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Since we shall be talking about matrices and vectors, let us begin 
by saying what we mean by those words: 

A vector is an ordered sequence of numbers which obeys certain 
rules of addition and multiplication; for instance, (3, 7, 2) is a vector 
if it obeys certain rules of combination. Notice that (3, 7, 2) is not 
the same as (7, 3, 2) or (2, 3, 7). These are three different vectors. 

A matrix is a two-dimensional ordered array of numbers which 
obeys certain rules of addition and multiplication; for instance, 

is a matrix if it obeys certain rules of combination. 
When stated in this way, the definitions sound rather arbitrary. 

An ordered sequence of numbers sounds like an abstract and high
brow idea. Actually, this is not true; we are all familiar with ordered 
sequences of numbers. 

Example J .--What would you understand by the ordered sequence 
of three numbers 12- 25--63? That's right, it is Christmas of this 
year, in the "civilian" system of month, day, year. ("Militarily," 
it would be 25-12-63). 

Example 2.-What would you understand by the ordered sequence 
of three nwnbers 202-772- 8956? It is a telephone number in long
distance dialing. The first number, 202, indicates the Washington 
area; the 772 is the exchange; and 8956 is the individual's phone 
number. 

Example 3.-- What would you understand by 53 -65-13-29.50? 
That is a weather report. If you dial the weather-forecast number, 
you will be told the temperature, the relative humidity, the wind
velocity, and the barometric pressure, in that order. The voice on 
the phone tells you which is which; but if you were sending this in
formation at expensive cable rates, you would send only the numbers. 

Example 4.-From cryptography, we have examples like this: 

Letter of alphabet A B C D . . . . . Z 

Number of occurrences 
in 1,000 letters 70 20 35 36 2 
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D 0Ql>26 nu~§~1f?J ~ritten as an ordered sequence, (70, 20, 
35, . .. 2) wiLhouL menlioning Lhe letters of the alphabet.. We 
would understand that the first number, 70, was the number of A's; 
the next, Lhe number of B's, and so on. 

Exampl,e 5. Suppose we made a similar counL of frequencies of 
letters of the alpha bet on 1,000 letters each day for a month in this 
fashion: 

Date 

Nov. 1 

2 

3 

30 

Let te r of the Alphabet 

A B c D 

70 20 35 36 

69 19 31 33 

75 21 30 31 

65 15 35 30 

z 

2 

1 

3 

0 

Inside the " box" we have a two-dimensional array which is "ordered." 
We know that the n'' row refers to the n'h day of the month, and 
then'' column refers to the n'" letter of the alphabeL. This is a 30-
by 26 array. 

We have not called this two-dimensional array a matrix, because 
it is not a matrix yet. Neithe1· is the row (70, 20, 35, ... 2) of the 
previous example a vector- not yet. These ordered arrays of num
bers become matrices, or vectors, when they satisfy cert ain require
me nt;; about how they rnmbine with one another. Here are the 
rules: 

(1) "Vectors Add Component by Component." Each one of the 
numbers Lhnt m ake up a vec.:tor, like the 3 of (3, 2, 7 ) is a "compo
nent;" (3, 2, 7) has three components. To add two vectors, we add 
Lhe first component of one vecLor to Lhe first component of t he other 
vector, and the result is the first component of the sum vector; so 
also for the other components. In symbols this is 

(3, 2, 7) + (1, 2, 3) = (4, 4, 10) 
because 

(3 + 1 = 4, etc.) 
and in general 

(a, b, c) + (x, y, z) = (a + x, b + y, e + z ) 
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To multiply a vector by a scalar--a "scalar" is an ordinary num
ber ·we multiply each component by the scalar. For instance: 

2(3, 2, 7) = (6, 4, 14). 

That is what we would naturally expect. Two t imes a vector means 
thaL we take the vector twice, so that 2(3, 2, 7) = (3, 2, 7 ) + (3, 2, 7 ) 
= (6, 4, 14). In general, a(x, y, z) = (ax, ay , az). 

To multiply Lwo vectors together, we multiply corresponding com
ponenbi and add the result.~. The product of two vectors is there
fore a scalar, or ordinary number. For instance: 

(3, 2, 7) . (1, 2, 3 ) = 3·1 + 2·2 + 7.3 = 3 + 4 + 21 = 28. 

