

SECRET

Register N0
 11
 WAR DEPARTMENT
 OFFICE OF THE CHIEF SIGNAL OFFICER WASHINGTON
 \qquad

 ANALYSIS

 ANALYSIS or 1

 MECHANICO-ELECTRICAL

 MECHANICO-ELECTRICAL CRYPTOGRAPH

 CRYPTOGRAPH}

PART II
∇

A dep.cat
A cony of this cocument is catyiged in tre NSA Technical Library

TECHNICAL PAPER

OF
SIGNAL INTELLIGENCE SECTION
War plans and training division

TABLE OF CONTENTS

Bection Pages
I. Introductory remarks 1
II. Description of machine and its operation 2-11
III. Cryptographic analysis of the machine 12-22
IV. Synoptic tables ${ }^{-}$ 23-47
Appendix
I. Instructions 49-50
II. Basic cipher-text sequences 51-62
III. First interval data-cipher-text relationships 63-88
IV. Basic plain-text sequences 89-100
V. First-interval data-plain-text relationships. 101-126
VI. Summary of results 127-129

analysis of a mechanico-Electrical cryptocraph

PART II

Smetion I
INTRODUCTORY REMARKS
Paragraph
Nature of investigation
1

1. Nature of investigation.-In April 1932, there was submitted to the Chief Signal Officer a modified form of the Hebern Cipher Machine with a view to testing it for its cryptographic security. ${ }^{1}$ It was desired that the test be of the utmost severity, exceeding in severity what could be expected from an attack under the most favorable conditions.

With this in view, there was furnished, with the machine, 55 messages with plain text and 110 messages without the equivalent plain text; also the general system employed in setting up message indicators. (See Appendix I.)

[^0]Section II
DESCRIPTION OF MACHINE AND ITS OPERATION
General description
Motion of the wh
Ratchet cradle.
Functions of LAW and RAW
2. General description.- The 1932 modet of the Hebern Cipher Machine consists of keyboard, a set of five cipher wheels, a set of five pawls for controlling the angular displacemants of the cipher wheels, an arrangement for governing the action of the pawls, a mechanical drive or angularly displacing the cipher wheels, and an automatic printer. This model require current supply of 110 volts direct current
3. Motion of the wheels.-From a cryptographic standpoint, the essential difference between this and the previous model rests almost entirely on the difference in the type of cipher-wheel

displacement utilized by the two machines. (See W. F. Friedman, Analysis of a MechanicoElectrical Cryptograph, Part I, Technical Publication S. I. S., 1934.) In the earlier model, the displacements of the cipher wheels are definitely fixed and invariable, being similar to the movements continuously once per depression on the keyboard; the first wheel steps forwel steps forward depressions; and the middle wheel steps forward once per 650 depressions. Wheels 2 and 4 are displaceable only by hand, and not automatically. In the 1932 model the arrangement is no longer meterlike-any two of the five cipher wheels (depending upon the action selected) may move continuously, a third wheel moves one step per 26 depressions on the keyboard, and the two remaining wheels move one step after 650 depressions on the keyboard.
4. Ratchet cradle.-The accompanying diagram, figure 1, shows the mechanical means which causes the wheels to move forward.

This means consists of a rachet cradle upon which are mounted two dog bars carrying three dogs, five cipher-whecl paiws, three aluminum-wheel pawls, and an arrangement (not shown in the diagram) for releasing all the puwls while the wheds are being set. The action of the dogs is controlled by two aluminum wheels, LAW and RAW, which are mounted on the left-hand side of the machine in a line with and on an extension of the shnft upon which revolve the cipher wheels. LAW and RAW, however, move independently of the cipher whecls.

The front dog bar has two dogs mounted upon it and provides five active positions which designated by the first 5 letters of the nphabet, A, B, C, D, E, as is shown in figure . The back dog bar has only one dog nounted upon it, and ulso

The construction of the two aluminum wheels, LAW and RAW, is identical and is such that the periphery of each of the two wheels is divided into two bands. The left-hand band of anch whecl has 26 teeth orth the designated by a letter of the alphabet The rightench whecl has 26 teeth, each tooth being designated by a letter of the alphabet. The rightwhich extends from the letter Y to the letter Z.

The five cipher-wheel pawls, CWP1 to 5 , are mounted upon a shaft which is located underneath the two dog bars. Each pawl has two notches on it (not shown in fig. 1), one situated or acting in association with a dog on the front bar, the other situated for acting in association with a dog on the rear bar. Since the dogs are individually slidable on their bars, the five pawls may act independently. When a dog situated either on the front or the rear bar is in position, the pawl immediately beneath it is withdrawn from its active position and is prevented rom stepping the cipher wheel forward, except in those special cases when the action of the dog is neutralized by the nction of either the LAW or RAW, as will now be discussed.
5. Functions of LAW and RAW.-The three aluminum-wheel pawls, AWP1, AWP2, and AWP3, are mounted upon an extension of the shaft holding the cipher-wheel pawls. The first aluminum-wheel pawl, AWP1, acts each time a key is depressed and moves tho LAW forward one space; that is its only function. The action of AWP2 is controlled by the LAW in the following manner. On the left side of AWP2 there is a projection upon which is mounted a mall roller, designated roller 1 in the sketch. This roller normally rests upon the smooth bow whe the LAW move to thesition wher 1 fill into the notch is the
 (2) AWP2 is connected to the back- bar by a action of the back dog is neutralized when roller 1 of AWP2 has dropped into the notch. This action of the back dog is ncutralized when roller 1 of AWP2 has dropped into the notch. This cipher wheel and move it forward one space. The roller of the AWP is so placed that when cipher wheel and move it forward one space. The roller of the AWP is so placed that when
the peripheral letter I on the LAW is at the bench mark, AWP2 engages the RAW, and the cipher-wheel pawl that is temporarily associated with the back dog engages its cipher wheel. cipher-wheel pawl that is temporarily associated with the back dog engages its cipher wheel.
Since the in the right-hand band on LAW nust present itself to roller 1 once per complete cevolution of LAW, and since this will happen once per 26 depressions on the keyboard, it ollows that the cipher-wheel pawl that is temporarily associated with the dog on the rear bar will step the associnted cipher wheel forward one step per 26 depressions on the keyboard.

AWP3 acts both upon the RAW and the front-dog bar. On the right-hand side of the AWP3 there is a roller (roller 2) similar to that on AWP2. Roller 2 rests upon the smooth band of the RAW, except when the RAW is so set that its peripheral letter I is at the bench mark. At this point roller 2 drops into the notch and allows AWP3 to engage the RAW and also neutralize the action of the front dogs, allowing the two cipher-wheel pawls temporarily associated with these dogs to engage the proper two cipher wheels.

6．Detailed study of a particular dog setting．－The consequences of the foregoing arrange－ mont of dogs，pawls，and ratchets can now be made clear．Suppose the two front dogs are se into positions B and D ，and the rear dog into position V ，as shown in figure 1．Taking the
elements of the dog－action setting elewents of the dog－action setting BDV in alphabetical order，B means that，in general，CW2 Hence，thero remain CW1，CW3，and CW5 fre CW4 also will not be allowed to step forward concerned．But since the dog on the rear fareo to step forward so far as the front dogs are that only CW3 and CW5 are free to step forward for V，and this will affect CW1，it follows dogs on both front and rear bars are concerned．Further depression of a key，so far as the now set at V ，is neutralized by the action of roller 1 end $A W P 2$ ，the dog on the rear bar， will be allowed to step forward；and whenever the 1 and AWP2，the result will be that CW 1 simultaneously neutralized by the action of roller 2 and AWP3，then CW2 at B and D，are allowed to step forward

The foregoing explanation of dog action connection with detailed observations on the actual sequence of onts will now be set forth in be observed at this point that the wheels may be inscrted in the machine in either．It should reversed position，the two cases yielding entirely different rosults．As a consequence or a single wheel may be made to serve the part of two if the reversed position be included．The these two cases．Thus der after the number of the wheel（as below）to distinguish between these two cases．Thus CW1d and CW1r will mean cipher wheel 1 in the direct and reversed positions respectively．It should also be observed in this connection that the letters on the progression is normal for a reversed in reverse order as the wheel moves forward whereas the the following initial setting：

$$
\begin{array}{ccccccc}
\text { LAW } & \text { RAW } & \text { CW1d } & \text { CW2d } & \text { CW3d } & \text { CW4d } & \text { CW5d } \\
\text { H } & \text { I } & A & A & A & A &
\end{array}
$$

Let the dog action be BDV．The following represent the successive settings of the wheels as the keys of the keyboard are depressed：

Table I．－Successive settings of all wheels
［Initial setting，HI－AAAAA；dog action，BDV］

릉․		認		$\stackrel{\circ}{8}$		認		－		勉空	
1st	1	H I	AAAAA	3d	53	HF	yzaza		4	E H	BYXYX
	2	${ }_{\text {G }} \mathrm{H}$					¢ixic		5	${ }^{\text {D }} \mathrm{H}$	${ }^{\text {B }}$ Y Y M Y M
	3	F H	A ZYZY	4th	79	HE	xzaza		6	CH	BYYYV
	4	E H	A ZXZX	5th	105	H D	Fraza		7	${ }^{\text {B }} \mathrm{H}$	BYUYU
	5	D H	Azwzt	6th	131	H C	vzaza		8	${ }^{\text {A }} \mathrm{H}$	BYTYT
	6	${ }^{\text {CH }}$	A 2 yzv	7th	157	H B	Uzaza		9	Z^{H}	BYSYS
	7	B H	A zuz	8th	183	H A	tzaza		680	Y H	BYRYR
	8	${ }^{\text {A H }}$	AZtzt	9th	209	Hz	Szaza		1	${ }^{1} \mathrm{H}$	BYQYQ
	9	2 H	Azszs	10th	235	H Y	Rzaza		2	TH	BYPYP
	10	Y^{H}	Azrzr	11th	261	H X	Qzaza		3	V H	BYOY0
	11	X^{H}	AZQZQ	12th	287	${ }^{\text {H }}$	PZAza		4	U H	BYNYN
	12	W ${ }^{\text {H }}$	AZPZP	13th	313	H V	OZAzA		5	т ${ }^{\text {H }}$	BYMYM
	13	V H	AZOZO	14th	339	H ${ }^{\text {d }}$	Nzaza		6	SH	BYLYL
	14	U H	AZNZN	15th	365	H ${ }^{\text {T }}$	Mzaza		7	R H	BYKYK
	15	T H	A Zmzm	16th	391	HS	Lzaza		8	Q H	BYJYJ
	16	S H	A 2 L Z	17th	417	HR	Kzaza		9	PH	BYIYI
	17	R H	Azkz	18th	443	HQ	Jzaza		670	0 H	BYHYH
	18	$\mathrm{Q}^{\mathrm{Q}} \mathrm{H}$	A Z J J	19th	469	${ }^{\text {H }}$	Izaza		1	N H	BYGYG
	19	PH	AZIZI	20th	495	H0	Hzaza		2	M H	BYFYF
	20	OH	AZHZH	21st	521	$\mathrm{H}^{\mathbf{N}}$	Gzaza		3	L H	BYEYE
	21	${ }^{\text {N H }}$	$A \mathrm{AGZG}$	22 d	547	HM	FZAZA		4	K H	$B Y D Y$
	22	M H	AzFzF	23d	573	HL	Ezaza		5		
	23	L H	$A \mathrm{ZEZE}$	24th	590	H ${ }^{\text {a }}$	dzaza		6	I H	BYBYB
	24	K H		25th	625	H J	czaza	27 th		H ${ }^{\text {G }}$	$A Y A Y A$
	25	J^{H}	Azczc		628	G J	czzzz		8	G 6	$A X Z Y Z$
	26	I H			7	F J	czyzy			FG	AYYYY
2 d	27	H G	zzaza		8	E J	czxzx		680	E G	AYXYX
	28	G G	zzzzz			D J	czwzw			D G	AY｜Y\％
	29	FG	zzyzy		630	C J	czvzv		2	c ${ }^{\text {c }}$	AYvyy
	30	E G	zzxzx			B J	czuzu		3	BG	AXUYU
	31	$D G$	ZzWz		2	A J	cztzt		4	AG	Aytyt
	32	C G	2 zvz		${ }^{3}$	Z J	czszs		5	Z G	AYSYS
	33	B G	zzuzu				CZRZR		6		
	34	AG	ZZtzt		5	X J	czaza		7	X ${ }^{\text {G }}$	
	35	$\underline{\mathrm{G}}$	zzszs		${ }^{6}$		czpzp				A PPYP
	36	Y G	Z2R2R		7	v J	czozo			$\square^{\text {V }}$	
	37	$\pm \mathrm{X}$	zzoza		8		cznzN		600		
	38	ITG	ZzPzP		9	TJ	Czyzy			T G	Aymyy
	39	V G	Zzozo		640		czuzL		2		
	40	${ }_{\text {U G }} \mathrm{G}$	ZZNZN		1	R J	$\mathbf{C Z X Z K}$		3	R G	$A Y K Y K$
	42	T ${ }_{\text {S G }}$			3	QQ J P J	clay		4	${ }_{\text {P }}^{\text {P G }}$ G	
	43	R G	zzxzk		4	$0 J$	CZ CHz		6	0 G	AYHYH
	44	$Q G$	zzJzJ		5	N J	czGZg		7	N G	$A Y G X G$
	45	PG	ZZIZI		6	y J	czfzf		8	\underline{M}	AYFYF
	46	0 G	2 ZHZH		7	LJ	czeze		9	$L^{\text {L }}$	AYEYE
	47	N G	ZZGZG			K J	C2DZD		700	K^{G}	$A Y D$
	48	$\stackrel{\text { L }}{\text { L }}$ G	ZZFZF		850 ${ }^{9}$	J J	ctact		1 2	${ }_{\text {J }} \mathrm{J}$	
	50	K G	Z Z Z	26th	1	H I	BZAZA	28th	3	H ${ }^{\text {F }}$	Z\＃AXA
	51	${ }^{J} \mathbf{G}$	ZzCzc^{2}		2	G H	Byzyz		4	G F	ZYZ Z
	52	IG	二zBzB		3	FH	BYy Y		5	FF	Zyyyy

In the foregoing listing of successive settings, it will be noted that all the wheel prose (1) (1) LAW progresses one step per depression;
(2) RAW progresses one step per 26 depressions except in the first and twenty-sixth cles, about which more will subsequently be said;
(3) CW1 progresses one step per 26 depressions;
after until immediately after the 651stately after the 1st depression and is stationary there(5) CW3 progresses one the 651 st depression;
(5) CW3 progresses one step per depression;
(6) CW4 acts similarly to CW2;
(7) CW5 acts similarly to CW3.
with the foregoing, will be useful the two cipher wheels which are displatiscussing the diagram it will be convenient to refor to wheels; the cipher wheel which is displaced after every depression on the keyboard as the " 1 " wheels; the cipher wheel which is displaced after each series of 26 depressions as the " 26 " wheel; and the two cipher wheels which are displaced after the series of 650 depressions as
the " 650 " wheels.

7

 gnd
707 th, etct. Wetters are in the same positions relative to each other. similarly for the 3d and 706 th, 4 th and
same relative alignment.

In figure 2 the letters indicated are the letters at the bench mark. The notch in the LAW which controls the motion of the " 26 " wheel comes into play when the letters opposite the bench mark pass from I to H. Therefore, for each line of the diagram the " 26 " wheel remains bench mark pass from I to H . Therefore, for each line of the diagram the " 26 " wheel remains
stanary. The " 1 " wheels move, of course, from column to column but single column. The RAW is so constructed that no matter what the bosition of fixed in any will move from I to H after one depression instead of after 26 depressions, as is the case in all other letters on RAW. The movement of RAW from I to dinduces the movemant of all " 650 " wheels. For the block of 650 outlined, the motion then is as follows: The " 11 " whee moves for each letter; the " 26 " wheel moves in passing from line to line; the " 650 " wheel move in passing from block to block.
The figure illustrates the most general complete block. A message may, of course, start anywhere within the block. ${ }^{1}$

The diagrammatic scheme of the motions of the wheels enables one to find readily the length of cycle required for the wheels to return to their original relative setting.
" 650 " wheels "and "wheels move before the " 26 " wheel has made a complete revolution, the the " 26 "" other wheels. Thee., on ine 28 . The " 1 " wheels must move one space to catch up to the other wheels. The letters which come from the same relative settings are therefore 27 line letters $[(27 \times 26)+1]$. The importance
The importance of a thorough understanding of figure 2 is, that if it is possible to determine exactly when in the course of encipherment of a message the " 650 " wheels were displaced, it is possible to determine the exact initial settings of LAW and RAW (save for the two excep-
7. Study of cryptographiote 1 below).
axample of encipherment. Let it be assumed now follows:

Dog action: BDV
 Switch lever setting: "CODE"

[The above setting is that depicted in figure 1]

radris

The machine is ready for operation at the instant the current is turned on. Let it be assumed that the message begins

```
RELIA BLERE PORTS INDIC ATETH ATJAP ANESE
FORCE SHAVE ADVAN CEDON CHINE SEFOR TIFIC
ATION SINTH EWOOS UNGAR EA... .....
```

1. There are two exceptions to the situation depicted in figure 2. If the control wheels were set originally
HH, the first block would contain 651 letters, although thereafter the motion would be as in figure 2 . If he control wheels were set originally at θ (in which θ is not H), the " 650 " wheels would move after the firat解ter was enciphered and thereafter the motion would conform to figure 2.

When the encipherer depresses the key R, two switches are closed. One of these controls the printing circuit and the other the mechanical device which steps the wheels forward. In the printing circuit, the current leaves the contact corresponding to key R, passes to the letter R ITS in 1 in the lat B is is translated into a mechanical action, and the letter E is printed.

While the cipher letter is being printed, the magnet controlling the mechanical device is energized and causes the motor to move the ratchet cradle downward and back to its original position. When the cradle has reached its lowest point, CWP3, CWP5, and AWP1 encege position. When the cradle has reached its lowest point, CWP3, CWP5, and AWP1 engage their respective wheels and step them forward on the upward thrust. The machine is now in
position to encipher the second letter of the message. The setting for the second letter will be ZAA-AAZAZ. The enciphering operation is the same for the following 18 letters. However, at the encipherment of the nineteenth letter, the LAW will be so set that I is at the bench mark, and the roller of AWP2 will fall into the notch on the periphery, causing the RAW to move forward. The action of the back dog will be neutralized during this instant, and the cipher wheel pawl governed by it will be permitted to act. Since the back dog is sel at V, CWP1 will be liberated and CW1 will move forward one step accompanied by CW3 and CW5. At the end of the encipherment of this letter the setting is

 Figusi 4

For the next 26 letters, CW3 and CW5 will move forward continuously and, with the enci pherment of the forty-fifth letter, the action described immediately above will be duplicated.

From this point on, the RAW and CW1 will move forward one step with each 26 letter However, after $17 \times 26+18$ letters have been enciphered from the initial setting, the alignment of the wheels will have become

 Figuri 5

"In the earlier model of the machine when the switch is at the "direct" or enoiphering position, the keyboard is connected to the LFS. In the 1932 model, however, the reverse of this is true. The ourrent flows from of the printer. For the RFS, LFS, and wring of the wheels, aee pages 12 and 13.

10
When the key corresponding to the next plain-text letter is depressed, the CWP3, CWP5, and AWP1 will engage their respective wheels and move them forward to the setting

$$
\begin{aligned}
& \text { Figuri } 6
\end{aligned}
$$

On the next letter, the roller of AWP2 will fall into the notch of LAW and will cause RAW and CW1 to move forward with CW3 and CW5. The setting is

$$
\begin{aligned}
& \text { Fravim } 7
\end{aligned}
$$

Now for the next letter the roller of AWP3 will fall into the notch of RAW and the CWP2 and CWP4 will be liberated so that they may engage CW2 and CW4. The AWP3 will engage the RAW, moving it forward along with cipher wheels $2,3,4$, and 5 , and the LAW giving

 Flaure 8

for the encipherment of the next letter. Now CW2 and CW5 will not move forward again unti the RAW has been rotated to I. It will be noted in the case considered above, that the RAW on reaching J moves forward two spaces for one revolution of the LAW. This particular setting of the RAW is the only one which allows such a motion.
8. Action of possible dog settings.-The displacements of cipher wheels in the example thu ar studied corresponded to those for a BDV setting of the dogs. What would happen for thus ettings? The following table shows the displacements for each of the 50 possible settings of the three dogs:

11
Table II.-Showing cipher-wheel displacemcnts for all dog seltinge

Solting of			Moring per ESSO depres-		
			12	34	45
ABV	45	1	2		
\%	45	2	12		
x	45	3	12		
\mathbf{Y}	35	4	12		
z	34	5	12		
ACV	245	1 -	1	3	
T	45	2	1	3	
x	245	3	1	3	
$\underline{7}$	25	4	1	3	
z	24	5	1	3	
ADV	235	1 ,	1		4
W	35	2	1		4
X	$2{ }^{2}$	3	1		4
\mathbf{Y}	235	4	1		4
z	23	5	1		4
AEV	234	1 -	1		5
\%	34	2	1		5
X	24	3	1		5
\mathbf{Y}	23	4	1		5
2	234	5	1		5
BCV	4	1 -	2	3	
\%	45	2	2	3	
I	45	3	2	3	
\mathbf{Y}	5	4	2	3	
z	4	- 5	2	3	
BDV	35	1 .	2		4
N	35	2	2		4
x		3	2		4
\mathbf{y}	35	4	2		4
z	3	5	2		4
BEV	34	1	2		5
,	$1{ }^{1} 34$	2	2		5
\mathbf{x}	14	3	2		5
I	13	4	2		5
z	34	5	2		5
CDV	2	1 -		34	4
W	1 5	2		3	
x	125	3		34	4
\mathbf{Y}	125	4		34	4
z	12	5		34	4
CEV	24	1 -		3	5
W	4	2		3	5
X	1224	3		3	5
\mathbf{Y}	12	4		3	5
\mathbf{z}	124	5		3	B
DEV	$2^{2} 3$	1 ,			45
\%	$1{ }^{1}{ }^{1}$	2			45
X	$\begin{array}{llll}1 & 2 \\ 1 & 2\end{array}$	3			45
Y	$\begin{array}{llll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}$	4			45 45

Not all the settings shown in table II, however, were used in the test messages, as wil be noted from a careful reading of the instructions set forth in Appendix I. Informally, it was stated that a limited number was employed, but the basic principles followed in the selection of settings actually used were not disclosed.

