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The Strength of the Bayes Score* 
p. L. 

The.sifimage of the &Yes score is derived under the a.~sumption that 
the score is Tiormally distributed in right and wrong cases. Asymptot
ically the"re is a· constant .o;coring rate·--per bit, and that rate is de
termined. Te~tleng-th~_ needed to attain certain. sigmaees for common 
attacks are calculatedl · I I] The 
authors verify the accuracy of these tcxtlen1:th calculations (given the 
validity of the under.lying mathematical model). 

l. INTRODUCTION 

It is well known that the s.igmage of the approximate Bayes score 
for a regularly s~pping m8.chine (number of standard deviations 
between right and wrong case -means) is equal to Va Tu 2 (a the 

·. exnected value of the snuare of the .nutative bul~es T the textlen~th), 
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(1) We prove for a lower bound model that the expected value of the 

factor in the right case has the form Cb 7 • Our model is essentia11y an 
exact model, for although the score on T bits is weaker than the Bayes 
score on T bits, it is stronger than the Bayes score on T/2 bits. 

1s important. ere it 

in t e 

(4) Given the usual assumptions about scores being normally 
distributed, we have been able to calculate the. sigmage of the Bayes 

score . Before the 

asy~ptotic effect takes place, a better approximation to the sigmage is 

givenb~ I 

, (5) We are able to do something else wh.iC11I I 
rl a~d that is to have some control over the accuracy of our e~limates. 
~thm our m_odel there is an exact answer (given a and T) as to what 

the expected va~lu~e~oilf_.,,"--'f"""~.w...wsLLL..w"-"'"""-10.--"'lll.L"'-''""'_....,,Wll..._~ 
rarily will call F, 

We are able to convert the statements (4) and (5) into quasi
practical COM SEC results at the end of section VI, where we list the 
te:~egths needk to achieve certain sigmages for both Bayes and 

ith certain assumptions. 'I'hese tables are presented 
w1 five reservations, one of which (the third) is analyzed in section 
VII. The signifi.Canc.:e of the other four iR left as the subject for the 
further research. In section VII, where t.he statements we make in I, 
(5) are proved/ it is also proved that the tables of section VI are quite 
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~c~urate '(within the mathemat_icai-iilodel th8..t we ha,ve s.et .up). 

'·We· sumffiafize. the as m --lotic result~ 
1t iS :well-known 

'-t-h-at-'--th~e~B~a-y_e_s_s_c_or_e_w_i~ll-al~w-a-y""s-.r-eq_u.,.ire-l~e-ss_te_x_.tl~ngth than the 

c:::::Jscor.e: .our resul.ts ind.ic~te' that the sigmage bbtained from a 
textlength ofTWith •L=icor.e can be a.ttained With~ textlength 

of approxiniatelyl r:~is resiilt is especian), important 

for primary.·8t~cks where o: is small ·an.cl the i:equired te.iJlength for 
·., ~C~ring might not· be available./The Bayes- S~_ore w~.11 never be 

cheaper to compute than ther---1 score, for: the work ibvo]ved in 
.calculating the for~:el;' on a te~of Tis on ihe ~rde~ __ ofQather 
than T. A 111easure cif..the "efficienc.y" ofc=J over ,Bi"yes is thus 
given by U 2/T, which ou.r results show .. to be the consta~t i this 
factor times the work neede.d to attain a c.ertain sigrnage gives 

LJ ~ the work needed to attain a:c:ertain Ba es si mage . 

' 

' 
' 

Vfe have not attempted to desciibe a specific COMSEC sit.'.uation to 
h'hth It If th full h'h. ft w l'C ese resu s app y or e owmg reason, ·w 1c In ac 

, subStantially limits the practical value of our findingSJ 
l 

', 

· .. rrhe important 'question left unanswered 
ho ed w'll he the s biec of by this paper, and one which, it 1s p , i u t a 

future One, is the extent to which the Bayes score~ 
I ·. ~f. for example, it tu ms out that for t'~h-e~B~a-ye~s-sco-'-, -r~e~o~n~e-' 

r I 
I IBlenkinLJ 

II. BAYES 

We think of 1 as the observations from a sequence of independent 
Bernoulli random variables/ X, j. We are then asked to choose between 
two contlicting hypotheses, Hu and H1 , where H, is the hypothesis 

that Prob[X, ~ O] ~ 1/2 for all l 5 t 5 T. Ho is a bit more compli

cated. We define a probability function Pon the set ST (all T-long 

89 



DOCID· 38386g'4l- BAYES SCORE 
.E() 1 . 4 . (c: 

