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1. INTRODUCTION 

1.1 Importance and Current Status of Queuing Theory. 
Queuing theory has emerged as an estaofished body of knowl­

edge entirely within the twentieth century. Its initial impetus was 
derived from the study 0f congestion in telephone traffic, and its nour­
ishment fr0m the theory of stochastic processes. Since that time appli­
~ations have been made in the fields of communications, transporta­
tion, warehousing and the operation of dams; computer systems are 
now being added to the growing list of applications. As the number of 
service systems increases and the problems of congestion become more 
significant queuing theory will be used more frequently as an analytic 
tool for improving the operation of current serv1ce systems and for de­
signing the more powerful systems of the future. 

The contributions made by numerous investigators swelled 
noticeably during the past two decades and these new constitute a 
large body of literature. Conferences on queuing theory are almost an 
annual occurrence. With the appearance of textbooks and university 
courses in queuing theory the field has been firmly established. The 
reader interested in early developments can find a brief historical 
resume in Saaty. [14, pp. 20-25] 

1.2 Limitations in the Vse of Queuing Theory. 
Many service systems are inherently complex and the abstract 

models formulated from them contain networks of queues. A specific 
illustration which involves a multiprogramming computer system has 
been given in Blum. [ 3] These models generally resist mathematical 
analysis and in some instances computer simulation studies have pro­
vided a practical alternative. [2] However, even for relatively simple 
operational situations, the classical queuing models may fail to provide 
an adequate representation. This point can be illustrated with the 
following example of a computer system. 

Suppose jobs arrive sequentially at a computer system in accord­
ance with a Poisson arrival process, and the execution time of a job is a 
random variable. Jobs are executed in the order of arrival; if the com-. 
puter is busy when a job arrives, the job is placed in a queue. Thus far 
it appears that the operation fits the classical single-server queue de-
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scribed rather precisely by Feller [7, p. 194] and shown diagrammati­
cally in Fig. 1. In the terminology of queuing theory the computer is 
the "server" and the jobs are "customers." In this classical model the 
following rules hold: 

(1) the server is in one of two allowable states-idJe or serving 
a customer. 

(2) the server is idle only when the queue is empty. 
(3) an arriving customer who finds the server idle receives serv­

ice with no delay. 

SERVICE 
LOOP 

OI 

CUSTOMERS 

~'>. ... :_) 
QUEUE 

>. : arrival rate 
a: service time 

Fig. I .-Structure of the Cla!l!lical Single-Serv~r Queue . . 

To resume with our description of the computer system in oper­
ation-let us suppose that a job has just been completed. The com­
puter remains idle while the operator unloads magnetic tapes from 
the completed job and then loads new tapes for the next job. The 
logical structure of the single-server queuing model can be restored 
with a simple device:· let the server now represent the combined re­
sources of computer and operator. While such devices can be useful in 
modelling systems, the discerning system designer will see that the 
emperor is naked in his postulational robes. Now consider the computer 
operation at the end of a busy period, when there is no job in the queue. 
The computer stands idle and the operator turns his attention to 
"other duties as assigned." However, in order to initiate service for a 
job the operator must be in attendance. Therefore, while the operator 
is absent, jobs which arrive must wait until he returns. Since it is hard 
to restore the basic structure of the classical single-server model, it 
would be better to develop a more suitable model to represent the 
computer service system described above. A model which will be useful 
for this system was actually introduced by Skinner [15] for other 
purposes and ingeniously ext~nded in order to analyze a more compli-
cated system involving two queues. -, 

1.3 A Modified Single-Server Model . 
The modified model proposed by Skinner is shown in Fig. 

2. The following characteristics of the modified model show how 
it deviates from the rules given above for the classical model: 
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·~....._ ........ _.___. ....... _______ __ 

a QUEUE 
>< : arrival rate 
a: service time 
tl : inspection time 
R: idle time interval 

Fig. 2.-Strudure or the Modified Single-Se"er Queue 

(1) the server is in one of three allowable states-idle, 
serving a customer or inspecting the queue. 

(2) the server may be idle even though the queue is oc­
cupied . by customers. 

