axt Wave

The National Security Agencys Review of Emerging Technologies
Vol 18 No 2 « 2009

Taking the Open
Source Road

Raising the Bar in
Operating System
Security

Cryptographic Binding of
Metadata

Providing a Secure
Foundation with CLIP

Open Source—Setting
Software Free

Next Wave

NSA’s Review of Emerging Technologies

Letter from the Editor

Open source software (OSS) is a growing part of the software market. Although much OSS is
low cost, even free, a great deal of its growing popularity is based not on cost but on the ability
to see and manipulate the software internals. This ability enables great flexibility, allowing
programmers to easily build upon or extend software to meet specific mission needs. Increasing
interest in OSS is not limited to commercial markets; the US Department of Defense (DoD)
is looking for ways to harness the community development model within internal projects.
DoD has even created its own community software site, milforge.mil, to mimic the public open
source community. In this issue of The Next Wave (TNW), we have a series of articles about
important projects that were enabled by open source software.

The article “Raising the Bar in Operating System Security: SELinux and OpenSolaris FMAC,”
written by Steve Smalley, presents an update on Security-Enhanced Linux and introduces a
project to bring similar security enhancements to Sun’s OpenSolaris operating system. The next
article, “Providing a Secure Foundation for Applications with the Certifiable Linux Integration
Platform”, by Todd Paisley, Brandon Whalen, and Stephen Lawrence introduces an NSA
project to enable quicker and cheaper deployment of secure system solutions to meet mission
needs. The article, “Cryptographic Binding of Metadata” by Calvin Mason, calls attention to
the importance of trustworthy metadata and presents a summary of two NSA projects to protect
metadata. Finally our focus article, “Open Source Software—A Growing Trend,” by Russ
Sutcliffe and Ray Young, explains the impact open source is having on the global software
market.

Tux, the creation of Larry Ewing (lewing@isc.tamu.edu), has represented Linux since

1994. The original Tux logo was created with GIMP —the GNU Image Manipulation

Program. Custom versions of Tux will serve as the guide through this open source
. edition of The Next Wave.

The Linux penguin and GIMP are two examples of open source products available free to the
public for use and modification.

16

22

26

Taking the Open Source Road

Raising the Bar in Operating System Security:
SELinux and OpenSolaris FMAC

Providing a Secure Foundation for Applications
with the Certifiable Linux Intergration Platform

Cryptographic Binding of Metadata

Open Source — Setting Software Free

Taking the Open
Source Road

or '_qtiqﬁ-'éé bric future
partment of Defense .

S B

pen-source software (OSS) has proven

O to be a powerful tool for distributing,
improving, and extending new

programs. OSS licensing is gaining acceptance
by industry and governments worldwide. It is the

power of openness derived from collaboration and
innovation that DoD intends to harness.

For nearly two decades, NSA’s Research
Directorate (RD) has been exploring the role OSS
can play in helping the DoD achieve its missions.
Efforts by RD researchers led to the public release
in December 2000 of security-enhanced (SE) Linux.
Since then, developers from HP, Hitachi Software,
IBM, NEC, Red Hat, and other commercial as
well as private institutions have contributed to
extending the program’s features and maturing its
functionality. (For an in-depth look at SELinux, see
“Raising the Bar in Operating System Security” in
this issue of The Next Wave.)

More recently, DoD developers contributed
over a million lines of code to the open-source
(OS) community, helping expand the federal OS
highway. One million lines is about the size of
the Corporate Management Information System
(CMIS), developed internally by the U.S. Defense
Information Systems Agency (DISA). DISA
spent almost a decade building the web-based
federal workforce management, workflow, and
administrative software suite for use by more than
16,000 military personnel.

When other government departments
wanted to adopt the CMIS suite of more than
50 applications, DISA’s director of manpower,
personnel, and security, Jack Penkoske, asked,
“Why not let them?” And if sharing CMIS with
other federal agencies was a good idea, why not
include academia, industry, and the entire OS
community?

DISA did just that. In March 2009, the
Pentagon’s information technology unit announced
a cooperative research and development agreement
(CRADA) with the Open Source Software Institute
to make an OS version of CMIS available to
other federal agencies, academia, non-profit
organizations, and industry to reuse and improve.
DISA used Adobe Cold Fusion and Microsoft SQL
Server 2005 to build OSCMIS. The department’s
effort was recognized by Government Computer
News (GCN) as one of the “11 great government IT
projects” for 2009.

Other federal OS projects have also come
on line recently or are in the works. In June 2009,
the U.S. Air Force released a free and open-source
version of FalconView, a personal computer-
based mapping application developed for the
DoD by Georgia Tech Research Institute. Even
the White House has entered the OSS arena. The
popular WhiteHouse.gov web site switched from
a proprietary content management system to open-
source Druple in October 2009. Citing the potential
for everyday citizens contributing to the evolution
of the web site, White House media director Macon
Phillips said, “We’re looking forward to getting the
benefit of their energy and innovation.”

The open-source road at times has been a
bumpy one, not just for the DoD, as IT planners
attempt to steer a course straddling the benefits
of openness with the demands of security. But
Wennergren, who also serves as Deputy Assistant
Secretary of Defense for Information Management
Technology, argues that this is the wrong way to
look at the challenge. He proposes a different model
in which openness and security are goals that can
reinforce each other.

The DoD has officially endorsed the use of
OSS, stating as much in guidelines published in
2003. A memorandum released 16 October 2009
by the CIO team provides “clarifying guidance”
intended to overcome ‘“misconceptions and
misinterpretations of the existing laws, policies,
and regulations that deal with software and apply
to OSS.” DCIO Wennergren states in the memo that
these misconceptions and misinterpretations have
hampered DoD efforts to effectively develop and
use OSS.

OSS has already been adopted by several
DoD agencies, with its extensive use cited as early
as 2003. In a study prepared for the DoD, “Use
of Free and Open-Source Software (FOSS) in the
U.S. Department of Defense,” MITRE Corporation
found that “FOSS software plays a far more critical
role in the DoD than has been generally recognized.”
Now, the 2009 memorandum, which supersedes
DoD guidelines of seven years ago, opens the door
to even greater proliferation of OSS products in the
future.

One force accelerating the DoD’s adoption of
OSS may come from the memo’s affirmation that
“in almost all cases, OSS meets the definition of

‘commercial computer software’,” and needs to be

The Next Wave = Vol 18 No 2 = 2009 5

treated as such. Classifying OSS as a commercial
item grants it special contractual consideration.
U.S. law (10 USC 2377) calls for government
procurement to favor commercial supplies and
services. The law requires heads of agencies to
ensure that procurement officials are trained in
the acquisition of commercial products. Everyone
involved in the procurement process must, by
law, make every effort to acquire commercial
products and require contractors to incorporate
commercial products, when possible. Additionally,
specifications for contract requirements should be
stated in terms that encourage bidders to supply
commercial products, and procurement policies,
practices, and procedures are to be written or
revised to reduce impediments to their acquisition.

Policies set out in Federal Acquisition
Regulation (FAR) 10.001 and the DoD supplement,
DFARS 252.227-7014, specifically require
executive agencies to include OSS when conducting
market research for software procurements. This
obligation places OSS products on equal footing
with all other commercial products.

Still, misconceptions and misinterpretations
stand in the way of government agencies adopting
0SS, according to DCIO Wennergren. Ambiguous
terminology associated with OSS has led, in part,
to some of these misconceptions. Common usage
of the word free has contributed to the mistaken
understanding that freeware does not qualify as
a commercial product. The reference to “free”
in FOSS or “libre” in FLOSS (free/libre open-
source software) applies to free or libre access to
use, modify, and extend a product’s underlying
code, and not to the cost of the software. Both
the Free Software Definition (FSD) and the Open
Source Definition (OSD), the two main documents
governing OSS development and use, support this
interpretation.

By U.S. Government standards open-source
software is not necessarily free software, even
when it is available free of charge. When Congress
enacted the No Electronic Theft Act (NET) of 1997
(HR 2265) to criminalize copyright infringement
done “willfully and for purposes of commercial
advantage or private financial gain,” the definition
for “financial gain” was added to Section 101 of U.S.
copyright law. The U.S. Patent Office now considers
the “receipt, or expectation of receipt, of anything
of value, including the receipt of other copyrighted

6 Taking the Open Source Road

works” financial gain. By applying this definition
to OSS, simply improving code—something
encouraged by the open-source community and
expressed in the OSD and the FSD—is a form of
financial gain, making the software commercial.

More obvious efforts to commercialize OSS
are gaining momentum, as well. Research firm IDC
forecasts a 22.4 percent compound annual growth
rate (CAGR) for OSS revenue worldwide over
the next five years. That gain would push revenue
from OSS past $8 billion by 2013. In addition to
established OSS vendors like Red Hat and Novell,
service-based IT businesses such as IBM and
Oracle have been tapping the open-source market
by offering OSS support. Google’s OSS strategy
has been to shift emphasis away from the code in
favor of transparency and application programming
interfaces (APIs). Even Microsoft is promoting
efforts to support interoperability between the
company’s proprietary line of products and OSS.

In addition to assuring DoD agencies it’s
OK to use OSS and requiring them to include
OSS solutions in the procurement process, DCIO
Wennergren listed seven “positive aspects” of
OSS that DoD departments should consider when
conducting market research for selecting software.

1. Continuous and broad peer-review: Publicly
available source code is open to greater
scrutiny than a software development team can
provide. Continuous and broad peer review
promotes improved software reliability and
security.

2. Unrestricted ability to modify software source
code: Agencies can initiate code changes
rapidly in response to changing situations.
Unrestricted access to source code makes
it easier to enhance missions and respond
quickly to emerging threats.

3. Reduced barriers to vendor entry and exir:
OSS can be operated and maintained by
multiple vendors. Eliminating proprietary
restrictions reduces reliance on a particular
software developer or vendor.

4. Flexible deploymeni: Open-source licenses
do not restrict how software is used or by
whom. This network-centric licensing model
enables rapid provisioning of both known and
unanticipated users to meet changing mission
and user requirements.

5. Reduced cost for licenses: Because OSS
typically is not licensed on a per-seat basis,
costs are lower for large distributions, and
users can be added at any time.

