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Thi.~ paper describes a .number of method.~ that a prof?rammer can 
use to write more efficient programs. Its goal is to fo.~tcr the attitud<~ 

that the efficiency uf a program is (Jften as important as it .~ accuracy. 
and to provide the undersr.ar1di11g necessary to accomplish this. 

I. INTRODIJCTION 

This paper has been written in an alt.empt to influence FORTHAN 
programmers t.o write more efficient programs, with little extra effort 
on their parts , Programming is very rriuch a matter of style, and 
one's style may he good or had .. Just as one's prose style can he improved 
through guidance and practice, so too can one'!; programming style. 
This paper contains a list of "do's and don'ts" of programming which. 
if adhered to. will guarantee the development of a more cfticient. 
programming st.ylc. 

The emphasis of the paper is on FORTRAN, and many of the 
comments apply only to fORmAN, and, in particular, the CDC GGOO 
IDASYS version of FOl{TRAN. Other comments apply more generally, 
t.o all . higher level algorithmic language,:,; some. finally, apply to any 
programming language. The examples employed will be exclusively 
in FORTRAN . ~ 

There are two cardinal rules of efficient pro~amming : 

(I) Never perform an unnecessary operation. 
(2) If an operation may be performed several ways, always i.:hoose 

the cheapest way. 
The remainder of the paper is e!'-sentially an explication and expansion 
of these two principles. 

II . SvBSCHIP'fED VARIABLES 

A programmer should be aware of the e ffect of his use of a sub
scripted variable. Variables in general are simply names of storage 
locations in which values are stored. During compilation, each vari
able name is replaced with the address of the corresponding storage 
location. The address is then available during the execution of the 
program and need not he recalculated . 

This is not true for a subscripted variable. Only the address of the 
first location of the array can be prepared during calculation. But every 
execution-time reference entails a computation of the effective address. 
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l''or a singly dimensioned array, this <iperates as follows : 

· address (A(l)) =address (first location of A)+ I -1 

for multiply-dimensioned . arrays, the situation is somewhat more 
complex . Let A be dimensioned: 

DIMENSION A(L,Ml 

Then we have: 

address (A(l,J)) = address (first location of A) + I- I I L • 
(J - 1) 

Finally, the three-dimensional formulae are: 

DIMENSION A<L.M,N) 

address (A(l,,J,K)) = address (first location of A) 1- I·- I + L • 
I ,J - 1 + ~ • ( K - l) I 

1n other words, for each additional dimension above one, there is an 
additional mult.iplication and addition for each reference during 
execution _ 

To understand the effects of this extra work, corn;ider the following 
loop example: 

DIMENSION A(lO.lOl 

DO 10 I"" 1,10 
DO 10.J=I,lO 

10 SUM= SUM -1- A (I,J) 
? 

This short loop involves 100 references to the array A, at a cost of one 
multiplication and one addition each. Now consider the following 
alternative: ·· 

DIMENSION A(I0,10) 

DO 10.J=l,10 

J.J = Io• ( .J - 1 ) 

DO 101=1,10 

lOSUM=SlJM + A(l -f·JJ) 

We now have eliminated the 100 multiplications from the ar.ray ref
erences and replaced them with · 10 sel-up multiplications_ We can 
impnive things even further: 

DIMENSION A(lO.lOl 

0010.J=0,90,10 

DO 10l=1,10 

10 SUM=,8UM + A(I +.J) 
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Of course, since most FOHTRAN compilers do not-permit DO-loops 
to start at 0, the programmer will usually have to WJ"ite his own loop 
control statements. . · 

To measure the possible saving~ this type of change can achieve, I 
modified a CDC 6600 pro~am in this way. Five minutes' effort resulted 
in a time savings of~%. 

Another comment. regarding suhscripted variableR is in order. 
Frequently, several references to the same variahle will be made. 
Instead of making all these references to the subscripted variable, it is 
more efficient to save the value of a variable in a simple variable and 
refer thereafter to that variable : 

X=A(l,.J) 

. (statements using X) 

m: LO.OPS 

In the great majority of programs, the bulk of the processing is per
formed within loops-- usually within deeply nested loops. The ef!icient 
programmer will , therefore, hold the processing in his loops to a 
minimum and do whatever is really loop-invariant outside of the loop . 
While this !'IOunds like a fairly simi>le idea, it is far too frequently 
violated. 

One important example ha s already been given: the references to 
subscripted variables. 1t. is very iJJJportant to understand how address 
calculations were made loop-invariant. The original example had lhe 
I-loop outside and the .) -loop inside (the way most programmers 
would tend to writ.e) . Hut. lhi!; way, the calculation JJ = 10*(.J = 1) is 
not loop-invariant. The trick is to reverse the nesting order of the two 
loops. Once the I-loop is inside, the JJ calculation can be removed 
from the inner loop. 