All these rules for addilion and multiplication agree with the inter
pretation of (x, y, z) as the coordinates of a point. In two dimen
sions we write (3, 1), for instance, for the coordinates of this point: 

y 

Fig. 1. 

. P oin l 
(3. l) 

The ordered sequence of two numbers (3, 1) indicates the point where 
x = 3 and y = 1. The first number always is the value of x and 
the second is the value of y, by a standard convention. The vector 
(3, 1) tells us to go 3 units of distance to the right and then 1 unit 
up. Another way to indicat.e this point is to use an arrow which 
starts at the origin and ends at the point, like this: 

y 

P o i11L 

Fig. 2. 
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D OQ,;J:Jl~d c;3~~oQ tb~;ector v if we had previously specified 
the length and the direction of the arrow. Then v = (3, 1), and we 
say that the vector v, thought of as a certain distance in a certain 
direction, has been "expressed in terms of its components, (3, l )." 
When we add two "arrows," or directed quantities, we do it by put
ting the beginning of one arrow at the end of the other and connect
ing the new end-point to the origin, in this fashion: 

3 

2 

0 s 

Fig. 3. 

As the Fig. shows, the vector a is 2 units to the right and 2 units up. 
The components of a are (2, 2). The sum v + a, which goes to the 
"t-0tal" point, has component.'J (5, 3). So we have (3, 1) + (2 , 2) = 

(5, 3). This agrees with the rule for addition of vectors that we 
expressed above, namely, "add corresponding component.a to find the 
corresponding component of the sum." In particular, if we add a 
vector to itself, we double each component: 

0 s 6 

Fig. 4. 
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Notice that multiplying a vector by 2 has doubled its length but has 
not changed its direction. The direction is still unchanged when we 
multiply by any scalar: 

l\ ' 

2 

0 2 :> 4 s 6 8 9 IO II 12 

Fig. 5. 

In most applica tions, particularly the applications that we shall 
make here, the direction of a vector is more important than its length. 
If we write v for any vector and a for any scalar, or ordinary number, 
then av is essentially the same as v, for many purposes. In fact, 
when we divide a vector by its own length, so that we have a veckir 
of length 1 in the same direction, we say that we have "normalized" 
the vector. The idea is that it is still essentially the same vector; it 
bas merely been reduced lo a standard form. 

Multiplying two vectors we defined above as multiplying corre
sponding components and adding the results, that is, 

(a, b, c) · (x, y , z) = ax + by +ex- a scalar quantity. 

How does this fit in with our picture of vectors as arrows? First 
consider the special caRe of multiplying a vector by itself: 

(a, b, c) • (a, b, c) = a' + b' + c' 

In two dimensions this is (a , b) · (a , b) = a' + b'. 

The arrow is the hypotenuse of a right triangle. By geometry, the 
square of the hypotenuse equals the sum of squares of the other two 
sideR, so that if we measured the lengths of the line;;; in the picture we 
would find that, physically, v' = a' + b' . If we did the same thing 
in three dimension, we would find that the lengths of the lines drawn 
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a 

Fig. fl. 

would agree wilh v' = a' + b' + c'. Our definition, then, of mulli
plying by adding products of components agrees with the geometry 
of the picture. 

When two different vectors are multiplied together, we can reason
ably expect the result to depend on the lengths of both vectors and 
on the directions of both. The conventional definition is such that 
the product of two vectors depends on the product of the two lenglhs, 
and it depends on their directions because it depends on the angle 
between them: 

a. 

Fig. 7. 

In our applications we shall limit ourselves almost enlirely to the 
special case where one of the vectors is of unit length. Call the one 
of unit length u and the other one a. Then we have 
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il 

:;;£'',', a 

Fig. 8. 

By the definition of the cosine, the length of the projection of a on u 
is a cos H where a = lenglh of a. When a is greater than 1, this is 
still Lrue, but we musl extend u in order to draw Lhe projection in 
this manner: 

Fig. 9. 

'• 
' '. 

