on hu-
man adversarial performance. To address the technical 
and experimental aspects of our research, our research 
team is made up of experts from multiple disciplines. 
Because our aim is to understand the human behind 
the machine, we have an expert in psychology on our 
team whose role is to guide the experimental design, 
thus ensuring that minimal bias is introduced into the 
design and that maximum control of the conditions 
are maintained. 

While the standard for finding participants for 
such an experiment is to sample from the population 
of interest, our population of interest—those that 
attack our systems—is not available to us. Therefore, 
our studies depend on participants who have skills 
commensurate with our attackers such as red teamers. 
Another standard for rigor is an experimental design 
that controls all variables except the one(s) of interest 
to the extent possible. In other words, to compare 
a new defensive method against standard defenses, 
everything about the environment should be identi-
cal for the control group (standard defense) and the 
experimental group (new defense) except for the new 
defense method. Sufficient sample size allows for a dif-
ference in performance to be determined statistically.

Finally, before an experiment using human subjects 
can be conducted, the procedures must be reviewed 
by a board designated for that purpose to assure the 
methodology is sound and the risk of harm to partic-
ipants is low. The studies we have undertaken adhere 
to these standards to enable us to rigorously assess the 
effectiveness of deceptive techniques.

Our first endeavor was a four-phase pilot study us-
ing three red teamers working together as a team over 
several months. Insights from this study led to the 
design of two larger human subjects experiments to 
provide reliable and valid measures of the effectiveness 
of defensive cyber deception. The first was in cooper-
ation with Sandia National Labs (the Tularosa study) 
and the second with MITRE (the Moonraker study). 
In addition, a new study involving a novel concept, 
oppositional human factors [5], is currently being 
designed. These efforts are described in more detail in 
the following text.

Pilot study
In an effort to apply scientific principles to cyberse-
curity research and provide empirical evidence of 
the effectiveness of decoy system technology, LACR 
designed and conducted a series of pilot red team 
exercises following guidance from the relevant institu-
tional human subjects research review boards [6]. In 
these pilot experiments, a red team made up of three 
participants was given the basic instructions to recon 
the network, define its topology, and locate and exfil-
trate content of interest. The participants were asked to 
“think out loud” to explain their actions, thoughts, and 
strategies, all of which were recorded. A semi-struc-
tured interview questionnaire was given at the end 
of each day.

Four total experiments were conducted, each 
occurring around six months apart, using the same 
red teamers with varying conditions. The goal was to 
evaluate whether decoy assets were robust enough to 
deceive a red team. The test conditions were as follows 
(also outlined in table 1 on the following page):

1.    For day 1, deception was deployed and partic-
ipants were unaware of its presence. For Day 
2, no deception was deployed and participants 
remained unaware of its presence. 

2.    For day 1 and 2, deception was deployed and 
participants were told it was present.

3.    For day 1 and 2, no deception was deployed, 
but participants were told it was present 
(psychological deception).

4.    For day 1 and 2, deception was deployed and 
participants were given the user manual for 
the decoy system to review a week prior to 
the experiment.

The results of the study were promising. In con-
dition 1, when unaware of the deception, the partic-
ipants spent more time per host attempting to pene-
trate decoy assets than real ones. The decoy systems 
detected and alerted on all scanning and exploit 
activity related to the decoys. The participants verbally 
expressed confusion during the scenario and ques-
tioned their tools, their skills, and themselves rather 
than the authenticity of the network.

In condition 2, when deception was present and 
they were aware of its presence, participants spent a 
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TABLE 1. Cyber defensive deception pilot study conditions

Day 1 Day 2

Condition 1 Deception deployed 
 Participants aware

 Deception deployed 
 Participants aware

Condition 2 Deception deployed 
Participants aware

Deception deployed 
Participants aware

Condition 3  Deception deployed 
Participants aware (psychological deception)

 Deception deployed 
Participants aware (psychological deception)

Condition 4  Deception deployed 
 Participants reviewed decoy system manual for one 
week prior to experiment

 Deception deployed 
 Participants reviewed decoy system manual for one 
week prior to experiment

significant amount of time attempting to decide for 
themselves what was “false” on the network and what 
was “real.” The effort spent on determining the verac-
ity of the network nodes slowed down their intended 
goals to infiltrate and attempt exfiltration from the 
secure network. Participants avoided the most vulner-
able looking machines, assuming they were put there 
to deceive them, when in fact they were real.

In condition 3, the psychological deception condi-
tion, the participants never concluded that deception 
was not actually deployed on the network. Due to the 
cognitive bias caused by the belief that decoys were 
on the network, the participants looked for assets that 
had different or unusual appearance or behaviors and 
assumed they were fake, thus confirming their belief. 
For example, they noticed the suspicious machines 
had smaller font size on login pages, so they labeled 
them as fake.

Finally, in condition 4, with full understanding of 
how the deceptive tool worked, the participants were 
able to avoid detection on the network. However, 
they accomplished this feat by not sending a single 
packet—arguably a win for defenders. The partic-
ipants believed they needed to revert to older and 
slower techniques, such as open-source and passive 
reconnaissance and social engineering. An unreliable 
perception of the network topology was created and 
increased paranoia was evident.

Decoy deception: The Tularosa study
The pilot study revealed clear effects to the opera-
tions and perceptions of the participant red team. 
Though this was a fascinating find, the team was 
comprised of only three participants—not a powerful 

subject size from which to draw meaningful conclu-
sions. To truly measure cyber deception’s effects on 
adversaries in a statistically significant way, a much 
larger group of participants was needed. Our next 
experiment, the Tularosa study [7], sought to address 
this shortcoming.

In the Tularosa study, participants were informed 
that they would be participating in a red teaming exer-
cise to measure the effectiveness of defensive software 
on a simulated network. Participants were individually 
provided with identical copies of a simulated cor-
porate environment to perform network reconnais-
sance and penetration of vulnerable Windows and 
Linux systems. 

We created similar conditions to our pilot study 
with some key differences to strengthen the exper-
iment. We split the conditions into two-day seg-
ments, varying the inclusion of deception and the 
revelation of deception’s presence on the network. 
We additionally included a separate control segment 
with no manipulated variables. On each of their two 
days of work, participants were told to exploit their 
way through the network and gather information on 
the hosts that comprised it. While participants were 
not explicitly told to try to remain undetected, the 
direction given was vague enough to support each 
participant’s natural tendency to elude detection as a 
necessary criterion.

To obtain a sufficient sample size to compare four 
groups, we hired a total of 139 industry full-time red 
teamers to work their craft on a series of specially con-
figured networks. Upon arriving for the study, partic-
ipants were asked whether they would also like to be 
part of a research study as part of the cyber exercise. 
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Six participants opted out of the human participants 
research portion, and an additional 10 participants 
were removed due to incomplete data. Altogether, that 
left a total of 123 participants with full data, around 30 
participants per condition. 

Due to the variety and complexity of the data 
collected for this study, analysis is currently ongoing. 
One of the preliminary results available relates to the 
speed of detection of an adversary. The decoy system 
employed alerted the system administrator anytime 
an attacker interacted with a decoy. A measure of the 
first hit of a decoy was calculated by subtracting the 
time each participant began from the time the first 
alert was received from the decoy system (see figure 
1). The shortest time recorded was 1.8 minutes and 
the longest was 231 minutes. The median time was 
12 minutes, indicating that 50% of the attacks were 
detected in 12 minutes. In fact, 78% of the attackers 
in conditions with decoys present were detected in 
less than 20 minutes. This ability for decoys to serve 
as a high-confidence indication of an adversary in the 
network reduces the workload for defenders. 

An interesting follow-on experiment to the speed 
of detection result would be to gauge the level of 
success participants have before getting caught. The 

FIGURE 1. In the Tularosa study, the decoys served as a high-confidence indication of an adversary in the network, thus reducing 
the workload for defenders. The y-axis represents the time elapsed (in minutes) before the participants touched the first decoy with-
in the experiment network. Of the 132 participants, only 101 were in conditions that had decoys in their environments. Data collec-
tion errors occurred for 10 of those participants, resulting in the 91 reported here. The vertical bars divide the time into 10-minute 
intervals. The horizontal line is the cumulative percentage of participants in those intervals.

experiment was open-ended in this aspect: there 
were no easy indicators of progress for participants 
like flags are in a capture-the-flag event. As their goal 
was to discover weak points on the system, identified 
exploits and vulnerable devices seem to be a natural 
parallel. Unfortunately, these records are limited to 
chat logs, which were frequently ignored by partici-
pants, or end-of-day reports, which were written far 
past the time of discovery for each note. As these in-
dicators are unreliable or imprecise, we are exploring 
alternative means of assessing success. Further analy-
sis on subject activity such as packets sent, commands 
entered, and so forth will bring understanding to this 
knowledge gap.

Host-based deception: The 
Moonraker study
The pilot studies and the Tularosa study indicate 
that network-based deception holds much promise 
as a cyber defense. It is important to note that other 
types of cyber deception exist beyond network de-
coys. Decoys provide network-based deception and 
primarily aim to disrupt the reconnaissance phase of 
an attack. Host-based deception provides means of 
affecting other parts of an attacker’s methodology. To 
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further understand deception’s effects on our adver-
saries throughout their attack campaigns, we devised 
a second study utilizing a host-based deception tool 
[8]. A secondary focus of this experiment was to 
investigate whether non-red-team trained computer 
experts could be utilized as participants for future 
deception testing.

Participants were selected based on a combination 
of relevant self-identified skills such as red teaming, 
cyber operations, and systems administration. The 
intent of recruiting participants with these experienc-
es was to expand the pool of potential participants 
to include those who, with cyber red team training, 
could apply their skills successfully in a cyber context. 
Potential participants were required to complete a 
prescreen test designed to identify those with the base-
line technical skills for the hands-on attack exercise 
component of the study. Fifty-nine defense contractors 
participated in the experiment by attending one of the 
10 iterations over a seven-month period. 

The study’s objective was to attack a virtual net-
work and operate with the mindset of a red teamer. 
A 1.5-hour red team training video was provided 
to introduce or review commands that would be 
needed in the task and help the computer specialist 
participants adopt an adversarial mindset. In order 
to introduce the prerequisite training, participants 
were told that they were evaluating the contents of a 
training video designed to teach cyber red teaming 
skills. To help gauge the effectiveness of the training, a 
2.5-hour hands-on network attack exercise using the 
skills learned followed the video. This cover story was 
used during the participant recruitment process and 
supported throughout the course of the study.

For the hands-on exercise, each participant was 
presented with an identical view of the environment. 
Participants worked on the exercise individually and 
were randomly assigned to one of two conditions in a 
between-participants design: the deception condition, 
in which unwitting participants encountered deceptive 
responses to commands, or the control condition, in 
which they encountered no deceptive responses. The 
network was designed to be a small cluster of worksta-
tions running simulated supervisory control and data 
acquisition (SCADA) software that acted as the target 
of the attacks. The network setup was identical in 
both control and deception condition environments. 
Deceptive responses in the deception condition were 
provided by a capability called Moonraker.

Moonraker is a tool developed by the Air Force 
Research Laboratory’s Firestarter Program that 
was repurposed for our experiment. At its core, 
Moonraker is a man-in-the-middle tool designed to 
intercept communications and manipulate them. For 
our study, we used it to manipulate system responses 
to commands the participants entered, leading them 
to potential confusion and frustration. The com-
mands that were intercepted were those that partic-
ipants were most likely to use in the study’s planned 
attack scenario, specifically six tactics, techniques, 
and procedures (TTPs) listed in the adversarial tac-
tics, techniques, and common knowledge (MITRE 
ATT&CK) framework [9].

All participants were provided with a small set of 
pre-staged tools. Participants were told that to achieve 
their objective, they needed to adopt a red teamer 
mindset, use the pre-staged tools, and use any other 
approaches they may have learned from the training 
portion of the study. The ATT&CK TTPs required for 
success include local network enumeration, Windows 
administrative shares (i.e., connecting to another 
machine), data staged (i.e., copying an executable), 
schedule task, process enumeration, and exfiltration 
from a network resource. Participants were instructed 
to choose any host to attack, and in the event of fail-
ure, they could choose to attack the same host again or 
a different host within the time allotted.

To test the major hypothesis—that deceptive re-
sponses will impede attacker progress—we compared 
the number of participants in the two conditions who 
were able to successfully complete the task assigned 
to determine whether the deceptive command line 
responses impeded progress. Since the data was a cate-
gorical measure of success (i.e., “yes” or “no”), we used 
a chi-square test, which measures the likelihood that 
the counts obtained were due to chance, to compare 
group performance. The number of successful partici-
pants in the control condition was significantly higher 
than in the deception condition, and the number of 
failures was significantly higher in the deception con-
dition, as shown in figure 2.

Other measures of success examined the amount 
of time spent on the task and revealed significant 
differences. On average, participants in the deception 
condition took 108 minutes compared to those in the 
control condition who took 77 minutes to complete 
the last step successfully for the first time. For those 
in the deception condition, participants worked over 
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three and a half times longer (15 minutes) trying to 
interact with a decoy than they did with non-decoys (4 
minutes). Finally, participants in the deceptive condi-
tion reported higher levels of confusion and surprise 
than did participants in the control condition. 

In summary, host deception reduced participants’ 
ability to attack a network and significantly slowed 
the progress of those who were able to attack it. Even 
given the difficulty that some participants in the con-
trol condition had in completing the task, the control 
condition performed significantly better than the 
deception condition in accomplishing the exfiltration 
objective. Host-based deception effectively impeded 
progress, prevented task completion, and induced in-
creased confusion and surprise in those attempting to 
exfiltrate targeted information. We further discovered 
that individuals without specific experience related 
to the task at hand are not appropriate participants 
for testing of cyber defensive deception because the 
success rates will be lowered due to lack of experience 
rather than the experimental treatment.

Looking forward
We are looking ahead to identify novel means of 
providing deception or unfriendly environments to 
cyber attackers. One such new concept, oppositional 
human factors, grew from our work in deception and 
takes advantage of innate cognitive biases to impede 
an attacker’s progress. Reversing the recommendations 
from human factors, which have traditionally been 
aimed at improving human interactions with systems, 
could lead to techniques that produce least optimal 
performance, thereby disrupting the ability of our 
adversaries to harm our information systems. This is a 
novel use of human factors principles and opens new 
areas of research in cybersecurity.

A study is currently being planned to investigate 
the sunk cost fallacy as an example of the use of 
oppositional human factors. This fallacy refers to the 
tendency for people to continue to pursue an inferior 
alternative because they have already invested signifi-
cant non-recoverable resources on it [10]. Developing 
methods to induce this fallacy in our attackers might 
cause them to continue pursuing a nonproductive 
strategy. Oppositional human factors provide a way 
to apply well-known research on how humans allo-
cate attention to disrupt cyber attackers and provide 
much-needed asymmetric benefits to the defender [5].

It is critical that cyber deception defenses change 
over time to keep cyber attackers off-balance. Adaptive 
cyber deception informed by the attacker’s interac-
tion with the deceptive defense, as well as the under-
standing of the effects of cyber deception on human 
behavior gained through rigorous experiments, hold 
promise for continuing the effects of deception. This 
further confuses, frustrates, delays, and deters the 
attacker. LACR research in cyber deception includes 
work to automatically adapt cyber deception based on 
the attacker’s interaction with the deception system 
and game theory models [11, 12, 13].

Conclusion
Beginning with our pilot studies, cyber deception has 
been shown to have a measurable impact on attacker 
performance. In the pilot, more time was spent on 
decoys than real machines, and there was increased 
confusion about the network. In addition, attackers 
frequently misidentified the real nodes as decoys. 
The pilot studies also suggest that simply thinking 
deception is present impedes success. The Moonraker 
study demonstrated that host-based deception ef-
fectively hinders progress, prevents task completion, 
and induces increased confusion and surprise in 
computer specialists attempting to exfiltrate targeted 
information from a network. While the analysis of 
the results from the Tularosa study are ongoing, what 
has been discovered to date reinforces the utility of 

FIGURE 2. In the Moonraker study, the number of successful 
participants in the control condition was significantly higher 
than in the deception condition, and the number of failures was 
significantly higher in the deception condition [chi-square (1) = 
7.03, p = 0.012)].



14

Building the Science of Defensive Cyber Deception

deception for cyber defense. Attackers were quickly 
detected in the system and generally fooled by the 
techniques employed, even when notified of decep-
tion’s presence. We expect to gain additional valuable 
insights by continuing to analyze the Tularosa data 
set. Finally, the upcoming investigation into the effects 
of oppositional human factors opens a new arena in 
cybersecurity research. 

Scientifically rigorous human subjects research is 
necessary to truly evaluate the effectiveness of cyber 
deception on attackers’ progress and to understand 
the effects of deception on attackers’ decision-making 
processes. While cyberpsychology is a relatively new 
field, the field of psychology is over a century old and 
provides the methodology to minimize experimental 
bias and maximize control of our experiments in order 

to produce statistically sound and empirically valid 
results. In the realm of cyber defense, the ability to im-
pact the decision-making of attackers and cause them 
to waste both time and effort as well as expose their 
presence in the network through the use of deception 
or oppositional human factors has the potential to 
shift the asymmetry of cyber defense in our favor.
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Introduction
Every day, major online social media platforms purge 
millions of accounts from their sites for engaging in 
inauthentic or deceptive behaviors [1, 2]. Facebook 
alone reports detecting and banning close to 13.7 
billion active fake accounts from their site between 
October 2017 and June 2020 [1]. Regardless of these 
actions, social media platforms are plagued by ac-
counts, behavior, and content that are fake or manip-
ulative. There are well-documented and far-reaching 
consequences; consider, for example, the networks of 
fake accounts used by nation-state actors for global 
election tampering [3, 4]. Left unchecked, fake ac-
counts can be used to distribute spam and malware; 
influence and shape public opinion; defame or im-
personate real people; propagate hate and violence; 
cultivate mass fear, panic, and distrust; and more. 

