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. INTPODUCTION

"'l b
The o1

iz

s&ical gambler's ruin problem, stated in terms of

a random walk in one dimension, involves two absorbing barriers,
if the walk is restricted to the non-negative integers, one can
imagine the barriers placed at the origin and at some point

N> 0. This problem has received much attention in the
literature; for three different treatments see Feller [1],
Uspsnsky [2], and Bartlett [4],

We conzider here a random walk with an absorbing barrier
at N and a restraining barrier at the origin. A restraining
barrier, when reached, allows motion in one direction only;
in our case, the restraining barrier at the origin prevents
passage to the left, but has no effect on motion to the right, To
be explicit, a particle reaching the origin would remain there
as long as it tried to move to the left, but would be free to move
to the right at any stage. (A particle attempting to move past
the origin from the right would be allowed to move only as far
as the origin, )

A randem walk of the type described above corresponds to
a gambler playing against an adversary who allows him to stay
in the game even when broke. To ocur knowledge this problem
is not treated in the literature; the similar problem with
reflecting barrier has been considered in the references men-
tioned above, although not as extensively as the absorbing
barrier problem. A restrairning barrier is quite similar to a

reflecting barrier, especially for large N, but since the




results cbtained here are not given explicitly elsewhere, it
seems worthwhile to give a complete treatment of the former
case.,

In the following, we confine our attention to random walks
on the non-negative integers i, 0<i< N, with restraining
and absorbing barriers at the two end points 0 and N
respectively, We further assume that the particle has,
at any stage of the process, probability p of making a step
r units to the right and probability q =1-p of making a
step £ units to the left, insofar as the barriers allow. The
random variable of particular interest here is the duration of
the walk (the number of steps the particle takes before it is
absorbed at N )starting at the origin. In part II we give the
generating function for the distribution of duration (and also
exact expressions for the mean and variance) in the special
case r={=1. Results quite similar to these are common-
place and can be found in any of the references cited above;
they are given here for completeness. We also find limiting
distributions for the duration, which, as far as we know, are
not given explicitly elsewhere.

In part III we give an asymptotic expression for the mean
duration with arbitrary steps r and f . Although this type
of asymptotic result is given for the case of two absorbing
barriers [1], [2], [4], the methods used there do not apply
to the present problem owing to the difference in boundary

conditions., The only reference we know in which methods



similar to those in part III are employed is Kemperman [5];
he too, however, is considering absorbing barriers, and
treats a more general type of walk [steps of any integral size
k , -£<k<r, permis¢ible], Our restriction to just two
steps r and £ enables us to give simple explicit formulae,
Finally, in part IV, we discuss approximations which

prove especially useful in the engineering of systems using
this type of process [a consideration that has motivated this
entire study], and also pcint out how the results for general
steps r and { are intuitively satisfying extensions of those

for r=£=1,

II. RANDOM WALK WITH UNIT STEPS

1. Generating Function of Duration,

We consider here the case in which the only possible
steps are unit steps in either direction, so that r=£ =1, The
particle starts from 0 and stops when it reachesvthe absorbing
barrier at N for the first time. Welet p% 0 and q=1-p
be the probabilities of steps to the right and left respectively.

In this case explicit expressions for the mean and variance
of duration of the walk may be found as follows:

Let uk' n be the probability that the walk ends after exactly n
steps, given that the particle is initially at position k
(n=0,1, ¢¢¢ ; k=0, 1, “.',N ). Note that uk' 5= 0 for

k < N-n, The quantities u satisfy the recurrence

k, n

relations




(2,1) +qu

Uk, n+l = PY41, n k-1, n

Y0, n4l - PY,n * 9%, n

uN,n = 0 n>0

Un,o © L

Denote by Uk(s) the generating function of the distribution

{uk. n}; that is
00

(2.2) U.(s) = Zuk.nsn k=0, e, N ,
n=0

We note first that
(2.3) UN(s) = 1 5

Since we are concerned with walks starting at the origin, the
quantity of principal interest is Uo(s) » the generating function
of the duration of a walk starting from 0. As will be seen,
the mean and variance of the duration can be obtained from
U(')‘[l) and U(')'(l) .

