
DOCID: 3722346

I
I

·1
I

UNCLASSIFIED

Writing Efficient FORTRAN
· evj I· ~-

(b) (;3) -P.L. 86- 36

Uncli.1ssified

Thi.~ paper describes a .number of method.~ that a prof?rammer can
use to write more efficient programs. Its goal is to fo.~tcr the attitud<~

that the efficiency uf a program is (Jften as important as it .~ accuracy.
and to provide the undersr.ar1di11g necessary to accomplish this.

I. INTRODIJCTION

This paper has been written in an alt.empt to influence FORTHAN
programmers t.o write more efficient programs, with little extra effort
on their parts , Programming is very rriuch a matter of style, and
one's style may he good or had .. Just as one's prose style can he improved
through guidance and practice, so too can one'!; programming style.
This paper contains a list of "do's and don'ts" of programming which.
if adhered to. will guarantee the development of a more cfticient.
programming st.ylc.

The emphasis of the paper is on FORTRAN, and many of the
comments apply only to fORmAN, and, in particular, the CDC GGOO
IDASYS version of FOl{TRAN. Other comments apply more generally,
t.o all . higher level algorithmic language,:,; some. finally, apply to any
programming language. The examples employed will be exclusively
in FORTRAN . ~

There are two cardinal rules of efficient pro~amming :

(I) Never perform an unnecessary operation.
(2) If an operation may be performed several ways, always i.:hoose

the cheapest way.
The remainder of the paper is e!'-sentially an explication and expansion
of these two principles.

II . SvBSCHIP'fED VARIABLES

A programmer should be aware of the e ffect of his use of a sub
scripted variable. Variables in general are simply names of storage
locations in which values are stored. During compilation, each vari
able name is replaced with the address of the corresponding storage
location. The address is then available during the execution of the
program and need not he recalculated .

This is not true for a subscripted variable. Only the address of the
first location of the array can be prepared during calculation. But every
execution-time reference entails a computation of the effective address.

73 UNCLASSIFIED

@'pproved for Release by NSA on 07-16-2010, FOIA Case# 62071

DOCID: 3722346
UNCLASSIFIED EFFIClRNT FORTRAN

l''or a singly dimensioned array, this <iperates as follows :

· address (A(l)) =address (first location of A)+ I -1

for multiply-dimensioned . arrays, the situation is somewhat more
complex . Let A be dimensioned:

DIMENSION A(L,Ml

Then we have:

address (A(l,J)) = address (first location of A) + I- I I L •
(J - 1)

Finally, the three-dimensional formulae are:

DIMENSION A<L.M,N)

address (A(l,,J,K)) = address (first location of A) 1- I·- I + L •
I ,J - 1 + ~ • (K - l) I

1n other words, for each additional dimension above one, there is an
additional mult.iplication and addition for each reference during
execution _

To understand the effects of this extra work, corn;ider the following
loop example:

DIMENSION A(lO.lOl

DO 10 I"" 1,10
DO 10.J=I,lO

10 SUM= SUM -1- A (I,J)
?

This short loop involves 100 references to the array A, at a cost of one
multiplication and one addition each. Now consider the following
alternative: ··

DIMENSION A(I0,10)

DO 10.J=l,10

J.J = Io• (.J - 1)

DO 101=1,10

lOSUM=SlJM + A(l -f·JJ)

We now have eliminated the 100 multiplications from the ar.ray ref
erences and replaced them with · 10 sel-up multiplications_ We can
impnive things even further:

DIMENSION A(lO.lOl

0010.J=0,90,10

DO 10l=1,10

10 SUM=,8UM + A(I +.J)

UNCLASSIFIED 74

DOCID: 3722346
(ti) (3}"- P. L; 86--36 ································-- · ! _ ___, UNClASSti=iED

Of course, since most FOHTRAN compilers do not-permit DO-loops
to start at 0, the programmer will usually have to WJ"ite his own loop
control statements. . ·

To measure the possible saving~ this type of change can achieve, I
modified a CDC 6600 pro~am in this way. Five minutes' effort resulted
in a time savings of~%.

