Earliest Applications of the Computer al NSA*

by samuel s Snyder

This paper describes the first successful application of an electrontc computer in the solution of an Agency problem. namety the [National Bureau of] Standords Eastern Automatic Computer ("SEAC"). A Aou chart of NSA's SEAC program is provided.

NSA's earliest successful application of electronic cumputers began in July 1950, before we had any computer. At that time, the only elecronic computer in operation in this country was SEAC, recently completed al the National Bureau of Standards. In England, the EDSAC cornputer had been completed about a year before, and in this country the only computers being built commercially were UNIVAC, EDVAC, RAYDAC. and the Institute for Advanced Study machine (IAS computer). At NSA, our own ATLAS I (forerunner of the ER.A. 1101) was under cunstruction at Engineering Research Associates plant in St. Paul, and our ABNER wes being built in our own Research and Develpment laboratories. Also, ABEL, the relay analog of ATLAS I, had been in use for about a year, mostly to check the logic of ATLAS I pro. grams and for routine computations of statistical tables.
Responding to a request from Dr. A. Sinkov, then Technical Director Responding to a request from Dr. A. Sinkov, then Technical Director
in Communications Security, I met on July 11th, 1950, with him and his deputy. They described an emergency requirement in COMSEC for production and checking of several hundred "involutory matrices." Each matrix cunsisted of 16 numbers, arranged in 4×4 square and used in a Navy callsign system. The following requirements and limitations had to be satisfied in choosing and testing the entries

1. Each entry to be chosen randomly, a nonzero positive integer be tween 1 and 36 , inclusive.
2. All minorst of the generated 4×4 matrix to be unequal to zero modulo 37
Perhaps a slight digression is in order for a few words about SEAC ("Standards Eastern Autumatic Computer"). The decision by the
[^0]Burean of Standards to construct a computer in its own laboratories was made in August 1948. The Bureau had been acting in a tech nical liairon capacity, in connnection with the Bureau of Census' contract with Eckert-Mauchiy Computer Corporation to construct the UNIVAC. A similar arrangement also existed for NBS to monitor the work by Kaytheon Corporation on the first Raytheon computer (later known as RAYDAC) to be constructed fur Navy's Bureau of Aerunsutics. These functions probably represented the beginning of NBS interest in becoming a sort of government technicad focal noint in computer research. When the Bureau employed July 1948), this interest became focused, becouse of \square intimate knowledge of EDVAC engineering and logic acquired auring work on EDVAC at the Moore School of Electrical Engineering. University of Pennsylvania. At about the same time that NBS was considering constructing a computer, with supervision by \qquad this agency's Army predecessor concluded an agreemernt with the Bureau providing, among other things, for the Bureau of 'Standards to contract for delivering mercury delay line memory for the computer, which we undertook to build. Our computer (ABNER) and the Bureau's machine (SEAC) were to be based on ED YAC logic and circuitry principles. SEAC's memory was only 512 words, however, whereas we early decided on the 1024-word size. Also, because of the Bureat pressure to finish their machine as soon as possible, the instruction repertoire was limited to only 8 instructions, compared with the 31 eventually buit into ABNER. By July 1950, SEAC was getting into operation more or less regularly
3. Produce the matrix and its inverse, which is the mod 37 inverse of the generated matrix
During the week or two following the interview with Dr. Sinkov, Mr L. W. Lathroum and 1 met with \square
\square
of R\&D. and received from them addational theoretucal information bearing on matrix production and testing. Also, the possibility of using ABEL was considered, and rejected because it was too slow. I then spoke with an the Bureau of Standards regarding the possibility of using the NBS machine SEAC. We also arranged for the generation of randori numbers, required as input for the matrix production process by our Machine Production activity, using punched card techniques, with production of output punched paper tapes.