Multiplying through by s’n+1 and summing on n , we have,

from (2.1) (noting that u =0),
s O

(2.4) U (s) = psU,, () +qsU, () k=l +ee, N-l

UO(S)

ps Ul(s) + gs Uo(s)

{2.5)
1

Upls)

Equation (2.4) is a second order difference equation in Uk(s)

for fixed s , with boundary conditions given by (2.5{). The

n=0,1, eee ; k=1, e, N-1



auxiliary equation associated with (2.4) is
2
(2.6) psx” -x+qs = 0
the roots of which are
(2.7) x4 %, = Q/2ps)(1 + V1 - 4pgs©).
The solution of (2.4) is then of the form
k k
(2.8) Uk = % + c, X,
with c1 and cy determined by (2.5), For Uo(s) we find

(2.9) U(e) =

2(2ps)NV1-4pqs’

(1 +\71t-4pqs7-)N(1-2qs+\/1-4pqu) - (1-‘/1-4pqs‘)N(1-2qs-¢l-4pqs£)

2., Mean Duration of the Walk (p # q)

We shall assume throughout sections 2 and 3 that p % q .

Let Xk denote the random variable representing the
duration of the random walk when the particle starts at k , and
let Dk = E(Xk) be the mean duration of this walk where

k=0,1,¢+¢, N, We observe that

00
'
(2.10) Dk = Znuk'n = U‘k(l) g
n=0

Againfwe‘ are ultimately interested onlﬂy in Do = U;(l) . This
quantity méy be obtained directly by differentiating the right
member of (2.9) and setting s =1 ; the following technique is
somewhat more expedient, however, in addition to being more

instructive,




Differentiating in (2.4) and (2.5) and setting s=1 we have

(2.11) Dk = pDk+1 + qu—l + 1 k:l. soe N_l
D, = pD, + qD_ +1

{2.12)
DN = 0

It is to be noted that (2.12) and (2.11) can be deduced directly

from physical considerations, The argument is, roughly, that

the expected duration starting from k is one more than the

expected duration starting from the next position, which position

will be either k+1 with probability p or k-1 with probability q .
Equation (2.11) is a non-homogenous recurrence relation; the

solution of the associated linear homogeneous equation will be of th;

form Alyi< + Azylz< where Y1 and y, are the roots of the auxil-

iary equation pxz-x+q=0 . Thus y1=1 and Y, =% « (We have

assumed in this section that p 9& q , so that these roots are

distinct.) A particular solution of (2.11 ), which must be of the

form Ck , is found by substitution to be q—lf— . Determination

cof the constants A1 R A2 from the boundary conditions (2.;[2)

gives

(2.13) D, = ¢ =2 (N ()
(p-q)° P R

and in particular the mean duration starting from the origin is
given by

(2.14) E(X) = D_ = N ;, 4
(p-q)

s (D11 .

= b =



—

3. Variance of the Duration (p #q)

From (2.10), Do = E(Xo) = U:)(l) . By differentiating
once more one sees that

o0
(2.15) U:)'(l) = zn(n-l)umlrl "
=0

Moreover,

o0 [

2 _ 2 2
(2.16) Var(Xo) z (n - Do) Yo,n ° z " Y, n” DO
n=0 n=0

2
J -
U"_)(l)+D° Do .

The quantity U:)'( 1) can be found directly by differentiating
in expression (2.9), or by methods similar to the above for
finding U:)(l) « Using the latter procedure, differentiating in
(2.4) and (2.5), denoting Uf('(l) by Sk and setting s=1 we

obtain the simultaneous recurrence relations

S = PSyy * S * 2Dy H2aDy = 0
(2.17)
Dk = pDk+1 + qu_l + 1

The four boundary conditions are

p(S_-S)) = 2(D_-1)

1

(2.18) p(Do -Dl)

DN=SN 0

Solving the system (2.17) (either by solving simultaneously for

D, and S, or by substituting (2.12) and (2.11) into (2.17) and

5T =




then‘ solvirg for Sk } we find the simple expression‘

2

(2.19)  Var(X)) = S_+D,_ - Dc?; =9 (%)ZN
(p-9q)
2 _
+ 43N (%)N+q(3-4q ) (%)N + 4pgN - pq(4q+3)
(p-q) (p-9) (p-9q) (p-q)

4, Mean and Variance in the case p=q=%

The above formulae for E(Xo) and Var(Xo) have
limits as p _‘_12_ which give the correct values when p=q =-12— s
but the computation involved is somewhat tedious, and it is just
as easy to treat the case p=q =—12- separately,
The recurrence relation for D, now becomes

k

| 1 1
(2.20) D, =D, ., + =D

with boundary conditions

(2.21) Dy =0, D_ =D +2 .