Cipher wheel 8d

Section III
CRYPTOGRAPHIC ANALYSIS OF THE MACHINE

Preliminary preparation
Classification of messages
Conversion of " V " messages,
General observations on " V "--.-.-.- mesage
Application of principles to a mesagpected "- v "
${ }_{-}^{\text {Parastraph }}$
Index of monoal phabeticity Apdex of monoalphabeticityApplication to Serial No. 210 ... Resume 13
9. Preliminary preparation.-The first step in the analysis is, of course, to record the exact wiring of the LFS, RFS, and the various cipher wheels, so that the mixed-alphabet sequences may be transcribed upon sliding strips which may be employed in tracing through the exact paths followed by the electric current in encipherment or decipherment. ${ }^{1}$ The wiring of the six cipher wheels was kindly furnished by the Navy Code and Signal Section, to eliminate the small amount of labor that would be involved in this determination. The wiring of the LFS and the RFS was determined in collaboration with a representative of the Navy Code and Signal Section, with a simple testing circuit including a voltmeter. The wiring of the foregoing elements is as shown below:

Cipher wheel 1d

Right ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher wheel 2d

Right ABCDEFGHIJKLMNOPQRSTUVWXYZ
Right $A B C D E F G H I J K L M N O P Q R S T U V W X Y Z$
Left $K R V F D L W I C X P A Y N M T B J Z O H S E G U$
Cipher wheel 3d

Right ABCDEFGHIJKLMNOPQRSTUVWXyz Left RVUQNJSDXIALOKMFECYBZWPHTG Cipher wheel 4d
Right ABCDEFGHIJKLMNOPQRSTUVWXyZ Left CSXTMQNLYOEIFWAHPBGRUKJDZV Cipher wheel 5d
Right ABCDEFGHIJKLMNOPQRSTUVWXYZ Left JORXQEGISCKMMNOPQRSTUVWXYZ
${ }^{2}$ See Section III of Part I

Benoh	
mark RFS (right fixed eequence)	
${ }_{\mathbf{Y}} \mathbf{L}$	PFOIQAMJB
$\underset{\substack{\text { Bench } \\ \text { mark }}}{\text { ches (left fixed sequence) }}$	
$\stackrel{\downarrow}{T}$ EGDNSXUPOYVHAMBK	

Tavar 9

The foregoing alphabets of the cipher wheels, for purposes of analysis, must be converted into their reciprocals (see par. 8 of Part I), and are then as follows:

$$
\begin{aligned}
& \text { NAL }_{1} \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\
& \text { MAL }_{1} \text { FBQMPLNRCHZEWASGTJOVKDIYXU } \\
& \text { NAL ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\
& \text { MAL }_{2} \text { LQIEWDXUHRAFONTKZBVPYCGJMS } \\
& \text { NAL }_{3} \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\
& \mathrm{MAL}_{3} \mathrm{KTRHQPZXJFNLOEMWDAGYCBVISU} \\
& \text { NAI ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\
& \text { MAL } 0 \text { RAXKMSPLWVHEGJQFTBDUZNCIY } \\
& \text { NAL }_{5} \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\
& \text { MAL MWJVFKGQHAUTPLBZECIXNRYDSO } \\
& \text { NAL }_{6} \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\
& \text { MAL WPAULFBRONCQXVHEKTISDYGJZM }
\end{aligned}
$$

The foregoing alphabets are now transcribed upon sliding strips and made ready for use. 10. Classification of messages.-In what follows we shall refer to and classify message according to the final letter of the dog-action setting, V, W, X, Y, or Z. By a " V " message, for axample, we mean one in which the dog-action setting is $\theta_{1} \theta_{2} V$; by a " Z " message we mean on which the setting is $\theta_{1} \theta_{3} \mathrm{Z}$.

In respect to the foregoing classification, the types of messages which lend themselves most readily to study belong to the "V" or "Z" classes, for reasons which will now be explained. We first take up "V" messages.
11. Conversion of " V " messages.-Suppose that the cipher wheel in position 1^{1} has been determined, together with its initial setting and motion. It is then possible to convert the message into a new cipher from which the effect of the LFS and the first cipher wheel has bee removed. In fact, if the motion and identity of any number of consecutive cipher wheels begin-
${ }^{1}$ We number the wheel positions from left to right.
71838-85-2
ning from the left have been completely determined, the effect of the LFS and these wheels may be removed from the particular message so that only the remaining cipher wheels have any effect in producing the converted message.

To illustrate, suppose it is known that a particular cipher letter Q representing E_{p} was obtained with CW1d set at F in position 1. The permutation and settings of the remaining wheels are current must have come from the tenth letter on MAL1 is opposite position 10 on BS1, the position 14 on BS2, and it may therefore be concluded that the current producing the letter 0 in question passed through the fourteenth contact of the second bakelite separator. This information may be diagrammatically represented as follows: BS2.123456
\qquad F G H
\qquad FGHIJKLUNOPQR
MAL1 BS1...
 Lrs.--

Fiadia 11

If the successive contacts of BS2 were identified by means of a normal sequorice, position 14 would correspond to letter N, and the current could be said to have come from N on BS2. In other words, the action of the last four cipher wheels, i.e., those in positions $2,3,4$, and 5 , may be considered to have resulted in a replacement of E_{p} by N_{0}.

If the setting of the second wheel were also known, the conversion, i.e., the elimination of the cipher wheel in position 2, could be carried over to BS3.

Of course, the foregoing applies to a single letter only. But, if the left-end wheels were known not only as to identity and position but also as to motion, then the motion could be taken account of and the conversion carried through for the entire message.

Returning then to a consideration of a "V" motion in connection with the foregoing reasoning; suppose it possible to determine the first cipher wheel and its initial setting. Then, since a "V" motion means that the cipher wheel in position 1 steps forward once every 26 letters, a
complete conversion to BS2 can be carried out. Moreover, no difficulty can arise in connetion complete conversion to BS2 can be carried out. Moreover, no difficulty can arise in connection
with the exact place in the message where this cipher wheel steps forward, because the initial setting of the first wheel gives the initial setting of the left control wheel and hence determines just where each line of 26 letters begins. ${ }^{1}$

If the converted message is written out in lines of 26 letters, then in each column we have letters which have been enciphered with the last four cipher wheels in exactly the same position; hence all letters within the same column belong to the same monoalphabet. It is thus seen that a " V " message whose first wheel is known, when correctly converted, becomes a polyalphabetic substitution cipher of 26 alphabets. The latter may be recognized or detected by the usual tests based upon repetitions and the normal appearance of monoalphabetic distributions.
12. General observations on ' V '" messages.-A method of attack is thus indicated. If a message is suspected to be in a "V" motion, a conversion can be carried through for every possible wheel in every possible bench-mark setting. The correct assumption will yield a message arranged in 26 alphabets, which may be recognized by the usual external phenomena. Since there are six wheels, each of which may assume two positions and 26 settings on each wheel, the total
${ }^{1}$ See Appendix I , instructions issued with Hebern, par. 2 (0) (2).
number of trials necessary for any single message is $6 \times 2 \times 26=312$. For each of these trials the converted message must be tested to determine whether or not it is now in the form of a set of converted message must be tested to determine whether or not
26 monoalphabets from left to right in the successive columns.

Naturally, for such tests the length of the message is very important, for unless there are Naturaliy, for such tests the length of the message is very to tell whether we are dealing
enough elements in a frequency distribution it is very difficult to with a random or a polyalphabetic distribution. Consequently, we should make our tests first upon the longest message we can find and then, if no " V " message is indicated, try the next longest message, and so on. Accordingly, Serial No. 183, with 1,420 letters, the longest in tive, i.e., the tests indicated that the message was not a " V " message. Since the steps followed are the same as in a successful test, the details in connection with this negative experiment can be omitted in favor of those in connection with a successful experiment.
13. Application of principles to a suspeoted " V " message.-Consider the second longest message, Serial No. 210, with 1,325 letters.

This message begins as follows:

> OCRYP HWKON QCPJI MUNDK GZLYY JLFZG . . .

Let us assume that CW1d occupies position 1. Let us further assume that the initial bench-mark setting for CW1 is A, so that 19 letters will be enciphered before CW1 moves. Then the conversion equivalents (to eliminate LFS and CW1) for the first line of cipher text are obtained by setting MAL1-NAL1-BS2 against the LFS so that A on NAL1 is opposite T of LFS (the initial or bench-mark setting).

The diagram of sliding-strip alphabets for the conversion is as follows:
BS2.......ABCDEFGHIJKLMNOPQRSTUVWXYZ
 MAL1_-_FBQMPLNRCHZEWASGTJOVKDIYXU LFS.-.-. TEGDNSXUPQYVHAMBKRFJLZITOC

Figura 12
By tracing each cipher letter back from LFS to BS2 on the foregoing diagram, we get the following conversion equivalents:

Cipher-

Conversion equivalents.-
XUJZCWYTXPHUCVISRPM
Ftaure 13
To obtain the equivalents for the second line of cipher text, we must now shift MALI-NAL1 one interval forward, to take into account the fact that CW1 has stepped forward one interval. BS2 remains stationary. The diagram of alphabets for this conversion is as follows:

BS2_-....ABCDEFGHIJKLMNOPQRSTUVWXYZ
CW1 NALI_-._ZABCDEFGHIJKLMNOPQRSTUVWXY MAL1---UFBQMPLNRCHZEWASGTJOVKDIYX LFS...... TEGDNSXUPQYVHAMBKRFJLZIWOC

The conversion equivalents for the second line are then as follows:

$$
\begin{aligned}
& \text { Cipher } \\
& \text { onversion equivalents }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HCLWIIPWKLC. } \\
& \text { Figutan } 15
\end{aligned}
$$

To obtain the equivelents for the third line of cipher text, NAL1-MAL1 is displaced one more interval (forward) to the right, and so on.
14. Index of monoalphabetioity.-When this has been done for the whole message, the columns of conversion equivalents are examined from the point of view of their possible monoalphabeticity. Of course, one could study the columns for repetitions of single letters within columns, as well as for repetitions of digraphs, trigraphs, and polygraphs. But this would require much time and the compilation of many frequency distributions. A better way is to try to establish monoalphabeticity by statistical methods. For this purpose we may set up, theoretically, or by calculation on actual. plain text, an index of monoalphabeticity with which a calculaild ber area in horizotal lines and the frequer distribution for individual column then pripud in lements in ar column thuld be firty late. In each distribution the sums of the laqge.

In each distribution the sums of the squares of the frequencies should be found. The index itself and the limits of variation should then be obtained by finding the mean and standard deviation for all frequency distributions. For a monoalphabet of T letters the mean of the sum of the squares of the absolute frequencies is, theoretically, given by $S^{2}=0.066 T^{2}+0.934 T$. (For of the squares of the absolute frequencies is, theoretically, given by $\mathcal{S}^{2}=0.066 \Psi^{2}+0.934 \mathrm{~T}$. (For
a more complete statistical discussion of monoalphabeticity, see S . Kullback, Statistical Methods in Cryptanalysis, Technical Publication of the Signal Intelligence Section, 1934.)

To apply these results to the problem in hand however, a slight modification is necessary. The foregoing index applies to the case where a frequency distribution contains T letters and is atrictly monoalphabetic. In our problem, however, we can never expect these two conditions to obtain, because, firstly, at a maximum there can be only 25 letters in each monoalphabet (for after 25 lines have been enciphered the " 650 " wheels move and consequently the twentyaixth letter in the column belongs to a different alphabet than do the first 25 letters); secondly, we do not know. where this " 650 " break occurs in the message. It may occur after the very first line, or after the second, third . . . line. Consequently, it can easily happen that in taking only 26 letters per column we may be assimilating 10 letters of one monoalphabet with 16 of anould,
take columns of 36 letters, the number of letters that may fall in the respective alphabets can be only as follows:

Tabif III

Caso	${ }_{\text {alphabet }}^{\text {Hirst }}$	${ }_{\text {semend }}^{\text {siphabibet }}$	${ }_{\text {a }}^{\text {atilub }}$	Case	${ }_{\text {alp }}^{\text {alpabet }}$	$\underset{\substack{\text { sepond } \\ \text { aiphabet }}}{\text { a }}$	$\underset{\text { Thara }}{\text { Thatabet }}$
1	0	25	11	14	13	23	0
2	1	25	10	15	14	22	0
3	2	25	9	16	15	21	0
4	3	25	8	17	16	20	0
5	4	$\stackrel{25}{25}$	7	18	18	18	0
7	5	25 25	5	19 20	18	17	0
8	7	25 25	5	21.	20	16	0
8	8	25	3	22.	21	15	0
10.	9	25	2	23	$\begin{array}{r}22 \\ 23 \\ \hline\end{array}$	${ }_{14}^{14}$	0
11	10	25 25	1	24 25	23 24	13 12	0
${ }_{13}^{12}$	12	${ }_{24}^{25}$	0	26	25	11	0

We may however, assume theoretically that those ten cases in which the 36 letters fall to three different alphabets would not distort the index for monoalphabeticity very much, since the letters falling in one alphabet (25) are much more numerous than those falling into ach of the two other alphabets. In fact, the index may parhaps not be distorted any more in those cases than in the ones where the distribution is 18 in each alphabet, or 17 in one and 18 in the other, or 16 in one and 20 in the other. Consequently, if we consider that the case in which the letters are divided equally between two alphabets is perhaps the worst for our purposes, even then we have only bialphabeticity to deal with.

Our problem is therefore now one not of strict monoalphabeticity but of approximate ialphabeticity. What is the index for that? Actual calculations upon several distribut the of sets of 36 letters in two different alphabets gave an average index of 94 for the sum of the squares of occurrences of letters for the case where the two alphabets.

For our purposes, therefore, we may assume an index of 94 to be the minimum permissible in studying columns of 36 letters.
15. Application to Serial No. 210, -Whan the calculations pertaining to this index of ialphabeticity were applied to the various conversions of Serial No. 210, according to the differt iph with Thus:
[Index 112]

$$
\text { Frausi 16.-Distribution for column } 1
$$

and similar results for the columns $2,3,4$, and 5 .

The message was accordingly completely converted and transcribed. In this transcrip tion we may place the very first letter of the message under H of the LAW sequence, since under the specifications it is known that the initial setting of LAW and the cipher wheel in position 1 must coincide. Note the repetitions that appear:

```
Figuri 17.-Serial no. 210, converted
```


FROM: NAVAL STATION GUAM

 O: OPNAV3 MARCH, 1932
INDICATOR: 1003 EHHBE VGBKL

K/FGBRPSYKCNFRVHTXCEYWJUBBV WHVMBNHOSURJRQSZFDIJUDUKYH PVBWXPIYOXNYBASOZIPWBYCZIH WFBIKLCZQRRFOKAMMESTJDCJBG VCEMRNJPOORFQCKSDEMMVLBQYR VGUMLBMXAANNYCVTNAFNBLKMMR PFRMRTLCTKOBCEUSHPEIBXSMGS DSFWBPSUNPKHMNWPKLNWENALTO KGEEANJYKJKARDSGNSRUWEQUH PCHEAXLZLWVBOCUISDNYCZTXGI JCPHASPOOAUQLGVCIQUICGGJYR QFIMLBMBXWEFFGAYYDKTBYTXWB IGUMZNJKEWPHFEVCSQGTBXUXMB PGUDIXQYZVLLBCBJXRUUOQBZFS DBQMIKZEZOOBBXAAFWNBCQIXBV GFEMAXLUNJPKUUFGDBKUSGQLSV IMTUFNXVLAORLXCIXOWTBEBXOD GGFERPRPLJUARWKIJAEIBYSKJJ PYFHFDSONMTBOGHSVTMECYWWHR CCUBIFDRPWAGHJSNWWNTCRIMHU
 GCENIMVVAIUAHTAJVJHJPCQLHR QBVRASPMSCKFMOAZDGVUIRTXMI SHTSMLZFQWNWQWCEVGECBYTOBQ

Fiaura 17.-Serial no. 210, converled-Continued
FROM: NAVAL STATION GUAM
3 MARCH, 1932 T0: OPNA INDICATOR: 1003 EHHBE VGBKL

25	DFFRLGODUQNLJSCKTRZLDZKJS	7
26		8
27	JOERUSFZGIJLNVMSQGPJLOMWCX	9
28	NPEHXXBILCQQXISXMVOMZHXACK	10
29	JYPCDSDKQRHAKIKUIHIAFRWTKI	11
30	PGGYOZQBOKSWBICLUJKSOJGOPI	12
31	ITYDLHSQENCZPWSQJHXYFFWYSI	13
32	QJTVUFWSTPYGBZMFZKXYPBXAIP	14
33	UDPZOFEVNIZRMFRFBKKXHKPNUU	15
34	TXCREZGIUNYCQWSCFEZSOQRUVA	16
35	TVUVENDHTUOVRTSQMJKZRQWLHI	17
36	TXCRUBPQAUNYXYICKODSOWGAWI	18
37	BWRXJGSMLGCLAZSUIMPJLUMEDY	19
38	AGKDAXWCJHHDDVMSUEFMHZDYVP	20
39	LWEUOBQMLGCLAZSUUGPMSUYCOG	21
40	ENPCIBGIXBQQXMKFIMPHPMMDDG	22
41	OQEKNNGIUERJBQCISJIXZNDLYI	23
42	WDGXZNSBOMQUPORFUVOZLUCDOL	24
43	WDPCSCSOLGUXAZNAJEFSOFWLIK	25
44	ATFDLNSJLNYGLECIIPBZCQPVBX	26
45	WGLEWGEKXZNQREYMYJWTDKCAVI	1
46	QVHUURHHOMNEHITCFEBLERNDQX	2
47	XJHCRPFKVGNABASXPOAQMUAFGE	3
48	TJTXXKZRGUBHBGKYBKBMOMWDII	4
49	DTPCPCYSTIOZPJTQXEFUDUZWFK	5
50	XJHCLXDQOJQDUWSISKPSORRWVI	6
51	S K	7
51	J PDBJRVESOXXPVAPOBTRFPO	7

16. Relation between alphabets in different blocks.-It is clear that all the 51 letters in any one column of this converted cryptogram cannot belong to the same monoalphabet. At most, only 25 of them can do so. There may be two or three monoalphabets involved in each the " 650 " breaks 0 ccur. Thus, we may outline the distribution of the 51 letters as follows:

Table IV

$\mathrm{Cmm}^{\text {m }}$	"ES0" brak binceurs on	Number of letters tin-			
		${ }^{\text {apmatabet }}$		${ }_{\text {ald }}^{\text {aphabibet }}$	$\underset{\text { Topurth }}{\text { aphat }}$
1	1, 26, 51	0	25	25	1
2	${ }^{2}, 27$	1	25	25	10
3 4	3,28 4 4	$\stackrel{2}{3}$	25	24	0
5	4, 29 5,30	3 4 4	25 25	23 22 28	0
6	6, 31	5	25	21	0
7	7, 32	6	25	20	0
8	8, 33	7	25	19	0
10	9, 34	8	25	18	0
10	10, 35	10	25	17	0
12	12, 37	11	25	16 15	0
13	13, 38	12	25	14	0
14	14, 39	13	25	13	0
15	15, 40	14	25	12	0
16	16, 41	15	25	11	0
17	17, 42	16	25	10	0
18	18, 43	17	25	9	0
19	19, 44	18	25	8	0
20	20, 45	19	25	7	0
22	22, 47	20	25	6	0
$\stackrel{23}{23}$	22, 48	21 22	25 25	5 4	0
+24	24, 49	23	25	3	0
25	25, 50	24	25	2	0

The question now arises: Can we tell exactly or even approximately where the " 650 " aral occur? Why not use the repetitions of digraphs and trigraphs as a test? Fors. example, note the long repetition on lines 37 and 39 ; obviously, the break cannot occur on break occur between lines 27 and 37 , on line 37 after the repetition MLG. . . . Nor can the it looks as though the break cannot because the trigraph VMS is common to these lines. Again, common to these two lines. We cannot occur between lines 26 and 28, because the digraph CK is working toward the middle, lines 25-26, and try to localize the section where the break may be

By a careful study of what repetitions do appear, we are led to believe that the break occurs on line 25 and we may tentatively block out the message as shown herewith:

If the foregoing is correct, then the second letter of the message indicator (VGBKL) equals I_{p} (Refer, in this connection, to fig. 2.)

