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Approximation of Central Limits 

BY R. DAWSON 

Unclassified 

A development of asymplolic formulas for eslimat.ing an ordinate or tail area in the 

distribution of the sum of a large number of identically distributed ra:ndom variables, 

based upon shifting lhe point of estimalion. 

1. INTRODUCTION 

In accordance with the central limit theorem (Cramer, [1], Sec. 17.4, 
p. 215), the ste.ndardized sum of an increasingnumber of independent and 
Identically distributed random variables is asymptotically normal: and 
when the number of variables Is large E•nougb. the assumption of normal
ity Is adequate. But the convergence is not uniform, being notoriously 
poor at extreme values of the sum, and It has been found helpful [2], [ 4] to 
develop asymptotic series to Improve the fit. The object of this paper la 
to pr~aent a unified theory of estimating ordinates and tail areas. enlarg
ing or simplifying known results, and adding new results. The unifying 
principle is to shift the point of estimation (whether of the frequency or 
cumulative distribution function) to the mean, or near the mean, so as to 
eliminate the leading term of the residual asymptotic series. (The re
maining terms also tend to be reduced.) 

2. THE ASYMPTOTIC EXPANSION OF CRAMER 

Cramer ([1] 17.7) developed an Edgeworth series for the asymptotic 
frequency function h( z) and the cumulative distribution function H(z) of the 
standardized sum of a large number of Independent random variables {y,J 
sharing a common c. d. f. F'(y ). (To avoid difficulties, it will be assumea 
that F'(y)'has finite moments of all orders.) A concise redevelopment, fol
lowing Cramer except for changes made in order to educe the general 
term, Is presented. 

Let o)J(t) be the characteristic function of x, the standardized sum of c 
replications of y, e.nd let t/;, (t) be the c. f. of y - Ey, "Ey" denoting the 
mean of y. The nth cumulant of y will be denoted by K

0
, and it will also 

be convenient to define 

A.0 = K0 /K~' = K
0 

/u" [Crame'•, p.225], 
(2.1) 

Then (lll, pp. 224-226) op is related to t/;
1 
by 

ojJ(t) = [f{, h-) J = ezp { c ~ :; u~-n (2.2) 
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where 

because 

¢(t) - _1 _ _ ,2/2 - .rr;, • 

v 1 = \ 1 = O and v 2 = >-- , / Z! = 1 / l!. 

Hence, using the inversion formula ([l], p. 94) for recovering the fre
quency from the characterlsUc function, 

h(r) = / 11 1: e ·It• <f(t) dt 

= - 1- f'° ..... ¢(t)dt • n e::p {·(it)"v. l c"12·1} 

-Il1T -= .,,.3 

(2.3) 

Now any term of finite order in c arising upon expansion of the exponen
tials' contains a product 

In which all but a finite subset of the fo) are zero. 
The corresponding power of 1/c Is 

L (ni l!- I) an = (1 /l!) L na. - L a 0 , 

and thE> corresponding power of it is :Ena", which integrates ( [l], Sec. 
10.1.2, p. 89) by the formula 

- 1- J"' (itFe'"¢(t)dt =(- D,,r ¢(r) = (-1)~ ,pm>(::), (2.4) 
-iI11 - .. 

m = 0, 1. 2, ••.• 
Expanding (2. 3) In the light of these considerations gives (lll. 17.7.2, 
p. 228) 

h(r) ~ rt (r)- c"112 v ,.p<' >(r) +f I v.'P«'+-b v; ¢«>] 
- c - 3/2 rl/ ¢ (3) + v. V cp (1}+ J.... VJ ¢ ('J)l 

. s 3 4 3! 3 J (2.5) 

where the coefficient (for any r) of c·•I' has the sign (- lY and contains 
all products of k of the v 's such that the sum of the subscripts (counting 
multiplicities and barring subscripts less than 3) is r + M : the correspon
ding derivative of <P(r)!s of order r + l!k, and the numerical divisor is the 
product of the factorlals ·of the exponents of the v's. 
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The corresponding expansion ([l], p. 229) for tbe c.d.f. H(::) is found 
by integration of the successive terms. in effect replacing ¢(z) by 

1>(r) = cp(t) dt = -- e·"12 dt. J. . 1 f' 
-o:i ~' -a:-Thus (2.6) 

ll('J:) - ·~ (:c)- c- 11 2 v,qP'(r) + + [ v, cp <Jl(r) + ~ v: q) ''(z) ]- • • • _ 

The asymptotic frequency function (2.5) Is particularly simple and 
most rapidly convergent at zero. Now 