6. Reduced cost of ownership: All users of OSS
share the responsibility for its maintenance.
The overall cost of software ownership is
therefore reduced for all parties.

7. Rapid prototyping and experimentation:
OSS is particularly suitable for software
development. The ability to “test drive”
the software with minimal costs and
administrative delays provides added benefits.

How well commercial software measures up
against these seven criteria should be calculated
in the evaluation of any software acquisition,
whether it is proprietary or open source. Although
these positive aspects of OSS are deemed relevant
for a market survey, the CIO memo cautions they
shouldn’t be interpreted as overriding factors for
making procurement decisions: “Ultimately, the
software that best meets the needs and mission
of the Department should be used, regardless of
whether the software is open source.”

However, a variety of misconceptions
about OSS are identified by DCIO Wennergren
as constraining the adoption of OSS solutions in
some DoD departments. These misconceptions
include concerns about reviewing code, supporting
the software, and making the source code publicly
available. But none of these concerns are warranted,
the memo asserts.

For example, Public Domain Software
Control, DCPD-1, in DoD Instruction 8500.2,
“Information Assurance (IA) Implementation,” is
sometimes cited as restricting the use of OSS. The
control states,

Binary or machine executable public domain
software products and other software
products with limited or no warranty such
as those commonly known as freeware or
shareware are not used in DoD information
systems unless they are necessary for mission
accomplishment and there are no alternative

IT solutions available.

This control protects against the procurement
of software when the Government does not have
access to the original source code, making it
difficult or impossible to review, repair, or extend
the software. But CIO guidance points out that
because the government does have access to the
original source code of open source software, these
terms do not apply. For this reason, the DoD Open

Source Software FAQ, available through the DoD
web site and Intelink, states “...do not use the terms
‘freeware’ or ‘shareware’ as a synonym for ‘open

5 9

source software’.

Another concern about OSS is that a lack of
appropriate maintenance and support presents an
information assurance risk. But this is true for all
software, open source or closed source. System
and program managers, and ultimately designated
approving authorities (DAAs), are responsible for
ensuring that a plan for software support is in place
and adequate for mission needs before approving
the use of any software.

The misconception that OSS should not be
integrated or modified for use in classified or other
sensitive DoD systems is also challenged. The
memo notes: “...many open source licenses permit
the user to modify OSS for internal use [emphasis
provided] without being obligated to distribute
source code to the public.”

Still, federal agencies required to
disseminate new software as widely as possible.
Because software source code and associated design
documents are defined as “data” by DoD Directive
8320.02, they are to be shared across the DoD to
support mission needs. OSS licenses actually make
it easier to share these components, providing even
better support for the DoD’s network-centric data
strategy. Therefore, it is up to the project manager,
program manager, or other comparable official
to understand how the Department intends to use
and redistribute any DoD-modified code and the
specific requirements of the governing OSS license.

are

Acting Assistant Secretary of Defense for
Networks and Information Integration (ASD(NII))
and DoD CIO Cheryl Roby calls information “our
greatest strategic asset.” To transform the DoD into
a network-centric organization, roadblocks to that
information must come down. DCIO Wennergren
believes achieving a net-centric force is “much more
about culture change than technological change.”
Part of that culture change means accepting OSS
as a viable software solution for meeting mission
needs. The adoption of more open-source software
projects by federal agencies could mark an important
step along the road to an information-centric future
for the DoD.

The Next Wave = Vol 18 No 2 = 2009 7

Raising the Bar in Operating

8 Raising the Bar in Operating System Security

oystem Security:

Abstract

Over the past several years, the Security-Enhanced Linux
(SELinux) reference implementation of the Flask security
architecture has undergone a rapid evolution in its capabilities
and maturity thanks to a large and growing developer and user
community. SELinux has also influenced a wide range of related
work in other operating systems, hypervisors, and applications. In
2008, a new project was started to bring the same Flask security
architecture demonstrated in SELinux to the OpenSolaris™
operating system via the OpenSolaris Flexible Mandatory Access
Control (FMAC) project. These efforts have fundamentally changed
the terms of debate about operating system security and ushered
security features previously limited to separate niche products
into the mainstream. This article describes the major advances
and changes in SELinux that have occurred during the last several
years; summarizes other related work that has flowed out of the
SELinux project; and introduces the goals, design, and status of the
OpenSolaris FMAC project.

Introduction

Security-Enhanced Linux (SELinux) was developed by the
National Information Assurance Research Laboratory (NIARL) of
the National Security Agency (NSA) starting in 1999 and was first
released to the general public via the nsa.gov web site in December
2000. SELinux was created by NSA as a reference implementation of
the Flask security architecture for flexible mandatory access control
(MAC) in order to show how such controls could be added to a
mainstream operating system and to demonstrate the value of MAC
[1]. SELinux was intended to serve both as a technology transfer
vehicle for encouraging adoption of flexible MAC into mainstream
operating systems and as a research platform for advanced security
research and development. Prior to the release of SELinux, MAC
was only available in separate “trusted” operating system products
and was limited to fixed hierarchical security models that were
unable to express many kinds of real security goals.

The public release of SELinux drew the interest of both
advanced Linux users and the Linux kernel developers, which led
to an invitation to present SELinux at the Linux kernel developer

summit in March 2001. The resulting
discussion at that summit led to the
creation of the Linux Security Modules
(LSM) project, an open source project to
create a common security framework in the
Linux kernel that could support a variety
of security models. During the next couple
of years, the SELinux developers served
as core contributors to the development
of the LSM framework and re-architected
SELinux to use the LSM framework. The
LSM framework began to be merged into
the mainline Linux kernel in 2002, and the
remaining portions of the framework and
the SELinux security module were merged
into the mainline Linux 2.6 kernel series
by the end of 2003.

Even prior to its integration into
the mainline Linux kernel, advanced
Linux users had begun packaging
SELinux kernel, policy,
and application support for
multiple Linux distributions
so that they could use
SELinux for protecting
their own systems. SELinux
packages for the Debian
GNU/Linux distribution
were made available as
early as 2001, and the
Hardened Gentoo project (a
security-focused subproject
of the Gentoo Linux
distribution) began including SELinux
support in 2002. The growing developer
and user community around SELinux
and the efforts to bring SELinux support
into the mainline Linux kernel drew the
interest of Red Hat, Inc., which began
work to fully integrate SELinux support
into its Linux distributions in 2003,
starting with their new community-based
Fedora distribution. The SELinux code
was first included in the Fedora Core 2
release in May 2004, eliminating the need
for separate patches for the kernel and
applications. The introduction of a security
policy configuration focused on confining
specific network-facing services such
as the Apache web server and the BIND
domain name server made it possible to
enable SELinux by default in the Fedora

situations

Core 3 release in November 2004. This
security policy configuration was called
the “targeted” security policy because it
applied SELinux to protecting specific
services (i.e., the “targets”) that were
likely points of attack into the system.

The Fedora SELinux integration
work and the resulting community test-
ing and refinement of SELinux formed the
basis for including SELinux in the com-
mercially supported Red Hat® Enterprise
Linux® product. Red Hat Enterprise Linux
4, released in February 2005, shipped with
SELinux as a default-enabled security
feature providing out-of-the-box confine-
ment of over a dozen system services. This
release represented the first inclusion and
use of MAC in a mainstream commercial
operating system. MAC was no longer
limited to separate “trusted” operating sys-

“Linux security experts are reporting
a growing list of real-world security
in which the US National
Security Agency’s SELinux security
framework

contains the

Don Marti , LinuxWorld.com

tems and had become a general-purpose
security feature. The inclusion of MAC in
a mainstream commercial operating sys-
tem set the stage for the rapid advances in
SELinux that have occurred since 2005.

SELinux: 2005-present

Over the past several years, a new
generation of policy technology has been
developed and deployed for SELinux.
The advances in policy technology have
included the introduction of the reference
policy, the development of loadable
policy module support, the creation of
policy management infrastructure, and the
convergence of strict and targeted policies.

SELinux was originally released
by NSA with a small example policy

damage
resulting from a flaw in other software.”

FEATURE

configuration to demonstrate the concepts
and the value of flexible MAC. Early
adopters of SELinux used that example
policy as a base and began contributing
changes and additions to it, leading to
very rapid growth in its coverage of
different applications but at a cost in
terms of understandability and ease of
customization. NSA sponsored work by
Tresys Technology to undertake a re-
design of the base policy for SELinux, with
a focus on modularity, understandability,
tool support, and customization. This work
has yielded the SELinux reference policy,
which has supplanted the original example
policy as the standard base policy for all
modern Linux distribution releases that
support SELinux, starting with the Fedora
Core 5 release in March 2006.

The reference policy was also
designed to take advantage of
a new feature in the SELinux
policy toolchain that was
also being developed by
Tresys Technology in the
same timeframe: support for
loadable policy modules.
The original SELinux policy
configuration and compiler
were “monolithic.” That
is, in order to make any
substantive change to policy
beyond a few specific forms
of customization (e.g., booleans, local file
contexts), one needed to obtain a complete
policy source tree, make corresponding
changes to the source files, and rebuild
the entire policy into the binary form
required by the kernel. Loadable policy
module support was developed to enable
individual policy modules to be built and
packaged separately from one another.
This mechanism has enabled users to
easily create local policy modules as
needed for site customization, and it has
enabled software developers to easily
package policy for their applications.
Loadable policy module support was also
first deployed in Fedora Core 5.

While the loadable policy module
support was being merged into the
upstream SELinux wuserland, a new

The Next Wave " Vol 18 No 2 * 2009 9

software library, [libsemanage, was
developed jointly by Red Hat and by Tresys
Technology to provide a standard API and
infrastructure for managing policy. This
library provides a programmatic interface
for making changes to policy, as opposed
to having to manually edit text files, and
provides support for a wide range of local
customizations to policy. Front-end tools
such as semodule and semanage were
created to enable users and higher level
tools to perform policy management tasks.
This library and the initial front-end tools
also first appeared in Fedora Core 5.