The following two points in procedure should be carefully observed since they are of frequen application in the solution of the messages submitted
(1) The method of message indicators is essentially a polyalphabet of five alphabets. As a result, if the letter D in the indicator DMSCH enciphers F_{p}, then an initial D in any other indicator will also represent F_{p}. Similarly the determination of the equivalent of any letter in a given indicator gives the equivalent of that same letter in the same position in any other indicator (2) The initial setting of a wheel determines whether it is to be inserted in a direct 0 orsed position. Hence, if a has once bern deter any other whee sot at F must also be direct
two independent problems, each involving 26 mixed alphabets, with but 25 letters in each alphabet. (The single letter at the beginning of the message and the last line can be of very little help.) The difficulties of reaching a solution under these circumstances require no further comment
If we could relate the two blocks in some way, perhaps the difficulties could be reduced. Why not take advantage of the " 703 " cycle mentioned in paragraph 6, if possible?
not take advantage of the " 703 " cycle mentioned in paragraph 6, if possible?
Under the conditions of the system we know that after 703 letters have been enciphered the five cipher wheels have returned to their original positions relative to one another. The only change that has occurred in the setting of the machine between the 2d and the 705th letters is that the five cipher whoels have, as though they were permanently fixed on the horizontal shaft, been displaced one step forward between the LFS and the RFS. This is equiva lent to a forward step of all the paths which the electric current traces out between the wheels. Consequently, if on the 2 d depression a current enters the wheels from the RFS a \mathbf{Y}, for example, and emerges from the wheels at T on the LFS, on the 705th depression a cur-
rent entering the wheels from the RFS at L (the letter that follows Y on the RFS) must emerge from the wheels at E (the letter that follows T) on the LFS. Since all letters 703 intervals apart are related in the same manner, we can use this fact to advantage. But, first we must take into account the fact that our transcribed message represents the conversion text, not Obviously, the method of establishing the letters of the in related in ine converted text text is replaced by Z in the conversion text then E of the origingl text will be replaced by in the convergion taxt since T is followed by E on the LFS , and Z is followed by A on the BS sequence (The reader should refer to the eliding strips with CW2r ot at H in position 1) Now refer to the second letter of the conversion text. It is F, and there are five of them column 2 of the first block. Whatever θ_{p} the letter F represents, it is the same for all five occurrences. Suppose for a moment that $\theta=E$. If the letter G which follows F on the bakelite occurrences. Suppose for a moment that $\theta=\mathrm{E}$. If the letter G which follows F on the bakelit
separator were the 705 th letter of the converted text, its plajn-text equivalent would be K because K follows E on the LFS. But one can say even more. Since the conversion has produced monoalphabets in the columns of each block, any G_{o} in the third column of the second block would have the same value as $a G_{c}$ in position 705. There are two G 's in this third column; if the assumption $\theta=\mathrm{E}$ is correct, then both of these letters must represent K. Such result is not very likely as we would not expect K_{p} to occur two times in but 25 letters, hence the assumption $\theta=E$ is not a good one. If $\theta=T_{p}$, then $G=\mathcal{O}_{p}$, which is again unlikely. Thus, we examine all the possibilities and pick out these as most likely:

$F=O_{D}$	$F=A_{p}$	$F=N_{p}$	$F=S_{p}$
$G=I_{p}$	$G=M_{p}$	$G=S_{p}$	$G=E_{p}$
	FIGURE 19		

Enough has been indicated to show the procedure. Were the message long enough, say about 600 words, then there would be available at least four blocks of " 703 " cycles for comparison and check on assumed values and there is hardly any doubt but that such a message could bor whe truencies of C_{0} in the thind a 1 ,
 B_{e}, C_{0} - - - would represen X_{p}, D_{p}, plain-text letter. If A is assumed to represent T then a different set of plain-text letters and consequently a new total frequency would be obtained. The correct result will be theoreticall determined as that one which yields the greatest weight. Letters obtained on this besis can then be inserted in the message. Here, however, we have only two such blocks; sufficient mate rial is not at hand to permit of solution within a reasonable length of time. However, it must be stated that an earnest attempt was made to solve this cryptogram on the basis of the observable repetitions and the " 703 " phenomenon but without success. It seemed necessary to elaborate better methods of attack if the problem were to be solved at all.
17. Resumb.-Let us set down the difficulties in their broad outines. First, there are those connected with the determination as to whether a given cryptogram is in a " V " motion. We saw that long messages are necessary for this determination and that the process may involve a maximum of 312 different trials, each quite lengthy. Next there come the difficulties of determining just where the " 650 " break occurs in a message that has been found to be in a " V " motion. Then there come the difficulties involved in attempts to solve a polyalphabetic sub stitution cipher of 26 nonrelated, random-mixed alphabets, or, at most, of two related sets of such alphabets.

Let us see if we can eliminate some of the difficulties of the first sort and facilitate the dis covery of " V " messages.

Suction IV

SYNOPTIC TABLES

" messages with Paramaph Hrot-interval data, cipher-test relationshipa--....... Appligation of first-interval deta to a known " V ",

 Applicution of atationtioal method to an unknown

18. "V" messeges with known plain text.-Suppose we make the problem more easy by 18. "V" messages with known plain "V" message with known plain text. Let the messtudying certain phenomena in a kno
sage indicator (enciphered) be $K C D D U$.

OFFRYGGUYGKIENZUNWWIBLIMRJY IABLEATTACHEDTOYOUNGMARSHA TPCNIYVSXXQDDHOLMIFYVBMYGL LSHEADQUARTERSSTATESTHATMA SMVSGBEDDHOYGARDDYVAHXATHK NCHURIANFORCESAREBEINGMOVE BUCOJQBHNNSQLZCYQDCINGXKKZ

Figura 20

et us now study certain plain-cipher relationships, in connection with our sliding alphe bets. Consider H_{p} in line 3P, column 3 and H_{p} in line 4P, column 3; the plain-text letters are the same, the cipher equivalents, different. This difference in cipher equivalents for two similar letters in the same column is occasioned solely ${ }^{1}$ by the displacement of the cipher wheel in position 1, for the cipher wheels in positions 2 to 5 are in exactly the same setus in the two cases (since we are dealing with a known " V " message). The same is the cas with the following pairs in the same lines:

$$
\begin{array}{ll}
S_{p} \text { (ine 3P, column 14) }=A_{e} & E_{p}\left(\text { line 3P, column 19) }=V_{0}\right. \\
S_{p}\left(\text { line 4P, column 14) }=Z_{0}\right. & E_{p}\left(\text { line 4P, column 19) }=C_{a}\right.
\end{array}
$$

Figuri 21
We assume the " 650 " break not to ocour in the first four lines of the message.

The question arises: Can we find by experiment with the various cipher wheels (or their equivalent sliding strips) which wheel will produce the cipher equivalents indicated above, under the conditions noted there? Consider the case of the two plain-text letters H in line 3P and 4P. The current corresponding to H_{p} in both cases entered the cipher wheels from the twenty-third contact of the RFS; its path through the cipher wheels in positions $5,4,3$, and 2 is unknown, but whatever it is, it left the cipher wheel in position 2 at exactly the same contact in both cases, so that the contact on BS2 from which the current entered the cipher wheel in position 1 is the same in both cases. Now consider what happens at the LFS and th cipher wheel in position 1 (for both cases). The only reason the cipher equivalent for the is 1 an one interval, and tho CH in the To
We may take one of the sliding alphabets, say CW1, and place it in position 1, between he Le and the path of the current from V, through NAL1-MAL1, to a contact on BS2, making note of
the latter. We then advance CW1 one interval and repeat the operation, beginning with C the latter. We then advance CW1 one interval and repeat the operation, beginning with C
on the LFS. If the contact to which the second tracing leads (on BS2) is different from that to which it led in the first tracing, then obviously CWld cannot be the correct wheel for position 1 if the setting must be A. If CW1d is correct it is not at the correct setting, and we must try another setting. If, however, the two paths lead to the same contact on BS2, then we have an indication that CW1 may be the correct wheel for position 1. We say "may be" because, unless we can get some further corroboration, this coincidence of exits from CW1 for both cases may simply be accidental and not causal. Therefore, we should try anothe case where the cipher letters are different for identical plain-text letters in the same two lines, but in another column, e.g., S_{p} in column 14, yielding A_{0} in the first encipherment, Z_{0} in the second. We replace NAL1-MAL1 in its A setting against LFS and BS2 and trace the path of the current from A_{0} on LFS to BS2; slide the alphabet one interval forward, and trace the path from Z_{0} on LFS to BS2. If again the current leads to the same contact for both encipher ments, a corroboration is obtained for CW1 at the setting and position indicated; if not, then we consider the first coincidence to be purely accidental, and proceed with further tests of the ame kind

These tests would require much time if carried out exactly as indicated above, but we ma very materially shorten the work by constructing certain synoptic tables which will, by inspec ion, vield possibilities for correct cipher wheels and at the same time give the exact setting.
19. First-interval data, cipher-text relationships.-Consider CWld set at A in position 1 and suppose the plain-text letter being enciphered is E.

 [4 intervening wheels]
 Figura 22
he current leaves E on the RFS and passes through the wheels in positions 2, 3, 4,5. The exact is not path is not known; it depends on the identity and relative po 0 on NAL1. Then the resulting suppose the path traced leads to posicho been enciphered, the wheels will be in the following cipher lett

position:

LFS

 4 intervening wheels]

Rrs YLVRZXCPFOIQA

If in this position E is again enciphered, the path traced by the current will again lead to position on BS1, because the four intervening whels are in tho same position as before. Since now, position 15 on BS1 is opposite \mathbb{N} on NAL1, the resulting cipher letter is U.

These results indicatesita resetition text repetian at an interval of E and assuming that the identity and settings of the intervendigraph by considering the letter E and assuming that the identity and ser different arrangement ing wheels were such as to carry the currelain-text letter would have led to position 15 and the of the intervening wheels some other plain-cost tion is an asential element. For CW1d at A, any plain-text repetition which leads to position 15 on BSI will correspond to the cipher digraph FU
Had we assumed a position on BS1 other than 15, a different cipher digraph would have resulted, e.g.:

Table \mathbf{V}

Postlon	Digraph	Position	Dlamph	Poestion	Dlaraph
1	AV	10	RIT	19	${ }_{\text {uP }}$
2	EM	11	LF	20	${ }_{\text {KB }}$
3	PG	12	SZ	21	CR
4	zQ	18	D	22	JT
5	v	14	XN	23	HL
6	TH	15	Fu	24	${ }_{\text {OT }}$
7	BE	16	NJ	25	\% ${ }^{\text {H0 }}$
8	QK	17	GS	26	yo
9	IY	18	UD		

For CW1d at A, these 26 digraphs represent the only combinations which can correspond plain-text repetitions at interval 1. Any digraph, not contained in the above set, cannot correspond to a plain-text repetition.

This procedure can be carried out in detail for every wheel and every setting, yielding 26 The results can be set up in a saries of tables (one for each wheel) which ive the correct digraphs for each setting. It must be observed that these results will hold for
interval 1 only. It is possible in the same way to construct tables to correspond to any required interval. On the other hand, it is possible to obtain information about any desired interval from tables for interval 1. To illustrate, we know that FU for CW1d at A is a correct possibility The correct digraph beginning with U for CWid at Z is US. Consequently, FS is a correct digraph for interval 2 for CWld at A. In the same way, since SP is a possibility for interval when CW1d is set at Y, FP is a correct digraph for interval 3 with CW1d at A. The extengion to any interval follows along the same lines. One must be careful in working with a reverse wheel to remember that the wheel settings progress in the normal order and not in the reverse order as for direct wheels. These tables are given in Appendix II, basic cipher-text sequences.

Our chief interest in these tables is to be able to pass from a known digraph to a set of possible wheels and settings. To get this information, the tables just described must be rearranged in the following way: Instead of listing the digraphs corresponding to wheels and their settings, we list separately each digraph and the positions for which it is a possibility. This has been 20. Application of frst-interval data to a known " V "' message, cipher-text relationships."
use of these tables to try to find which cipher wheel is message. -Let us now proceed to make amployed as an illustrative examplich cipher is the one involved in the teast message Take the first pair of equivalents

$$
\left.\begin{array}{c}
\mathrm{H}_{0} \text { (locus 3P-3) }=\mathrm{V}_{0} \\
\mathrm{H}_{0} \text { (locus 4P-3) }=\mathrm{C}_{0}
\end{array}\right\} \text { Case } 1
$$

Refer now to Appendix III, table V, line C; there are found the following cipher wheels and positions indicated for the digraph VC:

Wheal	Sotiting	Wheol	sotulug	Wheal	Sotting
$\begin{aligned} & 1 d \\ & 3 d \\ & 4 d \\ & 5 d \end{aligned}$	$\begin{aligned} & \mathbf{X}, \mathbf{L}, \mathbf{Z} \\ & \mathbf{V} \\ & \mathbf{N} \\ & \mathbf{A}, \mathbf{B}, \mathbf{P} \end{aligned}$	$\begin{aligned} & 6 \mathrm{~d} \\ & 1 \mathrm{r} \\ & 2 \mathrm{r} \\ & 3 \mathrm{r} \end{aligned}$	$\begin{aligned} & P \\ & R \\ & \mathbf{F} \\ & \mathbf{G} \end{aligned}$	$\begin{aligned} & 4 \mathrm{r} \\ & 6 \mathrm{r} \\ & 6 \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathbf{I} \\ & \mathbf{Y} \\ & \mathbf{K} \end{aligned}$

Take another pair in the same lines of the message:

$$
\left.\begin{array}{l}
S_{p} \text { (locus 3P-14) }=A_{0} \\
S_{p}(\text { locus } 4 P-14)=Z_{0}
\end{array}\right\} \text { Case } 2
$$

Fieura 26
Δ gain referring to Appendix III, table A, line Z, there are found the following cipher wheels and positions indicated:

Wheel	Sotting	Wheal	settung	Wheal	sotulug
$\begin{aligned} & 1 \mathrm{~d} \\ & 2 \mathrm{~d} \\ & 3 \mathrm{~d} \\ & 4 \mathrm{~d} \end{aligned}$	$\begin{aligned} & \mathbf{z} \\ & \mathbf{u} \\ & c, s \\ & \mathbf{z} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~d} \\ & \mathbf{6 d} \\ & 1 \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathbf{C , D , Q} \\ & \mathbf{D , 0} \mathbf{0} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & 2 \mathrm{r} \\ & 5 \mathrm{r} \\ & 6 \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathbf{F} \\ & \mathbf{U} \\ & \mathrm{N}, \mathrm{~J} \end{aligned}$

The only indications common to cases 1 and 2 are CW1d, set at Z and $C W 2 r$, set at F for ine 3P. This means that if CW1d, set at Z is correct for line 3P, then for the line 1P, CW1 must have been set at B; if, on the other hand, CW2r, set at F for line 3P is correct, then for the first line CW2 must have been set at D. Let us seek corroboration for one or the other of these two possibilities:

$$
\begin{gathered}
D_{p}(\text { locus } 1 P-13)=N_{q} \\
D_{p}(\text { locus } 2 P-13)=D_{d} \\
\text { Fiaver } 28
\end{gathered} \text { Case } 3
$$

Refer to Appendix III and we find corroboration, for on table N, line D, CW2r at D is indicated as a possibility, whereas CWId set at B is not so indicated

For lines 2P and 3P, we should find CW2r set at E indicated for the following pairs:

$$
\left.\begin{array}{l}
\left.\mathbf{A}_{\mathrm{A}_{\mathrm{p}}} \text { (locus 2P-9)=}=\mathrm{X}_{\mathrm{c}} \text { (locus } 3 \mathrm{P}-9\right)=\mathrm{D}_{\mathrm{f}}
\end{array}\right\} \text { Case }
$$

Fiauki 29

Referring to Appendix III, it is found that CW2r set at E is indicated for the first two of the hree cases, but for the third case, CW2r set at F , not E , is indicated. This is not a contradiction, as will be explained later (p. 37), but it indicates that the " 26 " break in the lines occurs ither at or before column 26. At any rate, there is now no question but that we have located he cipher wheel in position 1, together with its initial setting.

All the foregoing was, however, predicated upon known facts: First the message was known to be a "V" message, and secondly, the plain text was available, so that identical letters in columns were known. What if these two facts were not known?

In order to answer the questions proposed, a slight digression must be made
21. Statistical study of " V "' messages.-Consider ${ }^{1}$ a large amount of plain text to be at hand. It is desired to determine the probability that two letters chosen at random from it

 these two numbers gives the chance that the two letters are either both E or both A. The probability that both letters are the same, regardless of what particular plain-text letter they may happen to be, is the sum of the probabilities for each pair of identical letters and hence the um of the squares of the normal frequencies of all the letters in the alphabet. The calculation on page 27 of Part I shows this result to be 0.066 .

If, instead of plain text, one were given a monoalphabetic substitution, the reasoning would still be the same. For the particular identity of the repetition was of no consequence in the reasoning. Moreover, two like cipher letters correspond to two like plain-text letters. Hence, the probability for a repetition of two cipher letters in a monoalphabetic substitution cipher is $\mathbf{0 . 0 6 6}$.
${ }^{1}$ The reader is advised to review the mathematical analysis contained in the discussion in Part I (pp. 26-31).

Suppose now that a polyalphabetic message is being studied. If the number of alphabets is known, it is possible to rewrite the message so as to break it up into its constituent monoalphabets. If now the number of coincidences is tabulated in each monoalphabet, the situation is still the same. The total number of coincidences for all the alphabets should still correspond to a probability of 0.066 .

What happens if the number of alphabets is not known and the message is incorrectly written out? What kind of result will be obtained from a tabulation of the total number of coincidences in such a case? To answer this question completely, it will be assumed that the message under consideration is homogeneous, i.e., that each cipher letter has practically the restriction since any fairly good cipher satisfies it. Even a polyalphabetic message with as few as six alphabets has a very flat frequency table. In such a case then, two like cipher letters few as six alphabets has a very flat frequency table. In such a case then, two like cipher letters
in a column may represent any plain-text letters whatever. Select a particular cipher letter in a column, say θ_{0}. The chances that any other letter in that column is θ_{0} are the same for every cipher letter, i.e., $1 / 26=0.038$. This number is so much less than 0.066 that it should therefore be a simple matter statistically to determine the proper number of alphabets in a polyalphabetic message; for an incorrect assumption will yield only three-fifths as many coincidences as a correct one. The difference between the numbers 0.038 and 0.066 is significant enough to show up very plainly.
22. Resumb.-Summarizing what has been said up to this point in connection with " V " motions, it appears that every "V" cipher message can be determined provided only that it be at least 125 or 150 letters long.' In determining a message to be " V ", the identity and position of the first wheel are obtained as incidental items of information. Moreover, if the message is of sufficient length, the " 650 " break may be determined by the same analytical test, for that break defines the beginning of a new set of alphabets. The letters above the break will not yield the proper percentage of coincidences with the letters below it and if the message is long enough this property permits the break to be definitely located. This additional information gives the initial setting of the second control wheel and the initial setting of the second wheel. However, it does not determine the identity of the second wheel except in very special cases. (For CW2d set at If the second wheol is found to begin at any letter betwoen A and H it must CW1, becase in the numarical key that letter would have to correspond to 1 . Such case re however very unusual.) The actual application
解 whose motion and plain text are unknown.
23. Application of statistical method to an unknown message (Serial Mo. 169),-To begin with, the message was written out in lines of 26 letters; only 12 lines were actually used in the test, inasmuch as it was felt that this amount of text was quite sufficient. Twelve lines of tex afford $11 \times 26=286$ pair of letters (at interval 1) that may be employed to find the cipher wheelif a " V " motion is involved. According to theory, we should find $286 \times 0.066=18.88$, or approximately 19, coincidences; hence, we should find one wheel in one position (all indications being
${ }^{1}$ The advantage of auch a method of determining the number of alphabets involved in a polyalphabetic mossage over the commonly used one based upon repetitions is that a much amaller amount of text is necessary oo obtain unquestionable results. It is posible in this way to determine the number of alphabets with ony or 6 letters in each alphabet, provided the number of alphabets is fairly large. An illustration of this and
 resulte
reduced to yiold the initial setting) indicatod about 19 tines. Incorroct wheels should yield $286 \times 0.038=10.8$, or approximately 11 indieations.

Serial No. 169
INDICATOR: 0003 EHHBE DMSCH
Serial No. 169

Λ digraphic table was constructed of the pairs in adjacent lines; thus, for the first and second lines, FB, MW, EO, etc., for the second and third lines, BU, WY, OR, etc.

Referring then to Appendix III, the indicutions for $\mathrm{FB}, \mathrm{M}, \mathrm{EO}$, etc., were distributed in the following manner.

Tabue VI.—Taile for the interval belween lines 1 and 8

	Setting																												
	A	B	c	1	E	F	a	H		I	J	K	1	N		N	0	\mathbf{P}	a	E	R	1		0	V	w	x	Y	
CW1d	2	2		2			1			1	1					1		2	2	1	1		1	1	1				
CW1r		1		2	1	2	1	2		1	1	2	2	1		2	3					1	2	1	3	1	2	2	
CW2d	1	3		11	11		1			2	1	2		2				1	1					2	1	1		2	1
CW2r		1	1	2	1	1		2			1	1	2			3			2			1	2	2		2			3
CW3d	2	3	1	1	3		1	1		1	1	2	1	1				1	3		1		3	3		2	3		2
CW3r	2	1		2	1	1	2				2			1		1		1	1		1			1	1		1		3
CW4d		11			1	1		1		2	2		1	1		1 !		4	3			1	1		1	1	1	1	3
CW4r			1	2	2							1				2	1	1	1			1	1			2	2		1
CWEd					1	3	31	1			1	2		1		2	1		2			1	1		1		1	1	1
CW5r	2	3		1	1	1	1	11									1		1		1	3					1	2	
CW6d	2	1		1		2				1	1	2	2				1	1	1		2	1	1	1	3			1	2
CW6r		1		1	3							1	2				1	1			1			1			1		1

The indications for BU, WY, OR, etc., were then distributed in the same table, but the positions indicuted were reduced to initial settings.

This process was continued for all the other pairs in the digraphic table, with this final result:
Tabis VII

Note now the number of indications for CW1d at F; it is 24 as against an average of 11.0 Note now the number of indications for CWid at F; it is 24 as against an avcrage of 11.0
for all other alphabets and positions. This means that not only are we dealing with a "V" message, but also the theoretical expectancy, 19, was really lower than the actual, 24, and that there are more repetitions in columns than was anticipated

As a check on this result the same process was carried out for interval 2, that is, tho letters of line 1 taken to form pairs with the letters in the same columns of line 3 ; those of line 2 with those of line 4, etc. The total number of tabulations is 260 , the expected number of coincidences, 17. The actual number found for the setting F, CW1d was 20 . The percentage of coincidences for $286+260=546$ digraphs for the setting F, CW1d is therefore 8.1 percent instead of the theoretical 6.6 percent.

This result is really better than was anticipated. There can hardly be any doubt but that the right wheel and setting have been found. In less-fortunate cases, it may be necessary to tabulate and sum the data for several intervals before a conclusive result can be obtained.

It should be observed here that the occurrence of the " 650 " break in a message may rill neme dificulty in the actual test. Any two lines which have the break between thom is practically negrigible. For example, in using interval 1 only one pair of lines at most will be incorrect, viz, those with the break between them; for interval 2 only two pairs, etc. In a message of at least six lines, the correct result will still be obtainable.