(3) an arriving ~ustomer who finds the server idle has to 
wait for a period of time before service begins. 
The customers arrive at the queue in accordance with a Poisson 
arrival process as in the classical model. The server's activities 
are governed by an algorithm whose structure is clearly . exposed 
with the use of the foliowing flow-chart (Fig. 3) . The server, after 
completing service to :a customer (block 2) inspects the queue 
(block 3). At the end. of the inspection the server decides be-. 
tween two courses of action (block 1): (1) If the queue is empty 
the server becomes idle (block 4): (2) if the queue is occupied 
the server takes the first customer in the queue and completes 
another 'service-inspection' cycle (blocks 2 and 3). The server will 
repeat the service-inspection cycle until the queue is found to be 
empty. Note that no time is. consumed in block 1. When an in­
spection reveals the queue to be empty the server becomes idle 
for a variable time R, after which the server inspects the queue 
in zero time (block 1) and either begins a service-inspection cycle 
or again becomes idle, depending on whether the queue is occu­
pied or empty. 

1.4 Realizations for the Modified Model. 
Several examples 1are offered here as realizations of the modi­

fied model. These are suggested by the writer's experience with com­
puters. Other realizations can probably be found among the service 
systems oc.curring in commerce and industry. 

(1) The computer with operator in attendance. 
This example was used above to indicate deficiencies in the 

classical single-server model. In this realization service time cor­
responds to the execution of a program. Inspection time is inter­
preted to be the time to tear down the old job plus the time to 
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Fig. 3.-Flow-Chart of Se"er's Activities 
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set up the new job. Idle time corresponds to whatever the oper­
ator does when there are no jobs to run, e.g. a coffee break or 
other duties as assigned. 

(2) The quick-service computer operation. 
This mode of operation is often provided at many instal­

lations during the day shift. Only short jobs are accepted for this 
operation. However, it is assumed that an inexhaustible supply of 
long jobs is available for "background" work whenever the queue 
of short jobs is empty. Service time corresponds to the execution 
of a short job. Inspection time corresponds to the time for clos­
ing out the old job and setting up a new one. (For some instal­
lations this function may be performed . by the operating system 
software.) Idle time corresponds to the time for executing a back­
ground job. It should be noted in this example that idle time is 
not synonymous with lost production. In the interest of providing 
quick and responsive service some installations accept a loss of 
production, i.e., the computer will stand idle when the queue be­
comes empty so that the period can terminate immediately upon 
the arrival of a job. 

(3) The data-processing computer operation. 
In this kind of operation large data-processing jobs are run 

on the computer. The existence of high~priority and low-priority 
jobs is postulated. Service time corresponds to the execution of a 
high-priority job. Inspection time corresponds to closing out the 
old job and setting up a new one. Assuming that low-priority 
jobs are always available, idle time corresponds to running a low­
priority job when the queue of high-priority jobs is empty. 

1.5 Goals. 
The basic goal of this paper is to provide engineers, system 

analysts and others with an expository presentation containing results 
which are applicable to the study of certain computer service systems. 
A modified model of the single-server queue is presented which, for 
some applications, overcomes deficiencies in the classical single-server 
queuing model. For this modified model queuing theory will be applied 
to obtain results concerning the distributions of (1) queue length, (2) 
response time, (3) idle period, and (4) busy period. The paper attempts 
to expose the essential mathematical concepts and techniques which 
contribute to the analysis of the modified model, for they have been 
successfully applied to ather queuing models. Section 2 presents suffi­
cient mathematical material to provide background for the reader 
having a general familiarity with probability theory. Questions of 
mathematical rigor have been put aside in favor of emphasizing major 
concepts and techniques. This paper, furthermore, makes no pretense 
of providing a compreh~msive account of queuing theory as applied to 
computer service systems. 
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2. MATHEMATICAL PRELIMINARIES 

The reader is assumed to have a degree of mathematical maturity 
and to be acquainted with the basic concepts of random variables, 
probability functions, distribution functions, moments and expected 
values. A quite brief summary of these concepts is furnished herein, 
and further information can be found in Wilks [17). 

2.1 Random Variables. 
We shall have need to employ both discrete and continuous 

random variables. In the discrete case we shall be dealing exclusively 
with non-negative integer-valued random variables. The continuous 
random variables also will be non-negative. 

2.2 Probablity and Distribution Functions. 
Let G be a discrete random variable and G. = Prob I G = n); 

n = 0, i, ... 
Then G. is the probability function of the random variable G. 
Let X be a continuous random variable and F(t) = Prob 

IX ~ t I· Then F(t) is the distribution function of the random variable 
X, and the probability that X lies in the _interval (t, t + dt) is given by 
dF(t). 