This may he stated as a general principle: lf arrays are stored in rou .·
major order (that is, the row subscript varies most rapidly), then nest 
DO-h~>ps so that. the loop of the row subscript. is innermost. If r:nlumn

major order is employed by the compiler, then nest DO-loops with .the 
loop of.the column subscript innermost. This happens t.o he a compiler
dependent factor, but 'program efficiency is usually purchased at the 
cost of machine or compiler dependency. 

IV . ARITHMETIC CALCULATIONS 

The statements a programmer lends to write most. automatically 
are those which perform · arithmetic calculations and assignments. 
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Yet here, too, considerable savings in speed are frequently possible, 
especially if the arithmetic is performed within a loop. There are two 
basic points to keep in mind . 

First of all, the arithmetic operations are not usually equally fast. 
On most machineR, floating point arithmetic is slower than integer 
arithmetic; within each class, division is generally the slowest opera
tion, then multiplication. and then addition and subtraction. Powerg, 
roots, logarithms, and trigonometric operations are all implemented 
by subroutines. But these rules do have exceptions. For example, the 
CDC 6600 has only floating point multiplication. To multiply two 
integers, · the machine must first convert them to floating point, then 
multiply them and convert the result back to integer format. This is 
clearly much more expensive than a simple floating point multiplica
tion. 

The efficient programmer, having learned the relative cosb of the . 
arithmetic operations ·on his machine, will be able to arrange his 
computations to favor the cheapest operations. Some examples follow. 

Expressions involving small (integer) constants can usually be 
modified, so as to replace expensive operations with cheaper one:;;. 
Thus, the expression 2.0* A may be written as A +A, and A 0 3 can be 
replaced with A• A• A. It is true that some compilen; will do the latter 
substitution on their own, hut the programmer can make sure by 
doing it himself. · 

Another example involves loops. Consider the following normaliza
tion loop: 

DO 1I=1,10 

I X(l)= Y(l)/Z 

This requires ten divii.;ions; we can get hy with one division and ten 
multiplicatiorn~: 

Zl= 1.0/Z 
DO 2 I= 1,10 

2 X(l)= Y(J)*Zl 

A final example involves algebraic simplification that the program
mer can perform. The statement 

A= CB+ 1.0/B)*(C + 1.0/C)*(D+ 1.0/D) 

requires three divisions, two multiplications, and three additions. Rut 
it is equivalent to 

A= (B*B ! l.O)*(C*C-+ 1.0)*(D*D+ LO) /(H*C*D). 

which requires one division, seven multiplications, and three additions. 
Assume that a division takes as long as three multiplications. Then 
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the first approach requir~ the equivalent of eleven multiplications 
and three additions, while the second requires ten multiplications 
and three additions. We can thus save one multiplication out of 
eleven, or 9%. A more precise estimate is obtained if we take the 
addition into account. Suppose addition is twice as fast as multiplica
tion. Then the first approach requires the equivalent of 25 additions, 
and the second approach needs· 23. The saving is then 8%. It is 
worth mentioning that the estimates given approximate the true 
figures for the 6600. 

The second basic point with regard to possible saving:>. in arithmetic 
operations concerns partial results. If a computation requires some 
intermediate result for two subsequent operations, it is usually worth
while to first compute the intermediate result, assign the value to a 
simple variable, and then use that varial.Jle later: 

X = SQRT(B*B-,- 4.0*A"C) 

Y = ( -B+X)/(A-t-A) 

Z = (- 8--X)/(A-i A) 

Sometimes it costs more to store and fetch a result than to compute 
it twice. In the above example, this was as.<>umed to be the case for the 
value A+A (or 2.0*A). But the value assigned to X is clearly not in 

·this exceptional category. 

V. ARGl.JMF.NT PASSA<;E AND ··COMMON'"· .,,. 
Whenever arguments or res~lts are passed between a program and a 

subroutine or function via a calling sequence, overhead will accrue. 
This is because either the value or the address of each argument must 
be fetched and stored to a !ipecified location or register. The overhead 
is therefore proportional to the number of elements in the calling 
sequence. 

All of this overhead can be avoided by placing these element!i into a 
COMMON block (in both the calling program and called subroutine, 
of course). Then the subroutine knows at its compile time where its 
arguments are to be found, and where it should place its results. 
None of this information need be passed during execution. 