Having found the correct setting for the cipher wheel in position 1, it follows that the letter D in message indicator $D M S C H$ must equal F_{p}; also F indicates that a wheel is in the direct position.

When message Serial No. 169 was converted so as to remove the first cipher wheel from consideration, the following polyulphabetic message resulted:

$$
\text { Figure 31.-Serial No. } 169 \text { converted }
$$

DZTUCUROQOCRDPOGQRRYVHQE
QAWGRCTOBLETINJRTYJLRDVORE
VSUGIXXHGWNWRDMQVWBYXCTQST
EVLCHAORBHIMPMQPKIDRTEIEVF
RULZIAJDBSVXJVQMZGQUFYHISE
QXYZCZAOYENKJOJPITCWTPJFSK
DRWMKUCHASEVCJBTITERE.ZYJCS
SNGSIURZBLKKUOGKDYPAUUPQQU
BTWPRGHYLDGHFERFVAJCIEUQYS
ASBREKRYSEBRPBNRBAWACVPAPY
SXARIULILDDFREAVAHQZLOSBVD
SWPWKLAATEMRRBFANIQZSOSCYF
XXBICKCDWVRZXRBGEZVHIOFLBL
VTERMCKVLBPIGXHQALQCIEPVYF
VXGWMHWCVNSZFTYAVYQSMOKGWR
MOASSGJEYTGZWTVZJJSCECLAQQ
BGMUQGSQNDXNCUNZJSVCIENQVX
SPHIVNLAEJMAUYKQBPDCNZUUGZ
JUJTTKSMSKSZETRAVTYJKVCTNY
VUQINKVG

A study of the repetitions in the message and of the monoalphabets down each column seemed to indicate that the " 650 " brenk occurred between lines 6 and 9 . On using the analytical test based on coincilences, it turned out that the break was cither on line 7 or 8 and consequently the second letter of the message indicator must be either P or Q. The number of coincidences obtained when lincs 7 and 8 were tested with the preceding lines were so nearly alike as to yield no dofinite information. Hence, in the message indicator DMSCH, $M_{0}=P$ or Q.

Enough has been shown, it is thought, to indicate the procedure that was followed with
 lent meant "direct" or "reversed" constituted important collateral information.

After testing out the method on several unknown cipher messages and finding it to be efficecious, there sered to be no point in spending further time with similar cipher messege efficacious, there scemed to be no point in spending further time with similar cipher messages
with unknown plain text. After nll, the cipher messuges with known plain text would yield with unknown plain text. After nall, the cipher messuges with known plain text would yield
identical results in much shorter time, since identities of plain-text letters were indicated in the messages themselves when transcribed in lines of 20 letters. Consequently, all the plaintext messages were studied in connection with their cipher versions in order to shorten the time required for a complete solution. The possession of the 55 "known" cryptograms admittedly facilitated solution of the 110 "unknown." Nevertheless, the solution was not made possible by, and would not in practice require possession of, plain-text messages with their
cryptographic equivalents. After several days' work along these lines, many values and determinations were obtained from the procedure.
24. Consideration of "W" messages. -The foregoing methods are applicuble to "V" motions. How about " W " motions? In n " W " motion the first wheel is either stationary or moves conlinuously; the second wheel moves every 26 . The proper assumptions regarding the setting of the first wheel and its motion together with a correct assumption as to the second wheel makes the problem exuivalent to the one just discussed. This procedure is a bit more complicated since it involves trials on two wheels and the number of necessary trials is therefore greatly increased but otherwise the two problents are identical. There is no reason why such messuges cannot be picked out by the nhove procedure. In the present test such a situation did not arise because it was found possible to get sufficient information from " V " motions and " Z " motions (to be discussed) to obtain a complete solution of the problem.

A particular iden in this connection should be emphasized. Suppose that in a given scrics of messages all of the " V " messages are found before a scarch is begun for " W " messnges. In such a case, the number of trials mentioned above is considerably reduced, since in many of the " W " messnges the first letter will be known. Any wheel assumed in the first position will then be entered in only one possible setting and the determination of " W " messages will not be of much greater difficulty than the determination of " V " messages.

Similarly, after all the " W " messages have been found, a search can be made for " X " messages by assuming the first throe wheels, two of which will in some cases be known.

A generul solution can be arrived at by such a procedure.
25. First interval data, plain-text relationships.-It has already been remarked that the mossages most amenable to study are those whose motions are cither " V " or " Z ", but as yet nothing has been said about the latter. In such a n notion, if the message is written out in lines
of 26 , and letters down a column are considered, the fifth wheel is the only one which has mored. of 26, and letters down a column are considered, the fifth wheel is the only one which has moved

Suppose that the wheel in position 5 is CW5d set at A, and that the plain-text letter being enciphered is E. The current passes from E on the RFS to Y on MAL5 thence to Y on NAL5.

> RFS.-..-_YLVRZXCPFOIQAMJBNSEEDGHTUW
> MAL5_-.-J ORXQEGISCFNAUZMHVYLKDBTWP
> NAL5.....ABCDEFGHIJKLMNOPQRSTUVWXYZ
> Figure 32

From this point on, it goes through the remaining four wheels, finally emerging at some cipher letter θ_{c}. After the encipherment of 26 letters, CW5 has moved to setting Z.

$$
\begin{aligned}
& \text { MAL5 _--. P J ORXQEGISCFNAUZMHVYLKDBTW } \\
& \text { NAL5 ...- ZABCDEFGHIJKLMNOPQRSTUVWX }
\end{aligned}
$$

If now the plain-text letter be Z, the current passes from Z on RFS to X on MAL5 thence to X on NAL5. The current is now at the same point on BS4 as the current for the preceding E. Since the other four wheels are in identically the same position as before the path traversed through
them by the current is the same in both eases and the same cipher letter will result. It thus follows thant for CW5d set nt A, the sequence EZ of plain-text letters at a distance of 26 will yield a cipher repetition. Similarly the sequence $A B$ will yield a cipher repetition. Continuing it becomes possible to sct up 26 digraphs which represent all the possibilities plain-text pnirs wh

Tabie VIII

AB	HM	NP	UE
BD	IC	OT	VX
CQ	JK	PS	WV
DL	KG	QN	XH
EZ	LA	RW	YF
FR	MU	SJ	ZY
GI		TO	

It is to be observed that it makes no difference just what the cipher letter is. That will depend on the first four whecls. The essential element is the fact that the cipher letter reperts. Any digraph not contained in the above 26 cennot yield a cipher repetition for CW5d set at A.

Let this procedure be carried out for every wheel in every setting. A series of tables will then be obtained which will give the 26 digraphs corresponding to cipher repetitions for any particular wheel in any given setting. It is, of course, understood that this information will apply only to interval 1, i.o., to letters which are 26 apart in the plain text.
For intervals other than 1, a similar procedure can be followed which will give the same type of information. Thus, one can construct tables which will give the correct digraphs for interval 2 or interval 3. It is, however, possible to derive all of these further tables from the tables for interval 1. For if $P_{1} P_{2}$ is a possibility for CW1d at Y and $P_{2} P_{3}$ is a possibility for CW1d at X ooth being considered for interval 1, then $P_{1} P_{3}$ is a possibility for CW1d at Y for interval 2 imilarly if $P_{4} P_{5}$ is a possibility for CW1r at A a ${ }_{A} P_{0}$ is a possibility for interval 2 on CWir at A

It is possible in this way to combine digraphs for different intervals and get desired informaion about any interval whatever. All of this information can be conveniently combined into (Appendix IV) To CW1d. The letters down the outside of the box represent the settings of the wheel. If, for CW1d, digrophs are desired for interval 1 at setting A, the first letter is rend from line A, and the second is found by reading dingonally to the right, thus YT, HX, ZY, ete. For interval 2 at setting A, the first letter is again found on line A, the second is one removed along the diagonal, e.g., YC, HL, etc. In every cuse, the first letter is found on the line corresponding to the desired setting and the second letter is obtained by reading diagonally downward and to the right. The distance between the first and second letters of the digraph is the interval under consideration.

Suppose the tables for interval 1 are inverted, i.e., suppose that the data above obtained is rranged with respect to the digraphs and not with respect to the wheels and their settings. This will be found in Appendix V, "First-Interval Data, Plain-Text Relationships". Then the
tables will give information of a different character. Thus, under the letter B, it is found that the digraph BJ will yield a cipher repetition for each of the following settings:

d	r
$1 Y$	$1 D$
$2 M$	$2 T$
$3 F$	$3 Z$
40	$5 T$
$4 R$	$5 V$
$4 Y$	

Figure 34
The diagraph BN will yield a cipher repetition only for CW4r at 0 ; there is no other possibility Similarly, any particular digraph is associated with a definite set of possibilities for the wheels and their settings. It is interesting to note that the wheels are so constructed that no plaintext doublet can ever yield a cipher doublet for interval 1 .
26. Application of plain-text relationships to messages with known plain text.--The pplication of the above information to the discovery of " Z " messages when the plain text is known is very simple. Consider Serial No. 155.

1 1 $1\left\{\begin{array}{l}\text { KCMTZVUFELYTDQRRTNUXCSOFNE }\end{array}\right.$ $2\left\{\begin{array}{l}\text { DINGLINESSEXTENDINGFROMABOU } \\ \text { SWHXDVWIWGPHZOBRAHXCBYFKEH }\end{array}\right.$ 3 TE EGHTKILOMETERSWESTOFNAZI ANGNORTHTOLIUHOPERIODNOSER
 $5\left\{\begin{array}{l}\text { I OUSFIGHTINGBUTSKIRMISHESB } \\ \text { O }\end{array}\right.$

 8 II ODCELEBRATIONOFREPORTEDVI 8 DGBFEGKKOLGXLHVFSPTQFXHTIX
 9 JJSNQUCBHHSNXZOGZDRUIAOWOAB

 SGKQPGORPKAUMCYJJRVMBBS $12\left\{\begin{array}{l}\text { EREDISPERSEDBYPOLICEANDNOS } \\ Z \mathrm{SA} \text { G G }\end{array}\right.$ [ZSAKGDFHWSWLEJGQDDUDZRNNCE

 15 ESIGNSOFGRADUALLYRESUMINGN NNWDMABELBRNGNTLUIKQCCFCS

 EENASKEDBYHISGOVERNMENTWH
 19 HISRELATIONSWITHMEWERENOTC $\begin{cases}\text { DLERZCPEAJURMUDWRUSAMDJMDP } \\ \text { LI }\end{cases}$ OLOSERPERIODOURRELATIONSHAV 20 BLMBUDZGKHEFXABVKNHYQTFELR
 ASKEPTUSFULLYINFORMEDOFAL

STEPSHEHASTAKEN
$23\left\{\begin{array}{l}\text { STEPSHEHASTAKEN } \\ \text { EHZLCPLZRXLOWQPGOP }\end{array}\right.$
fiaure 35
On lines 1 and 2, the plain-text digraph EI corresponds to the cipher repetition VV in column 6 and to the repetition RR in column 16. If the message is a " Z " message, then the only pos sibilities for the last wheel are

\mathbf{d}	\mathbf{r}
2 G	
2 II	3 B
2 W	6 E
3 B	
$3 \mathbf{Y}$	
4 I	
6 B	

Figuri 36

Now consider the digraph GE which in column 18, lines 2 and 3 corresponds to the cipher repetition HH. The possibilities which it yields for the fifth wheel are

d	r
$1 W$	$2 M$
$1 F$	$3 M$
$2 H$	$4 H$
2 L	$4 R$
$3 H$	$4 Z$
$5 W$	6 B
	6 J
	6 T
	6 X

Figure 37
But it must be remembered that in passing from line 1 to line 2, the setting of wheel 5 has changed in the reversed direction for a direct wheel and in the normal direction for a reversed wheel. To compare the second set of possibilities with the first, it is therefore necessary to compensate for this shift. The second set of possibilities will then become

d	r
$1 X$	$2 L$
$1 G$	$3 L$
$2 I$	$4 G$
$2 M$	$4 Q$
$3 I$	$4 Y$
$\mathbf{j X}$	$6 A$
	$6 I$
	$6 S$
	$6 W$

Figure 38
It is now found that only one entry is common to both sets, viz: CW2d at I. If the message s a " Z " message and the fifth wheel is $2 d$ set at I, it should be possible to check this fact by using other cipher repetitions, for example, WW in column 12, lines 3-4. The plain-text digraph to which it corresponds is EI and one would expect $2 G$ to be listed as a possibility under this digraph. This is found to be the cose. Similarly, the digraph TH in column 15, lines 5-6 is found to check. 'The necessary conclusion must then be that we are dealing with a " Z " message whose fifth wheol is CW2d initially set at I.
If a procedure such as has been outlined above does not result in one setting common to all the possibilities, the message cannot be a " Z " message."

It is thus seen that if the plain text is known, the discovery of " Z " messages is a matter of relative simplicity and that each time such a message is found the identity and position of he fifth wheel are determined. But this is not all the information which is obtainable. The same test that has already been applied will give information about the first two wheels.
' If only one or two of several yield appazent contradictions, they may be the result of factors which are
explained in what follows.

To see how this comes about we proceed as follows: Consider the cipher repetition BB on ines $20-21$ in column 1. The corresponding plain-text digraph is LE. Since the fifth wheel is originally set at I und progresses in a reverse direction, it sloould have arrived at R for line 20 . In other words, one of the possibilities which should appear under LE in the tables of interval The, lines of 26 , the first column should be that one which corresponds to H on the first control wheel. This consequently be erpected that some of the columns would be out of place. That is pxnctly what happens in this cose. Column 1 really belongs on the right of column 26 und the digraph BB should appear on lines 19-20 rather than on lines 20-21. For these lines, it would be expected that LE would correspond to 2Qd, as it actually does. (One must be careful not to overlook this fact in searching for " Z " messages.)

The question now arises: "Does column 2 belong on the left or right?" In order to answer it, one must first find a cipher repetition in column 2 and check the corresponding plain-text digrapl against the tables. When this is done with LL on lines 10-20, it is found that column 2 really belongs to the right of column 1 .

The continuation of this reasoning introduces the use of other intervals than 1 since neither column 3 nor column 4 contains a cipher repetition at that interval. But this is not an essential difficuity. The usc of interval 1 up to this point has been purely a matter of convenience; any other single interval or even any combination of intervals would have given the same results. It is found by this procedure that columns 3 and 4 also belong on the right leaving column 5 as the H column of the final set-up.

These results have two important consequences. In the first place, the letters $\begin{aligned} & J \\ & K\end{aligned}$ at the beginning of the message must stand alone at the right end of line 1 . They correspond to a different setting from that indicated by the letters beginning $\begin{gathered}\text { N E S S E. }\end{gathered}$ was these latter letters which corresponded to the setting 2Id. Consequently the message really begins with the fifth whecl 2 d at J and not I .

Secondly, since the fifth column corresponds to H on the left control wheel, it follows that the initinl setting of the control wheel is L. Moreover, that initial setting gives the setting of the first cipher wheel. This means that the indicator EQPRZ of Scrial No. 155 is deciphered as L...J.
This is not yet all the information which might be obtained from this message. Suppose it were long enough to contain the " 650 " break. Could not that break be located by the same procedure? To this end let us theoretically consider the line on which the break takes place. This break is due to a motion of two of the first four wheels which had been stationary correct to . The relative selting of all four as a unit is therefore changed and it is no longe very property which permitted us to make use of the tables of plain-tent relationslips, and since it no longer holds, the line on which the brenk takes place will not checis with those above it. It will check only with thoso below it.

The application of this notion is quite simple. It is merely a nantier of finding the firs line which does not check with those above it. Serial No. 11i, indieator RSPVQ, furnishes a good example of this procedure.

erial No. 115

 1GGCBFHANWJIPDNACUMIIKLPLAV

 3 ESEFORCESASHOREINCLUDINGNA 4 UVTmENTYTfothousandthreemu DXXCPMXPMKRMUKYRPJTFLHGEK 5\{ $\left\{\begin{array}{l}\text { NDREDOFTHESETWENTYFIVEHUND }\end{array}\right.$ ${ }^{5}$ UUVKKYPLVEFMFSSDJANNLTPCLPY
 ZTNESEFORCESABOUTFIFTYFIVET s Ho USANDJAPANESEFORCESMOVIN GIJHBYKEvLIGFZvxyajcolguez g $\{$ GABOUTSHANGHATAREAFIFTYSEv PREDNDFRZLZLTJERGUCYKNDHMN

i1 ONKIANGTANYESTERDAYVERYLIT ${ }^{11}\left\{\begin{array}{c}\text { NKZANQKJLZKMIOALFOXFZPTOTT}\end{array}\right.$ 12 2 TLEPROGRESSMDEANDATTMELVE 13 Hundemohinesestideholding Jfhepgamyklmuhabjlorjpdahe
 15 REDCHEDWESTOFRATLTAYANDYES TERDABADOLDSHRBCNCLPC 16\{ERDAYHADDNLYAFEMOUTPOSTSI 17 (NGIANGTANBATTLEAREATTISEVI

 $19\left\{\begin{array}{l}\text { EXECUTEANENVELOPINGMOVEME }\end{array}\right.$ $19\left\{\begin{array}{l}\text { UAW JKSAWQQWCZCPFHZXKKBUPPB } \\ \text { U }\end{array}\right.$ $20\left\{\begin{array}{l}\text { NTSOUTHWESTTOCUTOFFCHINESE } \\ \text { KWMHYY }\end{array}\right.$

40
be A are represented by the prodtect of the normal frequencies of A and N since, according to the table, AN is one of the digraphs to be sought for at interval 1.

It now follows that the chance for the appearnnce of any cipher repetition regardless of hat plain-text digrapli it may represent, is obtained by summing the results for all 26 corrce digraphs. The calculations are given below:

$\mathrm{AN}=0.072 \times 0.076=0.0055$	$J M=0.002 \times 0.025=0.0001$	$\mathrm{SB}=0.058 \times 0.012=0.0007$
$\mathrm{BZ}=.012 \times .001=.0000$	$\mathrm{KU}=.004 \times .030=.0001$	$\mathrm{TL}=.000 \times .036=.0032$
CS $=.034 \times .058=.0020$	$\mathrm{LJ}=.036 \times .002=.0001$	$\mathrm{UE}=.030 \times .126=.003$
$\mathrm{DK}=.040 \times .004=.0002$	$\mathrm{MW}=.025 \times .014=.0004$	$\mathrm{vA}=.013 \times .072=.000$
$\mathrm{EC}=.126 \times .034=.0043$	$\mathrm{NQ}=.078 \times .003=.0002$	$\mathrm{WT}=.014 \times .090=.001$
$\mathrm{FY}=.030 \times .021=.0006$	$\mathrm{OV}=.074 \times .013=.0010$	$\mathrm{xO}=.005 \times .074=.000$
$\mathrm{GF}=.018 \times .030=.0005$	$\mathrm{PR}=.027 \times .083=.0022$	$\mathrm{YG}=.021 \times .018=.000$
$\mathrm{HP}=.033 \times .027=.0009$	$\mathrm{QI}=.003 \times .076=.0002$	$\mathrm{ZD}=.001 \times .040=.000$
$\mathrm{IH}=.076 \times .033=.002$	$\mathrm{RX}=.083 \times .005=$	

The expected theoretical number of cipher coincidences at interval 1 is 0.032 of the total number of tabulations. The average incorrect result is $\frac{1}{2 a}$, since it may be assumed that all cipher digraphs have an equal probability of appearance. Hence, the average incorrect result is 0.038 against a correct result of 0.032 .

In considering cipher repetitions on the first and third lines, it is necessary to use interval 2 imilarly, in comparing line 1 with other lines of the message, new intervals must be introduced The correct results for CW4d at S (as calculated above) are given here for a few intervals with the corresponding incorrect result in each case

Table ix

Interval	${ }_{\substack{\text { Curreel } \\ \text { realt }}}$	$\underset{\substack{\text { Incorrect } \\ \text { result }}}{ }$	rval	${ }_{\substack{\text { Correct } \\ \text { resill }}}$	${ }_{\substack{\text { limurreet } \\ \text { rusult }}}$	ervul	${ }_{\substack{\text { Corroel } \\ \text { result }}}$	${ }_{\substack{\text { Inumrenet } \\ \text { result }}}$
2	0.043	0. 038	7	0.048	0. 038	12	0.034	0.038
3	. 034	. 038	8	. 043	. 038	13	. 034	. 038
4	. 038	. 038	9	. 037	. 038	14	. 043	. 038
5	. 031	. 035	10	. 048	. 038	15	. 033	. 038
6	. 038	. 038	11	. 045	. 038	16	. 013	. 038

Should one wish to study repetitions between line 2 and the lines below it, it would be neccssary to consider wheel 4 as being set at R. The results obtnined for the first 15 intervals of this setting are:

Interval	${ }_{\substack{\text { Correct } \\ \text { result }}}$	$\underset{\substack{\text { Ineorrect } \\ \text { reail }}}{ }$	Itatrval		$\underset{\substack{\text { Incorrect } \\ \text { result }}}{ }$	Interval	$\underbrace{\text { ater }}_{\substack{\text { Correct } \\ \text { result }}}$	$\underset{\substack{\text { Inecrreet } \\ \text { result }}}{ }$
1	0. 042	0. 038	6	0. 036	0. 038	11	0. 041	0.038
2	. 033	. 038	7	. 032	. 038	12	. 030	. 038
3	. 031	. 038	8	. 045	. 038	13	. 033	. 038
4	. 042	. 038	9	. 032	. 038	14	. 036	. 038
5	. 0.43	. 038	10	. 040	. 038	15	. 030	. 038

41
These results seem to indicate that the incorrect result is often larger than the correc one and that even in those cases where the correct one is greater, the difference is not very appreciable. In other words, a mere count of cipher repetitions cannot give any information as to whether or not a message is in a " 2 " motion.

