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Derives some of the main properties of the Bayes Factor and its 
logarithm and discusses the application of these properties to the 
classical "two disjoint hypotheses" situation, and-more importantly
to the situation of N hypotheses, n of which are true where n < < N. 
The object is to reject as many untrue hypotheses as possible while 
accepting a reasonable percentage of correct hypotheses. Gives two 
examples of the N hypotheses situation which are of COMSEC (and 
possibly also general) interest. 

In this paper we derive some of the main properties of the Bayes fac
tor and its logarithm in a context which applies to many Agency statis
tical problems. The Bayes factor arises naturally as a result of an ap
plication of the fundamental Neymann-Pearson Lemma of classical 
hypothesis testing theory. With the "two hypotheses" theory in mind 
we consider the more important situation of N hypotheses, n of which 
are true with n < < N. Finally, we discuss two examples of the N 
hypotheses situation which are of considerable COM SEC interest. 

1. Consider a list 

Z = z,, ... , Zr 

of random variables defined on a finite sample space E, an arbitrary 
member of which is denoted 

e = e1, ... , er. 

Suppose we have two (disjoint) hypotheses H, and H2 about the list 
such that each hypothesis completely determines the probability law 
of Z (denoted Pi and P2, respectively). (This is not quite the way the 
world is around here. This will be discussed later). For notational ease, 
we write P;(e) for P;(Z = e), i = 1, 2. 
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The problem is to decide which hypothesis is true. The celebrated 
Neymann-Pearson Lemma tells us how to proceed. 
If we set 

P1 (reject H1 ) = a 

P2 (accept H1) = b 

and fix a with the hope of minimizing b, our hopes will be realized if we 
perform a test of the following kind: 

. Pi (e) 
Accept H1 if-- ~ c 

Pz(e) 

. . Pi (e) 
ReJect H1 if-(-) < c, 

P2 e 

where e is the observation we are presented with and c is a constant to 
be determined. This is intuitively quite reasonable. It simply says to 
accept Hi if the probability of the observation when H1 is true is 
sufficiently greater than the probability of the observation when H2 is 
true. The proof is just about this simple. See reference ( 1 J. Actually, if f 
is any real valued increasing function, then an equivalent procedure is: 

. [ P1 (e)J Accept H1 if f --) 
Pde 

~ f (c) 

Reject H1 if f [ Pi(e)J < f (c). 
P2 (e) 

The quantity 

B(e) = P1 (e)/P2 (e) 

is termed the factor, or the Bayes factor, in favor of H1 over H2. It is 
often convenient to take for the f above, the natural logarithm ln. The 
terminology is: 

L(e) = ln [P1 (e)/P2 (e)] 

is the log factor or Bayes score in favor of Hi over H2. 
Note that no assumptions about Z (normality, independence, etc.) 

have been made. Still, it is possible to obtain some interesting results 
about B and L. 

First, note that if e is regarded as an arbitrary point in the. sample 
space rather than a fixed observation, both B and L can be considered 
random variables. Since 

a =Pi (B < c) 

b = P2(B ~ c), 
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we are interested in the distributions of B (and L) when H1 is true (the 
"right case") and when H2 is true (the "wrong case"). Intuitively, we 
would like to have these distributions as "far apart" as possible. In 
practice, it is often useful to know the relationships between the 
parameters of the two distributions. We now consider some results in 
this direction. (Subscripts on the expectation operator indicate the 
probability law used to compute the expectation.) 

FACT 1. ([2], Article 53) 
a. µ.2 == E2 B = 1 (Turing's Theorem) 
b. u~ =Var2B=µ.1-l 
c. E2 (B") = E1 (B" - 1

) . In particular, E2 (B;) = E1 (B) = µ1 . 