VI. BRANCHING 

Executing a branch instruction on any computer requires time, 
whereas allowing control to proceed sequentially does not. The ~fficient 
programmer will take advantage of this fact to minimize the amount 
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of branching his program will have to execute. Consider the following 
schematic example: 

IF (Condition) GO TO 

GO TO 2 

1 CONTINUE 

2 CONTINUE 

Jn this case, whether the condition is true or false, one branch instruc
tion must be executed. Rut suppose the probability that the condition 
will .occur is only 1 %. We can arrange for control to proceed sequentially 
when the condition is false, at the price of two branch instructions 
whenever the condition is true: 

IF (Condition) GO TO 1 

2 CONTINUE 

RETIJRN 

CONTINUE 

GO TO 2 

Notice that the statements to be executed if the condition holds arc 
placed after some unconditional branch point in the program. 

There is a second uF-eful technique in branching, and this is table 
lookup. The FORTRAN equivalent is the computed GO-TO state
ment. When a programmer must implement a multiple branch (that 
is, test for a number of conditions and perform different actions for 
each}, he can frequently arrange for a simple integer-valued function 
of the conditions, and use the function value as the index of the com-
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puted GO- TO. Suppose we wish to tel;t if a variable X is positive, 
negative, or zero. Then: 

N ~ ISIGN(X)+2 

· GOTO (1,2.3),N 
. . 

If X is negative, N will he I ; if X is zero. N will be 2; if X is positive, N 
wiUbe3 . 

Vll . SPECIAL EFFECTS 

Many FORTRAN compilers (and those of other higher level lan
guagel'>) offer special, nonstandard features in their dialecl<; . These fea
tures provide convenience, and in many ca.c;es, efficiency as well. I will 

. cite some of the features that the CDC 6600 IDASYS FORTRAN 
provides. 

(a) Several assignmenL-; may be specified in a single statement: 

A= B= C= D= l .OfX 

This is preferred to the sequence: 

A= 1.0/X 
R=A 
C=A 
D=A 

because it avoids the three extra "fetch" operations the letter sequence 
is likely to produce. 
· (b) A suhroutine called ERASER will se t all elemenLo; of an array to 

a specified value: 

CALL £RASER (A,100,3.14) ,. 
. will i,;et the tirst 100 elements of the array A t o the value 3.14 . This is 
preferred to the DO-loop: 

DO I I= 100 

I A(1) = :U4 

for the same reasons as in (a). 

(c) Certain functions, based on some of the 6600's instructions, are 
compiled as in-line code; this precludes the overhead due to subroutine 
linkage. Examples are: · 

I SHIFT : shifts a word left (circular) or right. . 
LVAL extract:; a bit from a word. 
MOD2 adds two words mod-2 bit-by-bit. 
IDENS counts the number of I's in a word. 

· ISGN return;; a - 1,0,+ l if the argument I~ ne~ative, zero, 
positive, respectively. · 

SGN similar to ISGN, hut returmi a floating point value. 
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VIII . PROGRAM SIZE 

The type of effidency we have been !;tressing ii:; execution-time ori
ented. For many "third-generation" operating systems, this is only one 
factor. The amount of memory used by a program is equally impor
tant for these current systems. In fact, the accounting routines of !\Orne 
of these sy!'tems reflect this situation. Instead of charging the user only 
for his processor time, the syRtem charges for memory usage and proc
essor time. One approach is to multiply these two factors together and 
charge for the total amount of ·"word-seconds" used. . 

In !'>uch. an environment, the user should seek to minimize his space
time product. Sometimes speed can be gained without a penalty in 
space; this is certainly a worthwhile change. Similarly, space can often 
be gained without a speed decrease. Judicious ui,;e of the FORTRAN 
EQUIV ALEN CE statement is one example of this process. 

Most often, however, we face a tradeoff between speed and memory 
usage; and the decision is a harder one. For example, we might speed 
up a procedure by precalculating some large tables; during the proce
dure, we refer to the tables instead of repeating the calculations. In 
such a case, one should estimate the space penalty and the speed 
bonus, and determine which factf>r outweighs the other. 

A final . comment is in order regarding those multi ~programming 

systems which i;till orient their accounting exclusively toward process
ing time. The user here will not be charged for wa!lled space, yet the 
system itself will suffer degraded performance, and the user will ulti
mately feel this in slower service. Hence, it is still to a user's advantage 
to reduce the memory requirements df hi!i program if he can. ln addi
tion, to enforce this tendency toward smaller · programs, system man· 
agers would be wise to amend their accounting procedures. 

IX AI.GORITHMIC EFFICIENCY 

My next comments apply not to programming per se, but to the 
writing of algorithms. An algorithm is a detailed specification of the 
~teps that must be performed to transform a given input to the desired 
output. Programs are thus examples of algorithms. Thus far, we've 
analyzed ways of writing more efficient programs, under the tacit as
sumption that the algorithm had already been produced. Clearly, one 
must also do his best to ensure that the algorithm he defines is efficient 
as well . 

