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This paper explains and illustrates the concept of an abstract group. 
It shows how such a group can be defined in terms of conditions satisfied 
by a set of generating operations. The enumerative method of determin
ing the order of a group defined in such a way can be made automatic. 

A few months ago, we had the privilege in the CMI of hearing a 
talk by Professor Albert on "Groups with two Generators." This 
talk aroused in me memories of the early 30's when I was a graduate 
student, and of the years immediately following, when I did some 
research in the general field of defining groups in terms of generating 
operations. My doctorate thesis had concerned a problem in this 
area and I published some papers on the subject in the middle and 
late 30's. I was stimulated by Professor Albert's talk to address the 
Institute on some phase of this same general problem. And yet I 
was somewhat hesitant to do so, .because I · could not think of any 
application of this subject to cryptOlogy. In fact, there are very few 
instances of any general applicability of abstract group theory to our 
field of effort. Some studies have been made of problems in the theory 
of wired rotors, using group theoretic concepts, but they have pro
duced no cryptanalytically significant results. 

The most interesting application of group theory that I can recall 
was one which utilized to advantage the notation of group theory 
rather than techniques therefrom. It was a method for solving 
double transpositions which was developed in the Signal Intelligence 
Service in the early 30's. Its importance stemmed from the fact that 
soon after the method had been worked out we had occasion to apply. 
it agairuit a double transposition system being used by rum runners on 
the West Coast. The systein was one which used the same colum
nar transposition key twice. The text was sent in four-letter groups. 
To ensure that the cipher had four letters in every group, the last 
group was filled out'with X's before transposition. We were enabled 
by, this fact alone to solve the system. The method of solution de
pended on gues8ing correctly the location in the original message of 
some of the cipher letters, and the X's used as nulls obviously had to · 
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go at the end of the plain text. I can still recall with what great 
glee we used to seize on the messages containing X's. They yielded 
very easily-especially in. the instance that none of the X's in the 
message was textual. Interesting as this example is-and its expo
sition might make a worth while subject for the CMI-it would not. 
by itself justify . using a· general topic in group theory for a talk on 
cryptomathematics. 

I have rationalized away my hesitation about presenting a paper 
on groups generated by two operators because I thought a basic 
exposition on group theoretiC method might be of general interest and 
because the main idea presented in this talk has interest from the 
point of view of manipulative method. 

In order that you may appreciate what is meant by a group, I shall 
give a few simple examples. Consider first a type of example with 
which you are all familiar: the idea of monoalphabetic substitution. 
·And to keep the example very simple, we will suppose that we are 
dealing with an alphabet of only three letters. In such a limited 
situation, we can write down every possible monoalphabet. There 
are only six possibilities which I will call E, S, T, U, V, W. 

ABC ABC 
E ABC u ACB 

ABC ABC 
s BC A v BAC 

ABC ABC 
T CAB w CB A 

The following properties of these substitutions are fairly obvious: 

1. If we apply one of the substitutions to textual material, and then 
superimpose a second substitution (which may or may not be the 
same as the first), the result of the two steps can be obtained by a 
properly selected single substitution. Only a moment's trial is 
required to see which substitution is the equivalent of two of these 
substitutions applied successively. For example, S followed by 
V is the same as U. · 

2. There is a substitution which produces no change whatever. If 
we replace A by A, B by B, C by C, the cipher is the same as the 
plain. This identity operation is written as either E or 1. 

3. For· each monalphabet there is an inverse (or as we call it a 
deciphering alphabet), which when applied to the cipher gets you 
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back to plain language. For example, T is the inverse of S; 
V, which is a reciprocal alphabet, is its own inverse. The inverse 
of an operation is represented by the exponent -1. 

These are the essential properties in the definition of a group. 1 

To repeat them, a group is a collection of operations such that: 

a. Two of them applied in succession gives a result equal to 
some one of the group. 

b. There is an identity operation which causes no change. 

c. To each operation there corresponds an inverse such that an 
operation followed by its inverse equals the identity. 

d. The application of three of them is associative, that is, 
(ST)U = S(TU). 

An equivalent group to the one we have just described is the 
following: 

Given an equilateral triangle: 
A 

~ 
B C 

Consider the operations of the group to be those movements in the 
plane which cause the triangle to occupy the same space even though 
the identity of the vertices may change. Thus suppose we rotate the 
triangle clockwise about its center through an angle of 120°. Call 
this S, and let T be a clockwise rotation through 240°. There are 
also three ways U, V, W, in which the triangle can be rotated through 
180° about an altitude. This keeps one vertex fixed and interchanges 
the other two. 