E'.J . 1 . 4 . (d 
P . L •. :::C - 3 

s uences from S) so that if Y = I Y, I • S' 

To lest which of the two hypotheses is true, a scoring function 
(from S ' to the reals) is proposed and a threshold U is set so that H, is 

accepted ifS (K) :. If and H, is accepted ifS (K) < U. There are, 
of course, two posgibilities for error: we may accept Ho when H1 is true 
(type 11 error) or accept H1 when H11 is true (type l error). The cele
brated Neyman-Pearson Lemma (sec, e.g., 12], p. 65) suggests that the 
"best" ~core is 

S ProblK I H,] 
'(K) = ProbiKIH, J 

in the following sense: if S 2 ls ~ome other scoring function, and 
thresholds U1 and U1 arc chosen for the respective scores so that the 
probabilities of type I error = Q , then the probability of a type II error 

using S' i is less than or equal to that u~ing S' 2 . What these thresholds 
are, and how small the probabilities of type II error then become, 
depend on knowledge of the distribution of the scoring function. 

The scorinj:! fun ct ion S 1 is commonly called the Bayes factor, since 
in order to obtain a posteriori odds in favor of H o from the a priori odds, 

one mul t iplies by S', ti K, ll (in particular. 

Prob[H,jKj _ S' K Prob[ll, J) 
ProblH, IKI - ' ( ) . Prob{H, J 

A unique " bo~t" scoring fun ction does not exist . ln fa ct , it is easy to see 

thRt. if f is monotonic increasing. the composite of f with S 1 is as 
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"good" as~ 1 in the sense described above. In particular, a common 

scoring function, as good as the Ba}·es factor, isS"? ( K) = logr 8 1 (K)) , 
commonly called the Bayes score. For the all-important e:ii::ample we 