In fact, the COVID-19 global pandemic has rein-
troduced the phrase infodemic—first coined in 2003 
to describe the spread of false information during the 
SARS outbreak in Asia [5]—into public discourse. The 
reintroduction of the term highlights the importance 
of countering false information about the virus (e.g., 
its origins, how it spreads, and how it can be prevent-
ed) to encourage the public to take virus precautions 
seriously. While the research on COVID-19 misinfor-
mation (i.e., accidentally misleading information) and 
disinformation (i.e., intentionally misleading infor-
mation) is still emerging (at the time this article was 
written), research suggests that fake accounts—specif-
ically automated bot accounts on Twitter—are large-
ly responsible for promoting political conspiracies 
about the virus in the United States [6]. In the United 
Kingdom, the National Health Service has reportedly 
worked to shut down fake Twitter accounts purport-
ing to be hospital accounts and using that identity to 
spread falsehoods as a trusted source [7]. Facebook’s 
July 2020 Coordinated Inauthentic Behavior Report 
details entire networks of accounts taken down for 
COVID-19 misinformation and disinformation, such 
as a coordinated group of 303 Facebook accounts and 
31 Instagram accounts operating across Asia, Europe, 
and the United States [8]. 

The ability to rapidly detect and remove inauthen-
tic or fake accounts is therefore not only crucial for 
maintaining the integrity of online platforms and 
protecting users from abuse and manipulation but also 
has serious implications on public health.

Though current headlines may suggest otherwise, 
detecting and mitigating deceptive or fraudulent 
accounts and behaviors is an old problem that emerges 
in new forms with new challenges. In the early 2000s, 
researchers focused on countering email spam by 
developing techniques and rules to identify low-rep-
utation IP addresses and domain names [9]. Later, 
e-commerce platforms battled similar problems by de-
veloping reputation systems to mitigate the effects of 
dishonest buyers and sellers [10]. Although we face a 
host of new problems today, it is worth noting that the 
old ones have not gone away. As detection techniques 
for deceptive activities advance, so do evasion tech-
niques. Thus, the fight never ends—combating spam 
and assessing email and domain reputation continue 
to be active areas of research; fake sellers, products, 
and reviews are still prevalent on major e-commerce 
platforms such as Amazon and eBay. 

As with the problem of detecting email spam and 
fraudulent sellers, the problem of detecting fake 
accounts on social media platforms has been studied 
and tackled in different forms over the last decade. 
For example, only a few years after its launch in 
2004, Facebook began efforts to crack down on fake 
accounts with a real name policy mandating that 
a Facebook account must match a user’s real iden-
tity [11]. Accounts with names that did not follow 
Facebook’s expectations of a “real” name—those 
with “unusual capitalization, repeating characters 
or punctuation”—were, and in many cases still are, 
required to submit government-issued identification 
to prove their authenticity [12]. Though the policy had 
some unintended consequences and controversies, 
Facebook maintained that the policy was crucial for 
preventing impersonations and fake accounts [13]. 

By around 2010, the focus on individual problem-
atic accounts shifted, as both industry and academia 
dedicated their efforts to the problem of Sybil detec-
tion—identifying multiple fake accounts controlled 
by the same user. Around 2015, the work of Russia’s 
Internet Research Agency to manipulate elections 
brought renewed interest to the problem of identifying 
networks of coordinated accounts. The years 2018 and 
2019 brought major advancements in text generation 
and image manipulation technology, enabling every-
one from sophisticated, malevolent actors to devious 
hobbyists to rapidly create plausible, automated textual 
content and realistic deep-learning generated images 
known as deepfakes. In turn, this has created a whole 
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new host of impersonation, manipulation, and fraud-
ulent tactics for industry and academia to counter; 
Facebook, for example, has entire teams dedicated to 
detecting and countering fake image and video.

The problem of fake accounts is pervasive on nearly 
every social media platform. Note that the problem 
of detecting inauthenticity is not limited to users or 
accounts—consider the problem of fake news [14] 
and fake reviews [15]. And while these are signif-
icant problems, this article focuses specifically on 
the current state of fake account detection on social 
media platforms, starting first with a discussion of the 
nuances of the fake account problem. This is followed 
by an overview of current approaches for detecting 
fake accounts, with specific examples of recent work 
in academia and industry. The conclusion provides 
a broader discussion of the long-term challenges in 
this space. 

Understanding the fake account 
detection problem 
To fully understand the fake account detection prob-
lem, it is important to first learn about key terminolo-
gy and concepts.

The importance of context 

What defines an account as inauthentic, deceptive, 
or fake? The answer lies in a social media platform’s 
terms of service and community standards. On 
Facebook, fake accounts are any accounts where 
users have misrepresented their identities (e.g., using 
an inaccurate name or age) [16] or constructed an 
entirely false identity [17]. Facebook explicitly requires 
accounts to reflect real people. According to their 
community standards, “Authenticity is the cornerstone 
of our community. We believe that people are more 
accountable for their statements and actions when 
they use their authentic identities” [16].

On Twitter, a fake account has a different meaning 
almost entirely. Accounts are not obligated to rep-
resent real people; for example, Twitter’s rules and 
policies explicitly allow parody accounts [18]. An 
account on Twitter is deemed inauthentic and subject 
to removal if it engages in abuse against other users, 
impersonation, election manipulation, and certain 
types of account automation [19, 20, 21]. 

Context matters because techniques to detect fake 
accounts must adapt to the definition of fake on a 
particular platform. Consider how Twitter specifically 
allows parody accounts. On Twitter, it is necessary 
to differentiate between impersonation accounts and 
parody impersonation accounts, a distinction that 
may come down to subtle language elements such as 
tone and humor. Therefore, impersonation detection 
techniques that work in Facebook’s environment of 
stringent authenticity requirements may not translate 
to Twitter’s environment.

Additionally, context within a specific platform’s 
environment is also important. Later sections of 
this article present techniques to identify suspicious 
accounts using social network structure, but for now, 
consider how the Twitter account of a celebrity differs 
from that of a non-celebrity. Celebrity accounts will 
likely be followed by many but follow few in return. 
Non-celebrity accounts will likely have far fewer 
followers than a celebrity account, but perhaps many 
bidirectional relationships (e.g., users follow users who 
follow them). This is a relatively simple example, but it 
illustrates how there can be networks of users that are 
vastly different from each other but equally plausible. 
The ability to root out anomalous or suspicious net-
works depends on an understanding of the expected 
structure of these two different groups. 

Insider vs. outsider perspective 

The prevalence of fake accounts is arguably one of 
the biggest problems facing social media platforms. 
Unsurprisingly, fake account detection is an active 
area of research in both industry and academia. It is 
important to note that when researchers external to 
a social media platform attempt to develop solutions 
to the fake account problem, they are often doing so 
with far less insight than those researchers internal to 
the company. Simply stated, researchers external to the 
company do not have access to the entire pool of data 
or insights into users that the company possesses. 

This may seem obvious, but it can result in key dif-
ferences in detection techniques. For example, in 2016, 
Facebook, Twitter, Netflix, Airbnb, and many other 
Silicon Valley-based technology companies participat-
ed in a conference called Spam Fighting @ Scale [22]. 
During the event, the major tech companies discussed 
their techniques to detect inauthentic accounts and 
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other activities that violated their terms of service. A 
key method employed across many different compa-
nies was the comparison of features associated with 
the network identity and connectivity of an account to 
the projected user identity. For example, did the geolo-
cation of the user’s IP address match the address listed 
on the user’s profile? Was the user’s IP located in a bad 
neighborhood of IP addresses (i.e., IP address blocks 
usually associated with malicious activity)? Was the 
user coming out of Tor nodes or making use of a vir-
tual private network (VPN)? These are all significant 
red flags for detecting potentially fraudulent activity. 
However, these flags may not be visible to a researcher 
studying a platform using public-facing data alone. 

The discrepancy in data access among research-
ers implies that it might be difficult to compare all 
fake account detection methods equally. Internally 
developed analytics have a key data advantage. Does 
this also suggest that external researchers provide no 
added value to the fake account detection problem? 
The ability of universities, journalists, security compa-
nies, and many others to identify accounts associated 
with Russia’s Internet Research Agency following the 
2016 US presidential election would imply otherwise. 
Regardless, feature sets used in research design and 
methods should be carefully considered when dis-
cussing the recommendations of academic researchers 
versus those of industry professionals.

Macro versus micro perspective 

Another concept to introduce is the macro versus 
micro perspective for fake account detection. The 
macro perspective refers to detection techniques that 
look at the comprehensive identity associated with an 
account, with the goal of identifying the entire account 
as fraudulent or inauthentic. The micro perspective 
refers to detection techniques to identify fraud or in-
authenticity in the components or attributes associated 
with an account. Inauthenticity at the attribute level 
may not necessarily indicate that the entire account 
is fake; the user may simply be lying about pieces of 
their identity. Inauthenticity and a lack of consisten-
cy across multiple features may point to an entirely 
fabricated account. 

As an example, consider an account on Facebook. 
Attributes of a typical account may include a profile 
picture, a basic biography, and a collection of text 

posts. Analyzing a profile picture for manipulation 
is an example of the micro perspective—looking at 
an aspect of an account and attempting to determine 
its authenticity. Analyzing cohesiveness across an 
account’s purported age, gender, and cultural back-
ground is the macro perspective—looking at multiple 
aspects of the account and attempting to spot discrep-
ancies that may point to a fake identity. 

The line between the macro and micro perspective 
may be blurry at times. For example, studying the 
language of the account’s text posts may reveal differ-
ences in authorship and personality in the posts; this 
may indicate that multiple people are managing an 
account, which in turn indicates inauthenticity at both 
the micro level (i.e., the text posts) and macro level 
(i.e., the entire account). 

Solutions to the fake account problem 
With the nuances of the problem now in mind, what 
do solutions look like? This section highlights current 
approaches from a macro perspective.

Define normal 

At a high level, most technical solutions for fake 
account detection involve determining “normalcy” for 
a given social media platform (or community of users 
on the platform) and identifying accounts that deviate 
from this norm. So what does “normal”  mean? The 
answer is highly variable and subjective. 

To define normal, first consider the social media 
platform in question and the attributes that com-
pose an account on the platform. For most online 
social media platforms, accounts can be interpreted 
as collections of attributes that fall under the follow-
ing major categories: the infrastructure and network 
connectivity of the account, the user profile associated 
with the account, and the user activity on the account. 
Under the category of infrastructure and network 
connectivity, attributes may include the device(s), IP 
address(es), and user agent string(s) associated with 
an account. Under the category of user profile, attri-
butes may include the user’s name, age, and gender 
on a site like Facebook or LinkedIn; on other sites, 
such as Twitter, Tumblr, or Reddit, attributes may 
be limited to a username and account creation date. 
Finally, under the category of user activity, attributes 
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may include friends and other forms of social connec-
tivity and posts, likes, and other forms of engagement 
on the platform. The appearance and behavior of any 
or all attributes under these categories help establish 
a baseline for normalcy. Probability distributions, 
graphs, summary statistics, or even categorical values, 
depending on the detection technique, formalize con-
cepts of normalcy. 

Uncover the abnormal

Once the baseline for normal or expected account 
appearance or behavior has been established, there 
are a variety of techniques that can be used to identify 
accounts that deviate from this norm. This section 
introduces three frequently used strategies: graph 
analysis, temporal analysis, and machine learning. 

Graph analysis 

Graph analysis is a common fraud detection technique 
in which users or events are represented as vertices of 
a graph, and relationships or transactions are rep-
resented as edges of the graph. Fraudulent users or 
activities can then be identified by looking for anoma-
lous structural patterns or subgraphs within the graph. 
Graph analysis has proven to be a highly effective 
technique for detecting fake users, fake reviews, fake 
financial transactions, and a variety of other abusive 
behaviors on online platforms. 

Many graph analysis-based detection techniques 
rely on the assumption that there are specific graph 
structures associated with genuine communities of 
users [23] and that these organic connections and 
structures are hard to fake. For example, in [24], the 
authors observe that fake accounts on both social 
media platforms such as Twitter and Facebook and 
e-commerce or review platforms such as Amazon or 
Tripadvisor end up with many edges, which result in 
large and dense regions in an adjacency matrix rep-
resentation of the graph. It is also assumed and often 
observed that fake accounts will generally have many 
connections to other fake accounts and few connec-
tions to authentic accounts, making it possible to 
identify densely connected networks of fake accounts, 
especially if there are known authentic users in the 
graph [25]. However, here is a prime example of where 
context and understandings of normalcy matter. As 
observed by the authors of [25], on certain platforms, 

such as Twitter or Tumblr, it is expected that users 
interact with strangers, meaning that connections 
between a known authentic account and an account 
of unknown authenticity does not necessarily prove 
anything about the status of the unknown account. 

Temporal analysis 

Temporal analysis techniques involve identifying 
anomalous patterns of activity associated with an 
account’s behavior over time. Temporal analysis is 
a highly successful technique to identify automated 
activity (i.e., bots). For example, in [26], the authors 
developed a bot detection technique for Twitter on 
the premise that humans are indifferent to the specific 
second or minute in which they Tweet, meaning that 
an “organic” sequence of Tweet times should appear 
to be randomly sampled from a uniform distribution. 
An automated account, however, will likely result in 
timing distributions that are either too uniform or not 
uniform enough. 

Temporal approaches can incorporate insights into 
typical activities on a platform; for example, there is 
an entire body of literature to draw from to under-
stand usage of hashtags and retweets on Twitter [27]. 
Research has found that the activities in which au-
thentic accounts engage are very different from those 
in which inauthentic accounts engage; real users spend 
more time interacting with accounts that are part of 
their social network, while fake accounts spend more 
time attempting to build their social network [28, 29]. 
For example, on Facebook, a fake account will spend 
more time “friending” other users than chatting with 
existing friends. 

Machine learning 

Machine-learning approaches involve translating 
attributes associated with an account into features. 
These features are then used for clustering groups of 
similar accounts together or differentiating between 
categories of accounts (e.g., fake or real). In a study 
done at LinkedIn, researchers used supervised ma-
chine learning to classify clusters of accounts as either 
malicious or legitimate [30]. Features were derived 
from attributes associated with user-generated profile 
information, such as name, email address, and compa-
ny or university. Features included distributions, fre-
quencies, and patterns found in user-generated profile 
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text. Logistic regression, support vector machine, and 
random forest models were trained on LinkedIn data 
that was grouped by account registration IP address 
and registration date. The study proved highly suc-
cessful and the random forest model, which achieved 
area under the curve (AUC) values as high as 0.98, 
was moved to LinkedIn’s production environment. By 
2015, when the study was published, the model had 
already been used to identify 250,000 fake accounts. 

Machine-learning approaches for fake account 
detection have been widely explored in both industry 
and academia since about 2010. It is worth noting 
that the primary focus of this work is not on making 
significant advances in the machine-learning algo-
rithms themselves. Rather it is on identifying novel 
attributes and transforming them into features or 
refining existing models to lower false positive and 
false negative rates. Use of logistic regression models, 
support vector machines, and random forests, as done 
in the LinkedIn study, is quite common. 

Additional approaches to fake 
account detection 

While the previous section focused on technical 
approaches to fake account detection, incorporating 
both technical and nontechnical approaches is an im-
portant strategy for combating fake accounts.

Phish the phishers 

Some researchers take a honeypot approach to detect-
ing fake accounts. For example, in [31], the researchers 
created Twitter bots that posted nonsensical messages. 
Any account that followed these bot accounts was 
determined to be a fake account, since any authentic, 
non-automated account would likely not follow or 
engage with these garbage accounts. 

Leverage user reporting and manual review 

In both research and practice, effective fake account 
detection often involves coupling human review with 
automated techniques. In the literature, relying on 
user reports of fake, abusive, or suspicious accounts 
is sometimes referred to as crowdsourcing bot detec-
tion [25]. In many fake account detection studies, 
manual review is a final step in the detection pipeline; 

automated techniques narrow potentially millions of 
fake accounts down to thousands or even hundreds 
for a human to review [32]. 

Human review is important because humans may 
be able to detect subtle differences between authen-
tic and inauthentic accounts that feature sets do not 
capture or models fail to discover. Additionally, there 
is rarely ground truth data about which accounts are 
actually fake. Understanding why automated methods 
flag an account as fake (or fail to detect an account as 
fake) can also help researchers refine both their data 
sets and tools. For example, in the LinkedIn study 
referenced earlier, clusters of users were assigned a 
probability indicating how likely that cluster was to 
contain fake accounts. Depending on the probabili-
ty, suspected fake clusters were either automatically 
suspended or passed to a human for manual review. 
Manually reviewed and labeled accounts then became 
training data in later model iterations [30]. 

Take legal action 

In March of 2019, Facebook and Instagram filed a 
lawsuit against the People’s Republic of China for “pro-
moting the sale of fake accounts, likes and followers” 
[33]. By going after the industry of curated Facebook 
accounts and reputation, Facebook made an attempt 
to stem the flow of fake accounts at the “creation 
source” to prevent individuals and organizations (in 
particular, those with less resources than a nation-state 
actor) from simply buying accounts in order to be-
come active players in the fake account space. 

Challenge suspicious accounts 

In addition to tackling the fake account industry, 
online platforms incorporate many checkpoints that 
attempt to make fake account creation as challenging 
as possible. CAPTCHAs and phone verification are 
all fraud and abuse countermeasures that most people 
encounter at some point, even though social network 
platforms try to limit the number of accounts they 
challenge in order the keep the user experience as 
frictionless as possible [30]. Facebook and other major 
platforms have also used the practice of quarantining 
users, in which suspicious accounts are sectioned off 
to a part of the platform where they are not interacting 
with the real network and then are monitored [22]. 
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Fraud detection research at NSA 
At NSA’s Laboratory for Telecommunication Sciences, 
fake account detection is a key research focus area. 
Research is done at both the macro and micro level 
to assess the authenticity of cyber identities, often re-
ferred to as digital personas. Though a digital persona 
may encompass more than a social media account, 
the techniques and perspectives discussed in this 
article for social media fake account detection are still 
widely applicable. Personas are interpreted in terms of 
the three high-level categories discussed previously: 
the infrastructure and network connectivity of the 
persona, any account profiles or biographical details 
associated with the persona, and any online activities 
conducted by the persona. 