However, it is to be expected that the distribution of the repetitions will vary with the robabily. For exnmple, if the correct result for two lines is 0.045 , it is natural to expect more cipher repctions between them than between two hines whose probebility is 0.030 . It seems reusonable then to multiply the number of repetitions between two lines by the corresponding probability and to sum the results for all possible pairs of lines. Such a procedure was followed in several tests and tho following results were obtained. (In most cases the ncorrect settings were picked at random. The correct one is the first one listed.)

$$
\text { Serial No. } 139 \text { (10 lines) }
$$

1Cd 1Dd 4Ed
Serial No. 131 (10 lines beginning as in cipher message)

4 Sd	1Bd	1 Ed

Serial No. 131 (10 lines beginning at proper position)
This test assumes a knowledge of first control wheel

4Sd	1 Ad	1Bd	1Cd	1Ed
14108	13098	13941	13488	13929

Serial No. 131 (17 lines beginning at proper position)
[This test assumed that there was no break in the first 17 linew]

$$
\begin{array}{cc}
4 \mathrm{Sd} & 1 \mathrm{Ed} \\
58401 & 58192 \\
\text { Fraure } & 41
\end{array}
$$

The results obtained above do not seem very satisfactory. In several cases, an incorrect setting gave a lurger total than the correct setting. Even in those cases where the correct setting gave a larger result than the few incorrect positions used, the percentage difference was very small. Consider the final test, where 17 lines were used. The difference between the correct and incorrect settings is $\frac{299}{58401}$ which is one-half of 1 percent. It appears that one cannot determine "Z" motions by comparing the cipher repetitions between pairs of lines only. One must use more than just two lines.

It is not difficult to see how this can be done. It has already been shown that for a given wheel in a given position a cipher repetition between two lincs, at any interval whatever, can represent only 1 of 26 possible digraphic combinations. To put it differently, if the plain-tex quivalent of the first or the wo cipher lettersis arbitriny a if fled, the er more like cipher letters pacar down any one column and a plain-test equivalent is assigned to any one of them, tho equivalents of the others will be fixed. Naturally, these equivalents will vary with the different wheels and their different settings.

To illustrate this notion, consider Serinl No. 155. If this message is written out in lines of 26, the cipher letter D is found to appenr five times in column 1 , the first appenrance corresponding to the setting H on the correct wheel, 2 direct. The positions of the other letters D correspond to the settings, $C, X, R, 0$. These letcirs $, C, X, R$, 0 give the intervals between the repeated cipher letters, viz, $5,5,6,3$. If we assume the first D to be represented by A, then the second must
be B, because the tables give $A B$ as a correct digraph for inierval 5 when If B, because the tables give $A B$ as a correct digraph for interval 5 when wheel $2 d$ is set at H. interval 5 and for wheel 2 d set at C . The fourth and fifth letters in this same way become G and J, so that finally if the first of the set is A, the entire set is ABWGJ. This snme wrocedure can be curried out by assigning ench of the 20 letters in turn to the first of the cipher letters D and as a result, the following sets of 5 letters arc obtnined:

KIYMNHBTLOZQXVWGSFJDERACPU LDVCJONIPZYHMKWTFSQARUBXEG J GBAOXLEUZVMHNSFRDITYCWPQK PUZIFKVHTJOYNRCAXMSWDLGEBQ M Q H X WYSARKCOBFNDVTZUGEJILP

Frovie 42
The number at the foot of each column represents the sum of the relative frequencies of the letters in it. The highest of these sums, 397, which comes from the set TIEHA is found on comparison with the known plain text of the message to be the correct set of letters.

Given any set of repeated cipher letters in a column, it is possible in this way to relate to it 26 sets of plain-text letters, provided, of course, that the entire set of cipher letters is contained This notion of 650 .
This notion can be extended still further. Suppose a fairly long message is being studied and that the original positions of the control wheels are known. (Such an assumption is not unreasonable, since this information is obtainable from a study of " V " messages.) In such a properties of the "703" cypre letters in one block of 050 to letters in other blocks by using the both of the fixed sequences.

To illustrate the procedure, consider Serial No. 115, on which the proper breaks have been indicated.

IH

WUBEGCLLLVCOFQGOZABXORBOUEMF TX
XT DUPWDEKTDVUUDMOBTWUJPDOMFX SY YS DXHCPWXPMKRMUKSYRPJTFLHGLK RZ ZR U VKKYPLVEFMFSSDJANNLWPCLPY QA AQ J R CEGXTGMIBAVTIGPCCVZYPLBC PB BP OSDKOBARZAPHONMGMKMXTJJRTDOC CO GIIJHBYKEVLIGFZVXYAJCOLGJEZ ND CN
EM HBZDTLADJITFFZVCTCKCYAKOIK LF
FL NKZANQKJLZKMIOALFOXFZPTOTTKG

To see what plain-text letter the second G represents, it is first necessary to shift the last wheel to the setting $\mathbf{C}, 7$ places removed from V. Then in this position the strips appear as follows:

$$
\begin{aligned}
& \text { RFS....-- YLVRZXCPFOIQAMJBNSEKDGHTUW } \\
& \text { NAL6...... CBAZYXWVUTSRQPONMLKJIHGFED } \\
& \text { MAL6r---K KGYVMANDRTHLBIJZEQXSOWFPU }
\end{aligned}
$$

\qquad E $\underset{\downarrow}{\mathrm{d}} \mathrm{DNSXUPQYVHAMBKRFJLZITOC}$

Figure 46
The last four wheels are in identically the same position as before. Consequently, if the current emerged at G, it must have followed the same path as before and must have come from \mathbf{G} on CW6r. G on NAL6 is opposite H on RFS. It is thus seen that the second of the cipher letters represents H . This result checks with tho results as shown in the table. Suppose now that the letters in the second block are being considered. Since 703 leaves a remainder of 1 on being divided by 26, it is necessary to relate the letters of column 1 in the first block to those of column 2 in the second block. Moreover, as a result of the shift in the fixed sequences, the letter G of block 1 must be related to D in block 2 . The second column of block is found to contain the letter D three times. The second of the letters G having been supposed to be on line C , the first D will be on line K . For this line, the setting of the strips becomes


```
[4 Intervening wheels]
```



```
Fradre 47
```

In this setting the first four wheels are in the same position as before, but have been shifted one place as a unit relative to the LuFS. The path of the current to D on the LFS from MAL6 will be the path previously followed to G on LFS from MAL6r but will be shifted down one place along its entire lengtu. This means that the current to D on L w must have come from S on MAL0r and therefore from E on RFS. D_{0} on line C must therefore represent E

The equivalents of the remaining D_{0} 's in column 2 block 2 can now be obtained without difficulty.

If the cipher letter N appeared in column 3 of block 3 , a similar procedure to the one de cribed above would determine the corresponding plain-text letters. Here again a shift of the scribed above would determine the corresponding plain-text letters. Here again a shift of the fixed sequences must be introduced in the same way as before. This method of relating letters
in each of two or three blocks of 650 makes it possible to study larger sets of letters than would otherwise be obtained. For example, in Serial No. 115, more than 25 sets of such letters were found where each set contained at least 5 letters. In a message of but one block, the occurrence of even four or five such sets is rare.

For each assumption as to the identity and original setting of the fifth wheel, 26 combinaons of plain-text letters can be assigned to each set. For, by the above procedure, after any one of the cipher letters in such a set has been arbitrarily assigned a plain-text valuo, the equiv alents of all the others can be determined. To illustrate, consider the cipher letters G, D, and Nin columns 16, 17, and 18 of blocks 1,2, and 3, respectively. The total number of occurrence of these letters is 7 and the sets of plain-text letters obtained on the assumption that the fifth wheel is CW6r at V are given below:

B GSPAHXMOZQTVEKYNDFIUJLBCRW
C EFMTCJIXAURKDLSGOQWBVNPZYH
N JZXAVCDHIOMLEBQPRKUFSWGNTO
Q BXOTWMRNZGEJICHLQDVUKYASPF
R CIUYJZSXHKBQPTVAGRWDLMEFON
M HFMRZQLXKGOWAXSJICVETPNUDE

Fradix 48.-Columna 16, 17, 18-GDN
Of these sets, the combination ATATYRO represents the greatest total frequency, viz, 502. On reference to the known plain text, this set is found to be the correct set.

It now appears that for a correct assumption of the fifth wheel, the proper letters will be ound from a set of 26 possibilities by a summation of frequencies. That the correct letters correspond to the greatest sum is substantiated by the fact that only one exception was found in more than ten tests of this nature. Hence, it may be assumed that in each group of 26 sets the column giving the greatest sum is the only one to be considered. Suppose such a procedure were carried out for every set containing at least 5 letters, not only for the correct setting bu also for all incorrect settings. How would the grand total of the frequencies of all the sets in he correct case compare win or
 eages which are sufficiently long. Unfortunately, this is not true for a message of the size of

47
Serial No. 115. A series of testa carried out on the latter message gave negative results as follows:

CIpher Rettera	Columna	$\underset{\substack{\text { Corroot } \\ \text { mitily }}}{ }$	Ineorreat
GDN	16	502	560
zIT	17	417	471
Hav	19	383	415
FJL	26	468	436
EED	25	455	383
KRF	7	210	414
JLz	19	308	505
		2,743	3,184

Unless one can obtain longer messages, the methods herein discussed will not permit the discovery of " Z " messages whose plain text is unknown. Some other plen of attack will hav to be devised for use in such cases.

Appendix I

INSTRUCTIONS

TEST OF HCM
April 1, 1932.

1. There are four sets of variables in the HCM which must be adjusted before a message can be enciphered or deciphered, namely:
(a) Code-wheel arrangement
(b) Code-wheel lineup
(c) Control-wheel setting
(d) Ratchet action

The code-wheel wirings and end wirings are semipermanent, but remain unchanged for long periods of time. They will remain fixed for this test.
2. The method by which the above listed varinble adjustments are set is as follows:
(a) Each message contains an external indicator which shows, by reference to a printed cipher or list for the date in question, the initial key and hence the set-up of the HCM. It also shows which one of the six cipher wheels is to be omitted from consideration for that day. Ordinarily, the initial key would change daily, but for this test it will remain the same throughout.
(b) In each message, a message indicator follows the external indicator. With the HCM set up as determined by the external indicator, the message indicator (5 letters) is enciphered on the HCM. This encipherment produces the message key. By the use of a simple code, the message key determines an entire new set-up for the HCM. The set-up thus obtained is made and the encipherment or decipherment of the message proper now begins.

The message indicator, and therefore the message key, changes with every message.
(c) The actual set-up of the four variables is derived from the key as follows:
(1) Code-wheel arrangement.-If the key were YSRIP, for example, the order of the wheels would be $5,4,3,1,2$. A table in the cipher shows whether each wheel is to be used in the direct or reverse position. If the table were

$$
\begin{aligned}
& \text { Direct........ ABCDEFGHYJKLM } \\
& \text { Reversed_... N O P QRSTUVWXY }
\end{aligned}
$$

the code-wheel arrangement would be $5 R, 4 R, 3 R, 1 D, 2 R$, since Y, S, R, and P in the table show that the wheels are to be used in the reversed position, and I in table shows that its wheel is to be used in the direct position. The wheels are then placed in the HCM in that order and position, from left to right.
(2) Code-wheel line-up.-The key itself is used as the line-up setting of the code wheels. Thus, wheel $5 R$, which is now installed as the left-hand wheel, is set with the Y (on the wheel periphery) against the bench mark; wheel 4R is set with S against the bench mark, etc.
(3) Control-wheel setting.-The first two letters of the key are used as the control-wheel setting. Thus, the left-hand control wheel is set at Y; the right-hand wheel at S.
(4) Ratchet action.-The arrangement of the code wheels has already been derived as $5 R$, $4 R, 3 R, 1 D, 2 R$. The first two digits, 5 and 4, are applied to a table in the cipher to find the ratchet-action setting. Such a table would be

[^1]Appendix II BASIC CIPHER-TEXT SEQUENCES

z	VMGQIHEKYWFZXNUJSDPBRTLACO
\mathbf{Y}	CHBDYWAGRVOJIUSPLXNQKFEZMT
\mathbf{X}	ETAKNVOMDFHCLTPXQZUSYRJGIB
W	KGEMRSHCBNJATZOQUYIP
V	ORDGBFXATKSLMEICYPVWQUHJZN
U	SCFNDKJUMERXZBGWTVQHOYPALI
T	WXTJSNRLPBGFUIKDOEHYACVQMZ
\mathbf{S}	IOUELXSFZQKDJPWRNCG
R	KWCPGZUXJIYRNLQOFSTDMHBEA
0	HROTQDIPULWVFSZYCJXENBAKGM
\mathbf{P}	BAFCEYNWQPZOHJXIVTLUGSKMRD
0	NKMJTGVSOYQICALUWHEZPDXRBF
N	JSRBLEDHXCVYWTMZPO
M	RLXFKZGNAUTHVOEBIQCMDWYSPJ
L	LFEUJRIDSMPEAHCGKWYTBNOVXQ
K	YZJIPLFWNXBQGMATDROVEKSCHU
	PVILWQZJOSUKYDBMENFCHGRXTA
I	MQHWZOYILCXPRVNKBGSJTADFUE
H	GByAOICVWZTUQFHSRKDXLEMNJP
G	Q.DKVMCWTHOIEPYJAXFRNUZGBSL
F	ZYNRHBTOEACWGQyLMUJFSPIDKX
F	UIVSFAKECGMTODYHZBPLJXQWNR
D	FPWHXJMRGTDBECNVAIKQZLUYOS
0	XJQOAULBFDENKGTSHMWRYIZPVC
B	TULYCMPZKJNGSRDEXABOFVWIQH
\mathbf{A}	AEPZVTBQIRLSDXFNGUMKCJHOWY

> VFIXNHWQDOKECMALGYTBPJSUZR FHJWUSAOYNCRGTBMZDVEKQLXPI WJALOPXMCVSTFDEKBINHGRYZUQ YOLMZCQUBTHXEJNGRKWSADFVIP QVCZBITYPKEAUGLSDFROXMNJHW OYHTIKWEVQRGMPDZXNJFCUBSLA MCVAEWROGHYFDBQNIUSLJTPKXZ IBTHMGOFCDAVJNKYSWPXZLEQRU PWKEABDCJTNMHLSRVXOQUIZGYF JQORGMKNTLESBAZXFHUCYPWIDV HLYCFDBRSEZGXKMIUJAPTVQOWN SAZVTJNKFXGIDURBWPLMQEHYCO CXMIHELSRJUDWNPFKOQZBYGAVT ETUBWAGZXFLPNOSQJRCYIKVDMH AGEPKOMDIUJZQSCXYLFTVWRHNB KMDGQRCBNWPLIYXTUVZJEHOFAS XRBNDYFTKSOQZWVUEPHILGACJM BUFKSNVJERXCYIOHPGQAWZDMTL ZKPJRXSHLGFUTVWCAQDYMOINBE GIRQLFUXAZDJPEHOTMYNVBCWSK RDWFYZJPUMINLQGACEBVSHKTOX UFNOJVILQPBWSZYDMTGKHXAREC TPJSCLHWZYQKOXIVNBEDRAUMFG DEQLXTZAOIVYRCUWHSKGNFMPBJ LNGYZUEIMCWHVFTPOAXRDSJBQK RZSDVIPGWBTOAHJEQCMUFNXLKY

UFIZRMYJNOQEHBVAXSDCGTWKPL ZPJWIFBVLSCYGAKHMUXNTDEORQ YIQLOWJKHZXTVDMRABPUSENGCF JVWYZCOLRAIUEHNBFMKQPXGSDT ELHOVITCZFMWPGASKJBRYQUDXN

 PXDIMTAOGEWLKCYNBUFZRJHVQS
XQUNWBEMCDGOZRTVSKPJIFLAHY XQUNWBEMCDGOZRTVSKPJIFLAHY
V UUPSOKGBTNDCIFEHXRQLWJZMA VUYPSOKGBTNDCIFEHXRQLWJZMA
MHPVQXCRDKESNTWJGAUFYZOLI B KBAQHYUTFNRGXSEOLDMPJVICZW ORKMYAVPEJSFDUXGCZNBQLHWTI WCFRBVMHQGLXJNPUDTISKYZAOE GOTJFKHBAYDZUESOPNEWXRYTMC GOME TDCELJRAKMVNIPZXYQSGOUFHWB
KENTGZLFMRBHSWQIUVYXDCPJAO KENTGZLFMRBHSWQIUVYXDCPJAO
CRGSEDIZJBFKAXOYWPHVUNTQLM
 IKEJNUDSOWZRLFBPTHCYMAQXGV HWRGLSPNXCOIFZJKQEATVBMYUD NAOFDZXQSUTCWJILRYGMEHKBVP QSMCJNIUYXPETOLWZFVDBGARKH AYXBTLSWPVUQGECZOIJHNKDMFR FMVUKEZXOQHPYDGTICWLASRNBJ LJBHPRGIUCYAQVNDEWTOZMXFSK

IDJOLARMHCBSQXWEPKGUFZVYNT

 EWNLCZMFBATKXYUOGQRDPJIHVS XGOSZTIBJKMERUVPCDYFNQLTAH AUDCXIEWKLRBGFPHQTNVJSYZOY BMPNTUTGORZFKDJQAYESHLXVIC TKBQSEPODCFIJRNLYMVGXAZUHW TKBQSEPODCFIJRNLYMVGXAZUHWOERKYXGQCNTJWLFSZVBHDUMIPA OERKYXGQCNTJWLFSZVBHDUMIPA
MCGFRVUDYTSELOZJXIHKANPBWQ MCGFRVUDYTSELOZJXIHKANPBWQ
$\mathbf{Y B T D J F H P N T E X G Z C I L U W A R M S Q K O}$ CVKENLJAQSHGUDITWZPOMFBXYR FTHRGSZLMYXADPNWEOIQCBJKUV HJEAFDXIZBVUMNQSOGCTYTKLRP QALGMJNUTIKHPBSYXGDTOYERZ JYMZDBLSPOWRAQKXVUTNECHGFI JYMZDBLSPOWRAQKXVUTNECHGFI WLVBINKZXQCOFMYRUHPESGTADJ
LOZHKWSRIUYTCJBVFPAQGXDEMN SZCIAROXFWPVETLKHJQMYDUNGB KXITWMFCUJOQHGEZRALYBVNPSD NRUWEOBJTPLCYADGIFMZVKHSQX USFPOGCKLEQZTVMNDWJBIHRAXX VPXJQCDTRZGYIEHBSNOLKWAFMU PHQULYTNEFIDVWGAKXSCZROMJB KQAYPZVESGJTNHODMRUXTIFCBL KQAYPZYMQIHGXDLOSACNBFPUETJTK RIFVBHYWADUNZCXMTSKJQPGOLE GFWJHKAVOMNPSITUBEXRLYQDCZ

KYBFORSUQJDXMEZTAPICHVNGLTH ORVKJCFXPYLNUBGIEMQWTAHSDZ ICFHRLTJUQVZSPKDWGBYOEMAXN STTJAFZELPYHIXQRNODKVCGBMU PXOELMJTGZQVAWUYFSCNRHTDKB PXOCGZBLDTYHOPVJXTSFAENR KQUCGZBLYDIYHMOBGUGEXJYGS FRYPTDIKZONTVABCQHLUEXJYGS XJFVQENWRICSOHMKTYAZPGULBD
NULJHYGSOFTTXCABREVMIQDPZK NULJHYGSOFWTXCABREVMIQDPZK
RSPZLAVDXCJOEUTMKFGHBWYNQI RSPZLAVDXCJOEUTMKFGHBWYNQI WFXQIZMHNUTLCGPEBRJDAKOVSY VOJUYWIBASPEZTDQGKFLNMRCHX UHCLPVOWKMXQGIENYDRJZSBFTA YPATZOHCORBUYDWGSVNFLIXKJE MPATZQHORGKPVODXHSJZWURI GBQMEIYATCFKPVNODXHSJZWURL ZDKYBGTVMETJRQHSCNUAXLIOPF JINRVKDOHBGELFYAXTSPMUZWCQ YLTSFHRNCAKDGZJVMUEXQBPIOT EVZOXJAFSTMRNDILHBPGUYKQWC TGHICULMJXEBFSNWZAKQDPVRYO CEDAWTPZBLUGKJXSOIMRYNQHFV HTGNMOEQIKZPDRLUXCWBFVSYAJ HEDSBCGY:RIQNFZPUTOKJHXVM LAEDSBCGYYOFYSJIQPECRLAUH BZMGNXKTDVOFWYSJIQPECRLAMH

AKIBDSURENHCJOVXLWYQGTFZMP | AKIBDSURENHCJOVXLWYQGTFZMP |
| :--- |
| QMRWKNXPFGSATLCHUZOVYDEJIB |

CDUVZKXMBJORSTYQGHPLFNMEAI

 WTNPHIRUOKLCFXEVYDAQZJSBGM BOESQATFPCRZTJUGHVNMYILXKD NKGGXYMOJQtfielfodersbytur FSRTDUVBCLYEJWGZQNMAXKHOIP QJXFENPHKTZVGLODIYSBMURAG QJXFENPHKTZVGLODIYSBMGRACW OYLUJGSQAREIHDZCNWVXKBPFMTECVZPLDXYMFGWANITSOHURKQJB KGTHIQZNUVBJDOMSWEXCAPFRYL ZRDEATYISPHKLNCBXOGUTMQJFV hifnguovixatrzsticudpebylu LAWJSDBCHOUYMFIXERPTNQGKVZ IZMOLXNKTACPVBJWUGFQESYDRH AWIBCZUSREMTQHKLOPDJYGXVNF JMOXKTIPXFGBEYARZCQNLVDUHS JMOTKTIPXFGBEYARZCQNLVDGH
XLBCOREWQUJDKGVMFITYSZHNPA XLBCOREMQUJDKGVMFITYSZHNPA
MUZKTCFGOYPLNRDHBJWEVXIASQ ybfiretudcvazsfnakloghummx UVKQTFGELNTHYIXJSMRZCDAPOB KPHRYOJDGZSEAVWULXBFITNMQC TRQAFVCLNDIXGMHOPZUKJWESBY VEFYMJHTZSNWUDBACQIPRLOGXK RHGJVBLAEIXSOPNKMTYTQFZCDU RHGJVBLAEIXSOPNKMTYWQFZCDU
PFADLHKZMGWUXCQSRBEVOYJITN PFADLHKZMGWUXCQSRBEVOYJITN
SQJMNZARIBDOPUTYXFKGHCVLTE GXYLBSIMFTKNCQPEVUJRDATHZO

