DOCID: 3838694	The Strength of the Bayes Score* BO 1.4. (c) EO 1.4. (d) P.L. 86-36 The sigmage of the Bayes score is derived under the assumption that the score is normally distributed in right and wrong cases. Asymptot- ically there is a constant scoring rate-per bit, and that rate is de- termined. Textlengths needed to attain certain sigmages for common attacks are calculated The authors verify the accuracy of these textlength calculations (given the validity of the underlying mathematical model). 1. INTRODUCTION It is well known that the sigmage of the approximate Bayes score for a regularly stepping machine (number of standard deviations between right and wrong case means) is equal to $\sqrt{\alpha} T^{1/2}$ (α the expected value of the square of the putative bulges, T the textlength.
Non - Responsive	*Originally S12 Informal No. 283 of 8 September 1970, this paper won First Prize in the 1971 Crypto-Mathematics Institute Essay Contest. EO 1.4., c) NSAL-S-199,795 F.L. 86-36 EO 1.4.; d) Declass field and approved for eleases by NSA on 10-29-2000 pursuant to E.O. 12958, gs 87

		SECRET	BAYES SCORE	r	BG 1.4.(c) EG 1.4.(d)		EC 1.4.(d)
DOCID:	3838	694			P. t. 86-36	· · · · ·	
		(1) We prove for a lower b factor in the right case has t exact model, for although th score on T bits, it is stronger	ound model that the expecte the form Cb^{T} . Our model is e score on T bits is weaker th than the Bayes score on $T/2$ l	d value of the essentially an nan the Bayes pits.	accurate (within We summari that the Bayes score: textlength of T	n the mathematical model t ze the asymptotic results s score will always require Our results indicate that th with a score can be	It is well-known less textlength than the less grage obtained from a e attained with a textlength
	1.	(3) We are able to determ	ine C The value of C is impo	rtant. Were it	for primary att	acks where α is small and might not be available. The	the required textlength for be Bayes score will never be
	80 1.4. (c)	attack.	to the textlengths emp	ployed in the	cheaper to com calculating the than T. A. mea	pute than the scor former on a textlength of T	e, for the work involved in is on the order of rather
	P.L. 86-36	(4) Given the usual ass distributed, we have been a	umptions about scores be ole to calculate the sigmage	of the Bayes	given by $U^{\overline{2}}/T$, factor times the	which our results show to be work needed to attain a cer d to attain a contain Bauce	the constant this rtain sigmage gives
		asymptotic effect takes place	, a better approximation to t	be sigmage is		to attain a contain bayes i	agmage.
			ž		We have not which these re substantially li	attempted to describe a spe sults apply for the followin imits the practical value of	cific COMSEC situation to ng reason, which, in fact, our findings.
			5 e. 5e. e.				
		(5) We are able to do sor and that is to have some Within our model there is an the expected value of the face rarily will call E	nething else which control over the accuracy of c l exact answer (given α and stor in the right case is, which	ur estimates. T) as to what th we tempo-	by this paper, future one, is th	The importar and one which, it is hoped are extent to which the Bayes or example, it turns out th	it question left unanswered i, will <u>he the subject of a</u> s scores at for the Bayes score one
							Blenkin
		We are able to convert practical COMSEC results a textlengths needed to achie	the statements (4) and (5) it the end of section VI, whe ve certain sigmages for bot	into quasi- re we list the h Bayes and	II. BAYES		
		with certain with five reservations, one of VII. The significance of the further research. In section (5) are proved it is also prov SECRET EO 1.4. (d)	a assumptions. These tables which (the third) is analyz other four is left as the su VII, where the statements w red that the tables of section 88	are presented ed in section bject for the re make in I, VI are quite	We think of R Bernoulli randt two conflicting that Prob $ X_t $ cated. We defin	$\{X_i\}$ as the observations from on variables $\{X_i\}$. We are the hypotheses, H_0 and H_1 , we $= 0] = 1/2$ for all $1 \le t \le 1$ me a probability function F	a sequence of independent ien asked to choose between there H_1 is the hypothesis ". H_0 is a bit more compli- pon the set $S^{\hat{T}}$ (all T-long
	П			4		89	SECRET