A practical compromise made early
in the Fedora SELinux integration was
to create a separate ‘“targeted” policy
configuration that focused on protecting
network-facing services and left ordinary
user sessions unrestricted and use that
policy as the default so that SELinux
could be enabled by default without
disrupting users. The complete example
policy with significantly more coverage of
services and applications and support for
user roles became known as the “strict”
policy configuration, and this strict policy
configuration was not well supported
and required significant expertise to
successfully install and use. However,
this compromise made it possible to
incrementally expand the coverage of
the targeted policy in each new release
through the community testing and
feedback process since SELinux was
enabled by default. With the introduction
of the reference policy, both the strict and
targeted policy variants were built from
the reference policy sources based on a
single tunable setting.

As a result, the targeted policy
has grown from covering over a dozen
services in the earliest release to covering
over two hundred applications in modern
releases. The last significant difference
between the targeted and strict policies
was eliminated starting with the Fedora 8
release in November 2007, when support
for confining users was introduced in
targeted policy. The Fedora 9 release
in May 2008 used this support to define
several user roles available by default

and to support a kiosk mode of operation
where the user session is highly restricted
and is completely purged of state after each
session. As a result, the targeted policy
and the strict policy have converged and
there is no longer a separate strict policy.
Administrators can largely obtain the
behavior of the strict policy by mapping
users to confined roles, and they can
optionally remove the unconfined policy
module entirely, although this last step can
be destructive to running processes and
requires some care to do safely.

Based on user feedback, the
advances in policy technology described
above have greatly improved the user
experience of SELinux by enabling
users to solve many of the problems
that they encounter. In particular, the
loadable policy module support and the
management tools have enabled users to
perform local customizations of policy to
fit their particular needs and have enabled
developers to ship customizations for their
applications.

EE
[T L]

-

.

He el "]

EEp—

s —_—— & ma s [
Worum b
| R

el Fard

(R

2 5 =3 7T b ey

e = R

e

s 54 ol o ity P o ey ey e |

ey T e ey i et i e s b b
iy bpite e e i g g

b BT 1r oyt e ki o7

b g 1| Yy
i i R L TR by e |
migs npp e ip rri pd B ol W el e
e bR B e =

e

i e O S R

il e s @ -

mEw
L bl gy
il
S e
i1
Fam P Swell pAF ple wriel
Lt b BT ReRT O
i bt g
P R S R SR S "
1 e e
e Frign e iy
whe g el prs pae
&y P gy -t
e iy iy
o TP | B a8

I

e L8 Yew Eeln
s T

= HE&]

Figure 1: system-config-selinux screenshot

Coasl | Eategery . Sovenay

LCals
B W Mlag PR TETE 1T AMPOT o A e whberron T Mrialiel Uiy
pririaey |

SfLrw [freveeing Ehal B LS o

palard inly mncab-ad ei L' iwewtimibendds himi

Gl b g T spe moc v b o enbaly ekl sl fies] Gl e Sl e DEmill Bl maam that
Ly wll ot pllgw hEEpd En ang Phase Pl i B ponernon for Lnasny B mds fiers in e farmen et by o g
i il ared B el [y] B E el i e (ol Tt proilei ml Thal Bhe M omed oy el 5 1he
wrang e oonbaall which Confred ol Biany shr ra? aiowed 1o $ildin

B ypoe woant hefpd So sdens B Seh, yroa reped $a rapleten EReen wmens] resbanscsn - e e, Titrmisndae Fimd
e rwghl sk fo nelabied B wnies Geec Lony uaing ceil e on < By Yoo faemihibmd®

Saute Lofllans ur preireed] e npiem rRLlpd Ll
Tt Condexl ung greired o obped b ooy borrs Lad
Tarpek Cesn centmaE i rlrelns mi | e !
TN hitpd
fmarce Pakh Rt Eped
et o A
AT Kt TG A HeL e Tl
EETE AP
Packages a2 28
Tt AP
Ppchig
Pl PAL- i ol 8143 kY
S AR Fur
4 el T A L1

10 Raising the Bar in Operating System Security

Figure 2: setroubleshoot screenshot

Several graphical tools have also
been developed in recent years to assist
users with different aspects of SELinux.
These tools include system-config-selinux,
setroubleshoot, and the SELinux Integrated
Development Environment (SLIDE). The
first two tools were developed by Red
Hat and first included in Fedora Core 6
in October 2006. The SLIDE tool can
be freely downloaded from the Tresys
Technology open source server, http://
oss.tresys.com/, and was included in the
Fedora 9 release in May 2008.

A graphical front-end to the
semanage functionality, system-config-
selinux allows the administrator to easily
see and modify the current enforcing status,
policy booleans, label assignments for
files and ports, and user authorizations. It
also provides simple support for managing
the set of loaded policy modules. Recent
versions of the tool (see Figure 1) also
include a policy wizard for creating new
policy modules.

A service for notifying users of
SELinux denials, setroubleshoot helps
users to diagnose denials and resolve them.
Ithas increased user awareness of SELinux
and enabled users to identify and solve
common kinds of configuration errors.
The tool can be configured to display alert
popups to the user on the desktop, or alerts
can be handled via system logs or email
notifications. See Figure 2 for a screenshot
of setroubleshoot.

SLIDE is an Eclipse plug-in to
provide a graphical user interface for
policy developers with the conventional
features of an integrated development
environment, such as policy creation
wizards, interface completion and
searching, and policy syntax highlighting.
Recent versions of SLIDE (see Figure
3) have incorporated support for remote
policy debugging and integration with
policy analysis tools.

The core security functionality
of SELinux has undergone significant
enhancements and improvements since
2005. These enhancements have included
extended security audit functionality,

FEATURE

TTIp= Erp. e mam

P I8 R T

[7 . S

enhanced Multi-Level Security (MLS)
support, new network access controls, and
labeled networking support along with
numerous other smaller changes.

As part of the work to enable Linux
to meet the Labeled Security Protection
Profile requirements, SELinux was
fully integrated with the Linux audit
subsystem, enabling audit to include and
filter based on security contexts. Likewise,
the optional MLS model of the SELinux
security server was enhanced and enabled
by default, and user space support for MLS
requirements was developed. This work
was done with the help of a wide range of
contributors from HP, IBM, Red Hat, and
Trusted Computer Solutions (TCS).

Red Hat developed a new mechanism
for flexible network access controls called
SECMARK, which combined the power of
the Linux packet filtering framework with
SELinux policy. Developers from IBM,
TCS, and HP created and integrated two
independent implementations of labeled
networking mechanisms, labeled IPSEC
and NetLabel/CIPSO. These mechanisms
enable SELinux protections to be applied
across network communications.

The original SELinux implemen-
tation included an Access Vector Cache

Figure 3: SLIDE screenshot

(AVC) to minimize the need to perform
expensive security computations on each
operation and sought to keep overheads
to reasonably low percentages, but did
not specifically engage in any detailed
performance optimizations. The original
SELinux implementation also only dealt
with ensuring safety on systems using an
SMP (symmetric multiprocessing) version
of the Linux kernel through the use of
coarse-grained locking. This approach did
not scale well on large SMP systems. Since
the original inclusion of SELinux in Linux
distributions, a number of performance
and scalability improvements have been
developed and integrated.

An engineer from NEC Corporation
undertook work to enable SELinux to scale
well on large SMP systems. He replaced
the coarse-grained lock of the AVC with
a scheme known as Read-Copy-Update
(RCU), enabling SELinux to achieve
near-perfect scalability. This made the
deployment of SELinux practical on large
systems.

As the default targeted policy grew
in its coverage of services, the amount
of kernel memory used by the policy
was increasingly becoming too high and
beginning to cause problems for users.
As a result, the SELinux core developers
discussed approaches to improve memory

The Next Wave " Vol 18 No 2 * 2009 11

use, and a set of memory optimizations
were implemented by NSA that radically
reduced the kernel memory use by a factor
of 20X.

A number of memory and perfor-
mance optimizations have been developed
in recent years by contributors from the
Japanese SELinux community working
on using SELinux on embedded systems,
including contributions from NEC and
Hitachi Software among others. Further
optimizations to the policy data structures
have yielded significant improvements in
kernel memory use. The revalidation of
read and write permission on individual
read and write system calls was optimized
to deal with significant overheads on the
SuperH architecture, improving overhead
by a factor of around 10X.

In 2007, Red Hat Enterprise Linux
5 was validated against the Controlled
Access Protection Profile (CAPP), the
Labeled Security Protection Profile
(LSPP), and the Role-Based Access
Control Protection Profile (RBACPP) at
Evaluation Assurance Level 4+ on HP
and IBM hardware. This was the result
of a collaborative effort among HP,
IBM, Red Hat, and TCS that leveraged
SELinux to provide the labeled security
and role-based support. This work led
to several improvements to SELinux,
including improved audit, MLS, and
labeled networking. SGI has also achieved
validation of Red Hat Enterprise Linux 5
on its hardware in 2008. These validations
represent the first time that a mainstream
commercial operating system product has
been validated against such criteria, which
in the past have been limited to separate
“trusted” operating system products.
These evaluations were also distinctive
in that the companies that sponsored the
evaluations worked together to develop
the necessary functionality and shared the
resulting documentation and test suites
despite being competitors.

The Systems and Network Analysis
Center (SNAC) of NSA developed
and released their first-ever security

configuration guide for Linux in 2007,
the Guide to the Secure Configuration
of Red Hat Enterprise Linux 5. Along
with many other topics, the guide
describes the benefits of SELinux for
security and explains how to perform
basic configuration and troubleshooting
of SELinux. This guide joins the other
configuration guides produced by the
SNAC over the years for a wide variety
of operating systems and is available from
http://www.nsa.gov/ial/guidance.

The Certifiable Linux Integration
Platform (CLIP) is a specific configuration
of Linux and associated evidence designed
to meet several established security
requirements, including the Protection
Level (PL)4 requirements fromthe Director
of Central Intelligence Directive (DCID)
6/3, “Protecting Sensitive Compartmented
Information within Information Systems”
and the High Impact requirements from
the National Institute of Standards and
Technology (NIST) Special Publication
800-53, “Recommended Security Controls
for Federal Information Systems.”
CLIP defines a specific configuration of
SELinux to provide the foundation for
hosting security-relevant applications by
ensuring that the underlying assumptions
made by those applications are enforced by
the operating system. In particular, CLIP
leverages SELinux in order to enforce the
strong separation of processes and data,
support different user roles, and ensure
that application security mechanisms are
tamperproof and cannot be bypassed.
The CLIP project is sponsored by NSA’s
Custom Solutions Group and is being
developed by Tresys Technology. CLIP
can be downloaded from http://oss.tresys.
com/projects/clip.