Any two of these operations in succession are equivalent to one of 
the group; there is an identical operation; and each one of these 
transformations has an inverse. 

Consider as a third example the process of replacing a variable X by 
a function of itself. It can be shown that the following six functional 
operations form a group. 

1 A further property is required for completeness of definition, viz., associa
tivity. Since it is not really required in this presentation, it will be assumed 
throughout. 
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E 

s 

T 

(X,X) 

(x. xx i) 
(x,1~x) 

u (x.l) 
v (X, 1 - X) 

w 

All three of these examples of groups, and others that cari be cited, 
. based on different types of mathematical operations, have some very 
important common properties. Suppose we form a "multiplication" 
table which gives the result of any two successive operations, the first 

E S T uvw 

E ES T uvw 
s S T E wuv 
T TE S vwu 
u UV WE s T 

v VWUTE s 
w WUVST E 

being the column coordinate and the second the row coordinate. It 
can be shown that this one table applies to each of the examples we 
have described. This table can thus be considered an abstract 
representation of the entire group, independent of the actual type of 
operation which the operators represent. Every group has such a 
defining table with as many rows and colwnns as there are operations 
in the group. 

Note in this table that 
T = S·S. 

If we abbreviate S. Sas 8 2 then we can write 8 2 = T and T ·S = 8 2 ·S = 

8 3 = E. Further, 
V = S·U, and 
w = s.v = s. <S·U) = s2u. 

Thus all six elements of the group are definable in terms of Sand U. 
This is described by saying that S and U generate the group. 

Any substitution operation applied a sufficient number of times in 
succession will finally produce the identity. The number of times this 
is required is called the order of the operation. Thus S is of order 3, 
since 8 3 = E, U is of order 2, U 2 = E, SU is of order 2, (SU)2 = E. 
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We can say that the generators of our group satisfy the relations 
sa= u2 = (SU)2 = E. 

Suppose now that we had·started with the statement: Given sa = 
U 2 = (SU) 2 = E, determine the gioup generated by Sand U. We 

· would first have to determine how many distinct combinations of S 
and U are possible. The answer would be six: E, S, S 2, U, SU, S 2U. 
Every other combination of S's and U's can be reduced to one of 
these six. By determining the product -of every pair, the multi
plication table can be reconstructed and from it the group can be 
completely defined. 

Consider now a more general problem of determining the group 
defined by a pair of generators, say a pair S and U satisfying the 
relations 

8 1 = Um = (SU)P = E. 

To solve such a problem it would be necessary to determine how many 
different combinations of S and U can be formed. For example, 
take the ca.Se 

S 3 = U 3 = (SU) 2 = E. 

By a process of exhaustion it can be shown that there are only 12 
distinct combinations: 

E U U 2 

s su su2 
s2 s2u s2u2 

Any other combination of S and U reduces to one of these 12. 

To show this consider an instance. SUS is included since SUSU = 

1; susu.u2 = u 2
; sus = u2

• 

It is interesting to note a simplification in procedure which · this 
array suggests. If we think of the first column E, S, S2 as a unit, then 
the second column is the first column times U; the third column is the 
first column times U 2; the last column is the first column times US2• 

The first column is a subgroup of order 3. If we start with it as a 
unit, we can enumerate all the possible combinations in the group by 
expanding on it. Write it S• and let it stand for the set of all the 
p9ssible powers of S. Then the group is: 

S•, S• U, S• U2, S• US 2• 

This kind of expansion, known as an expansion by co-sets is a com
monly used technique in abstract group theory. 

By a similar method of expansion, the group defined by S 1 = U 3 = 
(SU)2 = E can be shown to be of order 24; S$ = U3 = (SU) 2 = E is 
of order 60. 
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By way of a concrete representation of these groups, it is possible 
to prove that the group of order 12 is the group of all the movements of 
a regular tetrahedron into itself. 

. The group of order 24 is the group of all the movements of a cube 
into itself; it is also the group of all the movements of a regular 
octahedron into itself. That these two are the same, i. e., the rota
tions of a cube or regular octahedron into itself can be understood as 
follows. If you take the midpoints of each of the faces of a regular 
octahedron, these points form the vertices of a cube. Each move
ment of the octahedron into itself carries the cube into itself and 
vice versa. 

The group of order 60 is the· group. of movements of either the 
regular icosahedron or the regular dodecahedron into itself. 

As you are all aware, there are only five regular solids. The 
groups that determine all the possible rotations of such a solid into 
itself are therefore three in number; one of order 12, one of order 24, and 
one of order 60. 