The auxiliary equation x2 -2x+1 =0 has a double root 1.,
This means that solution of the corresponding homogeneous
equation will be of the form A1 + AZk and that a particular
solution of (2,20) will be of the form Ck2 . Proceeding as in
section 2 we find

(2.22) D =Nl 4+ N-k-k ,

whence

(2. 23) E(X_)) = D_

1}
2
+
2




Finally, by the method of section 3, we find for the variance of

duration in this case

N(N+1)(2N% + 2N-1)
3

(2, 24) Var(Xo)

5

£. Asymptotic Distribution of Duration

In the preceding we have given exact expressions for the
mean and variance of the duration X, of the random walk, but
not for the actual distribution of Xo . In certain applications
it may be of importance to have at least an approximation to
the complete distribution; moreover, many applications deal
with random walks where N is large so that asymptotic results
are just as valuable as exact ones, In this section we find the
limiting distribution (in a sense to be made more precise) of
X, using the results of sections 1-4; the results are relatively
simple and, as will be indicated later, agree with what one
might intuitively expect from the point of view of the theory of
recurrent events (waiting times),

Since we are interested in asyr;;ptotic results, we consider
the effect of increasing N while decreasing the time between
steps.* (Increasing N alone will of course lead to a degenerate
distribution.) We introduce a time parameter t to represent
this time and wish to determine the limiting distribution of

*The motivation for the arguments in this section will be
sormnewhat clearer if the reader is familiar with the mode of

passage to a continuous limiting distribution from the
geometric and Pascal distributions (cf. Feller [1] pp. 218-221).

-




durationa2s N - © and t —- 0. Inorder that this limiting distri-
bution not be degenerate, we must impose some condition on the mode
of passage to the limit; the most reasonable such condition is that the
mean duration remain constant., As will be seen, this imposes a
relationship between N and t so that they do not tend to their
respective limits independently, As in sectionl , we let Uo(s)

denote the generating function of the random variable Xo . Introducing
the time parameter t, we consider the new random variable th ’
which will take on possible values 0, t, 2t, «+., Nt with probabilities
determined by P{txo =ta} = P{Xo = a}‘The corresposx:;l{ing moment

generating function of th » which is by definition E(e °) » is then

given by Uo(eSt) « In particular we note that

(2.25) S[u(e*h)] = wr(1) ,

as it should, for E(txo) = tE(Xo) = tU")(l) « The moment generating
function Uo(eSt) is, for fixed p, q and s , a function of two param-
eters, N and t, so that we will be interested in the limiting

moment generating function @(s), defined by

lim ¢
(2.26) N-o U_(e°") = f(s) ,
t—+0
tE(Xo)Nx

where M\ is a positive constant, From the function #(s) , we hope
to infer the form of the limiting distribution itself, using the
continuity theorem and uniqueness properties of moment generating

functions.

-10 -




The three cases p > q (drift to the right), p < q (drift to

the left) and p =q =l2 (no drift) must be handled separately,

Case 1. Drift to the left (p < q)

From (2.14) we see that in this case the mean duration is

asymptotically

(2.27)  D_p,—31 ()N
(p-9)° P

Thus we require that N - and t -0 in such a way as
to make
(2.28) 4 (%)Nt,u X .
(p-q)

Using (2,28) and (2.9), we have

(2.29)  lim U _(e%%) =
N-owo ©
t-+0
. 2(2pe®YyN rt)

N-w [1+r(t)]N[1-2qe +r(t)] - [1-r(t)] [l - 2qe®t - r(t)]
t—=0

where r(t) = Jl -4pqes . It is understood that N and t

here do not approach their respective limits indepéndently,
but rather in accordance with (2,28),

If we observe that 1-4pq = (q-p)z » that (2,28) implies
lim Nt =0 and lim [1+ O(t)]N =1 , and that the following hold
N-o ' N-so0
t—0 t-0
as t -0

(i) 3% = 14 st+0(t?)