<P ""'(O) =' r!.-- (-1) (-3) (-S) • • ·(1-fn ) c !;!J" (IJn-1) !!, (2.7) 
\J~TT ~ ~Tl 

where tbe double exclamation point denotes tbe skip-factorial, as In 
5!! =5·.1·1, 

and 
¢ (2n 'I) (0) : 0, 

Hence, tbe substitution z = O In (2.5) gives 

+c.:""1. [-5!!v.c + 7t!(-2'.,, v4~ +v, v, }- 9.' ! 2 +
11

.'.' •] ., 8'f 1.13 V4 Tf µ. J 

+ c,
3 

[ 7!!v, - 9!! {v3 v7 t "• ' '' +-fr vJ ) + ll!!(fr v,' v6 + 7,3 v4 v, + fr v.') 
- ,, (..!.._ 3 _1_ . ?. 2) 15;'! " - 17!! 6] + .•• 

J :J.. Jf ~ V5 + 2f2f Vg V4 + 4f V j V4 6/ 113 ' (2.8) 

where the rule for forming tbe successive terms is that the coefficient 
of c- 0 (n =1,2, --·I contains all products of v 's such that half tbe sum of 
tbe subscripts (counting multiplicities - that is, first multiplying each 
subscript by the corresponding exponent) minus the sum of the exponents 
equals n. The numerical coefficient of any product of v'll whose subscripts 
sum to 2r is 

(-l)'(fr-1)!! =(-1)' (er)!lf ' r! 

divided by tbe .product of tbe factorials of the exponents. 
On tbe other band H(r) Is most rapidly convergent atz =±1, where tbe 

leading error term vanishes along with ¢ 0 '(z). 

3. ORDINATE APPROXIMATION 

An equally-spaced discrete distribution over the real line may be re
garded, without significant loss of generality, as assigning probabllltles 
{p)to tbe integera .. .,-2,-1, 0,1,~, , 11, •.• , such that LPn =J, andsucb 
that the indices n at which p

0
> 0 have no common factor greater than unity. 

( [6], p. 868). If the distribution is represented by a power series (or poly-
nomial) 

f(a) = L Pn a". 
p 

(3.1) 

tben the probability that the sum of a Independent observations will be 
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N la PN where 

Next, the abscissa at which the approXimatlon is made will be shifted 
from N to 0. To achieve this shift, let 

/,(a)= f(ta)l/(t) = +.:p"t"a"//(t), (3.2) 

where t Is a positive real parameter. The expression f. (2) may be re
garded as the generating function of a new distribution whlch assigns the 
probability 1' t "lf(t) to drawing the integer n. 
Then n t"p zN 

[f«aJl "=E _N_ (3.3) 
N [f(t)l" 

ls the generating function for the sum (Y, say) of c independent observa
tions from the new distribution, in the sense that the coefficient of• " gives 
the probability that Y = N • Let y"y' , ... ,y, , each independently distribu
ted according to f.(a) , be the new Individual random variables, so that 
Y = i 11,. Then the

1

mean and variance of any y are 

F: _ tf'(t) V _ tf'(t) + t' f"(t) (say) 
.y, - flt)• Yi - f(t) = er' 

t:Y = c*;)t) and VY= co- 2
• (3.4) 

while 

Now, by proper choice of t. the means of Y can be placed at N, and. in 
view of (3.4), this choice of t must be some number p satisfytng 

cpf'(p) =N f(P). (3.5) 

It can be shown ([21 Theorem 6.2, p. 638) that this equation determines a 
unique positive real number p provided only that N is not the largest pos
sible nor smallest possible (if such there be) value of y. 

Under the choice t = p , the probability that Y = N is asymptotically 
h(O)la--ic. where thev'sintheexpansionofh(O)are those of Y

1
• Or, by (3.3), 

ONp "{2)_ 
t/(p)J' ~ ;;rc' 

i.e., 

P" ~ [f(p)f h(O) = [f(o)]° { 1 +L [3!! v, - J,J.,.,! v'] + .• ·} (3.6) 
pNo-.J"{! pNo.f2Hc c •! J 

where as many further terms as desired may be found in (2. 8), o- and the 
v's belonging to the distribution 

Thus 

and 

Prob. (y = n) = pn p" /f( p)_ 

" =~, Kn= :: lo11 f(pe") 1_0,n > O, 

'-'n " Kjnl a". (Cf, [ 4], p. 868). (3.7) 