,' 

\ 
a 

Perhaps it should be mentioned here that these ideas are not lim
ited to the study of geometrical figures. We all know that a graph 
can have many different meaning;;. A curve or a jagged straight line 
sometimes indicates the behavior of the stuck market from week to 
week; sometimes it indicates daily temperatures or something else 
about the weather; and there are many other possibilities. The mean
ing we are interested in here is one that is related to cryptography. 
In a few minutes, we shall define this in detail. 
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oocrn· 38~86?~ 
I!'i"rst, we must'say a fitn€ about the two-dimensional arrays, or 

malrice.s. The example cited previously (p. 32) had 26 columns and 
30 rows. When the number of rows is the same as the number of 
columns, we have a "square" matrix. These are the easiest to work 
with, and they are enough for our purposes now, so we shall talk 
from now on about square matrices. 

The rule for adding two matrices together is the same as that for 
vectors, namely, "add corresponding componenls t.o get the corre
sponding component of the sum." For instance, in 2-by-2 matrices 
we may have: 

1: 
' X 

l

a+ x 

c + z d + w l 
+ 

The rule for multiplying by scalars is the same as for vectors -
"multiply each component. by the scalar." For instance, 

y l 

l

ax ay l 
az aw 

a 
wJ 

The rule for multiplying two matrices together is based on the 
rule for multiplying two vectors together, but that rule has to be ap
plied several times. To slate the rule, we first think of a matrix as 
a set of vectors. Row 1 of the abed matrix, above, iR (a, b), which 
we can call the vector r1 ("row one" ). The second row is (c, d), 
which we call r,. ln the xyzw malrix, column 1 i.~ a vector written 

as n column, so we call it c,' 0 - ; x ' , and likewise c,' = I Y' . We 
Z ; W I 

have written primes on the e's to remind us that these are columns 
of the second matrix, not the first. Then the rule for matrix roulti
plica Lion is 

Ir, · c,' r, . c,' 

I r2 · C1' r'2 · c.; 1 

That is, to get the element on the first row and the second column of 
the product, we multiply the first row (of the abed matrix) by the 
second column (of the xyzw matrix). For 3-by-3 matrices or larger 
we simply extend the definition: 
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Ir, c, r , c, r, c, , I 

. ) . r, c,' r·i. C·1 r, c, , ' i 

r :t c, r :i c, r ;i c, ' · I 

Notice that it is reasonable to call these rows and columns "vec
tors," because they are added together and they are multiplied by 
scalars according to the vector rule. To see this in detail, let us 
write c, and c, without primes for the columns of the abed matrix and 
r,', r,' with primes for the rows of the xyzw matrix. Then the rule 
for addition of matrices becomes: 

1: 
bl Ix 

I + I d: ;z 

y 1 Ir, 1 

I 
= I 

w :r, 1 

: r I 

+ i Ii 
\ r! 1 

Ir, + 
I 

1r, + r./ I 

This agrees with the rule for vector addition. We also find that 
vector mulliplication and matrix multiplication agree when we write 
the fo'l\t matrix as (c,, c2 ) and Lhe second one as (ct', c,'). 

Scalar multiplicaliun of matrices is done by multiplying each com
ponent of the matrix by the scalar. '!'his agrees with vectors mult i
plied by scalars: 

sr, 1 

= I I ands (e,, e, ) = (sc,, sc2), wheres = scalar. 
I sr, I 

In this way we see that we can think of a matrix as a set of vectors, if 
we wish. This will be particularly useful in the special case of a 
matrix multiplied by a vector, in that order, such as 

13 
11 

21 j41 13x4 + 2x6 1 24 I 

5 le = lx4 + 5x6 1 = !:34 1 

The vector \:I has been changed, by multiplicalion, into the vector 
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We can write this in vector form as 

Ir, I 
I
. (c') = 

r, I I

r, · c': 

r, c' I 

Now let us draw a matrix as a set of vectorn. 
just mentioned we have 

.) 

·1 

:1 

2 rl rn.2) 

2 :J 4 ,) 

Fig. 10. 