Proof: 
Pi (e) 

a. µ2 = 2:-- P2(e) = l:P1(e) = 1. 
, P2 (e) , 

b. µ1 = L Pi(e) P1 (e) = L Pi (e)IP2 (e) . 
• P2(e) , 

Also, 
; Pi(e) Pi (e) 

EdB ) = ~P~(e) Pi(e) = ~P2(e) 

Hence, u~ = µ1 - E~B = µ1 - 1. 

' 

Of course, bis a special case of c. 

FACT 2. E1 L - E2 L 2 0 (also, see reference [2 ], Article 1). 

Proof: 
E1L - E2L = L(lnPi(e) - lnPi(e)) (P1(e) - Pde)). 

Consider (ln x - lny) (x-y) for 0 < x, y < 1. 
Then, x < y ~ ln x < ln y ~ ln x - ln y < 0, 

x > y ==;:> ln x > ln y ~ ln x - ln y > 0. 

II 

Hence, each term in the sum is positive. Actually, we have equality iff 
P1 (e) = P2 (e) for all et E. II 
Now, FACT 2 can be strengthened. For this, we need a 

LEMMA. Let \p, If, I q, If satisfy p, > 0, q, > 0 for all rand L p, 
LPrQr = 1. Then. 

_Lp,lnq, ::; 0 andLp,q,lnq, 2 0. 
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Equality holds iff q, = 1 for all r. 

Proof: See [3 ]. 

FACT 3. E1 L ~ 0 and E z L ::;; 0, where the inequalities are strict 
unless B = 1. 

Proof: 

Letp. = P2(e),p,q, = P 1 (e) . 

Then, 

P1 (e) 
EzL = L Pz(e) ln-- = _Lp. lnq. ::;; 0 by the Lemma. 

• P 2(e) , 

Also, 

Pi(e) 
E1 L = L P1 (e) ln-- = L.p.q, lnq. ~ 0 by the Lemma. 

• P2 (e) • 

By the Lemma, equality holds iff q, = 1 for all e. That is 

p . q. P1 (e) 
q. = -- = -- = B(e) = 1 for all e. 

p . Pz(e) II 

We now be in adding some assumptions about Z. Recent work by 
[4]···makes ·· the ··foHowing ··facts ···more ·· tha.n··· a.cademi~ ·· ··

....,,.,ca,,.,.,.,,y.,..,1""'n""e""'r'""'e""'s """1n""'g""".""""" 1e will discuss the normality of the log-factor later. 

FACT 4. If Lis normally distributed N(µ., ,,z ), then B is said to have a 
lognormal distribution. In this case, 

2 

EB = e"+~ E B 2 = e 2-+ 2•
2 

Proof: 
Since L is normal, its characteristic function is 

"J. :l. 
0 t 

<t>(t) = E(e'' L) = ei1• - - 2-

' 
EB = E(e1

" 
8

) = E(e l ) = e"+T . 

Also, 

E(B2
) = E(e2 1

" 
8

) = E(en ) = e :i..+2.' . 

(Hence, Var B = ez..+2.' - e 2•+-' .) II 
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DEFINITION. Let X be a random variable and </lx (t) E(e"x ) its 
characteristic function. Then the n'h cumulant of X, K. (X), is defined 
by (if it exists) 

K. (X) = i - ":£.____ (ln </lx (t))/1 - o. 
dt" 

For example, 

K1 (X) = i - i !!_(ln </lx (t))/ r-o = i- i !!_(E(e i•X ))I 1=0 

dt dt 

= i- i E(i X e'1x )/ 1~0 =EX. 

Similarly, [5], 

E X 2 = K z (X) + Kf(X) (i.e., Var X = Kz(X)) 

E X J = K3 (X) + 3K2 (X) Ki (X) +Kt (X), etc. 

Also, by definition, the expansion for in <Px (t) is 

ln </lx (t) = L K.(X) (it) ' /k! 
k = i 

These ideas lead to the following important 

FACT 5. [6]. The cumulants of the distribution of L satisfy 

K2 KJ K4 
K1 - 2! + 3! - 4! + . . . = 0 if Hi is true, and 

K z K3 
K1 + 2! + 3! + . . . = 0 if H2 is true. 