2.3 Moments and Expected Values. 
Let G be a discrete random variable and g. its probability func­

tion. If cf> is a single-valued function, then cf>(G), is also a random vari­
able. The expected value of q,(G), denoted by E[q,(G) ], is defined by 

w 

E[ct>(G)] = L g;.tf>(k). (2.1) 

The expected value of G", denoted by M., is called the moment 
of order n of the random va_riable G a~d is given by 

M. = 1: g~ k". (2.2) 

For notational convenience we shall use the symbol "(Ji to denote 
the moment of order n of the random variable G.. . 

Let X be a continuous random variable and F(t) be its distribu­
tion function. The expected value of q,(X), denoted by E[q,(X) ], is 
given by 

E[;p(X)] = f: t/>(t) dF(t). (2.3) 

The expected value of X" is called the moment of order n of the 
random variable X. Thus 

M. = E[X"] = fom t" dF(t). (2.4) 
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For notational convenience the symbol X" will be used to denote 
the moment of order n of the random variable X . . 

2.4 Generating Functions . 
Let G be a discrete random variable and g" its probability func­

tion. The generation function for g", denoted by G(z), is defined by 

G(z) = L:g.l. (2.5) 

It follows from equation (2.5) that 

G(l) = 1, G'(l) = G, (2.6) 

and G'"' (1) yields the n'h factorial moment. The ordinary moments 
defined in section 2.3 are easily computed from the factorial moments 
(see Kendall [12, pp. 63-65]). 

2.5 The Poisson Arrival Process . 
We assume that t ranges over [O, CJ)) and denote by t;, · t2, ... 

t", ... the arrival instants of the customers to a single-server queue. 
The interarrival times, denoted by·e., are given by e. = t •. + 1 - t. (n = 
0, 1 .. . ; to = 0) and are assumed to be mutually independent random 
variables with the same distribution function: 

F(t) = l - e-M . (2.7) 

Thus Prob I o. ~ t I = F(t); n = 1, 2, ... The sequence It. is called 
Poisson arrival process with density A and the reader may confirm that 
E[o.] = f.. Since the mean interarrival time equals tit follows that A 
equals the mean number of customers arriving per unit t.ime. 

Next, let A.(t) be the probability that n, customers arrive during 
an interval of length t. It can be shown that 

A () - ->.1(?.t)". -• t. - e -, n - 0, l, ... 
n! 

(2.8) 

A derivation of this result and of the Poisson proces.q from more basic 
assumptions can be found in Khintchine [13, pp. 11-15 J. 

Finally, let us compute the value of A (n; U), defined t.o be the 
probability that n customers arrive in the interval of length U, where 
U is a continuous random variable with distribution function U(t). 
The probability that U is in the interval (t, t + dt) is dU(t) and the 
probability that n customers arrive during an interval of length t is 

-At (.\t)" Th h b b"J" h . . d e -,- . us t e pro . a i 1ty t at n customers arrive m a ran om 
n. 

interval whose length is in (t, t + t.dt) is given by 

e -•t (~t)" dU(t). 
n! 
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To obtain A (n; U) we integrate over all possible values of U and obtain 

f m (>d)" 
A (n; U) = e-"' -

1
-· dU(t). (2.9) 

o n. 

2.6 Laplace-Stieltjes Transforms. 
Let F(t) be the distribution function for the continuous random 

variable X. The Laplace-Stieltjes transform of F(t), denoted by F*(s), 
is defined by 

F*(s) = J: e-•• dF(t). (2.10) 

It follows from equation (2.10) that 

F*(O) = f: dF(t) = 1, (2.11) 

F"''4 '(0) = (- l)l f: ( dF{t) = (- l)l x\ 

where F*'.'(O) denotes the k'h derivative of F*(s) evaluated at s = O. 
Further information on this transform can be found in Feller. [7, chap­
ter l3J · 

2.7 Conuolutions and Their Transforms . 
. Let X, Y be independent continuous random variables with dis­

tribution functions respectively F(t), G(t). The random variable Z 
defined by Z = X + Y has the distribution function H (t), where 

H(t) = f: G(t - x) dF(x). (2.12) 

To justify equation (2.12) we observe that Prob l Z s t and X is in (x, 
x + dx) l is equal to Prob l Y s t - x and X is in (x, x + dx) l = 
G(t - x) dF(x). 
The unconditional probability is obtained by integration over all pos­
sible values of X. Thus, 

H(t) =Prob !Z ~ tl = J: G(t - x) dF(x). 