Another comment. regarding suhscripted variableR is in order.
Frequently, several references to the same variahle will be made.
Instead of making all these references to the subscripted variable, it is
more efficient to save the value of a variable in a simple variable and
refer thereafter to that variable :

X=A(l,.J)

. (statements using X)

m: LO.OPS

In the great majority of programs, the bulk of the processing is per
formed within loops-- usually within deeply nested loops. The ef!icient
programmer will , therefore, hold the processing in his loops to a
minimum and do whatever is really loop-invariant outside of the loop .
While this !'IOunds like a fairly simi>le idea, it is far too frequently
violated.

One important example ha s already been given: the references to
subscripted variables. 1t. is very iJJJportant to understand how address
calculations were made loop-invariant. The original example had lhe
I-loop outside and the .) -loop inside (the way most programmers
would tend to writ.e) . Hut. lhi!; way, the calculation JJ = 10*(.J = 1) is
not loop-invariant. The trick is to reverse the nesting order of the two
loops. Once the I-loop is inside, the JJ calculation can be removed
from the inner loop.

This may he stated as a general principle: lf arrays are stored in rou .·
major order (that is, the row subscript varies most rapidly), then nest
DO-h~>ps so that. the loop of the row subscript. is innermost. If r:nlumn

major order is employed by the compiler, then nest DO-loops with .the
loop of.the column subscript innermost. This happens t.o he a compiler
dependent factor, but 'program efficiency is usually purchased at the
cost of machine or compiler dependency.

IV . ARITHMETIC CALCULATIONS

The statements a programmer lends to write most. automatically
are those which perform · arithmetic calculations and assignments.

75 UNCLASSIFIED

DOCID: 3722346
UNCLASSIFIED F.FFJC1EN1' FORTRAN

Yet here, too, considerable savings in speed are frequently possible,
especially if the arithmetic is performed within a loop. There are two
basic points to keep in mind .

First of all, the arithmetic operations are not usually equally fast.
On most machineR, floating point arithmetic is slower than integer
arithmetic; within each class, division is generally the slowest opera
tion, then multiplication. and then addition and subtraction. Powerg,
roots, logarithms, and trigonometric operations are all implemented
by subroutines. But these rules do have exceptions. For example, the
CDC 6600 has only floating point multiplication. To multiply two
integers, · the machine must first convert them to floating point, then
multiply them and convert the result back to integer format. This is
clearly much more expensive than a simple floating point multiplica
tion.

The efficient programmer, having learned the relative cosb of the .
arithmetic operations ·on his machine, will be able to arrange his
computations to favor the cheapest operations. Some examples follow.

Expressions involving small (integer) constants can usually be
modified, so as to replace expensive operations with cheaper one:;;.
Thus, the expression 2.0* A may be written as A +A, and A 0 3 can be
replaced with A• A• A. It is true that some compilen; will do the latter
substitution on their own, hut the programmer can make sure by
doing it himself. ·

Another example involves loops. Consider the following normaliza
tion loop:

DO 1I=1,10

I X(l)= Y(l)/Z

This requires ten divii.;ions; we can get hy with one division and ten
multiplicatiorn~:

Zl= 1.0/Z
DO 2 I= 1,10

2 X(l)= Y(J)*Zl

A final example involves algebraic simplification that the program
mer can perform. The statement

A= CB+ 1.0/B)*(C + 1.0/C)*(D+ 1.0/D)

requires three divisions, two multiplications, and three additions. Rut
it is equivalent to

A= (B*B ! l.O)*(C*C-+ 1.0)*(D*D+ LO) /(H*C*D).

which requires one division, seven multiplications, and three additions.
Assume that a division takes as long as three multiplications. Then

UNCLASSIFIED 76

\ .