Using the matrix 

The matrix is represented by the two arrows, taken in lhe order 1, 2. 
The same arrows taken in the order 2, 1 would represent the matrix 

which is a different matrix because the rows have been interchanged. 
To avoid trouble, we shall consider only a problem in which the 
order of the rows makes no difference. Then we can think of the 
set of n arrows as representing an n-by-n matrix. Of course, this 
has to be done in an n-dimensional space. 
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ln case anyone objects to the idea of a many-dimensional space, 
perhaps I should mention that it is only a convenient way of speak
ing. We all know that graphs are a help in exhibiting numerical 
facts. When we want to represent a single number, we can mark off 
a distance on a line: 

0 

When we want to an represent ordered pair, we draw another line at 
right angles to this one and plot the two numbers as we did before, 
so (3.1) is 

0 3 

Fig. 11. 

To represent an ordered triple, such as (3, 1, 4) we draw a third 
line at right angles to both of those. This may be shown as: 

Fig. 12. 
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D o~m,; can~~cJa~ R/n~re lines at right angles to all of lhese 
three axes, because we live in a three-dimensional physical world. 
What we can do is to say, in effect, "and so on." We can visualize 
one, two and lhree dimensions. We then m;sume that similar things 
will be lrue in other dimensions, and we form a vague mental pic
ture of axes and points. This is not mathematically wrong, in spite 
of the vagueness, because the mathematics is in the written equations. 
The mental picture, though vague and incomplete, is a help in the 
same way that an ordinary graph is a help in grasping all at once 
the facts that are staWd more exactly in a table of numbers. 

To get back to our matrices: when we multiply a vector, say v, 
by a matrix M, the resull Mv is another vector. Multiplying v by 
M has changed v into a new vector. Here is an example. We take 
lhe vector, wilh l.wo components, 

1; 
v 

I 

2/ 

We chose the inconvenient factors, VS, because it makes the vector 
have unit length. Let us change lhe vector by multiplying it by 
the matrix 

2 I/ 
M = I I 

1 l ill 

Then M v will be a new vector. 'This diagram shows the matrix re
presented by lhe two arrows marked 1 and 2, meaning the first row 
and the second row respectively. The original vector, v is the short 
vector between l and 2. The result, M v, is marked by the asterisk. 
(See Fig. 18). 

This resultant vector, Mv, is longer than the unit vector, v, but 
is almost in the same direction. If we keep the matrix 1, 2 constant 
and vary the direction of v, we can find a direction such thatMv is 
exactly in the same direction as v. In the case of lhe matrix which 
we used previously, namely, 

M = 1: 
3 / 

U is such a vector. (See Fig. 14, page 44). 
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Fig. 13. 
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(2. I) 

CD 

\];itri• \1 is(D.@ 

Lil',cnrct:Lor Ti: [1\IU = sl;" wl11.:n:: :-; = "'culur] 

(ordi:iiln- number) 

Fig. 14. 
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M u is in the same direction as u, but it is longer by a factor of 
3.6, approximately. This ratio, 3.6, is the "eigenvalue." When the 
original vector is of unit length, as u was, lhen lhe eigenvalue is the 
length of Mu. 

This vector u is one of the "eigenvectors" or "characteristic vec
tors" of the matrix. Every eigenvector is a vector, but it is an eigen
vector, or characteristic vector, only with respect to a certain matrix, 
or matrices, of which it is characteristic. "Eigen" in Germ'ln means 
"proper" or "belonging to," in this sense. Usually a matrix which 
has n rows and n columns also has n eigenvectors, each with its own 

1

2 1 1 

eigenvalue (increase in length). The matrix , has the eigen-
11 3 

vector (.526, .851) with eigenvalue 3.62, shown in Fig. 2, and a 
second one, (.851, .526) with eigenvalue 1.382, not shown. 

A natural question to ask is, Do these eigenvectors and eigenvalues 
lu1ve any pructical use? From the diagram they look like a mathe
matical freak. The vector u happens to be pointed in just the right 
direction so that when we multiply it by M it is still in the same 
direction. Is this anything more than a coincidence? 