Defining normalcy is central to this research. In 
practice, defining normalcy is a challenging problem 
since normal must be understood at both the micro 
level (e.g., the attributes that fall under each of the 
three categories) and the macro level (e.g., the persona 
as a whole). To define normalcy, open-source data is 
used to develop models, represented as probability 
distributions, which provide insight into the expect-
ed values of persona attributes. For example, market 
trend data may be used to construct a probability dis-
tribution representing web browser usage. A persona’s 
use of a web browser other than Firefox, Chrome, or 
Microsoft Edge may then be used as a red flag. 

Of course, the web browser example is oversimpli-
fied. Looking at one attribute in isolation is unlikely 
to provide much insight; models are much more 
useful if they provide insight into the cohesiveness 
and plausibility of attributes with respect to other 
attributes. For example, models summarizing web 
browser usage by geographic region could be used to 
identify a persona accessing the web in one region of 
the world with a browser that is generally only found 
in another region—this is a much more significant red 
flag. So, to better understand the relationship between 
attributes, models are also constructed to represent the 
expected values of persona attributes given values of 
other persona attributes. Bayesian probability is at the 
core of this approach—what is the probability of value 
X for attribute A given known value Y for attribute 
B? Suspicious or inauthentic personas are uncovered 
by looking for co-occurrences of attribute values that 
rarely, or never, exist in the data. 

To solidify this research approach with an example, 
consider again Facebook’s real name policy and the 
specific language stipulating that real names must not 
contain “unusual capitalization, repeating characters 
or punctuation” [12]. This policy has been highly con-
troversial because there are many cases where genuine 
names do not meet these requirements because they 
do not fit what is inherently a biased interpretation of 
normalcy. Bias in data sets and definitions of normal-
cy result in false positives in practice. For example, 
Native American names are frequently flagged as 
inauthentic, resulting in wrongly suspended accounts 
[34]. Facebook has reportedly introduced a process 
allowing users to claim an “ethnic minority” or other 
exception if their name does not meet the real name 
policy. Though the approach seems well-intended, it 
does not solve the real issue here: Facebook—and like-
ly many other social media companies—have limited 
insights into just how diverse normal can actually be. 
This is also why comprehensive analysis of an account 
at the macro level is crucial. “Does this name appear 
real given what I know about the user’s ethnicity, cul-
tural background, and various other demographics?” 
can be a much more useful question than asking “does 
this name appear real?” without any context. 

Conclusion
So what is the state of fake account detection? If we 
look at reporting from the major social media plat-
forms, we may be inclined to think detection meth-
ods are relatively successful. Facebook estimates that 
roughly 5% of its monthly active users are fake and 
reports a decline in fake account takedowns since 
the first quarter of 2019 thanks to their ability to 
detect fraud early at the account registration step [1]. 
However, if the last couple of decades of online fraud 
research can tell us anything, the reality is probably 
less comforting—low-grade fake accounts may be easy 
to detect, but sophisticated attackers have likely just 
become more sophisticated at dodging authenticity 
checks. These accounts are perhaps the ones we should 
worry the most about, as time and resources likely 
went into their curation. 

Determining the state of the art in the fake account 
detection space is also challenging because there are 
few, if any, public data sets that researchers can use to 
test, validate, and assess their methods. A quick scan 
of published studies over the past five years reveals 
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that most work is conducted on different data sets, 
even if the same platforms (e.g., Facebook, Twitter, 
and LinkedIn) are the focus of the work. There are 
indications that this may be changing though. For 
example, in September of 2019, Facebook announced 
the Deepfake Detection Challenge, which provid-
ed researchers with deepfake image and video data 
that were “freely available for the community to 
use…[with] few restrictions on usage” [35]. Not only 
did this challenge provide researchers with real data 
sets to use, but it also made it possible to compare 
competing solutions for deepfake detection. Moreover, 
it provided one of the first opportunities to establish 
benchmarks in the deepfake detection communi-
ty. The challenge ended in March 2020, with 2,114 
participants submitting 35,109 models for deepfake 
detection using the training corpus of 115,000 vid-
eos provided by Facebook. Participant models were 
tested against a "black box data set with challenging 
real world examples" [36]. The winning team's model 
had an accuracy of 65.18%, which Facebook touts 
as the "new shared baseline" in the artificial intelli-
gence community [36]. The shared data set and new 
baseline represent a significant step for fake account 
detection research.

Of course, public data sets and methods have the 
danger of becoming stale: as defenders learn what 
techniques to employ to detect fake accounts, attackers 
can learn how to improve their methods for creating 
fake accounts. Regardless, one thing is certain—as the 
world continues to feel the ripple effects of elections 
manipulated by fake accounts and as social media 
companies and international organizations work to 
counter the potentially deadly COVID-19 conspiracies 
populated by fake accounts—this is a problem in need 
of critical attention and not going away any time soon.
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Organizations have long used deception as a 
means to exert influence in pursuit of their 
agendas. In particular, information operations 

such as propaganda distribution, support of antigov-
ernment protest, and revelation of politically and so-
cially damaging secrets were abundant during World 
War II and the Cold War. A key component of each of 
these efforts is deceiving the targets by obscuring in-
tent and identity. Information from a trusted source is 
more influential than information from an adversary 
and therefore more likely to sway opinions.

The ubiquitous adoption of social media, character-
ized by user-generated and peer-disseminated content, 
has notably increased the frequency, scale, and efficacy 
of influence operations worldwide. In this article, we 
explore how methods of deception including audience 
building, media hijacking, and community subver-
sion inform the techniques and tradecraft of today’s 
influence operators. We then discuss how a properly 
equipped and informed public can diagnose and 
counter malign influence operations.

History and background
The use of influence and deception as weapons is not 
a new concept. The famous general and philosopher 
Sun Tzu (545 BC–470 BC) said that “All warfare is 
based on deception” and “The supreme art of war is 
to subdue the enemy without fighting.” Using infor-
mation, both true and false, to confuse, divide, and 
demoralize opponents is a tactic that has been exploit-
ed for millennia.

The British agenda in Nazi Germany

Between 1941 and 1943, Der Chef operated as the 
spokesperson of an illegal radio station in Nazi 
Germany, called GS-1 [1]. Der Chef acted as a loyalist 
to the Nazi cause and lambasted Nazi Party officials 
who he accused of being lazy, corrupt, and engag-
ing in various sexual improprieties; meanwhile, he 
praised the bravery and devotion of German troops 
on the front line. In reality, Der Chef was a German 
refugee living in and recording and broadcasting from 
England. GS-1 was part of England’s black propaganda 

engine, run by Sefton Delmer, which 
broadcast US jazz, German dance music, 
and sports scores, as well as reporting news 
to the public with a secret British agenda.

Der Chef would use reported local news 
and facts whenever possible to undermine the 
German populace’s faith in Nazi leadership. 
Since facts are difficult to dispute, information 
used in this way is powerful and persuasive. 
Furthermore, by dispersing propaganda among 
music and news reports, Der Chef attracted new 
listeners and obfuscated his true intentions from 
his audience. Delmer described this approach to 
propaganda as “Cover, cover, dirt, cover, cover” 
while we refer to it as pump-and-pivot. Influence 
operators use this technique by drawing followers in 
through benign, popular content and then pivoting to 
malign influence.

The Communist agenda in Latin America

In the 1960’s, anti-American sentiment in Latin 
America led to footholds for communist elements. 
Compounding these problems, a letter that was 
signed by J. Edgar Hoover congratulating Thomas 
Brady for his efforts in the joint FBI/CIA operation 
to overthrow the Brazilian government was leaked to 
the press [2]. 

It turned out that the letter was fake, forged by the 
Czechoslovak Intelligence Service (CIS) to undermine 
US interests. The sensationalism of the story encour-
aged the media to release the story with little scrutiny 
or fact-checking. In addition, the anti-US sentiment 
of the population and confirmation bias caused the 
story to be met with little skepticism from the Latin 
American public. Predisposition and sensationalism 
make populations vulnerable to influence operations.

The Islamic State agenda in Libya

In November of 2014, major news outlets re-
ported that fighters loyal to the Islamic State in 
Iraq and Syria were in complete control of the 
city of Derna and that the fighters were taking 
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advantage of political chaos to rapidly expand their 
presence westward and along the coast [3, 4, 5]. At 
that time, the caliphate seemed to be growing at an 
unprecedented rate. The Islamic State’s strong expan-
sion into Libya seemed to signal a groundswell of sup-
port and unity in the movement. The only problem—
Derna was a hotbed, contested by no less than three 
militant groups [6, 7, 8, 9], and while the Islamic State 
had a presence there, their control was anything but 
complete. By controlling all of the information in the 
area, the Islamic State could write their own narrative 
of events and use mainstream media to disseminate it.

Perceived legitimacy
People naturally associate with others with simi-
lar ideologies. These groups are often described as 
echo-chambers or filter-bubbles, amplifying the ideas 
common to the group while squashing the flow of 
discourse contrary to their shared beliefs. Once an 
influence operator has established a persona, or false 
presence, the insular nature of these bubbles stifles 
dissent and makes the group more susceptible to 
influence. In social media, these groups are referred 
to as communities; to an influence operator, they are 
an audience.

To conduct an influence operation, operators such 
as Der Chef need a receptive audience. The two ways 
to gain an audience are to build one, such as what Der 
Chef did by playing music, or to hijack an existing au-
dience, as in the CIS and Islamic State cases. In both of 
these scenarios, the influence operator needs to appear 
as though they are providing a legitimate service to 
their targets.

In order to appear legitimate, it is important for the 
influence operator to avoid scrutiny. This is why the 
pump-and-pivot tactics are so common. During the 
pump phase, the operator manipulates the environ-
ment to increase legitimacy by, for example, appealing 
to a biased target, being the only source of infor-
mation, using facts interspersed with falsehoods or 
directing targets to other compromised sources.

Deceptive media has been used to build legitima-
cy for some time, but the cost of producing quality 
material has traditionally reduced its scale. The impact 
on perceived legitimacy due to ubiquitous access to 
targeted synthetic media (e.g., deepfakes) generation 
will likely be profound. Malign actors will no longer 
need to draw on organic material that moves their 

narrative forward among their devoted following. 
They will instead be able to support their activities and 
narratives with synthetic content that appears to be 
factual evidence. This will decrease the time needed 
to both build their legitimacy and reach their malign 
influence goals. Successful operations will likely only 
be detected and mitigated by social media platforms as 
users will not have sufficient information to make an 
accurate assessment.

Audience building
Social media has scaled audience building by provid-
ing targeted advertising, automation, and access to 
millions of users. These tools can be leveraged to pre-
cisely target demographics and build an audience out 
of previously disjoint subgroups [10]. Operators draw 
users to compromised information sources by provid-
ing information of interest with the intent of making 
the operator’s persona and the information sources 
part of their targets’ daily routines. During this time, 
the information sources provide a legitimate service 
(i.e., desired content). For example, recent reporting 
on Russia’s Internet Research Agency (IRA) in 2017 
demonstrated persistent attempts by IRA personas to 
cover local interest stories first, amplifying the spread 
of the stories with the help of automated accounts or 
bots [10]. By reporting first, and through the careful 
use of keywords, the bots landed at the top of trending 
news feeds and search results, building their audience.

Social media platforms facilitate the pivot phase 
by allowing users to reinvent their accounts without 
notifying the users who are within their network. 
From the point of view of the users it appears that a 
totally different actor has begun to contribute to their 
trusted information stream. This allows the operator 
to inject information from the compromised sourc-
es and amplify content arising from the community. 
Subsequently the community will move by itself, 
with the influence operator keeping the focus on the 
desired narrative. These behaviors of account reinven-
tion can be observed in real time, but can be extremely 
difficult for the average user to observe in retrospect.

Synthetic media can play a substantial role in 
audience building—conversational bots can be 
leveraged to disseminate useful information at scale 
while engaging their audience, content sought by key 
audiences can be generated reducing cost and likeli-
hood of being attributed, and coordinated automated 
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but realistically human bots can give the appearance 
of social consensus. The challenge of identifying these 
behaviors at scale to mitigate their impact or remove 
the associated campaigns entirely will be a persistent 
challenge for platforms for the foreseeable future.

Media hijacking
In today’s media environment, the rewards for pos-
sessing timely, exclusive reporting on a topic can 
incentivize publication before rigorous fact-checking 
is available. This is particularly true of content that 
is emotionally charged—sensationalism drives in-
creased readership and engagement. For example, the 
increased risk to journalists in militant sites reduces 
the availability of professional journalism in a region, 
but battlefield reporting is valuable news. By provid-
ing professional quality reporting in such a region, 
influence operators can have their reports repeated 
and amplified by the international press, producing an 
immediate audience.

The rush-to-publish environment facilitates in-
fluence operators to use synthetic media to amplify 
deceptive narratives. It is now possible to generate 
realistic video and audio of well-known personalities 
at minimal cost. This capability will likely be lever-
aged by influence operators to divert attention from 
legitimate but damaging news stories as well as create 
confusion in times of uncertainty. Media companies 
will need to balance the desire to be first-to-pub-
lish with the possibility of providing a platform to 
influence operators.

Community subversion
Some influence operations are not as direct as Der 
Chef decrying the Nazi leadership or the Islamic State 
controlling the narrative of battle around Derna. 
Influence operators can use the perceived presence 
of numbers to change the narrative of a community, 
a tactic which is referred to as community subversion. 
For example, the Saudi Arabian government was ac-
cused of using bots to undermine anti-Saudi hashtags 
and inflate pro-Saudi positions surrounding conflict 
with Qatar [11], and Iran has been accused of using 
more than 140 Reddit accounts to promote anti-Saudi, 
anti-Israeli, and pro-Palestinian narratives [12]. 

Those two examples of community subversion 
illustrate bolstering and degrading of communities. 
Bolstering a community is a subversion technique 
where influence operators artificially increase support 
in order to embolden legitimate users. Degrading a 
community is a tactic where operators sow division 
within the community.

Influence operators can also interfere with a com-
munity through a denial of service attack. By flooding 
the community with noise, they can either trigger 
a platform’s automated spam filter or prevent legiti-
mate users from communicating in an organic way. 
This was seen firsthand in 2014 when bots entered a 
human rights Twitter community centered on protests 
in Mexico and filled it with spam [13], preventing 
protesters from coordinating to avoid police. The left-
hand plot of figure 1 graphically shows how influence 
operators would be situated in the above attacks.

     
FIGURE 1. This simulated data shows the flow of information from influence operators into a two-sided discourse. Vertices repre-
sent users, red edges represent communication from embedded operators, blue edges represent communications from legitimate 
users. (Left) The embedded personas are attempting to influence both sides of the discourse from the community cores. (Right) The 
embedded personas act as bridges between the communities in order to develop malign confrontation.
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Other examples of community subversion come 
from Russian IRA influencers, who in 2016 were 
observed operating on both sides of the Black Lives 
Matter hashtag [14]. By doing so, the influencers di-
rectly inflamed the discourse on both sides by moving 
both conversations to the extremes.

Then, in 2018, researchers observed Russian IRA 
influencers acting as a bridge between polarized 
groups in the vaccination debate [15]. They were 
forcing communication and specifically argumenta-
tion between groups of people on opposite sides of 
the issue by using the hashtag #VaccinateUS for both 
pro-vaccine and anti-vaccine content. Furthermore, 
the #VaccinateUS tweets generally included other 
emotionally charged topics from US culture in order 
to maximize division. The right-hand side of figure 1 
shows an example of such behaviors—connecting two 
communities that would otherwise be loosely connect-
ed or disconnected.

Automated community-to-community interactions 
can now be scheduled and convincingly generated 
based on current conversation. Present and timely 
synthetic media will increase the chance that these 
bridging operations succeed. Community members 
should question new narratives entering their net-
works from previously unknown accounts. This is 
particularly true for controversial or confirmation-bias 
affirming narratives.

Diagnosis of influence operations
Efforts to detect influence operations leverage the 
behaviors that result from operators’ desire to min-
imize their fingerprints on the larger conversations. 
The goals of minimizing direct involvement and 
trying to build an audience are often in contention 
over the course of an influence campaign. This results 
in opportunities to identify coordinated networks of 
accounts. The basic tools for these observations are 
community detection and content analysis.

Community detection is an algorithmic way to 
detect internal structure in a network graph such as 
comment, email, or retweet graphs. In particular, if 
one constructs their graph in such a way as to indicate 
positive sentiment between nodes, then such a graph 
can be viewed as an indicator for likely confirmation 
bias. Content analysis, such as topic modeling [16, 
17] or text summarization algorithms, can isolate the 
themes in the discourse and be used to understand the 

narrative and focus within a community as well as the 
flow of discussion between communities.

While the boundary between social media and 
mainstream reporting is becoming ever more porous, 
efforts to mitigate the spread of influence opera-
tions should pay close attention to the beginnings of 
discourse. Integration of dynamic content analysis 
can highlight the construction of new narratives, and 
particular attention should be focused on narratives 
with extreme amplification during this time period. 
This sort of analysis is particularly important regard-
ing stories around which the information environment 
is particularly constrained.

As a discourse matures, accounts with deceptive 
behavior should be analyzed closely. Aberrant behav-
ior such as removing a great deal of previous content, 
changing outward appearance, or a distinct change 
in quality or focus of shared content can indicate a 
pump-and-pivot. Established communities that sud-
denly shift focus or trigger flags such as spam filters 
can be indications of a pump-and-pivot or community 
subversion. The application of social bot classifiers 
can help separate artificial amplification from organic 
growth, highlighting accounts that attempt to inject 
themselves into the discourse.

Brigading, or accounts that join a community for 
purposes other than joining the discourse, could 
signal a community subversion effort, especially if the 
brigading is coordinated or in excessively large num-
bers. More specifically, if the number of interactions 
between two polarized communities increases, then 
further analysis can be done to investigate whether the 
increase is natural or caused by a deceptive force.

Detecting influence operations 
through technology
Another way to identify influence operations is by how 
they choose to interact with social media. Users in-
teract with a social media platform via a client. While 
many users operate with first party clients, a number 
of third-party clients exist to facilitate automation, 
provide a different look and feel, allow for manage-
ment of multiple accounts across different platforms, 
and display analytics of audience engagement [18]. 