For the past four years, SELinux has
been a default-enabled security feature
in the Fedora and the Red Hat Enterprise
Linux distributions, providing out-of-
the-box confinement of an increasing
number of system services. The improved
usability of SELinux has enabled users

12 Raising the Bar in Operating System Security

to expand their use of it and to directly
solve problems. The anecdotal evidence
of improved wuser experience from
public mailing list discussions is further
reinforced by statistics being collected by
the Fedora project, which began to collect
information about SELinux status starting
with the Fedora 8 release. The majority of
Fedora systems reporting into the Fedora
project show that users keep SELinux
enabled.

In addition to Fedora and Red Hat
distributions, SELinux has continued
to make advances in adoption in other
Linux distributions. The Hardened Gentoo
project has continued to support SELinux
in the Gentoo Linux distribution and to
integrate newer SELinux features. The
Debian GNU/Linux distribution began
including SELinux support in the Debian
4.0 release. The Ubuntu distribution began
including minimal SELinux support in
the Ubuntu 8.04 release, which was then
further enhanced in the Ubuntu 9.04
release. Novell began including basic
SELinux support as an optional feature in
SUSE Linux 11.1.

The benefits of SELinux for
mitigating vulnerabilities in software are
increasingly being recognized. An article
by Don Marti published on LinuxWorld.
com in February 2008 stated, “Linux
security experts are reporting a growing
list of real-world security situations in
which the US National Security Agency’s
SELinux security framework contains
the damage resulting from a flaw in other
software [2].” In discussing the migration
of their mission-critical trading platform
to Linux, Steve Rubinow, the Chief
Information Officer (CIO) of the New York
Stock Exchange (NYSE) Euronext was
quoted as saying, “We are very security
conscious because we have to be....We
maintain the security of our systems by
relying on the SELinux features within
Red Hat Enterprise Linux [3].”

SELinux has also served as a
secure foundation for a number of secure
solutions developed for the government.
These systems include the NetTop®
system originally prototyped by NIARL

and later productized by HP along
with several derivative systems. It also
includes the TCS Secure Office® Trusted
Thin Client system. A number of Cross
Domain Solution (CDS) systems have
been developed by NSA and by other
organizations that leverage SELinux
to enforce separation and to ensure the
assured invocation of the CDS application.
As mentioned earlier, SELinux is also
being leveraged by the CLIP project.

Along with growth in its user
community, SELinux has experienced
significant growth in its developer
community since 2005. Developers from
HP, Hitachi Software, IBM, NEC, NSA,
Red Hat, Tresys Technology, and TCS
along with many individual developers
have worked collaboratively to enable
SELinux to advance rapidly in its feature
set and maturity.

In addition to serving as a technology
transfer vehicle for encouraging adoption
of flexible MAC by industry, SELinux
has also served as a useful platform for
advanced research and development. By
providing a base system that supports
flexible MAC and exports interfaces
to support security-aware applications,
SELinux enables research to proceed in
understanding MAC in a complete system,
from the low-level operating system up
through infrastructure layers to the end-
user applications.

Securing the desktop environment
experienced by typical users is one area
of active research. This area is particularly
challenging to secure due to the tight
coupling of applications typical in such
environments and the lack of consideration
to any security boundary between processes
within a desktop session. Addressing these
challenges is critical in order to be able
to protect against exploitation of flaws in
commonly used desktop applications such
as browsers and mail clients, so that a flaw
in a single program does not expose all
of the user’s data to risk. To date, work
has been done by NSA to implement
the D-BUS message service, the GConf

configuration system, and the X Window
System server with the necessary support
for applying flexible MAC to their objects
and operations [4, 5]. Work is ongoing by
NSA to develop library support for these
extensions, address other components of
the desktop infrastructure, and assist in
developing policy for the X server that
supports simple security goals. Future
work includes addressing performance
challenges, refining the controls based on
experience with real applications, securing
the direct rendering interface, providing
trusted input and display, and integrating
with desktop applications.

Beyond the desktop, a wide range of
application security research is leveraging
SELinux as a base platform and as an
architecture for providing flexible MAC
services to higher layers. This includes the
SE-PostgreSQL project, an effort by NEC
Corporation to develop flexible MAC for
database objects and transactions in the
Postgres database management system.
Research has also been performed by
NSA into enforcing Risk Adaptive Access
Control (RAdAC) by leveraging the
SELinux operating system functionality
to protect and isolate an application
policy enforcer and by using the Flask
architecture and user space security server
to provide policy decisions and revocation
support [6].

Enabling secure file sharing among
networked or distributed systems is
another area of active research being led
by NSA with support from SPARTA, Inc.
This effort requires addressing challenges
posed by systems with potentially different
security policies that need to share data
securely as well as providing the basic
mechanisms for conveying security
attributes for processes and files across
the network. Given the common use of
such networked file systems in enterprise
environments, enabling flexible MAC to be
effectively applied to such file systems is
likewise a crucial challenge. Experimental
extensions to the NFSv4 protocol have
been proposed and prototyped, and work
is ongoing to standardize the protocol
changes and to get the implementation into

FEATURE

a form acceptable to the Linux developer
community. Future work will include
dealing with heterogeneous policies.

While flexible MAC provides new
capabilities for improved security, it also
introduces its own set of challenges,
including policy scalability and usability.
Hence, research by NSA with support from
Tresys Technology is ongoing into how
to create an abstract layer for policy and
how to more closely link the enforcement,
debugging, and development of policy to
enable users to more effectively develop,
debug, and understand policy. Research is
also underway at NSA into more advanced
policy language features to facilitate
policy customization and extension.

Policy management continues to
be an area of active investigation. Early
work in this area by Tresys Technology
and Red Hat has yielded the current
policy management infrastructure and
tools such as semanage. Research by
Tresys Technology, which was sponsored
by NSA, has also yielded experimental
prototypes of a policy management
server to support fine-grained access
control over the policy itself and of policy
management infrastructure to support
management of collections of systems.
Work has recently started at Penn State
University to investigate how to manage
policy for virtualized environments with
different collections of policy enforcing
components.

The Flask security architecture
demonstrated in SELinux has strongly
influenced the security of a number of
other systems and software components.
In the application arena, this has included
the D-Bus message bus software, the X
Window System, and PostgreSQL, as
previously noted, each of which now has a
set of flexible MAC controls implemented
that can extend the reach of the policy
enforcement to their higher level objects
and operations. In the virtualization arena,
the Flask architecture has been applied
to the Xen hypervisor, yielding the Xen
Security Modules (XSM) framework

The Next Wave " Vol 18 No 2 * 2003 13

and the Xen Flask security module
developed by NSA, enabling enforcement
of policy over virtual machines and their
interactions.

The Security-Enhanced BSD
(SEBSD) and Security-Enhanced Darwin
(SEDarwin) projects demonstrated that the
Flask architecture could also be applied
to other operating systems. Although
SEBSD and SEDarwin are not integrated
into their respective mainstream operating
system distributions, they helped to drive
the requirements for the MAC framework
that can be found today in mainstream
FreeBSD® and in MacOS X operating
systems. They also proved that the
architecture was applicable to a variety
of operating systems and provided an
alternative reference implementation from
which others can learn.

In late 2007, NSA and Sun
Microsystems, Inc., began a dialogue
about integrating support for the Flask
architecture into the Solaris™ operating
system. This dialogue led to the launching
of the Flexible Mandatory Access Control
(FMAC) project on OpenSolaris.org in
March 2008. The project is a joint effort
among NSA, Sun, and the OpenSolaris
developer community to bring support for
flexible MAC to the OpenSolaris operating
system environment.

Unlike Linux, where there was
no support for MAC at all prior to the
integration of SELinux, the Solaris
operating system has an existing
MAC solution. Prior to Solaris 10, this
functionality was provided by Sun via
a separate product, the Trusted Solaris
operating system. Like other trusted
operating systems of its genre, Trusted
Solaris was limited to a fixed MLS security
model and tended to lag behind the latest
release of Solaris due to the additional
engineering and evaluation requirements.
In Solaris 10, some of the security
functionality of Trusted Solaris, such
as support for roles and privileges, was

integrated into the main Solaris product
and released as part of OpenSolaris. The
MLS support was redesigned around the
Solaris “zones” mechanism and provided
as an optional set of extensions to Solaris
known as Trusted Extensions (TX), which
have also been subsequently integrated
into OpenSolaris.

Solaris zones are a mechanism for
lightweight virtualization; they provide
an illusion of multiple virtual operating
system instances while sharing a single
kernel by placing groups of processes and
objects into separate “zones” and isolating
them from one another. Since TX relies
on the zones mechanism, it is limited to
per-zone security labels (i.e., all processes
and objects within a zone share the same
security label). This represents a change
from the prior Trusted Solaris product and
a difference from SELinux, both of which
support per-process and per-object security
labeling. TX is also presently limited to a
fixed MLS model like its predecessors.

FMAC aims to address these
limitations by supporting per-process and
per-object labeling and permission checks,
and by introducing flexible MAC support
to OpenSolaris that can support a wide
range of security models. The zone-based
mechanism will still be useful as a way
of providing coarse-grained isolation and
namespace separation, while FMAC will
be used in a complementary fashion to
provide intra-zone protection, hardening
of the global zone, and control over cross-
zone channels. In this manner, FMAC and
TX should be able to complement one
another and ultimately form an integrated
solution.

FMAC also aims to complement the
existing Solaris privilege and Role-Based
Access Control (RBAC) mechanisms. Just
as SELinux provides a way to control the
use of Linux superuser capabilities based
on policy, FMAC will provide a way
to control the use of Solaris privileges
based on policy. This control will include
the ability to bind privileges to specific
processes and programs, to limit the
use of privileges by a given process to

14 Raising the Bar in Operating System Security

specific objects, and to protect privileged
processes from untrustworthy inputs,
just as in SELinux. Unlike Linux prior to
SELinux, Solaris has an existing RBAC
mechanism, but at the present time the
Solaris RBAC mechanism is primarily
enforced by trusted applications, with
the kernel only aware of the privilege
model. FMAC offers a means of binding
the Solaris role construct to processes
and directly enforcing RBAC restrictions
in the kernel, strengthening the existing
mechanism.