(from S^T to the reals) is proposed and a threshold U is set so that H_0 is accepted if $S(K) \ge U$ and H_1 is accepted if S(K) < U. There are, of course, two possibilities for error: we may accept H_0 when H_1 is true (type II error) or accept H_1 when H_0 is true (type I error). The celebrated Neyman-Pearson Lemma (see, e.g., [2], p. 65) suggests that the "best" score is

 $\label{eq:static} \boldsymbol{S}_1(K) = \frac{\operatorname{Prob}[K|H_0]}{\operatorname{Prob}[K|H_1]}$ in the following sense: if \boldsymbol{S}_2 is some other scoring function, and thresholds U_1 and U_2 are chosen for the respective scores so that the probabilities of type I error = α , then the probability of a type II error using S_1 is less than or equal to that using S_2 . What these thresholds are, and how small the probabilities of type II error then become, depend on knowledge of the distribution of the scoring function.

The scoring function \boldsymbol{S}_{\pm} is commonly called the Bayes factor, since in order to obtain a posteriori odds in favor of H_0 from the a priori odds, one multiplies by \mathbf{S}_{i} ({ K_{i} }) (in particular,

 $\frac{\operatorname{Prob}[H_0|K]}{\operatorname{Prob}[H_1|K]} = \mathbf{S}_1 (K) \cdot \frac{\operatorname{Prob}[H_0]}{\operatorname{Prob}[H_1]} \Big) .$

A unique "best" scoring function does not exist. In fact, it is easy to see that if f is monotonic increasing, the composite of f with S_{+} is as 90

SECRET

P.L. 86-36 BAYES SCORE DOCID: 3838694 SECRET number is also the number of standard deviations between the means, and from this it is easy to derive the probability of a type Il error for a given type I error (because the scores are normally dis tributed) 60 1.4.(c) 60 1.4.(d) Our notation is awkward in that the second usage of m depends on the III. THE UNDILATED BAYES FACTOR \tilde{Y} currently being summed over, but the typist has already been over-Our intention was to calculate mean and standard deviation of the worked and the meaning of m here and later should always be clear Bayes factor, but this is complicated by the peculiar nature of the from context This suggests that probability function P. It is possible that the techniques we employ in sections IV and V could be modified to apply to the exact Bayes factor, but the calculations would certainly be more cumbersome. we define a new score **S** , by ED 1.4.(c) EO 1.4.(d) For this reason we propose a fourth and fifth score, which we shall define shortly. We do not expect that these scores should ever be calculated for an actual key stream and hypothesis H_0 , for the work would be comparable to the work in calculating the exact Bayes factor, which we call the Bayes factor, and and we know with certainty that the exact Bayes factor is the better EC 1.4. (d) score; however, the scores which we will introduce are closer in spirit to the Bayes score than is the score, and we will be at least partially successful in calculating their means and variances. $\mathbf{S}_{s}(K) = \log_{r} \mathbf{S}_{s}(K),$ the Bayes score. S_i is intuitively a weaker scoring function because it ignores the effect it is formally weaker because of the Neyman-Pearson Lemma. IV. EXPECTED VALUE OF THE BAYES FACTOR From this point on the terms Bayes factor and Bayes score will refer to the factor and score, and we set N = T/2. If H_1 is true, then for each $1 \le t \le N$, $Prob[K_{n,i} = 0] = 1/2$, so and $E[S, \{K_i\}] = 1$. Next suppose that Ho is true and let Let $|Z_t| \in S^n$. For $1 \le t \le N$ we say that the pair of sequences $\{\tilde{Y}_i\}$ and $\{Z_i\}$ match at t if 92 SECRET 93

DOCID: 3838-694-

BAYES SCORE

96

SECRET

which converges in some open neighborhood about the origin, has the property that $[g(x)]^r = 1 - x$, so it follows from the generalized binomial theorem, since $g(x) = (1-x)^{1/2}$, that

$$\frac{M(i)}{4^{i-1}} = 2(-1)^{i-1} \begin{pmatrix} 1/2 \\ i \end{pmatrix} .$$
 (8)

Recalling that the a_N appearing in (5) had the property

EO 1.4.(c) EO 1.4.(d)