Raw access to the platform’s application program-
ming interface (API) can provide the ability to spoof 
geolocations, IP addresses, and timing of posts to 
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appear to be elsewhere in the world [19]. Influence 
operators frequently establish personas in different 
countries to conduct influence operations more effec-
tively [10] and build legitimacy. Operators can create a 
custom client to increase their efficiency, allowing one 
person to control dozens or hundreds of accounts with 
varying degrees of automation.

We refer to the collection of clients used by an 
account to interact with a social media platform as its 
technology stack. Analysis of a technology stack for a 
specific account can help identify automated accounts 
via the presence of bot clients [20]. One hypothesis 
is that a human being in charge of an account will 
either be satisfied by standard, first-party or popular 
third-party, social media clients or will have some rea-
son to seek out nonstandard clients. For each nonstan-
dard third-party client there is likely a community of 
users that use that client. 

Fingerprinting of technology stack communities 
can be done at scale by forming a bipartite graph of 
technologies and users within a social media platform. 
Detecting and removing outlier user and client nodes 
generates connected subcomponents of the graph. 
After dimensionality reduction, low-dimensional clus-
tering algorithms can detect clusters of clients which 
are used by similar users and clusters of users with 
similar client usage. This allows for efficient analysis of 
subsets of users based upon their technology choices, 
such as in figure 2. The use of nonstandard clients with 
restrictive access requirements may indicate a relation-
ship within the subset of users.

Identifying suspicious actors via their technology 
stack allows one to detect and mitigate influence oper-
ations early. This assists in preventing malign influence 
operators from achieving their goals and increases 
the cost necessary to deceive a target audience. Even 
if a campaign cannot be prevented using the above 
technique, post-hoc analysis can provide critical indi-
cators which can be used by government or industry 
to increase the cost of future operations by preventing 
reuse of technology stacks by operators.

Conclusion
Tools to create, curate, and automate convincingly 
human-created media (i.e., audio, text, image, and vid-
eo) are readily available. These tools are already being 
used by influence operators to gain legitimacy, build 
their audiences, hijack traditional media, and subvert 

FIGURE 2. This bipartite graph illustrates user and client inter-
actions with line thickness indicating the proportion of a user’s 
total interactions with a social media platform using a particular 
client. Two clusters are shown, colored blue and orange respec-
tively. Users 0, 1, and 2 use the blue technology stack (clients 0 
and 1) with similar frequency, even though user 2 will rarely use 
client 2. Users 3 and 4 use the orange technology stack (client 2) 
exclusively and more frequently than user 2.

communities. This creates a persistent challenge for 
users, platforms, and media companies to address. A 
commitment on the part of the platforms to maintain 
technological solutions to identifying state-of-the-art 
synthetic media and influence campaigns, automate 
responses to identified activities, and provide context 
to the users would help mitigate these activities. Easy 
access to tools and knowledge to identify and respond 
to influence operations will help limit their impact. A 
collaboration between media companies and technol-
ogy platforms to help identify synthetic media before 
broadcast will help reduce the likelihood of such 
broadcasts being leveraged by influence operators. In 
short, education, collaboration, and technology can 
be used together to help blunt the impact of synthetic 
media on public discourse.

Public discourse is, and has been, consistently 
influenced by malign actors. The growth of social 
media companies over the last decade has created a 
new dynamic in this system with which society has yet 
to find balance. The first tool necessary for finding that 
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balance is knowledge—knowledge of when actors are 
trying to influence, knowledge of actors’ intent in what 
to influence, and knowledge of who is acting in con-
cert with an influence campaign. This knowledge can-
not come from historical analysis alone as influence 
operations are dynamic from account creation to daily 
targeting. The flow of specific discussions through a 

network can be used to identify the target events and 
communities of an influence operation. Examining the 
specific behaviors of accounts can identify out-of-band 
coordination and automation. Together, these can give 
the public the knowledge to confidently interact with 
social media. 
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More than Meets the Eye: 
What a Photo Can Reveal 

About a Camera 
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S a r a h  C h a r l t o n

Massive quantities of digital media are created and shared online every day. For 
example, 350 million photos are uploaded every day to Facebook [1]. In some 
contexts, such as for evidence in court, it is important to establish whether 

the digital imagery in question was obtained with a particular camera [2]. This topic 
is known generally as “source camera identification,” and can be thought of as digital 
ballistics or fingerprinting—linking images and videos to cameras like linking bullets 
to guns or fingerprints to people. 
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Introduction
Recently, with the rise of Deepfakes and fake news, 
understanding digital media is critically important. If 
we can establish that images or videos are associated 
with a real, physical camera, at the very least we have 
established that the imagery is not computer gener-
ated. Original real-camera images and videos can be 
manipulated after their creation, so additional inves-
tigation is needed to determine whether digital media 
remains genuine and is not maliciously manipulated. 

The easiest way to investigate a digital media file 
is to examine its metadata. Besides the visual content 
(and for videos, audio content as well), digital media 
files store all kinds of auxiliary information. Many dig-
ital cameras embed information about date and time, 
GPS location, camera settings, make and model of the 
camera, and more. A few cameras embed a unique 
serial number that can distinguish individual cameras, 
but this is much less common. However, this digital 
metadata can be easily removed or edited; further-
more, metadata is often stripped from files as part of 
the social media upload pipeline. 

Is there a more reliable way to link digital media to 
their source cameras? Yes.

The digital camera
Inside every digital camera there is a light-sensing 
chip, either a charge-couple device (CCD; see figure 
1) or a complimentary metal-oxide semiconductor 
(CMOS). Fabricated out of silicon, these sensors are 
the physical pixels of the camera. The chip absorbs 
light photons and converts the light into an electric 
charge via the photoelectric effect. This electric charge 
is then read off the chip and converted into a digital 
signal to create a digital image.

The CCD was invented in 1969 at Bell Labs by 
Willard Boyle and George E. Smith, and their work 
was based on prior metal-oxide semiconductor (MOS) 
research at Bell Labs. At first, CCD and MOS devices 
were intended for general memory storage; however, 
applications to imaging quickly became evident. The 
first digital camera was invented by Kodak in 1975. In 
2009, Boyle and Smith were awarded the Nobel Prize 
in Physics for their invention of the CCD. Note that 
the physical phenomenon that the CCD exploits, the 
photoelectric effect, was described by Albert Einstein 

FIGURE 1. Every digital camera contains a light-sensing chip, 
similar to the one in this photo. [Public domain image].

in a 1905 paper. Einstein was awarded the Nobel Prize 
in 1921 for this worka. So the next time you take out 
your camera to take a picture of the salad you are hav-
ing for lunch or a video of your dog doing something 
funny—consider that this technology is enabled by 
two Nobel prizes!

The camera fingerprint
These imaging sensors, the CCD or CMOS, impart 
a very subtle “noise pattern” on each image that they 
capture. (This occurs on videos too, but for simplicity 
we will discuss the case of images first.) This noise 
is due to slight variations in the silicon from pixel to 
pixel. The technical term for this noise pattern is the 
photo-response non-uniformity, or PRNU. This PRNU 
noise is very small and does not affect the image 
quality to the point that humans can notice it by eye. 
However, images can be processed in a certain way to 
extract and enhance this pattern.

Researchers at Binghamton University, Jessica 
Fridrich, Miroslav Goljan, and their students, first 
discovered that this CCD/CMOS noise pattern can 
be used to uniquely identify the imaging sensor and, 
hence, uniquely identify or “fingerprint” a camera. 
Fridrich et al. first published this result in 2005 [3] 
and since then have been world leaders in camera 
fingerprinting research.

The use cases for camera fingerprinting are anal-
ogous to human fingerprinting or firearms ballistics. 

a. Einstein was not awarded the Nobel Prize for his Theory of General Relativity, as is commonly thought.
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Images can be linked to a specific camera—not just 
a particular make or model of camera, but a single 
unique device—just like fingerprints can be linked to 
a specific person or a bullet linked to the exact gun 
from which it was fired. The PRNU camera fingerprint 
is a powerful tool because it is mostly independent 
of the scene in the picture, and it has been shown 
to be stable over the lifetime of the camera [3, 4]. 
Furthermore, all CCD and CMOS sensors impart a 
unique PRNU pattern, so all cameras have a unique 
sensor fingerprint [5].

Prior to the work at Binghamton, other researchers 
had considered examining the behavior of the CCD/
CMOS sensors to link images to cameras. This earlier 
work focused only on the pixel defects on the sensor, 
where a very small number of pixels might get “stuck” 
and only read at a certain value [2]. Some pixels are 
always “hot” and only register the maximum possible 
value, and some are “dead” and always read as zero. 
However, this approach is not universally effective 
because some cameras will not have any stuck pixels. 

In contrast, the PRNU camera fingerprint con-
siders all pixels in an image. This provides informa-
tion content which is rich enough to distinguish the 
very subtle differences between PRNU patterns in 
different cameras. In the past 15 years, the process 
for PRNU fingerprinting has been well established 
and it is now the gold standard for source digital 
camera identification.

Extracting the fingerprint
The following mathematical model can be used to 

characterize the resultant image from a digital camera. 
Let Ii,j be the image signal at pixel [i, j], i =1, . . . , m, 
j = 1, . . . , n, where the image is m by n pixels. Let Yi,j 
be the true light intensity at the same pixel [i, j]. Then, 
dropping pixel indices for readability, the image I can 
be modeled as:

I = gγ [(1 + K)Y + Λ + Ω]γ + Q.  (1)

The multiplicative factor g is the gain factor, and γ is 
the gamma correction factor. The matrices Λ, Ω and 
Q represent several types of noise: dark current, shot 
noise, and quantization noise, respectively. Finally, 
that leaves K, which is the PRNU factor we are in-
terested in. All matrix operations are performed 
element-wise.

Equation (1) can be simplified by combining terms, 
factoring, and using a Taylor expansion:

I = I0 + I0K + Θ;     (2)

See [4] for the details. This simpler version of the 
equation shows that the output of a digital camera can 
be modeled as the “true scene” (I0), plus the PRNU 
“fingerprint” (I0K), plus some noise (Θ).

Given the sensor model (2) above, the PRNU factor, 
K, for a digital device can be estimated from the imag-
es produced by that device. Let F be a denoising filter. 
Then the noise residual, W, is defined as,

W = I − F(I) = IK + Ξ.    (3)

Notice this is opposite of a typical application of 
image denoising, where one would keep the nice and 
clean image and throw out the noise. In this case, the 
denoised image, F(I), is subtracted from the original 
image, I, and we keep only the “noise” part of the 
original image. This noise is composed of the PRNU 
pattern noise IK, and all other sources of noise are 
consolidated and represented by Ξ.

Given model (3) and some basic assumptions about 
the variance of Ξ, the maximum likelihood estimator 
(MLE) for K is

    (4)

where N is the number of images used for estimation, 
which we call the fingerprint mass. Alternatively, such 
as in [6], a simple average of the noise residuals is used 
as the fingerprint estimate:

     (5)

There are three steps that are standard practice in 
the literature, but that are not explicit in the camera 
fingerprint equations above. One, the “bad” pixels 
in each image I should be masked from the finger-
print calculation. The PRNU signature is a result of 
inhomogeneity in the CCD’s absorption of light, so 
if regions of the image are too dark or too bright, the 
PRNU fingerprint is not captured very well in those 
pixels because those regions of the CCD absorbed 
either too little or too much light. Therefore, these too 
dark or too bright pixels are dropped from the finger-
print calculations. Second and third, after calculating 
K, zero-mean and Wiener filter post-processing steps 
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should be applied to obtain a better fingerprint [4, 7]. 
Together, the zero-mean and Wiener filter help elimi-
nate the non-unique patterns that arise from the color 
filter array on the CCD chip.

In their original work, Fridrich et al. presented a 
camera fingerprint estimation technique using all 
three red, green, and blue color channels of an image. 
Essentially, they would extract a fingerprint from each 
channel using the equations (3) and (4), and then 
calculate a weighted average of the three fingerprints 
to obtain the grayscale fingerprint.

K̂= 0.299 K̂r + 0.587 K̂g + 0.114 K̂b .  (6)

Later, Gisolf et al. ran several tests to investigate the 
effects of color channel selection on fingerprint perfor-
mance and found that the choice of color channel had 
very little effect. The authors ultimately recommend 
the grayscale approach for its simplicity [8]. Another 
variant in the literature is to use the green channel 
only; this is the recommendation by [9]. Notice in 
equation (6), the green channel accounts for the ma-
jority of the information in the grayscale conversion, 
so it is not surprising that these two approaches yield 
similar performance.

Other researchers have proposed additional vari-
ants to the camera fingerprint extraction pipeline, 
usually in the choice of the denoising filter, F, in equa-
tion (3). Fridrich et al. originally suggested a wave-
let-based denoiser [4]. Total variation [10], Wiener 

filter [11], BM3D [6], and other techniques have also 
been suggested in the literature. Ultimately, the choice 
of denoiser does not have a significant impact on 
the quality of the camera fingerprint—given that the 
denoiser is a “good” one that can remove noise while 
preserving fine details and edges in the image; a “bad” 
denoiser will oversmooth the image and effectively 
wipe out the subtle camera fingerprint.

The classic representation of a camera fingerprint 
is a matrix with dimensions matching those of the 
original image or images that were used to construct 
the fingerprint. Each entry in the matrix is a value 
between 0 and 1 that can be visualized as a gray value 
that varies between black (value 0) and white (value 
1). An example is shown in figure 2. For storage in 
the computer, these values can be converted to in-
teger gray values between 0 and 255, thus requiring 
eight bits for each pixel value. Note that, because the 
values are essentially randomly distributed, the camera 
fingerprints are not amenable to typical compression 
schemes such as Huffman encoding.

To reduce the memory needed for storing finger-
prints on the computer, Bayram et al. [12] proposed 
a simple binarization scheme. They sharply truncate 
the fingerprint values to either 0 or 1 (black or white). 
Each fingerprint pixel value can then be stored with 
a single bit, representing eight times storage savings. 
Valsesia et al. [13] have suggested using random ma-
trix projections to compress the fingerprints. In this 
case, the user can set the parameters of the projection 
to achieve the desired balance between compression 
and fingerprint quality.

A flowchart of the standard camera fingerprint 
extraction process is shown in figure 3.

Matching the fingerprint
A hypothesis testing framework is used to de-
cide if a given image was taken with a particular 
digital camera:

H0 : K1 ≠ K2;

H1 : K1 = K2.     (7)

That is, given two fingerprints, say one from the refer-
ence camera and one from an image in question, the 
null hypothesis assumes the fingerprints are not equal; 
under the alternative hypothesis, the two fingerprints 

FIGURE 2. Every digital camera has a unique fingerprint that is 
made up of a matrix; each entry in the matrix is a value be-
tween 0 and 1 that can be visualized as a gray value that varies 
between black (value 0) and white (value 1).
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FIGURE 3. This flowchart depicts the camera fingerprint extraction pipeline. [Photo credits: Pixabay]. 

do match. Keep in mind that under this framework it 
is impossible to prove a negative—it is not possible to 
prove that two fingerprints are definitely from differ-
ent cameras. The only two possible results from this 
test are: a) there is strong evidence that the finger-
prints “match” or that the images were taken with the 
same camera, or b) the test is inconclusive; there is not 
enough evidence to say the fingerprints match.

The test statistic for camera fingerprint matching is 
based on the normalized cross-correlation (NCC):

(8)

where X and Y are two camera fingerprint estimates 
and the coordinates [s1, s2] denote horizontal and 
vertical circular shifts of Y against X, and || denotes 
the L2 norm.

Then, denote the coordinates of the shift where 
the maximum of (8) occurs as speak=[s1, s2]. The 
peak-to-correlation energy (PCE) statistic is given by

  (9)

where R is a small region of the image around the peak 
(e.g., an 11×11 square of pixels). The authors in [7] 
performed a large-scale test with more than one mil-
lion images to determine that a PCE score above the 
threshold of 60.0 indicates that two fingerprints likely 
match (can reject the null hypothesis of a nonmatch).

Charlton and Meixner developed a unique visual-
ization to help users understand the PCE score [14]. 
As seen in equation (9), while the final PCE score can 
be reported as a single number, to find that maximum 
correlation value, we actually have to compute all the 
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possible correlation values as the two fingerprints are 
shifted around to all the possible alignments.

Rather than throw that information away and only 
report a single number, Charlton and Meixner use the 
full correlation to create the visualization. In addition 
to the top correlation peak, the N next highest peaks 
are also identified, where the user can select a value 
for N. These correlation peaks are then plotted as a 
three-dimensional surface such as in figures 4 and 5. 
If there is strong evidence that the fingerprints match, 
we should see a plot with one strong peak well above 
the matching threshold of 60 and all the remaining 
peaks should be small; this is illustrated in figure 4, 
where the large peak is greater than 175. In contrast, 
if the camera match is inconclusive, there will not be 
a large peak and all correlation values will be less than 
60, as is illustrated in figure 5.

Best practices
The most common question that users have when 
employing camera fingerprinting technology is: how 
many images do I need?

The original recommendation by the Binghamton 
researchers was to use a mass of 30 to 50 images when 
constructing a camera fingerprint [4]. However, newer 
work has suggested that there is a pattern of dimin-
ishing returns for fingerprint performance versus the 
mass of the fingerprint [8, 15]. Here, we mean “per-
formance” in the sense of how likely a fingerprint is 
to correctly match other fingerprints from the same 

FIGURE 4. This visualization of a PCE score indicates strong evi-
dence that the camera fingerprints match because there is one 
strong peak well above the matching threshold of 60 and all the 
remaining peaks are small.

FIGURE 5. In contrast to figure 4, this visualization of a PCE 
score shows an inconclusive camera fingerprint match because 
there is no large peak and all correlation values are less than 60.

camera. Figure 6 illustrates these diminishing returns. 
The horizontal blue dotted line indicates the PCE 
score-matching threshold equal to 60. Each of the 
other lines represents one test image scored against 
a matching fingerprint of increasing mass. Clearly, 
30–50 images is overkill, as the images tend to get a 
matching score with mass much lower than 30.