Cymybaqojeintplurhskmfgdxz VBhKMyClGISEQZPFAXROJDNUTT KARBVTZDOXGYIQJMUFCLNSPWEH MFKHEINCUDVWYLBPJTZSXQOGAR JRAGTSTPNHOVZKQLEIXUYCDMFB FMDOXEQSACHIRYZGWUPVTNBJKL FMDOXEQSACHIRYZGKYPGSKLRZJ BNGUGYXMTAWFVIDOPQHESKLRZJ
STPDVUBEMOJHWNCQYAGXRZFILK STPDVUBEMOJHWNCQYAGXRZFILK
EQNHPKGBCLAOSTYVMDUFIJWZRX EQNHPKGBCLAOSTYVMDUFIJTZRX YSAQRDKTZMCXEVHBNPJTLOIFUG XMYFNREIBTUGHAKSQLOZCTJPDV BUJSFGWKEPDAMRXYZCITOLQNHU HLXJDORGQNMBFUVITMECZYSAPK ZULNCFDYSBKJPHTEOGTIVXMQRA PZSTJNVXKRLQAOGCDEWHUBYFMI PZSTJNVXKRLQAOGCDGOABKJBWQ IXELSHURFZYMCDTNGOAPKVJBWQ.
UGZXAPFJIVBTNESDCMQRHLKOYM UGZXAPFJIVBTNESDCMQRHLKOYM
DTUMQJZHKESGXNTBYFAZRCVOP DIUMQJZWHKESGXNTBYFAZRCVOP
WPBYZ OARGXDUSEKVJMIFTHCQN QKVLICMFDUNPXGRHLBWJEATYSO RHITTBJNPSQUDFAZKOLGMEVXCY AWOEKLSQXYPNJMIRCZDBGHUTVF ACGRZXYUVQSLBFFTINKDAPEHJY
 TDFIUVPHYXZKOJENSRNMQGALGE LOQAYMHPWFTZDCUJXKVNBIREGS

BYFINTDXJQTZHAUKECSVGOLRMP VJWSONULYEIAMPRGTXHDCZFBQK LOXCSPZVGWMBQFDEUANTIJKYRH CUTXQIHDOBKYJNGPYSEWLRVFAZ PEUYTANCKRVLSDQBXGOZFHJMIT GPVOMSTRFHZXNYKUDCIJALBTEQ QHCBXEFJAIUSVRPNTWLEZKOGYD QHCBXEFGAIUSVRPNTWLEZKOGYD ATKUGJLMWPXHFQSEOZBIRCDVNY
ERPDLZBOQUAJYXGCIKWFTNHSVM

 XTOFEHYKIAQSGCJTZDUBPMRNLV OCJGAVRWMYXDTLEINPKQBFSZHU TLDMHFOBVUNEZGWSQRYKJXIAPC ZNBAJCKHPSGIDOXYFVRLUEMPT

 RBZEFMYUNOSTPHLAJIQCKVGDWX
KIGJBVPSCXEQAZMLWYTRHDNOUF HDLKHQXTUGYMIBZOVEFANSCPJR NZRAYUEPDVBWKICHGJuSXTQLFO IFMVPGQNHKORWTADLBXUEYZJCS JBHQDYSARCFOEMNZKUPGVILTXW KAYNVXMFTJCGBSIRPQDHWZEUOL MVSHUBJELTDKXWFQYNAOIGPCZR HXAPKLGZENRUOJYVSMCWDQTIFB UMQRZDIGSFPCLVHXBTONYEWJKA

KUQJYVEDRZABHIMNWTLGOCSFPX

 PYLVHGNFIMKAWBSOEZDCTXJQUR VZHADSJWBRMOKXCGINTEULYPFQ IAMNXLOKFBCRUTDWSEGPZVQJYH MBSUZCRJKTFPENOXGDQIHYLVAT KXPITFLREJQGSCUDNYWAVZHMOB UQWEJZFGLYDXTPNSVOMHIABCKR UQWEJZFGLYDXTPNSVOMHIABCKRYOGLI JDZVNUEQSXHCBAWMKTRFP YOGLIJDZVNUEQSXHCBAWMKTRFP
CDZWLITHSPGYXUATKMOBREFJQV CDZWLNTHSPGYXUATKMOBREFJQV
NIOZSWAXQDVPMERBCKFGJLYHT NIOZSWAXQDVUPMERBCKFGJLYHT
WCIXOMUYNHPQBGFKTRJDLZVAES TWUCBPVSAQYKDJREFLNZIHMGXO OPTKQHXMYVRNLFGJZSIWABDUCE QERYAUBVHFSZJDLIXWOMKNPTGC GFVMPKHAJXILNZWUOCBRSQEDTY JHBQRAMLUWZSIOPCTKFXYGNEVD
 AKYFMBZPOIXWCQTERJUVDSGHNL
RVJBKIQCWUOTYEGFLPHNXDASZM RVJBKIQCWUOTYEGFLPHNXDASZM
HLKRTYTOPCEVGDJZQASUNMXIBF ZRFOVECQTGHDNLIYMXPSBUTKJA FJCHGTYEDANSZWVBUQXKPORLYI LTADEVGNMSXIOHKPYURQCFZBWJ EMNGHDSBXUWCARQVPFYTJIKOLZ BSDANXKUPOTMFYHQJVELTRCZIG
 SBXPFQYTGKLHMVZADICJEWONRU

HQTDKMPVBNSJILRYZUCWXEAOFG YENRBQHKSXLTZFVIPTOUGMCJDA GSFKYARXUZOIJHWQECPDBTLNMV XJRVMFUPICWLAOYGTQNKEZSBHD LFHBJPQTTOZMCVDEYSRGIXKANU JAKLQYOECIBTHNGVXFDWURMSPZ MRZYVCGTWKEASDHUJNOPFBXQIL FIVHTDEORGMXNAPLSCQJKUYWZB WHAENGCFDBUSMQZXTYLRPYOIKJ WHAENGCFDBUSMQZXTYLRPVOIKJ AMGSDTJNKPXBYIUEVZFQHCWRLO
BDXNESKRUKVWPGHIJYATOFZCM BDXNELSRQUKVWPGHIJYATOFZCM
NUSGZXEYPRHOQDAWLVMECJITBK PXDIUJVQFACYNMOZHBGTLWEKRS UNWPLHYJMTVSBCIAKDEZOGRFXQ SOQZAVLBEHXKTWMRNGICDFJUYP CYIMHZKGAUREOBFSDTTNJLPVQX VWBAIRDKPFGCKJXNOESLZQHYUT OKMTFNBQJDTRLUSCGXZIYAVPEH RBOJSKYLNEFZPXTDUIWVMHQGAC KCLXRVZSGJIQUENPWOHBAYDMTF TZUFHIXDLWYPGSQOCAKMVNBEJR IPJAWUNZOVQDXYCTMRBHSKGLFE QLMOPSICHYNUVTEBFKAXRDZJGW ZBCQXWTAVSPHEGKJRMUFNILDOY KTYUOEMHXQAGDRLFBPJSWZNCVI EVPCGBAUYMDNFZJKQLXOISTHWR

MNRSZKLYJTXUVBCEIOFDAQGWPH SFXIRZVLEUPHKTGWCJNMYDOQAB JUWFIHZGPQAREDOTLSBVNCYMKX POJWAIDQYMFGNCEZXKHSTVBRUL CLOMTNYVBJDSTGIURAXEHKFPZQ ZCBOSVHKLNXEDTPFMUGARJQIYT TKCXHERSUGNOQJPDMRIYVIT RTUAMFIXPDSCYLKQNBJZVOHGWE RTUAMFIXPDSCYLKQNBJZVOHGWE
EPMBJWUQNXTVZRYSKLIHCADOGF EPMBJWUQNXTVZRYSKLIHCADOGF
QBXLOPYSUEHIFYXRZWATMNCDJG
 FITYHUQDMOLAPJWCBGKXESZNVR WEVAPYNBCZMQLOTKDRUGXISHFJ GHMQVSKTIBYZCERNFPDUWXAJLO ABYHXREWKVITGFSJQNPOUMLZCD KVAUFGORHWEDJXLYSQCPBZITNM
 HMPSDCFAOGNLUZVXYTQKIWESBR
BQLNTJMCDSZPIHUVEYRTOGXKFA YZSELBTNXIQWAPHGVFOCDURJMK IXGZKESUWYOMQADHJCTNPFLBRV UDIRGXPOVCBYMNALTESQJZKFHW NWFDUQCHTKVBSMZEGXYLIRJAOP OJNPYTAERHKXBIGDUVZWFLMCQS LSQVEMGFARUKWDNPHIOJZBTYXC
 VADKNLBJQFCSXYYOTZWRGHPEIU
anatc creator
NVTXBZCQHAOYDSJIKUFPWGLREM
HEUKITYAMCVNXLWRPJQODZFGBS
GPRWEVMBTHSUZOFQLYCNIJDKXA
QFOGHBKEAXPICJYZVTSWLNRUKD
JCDAKRGMUQWTLVIHEXOZSFPBNY
TNMRFDBPYOEZHWAGUCIXJQKSVL
SBFJNKQVCGIAOMDPTWULYRXHZE
KJLSRYHTDWMCBNQEOPZVFUAIGX
LZXFVAENOBTKSYGCQIHJPMWDUR
PLABDXTRGFUHNEVOMZYKCSQJIT
ZMKNUEFDJPASGHCBIVRTXYLWOQ
BRSPGJNLQMXDATKWHFEUVZOCYI
FXQDLSZYBUNMEROAJGPHICTVWK
UYNZXIVKPSBGFCMZDQAWTEHORJ
VSIUTHRQXKDJTBLNYMOEGACFLP
XWPOAFYURNLEKISVBCGDMTJZQH
OQCMJVPFSZGRWXHKTDNBELIYABU
YTBLHQJXIDFOUARENSKGZWVMPC
EKZAYLUWNJCPMFGSXRDIOHBQTV
RIMVZPOSLTQBJDXUFNWCAKYEHG
WBHIQCXZEYKLNUPJSOTMRVGADF
KAWYTUIGVRZSPQLXCEBFHDMNJO
MOVEPWDHFIXQYZUTGKJANBSLCR
CHGQONAJWUYVIPEDRLMSKXZTFB
ADYCSMLOPVHWQGNFZBXRUIEJKT
babic offime-tixt bmquancus for CW6 anvarasd

Appendix III

FIRST-INTERVAL DATA-CIPHER-TEXT RELATIONSHIPS
Table a
A
H 1 D 2 T 3 Z 5 V 5 T 1Y 2M 3 F 40 4R 4Y

 $P 5 K$ 2A $2 Z$ 3N 4P 4Z 5 P 6R

 4J 6 J 2G 49 5D 6H
I 2C 3U 3 N 5 G 6B $\underline{\underline{N}} \underline{1 R} \underline{10} \underline{2} \underline{2 R} \underline{2 T}$

IE 2 K БU 6M 6C 60

 $101 P$ 2Q 2L 3P 3M 4Y 50 6E 3A 3G 3M 5B 50 5R 6K IK
aderlined type denotes wheels in reversed positions.
(63)

64
Tablig \mathbf{H}
A $\mathbf{4 N}$
V 1E 2U 3A 5W 5U 1X 2L 3E 4N 40 4X
Y 1U 1I 1B 3P 3C 4I 5T 5M 5K 5F 6M 1Y 2S 2V 3X 4A 4S 6S

P 1V 4U 4L 5N 5C 6L 1L 1P 10 1V 2M 2X 4G 5K 5L 5R
U 5L 2Z 2Y 3M 40 4Y $50 \underline{60}$
x 1T1C 2 H 2 F 4 V 4 Q 1A 2I 3I 4V 6C 5D
S 2 Z 2 X 2 P 4 D 5 B 3Q $\frac{3 R}{3 R} \frac{2 \mathrm{~K}}{4 \mathrm{~F}}$

D 2T 5Q $5 \mathrm{G} \frac{10}{6 Z} \frac{1}{6 X} \frac{2 R}{6 B} \underline{2 T} \underline{3 B} \underline{3 U} \underline{3 Y}$ 5H 5S $\underline{5 Y} \underline{6 U} \underline{6 Y}$

F 1S 1M 1G 2W 2S 3H 4P 6A 6R 6H 3J 4H 5V 6H
T 1 Y 1 K 1 J 3 U 4 M 5 A 5 Z 5060 1S 2 G 3H 4J 5I 6L
O 1P 2I 5S 5J 6S 1E 4L 4R 60
0101 D 2 C 2 B 1H 1N 2m 4Z 4C 5P 5U 6F 6Z
W 1Z 2N 4Y 4S 4G 4C $6 T$ 1F 1U $\underline{3 A}$ 3D i 4K 6K 2F 4P 5C 6G

L 1A 2V 3T 3D 4A 5R 5E 5D 6P 6E ㅍ⿴囗十 2E 5T 6I 6M
J 1X 1H 2Y 2Q 3L 4R 5X 5I 2H 2N 2P 3N 5M 6X
F 1F 2L 5V 6N 6D 6P

M IL $2 A 3 S 3 I 4 X 5 Y 6 W$ 1K $2 A$
Underlined type denotes wheels in reversed positions．

65
Tabli \mathbf{V}
 H 40
V
Y 1F 2V 3B 5X 5V 1m $2 \mathbb{K}$ 3D 4M 4P 4M

P 2K 3K 4X 4P 4F 6Z 6H 6R 6V 1Y 1H 2J 2N 3J 5Y

X 5 M 2 X 2 X 3 L 4N 4 X 5N 6 P

N 2A 2Y 2Q 4E 5C 3P 3Q 4E 6J

G 2U 5R 5H 6A 6Y 6J 6C 2S 3A $3 T$ 3X 5G 5R 5X 6T 6X
R 1U 2P 2L 2H 3A 3X 3S 3G 4G 1C 1F 4if 6A 6D
T 1T 1N 1H 2X 2T 3I 4Q 6B 6S 6I 3I 4G 5U 6G
O 1Z 1 L 1 K 3 V 4N 5B 5A 5P 6P 1R 2F 3 G 4I 5H 6K
0 1Q 2J 5 T 5 K 6T 1D 4 KK 40 6N
W 1P 1E 2D 2C 1G 1M 2V 4Y 4B 50 5T 6Y 6E

24 L 6L 㮡 40 5B 6F
L 2 E 3T 3P 5 I 6D 1L 1P 1S 2B 2P 3R
J 1B 2W 3U 3E 4B 5S 5F 5E 6Q 6F 1V 2D 5S 6H 6L
F 1Y II 2Z 2R 3IM 4S 5Y 5J 2G 2M 20 3M 5L 6T
R 1G 2M 5W 60 6E 60
K 2 F 3 Z 3 Y 3N 3 F 4 K 4 I 6T 1B 1A 10 2T 3U 4A 5A 5D 5E 5V 60
B 3L 3C 4 U 4 B II 2 II 30 4 D 4L 4 S 6C 6 S

66

Tably \mathbf{Y}

 H IN 2C 3 U 3 K 4 Z 5 A 6 Y II 2Y 3A 3 M 4G 5E 6Y
∇ 4P
\mathbf{Y}
a 1G 2W 3C 5Y 5W 1V 2J 3C 4L 40 4V
P 1W 1K 1D 3R 3E 4K 5V 50 5M 5H 60 IT 20 2T 3V 4 Y 4060
U 2L 3L 4Y 4Q 4G 6A 6I 6S 6W 1X 1 G 2I 2M $3 I 5$

s 5N 2X 2N 3K 4 M 㘳 $5 \mathrm{M} \frac{60}{20}$
N IY IE 2J 2H 4X 4S 1Y 2G 3G 4T 5B 6A
D 2B 2Z 2R 4F 5D 30 3P 4D 6 位
G 1P 3I 6L 2Z 2B 2 P 3R $3 \underline{4 \mathrm{U}}$ 4B GU
E 2V 5S 5I 6B 6Z 6K 6D 2R 3Z 3S 3T 5F 5Q 5T 6S 6T
T 1 V 2 Q 2 M 2 I 3 B 3 Y 3 T 3 H 4 H 1B 1E 4V 6Z 6C

W IR 2K 5U 5L 6U 1C 4 J 4P $\underline{6 M}$
1Q 1F 2E 2D 1F 1L 2U 4X 4A 5N 5S 6X 6D
Z 1B 2P 4A 4U 4I 4E 6V 1D 1S 3 I 3B 3E 4I 4S 5H 5V 6L 6T
L 4 M 6M $\underline{2} \underline{\mathrm{D}} \underline{\mathrm{N}}$ 5A $\underline{6 \mathrm{E}}$
J 2F 3X 3Q 5J 6E 1K 10 1R 2A 2030
 R 1 Z 1 J 2 A 2 S 3 N 4 T 5 Z 5 K 2F 2L 2N
K 1H 2N 5X 6P 6F 6N

A 3 N 3 E 4 T 4 D 1G 2G 3 M 4 B 4J 406 A 60

v 102 D 3 V 3L 4A 5B 6Z 1H 2X 3 Z 3L 4F 5D
Y 4 Q
0
P 1H 2X 3D 5Z 5X 1U $2 I$ 3B 4K 4N 4 U
U 1X IL 1E 3S 3F 4L 5W 5P 5N 5I 6P 1V 2P 2S 3U 4X 4P 6P
x 2M 3M 4Z 4R 4H 6B 6J 6T 6X 1m $1 F 2 \mathrm{~F} 2 \mathrm{~L}$ 3H 5

N 50 2W 2V 3J 4L 4V 5L 6N
D 12 1F 2 K 2 I 4 Y 4 T 1X 2F 3F 4S 5A 6Z
G 2C 2A 2S 4G 5E 3N 30 4C 6H
E 1Q 3J 6M 2Y 2A 20 3Q $\underline{3 T}$ 4A $6 T$
T 2 W 5T 5J 6C 6A 6L 6E 20 3Y 3 R 3 V 5E 5P 5V 6R 6V
0 1T 2R 2N 2J 3C 3Z 3U 3I 4I 1A 1 D 4U 6Y 6B
0 1V 1P 1J 2 Z 2V 3K 4S 6D 6U 6K 3G 4E 5S 6E
W 1B IN 1M 3X 4P 5D 5C 5R 6R IP 2D 3E 4G 5F 6I
I IS 2 L 5 V .5 M 6V 1 B 4 I 40. 6 L

J. 4N 6N 2C 4M 5Z 6 D

F 2G 3Y 3R 5K 6F 1J 1N 10 2Z 2N 3P
R 1D 2Y 3W 3G 4D 5U 5H 5G 6S 6H 1T 2B 50 6F 6J
K IA 1K 2B $2 T 304 \mathrm{U} 5 \mathrm{~A} 5 \mathrm{~L}$ 2E 2K 2M 3K 5J 6U
B 11205 Y 6Q 6G 6M
 Underlined type denotes wheels in reversed positions.

68
Table \mathbf{P}
 H 303 F 4 X 4 E 1F 2F 3 L 4A 4I 4P 6Z 6P
∇ lV 1U 2V 2Q 3U 3R 4D 5T 6J 3V 3B 3H 5W 5J 5M 6F
Y 1P 2 E 3W 3M 4B 5C 6A 1G 2T 3 Y 3K 4E 5C 6W
© 4R
\mathbf{P}
U 1 I 2Y 3E 5A 5Y 1T 2H 3A 4J 4M 4T
 S 2N 3N 4A 4S 4I 6C 6K 6U 6Y 1V 1E 2G 2 KK 3 GG 5V

D 5 P 2V 2 U 3I $4 K$ KU $5 \underline{K}$ GM
G 1A 1G 2 L 2 J 4 Z 4 U 17 2E 3 E 4R 5 Z GY
(1 2D 2B 2T 4H 5F 3M 3N 4B 6G
T 1 R 3 K 6 N 2X 2Z 2 N 3P 3 S 4Z 6 S

I 1C 10 IN $3 Y 4 Q 5 E 5 D 5 S$ 6S $10 \underline{2 C} \underline{2 D} \underline{4 D} \underline{5 E} \underline{6 H}$

 F 4060 2B 4L 5Y 6C
R 2H 3Z 3S 5L 6G II 1M 1P 2Y 2M 30
K 1E 2Z $3 \times 3 \mathrm{H} 4 \mathrm{E} 5 \mathrm{~V} 5 \mathrm{I} 5 \mathrm{H} 6 \mathrm{~T}$ 6I 1S 2 A 5P 6E 6I
B 1B IL 2C 2U 3P 4V 5B 5M 2D 2J 2L 3I 5I GT
M 1J 2P 5Z 6R 6H 6L
Underlined type denotes wheels in reversed positions,

69
Tabla 0
A 1K 2Q 5A 6S 6I 6K
 V 3P 3G 4Y 4F 1E 2E 3K 4Z 4H 40 6Y 60

Q 1Q 2F 3X 3N 4C 5D 6B 1F 2y 3X 3J 4D 5B 6V
$P 45$
x 1J 2Z 3F 5B 5Z 1S 2G 3Z 4I 4L 4S

T 2E 2C 2U 4I 5G 3L 3M 4A 6F

0 2Y 5V 5L 6E 6C 6N 6G 20 3in 3P 3T 5C 5N 5T 6P 6T
W IY 2T 2P 2 L 3E 3B 3W 3 K 4 K IY 1B 45 GII 6Z
1X IR IL 2B 2X 3M 4U 6F 6T 6M 3E 4C 50 6C

I 10 2N 5 50 ~

F IE 2S 4D 4X 4L 4H 6X 1A 1P 3V 3Y 3B 4F 4P 5E 5S 6I 60
R 4P 6P 2A 4K 5X 6B
\mathbf{K} 2I 3A 3T 5M 6H 1H 1 L 10 2X 2 L 3N
B 1F 2A 3Y 3I 4F 5w 5J 5I 6U 6J IR 2750 6D 6H
M 1C 1M 2D 2V 3Q 4T 5C 5N 2C 2I 2K 3I 5H 6S

A 1D 1N 2E 2 W 3 R 4 X 5 D 50 2B 2H 2J 3H 5G 6 (R
H 1L 2R 5B 6T 6J 6J

Y 3Q 3H 4Z 4G ID 2 D 3J 4 Y 4G 4 N 6X 6N
Q 1X 1W 2 X 2 S 3 W 3 T 4 F 5 V 6L 3 T 3Z 3 F 6U 5 H 5 K 6 D
P 1R 2G 3Y 304 D 5 E 6C 1E 2U 3 II 3I 4C 5A GU
U $4 T$
X
S $1 \mathrm{~K} \cdot 2 \mathrm{~A} 3 \mathrm{G} 5 \mathrm{C} 5 \mathrm{~A} 1 \mathrm{R} 2 \mathrm{~F} 3 \mathrm{Y} 4 \mathrm{H} 4 \mathrm{~K} 4 \mathrm{R}$

G 1B 4A 4R 5T 5I 6R IF IJ II IP 2 IG 2R
F 5 R 2T 2 S 3G 4I 4S 5I GK
T 1C 1I $2 \mathrm{~N} \frac{1 \mathrm{~L}}{2 \mathrm{~B}} 4 \mathrm{~W}$ 1U 2C 3C 4P 5X 6W
0 2F 2D 2V 4J 5H 3K 3 LL 4 Z 6E
017 3M 6P 2V 2x 2 L 3N 304 x 60.
W 2Z 5W 5M 6F 6D 60 6H 2N 3V $\underline{30}$ 3S 5B 5M 5S 606 S

Z 1Y 1S 1M 2C 2Y 3N 4V 6G 6X 6N 3D 4B 5P 6B
L 1E 1Q 1P 3A 4S 5G 5F 5U 6U 1M 2A 3B 4D 5C 6F
J 1V 20 5Y 5P 6Y 1 I 4F 4L 6I

R 1F $2 \mathrm{~T} 4 \mathrm{E} 4 \mathrm{Y} 4 \mathrm{M} \frac{4 \mathrm{I}}{6 \mathrm{Z}}$ 1Z 10 3U 3 X 3A 4 E 40 5D 5R 6H 6P K $4 Q 6 Q 2 Z 4 \mathrm{I}$ 5II 6 A

B 2J 3B 3U 5N 6I 1G 1 K 1N 2T 2K $3 \mathbb{K}$
M 1G 2B 3Z 3J 4G 5X 5 K 5 J 6 V 6K 10 2Y 5N 6C 6G
Underlined type denotes wheels in reversed positions.