Proof: 
In the right case, 

" { . Pi (e)} <P1 (t) = ~Pi (e) exp Lt in -- . 
, P2 (e) 

Hence, 
. " P2 (e) 

<P1 (i) = ~ P1 (e)-p ( ) = L Pz(e) = 1. 
e I e e 

Now, 

in q,i(t) = L K, ·(it)* /k!. 
k-1 
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From the expression above for </>1 (i), we have 

k - I 

A similar proof works for the wrong case (and for continuous distri
butions). II 
FACT 6. If Xis a normal random variable, then K. (X) = 0 for n > 2. 

Proof: ln </>x (t) = i µ. t - u

2 

t
2 

• II 
2 

FACT 7. If L is normally distributed N(µ.1, ui) in the right case and 
N(µ.2, u~) in the wrong case, then 

ui = 2µ.1 and u~ = - 2µ.2 . 

Proof: This follows immediately from the preceding two facts; however, 
we give the following proof (which does not require the introduction of 
the concept of cumulant): 
UnderH1, 

</>L (t) = E(e;L') 

{ . [P1(e)]} = L Pi (e) exp it ln --
• Pde) 

Hence, 

. '""' Pde) </>L (i) = .t...., P1 (e)-- = 1 
• P1 (e) 

Also, 

Hence, 

ln(l) = 0 = ln <f>i (i) = -µ1 + ui/2 

Hence, 

Similarly, under H2, 

. P1 (e) 
<J>d-i) = L Pde)--= 1, and 

• Pde) 

L ""' N(µ.2 , u~) = 

2 2 2 
. . •2(-i) •o 

( 
") P2'(-1)--2- P2+2 

</>i -i = e = e 
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Hence, 

Hence, 

II 

FACT 8. Let L "' N(µ1, ui) in the right case and N(µz, u~) in the 
wrong case. Then: 

a. E, L = 112 ln(E, B). 
b. ui = ll3 ln(E1 B 2 

). 

c. u~ = ln(E2 B 2
) = ln(E, B). 

Proof: 

b. ln(E1 B 2
) = ln(eZi<• +z.f) = ui + 2ui = 3ui. 

II 

Definition: If L "' N(µ1, ui) in the right case and L ,..._, N(µz, ui) in the 
wrong case, then the sigma-age S = (µ1 - µz )lu2. 

FACT 9. Under the conditions of the above definition, 
a. µ1 = 112 ln(E, B) 
b. ui = ln(E1 B) 
c. µ2 = - 112 ln(E, B) 
d. u~ = ln(E, B) 
e. S = Vln(E, B) 

Proof: Sections a-d under FACT 9 follow from FACTS 7 and 8. 

112 ln(E, B) - ( -112 ln(E, B)) 
S = (µ1 - µz )lu2 

yln(E, B) 

=yfln(E, B) II 
This fact says that if L is normal, calculation of E, B determines both 
right and wrong case distributions of L. Finally, we note the following 
relations between expected scores and the concept of entropy: 

p, (e) 
E,L =,LP, (e) ln -- =LP, (e) lnP, (e) - ,LP, (e) lnPz(e) 

• Pz(e) • • 

= -H, (Z) - L P1 (e) ln P2 (e) 
• 
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where Hi (Z) is the entropy of Z assuming that Hi is true. 
Similarly, 

If the size of the sample space is N, and P2 (e) = ~for all et E, then, . N 
EiL = - Hi (Z) + lnN 

1 
E 2L = lnN +-ElnPi(e) . 

N. 
Hence, 

H1(Z) = lnN- E1L. 