These examples of groups related to the regular solids seem simple 
enough but they are the only simple ones there are. In fact, it is 
possible to prove the following: 

The group generated by 

is finite only if 

and its order is 

(SU)r = 1 

1 1 . 1 -+ - + - >1 
l m p 

2 

!. + .!_+! -1 
l m p 

Outside of the special case where 2 of the numbers l, m, pare = 2, 
this inequality is satisfied only in the cases 

m p 
2, 3, 3 
2, 3, 4 
2, 3, 5 

in all other cases, it becomes necessary t.o add further conditions 
on the generators before a finite group can be determined. 

UNCLASSIFIED 6 

A. SINKOV UNCLASSIFIED 

Several proofs of this result have been published. . AB might be 
expected from the connection with the regular solids, there ought to 
be a geometric proof. I should like to sketch such a proof. · 

Suppose we have a group definition in terms of the .orders of each of 
two generators and of their product. It can be shown that there is a 
method of representing such a group by triangles whose angles are: 

180° 180° 180° 
- 1- ,---m·]J· 

These triangles are contiguous and fill the entire space. Now the 
swn of the three angles of the triangle will determine the type of space 
in which the representation must t ake place. If it equals 180° , the 
representation would be in a Euclidean plane. If the sum of the 
angles of the triangle is not equal to 180° ' the representation would 
have to be on a non-Euclidean surface-a sphere if the swn exceeds 
180° and a pseudosphere if the sum is less than 180° . 

Of these three t ypes of space, only the sphere is finite in extent . 
Hence the only t ime you can have a finite group is when 

180° + 180° + 180° > 1800 
l m p 

and the group can then be represented on a sphere. The sum of the 
angles in any spherical triangle exceeds 180° and the excess. over 180° 
determines its area. Hence the number of triangles required to cover 
the sphere completely is calculable just from the angle sum. 

From this it results that the order of the group is 

2 
1 l 1 ., 
y + m+ :p-1 

which agrees with t he answers already mentioned; 12, . 24, and 60. 

There are, however, proofs based entirely on abstract group 
theory and independent of geometry. It might be of interest to 
sketch one such proof, say for the case 

ss = U2 = (SU) 6 = E. 

To carry out this proof, one new concept needs to be int roduced. 
Suppose we. represent a group consisting of monoalphabet ic substi
tutions on an alphabet of n characters A 1 , A 2, · · · , A .. Suppose it 
is known that there exists at least one substitution in the group which 
replaces A 1 by any designated letter of the alphabet, i. e., there exist 
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substitutions which replace A 1 by A 1 , A 1 by A 2 , A 1 by any specific 
letter. A group having this property is called transitive, and it is a 
basic theorem that the order of a transitive group is a multiple of the 
number of letters in the alphabet. (In effect what this says is that in 
such a group there are the same number of substitutions which replace 
A1 by A2, as replace A1 by A 3 or A 4 or any other letter. Thus the 
order of the group is the number of letters multiplied by the number 
of substitutions which replace A 1 by itself, because the number re
placing A 1 by any one letter is the same as the number replacing A 1 by 
any other letter.) 

S: 

Now consider two substitutions: 

A1A2A3 A.A6A6 A1AsA9 
A2AJA1 A&A6A• AsAgAr 

AGk-2 AGk-1 Ask 
Au-1 Ask A6k 2 

U: AJA, A&A1 AsAs AgA10 A6k-3 A6k- 2 

A,AJ A1Ai; AsA6 A10A9 .. • · · · · · Au-2 AH-3 · 

S interchanges the letters in groups of three, so that if applied three 
times in succession it would yield the identity, i.e., S 3 = E. Similarly 
U interchanges the letters in pairs U 2 = E. 

The substitution SU, i.e., the result of applying substitution Sand 
then T, can be shown to be of order 6. 

A1A2A,A1A6A3 · · · · · · · · · · · · · · · · · 
A2A~A1A6A3A1 · · · · · · · · · · · · · · · · · 

Thus the group generated by these two operators S and T satisfies the 
relations. . 

$3 = r2 = (ST)s= E. 

This group can be shown to be transitive. We can wnte down the 
necessary combination of S and T which will replace A 1 by any de
sired letter of the alphabet. Suppose we wished to determine which 
substitution replaces A 1 by Ag . 

Example. 

S2 replaces AL by A 3 since s replaces A I by A 2 and the second 
application of S replaces Az by A 3 

U replaces A a by A 4 

Hence S 2 U replaces A 1 by A •. · 
S 2 replaces A , by A s 

S 2 US 2 replaces A 1 by As 
S 2 US 2 u replaces A I by As 
S 2 US 2 us replaces A I by Ag 
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Since the group is transitive its order is a multiple of 6k. But k may 
be made any integer whatever and the order of the group can be made 
to exceed any number no matter how large. 