It should be noted that for (3. 6) to be asymptotic in powers of 1 /o it is 
necessary that N do not run off toward one of tb.e tails of y ; the v's, re-
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garded as functions of p, must be independent of c (or at least bounded as 
c - rn (cf. [2], p. 640). If N /c approaches its least or greatest possible 
value, p goes to zero or to infinity, so It must be required that N / c be 
bounded away from Its extremes. (When the series/(•) Is Infinite In both 
directions. this requirement ls tantamount to tbe condition given by Good 
[6], Theorem 6.1, that N /c be held inside a finite interval; but otherwise 
the latter condition does not ensure any sort of asymptotic convergence.) 
When N /c tends to an extreme value, and the v 's are unbounded as c - ro , 

there still exist circumstances under which (3.6) ls asymptotic, even 
though the residuum is no longer asymptotic In powers of l/c ; the orders 
of the v's Inc must then be considered. 

Essentially the same asymptotic formula (3.6 &z 3.5) for the ordinate 
of the sum holds for a continuous random variable with frequency f(z) and 
moments of all orders; it le convenient, before applying (3.6), to make 
the substitutions 

-r=lolJP. [(p) = f(•~'), (3.8) 

where T is defined by 

:"- loq 1: e"" f(z) I •• ~= Nie. (3.9) 

(Cf. Daniela [2.6, p. 633]. who points out that the requirements on the ex
istence of moments can be relaxed somewhat). To Illustrate the differ
ence In manipulation occasioned by a continuous underlytng variable, 
continuity will be assumed In the ensuing development of the asymptotic 
formula for tbe tall area, although the results will be readily applicable 
to a discrete initial distribution. 

4. APPROXIMATE QUADRATURE 

By proper choice of scale, the Individual random variable f may be 
supposed to have mean 0 and standard deviation 1. Let /(z) be the fre
quency function of e' and assume that the corresponding moment-gener
ating function 

µ.{a) = t:e•< = J"' e•• f(z)dz _., (4.1) 

exists for all (or some workable range of) values of a. The tall area to 
be estimated is the asymptotic probability that the standardized sum 

!l = (t + t + • • • +ti/ rc 
I ' • 

(4.2) 

will exceed some fixed constant M, where It may be assumed without real 
loss of generality that M > 0 , said area being 

Prob. ('.'PM) = s: f/x) dx, (4.3) 

where f (z) is the frequency of E. Now if M ~ 1, formula (2.6) should be 
applied <at once; the development which follows assumes M > 1 -
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Let the (conjugate) random variable 71 be defined by the frequency 
function 

J(x) = e"" f(:r;)/µki), (4.4) 

where a is a real pa.re.meter. Then 

and 
ETJ = U~ log µ/a) = µ'(a)/ µ(a) = m (say) 

(4.5) 
VT) = D~ logµ la) = <Y', say, 

and the corresponding moments of the sum G of a se.mple of c indepen
dent observ&.tions from the distribution q( x) are 

EG. = cET) =·cm, and VG = cO''. (4.6) 

To use G a.a a shifted version of !! , it is necessary to relate their 
frequency functions. Jff*(x) Is the f.f. of;[;,;,, then f* is rele.ted to fc by 

fJxJ = IC t• (x rc f (4. 7) 

e.nd to g"(x), the f.f. of G, by 

f*(x) =[µ(al]° e-""g*(x). 

Hence, finally, 
((x) = .j7 [µla)]' e-a.. '-' g•(xJC ). 

Now 

H 
G-FXJ G-om 
S. D. ( G! = <Y .f'C-

ls the standard form of G, with a f.f. /i{x) satisfying 

g*(x) ~ - 1- h ~ 
O'rc O'rc • 

Applying (4.9) and (4.11) to (4.3) gives 

Prob. ('iPM) = [µ~a.)]'{" ,-ad~ h (x-;V) dz 

f.
00 

c -ctcm -acrvV7 = µ e ~ e h(u) du, 
M,.mY C' 

-~-

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

where u = (x -m ,/C),h. But h(u) plays the role of h(x) in (2.5), the v's be
coming invariants of n, and so 

Prob. (iPM) = µ•e~m J:•-K'{¢(x)-fj ¢<'>(x) +···} dr, 

ii. = (M - m .fC)/a, K = acr-fC, µ µ(a) • 

The integration follows the formule.s 

J"' e-"·¢(x)ik = e~ 12 [J-<1>k+i1.J], 
/. 

j~ e"Kx<j.ln)(;i;)dx ~ e-Kil.4,<~•)\>-_) + K f11."' e-K•q}"·')(re)dilJ 
>,_ 

(4.13) 

(4.14) 

(the first is found by completing the square in the exponentie.l - the 
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second by integre.ting by parts). 
Selecting that value r for a which makes 

f"e-K• ¢P)(x)di1J·~ 0, 
ii. 

and ce.rrying out the integration of the series in (4.13) gives 

where 
Prob. (fPM) = [µ (r)]• e-"""eK'l2 [J - ii> (K +ii.)] + R, 

R ~.("•-Ku { :• ¢C<> (x) + ic ¢}'1{x)- · · ·} du, i. e. 