. Frequently, one will write a bad algorithm because of an inadvisable 
data representation. Consider lhe following taf'k : produce an algorithm 
to process alphabetic text and perform a frequency count; the text is 
l 000 characters long and ii; punched 50 characters to a card. One might 
approach this problem by defining a 26-long array of alphabetic con-
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stant< and then comparing each character of text against these con , 
stants: 

lNTE(;ER KONST(26), TEXT( 1000) . KOUNT(27) 

DATA KONST/lHA lHB lHC . ... lHZ/ 
READ (5,101) TEXT 

101 FORMAT (50Al) 
DO 60 I= 1,1000 
.J=TEXT(l) 
DO 40K=1,26 

40 IF (J .EQ. KONST(K)) GO TO .50 

KOUNT(27) = KOUNT(27) + 1 

GO TO 60 
C KOUNT(:27) COUNTS GARBLES 

50 KOUNT(K) = KOUNT(K)+l 

60 CONTINUE 

If the text is Hat random, we expect thirteen passes through the inner 
loop for each character of text . 

We can do much better than this by translating the hinary-coded 
decimal (BCD) values stored in TEXT into integers (running from 1 
to 26) . This can be done rapidly via a translation table: 

where 

INTEGER IBANTB(64) 

DATA TRANTB/ .. ./ 

TRANTB(l) = .J 

" 

if the BCD value of the J-th character ( 1 ~ .J::?. 26) considered a~ an 
octal number is I. Jn other words, if the 8CD of A is 21s , set TRANTB 
(17) == A. since 21~ = 1710 . Now we must read the text in Rl format 
to keep the characters right-adjusted: . 

READ (fl,101) TEXT 

LOl FORMAT (50Rl) 

f DO 50 l= 1, 1000 

l L = TEXT(l) + 1 

. J = TRANTB(L) 

I 50 KOUNT(J) = KOUNT(J) + l 

I 81 
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As long as we fill the 64-26=38 values ofTRANTB that don't correspond 
to alphabetic characters with the value of 27, this method is exactly 
equivalent to the first. 

INTEGER COUNT(27) 

READ( .. \101) TEXT 

DIMENSION KOUNT(64) 

101 FORMAT (.50Rl I 

no 50 I= 1.1000 

J = TEXT(l) +I 

50 KOUNT(J) = KOUNT(J) +-1 

no so 1~ 1,64 

,J = TRANTB(I) · 

60 COUNT(.J) = COUNT(.J) + KOUNT(I) 

C ASSUMES KOUNT AND COUNT ARE ZEROIZF.D 

The moral of thii-; example is: Don't be restricted by conventional data 
reprei-;entations, but search for the most convenient representation for 
your purposes. 

A second example of this prineiple (from Professor T.E. Cheatham) 
will ~e described, but left as an exercise to the reader: 

( 1) Write an algorithm to put in two integers. divide the first hy the 
second, and put out the quotient and remainder. You may use addi
tion, subtraction, and multiplication, l'lut not division (since, in 
effect, this is what you are defining). Assume that all numben; are in 
a decimal representation. 

(2) Do the task~ of ( 11. but assume a Roman numeral representation. 

X. CONCl.USlON 

The foregoing has been an attempt to motivate programmers to 
adopt more efficient techniques and to explain a number of possibil- . 
ities. Two important caveats are in order. 

First, not all of the suggestions are always going to work. For each 
, technique there will be situations in which it will prove counter-produc

tive. The programmer must analyze the applicability of the~e sugges
tions to his specific problem and i:;ystem. 

One method that may be used is controlled experimentation. The 
programmer faced with a choice of two methods can lime them on his 
target. system and then m.ake a choice based on fact rather than belief. 
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As ari ex11mple. consider the follo~itig slatements (see above. section 
IV): 

X (A+ 1.0/A)•(ij+ LO/B)"'(C+l.0/C) 

X (A* A+ l.O)*(B•B+ 1.o>•(C*C + ~.0)/(A •B*C) 

We can write a toy program, embedding each statement in a loop, so 
that it is iterated one million timeS. We can time each loop, and es
tablish the percent difference between . the methods. This experiment 
was performed on the 6600, and the results, even though the second was 
expected to be 8% faster, indicated that the two methods were equiv~ . 
alcnt. The explanation lies in the ability of the 6600 to execute some 
arithmetic operations in parallel. The sequences of instructions pro
duced by the compiler for each statement determined t.he degree of 
overlap, and the fir.:.t method was favored more. This example thus 
demonstrated not only the method of analysis that the programmer 
can use, but also the need for such analysis. 

It must also he home in mind that this is but. a partial listing of etti
ciency techniques. It is intended more to stimulate addition11l thought 
ori the subject than to serve as a handbook. Given the Agency's invest
ment in computing power, it is a topic of no small interest and 
imJ)ortance. 
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