Thus it results that two generators of orders 2 and 3, whose product 
is of order 6, if they have no other restrictions on them, generate a 
group of infinite order. . · 

By a slight change in the form of Sand U, the proof can be ex
tended to apply to all cases where the order of S · U is any multiple 
of 3. A further extension takes care of the caSes 3x + 1 and 3x + 2, 
x being any number equal to or greater than 2. This then confirms 
the conclusion already stated that only·in the cases 

2, 3, 3 
2, 3, 4 
2, 3, 5 

is a finite group generated by two operators of periods 2 and 3. 

In order to define a finite group satisfying S 1 = Um = (SU) P = E, 
in any case other than the three mentioned, it becomes necessary to 
impose additional restrictions on .the generators S and U, and the 
definition accordingly becomes more complicated. It might be of 
interest to discuss this aspect briefly. 

The first question one must examine is how to pick the· additional 
restrictions which will be used as defining relations. One approach 
that has been used is to employ the order of a special combination of 
S and T known as the commutator. The commutator of S and U is 
defined as 

s-l u- 1su, 
and has rather important properties in abstract group theory. · We 
therefore consider the definition 

sa = u2 
which we. shall write 

(SU)P = ($"' 1 u- 1SU) q = E 

(2, 3, p; q). 

The reason fer the semicolon is that the roles of the numbers 2, 3, p 
are interchangeable. We could have two generators of orders 2 and 3 
with product of order p; or we could have two generators of order p 
and three with product of order 2, etc. · 

Now the subgroup formed by commutators of every possible pair 
of operators of a group is called the commutator subgroup. This is 
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usually smaller than the group itself. In the event that the com
mutator subgroup is identical with the group itself, the group is called 
a perfect group. It can be shown that if p is one more than a multiple 
of 6, then the group 

S 3 = U 2 = (SU) P = E 

is perfect. This suggested a study of the case p = 7. 

The problem now is to determine the order of the group 

(2, 3, 7; q). 

Tilis study was initiated by Brahana of Illinois with these results: 

q = 2 no group is possible. (This means that the relations 
(2, 3, 7; . 2) involve a contradiction. They are not 
compatible with one another.) 

q = 3 no group 
q = 4 G is of order 168 
q = 5 no group 
q = 6 G is of order 1092. 

I was able to prove in a later paper that when q = 7, G is of order 
1092, and is the same group as is defined by q = 6. But the case 
q = 8 proved a hurdle. 

It is not yet known whether 
(2, 3, 7; 8) 

is finite. What I have proved is that the appending of a fifth restriction 
defines the perfect group of order 10,752, and that the five conditions 
are probably independent. It can also probably be said that any 
value of q (the order of the commutator) at least equal to 8 is in
adequate to define a finite · group without appending at least fifth 
condition. 

One might conclude from this · that any group larger than 10, 752 
requires at least five defining relations, but that is not so. It is possible 
to devise more powerful defining relations than the order of the commu
tator but they may become very involved. For example, one very 
powerful condition is the order of Q2 P 5 where 

Q = STSTS 
P = r-1s-1. 

I have been able to prove that with only four conditions 

(2, 3, 7) 
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we can generate a group of order 12,180. A consequence of these four 
conditions is that the order of the commutator is 14. 

But the four relations 
(2, 3, 7; 14) 

are not sufficient to define this same group. At least a filth restriction 
would have to be introduced if we started with this type of definition. 

The problem of determining the size of a group, as its definition 
involves additional conditions on the generators, is thus seen to in
crease rapidly in complexity. As a result, the number of groups for 
which abstract definitions are known is relatively small. A remark
able feature of the results already obtained is the extreme simplicity 
of such definitions in the case of several groups of quite high order. 
A small number of conditions gives a complete definition for groups of 
relatively very large size. This fact constitutes an additional in
centive to the search for abstract definitions and many elegant results 
have doubtless yet to bediscovered .. 

The method of enumeration which has been discussed is of general 
application and has been the method most commonly· employed. 
Its success has however been limited, for in all but the simplest cases 
it has involved considerable manipulative ingenuity, and for many 
groups of even moderately high order, the length of the necessary 
calculations makes the method impracticable. 

I come now to the main concept of my talk. I propose to show 
how such calculations can be dispensed with entirely, and the method 
can be reduced to a purely mechanical process independent of .any 
real appreciation of group theory. 