U 1S 2H 3Z 3P 4E 5F 6D 1D 2T $\underline{2 T}$ UH
$\begin{array}{ll}\mathrm{U} & 1 S \\ \mathrm{X} & 4 \mathrm{U}\end{array}$
\mathbf{X}
\mathbf{S}

J 1F 1R 1Q 3B 4T 5H 5G 5V 6V 1L $2 Z$ 3A 4C 5B 6E

 B 4R GR 2Y 4I $\underline{\text { WV }}$ GZ

Underlined type denotes wheels in reversed poiltions.

Tasua N
A 2L 3D 3W 5P 6K 1E 1I $1 \mathrm{~L} \underline{2 U} \underline{2 I}$ 3K

P 3S 3J 4B 4I 1B 2B 3H 组 4E 4E 6V 6L

$\begin{array}{ll}\mathrm{X} & 1 \mathrm{~T} \\ \mathrm{~S} & \mathbf{4 V}\end{array}$
N

T 1D 4C 4T 5V 5K 6T 1D 1H 1G 1N 2E 2P 4Y 5C 5D
0 5T 2R 20 3E 4G 4Q 5G 6I

W 2H 2F 2X 4L 5J 3I 3J 4X 6C
I 1V 30 6R 2T 2V 2J 3 L 30 4V 60

J 1A 1010 2E 2A 3P 4X 6I 6Z 6P 3 B 4Z 5N 6Z

 M 45 6S 2X 4H 5U 6Y
Underlined type denotes wheels in reversed positions.

Tasua \mathbf{D}

- 10 2U 5E 6T GM 6

${ }^{21}$ 2 4

D

K 1Y 2R 5B 5S 6B 1V 4C 4I 6F

Underlined type denotes wheols in reverred poaltions.

74

Tabli G

V 2N 3F 3Y 5 R 6M 1C 1G 1J 2S 2G 3I
Y 1K 2F 3D 3N 4K 5B 50 5N 6Z 60 1M 2U 5J 6Y 6C
Q IH 1R 2I 2A 3V 4B 5H 5S 2X 2 D 2F 3D 5C 6N
P 1P 2V 5F 6x 6N 6F

S 1B 1A 2B 3T 3A 3X 4J 5Z 6P 3P 3V 3B 5Q 5D 5G 6Z

D $4 \mathbf{x}$
E 102 E 3 K 5 G 5 E 1N 2 B 3 U 4 D 4 G 4 N
T 1E 1S 1L 3Z 3M 4S 5D 5W 5U 5P 6W 10 2I 2 L 3N 404 I 6I 0 2T $3 T 4 \mathrm{G} 4 \mathrm{Y} 406 \mathrm{I}$ 6Q 6A 6E $1 \mathrm{P} \frac{1 \mathrm{I}}{2 \mathrm{~A}} \frac{2 \mathrm{I}}{2 \mathrm{E}}$ 3A 5 F

Z 2 J 2 H 2 Z 4 N 5 L 3G 3H 4V 6A
L 1X 3Q 6T 2R 2T 2H 3J 3M 4T 6M
J 2D 5A 5Q 6J 6H 6S 6L 2J 3R 3 K 305 X 5 I 506 K 60
F 1D 2Y 2U 2Q 3J 3G 3B 3P 4P 1T 1 IT 4 N 6R 6U
R 1C 1\% 1Q 2G 2C 3R 4Z 6K 6B 6R 3Z 4X 5L 6X

B 1Z 2S 5C 5T 6C 1U 4B 4H 6E
M 1Y 1N 2M 2L 1X 1D 2M 4P 4S 5F 5K 6P 6V

a 1L 2G 3E 304L 5C 5P 50 6A 6P

© 19 2W 5G 6Y 60.6 E

s $3 V 3 \mathbb{4 E} 4 \mathrm{~L} \underline{1 Y} \underline{2 Y}$ 3E 4T 4B 4I 6S $\underline{6 I}$
N 1C 1B 2C 3X 3B 3Y 4K 5A 6Q 30 30 3A 5P 5C 5F 6Y

G $4 \mathbf{Y}$
I
T 1P 2F 3L 5H 5F 1M 2A 3T 4C 4F 4 M

M 1A 2T 5D 5U 6D 1T 4A 4G 6D

76

tablat

A 1B 2U 5E 5V 6E 1S 4Z 4F 6G
H 1A 1P 20 2N 1V 18 2K $4 \mathbb{N}$ 40 5 D 5I 6 N 6T

Q 2P 3H 3A 5T 60 IA 1E 1H 20 2E 3G
P 1M 2H 3F 3P 4M 5D 5Q 5P 6B 6Q 1K 2S 5H 6II 6A
U 1J 1T 2K 2C 3X 4D 5J 5U 2V 2B 2D 3B 5A 6L
X 1R $2 \mathrm{X} \cdot 5 \mathrm{H}$ 6Z 6P 6D

D 1D 1C 2D 3 Y 3 C 324 L 5 B 6R 3N 3T 32 50 5B 5E 6X

F 42
0 18 2G.3M 5I 5G II 2Z 3S 4B 4E 4L

J 2L 2 J 2 B 4 P 5N 3E 3F 4T 6Y
F 1Z 3S 6V 2P 2R 2F 3H 3K 4R 6K

K 1F 2A 2W 2S 3L 3I 3D 3R 4R 1R 1U 4L 6P 6S
B IE 1Y IS 2I 2E 3F 4B 6M 6D 6T 3X 4V 5J GY
M 1K IT IV 3G 4Y 5M 5L 5A 6A 1G 2U
Underlined type denotea wheels in reverred positlona.

77

Tabliz C

H 1C 2V 5F 5W 6F IR 4Y 4E 6B
V 1B 1Q 2P 20 1U 1A 2J 4M 4P 5C 5H 6M 6S
Y 1M 2A 4L 4F 4T 4P 6G 1S 1H 3N 3 O 3T 4X 4H 5W 5K 6A 6I
Q 4X 6X 2S 4C 5P 6T
P 2Q 3I 3B 5U 6P $\frac{1 Z}{1 Z} \frac{1 \mathrm{D}}{2 \mathrm{P}} \frac{2 D}{3 F}$

$X 1 K 1 U 2 \mathrm{~L} 2 \mathrm{D} 3 \mathrm{Y} \cdot 4 \mathrm{E} 5 \mathrm{~K} 5 \mathrm{~V}$ 2U $2 \mathrm{~A} \underline{2 \mathrm{C}}$ 3A $\underline{5 Z} \underline{6 K}$
s 1S 2Y 5I 6A 6Q 6C
N $2 R 2 Z 3 L 3 K 3 R 4 W 4 U 6 I 10$ 1P 1E $2 H 3 I 40$ 50 5R 5S 5J 6E
D 3 X 304 G 4 N 1T 2 TW 3C 4 R 4Z 4 G 6 G 6G
1E 1D 2E 3Z 3D 3A 4M 5C 6S 3M 3S 3Y 5N 5A 5D 6T

T 4A
0
0 1R 2 H 3 N 5 J 5 H 1 K 2 Y 3 R 4 A 4 D 4 K
W 1H 1V 10 3C 3P 4V 5G 5Z 5X 5S 6Z 1L 2F 2I 3K 4N 4 F 6F
I 2W 3W 4J 4B 4R 6L 6T 6D 6H 1M 1V 2X 2B 3X 5M
$Z 1 I 4 H 4 Y 5 A 5 P 6 Y 1 Y$ 1C 1B 1I 2Z $2 K$ 4T 5X 5Y 5E
L 5Y 2M 2L 3Z 4B 4L 5B 6D
J 1J 1P 2U 2 S 4 I 4 D IN 2V 3V 4 I 50 6P
F 2 N 2 K 2 C 4 Q 50 3D $3 \mathrm{E} \frac{\mathrm{SN}}{2 \mathrm{~S}}$
R 1A $3 T 6 \mathrm{~W} 2020$ 2E 3 G 3J 40 6J

Underlined type denotes wheels in reversed positions.

78

Tabim 0

V 1D 2T 5G 5X 6G 18 4X 4D 6A

P 4 Y 6Y 2 R 4B 506 S

N 1 2 2 Z 5J 6B 6R 6B

G 3 Y 3P $4 \mathrm{H} 40 \underline{1 \mathrm{~V}}$ 2V 3 B 40 4Y 4F 6P 6F

O 4 B
0

J $5 Z 2 \mathrm{~L}$ 은 3 Y 4 A 4 K 5A 6 C

R 2N 2L 2D 4R 5P 3C 3D 6T 4R

M $1 \mathrm{H} 2 \mathrm{C} 2 \mathrm{Y} 2 \mathrm{U} 3 \mathrm{~N} 3 \mathrm{~K} 3 \mathrm{~F} 3 \mathrm{~T} 4 \mathrm{~T} \underline{1 P}$ 1S 4 IN 6 N 60
Tnderined type denotea wheels in reversed positions,

Tabum w

D 1U 2A 5K 6C 6S 6A

040

L $2 \mathrm{Y} 3 \mathrm{Y} 4 \mathrm{~L} 4 \mathrm{D} 4 \mathrm{~T} 6 \mathrm{~N} 6 \mathrm{~V} 6 \mathrm{~F} 6 \mathrm{~J} \underline{\mathrm{IK}} \underline{1 T} \underline{2 V} \mathbf{2 Z} 3 \mathrm{~V} 5 \mathrm{~K}$

Tabim I

H $1 \mathrm{~J} 2 \mathrm{E} 2 \mathrm{~A} 2 \mathrm{~W} 3 \mathrm{P} 3 \mathrm{M} 3 \mathrm{H} 3 \mathrm{~V} 4 \mathrm{~V} \underline{\mathrm{NN}} 10$ 4H 6L 60

Y 10 1 A 1 Z 3K 4C 5Q 5P 5E 6E 1C
Q 1F 2 Y 5 II 5 Z 6I 10 4V 4B 6Y

x 4 A 6A $\underline{2 P} \underline{4 Z} 5 \underline{5 M}$

w 4D
I

B 2 P 2N 2F 4T 5R 3A $3 \mathrm{~B} \underline{4 \mathrm{P}} \underline{6 \mathrm{U}}$
M $1 \mathrm{D} 3 \mathrm{~W} 6 \mathrm{Z} \underline{2 \mathrm{~L}} \underline{2} \underline{2} \underline{2 B} \underline{3 D} \underline{3 G} \underline{\underline{N}} \underline{6 G}$
Underlined type denotcs wheels in reversed positions.

Tabia z

A $1 E 3 X 6 A \underline{2 K} \underline{2 M} 2 A \underline{3 C} \underline{3 F} 4 M 6$

5 4B 6B 20 4Y 5L 6P

F 1T 2C 5M 6 E 6U 6 Y

W 1C 2R 3J 3Z 40 5P 6N 1T 2J 3L 3 X 4 R 5P 6J
I 4E

M $2 Q 202 \mathrm{G} 4 \mathrm{U} 5 \mathrm{~S} \quad 3 \mathrm{Z}$ 3A 406 T

82
Tablim L
A 2 R 2 P 2 H 4 V 5 T 3 Y 3Z 4 N 6 S
H 1F 3Y 6B 2J 2L 2Z 3B 3E 4L 6E
V 2L 5I 5Y 6R 6P 6A 6T 2B 3J 3C 3G 5P 5A 5G 6C 6G
Y 1L 2G 2C 2 Y 3 R 30 3J 3 X 4 X 1L 10 4F 6J 6M
Q IK 1E 1Y 20 2K 3Z 4H 6S 6J 6Z

P 1Q 1C 1B 3M 4E 5S 5R 5G 6G

N 4C 6C 2N 4X 5K 60
D 2V 3N 3G 5 Z 6U $1 \mathbf{U}$ 1Y 1B $2 \mathbb{K} \underline{2 Y} 3 \mathrm{~A}$
G 1S 2N 3L 3V 4S 5J 5W 5V 6W 6H 1 2 2 M 5 B 606 U

T 1X 2D 5N 6F 6V 6X

0 3C 3T 4L 4S IR 2R 3X 4M 4U 4B 6L 6B

1 1D 2S 3K 3A 4P 5Q 60 1S 2I $\underline{K K}$ 3II 40 50 6I
Z $4 F$
J 17 2M 3 S 505 M 1F $2 T$ 3M 4V 4Y 4F

83
Tabui J
A 1P IV 2A $2 \mathrm{Y} 404 \mathrm{~J} \quad 1 \mathrm{H}$ 2P 3 P 4C 5K 6 J
H $2 S 2 Q 2 I 4 T 5 U 3 X \frac{3 Y}{4 M} \frac{4 R}{6 R}$
∇ 1G 3Z 6C 2I 2K 2Y 3A 3D 4K 6D
Y 2 M 5 J 5 Z 6S 6 Q 6B $6 \mathrm{U} \underline{2 A}$ 3I $\frac{3 B}{3 F}$ 50 5Z 5F 6B 6F
Q 1M 2H 2D 2Z 3S 3P 3K 3 Y 4 Y 1K 1 N 4E 6I 6L
P 1L 1F 1Z 2P 2 L 3A 4I 6T 6K 6A 30405 E 60
U 1R 1D 1C 3N 4F 5T 5S 5H 6H 12 2N 3040 5P 6S
X 1I 2B 5L 5C 6L 1L 4 S 4Y 6V
s 1H 1W 2V 2U 10 1U 2 D 4G 4J 5TM 5B 6G 6M

D 4D 6D 2M 4 TM 5 J 6N
G 2 W 303 H 5 A 6V $1 T 1 \mathrm{X}$ 1A $2 \mathrm{~J} \frac{2 \mathrm{X}}{3 \mathrm{Z}}$
R 1T 203 M 3 T 4 T 5 K 5 X 5 F 6X 6 I 1D 2L 5A 6P 6T
T 1Q 1A 2R 2 N 3E 4K 5Q 5B 20 2U 2W 3U 5T 6E
O 1Y 2E 50 6G 6T 6T
0 2X.3R 3Q 2F 3X 4C 4A 60 1I 1 JJ 1Y 2B 3C 4I 5I 5L 5M 5D $\underline{\underline{6 I}}$

2 IE 2T 3L 3B 4Q 5R 6P 1R 2H
L 46
J
F 1X 2N 3T 5P 5N 1E 2S 3L 4U 4X 4E
R 1N 1B 10 3I 3V 4B 5M 5F 5D 5Y 6F 1F 2Z 2C 3E 4H 4Z 6Z K 2C 3C 4P 4H 4X 6R 6Z 6J 6N 1G 1P RR 2V 3R 5G

M 5E 2G 2F 3T 4V. 4F 5V 6X
Underlined type denotes wheels in reversed positions.

Table \mathbf{F}

V 2 T 2 R 2 J 4 X 5 V 3 W 3X 4 L 60
Y 1H 3A 6D 2H 2J 2X 3Z 3C 4J 6C

P 1N 2I 2E 2A 3T 3Q 3L 3Z 4Z 1J 1 M 4D 6H 6K
U 1M 1G 1A 2Q 2N 3B 4J 6U 6L 6B 3P 4 N 5B 6N
X 1S 1E 1 D 304 G 5 U 5 T 5 I 6 II 1Y 2M 3 N 4P 50 6R
s 1J 2C 5M 5D 6M $1 \mathrm{~K} \underline{4 R} \underline{4 X} \underline{6 U}$

G 4E 6E 2L 4V 5I 6m

T 1U 2P 3N 3X 4U 5L 5Y 5X 6Y 6J 1C 2 KK 5 K 60 6S

O 1Z 2F 5P 6H 6X 6Y
W 2Y 2G 3S 3R 3Y 4D 4B 6P 1H 1I 1X 2A 3 B 4 H

L 1F 2U 3M 3C 4R 5S 6Q 10 2G $\underline{2 I}$ 3U 40 5M 6G
J 4H

K 10 1C 1V 3J 3 W 4 C 5 N 5 G 5 E 5 Z 6G 1E 2Y 2 B 3D 4 G 4Y 6Y
B 2D 3D $4 Q 4 \mathrm{I} 4 \mathrm{Y}$ 6S 6A 6K 60 1F 10202 Z 3Q 5F

Underlined type denotes wheels in reversed positions.

85
Tabli R
A 1Q 4P 4G 5I 5X 6G 10 1U 1T 1A 2R 2C 4L 5P. 5Q 5T H 5 G 2E 2 D 3R 4T 4D 5T 6V
$\nabla 1 R 1 \mathrm{X} 2 \mathrm{C} 2 \mathrm{~A} 4 \mathrm{Q} 4 \mathrm{~L}$ 1F 2N 3 N 4 A 5 I 6H
Y 2 U 2 S 2 K 4 Y 5 W 3V 3 W 4 K 6 E
Q 1I 3B 6E 2G 2I 2T 3 Y 3B 4I 6B
P 20 5L 5B 6U 6S 6D 6W 2Y 3G 3 Z 3D 5M 5X 5D 6Z 6D
U $102 \mathrm{~J} 2 \mathrm{~F}^{\circ} 2 \mathrm{~B} 3 \mathrm{U} 3 \mathrm{R} 3 \mathrm{M} 3 \mathrm{~A} 4 \mathrm{~A} \frac{1 \mathrm{II}}{1 \mathrm{~L}} \frac{4 \mathrm{C}}{6 \mathrm{G}}$ 6J

D 1J 1Y 2X 2 W 1M 1 S 2B 4E 4H 5U 5Z 6E 6K
G 1 U 2 I 4 T 4 N 4 B 4 X 60 1K 1Z 3F $\underline{3 I}$ 3L 4P $4 \mathrm{Z} 505 \mathrm{5C}$ 6S 6A F 4F. 6F $\underline{2 K}$ 4U 5H 6L
T 2 Y 3 Q 3 J 5 C 6 X 1R $1 \mathrm{~V} \underline{1 Y}$ 2H 2 V 3 X
C 1V $2 Q 303 Y 4 V 5 M 5 Z 5 Y 6 Z 6 K$ 1B 2 J 5Y $6 \mathbb{N}$ 6R
0 IS 1C 2T 2L 3G4M 5S 5D 2M 2S $\underline{2}$ 2U $\underline{3 S} \underline{5 R} \underline{6 C}$

I $2 Z 3 T 3 S$ 3H $3 Z 4 \mathrm{E} 4 \mathrm{C} 6 \mathrm{Q} \underline{1 \mathrm{G}} \underline{1 H} \underline{1 T} \underline{2 Z}$ 3A $4 \mathrm{G} \underline{5 G} \underline{5 \mathrm{~J}} \underline{5 K} \underline{5 B} \underline{6 K}$
Z 3 F 3 W 404 V 10 20 3U 4J 4R 4Y 6 II 6 Y
L 1M 1L 2M 2H 3L 3I 4U 5K 6A 3E. 3 K 30 5F 5S 5 V . 60
J 1G 2V:3N 3D 4S 5T 6R 1P 2F 3H 3T 4N 5L 6F
F4I
R
K 12 2P 3V 5R 5P 1C 2Q 3J 4S 4V 4C

M 2E 3E 4R 4J 4Z 6T 6B 6L. 6P IE

Tabiz \mathbf{K}

A 2 F 3 F 4 S 4 K 4 A 6 U 6 C 6M 6Q 1D 1M 202 S 305 D
 $\nabla 5 H \frac{2 D}{2 C} \frac{3 Q}{2 D} \frac{4 S}{4 C} \frac{5 S}{15} \frac{6 U}{2 M}$
Y 1S 1Y 2D 2B 4R 4M 1E 2M 3M 4Z 5H 6G
Q 2 V 2 T 2 L 4 Z 5 X 3U 3V 4J 60
P 1J 3C 6F 2F 2H 2V 3X 3A 4H 6A
U 2P 5M 5C 6V 6T 6E 6X 2X 3F 3Y 3C 5L 5W 5C 6Y 6C
X $1 P 2 \mathrm{~K} 2 \mathrm{G} 2 \mathrm{C} 3 \mathrm{~V} 3 \mathrm{~S} 3 \mathrm{~N} 3 \mathrm{~B} 4 \mathrm{~B} 1 \mathrm{H} 1 \mathrm{~K} 4 \mathrm{~B}$ 6F 6I

N IU IG 1F 3Q 4I 5W 5V 5K 6K 1N 2K
D 1 L 2E 50 5F 60 II 4 P 4V 6S
G 1K 1Z 2 Y 2 X 1L 1 R 2A 4 D 4G $\frac{5 T}{5 \mathrm{Y}}$ 6D 6 J

T 4G 6G 2J 4T 5G 6K

W IT 1D 2U 2 M 3H 4N 5T 5E 2L $2 R$ 2T 3R $\underline{5 Q}$ 6B
I 1B 2H 5R 6J 6Z 6T
2A 3U 3T 3I 3A 4F 4D 6R 1F 1G 1V 2Y 3Z 4F 5F 5I 5J 5A 6V
L 3G 3X 4P 4T IN 2N 3T 4I 40 4X 6H 6X
1N 1M 2N 2I 3M 3J 4V 5L 6B 3D 3J 3P 5E 5R 5U 6N
F 1 H 2 W 30 3E 4T 5U 6S 10 2E 3G 3S 4M 5K 6E
R 4J
K
B 1A 2Q 3 W 5 S 5 Q 1B 2P 3 II 4R 4U 4B
 Underlined type denotes wheels in reversed positions.