While complementing these existing
Solaris security mechanisms, FMAC will
preserve existing Solaris interfaces and
provide full compatibility for applications,
justas SELinux provided full compatibility
for Linux applications. FMAC will also
provide a set of new APIs that will support
security-aware applications, and these
APIs will provide the same semantics as
the corresponding SELinux APIs so that
security-aware applications can be written
portably to run on either SELinux or
OpenSolaris FMAC.

Ultimately, the OpenSolaris
FMAC project will provide a wider
set of platforms that support the Flask
architecture for flexible MAC and will
expand the developer and user community
for Flask. It should also help encourage
independent software vendors (ISVs) to
improve application-level support for
flexible MAC and to provide policies for
their applications.

The initial FMAC code base was
contributed by NSA to OpenSolaris based
on a version of the Flask code that predated
any involvement by the Linux community.
This code was then integrated into the
OpenSolaris code and adapted by John
Weeks, a Sun engineer who is the co-lead
of the FMAC project. This code was first
released publicly as an Alpha 1 release on
the FMAC project web site in May 2008.
When built, it produced a policy compiler
and a kernel capable of loading the
resulting policy into the security server.

Since that first release of FMAC,
joint development by NSA and Sun
Microsystems has proceeded rapidly.
Support for new system calls and utilities
and for per-process security labeling was
introduced during the summer of 2008,
leading to an Alpha 2 release in early
September. Shortly thereafter, prototype
support for per-file security labeling in the
ZFS file system was introduced, which
paved the way for supporting security
context transitions upon program execution
and for performing a basic set of process
and file mandatory access control checks.
This work produced a basic working
example of how flexible mandatory
access controls could be applied to an
OpenSolaris system. This functionality
along with subsequent enhancements to
support labeling in the TMPES file system
and improve the Access Vector Cache
(AVC) interfaces and implementation in
FMAC was included in the Alpha 3 release
made in late October 2008.

The next two major areas of focus
for FMAC integration are privileges and
RBAC. Significant work also remains
to label and control other objects and
operations provided by the Solaris
kernel, create a complete example policy
configuration, and integrate support
for FMAC fully into user space. More
advanced development and collaboration
with the SELinux project in areas such as
securing the desktop, policy usability and
management, and labeled NFS will likely
follow as FMAC matures.

Conclusion

The SELinux project has brought
flexible MAC into the mainstream,
achieving success both as a technology
transfer vehicle and as a platform for
advanced research and development. It
has influenced a wide range of systems
and software components, as shown most
recently in the OpenSolaris FMAC project.
The developer and user community that
has arisen around the core ideas embodied
in SELinux and OpenSolaris FMAC gives
confidence that this technology will

continue to be preserved and built upon in
future computing systems, providing a
solid foundation for addressing the threats
posed by flawed and malicious
applications. The advances in usability,
performance, and functionality over the
past several years have made these benefits
far more accessible to end users. @

FEATURE

Resources

NSA SELinux web site, http://www.nsa.gov,/
research/ selinux

SELinux project wiki, http://selinuxproject.org

Tresys Open Source Server, http://0ss.
tresys com

OpenSolaris FMAC web site, http://
opensolaris.org,/os/project/fmac

References

[1] Loscoceo P, Smalley S. Integrating
Flexible Support for Security Palicies into the
Linux Operating System. In: Proceedings of
the FREENIX Track: 2001 USENIX Annual
Technical Conference; June 2001.

[2] Marti D. A seatbelt for server software:
SELinux blocks real-world exploits.
Available from: http://www.linuxworld.
comnews,/2008/022408-selinux.html

[3] Red Hat. NYSE Euronext Chooses Red
Hat Solutions for Flexibility and Reliable,
Fast-Paced Performance. Available

from: http://customers.press.redhat.
com,/2008/05/12/nyse/

[4] Walsh E. Application of the Flask
Architecture to the X Window System
Server. In: Proceedings of the 2007 SELinux
Sympaosium; March 2007.

[5] Carter J. Using GConf as an Example
of How to Create an Userspace Object
Manager. In: Proceedings of the 2007
SELinux Symposium; March 2007.

[6] Gregory M. Using the Flask Security
Architecture to Facilitate Risk Adaptable
Access Contrals. In: Proceedings of the 2007
SELinux Symposium; March 2007.

Trademarks

FreeBSD® is a registered trademark of the
FreeBSD Foundation.

Linux® is a registered trademark of Linus
Torvalds.

Red Hat® Enterprise Linux® is a registered
trademark of Red Hat, Inc.

NetTop® is a registered trademark of the
National Security Agency.

Secure Office® is a registered trademark of
Trusted Computer Systems, Inc.

Solaris™ and OpenSolaris™ are trademarks
of Sun Microsystems, Inc.

The Next Wave " Vol 18 No 2 * 2009 15

16 Providing A Secure Foundation

Providing a Secure
Foundation for
Applications with
the Certifiable Linux
Integration Platform

he needs of the national security community
I frequently require custom computing solutions;
however, current development practices result
in each solution requiring an individualized secure
foundation. Without a common foundation, each
computing solution must then be developed and certified
separately. The Certifiable Linux Integration Platform
(CLIP) provides this common foundation for secure
solutions and is targeted to decrease
the time and associated cost
spent on development and
certification. In this article,
we describe the CLIP
project and highlight
what CLIP provides
to support custom
solution development,
particularly solutions
that must be certified.

What is CLIP?

CLIP is an effort pioneered by the National
Security Agency’s Assured Information Sharing
Technologies and Products Office with the
goal of decreasing the time and cost associated
with certifying and deploying trusted solutions.
This project helps achieve NetCentric Security
Technologies’ mission to provide technical
information assurance (IA) guidance and to support
the system security engineering process. The CLIP
project provides an open source base that multiple
projects can easily utilize as a resource. More
specifically, CLIP provides

* Underlying system configuration,
* Initial application configuration,

* Updated Security-Enhanced Linux
(SELinux) policy with the goal of creating
a more secure environment,

* Updates and additional packages necessary
to meet certain requirement sets, and

* Artifacts describing how the system maps
to requirement sets that can be used as part
of the evidence for certification.

Need for a secure foundation

When constructing solutions vital to
national security, system developers should ensure
compatibility by properly configuring their custom
applications with all other applications running
on the operating system and with the operating
system itself. However, developers frequently have
neither the time nor the operating system expertise
to properly configure all parts of the system. And,
even when properly configured, each system is
often created and used for a single project and rarely
shared among peers. This lack of sharing creates
an environment where time, effort, and money
must be spent during every development to repeat
the procedure of locking down the system and its
applications.

Certification and Accreditation

Certification and Accreditation (C&A) is an
important and necessary part of the deployment

of any security system. Every time a system is
accredited, it must go through the certification
process to verify that it meets all of its security
and functional requirements. This process requires
that developers spend time creating system
documentation and mapping the documentation
to requirement sets. The certification teams must
also create tests that are then used to verify the
developers’ claims. Testing and verification is
currently performed for each and every system that
goes through the C&A process because no common
configuration is used for all systems.

Reliance on proprietary hardware and
software

When creating any custom solution, the
developer faces the hurdle of obtaining access to
the operating system source code. In the past, many
solutions were created on closed source operating
systems that limited the developer’s access to
the source files. The developer was subsequently
limited to only the list of documented calls, which
may or may not have been the full set of actual
calls. In this model, if developers found a problem,
they had to rely on the vendor to provide a solution.

The use of proprietary hardware is another
limiting factor in today’s solutions. Custom
solutions use operating systems that must run on
proprietary hardware and cannot easily be ported.
As the hardware ages, parts that are no longer
manufactured must be replaced. This environment
forces the developer to purchase duplicate sets of
hardware to ensure long-term support.

CLIP explained

CLIP toolkit

The CLIP toolkit can be used by system
developers to create a secure starting point when
building solutions. Each toolkit is specific to a
particular release of a commercially supported
operating system. Toolkits have been created for
Red Hat Enterprise Linux (RHEL) versions 4
and 5.0 through 5.4. The toolkit for RHEL 6.0 is
currently under development.

The toolkits vary in the specific packages
they provide, but at minimum each one provides
a kickstart file that controls the initial system

FEATURE

The Next Wave = Vol 18 No 2 = 2009 17

configuration, a CLIP package manager (RPM)
that installs CLIP specific utilities, and an updated
SELinux policy RPM that hardens the standard
reference policy package. The RHEL 4 toolkit
provides system updates to enable true role
separation. The RHEL 5 release adds to the previous
release with support for labeling packets.

Each piece of the toolkit can be used
separately if a developer chooses to do so, allowing
CLIP to meet the needs of the dynamic environment
in which systems are deployed.

SELinux as a basis

At a minimum, a secure foundation requires
security mechanisms enforced by the operating
system. SELinux provides the basis for this secure
foundation.

SELinux [1] is an implementation of Flask
[2,3], a flexible and fine-grained mandatory access
control (MAC) architecture, in the Linux kernel.
The architecture separates the policy decision
point, provided by the security server, from the
policy enforcement point, implemented by the LSM
(Linux Security Modules) framework [4,5].

The Flask [6,7]

flexibility in its support for security policies,
thereby providing mechanisms to support a wide

architecture provides

variety of real-world security policies. A security
context is attached to every object on a system (e.g.,
files, processes, network packets). The security
policy defines allowed access by subject security
contexts to object security contexts with sets of
permissions stored in access vectors. To minimize
the performance impact of consulting the security
policy, a security decision caching mechanism
called the access vector cache (AVC) is used.

SELinux
of mandatory access control mechanisms to
provide maximum flexibility and usability: type
enforcement (TE), role-based access control
(RBAC), and multi-level security (MLS). Type
enforcement [8] has been explored for many years

implements a combination

(e.g., Domain and Type Enforcement [9,10,11] and
Distributed Trusted Operating System (DTOS)
[12]) as an effective and flexible MAC mechanism.
In type enforcement, all entities on a system are

18 Providing A Secure Foundation

given a type, and every object or subject with the
same type is treated identically. Access decisions
are made based on the permissions granted to each
type. Role-based access control [13] provides a
complementary mechanism to type enforcement
in which access is granted based on roles assigned
to users. Multi-level security provides a means to
process data with different sensitivities or levels
using the Bell-LaPadula (BLP) model [14].