described in our first paragraph , S' , (K) ~ 2' L I'\\') . ProblK I YJ, 
y .. • 

It would appear from this fomlufs thatS 1 is 
~~~~~~~~~~ 

difficult to evaluate; the computations can be aTrSnged , however , so 
that their number is on th o ~ 

-""==~~~~~~~~~~I I 
propose a ir sr.:o.re, an approximation to t e Bayes score which we 

~=reafter refer to as the~c?1:_- The ~~ore~ 3 is defin~d 

where 

1. 4. ( c.) 

1. 4. i 'l:' 
r 

C-~ - 1) r . . 
Jf many hypotheses Ho are to be tested, the co_~P.~tation' 

i ( - 1)" f',, .· 
1-n · 

can be:. do~e as a ·o~e-ti. me jo_b ~ 1 -·~ r ~ T'. ·and the number of 
comput.~t1ons to evaluate t~score is on the order of T. Ln 
some applications this fa tor d to log, T, 15 J and in 
others the might reduce the cost of 
calculat.in the scon, I I 

._ ______ ..;._ __ _,could substantially reduce the cost of 
calculating the Baye&factor and score. [6J · 

A great deal is knowh. about thellscore. Jt can be shown that 
as T becomes large, the score~ally distributed. 17] with 
parameters . 

Ho true, mean = k a 'f11. 2 

standard deviation 
Hi true, mean = 0 

standard deviation 
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Eci- T". A . -,:d-l 

number ~s also the number of standard deviations between 
the J'!le&rls,anamrln this it is easy to derive the probability of a type 
I.I.error for a gjyen lypc 1 ermr ! heca11se the scol~s are aMmally di&· 

.· tributed) I ~ I 
I -

'fi<'o 1..4 . :c·J 
Lil. TH.E UNOILATED RAYF.S FACTOR tt;. l-...4." {d1. 

' . Our intention was to calculate mean and standard deviation of f;h'e. ·· 
Bayes factor, but this is complicated by the peculiar nature of th.~ · 
probability function P. IL is possible that the techniques we empl~·y . 
in sect.ions N and V could be modified to apply to the exact Baye$ 
factor, but the calculations would certainly be more cumbersome: 
For thi~ reason we propose a fourth and fifth score, which we shaJI 
define shortly. We do not expect that these scores should ever be 
calculated for an actua] key stream and hypothesis Ho, for the work 
would be comparable to the work in calculating the exact Bayes factor, 
and we know with certainty that the exact Bayes fact.or is the better 
score; howe.ve:r_,_ ~_he_ scores which we will introduce are closer in spirit 
to the Bayes score th8n--1s--- the--c==Jscore, and we will be at least 
partially successful in calculating their means and variances. 
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Qur noiaiion is awkward in that the second usage of m depends on the 
Y currently being summed over, hut the typist has already been over
work_e<J_ and the meaning of m here and later shord always be clear 
from context.J . This suggests that 

:W~ define a new score S', by 

I -. 
whi ch we ~a ll_. tliec:::::::Jlayes factor, and 

S ,(K) ~ log, S ,(K), . . 
th.ec:::::::J&yes sc~·re. Si is intuitively a weaker scori 
because · i~ ignores the etfeCt 

,..,._,.,.....--,..,....--.,,...-----'it is formally weaker because of 
'. t .e eyman·-~earson Lemma. 

IV. EXPECTED VALUE OF THE BAYES FACTOR 

l'r71 .this :oinr on t_he terms Bayes factor and Bayes score will refer 
~.o the . act.Qr 8:nd score, and we set N = T/2. If H 1 is true, 
then or eac I s t ,c; N. _ Probrx., ~ Oj ~ 1/2, so 

andE[S.JK,f]=;t. 

is true and let 

. For. 1 ~ t 5. N we say that the pair of sequences 

I}',] and jZ, I match att frl I 
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andL_ ___ --r-----------J.l!......l.w:!S!.....!.!!....~!,_--, 
matehat t, then 

if -We ·are w'?11"'11::n::g:--;toc::-:a::s:csu::m=e•t'Ch:Cat"''T:-r::,..,,.--;;;;;-;;;;r.....,rr-;.,,,...,..,,,,.._J 

etting b 
'---N~---------' 

that El fl. (1 + (-1)'"" z~ .,) I - b'' where k is the number of 

matches between I?, I and I Z, \. If we let p(N, k) be the probability 
that a pair of randomly selecterl elements of SN will have k matches, 
then EO 