The integral is called the convolution of the function F(t) with the 
function G(t). It can be shown that H*(s) satisfies the equation 

H*(s) = F*(s). (2.13) 

This result can be extended for a sum of n independent random vari­
ables. Let Y = X1 + ... -r X., F;(t) be the distribution function of 
X ;. It can be shown that 

(2.14) 
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The function H(t) can be shown to be equal to then-fold convolution of 
the functions F1(t), ... , F • .(t). For the special case where the X ; are 
distributed with the same function F(t), we have 

H*(s) = [F*(s) ]". (2.15) 

Now let the :random variable Z be defined by Z = X 1 + . . . + 
Xe' where G (restricted to postive integers) is a random variable and 
every X, is distributed like the random variable X with distribution 
function F(t). Let g. be the probability function for G, G(z) be the 
generating function of G and let H(t) be the distribution function for 
Z. Then Prob I Z $ t I G = n I = F.(t), where F.(t) is the n-fold 
convolution of F(t) with itself. It follows that 

m m 

H(t) = L g. F.(t), H*(s) = Lg. [F*(s) ]" 
,. .., , 

and, therefore, 

H*(s) = G(F*(s) }. 

Ifwe differentiate (2.16) and sets = 0 we obtain 

Z=GX, 

(2.16) 

(2.17) 

a result which the readennight have anticipated on the basis of heuris­
tic reasoning. 

2.8 Takacs' Law of the .Busy Period. 
We consider the classical single-server queue with a Poisson 

arrival process of density >. and a service time distribution function 
B(t). A busy period is an interval of time during which the server is 
continuously engaged in giving service to customers. The busy period 
begins when a customer arrives to find the server idle and it terminates 
when a departing customer sees an empty queue. The idle period is 
defined as the interval of time between two con8ecutive busy periods. 
We denote by G the random variable representing the duration of a 
busy period and let G(t) be its distribution function. It has been shown 
by Takacs that the transform of G(t) satisfies the functional equation 

G*(s:) = B*[s + >. - >. G*(s) ], (2.18) 

This relation, frequently :referred to as "Takacs' law of the busy 
period'', is discussed in Syski. [16, pp. 535-539] The following abbre­
viated argument, essentially due to Takacs, indicates how equation 
(2.18) is obtained. Let the first customer served in a busy period engage 
the server for an interval I, called the "initial occupancy time". Sup­
pose that n customers arrive during the interval I. Since the duration 
of the busy period does not depend on the order in which customers are 
served, let us place in an " auxiliary queue" only those customers which 
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arrive during the interval/. When the interval I terminates, the server 
takes his next customer from the auxiliary. During this service arriving 
customers are placed in the regular queue7 and a busy period l.s started 
which terminates when the server finds no more customers in the regu­
lar queue. The server then returns to the auxiliary queue for the next 
customer and another busy period on the regular queue is initiated. 
This procedure continues until no more customers are left in the aux­
iliary queue and the whole busy period elapses with the termination of 
the busy period which is associated with the last customer in the aux­
ilary queue. Thus the whole busy period has been split into an initial 
occupancy time I plus n busy periods. Let G(n, x, y) dy be the proba­
bility that G ~ x, that n customers arrive during the interval I and 
that I is in {y, y + dy). Then · 

G(n, x, y) dy = e-~y(Ay)" G.(~ - y) dB(y), (2.19) 
n! 

where G0 (t) = 1, G1 (t) == G(t) and G.(t) is the n-fold convolution 
of G(t) with itself for n > 1. Let G(n, x) be the probability that G ~ x 
and that n' customers arrive during the initial occupancy 'time. Then 
G(n, x) is obtained from (2.19) by integrating over the allowa'ble range · 
for y, Thus 

G(n, x) = f m e·->v- (Ay)" G.(x - y) dB(y). 
o n! 

(2.20) 

Finally, since 

G(x) = L G(n, x), 
"-o 

we obtain 

G(x) = ~of: e-Ay (~)" G.(x - y) dB(y). (2.21) 

Let G* (n, s) be the transform of G(n, x). Then using both the fact that 
G(n, x) is a convolution and also the theorems relating to transforms 
of convolutions is section 2.7, we get 

G*(n, s) = [G*(s) t f: e-•Y e >..v (~7)" dB(y). (2.22) 

Since 

G*(s) = L G*(n, s), 
•-0 

G*(s) = f m e-y(a+A) t l.>.y G:(s) t dB(y), 
o • -o n. 
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and equation (2.18) is an immediate consequence. Equation (2.18) is 
important because it provides an implicit solution for G*(s) and there­
fore, indirectly, a means for determining the distribution function for 
the busy period. 