2. It has already been remarked that the situation of two simple 
hypotheses is somewhat unreal from our point of view. A situation 
closer to reality is the following. We have a random list Z = Z 1 , ••• , Zr 
defined on a sample space E, an arbitrary member of which is denoted 
e = e1, . .. , er. We have N hypotheses H1, ... , HN about Z with n of 
them being true, where 1 < n < < N. We assume that each H i deter
mines two probability laws P; and P _ i for Z: 

P ;(e) = P(Z=el Hi is true) 
p _i(e) = P(Z=e I Hi is not true). 

(In many COMSEC applications, it is intuitively reasonable to take 
P _; to be the same for all i.) We want to eliminate as many wrong 
hypotheses as possible while accepting a reasonable fraction of correct 
hypotheses. To accomplish this, we test each Hi against -H; using the 
theory of the preceding section. That is, we form 

L; = lnjPi(e)/P_i(e) ). 

If we can assume that Li is normally distributed m both right and 
wrong cases, then from FACT 9, there exists 

Then, 

µi > 0 such that with ul = 2µ. i , 
Li "' N(µ i, ul ) if Hi is true and 
Li "' N(-µi, ut) if Hi is not true. 

(
Ci - (-µd) 

P (accept Hi I -Hi) = 1 - F Ui 

P(reject H i I Hi)= F (Ci Ui- µJ = a;, 
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where Fis the N(O, 1) distribution function and c; is the threshold for 
the test (the c which appears in the statement of the Neymann-Pear
son Lemma). We fix a; = a (the same a for all i) and can then solve 
for the c; above. Then the theory of section 1 indicates that we have 
minimized b; given the fixed value a. In particular, if we take a = 1/2, 
as is often done, then c; = µ; and b; depends upon 

µ; - (-µ;) 

<Ti 

which is the sigma-age as defined in section 1. It is this appearance 
of the sigma-age which makes the concept important. 

Now, after testing all of the hypotheses H; as above, the expected 
number of wrong hypotheses ["Expected Wrong Case Survivors," 
E(WCS)] accepted is (since we assume n < < N) 

N 

E(WCS) ~ Lb; 
i- l 

and the expected number of correct hypotheses ["Expected Right Case 
Survivors," E(RCS)] accepted is 

E(RCS) =an. 

Now, in order to determine E(WCS) as above, it is necessary to deter
mine all of the b;'s and sum them. This would cost almost as much as 
doing the actual testing of the hypotheses. Hence, from a COMSEC 
point of view, the above expression for E(WCS) is not practically use
ful. We need another method to estimate E(WCS). The method 
usually employed is as follows (for simplicity, assume we have fixed 
a= 1/2). We find an approximationµ to the average of the µ;'s 

1 N 

µ. =-.L µ;. 
N;-1 

Then we form 

b = 1-F(µ~µ0 

and take as an estimate to E(WCS) 

E(WCS) ~Nb. 

In general, let µ; = E;L; denote the expected value of L; computed 
assuming that H; is true, and µ. _ ; = E _ ;L; the expected value com
puted assuming H; is not true. Similarly for u2- ; = Var_ ;L;. Then the 
quantity 

IE(µ;) - E(µ_ ;) IJVE(u2- ;) 
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is some sort of approximation to an expected sigma-age. We call it the 
essential sigma-age. The procedure is quite questionable, and there 
seems to be room for considerable investigation, theoretical and em
pirical, in this area. In the examples of section 4, we indicate how to 
determine the approximationµ. 

3. In this section, we say the little that it seems to be possible to say 
about normality of the log factor. Normality of L is often assumed in 
general due to the fact that, in practice, it often turns out that B is a 
product of random variables. Then L is a sum of random variables, 
and if these random variables may be assumed to be independent 
and identically distributed with finite variances, then a central limit 
theorem will imply the approximate normality of L (see reference [5] 
page 431, Theorem 4A). Actually, less stringent requirements may be 
made of the random variables and normality in the limit may still be 
imolied (a!!ain see reference rsl oa!!e 431 Theorem 4B). 
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