-11 -




(i) Vi-4pqe™

/1-4pq-8pqst+0(t2)

]

a-4pq)/?(1 - fhast + o(t?)Y/2

@-p) - B2 4 0%y = qop + 0(t)
(and from (i} and (ii))

(1ii) 1 - 2qe®'+ /i-4pge®
(iv) 1- 2qe®t + Ji-dpqe®

we find from (2. 29) that

_ngt 2
a-p + 0Ot")

2(p-q) + O(t)

(2.30) lim U (e )

N—+o0
th
1im [2(q-p) + O(t)]- e

N 21+ 0] (<354 0 - [+ 000 (2(p-a) + 0(6)
t—-

stN

~ q-p
3 1lim
N-wo —3(3)Ng¢ _ (p-q)
twp 9-P'P

1-xs °

1. i . ;
Now =G 18 the moment generating function of the negative
exponential distribution with mean \ ; that is, by the continuity
theorem for moment generating functions, our limiting density

function is

1
(2.31)  f(x) = '>.' n (x> 0),, where A = —3—2[-‘1] t.
(a-p)° P

-12 -



Note that the mean and variance of this distribution are \ and
2 . . .
A, in agreement with the asymptotic values of the mean and

variance which we may obtain from (2.14) and (2.19).

Case 2. Drift to the right (p > q)

Frorn (2.14), the mean duration is asymptotically

N
2,32 D A/)—
( ) v p-q
and accordingly we require that lim E—-t =\, with X\ fixed.
. N -0 p=

t—-0

Proceeding as before, we find from (2.32) and (2,9) that

rp-q)s :
(2.33)  lim UO(eSt) = gqu . 8\

N—o00 e
t—0

which is the moment generating function of the unitary distri-
bution with mean X\, The reason for the approach to this
degenerate distribution (all of whose probability is concentrated
at the point \ ) is that in introducing the time parameter t we
have multiplied the mean duration by t and the variance by t2 H

since the mean is p—N-Et =\ and the variance, from (2.19), is

asymptotically -‘—}E-g—zNi:2 o the variance is then ﬂ37»).1: ’
(p-q) (p-q)

which goes to zeroat t -0 .,

More interesting from the point of view of applications is
the manner of approach to the unitary distribution, Using
arguments similar to those outlined for case 1 (noting that, in

this case, Y l-4pq = p-q since p > q) it can be shown

-]3 -




that

st e)\(P’Q)S
{2.34) UO(e a2 TN (N - o) v
S

1l- 555

The dencminator is the m.g.f. of a I'-variate (Pearson
Type III) distribution (the general density function of this
family is of the form Ax)‘e-‘:"x where A and « are non-
negative constants, and x > 0 ); the moment generating
function of a member of this family can be written in terms

; 2
of the mean m and variance o as

1
(2.35) -7 -
(1- FS)
mz 0'2 2 l
Thus — = N and = ° —]%— so that the mean m of
o

the curve represented by (2.32 is 2q\ and the variance is
2,2
49 ) .
N ’

curve to the right an amount \(p-q) so that the resultant

the exponential factor MP-als merely translates the

mean is A(p-q)+2g\ =\ as it should be; the effect of the

ghift is to truncate the curve at A(p-q) = Nt which corresponds
to the fact that absorption at N is impossible for the first

Nt time units, Note thatif m =\ and orz = ).2 e (2.33)
reduces to T:i_s so that the exponential distribution is a

special case of the I'-variate.

Case 3, No drift (p =q=-%2-)

From (2, 23), the mean in this case is asymptotically N2 .

so we require that 1lim Nzt =\ . Setting p=gq-= 32- in (2.9)
N—+>co
t—-0

= 14 =




and passing to the limit we have

(2. 36) lim U (%) = sechyZsn s< 0
N-—c0 L
t-+0

(It is interesting to note, as a verification, that the variance as
computed from (2.34) turns out to be 2).2/;3 , in agreement
with (2, 24)).