DOCID: 3722346

. • ."·~' .~J . . . ':'· :~

···-··-··-·-._,__I _ _____.
UNCLASSIFIED

the first approach requir~ the equivalent of eleven multiplications
and three additions, while the second requires ten multiplications
and three additions. We can thus save one multiplication out of
eleven, or 9%. A more precise estimate is obtained if we take the
addition into account. Suppose addition is twice as fast as multiplica
tion. Then the first approach requires the equivalent of 25 additions,
and the second approach needs· 23. The saving is then 8%. It is
worth mentioning that the estimates given approximate the true
figures for the 6600.

The second basic point with regard to possible saving:>. in arithmetic
operations concerns partial results. If a computation requires some
intermediate result for two subsequent operations, it is usually worth
while to first compute the intermediate result, assign the value to a
simple variable, and then use that varial.Jle later:

X = SQRT(B*B-,- 4.0*A"C)

Y = (-B+X)/(A-t-A)

Z = (- 8--X)/(A-i A)

Sometimes it costs more to store and fetch a result than to compute
it twice. In the above example, this was as.<>umed to be the case for the
value A+A (or 2.0*A). But the value assigned to X is clearly not in

·this exceptional category.

V. ARGl.JMF.NT PASSA<;E AND ··COMMON'"· .,,.
Whenever arguments or res~lts are passed between a program and a

subroutine or function via a calling sequence, overhead will accrue.
This is because either the value or the address of each argument must
be fetched and stored to a !ipecified location or register. The overhead
is therefore proportional to the number of elements in the calling
sequence.

All of this overhead can be avoided by placing these element!i into a
COMMON block (in both the calling program and called subroutine,
of course). Then the subroutine knows at its compile time where its
arguments are to be found, and where it should place its results.
None of this information need be passed during execution.

VI. BRANCHING

Executing a branch instruction on any computer requires time,
whereas allowing control to proceed sequentially does not. The ~fficient
programmer will take advantage of this fact to minimize the amount

77 UNCLASSIFIED

DOCID: 3722346
UNCLASSIFIED EPFICTENT FORTRAN

of branching his program will have to execute. Consider the following
schematic example:

IF (Condition) GO TO

GO TO 2

1 CONTINUE

2 CONTINUE

Jn this case, whether the condition is true or false, one branch instruc
tion must be executed. Rut suppose the probability that the condition
will .occur is only 1 %. We can arrange for control to proceed sequentially
when the condition is false, at the price of two branch instructions
whenever the condition is true:

IF (Condition) GO TO 1

2 CONTINUE

RETIJRN

CONTINUE

GO TO 2

Notice that the statements to be executed if the condition holds arc
placed after some unconditional branch point in the program.

There is a second uF-eful technique in branching, and this is table
lookup. The FORTRAN equivalent is the computed GO-TO state
ment. When a programmer must implement a multiple branch (that
is, test for a number of conditions and perform different actions for
each}, he can frequently arrange for a simple integer-valued function
of the conditions, and use the function value as the index of the com-

UNCLASSIFIED 78

DOCID: 3722346 (b) (3) ·:::p·;-i;·: · "86°"'-36· -
j ·

UNCLASSIFIED

puted GO- TO. Suppose we wish to tel;t if a variable X is positive,
negative, or zero. Then:

N ~ ISIGN(X)+2

· GOTO (1,2.3),N
. .

If X is negative, N will he I ; if X is zero. N will be 2; if X is positive, N
wiUbe3 .

Vll . SPECIAL EFFECTS

Many FORTRAN compilers (and those of other higher level lan
guagel'>) offer special, nonstandard features in their dialecl<; . These fea
tures provide convenience, and in many ca.c;es, efficiency as well. I will

. cite some of the features that the CDC 6600 IDASYS FORTRAN
provides.

(a) Several assignmenL-; may be specified in a single statement:

A= B= C= D= l .OfX

This is preferred to the sequence:

A= 1.0/X
R=A
C=A
D=A

because it avoids the three extra "fetch" operations the letter sequence
is likely to produce.
· (b) A suhroutine called ERASER will se t all elemenLo; of an array to

a specified value:

CALL £RASER (A,100,3.14) ,.
. will i,;et the tirst 100 elements of the array A t o the value 3.14 . This is
preferred to the DO-loop:

DO I I= 100

I A(1) = :U4

for the same reasons as in (a).