R ~ .-KA. ( .!.. {wtP>w + _!__ •" [1P> (A) + K</,<'> (ii. l 
c 4 £ J 

+ K2¢(3l(>Jl} _ _ J_ {•••}+••·) 
~ c 3/2 

(with as many terms e.s desired from (2.5) and (4.14) ). 

and 

where 

(4.15) 

(4.16) 

(4.17) 

The determination of r may be facilitated by completing the square in 
the exponent of (4.15) and integrating: I: ,-K, ¢'»(x)dr eK'0 { K'[l- <1>(1< + 1\1]- 3K' ¢1K +ii.) 

(4.18) 

- 3 K¢' (K+il.) - ¢"(1<+1\.)}. 

An upper approximation to -r is obtained by taking a= p, where p (cf.3.5 
and 3.9) satisfies 

µ'(p)/µ(p) = M /J;;"", 

because one finds for this choice the.I the value of the integre.l (4.18) ls 
small and positive- lying either between or very near one ofl/~~ (M 2 + 1) 

and 3/Jt;;" ·(,11
2
+ 3) - whereas the choice a= O gives K = O , >--=.II and -¢ "(M) 

for (4.18) •• which is negative under the assumption M > 1 • Thus. by con
tinuity, there is ar, O<T<p. 

~. APPLICATIONS 

Good [ 6] discusses several applications of the ordinate approximation 
(3.6). One of the most important of these is the distribution of the multi
nomial maximum, by which ls meant the largest category-frequency aris
ing when a sample of fixed size is drawn from a discrete universe of 
equally. probable categories. Curiously, measuring a suitable ordinate 
In this application serves to estimate the cumulative distribution function, 
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since the coefficient of • N in 

J!_J_ (1 -l Z + £ + I 0 o + ~) () 
cN S! m! 

(5.1) 

is the probability that, In a sample of N from c categories, the maximum 
will be less than or equal to m ( 161. p. 865). Hence, regarding 

f( z) - 1 + 3 + • · • + z m/m! (5.2) 

aa the generating function for a discrete probablllty distribution over 
0,1, ...• m(logically the polynomial should be divided by the sum of its 

coefficients, but the extra factor takes care of itself), the coefficient of 
2" may be approximated, for large c, by (3.6). 

A recurrent statistical problem Is to distinguish between two sources 
(simple hypotheses) by drawing a sample (of fixed size) consisting of 
Independent observations, which contribute log Bayes factors to the odds 
on the alternative hypothesis over the null hypothesis. The test- in ac
cordance with classical theory- consists of adding up the log Bayes fac
tors appUed by the Individual observations, selecting the alternative hy
pothesis when and only when the sum exceeds a preassigned threshold. 
In repeated testings where the null hypotheslB IB almost always true, and 
where anv occurrence of the alternative is looked for, the threshold is set 
far out in the tail of the null distribution (the distribution of the sum of 
scores under the null hypothesis) to prevent a flood of "wrong" answers. 
Since the proportion of wrong answers that will pass such a threshold 
cannot be estimated reliably by assuming that the wrong scores are nor
mally distributed, the suggestion waa made in [4) that when the threshold 
falls nearer the "right" mean (the mean total score under the alternative 
hypothesis) than the wrong mean, it be assumed rather that the riqht scores 
are normally distributed; the right dlBtribution can be used to integrate 
the tail of the wrong distribution because the antilog of the score is the 
ratio of the right to the wrong score. The formula arrived at was 

Prob.(JV>z) = e:1!p(-f-cr'-m)[J-<1>("';m +cr)l, 

where m and a- are the mean and standard deviation of the (total) right 
score, and W is the score, viz. the sum of the natural logarithms of the 
Bayes factors in favor of the alternative contributed by the Individual ob
servations. While this formula proved adequate for most applications 
(see [5] ), particularly for thresholds near the right mean. the method of 
this paper ls more exsct; indeed, the older method is tantamount to a 
shift of the point of estimation to an unscientifically selected site nearer 
the mean. A noteworthy third possibility for estimating the reduction is 
to follow the ingenious empirical procedure suggested by Rudolph Mcshane 
in this issue of the NBA Teclmical Journa.l [7). 
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