The answer is, Yes. These special vectors have physical meaning 
and practical uses. The most concrete interpretatioru; occur in phys
ics, where the elements of the matrix are usually not numbers but 
differential operators. We can write D to mean "differentiate with 
respect to time, t," and D' to mean "differentiate twice," and so on. 
Then the forces acting on a set of physical objects will be given by 
several equations in which the variables are coordinales representing 
the positions of various object.<>, and these are shown with powers of 
D before them. So we can write a matrix involving powers of D 
and ordinary numbers. The eigenvectors of this matrix will describe 
certain important features of the motion of the system in which the 
eigenvectors will be parameters. For instance, suppose we have two 
weights, of mass 1 kg and 2 kg, which slide without friction on a 
horizontal surface; and suppose these weights are attached to springs 
in this way: 

" h 

K~strongth n f srring 

Fig. 16. 
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DQG:clIQ~ght,aJ:iJ,e.JiJo~ion, a centimeters to the left, and 
weight 2 in the same way, b centimeters to the right, and we release 
them. If we choose a and b at random, the weights will move to 
and fro in an irregular, complicated, and continuous mg_nner. But 
if we choose a and b correctly (in fact the correct choice is a ~ 1 
centimeter to the left and b = I centimeter to the right) they will 
vibrate in a simple, regular way, like this: 

Fig. 16. 

The equations representing the force exerted by the springs at each 
time, t, and the resulting displacements of the two masses can be 
written as a matrix involving the time-derivative D: 

2 2D' 

-
2

1 ix, I - 0 
+ 41 x, 

)D' + 3 

where x, and x, are respectively the displacements, to the right, of 
mass 1 and of mass 2. The eigenvectors, also called eigenfunctions 
in such problems, of this matrix are fundions of time which describe 
the mode of vibration pictured above, and a similar but different 
mode, not shown. The eigenvalues are the corresponding frequencies 
of vibration. Similar situations, but more complicated, are of great 
practical importance. For instance, instead of the two sliding 
weight.s we may have two heavy fixtures on a ship, connected by 
metal beams with some degree of flexibility. If this system has a 
mode of vibration with a frequency equal to the natural frequency 
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of typical waves of the ocean, then a storm could set up a steady 
vibration that might build up to the point of being dangerous. Ship 
designers have to avoid structures with that frequency of vibration. 
Likewise, in airplane design, vibration analysis is carefully studied 
by specialists. 

One application to cryptanalysis is as follows. We start with some 
set of frequency counts, such as the frequencies of different letters 
of the alphabet al different positions in the cipher text, or something 
like that. From these counts we drive a set of columns of figures. 
How this is done depends on the nature of the cipher we are studying. 
We compare these columns in pairs to see whether or not they seem 
to be different versions of the same "ideal" column and differ only 
in random fluctuations. If there is a probability p that columns i 
and j are alike, then the probability is also p that column j is like 
column i. We can write this as p,; = p;;. If we write these p's 
with i as row heading and j as column heading, we have a symmetri
cal matrix. A very simple example is this: 

~;;: 1.000 P1~ .050 p,, .975 

2 21 = .050 p"' 1.000 p,, .007 

p,. .975 p,, .007 p.:J 1.000 

{Notice symmetry) 

The array of 9 numbers is a square matrix. It can be plotted in 3-
dimensional space as a set of 3 vectors, as we did before. Each 
vector would represent a row of the matrix, or it could represent a 
column if we prefer, because of the symmetry. In practical cases, 
the matrix would have more than 3 rows and columns; in fact 30-
by-30 would be more typical than 3-by-3. Also the elements would 
not all be very dose to 1 or very dose to O; they could have any 
value in between. 

In this large matrix some columns would be similar to one another. 
The remaining columns would all be approximately inverses or oppo
sites of the first set of columns, like this: 

ALIKE 

.9..-0 ~;--.......9 
0 

.7 

.9 

.9 0 

0 .9 

? .7 
OPPOSITE 

47 

0 

.9 

.9 
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D 9&£ ~J?i~ 4-d~§~§i f?Pk2each column being one point. The 
points representing the first, third, and fourth columns will he close 
together. The point representing Lhe second column will be far 
away. lf there were other columns like column 2, they would be 
close together but all separated from the set con~isting of columns 
1, 3, and 4. We would have two clusters of points. We must sepa
rate these clusters; in cases where the two types are not very obvi
ously different the separation is difficulL. In fact, what we want to 
do is to find the approximate center of each cluster. These centers 
will be dose to Lhe two ideal points that represenL the two ideal 
types of columns, one the inverse of the other, of wltich the actual 
columns are approximate versions. To accomplish this separation, 
we first make a change of origin, that is, we decide to measure all 
distances from the center of gravity of all the points. In the example, 
this center would be close to (1/2, 1/2, 1/2, 1/2). The two clusters 
are on opposite sides of this center of gravity, and we wish to find a 
line which will go through lhe center of gravity and will also pass 
through the approximate renters of the clusters. Here is a simplified 
figure, in two dimensions, which is merely suggesLive, of course: 

@ cl ustrr 
® ® 

© (j) 

c1w~Ler ® 

Fig. 17. 