(c) Certain functions, based on some of the 6600's instructions, are
compiled as in-line code; this precludes the overhead due to subroutine
linkage. Examples are: ·

I SHIFT : shifts a word left (circular) or right. .
LVAL extract:; a bit from a word.
MOD2 adds two words mod-2 bit-by-bit.
IDENS counts the number of I's in a word.

· ISGN return;; a - 1,0,+ l if the argument I~ ne~ative, zero,
positive, respectively. ·

SGN similar to ISGN, hut returmi a floating point value.

79 UNClASSIFIED

Ill!

DOCID: 3722346

UNCLASSIFIED F:FFTCTEN'l' FOIITHAN

VIII . PROGRAM SIZE

The type of effidency we have been !;tressing ii:; execution-time ori
ented. For many "third-generation" operating systems, this is only one
factor. The amount of memory used by a program is equally impor
tant for these current systems. In fact, the accounting routines of !\Orne
of these sy!'tems reflect this situation. Instead of charging the user only
for his processor time, the syRtem charges for memory usage and proc
essor time. One approach is to multiply these two factors together and
charge for the total amount of ·"word-seconds" used. .

In !'>uch. an environment, the user should seek to minimize his space
time product. Sometimes speed can be gained without a penalty in
space; this is certainly a worthwhile change. Similarly, space can often
be gained without a speed decrease. Judicious ui,;e of the FORTRAN
EQUIV ALEN CE statement is one example of this process.

Most often, however, we face a tradeoff between speed and memory
usage; and the decision is a harder one. For example, we might speed
up a procedure by precalculating some large tables; during the proce
dure, we refer to the tables instead of repeating the calculations. In
such a case, one should estimate the space penalty and the speed
bonus, and determine which factf>r outweighs the other.

A final . comment is in order regarding those multi ~programming

systems which i;till orient their accounting exclusively toward process
ing time. The user here will not be charged for wa!lled space, yet the
system itself will suffer degraded performance, and the user will ulti
mately feel this in slower service. Hence, it is still to a user's advantage
to reduce the memory requirements df hi!i program if he can. ln addi
tion, to enforce this tendency toward smaller · programs, system man·
agers would be wise to amend their accounting procedures.

IX AI.GORITHMIC EFFICIENCY

My next comments apply not to programming per se, but to the
writing of algorithms. An algorithm is a detailed specification of the
~teps that must be performed to transform a given input to the desired
output. Programs are thus examples of algorithms. Thus far, we've
analyzed ways of writing more efficient programs, under the tacit as
sumption that the algorithm had already been produced. Clearly, one
must also do his best to ensure that the algorithm he defines is efficient
as well .

. Frequently, one will write a bad algorithm because of an inadvisable
data representation. Consider lhe following taf'k : produce an algorithm
to process alphabetic text and perform a frequency count; the text is
l 000 characters long and ii; punched 50 characters to a card. One might
approach this problem by defining a 26-long array of alphabetic con-

UNCLASSIFIED 80

.,
;

DOGID: 3722346 . {bt-(3)~ P.L. 86- 36

··· ...

UNCLASSIFIED ·

stant< and then comparing each character of text against these con ,
stants:

lNTE(;ER KONST(26), TEXT(1000) . KOUNT(27)

DATA KONST/lHA lHB lHC lHZ/
READ (5,101) TEXT

101 FORMAT (50Al)
DO 60 I= 1,1000
.J=TEXT(l)
DO 40K=1,26

40 IF (J .EQ. KONST(K)) GO TO .50

KOUNT(27) = KOUNT(27) + 1

GO TO 60
C KOUNT(:27) COUNTS GARBLES

50 KOUNT(K) = KOUNT(K)+l

60 CONTINUE

If the text is Hat random, we expect thirteen passes through the inner
loop for each character of text .