If not 30 images, then how many? Mahdian et al. 
propose a stopping criterion for building camera 
fingerprints [15]. The authors show that the Laplace 
distribution, shown in equation (10), is a good fit to 
the camera fingerprint pixel values.

  (10)

Also, as more and more images are incorporated 
into the fingerprint, the Laplace scale parameter, b, 
decreases and then plateaus. The authors propose to 
monitor the change in parameter b, and stop fin-
gerprint construction when the ∆b falls below some 
threshold, say 0.05. An example of this Laplace con-
vergence is shown in figure 7.

Users should also consider the content of their im-
ages before applying camera fingerprinting techniques. 
Very dark images (e.g., nighttime or lots of shadows) 
or very bright images (e.g., lights or sun glare) should 
not be used because the PRNU is not well expressed in 
those images. Among images that have good lighting, 
those with smoother content should be preferred over 
scenes with lots of texture.
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FIGURE 6. In this plot of PCE score versus fingerprint mass for 
an example camera, the horizontal blue dashed line indicates 
the PCE score-matching threshold equal to 60. Each of the other 
lines represents one test image scored against the matching 
fingerprint of increasing mass. Images are from the Dresden im-
age database, an open-source data set for benchmarking image 
forensics algorithms [16]. 

FIGURE 7. As more and more images are incorporated into a camera fingerprint, the Laplace scale parameter, b, decreases and then 
plateaus—this is an example of Laplace parameter convergence. 

For this reason, many of the benchmark data sets 
for camera forensics provide both “flat-field” and 
“natural” images. Researchers can use the data sets to 
test algorithms under ideal conditions (flat images) as 
well as more “real-world” conditions. An example of 
flat-field and natural images from the Vision data set 
[17] are shown in figure 8 (on the following page).

Surprising robustness
Camera identification with PRNU fingerprints is 
very reliable. The technology has high accuracy for 
matching fingerprints, and perhaps more importantly, 
has very low false alarm rates for erroneously link-
ing images that did not come from the same camera. 
Binghamton researchers showed 99.7% true detection 
at a false alarm rate of 10−5 [5]. In a larger study with 
over one million images, they show true detection at 
97.6% at a false alarm rate of 10−6 [7].

The PRNU signature is a good choice for a cam-
era fingerprint because it is surprisingly robust. The 
PRNU survives the conversion from the analog signal 
on the CCD/CMOS chip to the digital signal on the 
camera’s software. The PRNU persists in the resultant 
image even after processing by all the algorithms on 
the camera, such as white balance and color correction 
[5]. Most cameras will store images as JPEG files. Now, 

JPEG is a lossy compression scheme, but recent work 
has shown that the PRNU can survive at JPEG quality 
settings as low as 60% [18].

Matching images that have been edited is also fairly 
straightforward. Simple geometric edits like rotation 
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and cropping are easy to account for. The PCE score 
will actually check all possible alignments and, thus, 
detect the match if an image has been cropped. For ro-
tations, simply calculate the PCE score for all four pos-
sible orientations. If images have been resized, finger-
printing is a little more difficult, but possible. In this 
case, a brute force approach is to iterate through sev-
eral resize parameters in order to find the case where 
the image matches the fingerprint [19]. Alternatively, 
the fingerprint images and the query images can both 
be resized to common dimensions and then matched 
[9]. However, when images are drastically downsized 
compared to their original size, the fingerprint pattern 
in the images will often be wiped out.

Extension to video
PRNU camera fingerprinting also works for videos. 
In the simplest case, the frames of a video are extract-
ed as still images and the standard PRNU extraction 
and comparison methods which we outlined in the 
previous sections can be applied to the sequence of 
extracted images. However, digital video encodings 
are much more complex than digital images, which 
makes it harder to detect the fingerprint in the extract-
ed video frames.

For example in the H.264 video codec, there are 
three types of frame encodings: I, P, and B. Generally, 
I-frames are self-contained in the sense that the pixels 
in that frame are encoded relative only to the other 
pixels in the frame. P-frame pixels are encoded relative 
to that frame and a previous frame, and B-frame pixels 
are encoded relative to that frame, one prior, and one 
subsequent frame. In a series of experiments, Deka et 
al. determined that for PRNU fingerprinting, I-frames 

 
FIGURE 8. This flat-field image (left) and natural image (right) 
are from the VISION Dataset for benchmarking camera forensics 
algorithms. [Photos: Copyright (c) CSP Lab. (Communications & 
Signal Processing Laboratory), Dept Information Engineering, 
University of Florence, 2017; more details at [17]].

are the best. However, there are much fewer I-frames 
in a video than P-frames, so for short videos, it may be 
difficult to get a good PRNU estimate.

More work is needed, perhaps combining the 
approaches of Deka et al. [9] with the stopping con-
dition work of Mahdian et al. [15], in order to make 
recommendations for frame types and frame mass for 
fingerprinting videos.

Camera make and model classification
Camera fingerprinting based on the PRNU noise can 
only give us information about whether images or vid-
eos were captured with the same device; this method 
does not actually tell us anything about the camera 
itself. For example, calculating the PRNU fingerprint 
from some images or videos cannot tell us whether 
they were taken with say, a Canon PowerShot, or an 
iPhone 8, or any other make and model of camera. 
Now, if that make/model information is already 
known, it is smart to incorporate that information into 
the overall camera fingerprinting analysis.

There are other approaches in the digital forensics 
literature that can be used to identify camera make 
and model. PRNU-based identification can be loose-
ly compared to hardware reverse engineering, as we 
are trying to identify the physical sensor. In this way, 
camera make and model identification can be thought 
of more like software reverse engineering. Different 
camera models employ different chains of image pro-
cessing algorithms to transform the light signal into 
a digital image. Color demosaicing, gain correction, 
white balance, JPEG quantization, and others: these al-
gorithms leave traces on the resultant images. As with 
the PRNU noise, these software traces typically do not 
affect the visual quality of the images to the degree 
that one can perceive by eye.

Researcher Matthew Stamm from Drexel University 
and his students have developed an approach to make 
and model classification using deep learning frame-
works. Traditionally, applications of convolutional 
neural networks (CNNs) to imaging problems have 
targeted learning the semantic content of the image. 
(E.g., is this a picture of a “cat” or a “teacup”?) The 
Drexel University researchers used a constrained CNN 
to extract what they call “deep forensic features” of the 
images. By looking at different specific types of image 
patches, such as smooth content or sharp horizontal 
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edges, the network is trained to recognize the traces of 
the onboard camera algorithms [20, 21].

Extension to forgery detection
Besides applications of camera identification, the 
image’s PRNU fingerprint can also be used to detect 
whether any regions of the image have been manipu-
lated or forged. An example manipulation might be an 
object or person removed from the scene in the image. 
Instead of correlating the entire image to its camera 
fingerprint, as is done for camera identification, the 
idea for forgery detection is to check smaller subsec-
tions of the image. If a subsection of the image does 
not correlate strongly to the corresponding subsection 
in the camera fingerprint, this may be evidence of 
manipulation in that subregion of the image.

The Binghamton research team proposed a patch-
based detector, where the image is divided into subre-
gions of overlapping rectangles of various sizes [22]. 
The correlation between the image and fingerprint is 
calculated for each region, for each rectangle size. The 
results are aggregated and regions of the image with 
low correlation are identified as possibly manipulated.

A group from University of Naples proposed a 
slightly different approach where, rather than arbitrary 
patches, the image is subdivided into semantically 
similar super-pixel regions [23]. The super-pixels are 
correlated to the corresponding regions of the camera 
fingerprint, and again, areas of low correlation indicate 
possible manipulation. These two approaches assume 
that one has a good quality camera fingerprint from 
the same camera as the suspicious image. This as-
sumption greatly restricts the situations where PRNU-
based manipulation detection can be utilized.

What about synthetic images? The PRNU approach 
also assumes the images in question came from a 
physical camera. What would happen if you tried to 
fingerprint a “fake” image? Marra et al. investigated 
this question for completely synthetic images that 
were created using a generative adversarial network 
(GAN) [6]. They found that different synthetic im-
ages produced with different GAN networks actually 
do have a fingerprint, and they can determine which 
GAN produced which images. However, without a 
reference fingerprint for all possible GANs in the uni-
verse, this method is not practical for a general “real 
versus GAN” image detector.

Conclusion
The photo-response non-uniformity, or PRNU, is a 
pattern imparted on all images or videos captured 
with a digital camera. Although the pattern is sub-
tle—one cannot notice it by eye—it is unique to each 
light-sensing chip inside the camera and is stable over 
time. Images or videos can be processed with special 
algorithms to extract and enhance the PRNU signa-
ture. The PRNU acts as a “fingerprint” and allows im-
ages or videos to be matched to their specific camera.

The first paper on PRNU forensics was pub-
lished in 2005 [3]. In the past 15 years, the process 
for PRNU fingerprinting has been well established. 
Best practices have been established for the PRNU 
extraction and matching algorithms [9, 15, 14], and 
camera fingerprint matching is extremely accurate 
[9]. Newer research has focused on applying PRNU 
techniques to detect image forgeries [22, 23] or 
synthetics images [6]. 
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Are we getting closer to a time when we can’t trust what we see or hear? It is a 
scary thought that forensic analysts have been pondering for years. Since their 
invention, multimedia (e.g., images, videos, audio, and text) have been used as 

a source of truth. Yet, with an increase in our digital footprint and the advent of new 
technology, this assurance is slipping away. 

C a n d i c e  G e r s t n e r,  E m i l y  P h i l l i p s ,  L a r r y  L i n
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In particular, access to portable digital cameras and 
services to distribute multimedia has increased the 
volume of media seen on the internet. While doctor-
ing the content of media, such as images, has been 
done throughout the history of photography [1], the 
availability of software such as Adobe Photoshop, 
Gimp, and Corel Painter make it easy for anyone to 
manipulate media. However, making a sophisticat-
ed fake using these software packages can take days. 
Recent advances in computational power and deep 
learning have made it not only quicker to create 
fake media, but also less expensive to mass produce 
these fakes. Many deep learning-based algorithms 
are already available on open-source repositories like 
GitHub. These ready-to-use repositories pose a threat 
to national security in that the application of these 
technologies require no more than a personal laptop 
and a minimal amount of technical skill. 

Our ability to authenticate media has become more 
crucial than ever before. Humans have a visceral reac-
tion to media and form beliefs quickly [2]; thus, it is 
essential for people to verify sources and be vigilant in 
authenticating what their senses are telling them is the 
truth. Members of Congress too have recognized the 
danger of the “technology undermin[ing] public trust 

in recorded images and videos as objective depictions 
of reality” [3].

Introduction to manipulations 
and authentication
In this article, we focus on images and videos, al-
though many of the same concepts can be extended 
to other multimedia types. The American Society for 
Testing and Materials (ASTM) defines authentication 
as “the process of substantiating that data are accurate 
representations of what they are purported to be” [4]. 
This article will utilize that definition and extend it to 
detail the science of how media is processed and the 
specific criteria that will be used to make the deter-
mination of authenticity. The criteria will represent 
different levels of manipulation (or doctoring), where 
manipulation will be defined as the modification of ei-
ther the “structure” and/or the “content” of the media. 

Structure of a file includes, but is not limited to, the 
name, hash, format, exchangeable image file (EXIF) 
data, quantization tables, and hex view of the data. 
Content of a file includes, but is not limited to, tex-
tures, shading and shadows, color balance, lighting, 

FIGURE 1. The landscape of possible multimedia manipulations, diagrammed in this chart, is so diverse that authentication is an 
extremely difficult task. The box around Fully Synthetic and Partial Synthetic represents the categories of artificial intelligence (AI)
generated synthetic manipulations referred to as deepfakes. For clarification, the Hollywood box under Fully Synthetic is meant to 
categorize AI techniques used in Hollywood. Note that Hollywood also uses non-AI techniques to generate synthetic media.
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FIGURE 2. Manipulations can occur at all levels of JPEG creation. This diagram introduces these levels and the terminology that will 
be used to describe them.

and composition. The landscape of possible manipula-
tions is so diverse that authentication is an extremely 
difficult task (see figure 1). Categorizing manipula-
tions complicates things further if one considers intent 
or perspective (e.g., subjectiveness or threshold).

In this article, we will address two categories of 
manipulations, namely nonsynthetic (commonly 
referred to as traditional) and synthetic via artifi-
cial intelligence (AI; referred to as deepfakes). Most 
nonsynthetic manipulations (i.e., to structure or 
content) result from modifying some component(s) of 
the media compression algorithm.a For example, in a 
JPEG image, a simple steganography method adds the 
hex values of another (hidden) image after the original 
image in the EXIF data. This is done by locating the 
end of a file tag for the image and adding the informa-
tion after. This is a structural manipulation and can 
also be referred to as a byte manipulation, according 
to the diagram in figure 2. Even something as simple 
as changing the quantization tables used in JPEG com-
pression is considered a manipulation. 

The manipulations that are receiving most of 
the media attention lately are those referred to as 

deepfakes. This term has been incorrectly used in 
many cases as a catch-all for any media manipulation. 
We will now clarify the origin of this term and state 
the definition that we will use in this article. The term 
was first seen on the site www.reddit.com, where a 
user posted an example of an autoencoder (i.e., a deep 
learning method) used to perform a face swap (the 
post was later removed). In figure 1, this is referred 
to as the deepfake algorithm. The term comes from a 
blending of the words “deep learning” and “fake me-
dia”. We now use the term deepfakes to refer broadly 
to multimedia files that have been created (i.e., fully 
synthetic) or edited (i.e., partially synthetic) using 
some form of AI technology. 

These deep learning-based algorithms have giv-
en experts, and in some cases, mere enthusiasts, 
the ability to manipulate multimedia in such a way 
that even the most keen observers can be deceived. 
Furthermore, fully synthetic media such as those gen-
erated from deep learning algorithms, often cannot be 
detected with traditional authentication and forensic 
techniques that were designed to detect manipulations 
like those done with Photoshop.

      
FIGURE 3. Image (a) is the original, unmanipulated image from [5]. Image (b) is the manipulated image with buildings removed 
from the scene [5].

a. A few exceptions are rebroadcasting and staging.

http://www.reddit.com


44

Deepfakes: Is a Picture Worth a Thousand Lies?

Traditional manipulation techniques
For purposes of this article, the focus will be on ma-
licious manipulations to imagesb that alter the content 
of the media. Below we describe a few manipulations 
that can be performed using software such as Adobe 
Photoshop, Gimp, and Corel Painter.

1. Removals are the removal of an object which is 
then replaced by content derived from another 
region within the same media. This is typical-
ly done in such a way as to remove the notion 
that the object was present (see figure 3 on 
previous page). 

2. Splice is the insertion of an object from one 
image (called the donor image) into the probe 
image (see figure 4).

3. Copy-clone is the insertion of an object from an 
image into a different location within the same 
image (see figure 5).

These traditional techniques are still being used as 
a means of manipulation. However, the creation of 
sophisticated fakes requires time and experience.

Deep learning-based techniques
Traditional manipulations are becoming less manual 
and in some cases harder to visually identify. Several 
applications are available that make manipulating 
media extremely easy, including Snapchat and TikTok. 
In some cases, these manipulations use AI, such as 
deep learning. Programs like Photoshop have started 
to incorporate AI into their products. Adobe Sensei 
is an example of this. Sensei has the capability to 
automatically tag content, determine object edges, 
remove objects using AI-based inpainting techniques, 
and summarize documents [7]. Improved compu-
tational resources and access to larger data sets has 
given rise to deep learning approaches to produce 
manipulated media. 

Generative models

The primary classes of algorithms used to generate 
fully synthetic media are generative adversarial net-
works (GANs), variational autoencoders (VAEs), and 
language models (applied to audio and text). GANs 
are generative models that approximate probability 
distributions. In particular, GANs are implicit density 

 

FIGURE 4. Image (a) is the probe image from [6]. Image (b) is 
the donor image from [6]. Image (c) is the spliced image ob-
tained by inserting part of image (b) into image (a).

b. For reference, some examples of benign content manipulation include lighting, contrast changes, or computer animations.
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FIGURE 5. Image (a) is the original image from [5]. Image (b) is the manipulated image with a block structure copied and cloned 
several times in the scene [5].

models that do not explicitly approximate the prob-
ability density function. Despite this, they have a few 
advantages: the model can be sampled from and, with 
sufficiently large capacity, can approximate complex 
distributions. As can be seen in figure 6, GANs typi-
cally are made up of two neural networks, a generator 
and a discriminator. The generator produces images, 
for example, by mapping samples from a known distri-
bution (e.g., multivariate independent Gaussian) and 
trains in an adversarial way against a discriminator, 

FIGURE 6. In this GAN setup, a random vector is fed through the generator to produce 
an image. Images produced from the generator along with real images from the training 
set are presented to the discriminator, which decides if each image is real (i.e., from 
the training set) or fake (i.e., produced by the generator). [Photos credits: iStock.com/
JohnnyGreig] 

a multivariate Gaussian). Qualitatively, a VAE can be 
thought of as learning a compression and decompres-
sion of the data. 

The previous algorithms can be used to generate 
synthetic content for all media types. One type of 
algorithm that is ubiquitous in modeling audio [9] 
and text [10] is a language model. Language models 
approximate the conditional distributions terms that 
decompose the joint distribution of the data via the 

that attempts to learn wheth-
er an image presented to it is 
from the training data set (i.e., 
real) or produced from the 
generator (i.e., fake). There is 
more technical information 
on how a GAN works in the 
next subsection.

VAEs [8] parametrize a map-
ping to a (lower dimensional) 
latent space, via an encoder, 
and back to the data space, via 
a decoder. Efficient inference is 
achieved for the latent variables 
and samples using the learned 
encoder and decoder, respec-
tively. The model parameters 
are optimized using a variation-
al lower bound on the mutual 
information between the en-
coded distribution and a prior 
on the latent space (typically 
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chain rule for probability. These models are trained 
via supervised learning on a corpus of data to predict 
future samples from previous ones. 