We devote the rest of this section to the calculation of the right hand 
expression, which we denote by l£(N,b). 

Let (U, V), SN x S", with U ~ (U,, ... , U,) and V ~ ( V,, . . , V, ). 
Let Q(N,k) ~ number of elements (U, V) with .. exactly k matches, s~ 

'-----------------'IN - l long sequences. Hence 

L(N,k,l) ~ Q<N-1,k,l) for 1 s I s N - I. (1) 

"I ~ecause L(N,k,N} ~ 0 fork ;,, 1, this together with (1) 
...._,yi,...el"'d,...s __ __, 

We next define a triangular array of integers, M(l,i), for 0 5 I s; t, 

as follows: 
M(O,O) ~ l 
M(O,i) ~ 0 

M(l,i) ~ L M(j,i-1). 
! -i 1 
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(3) 

1. 4. I c \ 
1. 4. :J' 

1 

~ 

Some values of M(l,i) are 
ill 0 1 2 3 8 9 10 
0 1 

0 1 
2 0 1 P.L. 36-36 

3 0 2 
0 5 
0 14 14 9 4 1 

6 0 42 42 28 14 5 
7 0 1~2 l:l2 90 48 20 6 
8 0 429 429 297 165 75 27 7 
9 0 1430 1430 1001 572 275 110 35 

10 0 4862 4862 3432 2002 1001 429 154 44 I. 

The importance of the M(l,i) is that 

(4) 

We.prove this by induction on N. The result is trivial for N = O. For 
N = 1 it becomeB 

.----------------~ 

Since the result clearly holds for l 
1 s l s N - 1 and argue that 

N and l = 0, we may assume 

Let us count the Q(N,k) pairi. of N sequences with k -r··" '"""' ""· ,. .... 
Adding these together and applying (4), we get fork ;.> I 

95 
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or translating into "p" notation 

This lest formula is also valid only fork ? 1. lf we g_ive p(O,h) its 
natural interpretation! lwe can trivially ·mr"" .. , ·'"~ .. rm .. ,.~.,,. " """"' 

(5) 

L-----------------'[n fact, since 

1 =~p(N.k) 

it follows tha 

We next find a clm;ed form expression for M(l.i), which we for nota
tional simplicity refer to as M(i). The M(i) possess a convolution 
property 

M(i) = L M(j) M(i-j). 
i-J 

To prove (6), we observe from (3) that 

M(li)=M(l-1.i-l)+M(l+l,i) l5l5i,i~2. 

Using this. we can prove by induction that 

M(l.i+l) ~ L M(j+J.i+i) l ~ l, i ~ 1. ,_, 
Now, by repeated use of this equation, we get 

M(i) = M(i-1) + L M(j,i-1) 
j~2 

=M(lJM(i-l)+L M(i+l.i+llM(i+l,i-1) 
j-1 

(since M(j,j) = 1) 

5 FCPET 96 

(6) 

(7) 

1 
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I 

=M(l)M(i-I)+ ... +M(l)M{i-1) 

+ L MU+l.i+llM(i+l,i-l) 

P.L. 86-36 

,_, 

=M(l)M(i-1)+ ... +M(l)M(i-l) 

+ L M(i+IJ+l) 'i' M(k,i-1-1) 
i-1 •-1 

(by (3)) 

= M(l) M(i-1) + ... + M(l) M(i-1) 

+'I' ( ± M(j+1,j+1JI M(k,i-1-1) 
~-1 ,_ r ~ 

= M(l) M(i-1) + ... + M(l) M(i-l) 

+ L M(k,l+k) M(k,i-1- l) (by (6)) 
·-' 

= M(l) M{i-1) + ... + M(l+I) M(i-1-1) 

+ L M(k+l,k+l+l) . M(k+I.i-(1+1)) ·-· 
=M(l)M(i-1)+ .. +M(i-l)M(l). 

Formuli:,. (6) having been verified, it follows that the power series 

• M(') 
g(x) = 1 + L 

2
- ,', x', 

i-1 . 4 

which converges in some open neighborhood about the origin, has the 
property that [g(x) f ~ 1 - x, so it follows from the generalized bi
nomial theorem, sinceg(x) = (1-x) 111 , that 

M(i) = 2(_ 0,_, ( 1/2) 
4•- l i 

Recalling that the a ... appearing in (5) had the property 

97 
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3 8 3 8 &e~ro"1 by induction l'-h•_I ------' 

- I 
For N = I , (10) is clear. As•ume it bolds for N - .J. _Then 

(10) 

(by (9)) 

EO 1. 4. (c) 

·~o 1.4. ' d . 
(by (9)) 

(by induction hypot~esis) 

(by(8)). 

Combining (5), (8) and (10) we get that, for N ;>; 0, k ;>; 0 

IHI 
'-------------------~ 

\Ve now let h(x,y) be the power series in two indeterminant.s de· 
fined by h(x,y) = 2..: p(N,k) x" y' (which converges in the region 

- ( 1/2) Ix I < l.Y 1- ').It follows from (11) and the fact that J;, i (-1)' x' 

= (1 - x) 11
:1 that 

g(x,y) = h(x,y) - l/4xyh(x.y) + ((1-x)' " - I) (h(x,y) - I) 

+ J/4 xh(x,y) = 2..: 8N.I X N y' ,,._. 

has the property that 

JIN .II = Q k7'0 

/JN.o = -2N (I~) (-1)'' ,N.,tc 0. 
scr;pcx 98 
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~ 