We can do much better than this by translating the hinary-coded
decimal (BCD) values stored in TEXT into integers (running from 1
to 26) . This can be done rapidly via a translation table:

where

INTEGER IBANTB(64)

DATA TRANTB/ .. ./

TRANTB(l) = .J

"

if the BCD value of the J-th character (1 ~ .J::?. 26) considered a~ an
octal number is I. Jn other words, if the 8CD of A is 21s , set TRANTB
(17) == A. since 21~ = 1710 . Now we must read the text in Rl format
to keep the characters right-adjusted: .

READ (fl,101) TEXT

LOl FORMAT (50Rl)

f DO 50 l= 1, 1000

l L = TEXT(l) + 1

. J = TRANTB(L)

I 50 KOUNT(J) = KOUNT(J) + l

I 81
····-··-·-~~_---.:.__---'-----

UNCLASSIFIED

DOCID: 3722346

------~

UNCLASSIFIED EFFICIF.NT FORTRAN

As long as we fill the 64-26=38 values ofTRANTB that don't correspond
to alphabetic characters with the value of 27, this method is exactly
equivalent to the first.

INTEGER COUNT(27)

READ(.. \101) TEXT

DIMENSION KOUNT(64)

101 FORMAT (.50Rl I

no 50 I= 1.1000

J = TEXT(l) +I

50 KOUNT(J) = KOUNT(J) +-1

no so 1~ 1,64

,J = TRANTB(I) ·

60 COUNT(.J) = COUNT(.J) + KOUNT(I)

C ASSUMES KOUNT AND COUNT ARE ZEROIZF.D

The moral of thii-; example is: Don't be restricted by conventional data
reprei-;entations, but search for the most convenient representation for
your purposes.

A second example of this prineiple (from Professor T.E. Cheatham)
will ~e described, but left as an exercise to the reader:

(1) Write an algorithm to put in two integers. divide the first hy the
second, and put out the quotient and remainder. You may use addi
tion, subtraction, and multiplication, l'lut not division (since, in
effect, this is what you are defining). Assume that all numben; are in
a decimal representation.

(2) Do the task~ of (11. but assume a Roman numeral representation.

X. CONCl.USlON

The foregoing has been an attempt to motivate programmers to
adopt more efficient techniques and to explain a number of possibil- .
ities. Two important caveats are in order.

First, not all of the suggestions are always going to work. For each
, technique there will be situations in which it will prove counter-produc

tive. The programmer must analyze the applicability of the~e sugges
tions to his specific problem and i:;ystem.

One method that may be used is controlled experimentation. The
programmer faced with a choice of two methods can lime them on his
target. system and then m.ake a choice based on fact rather than belief.

UNCLASSIFIED 82

. I

DOC ID : 3 7 2 2 3 4 6 ~.-----;(r"f':J5>J) "Tnzii~ .. ~~.P~ •.. tr . . -i:rs<:6-~3:r-z6:--~------...:._,......----------
h. '• hl

!·

.r.

UNCLASSIFIED
._~~~~~~~~---l

. . .

As ari ex11mple. consider the follo~itig slatements (see above. section
IV):

X (A+ 1.0/A)•(ij+ LO/B)"'(C+l.0/C)

X (A* A+ l.O)*(B•B+ 1.o>•(C*C + ~.0)/(A •B*C)

We can write a toy program, embedding each statement in a loop, so
that it is iterated one million timeS. We can time each loop, and es
tablish the percent difference between . the methods. This experiment
was performed on the 6600, and the results, even though the second was
expected to be 8% faster, indicated that the two methods were equiv~ .
alcnt. The explanation lies in the ability of the 6600 to execute some
arithmetic operations in parallel. The sequences of instructions pro
duced by the compiler for each statement determined t.he degree of
overlap, and the fir.:.t method was favored more. This example thus
demonstrated not only the method of analysis that the programmer
can use, but also the need for such analysis.

It must also he home in mind that this is but. a partial listing of etti
ciency techniques. It is intended more to stimulate addition11l thought
ori the subject than to serve as a handbook. Given the Agency's invest
ment in computing power, it is a topic of no small interest and
imJ)ortance.

8.1 UNCLASSIFIED