Fully synthetic media: GANs

GANs are learned via an information-theoretic min-
max loss function first introduced in [11]. We start 
by introducing our notation. The random variable Z 
is sampled from the multivariate normal distribution 
N(0,IN ): Z~N(0,IN), IN= NxN identity matrix, and 
let X~Pdata, where Pdata denotes the distribution of 
data. Then let Ĝθ: Z→X be a parametric function with 
parameters θ producing samples with distribution 
PĜθ

. We call this model the generator. The goal of the 
generator is to map the distribution Pz to Pdata so that 
the model attempts to produce samples from the latter. 
The discriminator, which we define as

       (1)

is used as a substitute for labels so that learning can be 
done in an unsupervised fashion. To learn D in prac-
tice, we use: ϕ: X → [0,1], a parametric approximation 
of D. It is common to say that D(x)=1 if x is real and 0 
if x is fake (generated by Ĝθ). Mathematically, the dis-
criminator can be interpreted as D(x)=Prob(x is real).

In the original GAN framework [11], parameters 
for Ĝθ, ϕ are trained via a min-max adversarial game 
with binary cross entropy loss for  ϕ:

FIGURE 7. These sample images generated from HQGAN 
illustrate combined deep learning techniques from [14].

,    (2)

Improvements, such as using the Wasserstein loss 
or hinge loss, to this optimization have led to better 
trained networks [12]. Methods to improve the stabili-
ty of learning and quality of generated samples include 
function approximators with improved gradient flow 
for optimization (e.g., residual connections with 
batch normalization [13], or progressive layer-wise 
learning of parameters [14]). An example of these 
combined techniques from [14] can be seen in their 
HQGAN-generated images in figure 7. The current 
state-of-the-art face algorithm is StyleGAN 2.0 [15], 
which facilitates improved style control of the gener-
ated image such as hair color, facial structure, glasses, 
etc. Some StyleGAN 2.0-generated images can be seen 
in figure 8.

Partially synthetic media: Face swap algorithmwhere Ex~P [f(x)] denotes the empirical estimate 
of expectation:

        (3)

In practice, Ĝθ and ϕ are parametrized by deep neural 
networks and the optimization depicted in the above 
loss equation is performed in two steps:

     (4)

 (5)

Face swapping is a manipulation technique that takes 
an original video (or image) of person A and replaces 
the face with that of person B. This has gained im-
mense popularity, due to communities of enthusiasts 
maintaining GitHub repositories with easy-to-use 
interfaces to apply the algorithm [16]. One import-
ant note is that, while GANs can be used to generate 
the new face, in practice, almost all high-quality face 
swaps are created using autoencoders. GANs try to 
learn a mapping between samples of different distri-
butions, while autoencoders learn to compress and 
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FIGURE 8. These sample images generated from StyleGAN 2.0 [15] illustrate the state-of-the-art face algorithm which facilitates 
improved style control of the generated image such as hair color, facial structure, glasses, etc.

decompress between the data manifold and a low-
er-dimensional manifold. An autoencoder is a simpler 
statistical model than the previously mentioned VAE. 
Here, instead of an assumed prior on the latent space, 
the encoder directly maps the input data manifold into 
the latent space, while the decoder attempts to learn 
the inverse mapping to reproduce the input. 

Nontrivial preprocessing is necessary to generate 
good data sets to train the autoencoder. To learn the 
face swap model using an autoencoder, preprocessed 
samples of person A and person B are mapped to the 
same intermediate compressed latent space using the 
same (i.e., learned) encoder parameters. However, 
person A and person B have different decoders (i.e., 

FIGURE 9. This face-swap breakdown from [17] shows an original frame of a video of 
Face A going into the Encoder A, and encoded in the smaller space as a smiling face. 
The Latent Face A is decoded using Decoder B, producing a frame.

using different parameters) mapping from the shared 
latent space representation to their respective orig-
inal inputs. Once the three networks are trained, to 
swap the face of person B onto A, the target video (or 
image) of A is fed frame by frame into the common 
encoder network, and then decoded by person B’s de-
coder network. In other words, person A’s face is taken 
into the shared latent space and decoded with person 
B’s face (see figure 9). As a result, facial expressions 
and mouth shape can be preserved. Semiautomated 
(i.e., with human selection) postprocessing blends the 
AI-generated face into the original image. 

Given the diversity in manipula-
tion type, developing a one-size 
fits all technique for multimedia 
authentication is impossible. 
For years, forensic analysts 
have focused their attention on 
specific types of manipulations 
in an attempt to develop robust 
methods of detection for each 
manipulation. Although most 
forensic techniques produce 
quantitative information (e.g., 
heat maps), there is typically 
no corresponding explanatory 
information to help the examiner 
understand how the information 
was obtained. Understanding the 

Authentication of media
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underlying mathematics and media creation proper-
ties of multimedia files and the techniques to examine 
them is extremely important for justifying conclusions 
made from forensic evidence. One of the prima-
ry shared objectives between the DARPA MediFor 
(media forensics) program [18] and the researchers 
at the Department of Defense is to explore the tech-
nical characteristics of multimedia manipulation. 
Using standard forensic best practices along with the 
technical characteristics allows them to develop more 
powerful and meaningful detection techniques.

Best practices

We can all do our part in reducing the spread of ma-
nipulated media. Whether you are a casual observer 
or a scientist, awareness is one of the most important 
tools in this realm. It is good practice to check the 
source of the media before drawing conclusions. In 
addition, reverse image searches, like TinEye, can 
be extremely useful if the media is a composition 
of images. 

For the scientist, multimedia authentication, like 
any forensic science, requires adhering to some basic 
principles. Techniques used for an analysis must be 
accurate (i.e., consistent measurements within an 
experiment), precise (i.e., consistent measurements 
between experiments), repeatable (i.e., under the same 
conditions), and reproducible (i.e., under different 
conditions). This is not only essential for customers 
wanting to use these techniques in court, but also 
for ensuring that any intelligence resulting from the 
media is reliable.

A starting point to good forensic practices is to 
make a copy of the media in question so that the 
evidence cannot accidentally be modified or lost. 
Always begin by checking the structure of the file (e.g., 
name, hash, format, EXIF data, quantization tables, 
and/or hex). Often manipulation software will insert 
their name in the data upon opening or manipulating 
the file.

Next, look for content inconsistencies (e.g., incon-
sistent shadows and reflections). If none are apparent, 
other authentication tools can look for traces of ma-
nipulations that are not visible to the eye. Any output 
of such tools should be saved in a lossless compression 
format, for example PNG. 

Traditional techniques

Many traditional authentication algorithms focus on 
the quantization of the media. We will now discuss 
the details of how images are created. Taking a pho-
tograph using a digital camera, visible light reflecting 
off the scene is converted to a digital signal. In many 
cases, the digital image can be thought of as a three-di-
mensional array, representing the red, green, and blue 
(RGB) color intensities of the light at each pixel from 
the scene. Each color channel is represented by a byte 
taking values in the range of 0 to 255, although some-
times are represented from -128 to 127.

The most common format for storing a digital 
image is a JPEG, which is a lossy compression method. 
Many digital forensic tools are specific to JPEGs and 
exploit their properties. A flowchart of the compres-
sion process can be found in figure 10. 

Essentially, an RGB digital image is converted to 
YCbCr color-space, the space is subsampledc, parti-
tioned into 8x8 blocks, and converted to the frequency 
domain via the Discrete Cosine Transform (DCT). It 
is then quantized by taking each block and entrywise 
dividing this block by another 8x8 array called the 
quantization tabled and then rounding (this is one of 
the main sources of lossiness in the algorithm). Since 
the Y color channel contains the most visual informa-
tion of the image, its quantized version is often a place 
to look for artifacts. This is what many traditional fo-
rensic algorithms are based on. When using the output 
of these algorithms, it is important to understand both 
their strengths and weaknesses.

FIGURE 10. The most common format for storing a digital im-
age is a JPEG, which is the lossy compression method illustrated 
in this flowchart.

c. The Cb and Cr channels are often cut in size prior to the DCT transformation by a process called subsampling. Typically a 2×2 block of 
pixels is replaced with a single pixel either representing the maximum or the average of the pixels in the block.
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Compression affects the distribution of DCT co-
efficients since they are discretized via the rounding 
step. As a result, the 192 histograms (64 values x 3 
channels) of the DCT coefficients are more likely to 
have empty bins (see figure 11). This characteristic has 
been exploited by several forensic algorithms [19, 20] 
specifically looking for double quantization effects. 
These algorithms have some drawbacks such as being 
sensitive to compression quality parameters, or that 
unnatural images (e.g., scanned documents) can cause 
false positives.

Another set of forensic techniques detects evidence 
of a copy-clone manipulation. These techniques have 
a similar underlying idea. At a high level, an image is 
first divided into overlapping blocks of a specified size 
and a feature vector is computed on each block. Next, 
a comparison is performed between pairs of feature 
vectors to measure similarities in order to detect 
potential regions of copy-clone. See [21] for a specific 
example and figure 12 for an example output of such 
an algorithm. One caveat of these algorithms is that 
the outputs are highly dependent on the parameters 
(e.g., block size used to compute each feature vector). 
Another caveat is that images containing large areas of 
similar content may generate false positives.

The previous examples have illustrated that al-
though there are many papers focusing on robust 
authentication methods for specific manipulations, 
they have all fallen short of reliably detecting ALL 
manipulations. The DARPA MediFor program and 

         
FIGURE 11. Double compression affects random normal quantized distribution as is illustrated in this simulation. As a result, the 
192 histograms (64 values x 3 channels) of the DCT coefficients are more likely to have empty bins.

FIGURE 12. This image is an example output of a copy-move 
detection algorithm run on a manipulated image from [5].

the researchers at the Department of Defense have 
moved the field one step closer to the goal of univer-
sally detecting all media manipulations through the 
fusion of specialized techniques to identify manipula-
tions [18]. However, it is imperative that those exam-
iners using these new algorithms understand how to 
interpret them. 

Deepfake detection techniques

Due to the hype surrounding deepfakes, there 
has been a lot of recent work on developing deep-
fake-specific detection techniques. A sample of those 
techniques is presented here. The first example is an 

d. The quantization table determines how much information is lost in the compression process. The tables are designed to produce a visually ap-
pealing result at the human-specified level of compression.
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algorithm that determines the authenticity of videos of 
well-known public political figures, such as President 
Obama and President Trump [22]. The group devel-
oped an algorithm that was trained on real videos 
of the person of interest, and tested on real videos, 
synthetically modified videos, and impersonators. 
Their trained model can tell the difference between a 
face swap and a real video, by picking up on particular 
cues from the person. An example of the “soft bio-
metric” they are able to capture is that Obama tends 
to tilt his head when he says “Hello everyone” during 
his weekly addresses while President. Face swaps and 
impersonators cannot fully pick up all of these tiny 
movements that a person naturally does. The draw-
back to this modeling approach is that a lot of data is 
needed to create a robust detector that can learn all of 
the idiosyncrasies of a particular person. The Obama 
detector trained on about 19 hours of authentic video. 
This amount of data is prohibitive for most use cases 
as there must be a substantial existing pool of authen-
tic videos of the person of interest.

Another authentication technique for synthetic 
media takes an idea from camera forensics—that 
of camera fingerprinting. A camera fingerprint is 
a low-level noise residual in the pixel values of the 
image; that noise residual pattern can be compared 
to an averaged noise residual from multiple pictures 
known to come from a specific camera. The two noise 
residuals are correlated to test whether the image was 
taken by the query camera. This idea is extended to 
GAN-generated images, in that media created by the 
same exact trained GAN should have a similar noise 
residual, and ones created by different GANs should 
have significantly different noise residuals. In [23], the 
authors compare the noise residual of a single image 
of interest to the averaged noise residual of images 
known to be from the same GAN. The classifier they 
developed determined the correct trained GAN for 
each image with about 90% accuracy. Some limitations 
of this method are that access to the trained GAN to 
produce a collection of images or access to already 
produced images from the trained GAN are required 
to create the average noise residual, and that the algo-
rithm cannot attribute images from GANs not in the 
training set.

Finally, in [24], the authors trained a neural net-
work to classify a data set of images generated from 
four different GANs and real data, and determine the 
source of a new, unseen image. The neural network 
takes as input the query image, and outputs one of the 

five classes: one of the four GAN architectures or the 
real data set. This method attains about 98% accuracy 
on the correct class. The algorithm is forced to make a 
prediction on any input image into one of the five pre-
trained classes. If, for example, an image generated by 
a new GAN was classified by this algorithm, it would 
still give a result (albeit meaningless) even though the 
correct class (the new GAN) is not an option. 

Deepfakes as an alternative to media 
content creation
The COVID-19 quarantine has cultivated a need for 
alternative methods for media content creation and 
provided the time to explore new methods. Deepfake 
technology has already been widely applied to late 
night television shows postrecording (e.g., Bill Hader 
impressions [25]); however, during quarantine, late 
night shows (e.g., Jimmy Kimmel) have started to use 
deepfake videos as part of their show content [26]. On 
a larger scale, media companies are working toward 
commercial usage of synthetic media. For example, 
Disney is researching the use of high-resolution face 
swap technology for visual effects [27] that are almost 
good enough for commercial projects. Additionally, in 
the 2020 baseball season, Fox Sports  added synthetic 
fans to empty baseball stadiums [28] that were adjust-
ed based on the status of the game and weather. 

As synthetic media becomes more prevalent in me-
dia creation, we also expect it to play a more extensive 
role in cybercrimes. In March of 2019, a high-pro-
file case of a $243,000 fraudulent transfer resulted 
from the use of a chief executive’s voice imperson-
ation created by what was believed to be commercial 
voice-generating software [29]. 

Conclusion
With increased accessibility to media manipulation 
software, the problem of multimedia authentici-
ty is a topic that warrants more general awareness. 
The rapidly growing areas of AI will only make the 
landscape of manipulations grow and become more 
complex. Consequently, we must be vigilant in iden-
tifying the truth in multimedia by verifying sources 
and being knowledgeable and cognizant of our senses. 
Concurrently, we must trust and support the forensic 
analyst community to continue developing mecha-
nisms to aid our ability to identify the fakes. 
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The Attribution 
Solution: Who Said 

What, When?
R y a n  K a l i s z e w s k i

In 1995, the Unabomber demanded that prominent 
newspapers publish his 35,000-word manifesto. Phrases that 

Ted Kaczynski used in personal communications with his 
brother David Kaczynski and sister-in-law Linda Patrick, such 

as “Technology has already made it impossible for us to live 
as physically independent beings,” sounded eerily similar to 

the Unabomber’s writings. After turning his brother in, David 
Kaczynski said, “[The manifesto] just sounded like my brother’s 
voice.” Can we similarly teach computers to distinguish authors 

and identify coauthorship just through what is written?
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One of the greatest weapons in propaganda and 
information warfare is an adversary’s ability to blend 
in and pretend to be a trusted source. In a world of 
quickly developing deepfakes, throw-away social 
media accounts, botnets, computer-generated text, 
and coordinated influence operations, it is becoming 
increasingly difficult to trust anything that we see or 
read. Authorship attribution—or being able to identify 
the true author of a body of text—can be an important 
way to pierce deception and provide confidence in 
modern communications.

Throughout the COVID-19 pandemic, medical 
and vaccine researchers were publishing the results 
of clinical trials and their lab research, the Centers 
for Disease Control and World Health Organization 
were issuing guidance, and local and national lead-
ers were having to make difficult decisions balancing 
economic welfare with personal safety. In this shifting 
and dangerous environment, it is easy for malicious 
actors to produce disinformation and spread it un-
der a legitimate name or for ambitious influencers to 
put a famous name on their work for instant atten-
tion, and it is often hard to differentiate between the 
two. Consider the example of a viral post centered 
around spiritual beliefs associated with the COVID-19 
pandemic and allegedly written by Bill Gates [1]. The 
author of the article points out the unorthodox writing 
style and capitalization to suggest that the article was 
not written by Gates, with his sources speculating that 
the name was attached to promote visibility.  Having 
tools to distinguish between peer-reviewed research 
and valid government direction versus political ma-
nipulation and sensationalism helps to fight the uncer-
tainty and potential loss of life caused by these actors.

Problem background
Stylometry, or the study of linguistic style, and its 
application to authorship attribution arose as a serious 
research topic in the nineteenth and early twentieth 
centuries with pioneering work by Mendenhall [2] on 
the plays of Shakespeare and later statistical analyses 
by Yule [3] and Zipf [4]. Perhaps the most famous 
authorship attribution problem and solution was 
contributed by Mosteller and Wallace [5] on the au-
thorship of The Federalist Papers (see figure 1), where 
experts disputed whether Alexander Hamilton or 
James Madison had authored several unsigned papers. 

Mosteller and Wallace were able to discriminate 
between Hamilton and Madison based on a statistical 
analysis of common words such as “and” and “but.”

The successful use of statistics legitimized stylom-
etry and authorship attribution as a branch of mathe-
matical study. Soon all manner of stylistic features en-
tered the collective research domain: sentence length, 
word length, word frequencies, character frequencies, 
and vocabulary richness are just some examples. Near 
the end of the late twentieth century, authorship attri-
bution was accepted to the point of being admissible 
in court as expert evidence.

The true attribution solution—being able to identify 
any author through any sample of writing—is far too 
difficult to approach in general. Consider the exam-
ple “Yes.” This single word tells you nothing about 
the author, and the list of candidate authors includes 
everybody who ever lived! In fact, many people have 
authored this exact text, and from that simple word, 
it is impossible to distinguish which author provided 
any particular sample of the word “Yes.”

This is why traditional authorship attribution has 
been done under specific assumptions. For example, 
in determining the author of unsigned content within 
The Federalist Papers, the true author was known to 
be among a small collection of candidates—this is an 
example of a closed-set attribution problem. On the 
other hand, in an open-set attribution problem, no 
restrictions are placed upon the authors; however, 
because attributing a single sentence is very difficult 
unless there is some truly unique phrasing or under-
lying meaning, such as in the Kaczynski example, 
we must assume that there are many writing samples 
available for each author. Modern scenarios of author 
attribution better fit the open-set problem. They often 
involve emails, social media posts, or text messages by 
an author with an uninformative or deceptive screen 
name, but we typically have access to more writ-
ing samples to aggregate into one corpus. The more 
samples present, the more likely we can successfully 
attribute authorship.