SELinux is available in a number of Linux
distributions, including Fedora, Gentoo, and
Debian, as well as the commercially available
Labeled Security Protection Profile (LSPP)
Evaluation Assurance Level (EAL) 4+ Red Hat
Enterprise Linux (RHEL). It also has been ported
to other operating systems including FreeBSD
(Security Enhanced BSD) [15] and Apple’s Darwin
operating system (Security Enhanced Darwin) [16].
The SELinux Reference Policy [17] provides the
basis for security policy on most of these systems.

System configuration

The CLIP installation configures the system to
meet the Director of Central Intelligence Directive
(DCID) 6/3 Protection Level 4 requirements and the
Defense Information Systems Agency (DISA) Unix
Security Technical Implementation Guide (STIG)
v5rl. These configurations fall into three main
categories: application and service installation,
access control, and auditing.

To increase security and the ease of
administration, CLIP installs only the base
applications needed to run and administer the
system. By default, it excludes many base
applications not required for a functioning system,
including applications such as web tools, office
tools, and desktop environments. Some services
are included in the base installation because of their
common usage, but are not needed for the system to
function. These services are disabled, leaving only
a handful running by default.

CLIP is also configured to greatly restrict user
access to the system. Unneeded default accounts are
either removed or disabled. Direct administrative
(root) access to the system is disabled, requiring
logging in as an unprivileged user before privilege
escalation. Additionally, all network access is

denied and network parameters are modified to
prevent remote attacks. Any services requiring a
network connection must be explicitly allowed
access on a case-by-case basis.

In addition to user access to the system, CLIP
uses both discretionary access control (DAC) and
mandatory access control (MAC) mechanisms
to restrict all access to files and directories to
only the minimal set required to meet the base
requirements. CLIP modifies the DAC permissions
of many important system files, such as log files,
configuration files, and run control scripts, to ensure
only privileged users may access them. Using the
SELinux policy for MAC enforcement, CLIP
further limits and confines a user’s ability to view
and edit security-relevant files.

To track all changes to the system, CLIP
enables auditing and adds many audit rules to
record a complete history of all security-relevant
system actions. This history includes user logins
and logouts, changes to DAC permissions and
SELinux labels, unauthorized file access attempts,
use of privileged commands, and modification of
important system files. To ensure a full audit history
is always maintained, any critical error of the audit
subsystem will cause an immediate shutdown to
prevent any possible breach of information.

New packages

To provide the foundation that meets multiple
requirement sets, the CLIP project includes updated
and new packages as part of its toolkit. These
packages augment the base system and provide the
developer additional security features.

Authentication

The National Security Systems Instruction
(NSSI) 1253 requirement AC-7 calls for enforced
limits for users accessing national security systems
and information. These limits include a maximum
number of consecutive failed logon attempts to
access a network during a set period of time, and
how long the user has to wait before trying to log
on after being locked out.

The current default module used by the Linux
authentication system does not support all the
required functionality. Furthermore, the module

could not be extended to support this requirement.
CLIP created the pam_tally3 module to replace the
current module, making it possible for developers
to satisfy the requirement.

Archiving

The DCID 6/3 requires that a system create
backups of the security labels separately from
the objects on the system [19]. A mechanism to
accomplish this type of backup did not exist for
SELinux based systems. The CLIP project created
the extended attribute recovery (xar) utility to
satisfy this requirement. The xar utility provides an
easy way to backup and restore the security labels
of objects on an SELinux system.

Networking

RHEL 5 has the ability to label network
packets using labeled IPSec or CIPSO. When
operating in an environment that does not support
labeled networking, it is useful for a system to be
able to dynamically label packets based upon a set
of rules such as the network the packet was received
from or the protocol of the packet. Linux uses the
security markings (SECMark) feature to label
packets using IPTables firewall rules. This support
was not included in RHEL 5 but was back ported
by the CLIP project to enable developers to change
the label applied to a packet at runtime on a system.

Future directions

As the landscape of C&A changes, the CLIP
project must change with it. The current trend is to
provide a mechanism to verify that your current
system matches the certified configuration. This
verification is done using the Secure Content
Automation Protocol (SCAP) and has been
deployed on all federal non-national security
systems. Future efforts will extend the CLIP project
to provide updates to the SELinux policy and the
SCAP content necessary to verify that the system
configuration matches the requirements.

One long-term goal of the CLIP project is to
create a library that will decrease the development
and accreditation time by generating the necessary
artifacts from a single source. Such a system would
allow developers to list the set of requirements that

FEATURE

The Next Wave = Vol 18 No 2 = 2009 19

they must meet for accreditation, and then have the
library generate their system’s configuration scripts,
generate the documentation that shows the scripts
meet the stated requirements, and finally generate
the SCAP content that could be used for verification
of that configuration. The certifiers would have a
set of artifacts

repeatable allowing them to

efficiently determine if a system had met

requirements. &

20 Providing A Secure Foundation

References

[1] Mayer F, MacMillan K, Caplan D. SELinux by
example. New Jersey: Prentice Hall; 2006.

[2] Loscocco PA, Smalley SD. Meeting critical

security objectives with Security-Enhanced
Linux. In: Proceedings of the 2001 Ottawa Linux

Symposium; 2001.

[3] Loscocco PA, Smalley SD, Muckelbauer PA,
Taylor RC, Turner SJ, Farrell JE. The inevitability
of failure: the flawed assumption of security in
modern computing environments. In: Proceedings
of the 21st National Information Systems Security
Conference; October 1998.

[4] Smalley S, Vance C, Salamon W. Implementing
SELinux as a Linux security module. Rockville
(MD): NAI Labs Technical Report; February 2006.

[5] Wright C, Cowan C, Morris J, Smalley S,
Kroah-Hartman G. Linux
general security support for the Linux kernel.
In: Proceedings of the 1l1th USENIX Security
Symposium; 2002; San Francisco (CA).

security modules:

[6] Assurance in the Fluke microkernel. Secure
Computing Corporation Technical Report; 1999.

[71 Spencer R, Smalley S, Loscocco P, Hibler
M, Andersen D, Lepreau J. The Flask security
architecture: system support for diverse security
policies. In: Proceedings of the 8th USENIX
security Symposium; August 1999; Washington
(DC).

[8] Boebert WE, Kain RY. A practical alternative
to hierarchical integrity policies. In: Proceedings
of the 8th National Compuer Security Conference;
August 1999; Gaithersburg (MD).

[9] Badger L, Sterne DF, Sherman DL, Walker KM.
A domain and type enforcement UNIX prototype.
USENIX Computing Systems. Winter 1996;(1).

[10] Badger L, Sterne DF, Sherman DL, Walker
KM, Haghighat SA. Practical domain and type

-\.-\.'\-.| i

. o sepurigz *sfysu:ms anal-.1nfor-rriat10h=.]3e‘éembe‘r 2007

N -_. PR

nt. o Tir? -Proc edmgS" qo_f:' the g P‘rotechng- sen,s‘qu com;par m.er_gted mforman__an.
13&1 Annual ComputgrnSecuruy 'Applwaﬁpns mtlun 1n.f0'tm.at1bu systems Amkzooz g

[14] ”Bel_[“DE-rLa Padtrla L]"' Sgeuxefﬁcpmputeﬂ
,system' '-élathemantal fbui‘l,dat.},o-ﬁs a-nd Jn.odq[

SEL*mu_x .to Mae O,SX I
/Pi‘oceeélmgs (f;f the 2(5()7-
Seount:y Enhahceei -Llnux-
;Symp*(rs-lum _.March ;
.2007,.Ba1t1m'bi‘e (Mb), -

}Enhaneed __Llnux. S_y.zm- '
pos;um- EMarCh '200

Cryptographic Binding

of Metadata

s most people know, metadata is

“data about data.” It may include

security labels and discovery in-
formation, as well as user and environ-
mental attributes. Metadata is intended
to be used by human consumers or by
autonomous processes such as access
control mechanisms in the Global Infor-
mation Grid (GIG), network-centric con-
tent discovery services, or automated
information dissemination systems. As
decisions are made based on metadata
content, the assurance provided for the
actual metadata must be considered.

In many scenarios, the assurance pro-
vided to metadata and to the relationship
between metadata and data is essen-
tial. Such scenarios range from simple
discovery queries to enabling Assured
Information Sharing (AIS) through Cross
Domain Solutions (CDS).

What is cryptographic
binding?

Cryptographic binding provides as-
surance to the relationship between data
and its associated metadata. A binding
also ensures that neither the data nor its
associated metadata have been mali-
ciously or accidentally modified without
detection. The binding does not ensure
that the original data or metadata is ac-
curate or correct prior to the binding. As
the name implies, cryptographic binding
uses cryptography as a technique to as-
sert a verifiable relationship over data and
its associated metadata. The relationship
established with a cryptographic bind-
ing is claimed valid if the bound data has
integrity and the identity of the binder is
authenticated.

How does cryptographic
binding work?

Data formats, metadata standards,
and cryptography are continually evolv-
ing within the Department of Defense
(DoD) GIG and the Intelligence Commu-
nity (IC). For example, metadata to fulfill
the needs of the IC is still being defined
in many areas. With cryptographic bind-
ing depending on these evolving data
standards and formats, it is important to
establish a flexible and modular binding
as well as a validation model that meets

Binding Function

B -

Data
1 Asset | o
Data J—
hssiE] Ffﬁ ‘m1 5 =

= _ ¥ —_—— Metadala M

aa Information . 3

File {_bif) bif

the community’s needs and can cope with
this ever-changing operating environ-
ment. The design of cryptographic bind-
ing centers on several key assumptions:

» Data and metadata may exist in
any discrete format (e.g., XML,
HTML, .doc, .xIs, .txt, .ppt, .pdf)

* Metadata may exist embedded
within data or as a separate file

* Cryptographic binding functions
must not modify the data or meta-
data

* Multiple metadata files may exist
for data (e.g., discovery metadata,
IA metadata, user and environ-
mental attributes)

* Cryptographic binding functions
may exist as embedded applica-
tions or distributed services

The cryptographic binding model
offers two complementary functions, each
with a distinct set of inputs and outputs.
First, a binding function, often referred to
as the binder, has the sole responsibility
of creating cryptographic bindings. The
binder accepts the data and metadata files
and uses a cryptographic technique to cre-
ate the binding. The binder produces the
asserted relationship as a binding infor-
mation file (.bif). The validation function,
often referred to as simply the validator,

FEATURE

accepts the data, metadata, and previously
generated .bif files, and applies the same
cryptographic technique to verify the in-
tegrity and authenticity of the relation-
ship. The validator produces a “valid” or
“not valid” response indicating the valid-
ity of the binding. Figure 1 illustrates this
model for creating and validating crypto-
graphic bindings.