Take first the case of the group of order 6 which we used as our 
example of a group at the beginning of the talk. It is defined by 

$3 = u2 = (SU)2 = E. 

We set up a box for each of these defining relations and represent the 
identity by the number 1. 

The operation S on 1 will be called 2. S on 2 will be called 3. 

s s s u u . s u s u 

rm rn [[f] 
Since S 3 = I, S on 3 must produce 1. In general, in each of these 
boxes the last entry of any row will be equal to the number to the left 
of the row. 
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Now, let U on 1 be called 4. Then U on 4 is 1. 

SSS UU SUSU 

TITJIIJ[ill 
Proceed next to enter values into the third box. 

S S S U U S . U S U 

rm rr1 nm 
To the right S on 1 produces 2 and to the left U produces 1 from 4. 
We can go no further until we introduce new elements. . 

To this end let S on 4 give 5 and S on 5 give 6. Then since S 
produces 4 from 6, we can fill in the first line of the third box and 
deduce that U on 2 gives 6. Put this into box 2. 

SSS UU SUSU 

~~ 
±ITJ 

Now start with 2 outside box 3. Son 2 gives 3. · U produces 2 
from 6. S produces 6 from 5. Hence U on 3 gives 5. 

s usu 

J1ITJ 
Adding this to the U box, and continuing in this way the boxes fill in 
completely as follows: 

s s s u u s u s u 

1 2 3 1 1 4 1 1 2 6 4 1 

4 5 6 4 2 6 2 2 3 5 6 2 

3 5 3 3 1 4 5 3 

The order of the group is thus seen to be 6. This scheme is clearly 
applicable to situations involving more than two generators and any 
l'\umber of defining relations. 
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An improvement on this method can be effected by carrying · out 
this enumeration on co-sets rather than on single operations. For 
example, let us designate by 1, in this mechanical process, all the 
powers of S, so that 1 = E, S, 8 2

, 8 3
• Now consider the case 

2, 3, 4. 

The steps of enumeration would proceed as shown below: 

s s s s u u u 

lm 
z 3 

1611 
s s s s u u u Im 

2 3 4 5 2 

l[B 
4 5 4 

s s s s u u u l[jffi 
2 3 4 5 2 

lt:JXJ 
4 5 6 4 

and finally 
s s s s u u u 

~ 

1 1 1 1 1 1 2 3 1 

2 3 4 5 2 4 5 6 4 

6 6 6 6 6 

s u s u 

18ftj 
s u s u 

1 [Jtlili] 
3 [J_JiliJ 

s u s u 

1 1 2 3 1 

3 4 5 2 3 

4 5 6 6 4 

s u s u 

1 1 2 3 1 

3 4 5 2 3 

4 5 6 6 4 

Sinee S is of order 4, the group is 6 times as large or 24. 

1 = S• 
2 = S•U 
3 = S•U2 

4 = s·u2s = s·us2 

5 = s· US 3 = s· u2su 
6 = s· us2 u~ · 

13 UNCLASSIFIED 



DOCID: 3927951 
U NCLASSI Fl ED ABSTRACT GROUPS 

What happens in studying a group by this method if the set of 
defining relations is not consistentI Let us take a simple instance: 

(S' = U 2 = [SU]3 = [S 2 U]2 = 1) 
i = s< 

Following the procedure described, the boxes shown below are ob
tained, and it turns out from the S 2 U box that 3 = 1 since U on 4 
gives 3 in the last cell. If 3 = 1 then from the S box 2 = 1 and X = 1; 
and everything reduces to 1. This is a ease of collapse and it follows 
that the defining.relations are inconsistent. 

s s s 

1GLL] 
2 W_J_J 

UV 

1 [ilij. 
3 l_J_J 

susvsu 

1 G l 2 I 3 I 4 I 2 ] 1] 

.ssussu 

1 I 1 1 1 I 2 I 3 I 3 I 1 \ 

3 = 1. 

These examples are deceptively easy because they have been ap
plied to particularly simple problems. Nonetheless they serve 
adequately to demonstrate the principle of how an otherwise trouble
some type of problem can be simplified and made completely automat
ic. Many of the underlying difficulties of this basic problem in group 
theory are thereby circumvented. 

The obvious question that now comes to mind is whether the pro
cedure I have described can be performed by machine. I have been 
giving some thought to this problem and am studying the possibility 
of writing a computer program which will duplicate the process I have 
just described for you. 

I suggest this problem to those of you who are interested in com
puter techniques: Write a program that will duplicate the enumerative 
process which I have just described and which will therefore be able 
to determine the size of a gr<mp defined by a given set of generating 
relations. 
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