2.9 Swchastic Processes and Markov Chains. 
A general stochastic process is a system I T, X,, SI , where 
(1) T denotes a set 
(2) X, denotes a random variable for each t t T 
(3) S denotes a set of values, called states, which the random 

variables X, may take. 
If S = I 0, 1, 2, ... \ the process is called a discrete state stochastic 
process; if T = I 0, 1, 2, •. -I the process is called a discrete parameter 
stochastic process. 

A Markov process is a stochastic process with the property that, 
given the value of X,, the values of X, for s > t do not depend on the 
values of X. for u ~ t. A discrete state Markov process is called a 
Markov chain and it is customary to say that X, is in state i if X, = i. 
We shall be concerned in this paper with discrete parameter Markov 
chains. For such a Markov chain let Pi/+ t denote the probability 
defined by the equation 

Pij.n+ 1 =Prob \X.+i = j X. = ii; i,j, n = 0, 1, 2,... (2.23) 

The probability P'?/+ 1 is :called a one-step transition probability and in 
general depends on n. When these values are independent of n then the 
Markov chain is· said to have stationary transition probabilities. We 
shall assume that the Markov chains used in this paper behave asymp­
totically (with increasing time) like Markov chains with stationary 
transition probabilities. We also shall assume that 

Jim Prob IX. = i I = P;; i = 0, 1, 2, ... (2.24) 
n--. ao 

i- 0 

· The values P; are called the steady-state or equilibrium probabilities 
for the Markov chain. Further information on stochastic processes can 
be found in Karlin. [9, chapters 1, 2] 

3. MATHEMATICAL ANALYSIS OF THE MODIFIED MODEL 

The reader is reminded that the modified model (Fig. 2) described 
in section 1.3 differs from the classical single-server queue; for the 
modifie9. model:. 

(1) the server is in one of three allowable states- idle, serving a 
customer or inspecting the queue; 
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(2) the server may be idle even though the queue is occupied; 
(3) an arriving customer who finds the server idle has to wait for a 

period of time before service begins. 

The notation and definitions for the relevant parameters t;1.nd variables 
are collected here for the reader's convenience. 

>. - density parameter for the Poisson arrival process. 
a - service time, a random variable governed by the distribution 

function a (t). 
f3 - inspection time, a random variable governed by the distribution 

function f3 (t). 
S - a random variable defined by S = a + f3 and governed by the 

distribution function S(t). 

R - idle time, a random variable governed by the distribution func­
tion R(t) . 

The random variables a, (j and R are independent of the input Pois­
son process; R is independent of a and {3; a and {J may be taken as in­
dependent or not. The distribution functions are arbitrary except for 
those restrictions which are tacitly implied by the nature of the mathe­
matical operations performed in the analysis presented here. This 
implies that a large number of distributions (including the majority 
of those found in common practice) are admissible. 

3.1 Queue Length Distribution. 
We shall use the method of the imbedded Markov chain for the 

analysis of queue lengths. This method was devised by D. G. Kendall 
and applied with success to the theory of queues. [ 9, 10] The essential 
strategy of this method 1(wheh confronted by a non-Markovian 
stochastic process) is to select a discrete set of points on the time axis 
and construct a discrete parameter stochastic process which is Marko­
vian. In the Markov process we then determine the probability func­
tion for the random variable of interest and try to establish a relation­
ship between this function and the corresponding probability function 
for the process in continuous time. 

To begin, let g.(t) denote the probability that there are n jobs 
in the queue at time t. Within this continuous process we construct a 
Markov chain as f9llows. Select a set of points, t,, where the t; are 
defined as the instants when the server completes an inspection. From 
the description of the queuing model it should be noted that these 
points are the end points of two kinds of intervals (see Fig. 4): 

(1) service-inspection intervals of length S = a + fj; and 
(2) idle time intervals of length R. 

It is appropriate to refer to these as R-intervals and S-intervals and to 
note in Fig. 4 how they relate to the t; (called epochs of the process). 
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Let G; denote the random variable representing the number of 
jobs in the queue at the ;i'h epoch and let g.,; = Prob I G; = n /. Also let 
A (n; R) and A (n; S) denote probabilities defined by 

f 
t. 

A (n; R) = Prob l n jobs arrive during a random R-interval I 
A (n;· S) = Prob n jobs arrive during a random S-interval/. 

R s s 

r A-

l 
... 

~t-axis ... 
t1r• 1 tot+! t .... 3 t.tr+-4 

Fig. 4.-Epochs for the Markov chain g. 