The .bif satisfies the need to cre-
ate a binding without modifying the data
or metadata files. The .bif contains the
minimum data required for a validator to
verify the integrity and authenticity of the
binding. The fields in the .bif file include,
but are not limited to:

* Cryptographic value (e.g., digital
signature)

* Cryptographic algorithm identi-
fier

* Data hash value, algorithm, and
unique identifier

* Metadata hash value, algorithm,
and unique identifier

* Binder identity
* Security markings
* Binding method identifier

Cryptographic binding builds upon
underlying cryptographic techniques,
such as digital signatures, to provide ad-
ditional services and information. First,

Validation Function

Responze
{(ValidIrnvakid)

Figure 1: Cryptographic binding and validation service models

The Next Wave " Vol 18 No 2 * 2009 23

24

although the identity of the binder can be
authenticated, the identity of the entity
originally claiming that the bound files
are indeed related must be captured for
traceability and auditing. Second, a cryp-
tographic binding can be thought of as the
focal point of data aggregation, possibly
bringing an increase of the security level
to the binding. For example, imagine a
scenario in which a data file contains a list
of names and a metadata file contains a
corresponding list of departments. Sepa-
rately, these items are unclassified. How-
ever, once the items are cryptographically
bound, creating a verifiable relationship,

Binding
Requeitar

&

the security level of the information could
be increased due to the data aggregation.

This modular architecture separates
the functionality from the underlying
cryptographic mechanism that provides
the integrity and authenticity. Multiple
interchangeable binding methods are de-
fined that enable the use of asymmetric
cryptography (e.g., digital signatures),
symmetric cryptography, and authenti-
cated shared secrets (e.g., secure hashes).
Providing these general binding methods
enables cryptographic binding to seam-
lessly incorporate new cryptographic al-
gorithms and techniques.

WValidagion
Requestor

<
LY
%

i]
oD £ af &
gl LELR] silelilisn reuperas |
L] revpE (el fwprakich

f

7 o)
BIHDING VALIDATRON
SERVICE SERWVICE
; h‘. y eding 4’ '
% '\‘ nkorrnstion I
- 5, - She (hil) T |
k% . 4 |
datnmastand ¥ 'l‘ ; l.."' elnia e,
rmetadany fles k‘ W #
. A el b s
iy A
iy et E TR
-ll'-ﬂlnr: -’ " Ty g . iy
[= 5 - ':_:- £
Eriarpeise Sereiiey w reiEis S e Enteepsise Sorvice
RO FRDONEEY AP
B ¢ e b v LY HH + b ek 9 e
Tl e i GH:‘ T "] MU L
EraaEEE b T
LIkl

T = vy e (e

mhid wuthes

Figure 2: Conceptual view of cryptographic binding

Cryptographic Binding of Metadata

Proving cryptographic
binding concepts

Two cryptographic binding proto-
types developed by the NetCentric Secu-
rity Technologies Division implement the
cryptographic binding model and system
architecture. These prototypes made use
of existing technologies and services to
demonstrate the cryptographic binding
capability as a system integrated applica-
tion and an enterprise service. The fol-
lowing are details of each prototype:

Cryptographic binding using XML
digital signatures

» Applies to local and distributed
architectures

+ Implements XML and XML digi-
tal signatures (DSIG)

+ Uses web services and message
transmission optimization mech-
anism (MTOM)

* Supports RSA 1024-bit encryp-
tion and Secure Hash Algorithm
1 (SHA-1)

* Developed using Java 5.0

* Produces a .bif six kilobytes in
size

Cryptographic binding using
Abstract Syntax Notation 1
(ASN.1) and Cryptographic
Message Syntax (CMS)—
preferred method

* Applies to local and distributed
architectures

* Implements ASN.1 and CMS;
studies show ASN.1 is faster to
decode than XML

* Implements elliptic curve cryp-
tography (ECC) offering more
bits of security using smaller key
size and faster algorithmic pro-
cessing

* Supports RSA 1024- and 2048-bit
encryption

* Supports elliptic curve digital sig-
nature algorithm (ECDSA) using
256- and 384-bit prime moduli
supporting Suite B Cryptography

* Developed using C++ offering
more control over memory allot-
ment than Java, allowing for the
binding and validation of larger
files

* Produces a .bif 512 bytes in size
(a 90% reduction from original
XML DSIG .bif)

» Offers additional functionality in
new ASN.1 .bif

The XML DSIG cryptographic bind-
ing prototype was successfully integrated
into several pilot, test, and experiment en-
vironments. Community feedback drove
the development of the ASN.1 and CMS
prototype to improve performance, size,
and strength while maintaining core func-
tionality. Therefore, CMS would perform
better where the bandwidth is limited and
the end unit has minimum processing re-
source.

Cryptographic binding
in future net-centric
environments

In the DoD’s prospective net-centric
GIG, policies will be established through-
out the enterprise granting authentica-
tion and access to resources. As shown in
Figure 2, cryptographic binding will be
initiated by a binding requestor—man or
machine. In some instances the binding
requestor may be the author of the data or
metadata. Requestors will be authorized
by access control or policy enforcement
services. A request is sent by the requestor
to the binding service to create a .bif over
the specified data and metadata file(s).
The binding service utilizes enterprise
services to authenticate and authorize
the request. Next, the binder will use an
enterprise retrieval service to gather the
data and metadata from a storage reposi-

tory. Once the binding service generates
the .bif, the service will store the .bif in
a storage repository. Future repositories
may exist for each element—one for data,
one for metadata and one for .bif files—or
in combination.

A validation requestor (shown
in Figure 2) may be an access control
mechanism or cross domain solution that
is required to make a decision based on
the contents of the data and metadata. The
validation requestor submits a request to
the validation service to verify the in-
tegrity and authenticity of the binding.
Enterprise services will authenticate the
validation requestor. Once authenticated,
the request will be submitted to the vali-
dation service. The validation service will
use retrieval services to gather the data,
metadata, and .bif; verify that the files
have not been maliciously or accidentally
modified; and return the results (i.e., valid
or invalid) to the requestor. Depending
on the implementation environment, the
binding and validation services could be
deployed locally with all authentication
and authorization checks occurring with-
in a single community of interest (COI).

Future direction

Cryptographic binding is an en-
abling technology for systems that must
rely on the integrity of data and metadata
to make critical mission decisions includ-
ing information dissemination and access
control. The immediate goal is to make
this capability operational by coordinat-
ing with the key figures in various pi-
lots, experiments, and test environments
within DoD, IC, allied/coalition, national,
and international programs. These exer-
cises will provide valuable feedback to
improve this technology while allowing
the capability to be used in controlled op-
erational settings. In the near term, there
are plans to conduct a security assessment
of the ASN.1/CMS cryptographic binding
proof of concept. The next steps are to
complete a full, security-assessed refer-

FEATURE

ence implementation and standards pro-
file for handoff to implementers. Crypto-
graphic binding concepts and techniques
need to be expanded and further proven
to address evolving GIG net-centric en-
vironment needs including methods for
high assurance bindings and envisioned
security domains. &

The Next Wave " Vol 18 No 2 * 2009 25

_ gl myandatmg a shlfr. to open source, what was largely h 3ir)mput 8 ke ol
ay be evol\nng into the standard for programming in the future. L STy R

- , p
e .th@ collective efforts of expertsuan@d | amateurs alike. Linus Torvalds, the inventor of Linux and de facto
- spokesperson for the open source ‘community, cred) .'Hs‘ the underlying characteristic
of the movement’s advocates. Just as the construction of e’s great Gothic cathedrals depended -
~on the personal talents of skilled craftsmen, modern- déy “guilds” of programmers contribute their
= B)'t ise as a kind of artistic form to create digital monuments. DOpen source coders generally take
e L@ldé"m adding a creative flourish, an innovative approach, or even a touch of whimsy that rrught be
= _recognized by their peers as “a masterpiece.” Unlike t@htlyg@ntr‘. ed projects undertaken to e e

-

e 2 -_ marke"ﬁ‘ penetration or fulfill gover'nment’eﬁntr'ants Upén ,sng;@_snfﬁm;g.pmmmmerges fr‘om"ﬁ‘he.
i cdlledf:h;e conscience of |tsult|mateg§iaﬁ“é .
R T

1 EB wﬂpen Source—Sett/@g SUfEWgr F

The libre years

Open source software can trace its roots deep
in the heritage of the computer age. Collaboration
among computing experts sharing a limited number
of resources was essential for early software
development. In the 1950s, the group SHARE
provided IBM mainframe users a way to exchange
technical information and develop a library of
code that was available to its members. Until the
late 1960s, after IBM unbundled its software for
marketing flexibility, code was assumed to be
libre—free for modification and redistribution.

Government-sponsored research continued
to supply libre software long after proprietary
products became the norm. The Advanced Research
Projects Agency Network, ARPANET, relied on a
strategy of offering libre software to foster global
participation in the 1970s. This strategy eventually
gave birth to the Internet, and it continues to fuel
countless research efforts.

In 1984, GNU began supplying users with a
free and open version of Unix-like software. The
GNU organization promoted the freedom to copy,
share, and change all versions of a software program.
Any code developed as a GNU product continues
to be subject to GNU’s General Public License
agreement, or GPL. A GPL, which is appropriately
called a “copyleft” agreement, is intended to
guarantee a user’s rights to freely distribute free
software and modify code in fee-based products.
The following year, the Free Software Foundation
(FSF) was formed as the holder of several GNU
copyrights and served as the exclusive authority to
enforce the GNU GPL. Later, running on a Linux
kernel, GNU/Linux became the backbone of the
FSF.