But - ~ 2N (1~) ( - l)N x" = - 2x LN ( 11~) (-1)" xN ' 

d x 
= - 2x Ch I VI=X J =..,;

1 
_ x so we get that h(x,y) - l/4xyh(x,y) 

+ (../I=-% - I) (h(x,y) - I) + 1/4 x h(x,y) - Vl ~xis a constant, 

which is in fact 1, since the last four summands have a zero constant 
term. Solving for h, we get that 

h(x,y)= ---------,--

v'f=X ( ~ - x_(y_4 --!~ 

x(y - 1) 
L+---

4v'1=X 

(
y - 1) ' 1 - .x - .x ~ - 4 -

(y-1) ' x(y-1) h(x,y) - xh(x,y) - x' -- h(x,y) = 1 + -,----,,== ' 
4 4>.'1 - x 

Even more import.ant, h(x, b) - L E(N, b) xN . 
N 

Let 
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Since (l-Ox)- 1 = L Os x·"'·, comparing coefficients yields ,. 

Let us look at the facto ·;, the third •. term. 

we can rewr1 our previous equat10n, getting 

From (12) it is easy to see that I t11 the ~11se that the 
percentage error goes I 0 as N get.s large. More !precisely: 

(13) 

(In section 7 we will prove the stronger result 

(14) 

JOO 

I 

F.L. 86--3-6-

~able to estimate the accuracy of the 
We here prove ( 13). It is obvious that 

' ( -1/2) < 'l' h r ' vergence of f:"o i - 91- t at ~~~ , _L.; _ 
1 

= 0. Finally, pick some e~ with!:. < l:h < 82. Then 
8, 

- l/,·2) (-o;-' l' 

the series on the right hand side converges, and since 
._o-,-<~8-, o-,-, ~l~im_o.,,.,.f the right hand side is 0. 

N.• 

E1 1. 4 · I;;) V. VARIANCE OF THE BAYES FACTOR 
l. 4. (d! 

l 

Recalling the definition of S, (K), we see that S l (K) is equal to 

We first take up the case where Hi is true. Then if Zand Z' match at 

and otherwise the expected value is 1/4, [t follows that the value of 

E [S': (K)] is given by 
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We have illustrated by this argument that the variance of the score 
when H1 is true equllls the mean of the score when Ho is true. This 
is actually true in general for any score of the form Prob lKIHi;iJ / 
Prob IK /H, J and can be proved by an elementary argument (see, 
e.g., 19)). 

Neit we do the case where Hu is trueJ 

1c 19 an easy exercise ro snow cnet cne vmue or 

where k is the number of matches among Y, Z and Z' (if the three 
sequences match at t this counts as three matches), and thus 

where q(N,k) is the probability tbat three N-loni: sequences choSen at 
random will have exactly k matches. The authors have been unable to 
calculate the density function q; the problem seems similar to that 
of calculating the function p of chapter IV, but involves three
dimensional arrays rat.her than the two-dimensiona.l array M(i,j). 

Without doing any hard work we can get e lower bound on the 
variance. Let A be the random variable representing the number of 
matches between the first two sequences, R the number of matches 
between the first .and third , D the number of matches between the 
second and third. A B and D ore identicell distributed but atentl 
not independen t. 

The authors have been unable to come up wit.ha useful upper bound. 
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bound I.urns out. to be useless for the considerations made in the 
following section; so the existence of an effective upper bound is still 
open. 

Recalling the~ lleL us calculate more explicitly the means 
and variances ·we have deriv~d for small u. We have 

Summarizing the result.<i of sections 4 and 5 (the reader should check 
tha t the C and 0; · -corresponding t.o b' a re approximately the same as 
those corresponding to b), we get 

' -H a_ true _ ~ 

meanorS' • . D "· 
varianceorS ·:· upper bound) ·I I· 

•ince E [ S ! (K) J dominates (F, [ S .(K) )l '. ...._ ____ _. 

VI. SIGMAGE OF THE BAYES SCORE 

It bas become part of the COM SEC folklore that log faclilrs tend to 
be normally di!\tributed , especially if scoring rates per blt are consLant. 
and low. For a funher discussion of this principle, see l9 I. Throughout 

the rest of this i:;ection, we assume that S' .~ is norm a Hy distributed 