It can be seen that the g.,; are the state probabilities for a Markov 
chain and that the state probabilities at the (i + l)'h epoch are com­
putable from those at the i'h epoch by 

g.,;+1 =go,; A(n; R) +Cu A(n; S) 

+ g,., A(n - 1; S) + ... + g.+u A(O; S). (3.1) 

It follows from (3.1) that the steady-state probabilities, g. =· lim g •. ;, 

will satisfy 
ft+l 

g. =go A(n; R) + L g. A(n + 1 - k; S). (3.2) 

Ifwe multiply equation (3.2) by z" and sum with respect to n we ob­
tain 

- ~ n+l 

G(z) =go L A(n; R)z" + L: L g. A(n + 1 - k; S)z", 
o-o •·D •-1 

where G(z) is the generating function for the probability function g •. 
Interchanging the order of summation in the double summation, we 
obtain 

G(z) = go f A(n; R)z" + G(z) - g& f, A (n; S)z". (3.3) 
n-0 Z n-0 

Using (2.9), A(n; R) = e-AJ - dR(t) and J
~ (Xt )" 

o n! 

t A(n; R)z" = f~ e-t<A->.zl dR(t) = R*(>. - >.z). Similarly, 
n-0 0 · 

L A(n; S)z" = S*(>. - >.z). 
• -0 

113 UNCLASSIFIED 

./ 



DOCID: 3927962 
UNCLASSIFIED QUEUING THEORY 

Substituting these results into (3.3) yields 

G(z) = go R* (X - Xz) + G(z) - g0S*(x ~ Xi). (3.4) 
z 

Differentiating this equation and setting z = 1 yields, after solving for 
go, 

1- >.S 
go=-----

1- }> • .'S + x1t (3.5) 

We next construct a Markov chain h. which is superior to the 
chain g. in that its probability function agrees with the eqtiilibriufi?. 
probability function for the continuous process. For a discussion of this 
phenomenon see Cox and Miller. [4, pp. 268.:...269] The usefulness of the 
chain g. resides in its affording a convenient transition to the evalu­
ation of the h •. To define the new chain we select a set of points Ti on 
the time axis which correspond to instants when an inspection begins 
immediately following the departure of a job. The diagram in Fig. 5 
shows the basic relationship between the t; and T;. It can be seen that 
each S-interval is partitioned by a r; into a service interval «~-interval) 
and an inspection interval (tj-interval). Let H be the random variable 
representing the p.umber of jobs in the queue at a T; epoch and let h. be 
its equilibrium probability function. Also let A(n; a) be the probability 
that n jobs arrive during a random a-interval. Then in a manner 
similar to that used to obtain (3.2) we can obtain 

h. = -· _l_·_. [g1 A (n; a) + B2 A (n - 1; a) + ... + g.H A (O; a) ].1 (3.6) 
1 - Ro 

s R s ,,. 

~ 
,. 

f Ti Ti+I l t-axis .. 
t~ A J I,+~•·•·> ... t t,.1-1 

QI fJ QI {J 

Fig. 5.-Epocbs for the Markov chains g. and h. 

The generating function for His obtained from (3.6) and is given by 

H{z) = -· l_ G(z) - go a*(>.. - Xz). 
1 - go z 

(3.7) 

We can now eliminate G(z) between equations (3.4) and (3.7) .to get 

H(z) = ___fi2._ R*(X -:. Xz.) - l a*(X - Xz). (3.8) 
1 - go Z - S (X - AS) 
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If we differentiate (3.8) and let z ----+ 1 we arrive at the expected length 
of the queue: · 

R2 S'1 
H= >-IZl'+-R· + >Bl" 2 2{1 -

(3.9) 

Higher moments for the random variable H can be obtained from (3.8) 
through the use of higher derivatives of H(z). From (3.9) we deduce 
that stability of the queue length distribution requires that 

XS < 1 or X (a + 'ff) < 1. 

3.2 Response Time Distribution. 
We define the response. time of a job to be the duration of the 

interval between the job's arrival and its departure. In the common 
parlance of the computer industry this is called the "turn around time" 
of the job. Let W dem:!>te the random variable representing the re­
sponse time of a job. In order to obtain the equilibrium distribution of 
the response time we ob!ierve that the probability that a departing job 
j .sees n jobs remaining in the queue equals the probability that n jobs 
arrive at the system between the time of j's arrival and j's departure. 
Let A (n; W) denote the probability that n jobs arrive during a random 
response time interval. Using equation (2.9) we obtain 

h. = A (n; W) = f ~ e,-At (A. t)" dW(t). 
o n! 