Although "Red" and I were both familiar with SEAC, we arranged a visit with Mrs. Ida Rhodes, senior programmer analyst at NBS, to ob tain from her any specific operational details regarding programming and use of SEAC. The visit with Ida produced a single shizet (torn from an envelope! containing all 8 SEAC instructions, handwritten in red pencil. She also told us about a few SEAC operating conventions. such as program preparation using hexadecimal notation (4-bit shonthand)

Within a few weeks Red had written a preliminary program for pro ducing involutory matrices on SEAC. using random numbers as input, and testing according to the criteria mentioned above. The program was converted from octal to hexadecimal notation, and checked. Aiso, during these firch few weeks formal arrengements weye made for time on SEAC (usually Sundays or after midnight) and for transfer of funds from NSA to the Bureau of Standards to pay for SEAC tirne (at $\$ 24$ per hour). Of course, we had the support of IBM equipment and specialists from our Machine Production Organization, in producing great masses of random numbers on punched paper tape
y involved in this aspect of and Dot

In the manual procedure for producing a matrix, we produced each entry by first calculating the number(s) which would make a 2×2 minor become zero and then arbitrarily assigning to that position any other number between 1 and 36 . In corrying out the steps in such a process we followed the standard mathematical procedures applying to matrix menipulations and performed all multiplications and divisions modulo 37 Then after a candidate "gond" matrix was produced, we calculated its inverse.

When we used SBAC, the procedure differed from that for manual perations. Instead of calculating entries one by one, and testing each efore accepting, we chose the set of 16 numbers from among those in ur randomly-generated source and then applied the series of tests for nonzero minors, If a candidate matrik survived the tests, we printed it the typewrier. The SEAC program took between 8 and 15 seconds per matrix, not counting outpur printing. This estimate includes nme required to test and reject unsuccessful condidate matrices. Undortuately, we do not have records showing actual estimates or proportion of rejections; the time estimate is based on personal diary entries reporting on amount of "gord" operating time and number of matrices obtained. Figure 1 presents a flow chart of this operation
Our experience in using SEAC seems, in retrospect, to have been a combination of frustration, exhilarating sense of accomplishment, and participation in making history. In July 1950 SEAC had been if operation only about one month, and many troublec still plagued the project. Furthermore, NBS engineers monopolized much of the machine time with tests and modifications to make it more reliable, with plans to add to its memary, and with improvements in input-output equipment. The rest of the "prime" time was monopolized by NBS programmers for training, in debugging programs, and in productive computation. The result was that we were permitted to use SEAC only at midnight shift or Sunday afternoons.

Fig. 1- Mow Chart of NSA's SEAC Program
Our first time on SEAC was Wednesday, August 23rd. In spite of the fact that SeAC's memory was misbehaving most of the time, we monaged to get the program running far enough to check out some answers correctly. At the following session, we discovered a few errors in our program that were due to conversions from octal to heradecima notation, and corrected these. Alsn, SEAC memory troubles again notation, and corrected these. Alsn, SEAC memory troubles again
plagued us: however, the next visit to SEAC, by Red Lathroum and plagued us: however, the next visit to SEAC, by Red Lathroum and
John Risee, produced some real results ${ }^{\text {S }}$. They put in about 16 continu. John Rixse, produced some real results. They put in about 16 continu-
ous hours, of which an estimated $41 / 2$
\qquad
\$0n this occasion, Red Lathroum actually helped the Burenu account for some of the excessuve "down" time when he noticed that some memury fallures coincided with building arr-conditionet bwitching tumes'
obtained, resulting in production of 374 matrices. After four or five mare SEAC visits bu Jahn Kixse, Dorvthy Blum, Red Lathmum, and myself, a total ot almost 900 matrices had been printed out and delivered to Dr. Sinkov
During these sessions with SEAC, we had a number of Agency vistton who wented to observe ian electronic cumputer in operation. One of hose most interested wa who was at this time in the process of rewriting esprie position descriptions in our section. Our discussions of the processes involved in computer programming engaged her interest, and her midnight trip to NBS to observe a live computer operation was the natural result. It should be added that we all learned more from "down" time on SEAC than from good operating time.

[^0]: -Actually the predecesisor agency-AFSA. Armed Forces Security Agencv
 tA minor is the evaluation. mod 37 . of determinant of order less than that of the object matrix