when either Hu or H 1 is true. We seek tbe mean and standard devia
t ion in the two caaes. 
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1.P.t. ., ' !nd o' be the mean and standard deviation o[ S •. It follows 

from the form of the moment generating function of a normal distribu
tion (again, eee 19 D that 

ln,.,. ' = µ + ~
1 

2 

ln(a')' = 2µ + 2a' . 

if>; l. 4 . !c l 
'· E:· l. 1 . _Id) 

\ 

::e~~: ~e~~~~~a-t_H_, _i_•_t_ru_e_"_' _=_l_a_n_d:I ~~~1-S-.o-l-vi-,~-:'""·_'.i"'Jj~\~:~~.: 
taneous equations, we get:~------------. 

H, true 

Ho true 

1\ 

For very large T this gives us the e sigmag referred to iii: 

section 1. The effec~_?g a positive num er, is to keep the 

siJmage greater thaL___j 

Since there is a constant scoring rate· per bit asymptotically, there· 
is little advsnts e when T is lor e 

e ave ca cu ate mean an : : 
vanance or e score m L e secon case. We can approximate the first . 
case by saying that the score we are deriving 

104 l 
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To conclude this' section we presen t tables which give for comrnoo 
values of o: the texUE-hgtb needed to alt.a.in certain sigmages using T ... ,,. 
The reader should understand the following reserVations before using 
these tables: 

·oextlength needed to attain a certajn sigmagel 
· ayes score is greater than that needed for the true Bayes 

score, ut not more than twice as much. 

(2) The values we have listed in the Be.yes column are only lower 
bounds for the textlength needed within the mathematical model we 
have set up, due to the independence assumption which we made at 
the end of section V. 

(3) The value~ listed in the Bayes column are accurate only to the 
extent to which the error t.erm discussed in the next section is small. 

(4) We have assumed that lhe Bayes score is normally distributed. 
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respectively, are similar to tables I an 
"----."-. _n_s_e_c_1-on---,-w-,--.- s-'own that all entries in our tables are 

accu.rate to ±0.1" (that is, the Bayes textlength which we purport to 
give"rlse to a sigmage of n does indeed give rise to a sigmage of n ±0.1). 
Notc '~hat were an entry for.)11 in the Bayes colu mn computed 1 it would 
have ~~n a negative textleµgth ; this absurdity can be explained by 

,

1 

the r.o• •b • r,,, th. ta 'fn•m• T b " b '"' 

1 

the property that 

; VII . ACCURACY 

\ We hav~ .. seen jn section IV thatl (we will prove in 
this section ·~h~a!!tc_ ______ ..'.:=====:::....~ 

and in fact g~t an upper bound for F(N) . 
We refer to equation ( 12) in section IV. Since je, I < I, it is clear that 
: : 
: : 

Wenext estim.lr-----------~ 
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By comparing .EO 1 .4. (c / 
;EV l. 4. (di 

(15)1 

with Weierstrass's infin;te product expansion for the reciprocal of the 

gamma function 

2- -xe" TI (1+=-k) . -t 
r(x) ,_, 

(0 = Euler's constanp 

and taking x = - m - 1 it is easily seen that 

( m) lim 
N~oo n 

In particular 

' 
\im( - 1)'' (- l/Z) N'" 
.• - · N -1/2 
It is clear that I ( 

lim~ (1-1/2k).'(16) 
r(l/2) '\(K' N "' <- > 

) I decreases as i becomes larger;;_;· so 

The sequence vNfj, ( 1 - ~) is increasing, since 

v'N(1 -~) > ~ 

by (16). 

and 

Next we estimate 

108 l 
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Although the series does not convBTge, by Taylor's theorem with a 

~T .... "·""· 
where 

R.v 
( - J/2) (-8;-')N•> 

N+ l 

(1 - y 0- l )1 . ~ ... .v+1 , ...... T ... 0. , "·" 

we rie.ed on ly estimate 11t· R,.,. . We have 

1erR.v 1 = 

.------· .... I _...-____________ _JI (by 16) 

s in~''-----~'This proves that 

.. .. .__I _ ___, 

and thus that 

F(N) - 0 ( ~) ' 

By using- formula (12) and our previous estimates we can get a more 
precise upper bound for F(N), namely : 

I 
~-------------------------~ 
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