(3.10) 

Applying the techniques described above, we get the. generating func­
tion of ll: 

~ 

H(z) = L A(n; W)z" = W*(}.. - Ai). 

Differentiating this equation and setting z = 1 yields 

H=>.W. 

(3.11) 

(3.12) 

After substituting>.. W for fl in equation (3.9) and cancelling the factor 
>..we get 

- ~ R2 S2 
W = a.+~ + 2(1 - >.,S) . (3.13) 

If we eliminate H(z) between (3.8) and (3.11) we obtain 

W*(>.. - >..z) = __k_ R*(>. ;- Ai) - 1 a*(>. - Ai). 
. 1 - go z - S (>.. - >.z) 

(3.14) 
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The higher moments of W can be obtained from (3.14) since (see sec­
tion 2.6): 

[~ W*(>. - >.z] = >." w·. 
dz r- 1 

3.3 Idle and Busy Periods Distributions. 
The logical rules governing the behavior of the queuing model 

require that an R-interval be repeated as long as the queue remains 
empty. Thus, the idle period will consist of a succession of R-intervals. 
Let p. denote the probability that n customers arrive during a random 
R-interval. Then 

Po= A.(O; R) = J: e-A• dR(t), or 

Po= R"'(>.). (3.15) 

Let K denote the random variable representing the number of R­
intervals contained in an idle period and let k. be its probability func­
tion. Consider an idle period containing exactly n R-intervals. This 
event requires that no jobs arrive during the first (n - 1) R-intervals 
and that one or more jobs arrive during the n'h R-interval. It follows 
from this that 

k. = Po- 1 (1 - Po), and (3.16) 

K =-1-
1 - Po 

(3.17) 

Let I denote the random variable representing the duration of the idle 
period and l(t) denote its distribution function. Let I.(t) denote the 
probability that the idle period does not exceed t and terminates after 
n R-intervals. We first consider l1(t) . Let 0 < T < t; the probability 
that the duration of R is in (T, T + dT) and that one or more arrivals 
occur in (0, T) is given by (1 - e-A,) dR(T). 
Therefore, 

f1(t) = J: (1 - e-A'.) dR(T). (3.18) 

We next consider l2(t). The probability that the duration of the first 
R-interval is in (T, T + dT), that no arrivals occur in (0, T) and that the 
next R-interval terminates suitably in the· interval (T, t) is given by 
e-A, l 1(t - T) dR(T). It follows that 
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By induction we can establish 

J.(t) = J: e-~, J._1(t - r) dR(r). (3.19) 

Let C[F(t), G(t) l denote the convolution of F(t) with G(t) and let 
C"'[F, G] denote its Laplace-Stieltjes transform. From (3.19) we obtain 

eA'J.(t) = C[e A• J._ 1 (t), R(t) ]. (3.20) 

Applying transforms to equation (3.20) and using the fact that the 
transform of eA· F(t) is given by F"'(s - >..) (Feller [7; Chapter 13]), we 
get 

J:(s - >.) = C*[eA1I.-1(t),R(t)] = J:_1(s - >.) R"'(s), 

J:(s) = I:-1 (s) R*(s + >..). (3.21) 

With the use of the recursion formula (3.21) we can establish by induc­
tion that 

Since 

I(t) = L I .(t) 
•-I 

we have 

· J*(s) = L: I:(s), 

·-· 
with the use of (3.22) we obtain 

/t(s) 
l*(s). = -----

1 - R*(s + >..)° 

. . 

~.22) 

(3.23) 

By differentiating equation (3.23) rel>eatedly and setting s = 0 we can 
compute the moments of the random variable I. The first two moments 
are given by · 

f = fi+ pi/>. 
1 - po 

2 2 -r = 11 + 2p21x + 1<2pr1>->. 
1 -po 
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We shall define the busy period to consist of the sequence of 
consecutive S-intervals which occurs between two idle periods. As in 
the classical model it corresponds to the interval during which the 
server gives uninterrupted service to jobs in the queue. However; un­
like the classical model, the busy period is not initiated when a job 
arrives at an empty queue, but rather when the current R-interval 
terminates: Let B denote the random variable representing the dura­
tion of the busy period and B(t) its distribution function. Also let 
B(x n) denote the probability that B ~ x given that n jobs arrive 
during the last R-interval of the preceding idle period. Finally, let Q(t) 
denote the distribution function for the duration of a busy period 
whose initial occupancy time is S. Then B(x n) = Q.(x), where Q.(t) 
is the n-fold convolution of Q(t) with itself. It follows from these defi­
nitions that 

B(x) = L A(n; R) B(x n), (3.25) 
" - l 

B*(S) = L A(n; R) [Q*(S) ]". (3.26) 

·-· 
The right member of (3.26) can be shown equal to 

f: e-tfA - ~Q"<•l l dR(t) - A(O; R), 

.Thus, . 