From reference [6], page 257, the inverse Laplace

Transform of sech Vx is
0 1 .
(2.37) - [W 0, (-zvlmt)] .
v=

where 91 is a theta-function given by

1l o= _ 1 2
(2.38) Ol(vl-r) = (-iT) 2z Z (=1)ne-1“(v--z+n) /r .

n=-00
Carrying out the indicated operations, we find that the

density function is

& ).(Zn-l)z
2x
1 n
(2.39) f(x) = (-1) (2n-1) e "
ﬁ(;,_’-‘,;)yz n;,,
(x > 0)

a result which is of the form one would obtain by the "method
of images" [cf. especially [1], page 304, prob, 7 for a

similar answer in the case of two absorbing barriers].

1II. UNEQUAL STEPS (r # 1)

We assume in this section that r and f are any positive

integers; without loss of generality we assume r and £ to be

-15 »




relatively prime, for if not the scale of the walk could be cut

down by the common factor,

. pr # gl
One can see directly by a physical argument similar
to the one mentioned above (or by repeating the derivation of
the generating function and subsequent arguments outlined in

equation (2.1} - (2.12)) that the mean duration satisfies

(3.1) Dk = pDk+r+qu=1 +1 k =44, +4+l, ¢¢e, N-r
with boundary conditions
Dk=pDk+r+qDo+1 k=0,1, »+¢, ¢
(3. 2) Dk = quol +1 k = N—r+1. e, N-l
DN =0 ,

Equations (3, 2) represent r+{ boundary conditions to be
imposed on any solution to the non-homogeneous equation
(of order r+f ){3.1) and hence determine a unique solution,
As is seen by substitution into (3.1), the conditions (3, 2)

may be replaced by the simpler conditions

Dy *Dngr ® " *Dpyraa = 0

(3.3)

D-I = D‘1+1 =

Note that since Do is undetermined, (3. 3) specifies
exactly r+4f conditions, as it should.
The auxiliary equation of (3.1) is

(3.4) pxr+l=x1 +q =0

-16 -




which has r+f yoots 1, Xpp X 200, Let

Xr4g-1"

(3.5) ey =px"Tt st 4 q

Simple considerations establish the following facts con-

cerning the function ¢(x) and roots of the equation ¢{x) =0,
r(a.) All the roots are simple.

(b) There are exactly two positive roots, say 1
and x| with
case 1, x1>1 if pr-q24 <0
case 2, x1<1 if pr-q2 >0

(c) %(x) < 0 for all real x between 1 and x)

(d) The absolute value p of any complex or

negative root satisfies ¢ (p) > 0. For let

x; be the root; lxil =p. Then
pxir'H -xf +q=0=> x‘il = px?“ + q and by
(3. 6) £t rt

the triangle inequality p < pp +q
(note that strict inequality holds since x;

is not positive real) which is equivalent to

r+f 1
®p) =P gar ta>0

(e} From (d) it follows that there are no roots in
the open annuli
1<|z]< x, (pr-qt<0)

x, < |z] <1(pr-qt > 0);

in fact 1 and x, are the only roots in the

closure of these annuli ,

N

The conclusion of the following lemma concerning the roots

of ¢(x) =0 will be of importance later:

=17 =




Lemma

Exactly £ of the roots of ¢(x) = 0 are in absolute value
less than or equalto 1 if pr-qf < 0 and less than or equal
to x1<1 if pr-q4 <0,

For simplicity, we prove the lemma for pr-qf <0 ;

the proof in the other case is similar,

Proof :

Let C be a simple closed contour contained in the annulus

1<|z|< X . Let f(z) = -zl and g(z) = pzr.M +q. Then
f(z) 5= 0 on C and Ig(z)l < lf(z)l on C since by (c) of

+2 !
plz|""" - |2

(3. 6) +9<0 on C whence

T+ +q > |pzr+l +q| = [g(z)l . Thus

|#2)] = |2]*> p|z]
by Rouché's theorem, the number of zeros within C of f£(z)
is equal to the number of zeros within C of f(z)+g(z) = ¢{z) .
But fiz) has a zero of multiplicity £ (counted as f zeros)
within C ; hence ¢{z) has f zeros within C , since by (a)
of (3, 6) all the zeros of ${z) are simple. Since the annulus

1<|z| < x, is free of zeros (by (d) of (3. 6)) there are { zeros

1
on or within the circle |[z| =1. (Infact £-1 of them lie
within, and the zero 1 lies on the circle}). Q. E,D.