Since authors are represented by their writing 
samples in authorship attribution, we can restate the 
open-set problem as comparing two text corpora 
in order to determine whether they were written by 
the same author. For example, due to similar writing 
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FIGURE 1. Perhaps the most famous authorship attribution 
problem and solution was contributed by Mosteller and Wallace 
[2] on the authorship of The Federalist Papers. [Photo credit: 
Library of Congress, Rare Books and Special Collections Division]

styles, some people believe Anthony Bourdain posted 
on a Brazilian jiu-jitsu blog under a pseudonym. There 
are several blog posts that could be concatenated into 
one text corpus under the pseudonym and another 
corpus consisting of Bourdain’s articles. This varia-
tion of the open-set authorship attribution asks how 
likely that the two corpora were written by the same 
person given just the text in the corpora.  This is the 
research question that my team in the NSA Research 
Directorate focused on, and we will discuss our meth-
ods and results in the following paragraphs.

Generalizing the closed-set to 
open-set problem
With the rise of advanced computing resources, 
closed-set authorship attribution methods have in-
cluded sophisticated algorithms such as deep neural 
nets [6], genetic algorithms [7], support vector ma-
chines [8], and ensembles of classifiers [9]; however, 
the open-set problem has remained relatively un-
touched. Contributions by Stolerman, Overdorf, and 
Greenstdadt [10] toward a mixed open- and closed-set 
authorship attribution and recent work by Badirli, et 
al. [11] on open-set attribution of Victorian authors 
have demonstrated stylometry to be a promising ap-
proach to the open-set problem.

At the PAN-CLEF 2018 authorship attribution 
shared task, Custódio and Paraboni [12] introduced 
a closed-set authorship attribution method based on 
an ensemble of logistic regressions trained on sty-
lometry. On the PAN-CLEF data set, Custódio and 
Paraboni’s method outperformed other methods 
based on recurrent and convolutional neural nets, and 
their method maintained its high-performance ratings 
across five languages: English, French, Italian, Polish, 
and Spanish.

Since Custódio and Paraboni’s method uses logis-
tic regression at its base, it tests whether stylometric 
features appearing in its training data are common to 
a corpus. The method classifies the candidate text cor-
pus into one of several bins based on which features 
are present. Therefore, if we remove the classification 
step, we have an algorithm that tests whether or not 
certain stylometric features appear within a corpus. 
The weights of the stylometric features that Custódio 
and Paraboni’s method compares are learned through 
the training data.

To address the open-set problem, we propose a 
variation of Custódio and Paraboni’s method where 
we determine stylometric features from our two test 
corpora and then generate a similarity metric instead 
of a classification. This similarity metric represents 
a comparison of writing styles, where a high score 
suggests that the corpora were coauthored. The stylo-
metric features that Custódio and Paraboni used were 
three types of n-grams: character-grams, punctua-
tion-grams, and word-grams.

An n-gram is a sequence of n consecutive objects 
that appear within the text. A character-gram is a 
sequence of upper and lowercase characters that will 
help to keep track of unusual spellings, capitalization, 
and typographical errors. A punctuation-gram is a 
sequence of characters in which all letters that lack di-
acritics have been replaced by asterisks. For example, 
in a punctuation-gram the keystrokes a’ would be re-
placed with *’, but the diacritical á would be retained.  
This helps to track punctuation styles. A word-gram 
is a sequence of words that will help track unusual 
phrases or irregular grammar.
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Cleaning text and determining phrases

At the next PAN-CLEF (2019) Muttenthaler, Lucas, 
and Amann [13] refined Custódio and Paraboni’s 
methodology and suggested the following text prepro-
cessing to improve performance:

�� Replace all digits with 0 placeholders,
�� Replace all URLs, email addresses, and other 

hyperlinks with @,
�� Do not lowercase text,
�� Do not remove stop words,
�� Restrict to character-grams of length 2 to 5, 

punctuation-grams of length 1 to 3, and word-
grams of length 1 to 3.

This is because digits and the structure of hyper-
links do not reveal information about writing style, 
but their presence and frequency are certainly indica-
tive. Similarly, stop-word usage has been successfully 
used to attribute authors in closed-set attribution; for 
example, in The Federalist Papers attribution many of 
the common words that Mosteller and Wallace used 
were stop words. Capitalization can be indicative, 
but specific character distributions indicate statis-
tical biases of the underlying language rather than 
the author, so character 1-grams should be excluded. 
Upper bounds on n-grams need to be included to 
limit vocabulary size and Muttenthaler, Lucas, and 
Amann tested to find the optimum upper bounds. 
Since peculiar vocabulary and symbology may in-
dicate authorship, they suggest retaining word and 
punctuation 1-grams.

We followed all of the advice of Muttenthaler, 
Lucas, and Amann with the exception that we low-
ercased words for word-grams. We did this to sim-
plify the vocabulary, and we felt that we were already 
taking capitalization into consideration when we 
evaluated character-grams.

Rather than use term frequency-inverse document 
frequency (TF-IDF) or singular value decomposition 
to reduce vocabulary complexity, as Muttenthaler, 
Lucas, and Amann suggest, we reduced our data set 
to only include n-grams of statistical importance, 
which we will call phrases. For example, the word-
gram “Great Wall” means more than the individual 
words “great” and “wall” so we consider it a phrase. 
Conversely, the word-gram “it is” means exactly what 
the sequence (“it,” “is”) tells us, so we don’t consider it 

a phrase. Phrases could include unusual punctuation 
patterns, misspellings, or slang; each of which is highly 
indicative of authorship.

To detect phrases, we will rely on a Bayesian model 
introduced by Gunel and Dickey [14]. The work of 
Hannah and Wallach [15] assigns prior beliefs and a 
threshold to determine when a 2-gram appears more 
frequently than predicted by the underlying corpus. 
When the odds ratio of a 2-gram appearing in concert 
against the 1-grams appearing independently exceeds 
10, then they consider the 2-gram is a phrase.

Even though Hannah and Wallach restrict their 
work to 2-grams, we can extend this result to any 
n-gram (w1 w2⋯wn), n ≥ 3 by decomposing it into a 
1-gram and an (n-1)-gram in two different ways:

(w1)(w2⋯wn),   (w1⋯wn-1)(wn).

If the odds ratio of either of these decompositions 
exceeds 10, then we will conclude that (w1 w2⋯wn) is 
a phrase.

Similarity metric

After extracting the character-, punctuation-, and 
word-gram phrases from each corpus, we need a way 
to decide if the corpora are similar. Since the collec-
tion of phrases is a set, a natural similarity measure is 
Jaccard (set) similarity: J(A,B)=(|A∩B|)/(|A∪B|).

For corpus i, let Ti denote the set of character-phras-
es, Pi denote the set of punctuation-phrases, and Wi 
denote the set of word-phrases. Define the similarity 
to be

Sim(T1,T2) = α ∙ J(C1,C2) + β ∙ J(P1,P2) + γ ∙ J(W1,W2),

with α, β, γ being weights that we set to α = β = γ = 
1⁄3. While these parameters could be tuned, we chose 
to leave them equal since we had no prior knowledge 
about which n-grams would be more indicative of au-
thorship. If the similarity of the two texts is high, this 
is evidence that the corpora were written by the same 
author. If the similarity is low then it is evidence that 
the corpora were written by different authors.

Data set and results
We tested our results using the Reuter_50_50 Data Set 

[16], a subset of the Reuters Corpus Volume 1 (RCV1) 
data set. The Reuter_50_50 Data Set contains 5,000 
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articles from 50 authors who each contributed 100 
articles. This data set is used as a benchmark for au-
thorship attribution, and so the articles are chosen to 
contain at least one subtopic of the corporate/industri-
al category (CCAT) in order to minimize topic factor 
in attribution. The articles have been split into two 
equal sets, a training set consisting of 50 articles per 
author and a non-overlapping testing set consisting of 
the other 50 articles per author.

For each author, we concatenated all of their articles 
from the training set into a training corpus and, simi-
larly, concatenated all of their articles from the testing 
set into a testing corpus. We then ran our algorithm to 
compare every training corpus to every testing corpus. 
On a desktop computer, it took approximately 24 
minutes to read all of the text, prepare it, and identify 
phrases. It then took approximately two minutes to 
generate the similarity scores.

Open-set results

Recall that for the open-set problem, we must make 
each decision about coauthorship independently. 
That is, when we compare a testing corpus with a 
training corpus we cannot look at how the testing 
text corpus compared against other corpora. We can 
only look at the current score and use that to decide 
coauthorship. Thus, we need to find some threshold, 
0 < τ < 1, so that if the similarity equals or exceeds τ 
we can conclude the corpora were coauthored with 
some confidence.

We chose values for τ from the interval 0.30, 0.45 
in 0.01-step intervals. If, for training corpus T1 and 
testing corpus T2, Sim(T1,T2) ≥ τ and T1,T2 were coau-
thored, then we considered this a true positive, and if 
they were not coauthored, we considered this a false 
positive. If Sim(T1,T2) < τ and T1,T2 were coauthored, 
we considered this a false negative, and if they were 
not coauthored, then we considered it a true negative.

We computed the recall, precision, and Matthews 
correlation coefficient (MCC) for each value of τ and 
plotted the results in figure 2.

In figure 2, as the threshold increases, recall begins 
to drop and precision begins to increase. There is a 
crossing point just above , which is also near the max-
imum value of the MCC. Since this is approximately 
the maximum performance of our algorithm, we will 

conclude empirically that Sim(T1,T2) > 0.40 gives 
strong evidence that T1,T2 are coauthored.

Under this assumption, our method has an estimat-
ed recall of 0.8, an estimated precision of 0.645, and an 
estimated MCC of 0.712.

Mixed-set results

If we add the additional assumption that we know that 
the author is present in our training set, we can simply 
associate the testing corpus to the training corpus 
with the highest similarity score. This is not quite the 
same as a true closed-set authorship attribution task, 
because we did not attempt to attribute each testing 
article individually, but rather we lumped the testing 
articles into one testing corpus.

Of the 50 authors, this method correctly associated 
47 of them. We considered a correct association as a 
true positive and a correct nonassociation as a true 
negative. Each incorrect association was both a false 
positive and a false negative since the method did not 
identify the correct author and identified an incorrect 
author. The recall and precision of the algorithm was 
0.94, and the MCC was 0.939.

FIGURE 2. The plot of the recall, precision, and Matthews cor-
relation coefficient (MCC) for values of the similarity threshold  
(x-axis). The confluence of the curves between 0.40 and 0.41 
suggests that a similarity score over 0.40 indicates strong evi-
dence of coauthorship.
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We observed that for the three incorrectly associ-
ated testing corpora, the correct training corpora had 
the second highest similarity score. Therefore, in top-2 
mixed-set attribution, our recall, precision, and MCC 
was 1.

Closed-set results

If we attribute each article in the testing set individ-
ually against the training sets, then the performance 
drops dramatically. Longer texts increase the likeli-
hood of correct attribution since the author is more 
likely to use identifying writing. In this instance, 
the precision and recall were 0.1356 and the MCC 
was 0.118.

Because the articles are relatively short, our statis-
tical method of phrase detection had trouble sifting 
out what is important. If we allow all n-grams to be 
phrases, we lose a powerful tool in attribution, but in 
the small document case, it improves performance 
with a recall and precision of 0.186 and an MCC of 
0.169. Even if we consider a top-5 closed-set author-
ship attribution, the estimated precision and recalls 
only become 0.418.

Future work and conclusion
There are many unanswered questions about open-set 
authorship attribution. The most important observa-
tion is that this threshold value of 0.40 was found for 
this data set. There is no evidence that a threshold of 
0.40 should work well for other authors. Can a univer-
sal “best” threshold be found?
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Adversarial machine learning has been a research area for over a decade [1], but it has recently 
received increased focus and attention. This is largely due to the success of modern deep 
learning techniques within the realm of computer vision tasks, and to the surprising ease 

with which such systems are fooled into producing incorrect decisions [2]. For example, there are 
concerns about the safety of self-driving cars, as machine learning attacks have demonstrated that 
they can be tricked into misreading stop signs as speed limit signs [3]. The decision to deploy a 
machine learning model must now factor in risk analysis and performance when under attack, 
in addition to classic concerns such as whether the model has sufficient accuracy, size, and 
throughput to “solve” the problem at hand. 

Consider an adversary who wishes to 
attack a machine learning system, such 
as the vision system of the self-driving 
car mentioned above, and has easy ac-
cess to that system to test how it behaves 
given different inputs. The attacker 
wants to develop a function that will 
make small alterations to a true input 
so the system will classify it incorrectly. 
The objective could be to make it give 
any wrong answer, or to make it give a 
specific wrong answer. Making it give a 
specific wrong answer is called a target-
ed attack. For example, starting with 
an image of a stop sign, this function 
will make small changes to individual 
pixels, causing the resulting image to 
be classified as a speed limit sign by the 
model. The changes are often so sub-
tle that a human cannot tell the image 
has been altered. Attacks like this are 

[Photo credit: WMC, lmk3nnyma/CC, filtrefil]
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possible, easy to create, have a high success rate, and 
work in the real physical world. In the case of the stop 
sign, researchers were able to demonstrate that they 
could cause misclassification by putting several small 
stickers on the sign.

Now imagine that the owner of the self-driving 
car’s visual system could build a function or trans-
formation, to be applied to all images it receives, that 
somehow flushes out or disrupts the attacker’s chang-
es. That would be useful! If it were possible to find 
such a defensive transformation it would provide a 
simple and convenient way to circumvent the adver-
sarial problem, effectively defeating a whole class of 
attacks. Many researchers have attempted to find such 
a transformation. Though several candidates have 
been proposed, to date all have been quickly defeated 
by attackers.

In the work described here, we introduce the idea 
of stochastically combining a large number of indi-
vidually weak defenses into a single barrage of ran-
domized transformations to build a stronger defense 
against adversarial attacks. We will outline how this 
algorithm works, both at training time and for evalua-
tion of new images, and we will discuss the challenges 
of testing, our approach, and our test results. Finally, 
we will discuss future research directions that could 
follow this work.

Three types of adversarial attacks
There are currently three known types of adversar-
ial attacks on machine learning systems. If we call 
the machine learning system targeted by an attack 
the victim, an attacker may wish to make the vic-
tim: 1) do the wrong thing, 2) learn the wrong thing, 
or 3) reveal the wrong thing [4]. In this article, we 
focus on 1), which is called an evasion attack in the 
academic literature.

There are also many different ways to use machine 
learning models. The most common is as a classifi-
er, which will be the focus in this article. A classifier 
receives some input, for example an image, observes 
its features, and from a limited set of classes, chooses 
a specific class to which it thinks the image belongs. 
For example, a simple classifier may receive imag-
es and classify each image as “cat,” “dog,” or “other.” 
Sophisticated models may have thousands of classes. 
If it is a good model, it will be right most of the time, 
but very few models are correct 100% of the time. We 

can think of “prediction” as an 
image paired with the class label 
that a model assigned to it, and 
“truth” as an image paired with its 
true class label. When these are 
the same, the model has made a 
correct classification.

The anatomy of an attack
Consider a single input image, 
which provides the features that 
the model will use to make a decision, and its asso-
ciated true class. We expect a trained classification 
model, given this input, to produce the true class. In 
an evasion attack, the adversary will try to perturb 
this single input to produce a new input that tricks the 
victim model into making an erroneous decision. If 
the adversary has access to the victim model, these at-
tacks are fairly easy to create. Even without full access 
to the internal data of the model, if the attacker is able 
to query the model or system without restriction, they 
can evade it [5] and even learn enough to steal a copy 
of it [6] which can also be used to create successful at-
tacks. This type of attack can be done against machine 
learning systems that classify any type of data, not just 
those that classify images.

The concern with such evasion attacks is not just 
how easy they are to create, but also the surprising de-
gree to which they are effective and the small amount 
of change necessary for these attacks to succeed. This 
is easiest to observe for image classification, where 
small changes to the pixels, imperceptible to humans, 
cause the victim model to make drastically different 
classification decisions. In the attack shown in figure 1 
(on the following page), the model is tricked by imper-
ceptibly small changes. The adversary intentionally 
makes these changes as small as possible so that they 
will not be noticed by a human observer and can thus 
avoid detection by manual inspection. It also makes it 
obvious that if the result is identical to a human, the 
answer should be identical too! 
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There have been many attempts to build models 
that are robust to such adversarial perturbations, but 
most have not proven effective. Some approaches work 
but cannot scale up without using massive resources 
[7]. Many more have simply been broken by attack-
ers [2, 8]. Often this is because in evaluating a new 
defense, the developers of the approach forget to give 
the adversary knowledge that the new defense is in 
place. The effect, referred to as obfuscated gradient 
[8], is apparent success due to hiding information 
about defenses from the attacker during evaluation. 
Effectively, the defensive transformation being applied 
introduces an additional gradient that the attacker 
must account for and optimize over. Hiding this is 
not a good defense and may lead to a false sense of 
security. Research has shown that attackers can detect 
and defeat hidden gradients, overcoming new defenses 
whether they are made public or not. Taking this into 
account, we conduct our testing in a white-box fash-
ion, which means we assume the adversary has access 
to all the same information as the defender/victim. A 
defense that is successful in the white-box scenario 
should only perform better in gray-box (i.e., where the 
attacker has limited information) or black-box (i.e., 
where the attacker has no knowledge of the model or 
defense) scenarios.

FIGURE 1. This is an example of an evasion attack. The left image is the original image of a cat, which the model correctly classifies 
as “tabby cat.” The image on the right is an adversarial example in which a small perturbation has been applied that does not visibly 
change the image but convinces the model that the cat is actually guacamole, with higher confidence than the original correct 
prediction! [Photo credit: CC/filtrefil/public domain]

Adversarial training
One of the few, reliable, and most effective defenses 
to evasion attacks is adversarial training. This is when 
adversarial examples are created and included during 
model training. In theory this will teach the mod-
el to recognize the object in an image under many 
conditions, including when under attack. There is a 
significant amount of work along these lines showing 
that this defense reduces the success of attacks [9, 10, 
11]. It has been very successful on smaller data sets, 
but computational costs present significant challeng-
es when scaling the technique up to larger data sets 
like ImageNet [12].