It wasn’t until 1998 that free software was
formally rechristened open source software, or
OSS. The OSS community aggressively forged
a path independent of closed-source software
development strategies. Much of the success of
OSS can be attributed to its cost—little to nothing.
But a deeper commitment to open source, one that
has grown out of an international community of
developers and a philosophy of cooperation, may
be what sustains it.

0SS taps into consumer markets

Businesses have been taking advantage of
the efficiency—and low cost—of open source

database management systems for several years.
The open source database market is on track to
surpass the billion-dollar mark by 2010, according
to Forrester Research projections. Still, that is only
a small chunk of an $18-billion market overall.
MySQL is the clear leader in open source databases,
accounting for about half of all installations for that
segment. Operating under a GNU GPL, MySQL is
the world’s second largest independent open source
company, trailing only Red Hat for top honors.

Because many open source database products
are available at little or no cost, market share is more
accurately measured by the number of installations
instead of the amount of revenue generated. By
this standard, 49 percent of the enterprises polled
by Gartner Group in 2006 reported that they had
deployed MySQL, compared with 67-percent and
61-percent deployments of SQL Server and Oracle,
respectively. And MySQL was gaining market share
at a 25-percent annual rate.

New to the open source database arena
is a hybrid system unveiled in August 2009 by
computer scientists at Yale University. HadoopDB
was designed to incorporate the best of several
successful technologies such as the approach taken
by MapReduce, Google’s software framework for
conducting web searches, and parallel database
management systems, which are particularly good
at handling complex structured information such as
tables containing trillions of rows of data. HadoopDB
proponents claim the new architecture reduces the
time it takes to perform computationally intensive
tasks from days to hours. The database’s developers
foresee a role for HadoopDB in conducting analyses
of complex systems such as stock markets, disease
outbreak patterns, and climate change.

Open source software grabbed public attention
with the introduction of the Linux operating system,
in 1991. The adoption of Linux over the past
18 years has been gradual but steady. Led by the
product’s growing presence in enterprise servers
and embedded software markets, open source
operating systems have come to dominate the high-
end computing market. According to the June 2009
ratings of supercomputers by TOP500.0rg, more
than 88.6 percent of the world’s fastest computers
were running some form of Linux, including all the
top 10. But it was a low-cost alternative to home
computing that vaulted OSS into the consumer
market.

The Next Wave = Vol 18 No 2 = 2009 27

Netbook computers—subnotebook-size
portables—have contributed significantly to the
adoption of OSS. These low-end computers

were designed to be affordable platforms

for Internet browsing, Web 2.0 social in-

teraction, and simple tasks like word processing or
viewing photos.

Netbooks were thrust into the spotlight by the
One Laptop Per Child (OLPC) project. To achieve
its goal of providing affordable laptops for children
everywhere, the OLPC foundation loaded its XO
laptop with open source software for both the oper-
ating system and user software.

The 2007 launch of the XO prompted the
introduction of several other computer brands
that targeted the information technology needs of
emerging markets. In addition to gaining a foothold
in developing countries, the new netbook class of
computers managed to establish a niche in mature
markets. The netbook’s low price made it a popular
choice for entry-level computing, and OSS helped
keep the cost down. Early on, nearly 90 percent
of netbook computers ran on Linux products, but
Microsoft rapidly overwhelmed the netbook mar-
ket. The company reported boosting its share of
netbooks in the US running on Windows from less
than 10 percent in the first half 2008 to 96 percent
by February 2009.

Netbook computers bridge the world of com-
puters with a growing market of handheld products,
another seemingly ideal environment for OSS.
Consumer demand for smaller and smaller hard-
ware has led to the rise in popularity of limited-
function devices. The proliferation of mobile gad-
gets —Kindles, BlackBerries, TomToms, Droids—
and the apps to customize their performance, has
given OSS a boost that could lead to changing how
software is developed in the future.

Open source operating systems typically in-
tegrate well with web-based services like Gmail,
OpenOffice, and YouTube. As more and more ser-
vices are being hosted online, the limitations of a
lightweight open source operating system become
irrelevant. Designers might justifiably ask, “Why
add processing power to load native applications
when all you need is a web browser that can pull
more robust services from the cloud?”

Web applications running inside browsers and
networked applications (netapps) have increasingly
replaced the operating system as the dominate plat-
form for building products and services. As long as

28 Open Source—Setting Software Free

web content is viewable with a common browser or
netapp, consumers are generally indifferent to what
operating system or software tool was used to cre-
ate it. Users don’t even need a computer to access
Web 2.0 services. Any device that connects to the
Internet—a cell phone, camera, GPS, music player,
or even a digital photo frame — will suffice.

People around the globe are probably most
familiar with open source software through the In-
ternet. On July 31, 2009, Mozilla’s Firefox logged
its one-billionth download, less than five years af-
ter the open source browser was launched. Over
300 million users now surf the web using Firefox.
Although Firefox still trails Microsoft Internet Ex-
plorer (IE) for web searches, its loyal and growing
user base accounts for 31 percent of the Internet
browser market. Mozilla’s Asa Dotzler points out
that if current trends continue, Firefox will overtake
IE as early as January 2013.

Despite the anticipated growth of OSS, it is
important to keep its adoption in perspective. While
Microsoft’s overall market share may be shrinking,
most consumers and businesses still rely on Mi-
crosoft products—88 percent of computers in use
today run a Microsoft developed operating system,
while only one percent run an open source Linux
product.

How secure is open source
software?

The debate about the relative quality of open-
source software over proprietary software has kept
bloggers arguing for years. A five-year study by The
Standish Group that was released in 2008 found
that 70 percent of companies surveyed felt Red
Hat Linux was less vulnerable to security attacks
than Windows. But some contrarians propose that
this perception is due to hackers mainly targeting
Windows code, rather than fewer vulnerabilities in
Linux. In a security review of open source prod-
ucts, Fortity Security Research Group determined
most OSS lacks adequate documentation or even a
secure development process. Security best practices
were found to be a low priority for OSS developers,
resulting in software plagued by numerous applica-
tion vulnerabilities. A study conducted by computer
security firm Secunia concluded the number of se-
curity bugs in Red Hat Linux exceeded the number
of bugs in comparable Microsoft products. Many
of the vulnerabilities in Red Hat were introduced
through third-party components. The same study
determined Firefox had considerably more security

bugs than Microsoft’s Internet Explorer.

Open-source products still earn high marks
for their quality. Software analysts at Coverity have
been counting bugs in open source software for the
Department of Homeland Security. Their findings
in 2008 concluded code in 180 widely used open
source software projects averaged 0.25 defects per
1,000 lines of code (KLOC)—one error for every
4,000 lines of code. This represents a 25 percent
improvement over 2006 tests. One product had im-
proved to the point that Covarity’s test uncovered
no defects at all. By comparison, Open Source Ini-
tiative president Michael Tiemann says proprietary
software has consistently averaged 20 to 30 KLOC
since the 1960s.

The future of open source

The world relies heavily on software from
the United States, but some countries are looking
to domestically produced open source solutions as
a viable alternative. China has long been a global
advocate for open source software. Many leading
brands of computers in China are sold without an
operating system preinstalled, giving consumers the
option to add open source software. The high cost
of proprietary software has fueled software piracy
there, putting the country at odds with the global
community. China’s adoption of OSS is partly in
response to software piracy, but open source prod-
ucts such as home-grown Red Flag Linux are also
getting a boost as an expression of national pride.

Europe, like China, has also strongly em-
braced OSS. European-coded Ubuntu is a user-
friendly version of Linux that is gaining market
share globally, with Europe providing much of the
operating system’s support. As of summer 2008,
Linux-based products were pre-installed on three
percent of new computers in the UK.

The move to OSS can be seen globally
through its adoption by various government agen-
cies. In Southeast Asia, for example, the govern-
ment of Vietnam issued a directive in early 2009
to convert all government servers, networks, and
desktop applications to open source. As a hub for
IT outsourcing, Vietnam views moving to OSS as a
way to develop a local software industry.

Industry leaders worldwide are conceding a
growing need to support the OSS community, as
well. Intel recently developed Moblin, a Linux-
based operating system (OS) designed for the com-
pany’s Atom x86 chip, to optimize Internet and

multimedia performance. The Atom chip is already
found in many netbooks, and the anticipated prolif-
eration of mobile Internet devices, or MIDs, should
greatly expand its market penetration. Intel turned
Moblin over to the Linux Foundation in April 2009.
The Moblin.org group has recently rolled out the
first beta of Moblin v2.0, which it expects to be-
come the standard software development kit (SDK)
for MIDs.

Google has also ventured into the open source
domain as the company tries to gain a foothold in
the software industry. Linux-based Chrome OS,
set for release in late 2010, is designed primarily
as a secure platform for Goggle’s recently released
Chrome browser. Building on the successful launch
of Android, its open source OS and SDK for mobile
devices, Google Chrome OS is targeted directly at
the Microsoft juggernaut.

Even Microsoft supports a strategy to win over
the OSS community in hopes of getting OSS ven-
dors to port their software to Windows. Microsoft’s
Open Source Software Lab is working to integrate
OSS with Microsoft Office, SQL Server database,
and other Microsoft products. For customers who
want to continue using Linux, Microsoft will offer
Hyper-V, its forthcoming virtualization hypervisor.

For most consumers software is judged by
what it can do rather than how it works. Such prag-
matism will make it harder for closed-source soft-
ware to compete with OSS solutions in the future.
As the personal computer gives way to the mobile
handset and services move to the cloud, open source
software —whether it is used for the operating sys-
tem, the web browser, or netapps —stands to gain
market share and user acceptance. @

1,400,000,000
1,200,000,000
1,000,000,000
800,000,000
600,000,000
400,000,000

200,000,000

0
496 4.97 498 493 400 401 402 403 404 405 406 407 4-08 408

Credit: Asa Dotzler (Data from Net Applications)

The Next Wave = Vol 18 No 2 = 2008

Open Source
Internet browsers
are gaining ground
on Microsoft's IE.

Other
B Firefox
H E
B Netscape

29