For the reader's convenience we include the following:

Rouché's Theorem :

Suppose f(z) and g(z) are analytic on and within a
simple closed contour C of the complex plane, and that on

C f(z) # 0 and |g(z)| < [£f(z)| . Then f(z) and £(z)+g(z)

- 18 -




have the same number of zeros within C .

Returning now to the problem of finding a solution to

equation (3.1), we note that a particular solution is :

ql-pr
hence the complete solution to (3.1) is of the form
r+f-1
k k
—_— a.x. + a
k C e T4 i3 o
Jﬁ

(3.7) D

where the r+f{ constants aj are determined by conditions (3. 3).
Using these conditions we now seek to obtain an approximation

to Do . Substituting in (3.7) we obtain

(3.8) D =a +a,+e¢¢c 4a
o ()

1 r+s-1
and
r+f-1
_ N N
B9 0 g LN
j=1
and finally,
r+l-1 r4L-1
(3.10) Z i b Z aaitl k¥l
)J ql-pr ) ql-pr
j=1 j:]_

1. -1+1. o, ‘3. -2' '1
K =\N, N#l, N#2, ¢+, Ntr-2

Collecting terms in (3.10) we have
r4f-1
1

k
(3. ]-1) ajxj (lﬁxj) = W k= —1. cee, . | .
j=1 N. N+1,"'.N+l"2

The equations (3.11) are r+f-1 linear equations in the

unknown ajpeee,a In terms of these, it can be seen

r+l-1"

-19 -




from (3.8) and (3.9) that the desired solution Do is then

r+L-1
N N
= —— 4 a.(l-x. .
pr-aqf J( xJ)
j=l

(3.12) o

In the sequel we will show that for N large the root x

1

is the

only root which is of importance to the size of the right hand

member of (3,12) in case pr-qf < 0 and that the term

pr-qf
We first remark that Do must be real, from physical

is the only term of importance in case pr-q > 0,

cons:iderations;this could be verified directly using the fact

that the complex roots occur in conjugate pairs,

express (3.12) in terms of real quantities only, we will

continue to express the roots and constants aJ. in terms

Rather than

of complex numbers, and will use the fact that D0 is real

in the final results,

The determinant of the system (3,11) has the form

-1 -1 =1
xl (l-xl) Xz (.l'xz) e oo xr+1 _]..(l-xr_'_! -1)
'2 . [ ]
x1 (l-xl)
3.13) [x7(1-x)) L -x,) x;3, (-x )
(3.13) 1%, " (1-x xy (1-x; 4t -1 %4001
N
xf‘(l-xl) x5 (1-x) .
N+r-2 N+r-2 N+r-2
x) (1-x) Xy (1-x;) reg-1 0 Xppg 1)

- 20 -




Noticing that rﬁl B (xi-l) is the product of the roots of the
i=l
equation @ =0 , and is thus (_1)r+1 = times the constant
term in L:l) we have
4] r+f-1 . _ pr-qt
. iIL (1-x) = &=

Using (3.13) , elementary manipulations show that the

above determinant reduces to the form p_rb-ﬂl_ A where

-1 -1 -1
13 - X
(3.15) A= 1% Xy X4t -1

-2 -2 -
1 %2 .

o -1 -1
1 *5 Xr+t-1
N N N

X %2 Xr+1-1
N+r-2 xN+r-2 N+r-2 .

*1 2 Xr4t-1

Similarly, the determinant formed by replacing the

ith column of (3.13) by a column of constants prl-ql has the

form
) 1

where Ai is the determinant A with the ith column replaced

by a column of 1's .,
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The constant a, is then given by

1 44

Gl 2 = Granm=) 7

and the solution (3.12) becomes

r+f-1 A
_ N i _ N
(3.18) Do = or-qf + cj T(l xj)
j=l
1

where cj = (pr-q!)(l-xiT .

From (3.15) it can be seen that the determinant A is a
linear combination of products of the numbers XpoXoe® e X 0
raised to the powers -1, -2.,“ e, -2 and N, N+l, eee, N+r-2 ,
each exponent occurring once and only once in each term, In
each term, r-l1 of the factors involve an exponent with an N
in it; A can then be expressed as a linear combination of
Nth powers of products of the numbers Xpp ot e X001 taken

r-1 at a time. The leading term of A is, for large N,

that term involving the r-l1 largest roots (in absolute value).