B*(s) = R*[>. - >.Q*(s) J - R*(>.), (3.27) 

where Q*(s) satisfies, by Takacs' law of the busy period (see section 
. 2.8), 

Q*(s) = S*[s + >. - 11.Q*(s) J. (3.28) 

With the use of the last two equations we can compute, by differenti­
ating and setting 

s = o,.B = xQRandQ = 
1 

_
8>.S. 

We therefore obtain the expected value of the busy period: 

- >.RS B = ---=-1 _:_ >.~ . 
(3.29) 
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With a second round of differentiation we can compute second mo­
ments and finally obtain the variance of the busy period: 

2 xR ~. ( · xs ) 2 
2 

<TB = (1 - AS)3 + 1 - >..S <TR • (3.30) 

Let D denote the random variable representing the number of jobs 
executed in a busy period and d. its probability function. Using equa­
tion (2.17) in section 2.7 we obtain B = I5 S. Substituting for B as 
given in (3.29) we get 

l5 = >.R 
1 - >.."S. (3.31) 

The probability that n jobs are executed in an interval of length t is 
given by Sn(t), where Sn(t) is then-fold convolution of S(t) with itself. 
It follows that 

d. = J: S.(t) dB(t). (3.32) 

For the special case when S(t) is the negative exponential distribution, 
i.e., 

S(t) = 1 - e-"~ then S =.!,and S.(t) = e -iit (µt)"_ 
. µ n! 

The generating function of D, D(z), can be calculated using the tech­
niques described above to yield 

D(z) = B* (µ. - µ.z). (3.33) 

3.4 Computational Aspects. 
In some cases the mean and variance of a distribution provide 

sufficient information with which to make a decision, but more fre­
quently the system analyst would prefer to have a complete knowledge 
of the distribution function itself. From a theoretical point of view 
equations (3.8), (3.14), (3.23), (3.27), (3.28) uniquely determine the 
distributions of the random variables H, W, I, and B; however, it is 
often difficult (if not impossible) to obtain closed form expressions for 
the5e distributions. Under such difficulties it is necessary to rely on 
numerical techniques. The properties of a(t), R(t), S(t), and their 
transforms will influence the choice of numerical technique. The fol­
lowing are some of the techniques which may be useful: 

(I) power series expansions; 
(2) numerical integration; 
(3) fitting distribution functions to numerical data (such as 

moments); 
(4) numerical inversion of Laplace transforms. 
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The techniques in categories (1) and (2) are widely known. A treat­
ment of item (3) can be found in Kendall and Stuart. [11, Chap. 6] A 
good discussion of item (4) is presented in Bellman, Kalaba and 
Lockett. [ 1, Chapter 2 J 

4. CONCLUSION 

The engineer or systems analyst who has worked his way through 
this paper will have gained a degree of. familiarity with the termi­
nology and concepts of queuing theory and an understan~ing of its 
applicability to the study of computer service systems. It is hoped that 
some may have been stimulated to study the subject in greater depth. 
The writer will feel rewarded if this paper has served only to contribute 
a heightened awareness of queuing theory which may serve to improve 
communication between the system analyst and the applied mathe­
matician. 

The diligence with which the deficiencies of the classical single-server 
model have been pointed out should not be misunderstood. There are 
no intrinsic defects in the classical model as such; when applied to 
systems whose logical structure is compatible with· that of the classical 
model, the classical model will yield useful results as it has done in the 
past. A general dictum (though not one which is easy to follow) is to 
avoid formulating abstract models which do not correspond logically 
with their counterpart physical systems. Nevertheless, it must be con­
ceded that in practical situations an inexact solution is often preferable 
to no solution at all. System analysts, therefore, will be led to formulate 
deviant abstract models for the sake of gaining mathematical tracta­
bility. Such compromises should be examined critically by the applied 
mathematician with the aim of creating new mathematical techniques 
so that more precise models can be formulated and analyzed. 
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