It is sufficient to find the direction of this line, rather than the 
actual centers of the clusLers, because the direction of the vector is 
more important than its lengLh. In fact, in this case we know the 
length before we start; it will be Vn for n points in n dimensions. 
So we rotate Lhe line, letting it pass through the origin all the time, 
until we find the best position. We shall define the best position, 
where it "goes through the clusters" in a sense, as being that posi
tion in which the sum of the squares of the projections has the great-
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est value---a "projection" being the projection of one of the points 
onto the line: 

l',,i11t I 

\<"\.·"' 
. ~-""-1!1d1! 

~/··· 1,,,1, 

Fig. 18. 

From each point we drop a perpendicular to the line; from the point 
where lhis perpendicular meets the line to the origin 0 is a segment 
of the line called the projection of the point. We do this for all 
points in both clusters. We square the numbers representing the 
lengths of the project.ions in order to get rid of minus signs, and then 
we add these squares. To indicate the position of the line, we use 
a vedor u of unit length, in that direction. 

In a geometrical picture, how do we usually represent the sum of 
squares of numbers? We do it by drawing the numbers as sides of a 
right triangle. The square of the length of the hypotenuse is equal 
to the swn of the squares of the other two sides. We saw it pre
viously in Lwo dimensions. In three dimensions it still holds as a 
swn of 3 squares: 

Fig. 19. 
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D oc:;;1~e:than~~~e~U?n7w~ cannot draw the picture, but the idea 
remains valid. Notice that it makes no difference which number we 
mention first; so also, it makes no difference which axis we l:all x and 
which one, y; x' + y' + z' = y' + z' + x', etc. 

In the example we are considering, we wish to draw a picture rep
resenting the sum of the squares of Lhe "projections" mentioned 
above. We must use eal:h of the projections as a side of a righl Lri
angle. To draw this, we rotate the projections ont.o the axis, one 
projection lo each axis in any order, thus: 

Point l 

rota led rrojt~C Lion 

Fig. 20. 

These segments on the axis- the rotated projections- are the sides 
of right triangles, because the axes are at right angles to one another. 
Then the "hypotenuse" or diagonal, the hypotenuse of the last tri
angle, represents the sum of the squares that we desire. It is the 
longest diagonal, from the origin to the farthest corner, of a rectan
gular box whose sides are these rotated projeclions. The farthest 
corner is the only one that does not lie in any coordinate plane. 

Now it is a fal:t that this diagonal of the box, when we think of 
it as a vector from the origin, is what we had before when we multi
plied a vector by a matrix in the form M v. As indicated before, 
multiplication by M changes u into the new vector M v, which is 
the diagonal. The matrix M was represented by a set of n vectors, 
one vector standing for each row of the matrix. Now we have a 
given matrix, whose rows (or columns ) are the points of the two 
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clusters. So we do this: we set up a matrix M by using the coordi
nates of the given duster-points. If these points are pi, p,, ... , 
then Mis 

Ip . 
I I , I 

M 

I
p, 

. I 

a square matrix. 

i . I 
To find the best postiun of u, meaning the position that max1m1zes 
the sum of the square>i of the projections, we leave M fixed and vary 
u by rotating it. We wish to maximize the length of the vector Mu 
by varying u. Instead, we may just as well say that we wish to 
maximize the square of this length, bemuse the square of a positive 
number is greatest when the number itself is greatest, and vice versa. 