Let Xos Xg9®0%y X be these; then
(3.19)  |alns Ky(lx, | Ixg]eee Ix, DY

where K1 is some constant,

By a similar argument, reference to (3.16) and the
definition of A, shows that A, may be expressed as a linear
combination of products of the numbers Xpe Xon 000 X 10

X0ttt Xyl taken (r-1) at a time and (r-2) at a time

(as above, each factor raibedto one of the powers
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-4, *#++, =1, N, ee¢, N+r-2 ); note that the root x, does not
occur in 8 «

Again, the leading term is that involving the r-l1 largest
roots (in absolute value). Since the missing root x, may be
among the r-1 largest, it will be convenient to consider the
quantity Ai(l-xiN). This is also a linear combination of
terms of the type described above; the leading term is that
involving the r largest roots. (Those terms arising from
AixiN involve products of}all the roots taken r at a time).
By the preceding lemma and (e) of (3. 6), it follows that for
pr-qf < 0 there are r-l roots larger than x| and £ smaller;

thus *) is exactly rth in size and
(3.20) IAi(l-xiN)lN KZ(lel lle"' Ixr|)N
and it follows that

K. x .

A.
(3. 21) |A—1|/~/1«<3|x1|N = Kyx)'

is of smaller order

Finally, since x > 1 the term pzliql

than :xlN , we have from (3.18)

(3.22) D A/ xxf‘ (pr-qf < 0 )

where K is some real constant. (Here we use the fact that
Do is real),
For pr-qf > 0 the argument is the same with the exception

that x| is everywhere replaced by 1 which by the lemma is

N

th A.
r in size. Thus |-A—1|NK1 = K, so that

3 3
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(3. 23) D ~—N

o pr-ql (pr-qt > 0 )

2. The case pr = qf .

The lemma as stated holds only in case pr s qf ;
it asserts that if pr-qf < 0 r-1 roots are greater than x;
ir-x absolute value and that if pr-q¢ > 0 r-1 roots are greater
than 1 in absolute value. As pr - qf , x, = 1 so that in the
limit (pr = qf) there is a double root at 1 ; it can easily be
shown that this is the only positive root. The method used
in proving the lemma no longer works in this case since the
annulus in which the curve C was inscribed ceases to exist,
However, continuity arguments* show that in the limit as
Pr - qf the number of roots on or exterior to the unit
circle must always exceed r-1. Using this fact we are in
position to extend the preceding argument to the present case.

Since 1 is a double root of (3.4) a new particular
solution to (3.1) must be found; it is easily verified that
1!:2

(3. 24) - 3

is such a solution, so that (3.7) is replaced by
r+l-2

(3. 25) D, = -ﬁ + Z axk + a_ +ak
s k - T TI i o T &% o
j=1

Following the previous arguments it then results that
2 r+d-1
N N
(3. 26) DO = W + aj(l-xj) + alN
j=2

* The authors are indebted to O. S. Rothaus who suggested
a proof,
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where again the a.j are given by quotients of determinants of
form similar to those of the preceding section. Using the
remark that at least r roots are in absolute value greater
than or equal to 1, it follows from the same type of argument

used before that

2
N
(3. 27) DoN T

IV. COMFARISON OF RESULTS

For convenience we restate the principal results from

sections II and III concerning the mean duration D,

N N
(4.) D= —+ 1 5(d)"-1] (r=£=1,q9%# p)
° P (pqt P
From (4.1) we have
(4.2) D Av—3 (3N r2¥ =1, p-g<b)
. - — P » P
(p~q)
(4.3) D A~Av . (r=2=1, p-q> 0},
° P-q
Also
2
(4. 4) D0= N™ + N (r=2£=1, p=q)
SO that
c 2 - -
(4.5) DONN (r=2=1,p=q).
Now in the general case
N
(4.6)  D_AJ Kx| (pr-qf < 0)
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(4.7) D~ prf'ql (pr-qf > 0)
and finally
NZ
(4.8) . ])ON =~ (ql = Pr ) .