Adversarial training is a massive undertaking at an 
ImageNet scale. Adversarial training requires training 
on attacked inputs, meaning each adversarial input 
goes through an extensive iterative optimization pro-
cess. Testing by Xie, Wu, Maaten, et al. [13] required 
hundreds of graphics processing units (GPUs) just to 
build a single model.

The results on ImageNet, after all that processing, 
have been positive but modest. Furthermore, the 
scaling challenges indicate that there may be trouble 
ahead when we consider data sets that are orders of 
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magnitude larger than ImageNet. In the results section 
below, we will show how our work compares with 
adversarial training approaches. 

Adversarial training is a complex and rapidly evolv-
ing field. This section included a brief sketch intended 
to give those new to the field a glimpse; it is based on 
the state of the field when our work was done, but 
does not fully represent work in this field. See cited 
references throughout for more depth.

Defense by transformation
A major question is, can we circumvent the high cost 
of adversarial training while simultaneously retaining 
its benefits? An intuitive approach, that has since been 
shown as insufficient to defend a model, is that we 
should be able to defeat the adversary by introducing 
our own perturbations to the image before classifying 
it. Because the adversary’s perturbations are so small, 
if we introduce bigger perturbations they will “wash 
away” the adversary’s alterations and render the attack 
muted. Take for example a blurring transformation, 
this could be any Gaussian or box filter that makes 
an image look more fuzzy or blurry. If we apply this 
before sending an image to our model for classifica-
tion at test time, we would hopefully obtain the same 
answer as before. The intuition is that blurring will 
alter the image so much that an adversary’s tiny and 
innocuous perturbations will be overwhelmed and 
washed away. 

Why did this strategy not work? Blurring the image 
clearly causes far more distortion and visible change 

than the adversary’s perturbation in the guaca-cat in 
figure 1! This approach fell victim to the obfuscated 
gradient problem. Once the adversary became aware 
that the blur transformation was being been applied 
to the image, they were able to trivially defeat the 
defense. The adversary could make small random 
changes, put them through both the defensive trans-
formation and classification, observe the change in 
classification, and use this signal to hone in on and op-
timize changes effective for their goals. This approach 
has been tried with many different transformations, all 
of which have been defeated.

In particular, the use of such transformations is de-
feated largely because the same process is repeated for 
all inputs. If your model is a neural network, you can 
imagine the transformation as being just another layer 
or two in the stack of layers, and thus can be defeated 
with the exact same approaches!

BaRT: The power of randomness
But what if we, the defenders, did not know what 
transformation was going to be used? Suppose we 
have a large collection of possible transformations, we 
choose a random subset of these transformations, and 
apply them in a random order (see figure 2). At train-
ing time, for each image in our training set, we train 
on the original plus many versions of it after random 
sets of transformations are applied. Each time we clas-
sify an image, we select and apply a new and different 
set of random transformations, hopefully leading 
our classifier to achieve the same answer regardless 

FIGURE 2. These photos show a series of random transformations. By the final transformation, the original input has been signifi-
cantly perturbed, but we and the adversary do not know how we will transform each image, making it difficult to “plan ahead.”
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of whether an adversary is attacking us. (But, realis-
tically, we know there will be a cost in accuracy for 
doing this.)

For a representation of these ideas in mathemat-
ical notation, let’s call the input data x, its true label 
y, the classification model f (.), and the adversary’s 
attack A(.). A correct classification means y = f (x). 
A successful attack would be y ≠ f (A(x)). Our po-
tential transformations are t1(⋅), t2(⋅), . . . , tn(⋅), and 
we select k of them, where k ≤ n. The order of the 
transformations is represented by π(1), π(2), . . . , π(k). 
Accordingly, equation (1) below represents our desired 
outcome: when we apply our subset of transforma-
tions in random order, the classification result is the 
same regardless of whether the adversary has applied 
their attack function.

f (tπ(1)(tπ(2)(tπ(...)(tπ(k)(x)))) = f (tπ(1)(tπ(2)(tπ(...)(tπ(k)(A(x)))))   (1)

This is the essence behind our new approach to 
defending against adversarial attacks—to apply a 
Barrage of Random Transformations (BaRT) to the 
input [14]. The intuition is that when we have a fixed 
pipeline of transformations, the adversary need only 
learn how to defeat one system, and that it is only 
incrementally more challenging than before. But with 
BaRT, the adversary needs to find a single perturba-
tion that works effectively against a combinatorial 
explosion of n choose k, or , possible trans-
formations! This, we hope, fundamentally changes 
the amount of work an adversary has to do to defeat 
a classifier. It also raises the possibility that no single 
perturbation exists that can defeat all  possible 
transformations (see figure 3).

Building BaRT’s adversary
To truly understand whether this defense is effective, 
we need to build an adversary for BaRTa that is as 
strong as possible and fully aware of how BaRT works. 
We want a fully white-box evaluation, which assumes 
that the adversary knows everything about the im-
plementation of BaRT, and we want to use the most 
effective attacks available.

Our model is a neural network, and neural net-
works learn by means of a loss function. There are 
many different loss functions, but all of them measure 
in some way the prediction errors that a model makes. 

The model itself is a collection of weights, and these 
weights are adjusted during learning. A gradient is 
a mathematical technique that allows us to measure 
the direction of change in error as changes are made 
to one of the weights. In a single training run, a small 
set of training data is run through the model and the 
gradient of the error with respect to each weight is cal-
culated. Using that gradient, the weights are adjusted, 
inching closer to the desired performance. Over many 
training runs, if the model, training, and data are 
constructed properly, the overall performance of the 
model improves.

A gradient attack works similarly, but instead of 
minimizing the error, we try to maximize it, and 
instead of updating the model weights, we update the 
input (i.e., make changes to the image to be classified). 
After many cycles of updates, the result is an input that 
is optimized to achieve the goal of the attacker. It is an 
adversarial example.

BaRT is a combination of two techniques: applying 
multiple transformations and randomizing transfor-
mations. To construct the best possible attacker to 
evaluate BaRT, we will use a combination of two attack 
techniques which we think will be most effective 
against BaRT’s defenses.

The first attack requires us to be able to compute 
the gradient through every transformation applied. 
However, some of the transformations cannot be rep-
resented as a differentiable function; in other words, 
we do not know how to compute all of the gradients, so 
some can only be estimated. We do this for each trans-
formation ti (⋅) by learning a corresponding neural 
network fi (⋅), which has the goal of approximating the 
transformation such that ti (x) ≈ fi (x). This is effective 
whether the function is differentiable or not, and the 
resulting neural network is always differentiable. This 
is called Backward Pass Differentiable Approximation 
(BPDA), and it is the standard attack for defenses that 
transform the input [8].

The second attack strategy we add deals with the 
randomness that BaRT introduces. Say the space of 
all possible combinations of transformations is T, 
and we sample a specific combination of transfor-
mations t from T. Using BPDA, we can compute the 
gradient through this specific combination. We take 
a new sample and repeat that process, then combine 

a. No, not Principal Skinner. 
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the results across all samples, creating an estimate of 
what we expect to happen during a randomly select-
ed set of transformations. This approach is called the 
Expectation over Transformations (EoT) [15] and has 
been used to train models to recognize objects from 
multiple viewing angles. The formula below represents 
estimation of the EoT by summing the gradients of 
samples. It says that the gradient of our expectation 
for the outcome of a given function over all possible 
transformations can be approximated by the sum of 
the gradients from a sample of outputs.

∇Et∼T f (t(x)) = Et∼T ∇f (t(x)) ≈  ∇f (t(x))

We have armed our adversary with two techniques, 
BPDA and EoT, which together allow sampling and 
estimation of gradients across all possible random 
sets of transformations. This provides a signal which 
indicates the direction to make changes. Another 
piece that is necessary is a way to use this signal to 
explore and optimize changes, with the goal of mak-
ing the attack work. For this optimization, we use the 
Projected Gradient Descent (PGD) method, which is 
the strongest currently available technique for the type 
of perturbations we are considering [11].

Together, we believe these techniques constitute the 
best known approaches to defeat BaRT’s defenses. This 

FIGURE 3. Starting with the same initial image, these photos show results from 10 different transformation chains; each one has 
five random transformations applied in random order. While we can tell that all of these come from the same image, and that it was 
a cat, the resulting images are very different.

is an adversarial attack informed by full knowledge 
of how BaRT works and employing the best known 
attack techniques. We believe that this enables a strong 
evaluation of BaRT. All of that being said, we are only 
claiming that this is the best known way to attack 
BaRT today, as we write this. More on that after we 
take a look at the results.

Round 1: Evaluating BaRT performance
There are two more details to cover before we get into 
the results. Firstly, the data sets used for this work: 
ImageNet [12] is an image data set containing over 14 
million images labeled with over 20,000 concepts or 
classes. The ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) 2012 [16] is a subset of the larger 
ImageNet which is very popular for machine learning 
research. It is a training set of 1.2 million images in 
1,000 classes and a test set of 150,000 images with the 
same 1,000 classes. We used the ILSVRC 2012 data set 
for all of the work described here.

Secondly, let us describe the model architectures 
used. There are several neural network architec-
tures that are in common use and have been shown 
to be effective for learning on ImageNet. One of 
those is ResNet-50, a 50-layer-deep residual learning 
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convolutional neural network [17]. For all of our 
work, we start with a ResNet-50 network structure and 
learn from there. Inception [18] is a similarly complex 
neural network architecture that is popular in current 
research. Kurakin, Goodfellow, and Bengio did work 
on adversarial training [10] using the InceptionV3 
network architecture. The adversarial training result 
we compare to below is from their work.

Now that we have described both BaRT and how we 
attack it, we can talk about results! Since the subset of 
ImageNet that we are testing has 1,000 different class-
es, we will consider the accuracy of the model when it 
gets the exact correct answer (i.e., top-1 accuracy), as 
well as when it gets the correct answer in its top five 
guesses (i.e., top-5 accuracy).

Table 1 shows a summary of our results, compared 
with previous results. A normal ResNet-50 model gets 
top-1 and top-5 accuracies of 76% and 93%. But, note 
that a PGD attack is always successful, giving top-1 
and top-5 accuracies of 0%. Kurakin, Goodfellow, 
and Bengio’s adversarial training improved upon this 
situation, achieving 5.5% success while under PGD 
attack. An improvement, but a modest one. Condition 
3 shows what happens if we train the ResNet-50 model 
and apply the BaRT transformations at training time, 
but not at evaluation time. The accuracy while not 
under attack drops to 65% and 85%. But then we have 
to pay another price—because we do not know when 
we are under attack, we must use these transforma-
tions all of the time. That gets us to the condition 4: 
when we apply BaRT transformations at training time 
and evaluation time, our accuracy drops again to 54% 
and 76%. We show conditions 3 and 4 to separate out 
the costs of BaRT at training time and evaluation time. 
Condition 3 shows only the training time cost, while 
condition 4 shows both training time and evaluation 
time costs together. Condition 4 is where we start 
seeing some good news. In the PGD Attack columns, 
there is a significant improvement when under attack.

TABLE 1. Accuracies for various models, with and without PGD attack

Condition

No Attack PGD Attack

Model Top-1 Top-5 Top-1 Top-5

1 ResNet-50 76% 93% 0% 0%

2 Inception w/adversarial training 78% 94% 1.5% 5.5%

3 ResNet-50, BaRT trained 65% 85% 0% 0%

4 ResNet-50, BaRT trained & applied 54% 76% 16% 51%

Round 2: Evaluating BaRT as 
an ensemble
Round 1 already shows a major improvement. But 
wait—we have one more trick up our sleeve. Because 
BaRT creates a new transformed version of the input 
for every evaluation, and it does so very efficiently, 
BaRT can be used as its own ensemble. In machine 
learning, ensemble learning refers to running an 
input through multiple classifiers and allowing those 
classifiers to vote to determine the output. Rather than 
classify an image once and use that as the answer, 
we take an image, run random transformations on it 
multiple times, classify each output, and use the most 
common answer as the final output. This significantly 
improves our results. We show in figure 4 that as the 
ensemble size increases, our accuracy on clean images 
(no attack) increases back to the level of BaRT trained 
only (condition 3 in table 1), causing us to recover the 
penalty we paid when applying BaRT transformations 
to inputs, for the small price of doing random trans-
formations and classifying a few extra times.

Applying the ensemble technique to the tests we did 
in round 1, our top-5 accuracy under PGD attack also 
increases significantly, reaching 70%. Table 2 shows 
our previous table with a fifth condition added show-
ing the results of using BaRT as an ensemble.

Round 3: Evaluating BaRT on 
targeted attacks
As we mentioned way back in the introduction, when 
the adversary seeks not just to make the classifier give 
a wrong answer, but to make it give a specific wrong 
answer, that is called a targeted attack. Targeted attacks 
present a much more significant danger. Calling a cat 
guacamole doesn’t seem like such a big deal on the 
surface, but many machine learning systems in use 
today make classification decisions that feed into and 
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inform real decisions and actions with consequenc-
es. Beyond just forcing models to make mistakes, 
which essentially is injecting noise into some decision 
process, if attackers can drive a classifier to a specific 
wrong classification, they may be able to make a larger 
system act in a certain way. Going back to the stop 
sign example: an image was not only classified wrong, 
but classified as a specific wrong class that the attacker 
desired, and this led to an autonomous vehicle driving 
through a stop sign without slowing down. The down-
stream decision informed by the classification can 
have significant consequences, and successful targeted 
attacks give attackers control of that classification.

Here we evaluate how well the BaRT defense works 
when an adversary tries to perform a targeted attack. 
Instead of any error being acceptable, i.e., y ≠ f (A(x)), 
the adversary needs to fool the victim into making 
a specific error, i.e., y ≠ ytarget = f (A(x)). On normal 
ResNet-50, the adversary can achieve this targeted 
attack 100% of the time. But with BaRT, as we can see 
in figure 5 (on the following page), their ability to per-
form targeted attacks is reduced to 6% running single 
BaRT, and goes down to less than 1% as we combine 
more BaRT predictions in an ensemble.

Computational efficiency and scaling
One final benefit of BaRT worth mentioning is 
computational. We believe, based on how the BaRT 
technique works, that it can easily scale up to larg-
er data sets and larger numbers of classes. Running 
an ensemble of BaRT predictions takes only a few 
hundred milliseconds on decent hardware (not even 
using GPUs for image transformations, which could  
further increase speed). But, when we discuss the 
computational cost for the adversary, the situation 
becomes much worse. In our paper [14], where we 
have more evaluation detail, running inference for 

FIGURE 4. This graph shows the accuracy of BaRT when under 
no attack (black and white) and PGD attack (green) with differ-
ent sizes of ensembles. Circles indicate top-1 accuracy, squares 
top-5 accuracy. Accuracies for all cases improve significantly 
from ensemble size 1 to 5 and flatten out after 5.

TABLE 2. Accuracies for various models, with and without PGD attack

Condition

No Attack PGD Attack

Model Top-1 Top-5 Top-1 Top-5

1 ResNet-50 76% 93% 0% 0%

2 Inception w/adverasarial training 78% 94% 1.5% 5.5%

3 ResNet-50, BaRT trained 65% 85% 0% 0%

4 ResNet-50, BaRT trained & applied 54% 76% 16% 51%

5 ResNet-50, BaRT ensemble 65% 76% 16% 70%

all of our experiments takes only a few hours. But 
running the attacks required over seven GPU years to 
perform! While this amount of computational re-
sources is not insurmountable, it is significant. These 
are the kind of defensive system modifications we 
are interested in—those that have a reasonable and 
bounded computational cost for defenders but create 
exponentially increasing costs for attackers. In many 
security situations, asymmetry works in favor of the 
attacker. Here, through clever design, it works in favor 
of the defender.
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Conclusion
In this article we have described the threats of ad-
versarial attacks to machine learning models. With 
machine learning models driving more and more de-
cisions in our economy and our devices, manipulation 
of those models by attackers is a real threat.

We have given a high-level description of our new 
approach, called BaRT, which demonstrates the use of 
randomness to build more effective defenses against 
adversarial attack. It is a significant improvement over 
what came before. Hopefully the strategy of using 
randomness will be useful to others who are working 
to make classifiers resistant to attack.

FIGURE 5. This graph shows the success rate of a targeted PGD 
attack for various BaRT ensemble sizes. For ensemble size 1 (i.e., 
a single BaRT), the success rate is near 6%, falling to below 1% 
with an ensemble size of 13.

For nontargeted attacks, our top result achieves 
the correct class in the top-5 70% of the time while 
under attack. For this benefit, we lose approximately 
7% in top-5 accuracy while not under attack. This is 
a major improvement over prior work. Perhaps more 
significantly, in the targeted attack case, our top result 
reduces success of attacks to below 1%.

However, we do not claim that this approach is 
perfect. There is more work to be done. We do not yet 
have mathematical proofs supporting this approach, 
only intuition and empirical testing. Our nontarget-
ed result still leaves much room for improvement in 
accuracy, in both no-attack and attack situations.

Also, it is not a defense that can be applied imme-
diately to other problem domains such as audio data 
or malware detection. In each domain we will need 
to carefully consider what transformations might 
be available that preserve the salient structure of the 
information necessary for classification, and what can 
be randomized in ways that interfere with attacks but 
have a manageable cost in accuracy.

Research in adversarial machine learning is very 
active. It is virtually guaranteed that new attack 
techniques will emerge in the near future. If BaRT is 
considered the current best defense, many research-
ers may focus on figuring out ways to defeat it. We 
look forward to this and hope this work will stimulate 
advances in both attacking and defending models, as 
both increase our understanding of the underlying 
fundamentals. Ultimately, we hope that advances 
will enable us to build machine learning systems 
that are safer, more accurate, more reliable, and 
more trustworthy. 
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