What is the square of the length of any vector, say, the vector a? 
In terms of its components this vector is, say, (a,, a,, a:i) , and the 
square of its length was shown before to be a, ' + a, 2 +a,,'. We can 
write this in matrix form as: 

Length squared = (a ,, a,, a ,,) 

When a is written as a vertical column, then the row form of the 
same components is a as a row, called "a transpose," and vi<.:e versa. 
The transpose of any matrix, or vector, is formed from the matrix 
or vector by writing down instead of across, so that rows become 
columns and columns become rows, as in: 

1 2 

5 

8 

3 1 

61 transpose 2 

9 . 3 

4 

5 

6 

The square of the length of any vector a can be written than as "a 
times a transpose," which is in symbols aT a. Then the square of 
the length of Mu is (Mu ),. Mu. It can ea.~ily be shown that the 
transpose of a matrix product is the product of the transposes taken 
in reversed order; in symbols, (Mu)°" = uTMT. So the square of 
the length that we wish to maximize 1s u1'M,.Mu. A symmetric 
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~Q~ i l?i.e=sam~a~i~ §,1~t7aiJpose, because rows equal columns 
in symmetric malrices: Mr = M when M is symmetric, as here. 
~ the quality we wish to maximize is uT M ·2 u . Of course, M' is 
simply a nolher matrix like M , also of n rows and n columns. We 
ask, what vector, u, will make 1/. M ·2 u have iLs greatest value? 

The answer is, the desired value of u is the eigenvector of M ' that. 
goes with iLs largest eigenvalue. The n-by-n malrix M' normally 
has n eigenvectors and n eigenvalues, one eigenvector for each eigen
value. If we find all the eigenvalues of M ', pick the one that is al
gebraic:ally l~rgest, and find lhe corresponding eigenvedor, say e,, 
then that e, 1s the de.sired value for u . It ma ximizes the express ion 
we had before: e, M' e , is larger Lhan u'" M' u for every u other 
than e 1• 

This maximizing property is true for any ma trix, say A . If e 1 

denotes Lhe so-called "principal" eigenvec tor of A, meaning the one 
corres?onding to the l.argest eigenvalue, then e,T A e, is larger than 
any x A x, where x 1s a veclor other than e,. The distinguished 
mathematician Coura nt proved in a general form, that we can de
fine all the eigenvectors and eigenvalues of any matrix A as the vec
~rs that maximize xT Ax, in a certnin sense, a nd their corresponding 
eigenvalues. That is, we can define eigenvectors and eigenvalues 
wjthout using the equation A x = (scalar ) x ; instead, we maximize 
x Ax. 

The conclusion iA this. We can find the be8t po.<;ition of the vector 
u-the position in which it goes a pproximately through the centers 
of the clusters-by finding the eigenvector corresponding to the 
largest eigenvalue of M', which is often called the "principal" eigen
vector" of M'. Now the principal eigenveclor of NI' may be also 
the principal eigenvector of M itself, because we can take the defini
tion of eigenvector 

Mu - s u (wheres is a scalar) 
and multiply by M: 

M ' u = M (s u) - s (Mu) - s (s u) = s' u. 

Thal is,_every eigenvector of Mis also an eigenvector of M 2, and each 
has n eigenvectors, which are usually distinct. The eigenvalues of 
M' are the squares of the eigenvalues of M. When the eigenvalues 
of M are all positive, the algebraically largest one of M is also the 
largest one of M', or rather its square is. The square of the principal 
eigenvalue of M is also the principal eigenvalue of M ' if some are 
~1egative, but the negative ones do not exceed the principal eigenvalue 
m absolute value. This last situation happens to be the one usually 
realized in the cryptanalytic problem that gave rise to this discussion 
so it is sufficient. lo find the principal eigenvector of M instead of 

UNCLASSIFIED 52 

.. ............. ._l ____ _i UNCLASSIFIED 

M'. When that is not the case, we could, of course, find the eigen
vectors of M' with a little more work, but actually this is unneces
sary. A different argument shows that it is still sufficient to find 
the principal eigenvector of M itself. 

How we go about calculating eigenveclors and eigenvalues of a 
given matrix is an extensive question in itself. For the moment, we 
can say simply that a good many methods are known, some of which 
are better than others in particular situations. A survey for four of 
the best methods for general use, and some special methods for use 
in the National Security Agency, may be found in my paper on the 
calculation of eigenvectors and eigenvalues.• 

: b) i 3: -P. L. )~ 0- 3·":J"Comput.atton uf Eigenvalues and Ei.genvectors ," om~ of 

Cryptology, 27 Octob~r 1962. 
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