One sees immediately that (4.5) and (4. 8) agree in case
r =2 =1 and that so do (4.3) and (4.7). To unify the formulae
we note that the mean m and variance crz of the individual
steps are pr-qf and pq(r+! )2 respectively, so that in
general for m > 0 (drift to the right) DON % . For
~m.< 0 the comparison is not as apparent; (4.2) and (4. 6)
agree in form and xy =% for r=1=1; but to complete the
comparison we need to express x) in the general case as a
function of p,q,r and £ ., By analogy with the theory of birth
and death processes in which the ratio of birth rate to the
death rate plays a central role (cf. [1] page 374), one is led
to conjecture. %1? as a generalization of % . However,
consideration must be given the fact that the size of the
walk N should be normalized to proper dimensions since
1 and r exceed unity; a logical normalization is one that
reduces the standard deviation 6f an individual step in the gene-
ral case to that of the case r=f =1, The ratio of standard

deviations in the two cases is IZ—E}—__(_L‘!.!J. = ji;—')—,, so that N
Pq

should be divided by this factor where it appears. This gives
Do~[§£-'] [ #1) whence x, = [%]r“ . Numerical trials
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show that this is a remarlkab]ly good approximation of the positive
root x; » especially if r and £ are nearly equal and p is not
too close to 0 or 1,

As an additional remark, we note that for r={f =1 the

. N . .
constant K in DON le is determined as——a—z— » Although
(p-q)
the constant for the general case is a rather complicated

expression involving products of the r+f roots of equation (3. 4),
some attempts at simplification and estimation of the constant

have shown that the largest {and pessibiy the only significant)
x

1
(pr-qt)(l-x) °

term in the expression for the constant is

R . - |
Since this reduces to _'L_Z in case r={=1 {(and X P )
{p-q)
it is a tempting surmise that it is a reasonable approximation

for K. We would then have

. 2(N#1)
1 qf ; r+t
(4.9) D_nv [_]——— et <0
° (Pl"mql)(le[g._l;] 2/1+r) pPr

which is exact for r=4 =1 and approximate for general r and (.
We note that for m > 0 our results (4.3) and (2.19) agree

exactly with those given by Bartlett {cf. [4] page 20, eq.(22))

for the random walk with single absorbing barrier at N and

no restrictions on the left, That the results are identical is

not surprising since for with a drift to the right (m > 0) a

restraining barrier at the origin is of virtually no signifance

to the duration of the walk. It is interesting to note that the

results given by Bartlett hold for the general r and f ; in

’
¥
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g 2 N
terms of the mean m and variance o they are D /v =

2
No \ . .
and VON —;nT . Although we have not given the variance
for the general case, the agreement above leads to the

conjecture that

Npq(r-H)2

(4.10)  V_~s
(pr-qt)

(pr-q¢ > 0) .

Since we do not have the generating function for duration
in the general case, we cannot repeat the steps of section II
part 5 to find asymptotic limiting distributions, However, the
following heuristic discussion may, we hope, furnish a plausible
conjecture regarding the limiting distributions in general,

It is a result of the theory of recurrent events that the
distribution of the time up to the first event is exponential if
the event occurs at random in time (i.e., occurrence in a
small interval of time is proportional to the length of the
interval, and independent of the position of the interval in
time); furthermore the distribution of the time until the rth
event is I'-variate (with suitable parameters). These
distributions are used in many connections, especially in
queueing theory and have recently been called "Erlangian
distributions' by Kendall, That these distributions arise in
section 5 of II is not surprising for

(a) with a drift to the left, the event {(absorption at N )

does occur ""approximately' at random in time; that is, the

walk tends to persist at or near the origin and once at the
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the origin, what happens to the process in the future is independent

of its past history, Thus we should expect the duration to be

approximately exponential,

{b) with a drift to the right, the event (absorption at N )

- takes place only after a succession of events, each of which

consist of the walk moving to the right by an amount -:—1 (where

. _is the size of the average step), and so we could expect the

lirniting distribution of duration to be of I'-variate type.

Now statements {(a) and (b}, while heuristic, are justified
rigorously in case r={£ =1 by the results of section II part 5,
Since these statements require only a drift to the left or right,
it is a tempting conjecture that the same limiting distributions
ohtain in the general case, This conjecture is made more
appealing by the manner in which the mean duration in the
general case (section III) turns out to be a simple generalization

of the mean for the special case r=£=1 .
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