Table B

Q 1 T 1 Z 2 E 2 C 4 S 4 N ID 2L 3 L 4Y 5G 6F

N 1P 1J 1D $2 T 2 P 3 E 4 M 6 X 606 E 3 M 4 K ~ 5 Y ~ 6 K$

G 1M 2F 5P 5G 6P 1H 40 4U 6R
F LL 1A 2 Z 2Y 1K 10 2Z 4C 4 F 5S 5X 6C 6I
T 1 T 2 K 4 V 4 P 4 D 4 Z 6Q II 1X 3 D 3G 3J 4N 4 X 5U 5A 60 6Y
O 4H 6H 2I 4S 5F 6J

Z 1C 2I 5S 6K 6A 6S
L 2B 3V 3U 3J 3B 4G 4E 6S 1E 1F 1U 2 XX 3Y 4E 5E 5H 5I 5Z 6U
J 3H 3 Y 4 Q 4 X 1M 2 M 3S 4 H 4P 4 m 6G 6

R 1I 2X 3P 3F 4U 5V 6T NN 2D
K $4 \mathbb{K}$
M 1B 2R 3X 5T 5R 1A 20 3H 40 4T 4A Underlined type denotes wheeln in reversed positions.

A 1C 2S 3Y 5U 5 S 1 Z 2N 3G 4 P 4 S 4 Z
H 1S 1G 1Z 3N 3A 4G 5R 5K 5I 5D 6K 1A 2U 2X 3 Z . 4 C 4U $\underline{6 U}$
v 2 H 3 H 4 U 4 M 4 C 6 W 6 E 606 S 1B 1K 2M 2 M 3M

Q 5J 2B 2 AA 3040 4A 50 6S
P 1U 1A 2F 2D 4 T 40 1C 2 K 3K 4 XX 6F 6
U 2X 2V 2N 4B 5Z 3 S 3T 4H 6M
x 1L 3E 6H 2D 2F 2T 3V 3Y 4F 6Y
2R 50 5E 6X 6V 6G 6 Z 2V 3D 3 IW 3A 5 J 5U 5A 6 T 6A

G 1W II 1H 3S 4K 5Y 5X 5M 6M 1U 2I 3J 4E 5K 6N
E 1N 2G 5Q 5H 6Q 1G 4 N 红 6Q

0 1X 2L 4N 4Q 4E 4A 6R 1H 1T 3C $\underline{3 F}$ 3I 4M 4T 5L 5Z 6P 6X 0 4I 6I 2H 4R 5E 6I
W 2B 3T 3M 5F 6A 10 1S 1V 2E 2S 34

L 1D 2J 5T 6L 6B 6R
J 2C 3T 3V 3K 3C 4H 4F 6T 1D 1E 1T 2T 3X 4D 5D. 5G 5H 5Y 6T
F 3I 3Z 4R 4Y 1L 2L 3R 4G 40 4V 6F 6V
R 1P 10 2P $2 K 30$ 3L 4X 5N 6D 3B 3H 3N 5C 5P 5S 6L K 1J $2 Y 3 Q 3 G 4 V 5 W 6 U 1 M 2 C$ 3E 30 KK 5I 6C B 4L
M

YHZWPVSMQBANLXDTUFRIGJOKCE LTXYFREJANMSVCGUTOZQHBIDPK LOZKBMSJERPHWYIXATNQGFD RWPVIXDNJEBKZFTYLQCMUSAHOG RWPVIXDNJEBKZFTYLQCMOSAHMG
ZYFRQCGSBKNDXOULVAPJWEMTIH ZYFRQCGSBKNDXOULVAPJWEMTIH
XIOZAPHENDSGCIWVRMFBYKJUQT XLOZAPHENDSGCIWVRMFBYKJUQT
$C V I X M F T K S G E H P Q Y R Z J O N E D B W A U ~$ CVIXMFTKSGEHPQYRZJONLDBWAU
PRQCJOUDEHKTFALZXBISVGNYMW FZAPBIWGKTDUOMVXCNQERHSLJY OXMFNQYHDUGWIJRCPSAKZTEVBL ICJOSALTGWHYQBZPFEMDXUKRNV QPBIEMVUHYTLANXFOKJGCTDZSR

 JIEMGNXLWRYZBKFQAHSUOVTPDC BQKJHSCVYZLXNDOAMTEWIRUFGP NADBTEPRLXVCSGIMJUKYQZWOHF SMGNUKFZVCRPEHQJBWDLAXYITO EJHSWDOXRPZFKTABNYGVMCLQUI KBTEYGICZFXODUMNSLHRJPVAWQ DNUKLHQPXOCIGWJSEVTZBFRMYA GSWDVTAFCIPQHYBEKRUXNOZJLM HEYGRUMOPQFATLNKDZWCSIXBVJ TKLHZWJIFAOMUVSDGXYPEQCNRB UDVTXYBQOMIJWREGHCLFKAPSZN WGRUCLNAIJQBYZKHTPVODMFEXS

YSPDTRHZFNQEAOCVUBGLWIKMJX LEFGUZTXOSAKMIPRWNHVYQDJBC VKOHWXUCIEMDJQFZYSTRLAGBNP RDITYCWPQKJGBAOXLEUZVMHNSF ZGQULPYFADBHNMICVKWXRJTSEO XHAWVFLOMGNTSJQPRDYCZBUEKI CTMYROVIJHSUEBAFZGLPXNFKDQ PUJLZIRQBTEWKNMOXHVFCSYDGA FWBVXQZANUKYDSJICTROPELGHM OYNRCAXMSWDLGEBQPUZIFKVHTJ ILSZPMCJEYGVHKNAFWXQODRTUB QVEXFJPBKLHRTDSMOYCAIGZUWN ARKCOBFNDVTZUGEJILPMQHXWYS MZDPINOSGRUXTHKBQVFJATCYLE JXGFQSIEHZWCYTDNAROBMUPLVK BCHOAEQKTXYPLUGSMZINJWFVRD NPTIMKADUCLFVWHEJXQSBYORZG SFUQJDMGTPVORYTKBCAENLIZXH EOTABGJHYFRIZLUDNPMKSVQXCT KIYMNHBTLOZQXVWGSFJDERACPU DQLUSUSUREACRYHEOBGKZEPF GAVBEUSWRQCMPZLTKINHDXJFOY HMRNKWEYZAPJFXVUDQSTGCBOIL TJZSDYKLXMFBOCRWGAEUHPNIQV UBXEGLDVCJONIPZYHMKWTFSQAR WNCKHVGRPBISQFXLTJDYUOEAMZ

Abstract

FRHAZJQMXOTNBNPSKIDEFGLVUC LZTMXBAJCIUYNSFEDQGKOHVRWP VXUJCNMBPQILSEOKGAHDITRZYF RCTBPSJNFAYVEKIDHMTGQUZXLO ZPYNFEBSOMLRKDQGTJUHATXCVI XFLSOKNEIJVZDGAHUBTTMYCPRQ COVEIDSKQBRXGHMTMNYUJLPFZA PIRKQGEDANZGHTJUYSLTBVFOXM FQZDAHKGMSXPTUBWLEVYNROICJ OAXGMTDHJECFUWNYVKRLSZIQPB IMCHJUGTBKPOWXSLRDZVEXQAFN QJPTBTHUNDFIYLEVZGXRKCAMOS ABFUNYTWSGOQLVKRXHCZDPMJIE MNOTSLUYEHIAVRDZCTPXGFJBQK JSIYEVWLKTQMRZGXPUFCHOBNAD BEQLKRYVDUAJZXHCFIOPTINSMG NKAVDZLRGTMBXCTPOYIFUQSEJH SDMRGXVZHYJNCPUFILQOWAEKBT EGJZHCRXTLBSPFWOQVAIYMKDNU KHBXTPZCUVNEFOYIARMQLJDGSW DTNGUFXPWRSKOILQMZJAVBGHEY GUSPWOCFYZEDIQVAJXBMRNHTKL GUSPWOCFYZEDIQVAJXBMRNHTKL HWEFYIPOLXKGQARMBCNJZSTUDV HWEFYIPOLXKGQARMBCNJZSTUDV TYKOLQFIVCDHAMZJNPSBXEUWGR TYKOLQFIVCDHAMZJNPSBXEUWGR ULDIVAOQRPGTMJXBSFENCKTYHZ TVGQRMIAZFHUJBCNEOKSPDYLTX

YSJUFVMWDRLKXNOCZPGHQBEAITT LEBHORJYGZVDCSIPXFHTANKMQU VKNYIZBLHXRGPEQFCOTUMSDJAW RDSLQXNVTCZHFKAOPIUWJEGBMY ZGEVACSRUPXTODMIFQWYBKHNJL XHKRMPEZWFCUIGJQOAYLNDTSBV CTDZJFKXYOPWQHBAIMLVSGUENR PUGXBODCLIFYATNMQJVREHWKSZ FUGXBODCLIFMPVQLMUSJABREKTYDEX
 I.LUFEATOZMQRBYKNJSXCGWV.HDP QVWOKMUIXJAZNLDSBECPHYRTGF ARYIDJWQC.BMXSVGENKPFTLZUHO MZLQGBYAPNJCERHKSDFOUVXTTI JXVAHNLMFSBPKZTDEGOITRCYUQ BCRMTSVJOENFDXUGKHIQYZPLWA NPZJUERBIKSOGCWHDTQALXFVYM SFXBWKZNQDEIHPYTGUAMVCORLJ EOCNYDXSAGKQTFLUHWMJRPIZVB KIPSLGCEMHDAUOVWTYJBZFQXRN DQFEVHPKJTGMWIRYULBNXOACZS GAOKRTFDBUHJYQZLWVNSCIMPXE HMIDZUOGNWTBLAXVYRSEPQJFCK TJQGXWIHSYUNVMCRLZEKFABOPD UBAHCYQTELWSRJPZVXKDOMNIFG WNMTPLAUKVYEZBFXRCDGIJSQOH

A	YPNCIXGOHAJERUSMTFVZWLQBKD
\mathbf{Z}	LFSPQCHITMBKZWEJUORXYVANDG
\mathbf{Y}	VOEFAPTQUJNDXYKBWIZCLRMSGH
\mathbf{X}	RIKOMFUAWBSGCLDNYQXPVZJEHT
W	ZQDIJOWMYNEHPVGSLACFRXBKTU
V	XAGQBIYJLSKTFRHEVMPOZCNDU
J	CMHANQLBVEDUOZTKRJFIXPSGWY
T	PJTMSAVNRKGWIXUDZBOQCFEHYL
S	FBUJEMRSZDHYQCWGXNIAPOKTLV
R	ONWBKJZEXGTLAPYHCSQMFIDUVR
Q	ISYNDBXKCHUVMFLTPEAJOQGWRZ
\mathbf{P}	QELSGNCDPTWRJOVUFKMBIAHYZX
0	AKVEHSPGFUYZBIRWODJNQMTLXC
N	MDRKTEFHOWLXNQZYIGBSAJUVCP
M	JGZDUKOTIYVCSAXLQHNEMBWRPF
\mathbf{L}	BHXGWDIUQLRPEMCVATSKJNYZFO
K	NTCHYGQWAVZFKJPRMUEDBSLXOI
J	SUPTLHAYMRXODBFZJWKGNEVCIQ
$\underline{1}$	ETFUVTMLJZCIGNOXBYDHSKRPQA
H	KYOWRUJVBXPQHSICNLGTEDZFAM
G	DLIYZWBRNCFATEQPSVHUKGXOMJ
F	GVQLXYNZSPOMUKAFERTWDHCIJB
\mathbf{F}	HRAVCLSXEFIJTDMOKZUYGTPQBN
D	TZMRPVECKOQBYGJIDXWLHUFANS
0	UXJZFRKPDIANLHBQGCYVTWOMSE
B	WCBXOZDFGQMSVTNAHPLRUYIJEK

YBHAWOCUREFKIZPGTNVMJSLXQD

 LNTMYIPWZKODQXFHUSRJBEVCAG VSUJLQFYXDIGACOTWEZBNKRPMH REWBVAOLCGQHMPIUYKXNSDZFJT ZKYNRMIVPHATJFQWLDCSEGXOBU XDLSZJQRFTMUBOAYVGPEKHCINT XDLSZJQRFTMUBOAYVGPEKHCINWCGVEXAZOUJWNIMLRHFKDTPQSY CGVEXBAZOUJWNIMLRHFKDTPQSY
PHRKCNMXIWBYSQJVZTODGUFAEL PHRKCNMXIWBYSQJVZTODGUFAEL
FTZDPSJCQYNLEABRXUIGHWOMKV OUXGFEBPALSVKMNZCWQHTYIJDR ITCHOKNFMVERDJSXPYATULQBGZ QYPTIDSOJRKZGBECFLMUWVANHX ALFUQGEIBZDXHNKPOVJWYRMSTC MVOWAHKQNXGCTSDFIRBYLZJEUP JRIYMTDASCHPUEGOQZNLVXBKTF JRIYMTDASCHPUEGOQZNLVXBKWF
BZQLJUGMEPTFWKHIAXSVRCNDYO
 SCMRNYTBDOWILGUAJPKZXFEHVQ EPJZSLUNGIYQVHWMBFDXCOKTRA KFBXEVWSHQLARTYJNOGCPIDUZM DONCKRYETAVMZULBSIHPFQGWXJ GISPDZLKUMRJXWVNEQTFOAHYCB HQEFGXVDWJZBCYRSKAUOIMTLPN TAKOHCRGYBXNPLZEDMWIQUUVPN TAKOHCRGYBXNPLZEDMWIQJUVFS
UMDITPZHLNCSFVXKGJYQABWROE UMDITPZHLNCSFVXKGJYQABWROE
WUGQUFXTVSPEORCDHBLAMNYZIK

Abstract

AUSZJNINRFXDHKPGTEQOYCMLVB MWEXBYQSZOCGTDFHUKAILPJVRN JYKCNLAEXIPHUGOTWDMQVFBRZS BLDPSVMKCQFTWHIUYGJARONZXE NVGFERJDPAOUYTQWLHBMZISXCK SRGOERZBGFMIWLUAYVTNJXQECPD SRHOKZBGFMIWLUAYVTNJXQECPD EZTIDXNHOJQYVWMLRUSBCAKPFG DCWAHPEUQNMVZLBRXYKSFJGOIT GPYMTFKWASJRXVNZCLDEOBHIQU HFLJUODYMEBZCRSXPVGKINTQAW TOVBWIGLJKNXPZECFRHDQSUAMY UIRNYQHVBDSCFXKPOZTGAEWMJL WQZSLATRNGEPOCDFIXUHMKYJBV YAXEVMUZSHKFIPGOQCWTJDLBNR LMCKRJWXETDOQFHIAPYUBGVNSZ VJPDZBYCKUGIAOTQMFLWNHRSEX RBFGXNLPDWHQMIUAJOVYSTZEKC ZNOHCSVFGYTAJQWMBIRLEUXKDP XSITPEROHLUMBAYJNQZVKWCDGF CEQUFKZITVWJNMLBSAXRDYPGHO PKAWODXQURYBSJVNEMCZGLFHTI FDMYIGCAWZLNEBRSKJPXHVOTUQ OGJLQHPMYXVSKNZEDBFCTRIUWA IHBVATFJLCREDSXKGNOPUZQWYM QTNRMUOBVPZKGECDHSIFWXAYLJ

BFZDHJRSTVIWLAMCUNYQEPGKXO

 NOXGTBZEURQYVMJPWSLAKFHDCI SICHUNXKWZALRJBFYEVMDOTGPQ EQPTWSCDYXMVZBNOLKRJGIUHFA KAFUYEPGLCJRXNSIVDZBHQWTOM DMOWLKFHVPBZCSEQRGXNTAYUIJ GJIYVDOTRFNXPEKAZHCSUMLWQB HBQLRGIUZOSCFKDMXTPEWJVYAN HBQLRGIUZOSCFKDMXTPEWJVYANTNAVZHQWXIEPODGJCUFKYBRLMS TNAVZHQWXIEPODGJCUFKYBRLMS
USMRXTAYCQKFIGHBPWODLNZVJE USMRXTAYCQKFIGHBPWODLNZVJE
WEJZCUMLPADOQHTNFYIGVSXRBK YKBXPWJVFMGIATUSOLQHRECZND LDNCFYBROJHQMUWEIVATZKPXSG VGSPOLNZIBTAJWYKQRMUXDFCEH RHEFIVSXQNUMBYLDAZJWCGOPKT ZTKOQRECASWJNLVGMXBYPHIFDU ZTKOQRECASWJNLVGMXBYPHIFDU
XUDIAZKPMEYBSVRHJCNLFTQOGW XUDIAZKPMEYBSVRHJCNLFTQOGW
CWGQMXDFJKLNERZTBPSVOUAIHY
W M CWGQMXDFJKLNERZTBPSVOUAIMY
PYHAJCGOBDVSKZXUNFERIWMQTL FLTMBPHINGREDXCWSOKZQYJAUV OVUJNFTQSHZKGCPYEIDXALBMWR IRWBSOUAETXDHPFLKQGCMVNJYZ QZYNEIWMKUCGTFOVDAHPJRSBLX AXXLSKQYJDWPHUOIRGMTFBZENVC AXLSKQYJDWPHUORGMTFBZENVC
$M C V E D A L B G Y F T W I Q Z H J U O N X K S R P ~$ MCVEDALBGYFTWIQZHJUONXKSRP
JPRKGMVNHLOUYQMXTBWISCDEXF

97

FZXOANPHVSWJQBMDGTLUYRIECK
OXCIMSFTREYBANJGHUVWLZQKPD
ICPQJEOUZKLNMSBHTWRYVXADFG
QPFABKIWXDVSJENTUYZLRCMGOH
AFOMNDQYCGREBKSUWLXVZPJHIT
MOIJSGALPHZKNDEWYVCRXFBTQU
JIQBEHMVFTXDSGKYLRPZCONUAW
BQANKTJROUCGEHDLVZFXPISWMY
NAMSDUBZIWPHKTGVRXOCFQEYJL
SMJEGWNXQYFTDUHRZCIPOAKLBV
EJBKHYSCALOUGWTZXPQFIMDVNR
ESBNDTLEPMVIWHYUXCFAOQJGRSZ
$\begin{aligned} & \text { DNSGUVKFJRQYTLWCPOMIABHZEX } \\ & \text { GSEHWRDOBZALUVYPFIJQMNTXKC }\end{aligned}$
HEKTYZGINXMVWRLFOQBAJSUCDP
TKDULXHQSCJ.RYZVOIANMBEWPGF
UDGWVCTAEPBZLXRIQMSJNKYFHO
WGHYRPUMKFNXVCZQAJEBSDLOTI
YHTLZFWJDOSC.RPXAMBKNEGVIUQ
LTUVXOYBGIEPZFCMJNDSKHRQWA
VUWRCILNHQKFXOPJBSGEDTZAYM
RWYZPQVSTADOCIFBNEHKGUXMLJ
ZYLXFAREUMGIPQONSKTDHWCJVB
XLVCOMZKWJHQFAISEDUGTYPBRN
CVRPIJXDYBTAOMQEKGWHULFNZS
PRZFQBCGLNUMIJAKDHYTWVOSXE

TPVCMOAJLQGSDRWEIUKFXBNHYZ UFRPJIMBVAHEGZYKQWDOCNSTLX WOZFBQJNRMTKHXLDAYGIPSEUVC YIXONABSZJUDTCVGMLHQFEKWRP LQCISMNEXBWGUPRHJVTAOKDYZF VAPQEJSKCNXHWFZTBRUMIDGLXO RMFAKBEDPSLTYOXUNZWJQGHYCI RMFAKBEDPSLTYOXUNZWJQGHVCI
ZJOMDNKGFEVULICWSXYBAHTRPQ ZJOMDNKGFEVULICWSXYBAHTRPQ
XBIJGSDHOKRWVQPYECLNMTUZFA
 PSANTKHUQGXLZMOVDFREBWYCIJ FEMSUDTWAHCVXJIRGOZKNYLPQB OKJEWGUYMTPRCBQZHIXDSLVFAN IDBKYHWLJUFZPNAXTQCGEVROMS QGNDLTYVBWOXFSMCUAPHKRZIJE QGNSGVULRNYICOEJPWMFTDZXQBK AHSGVULRNYICOEJPWMFTDZXQBK
MTEHRWVZSLQPIKBFYJOUGXCAND
 BWDUXLZCKRMOAGSIVNQYTPFJEH NYGWCVXPDZJIMHEQRSALUFOBKT SLHYPRCFGXBQJTKAZEMVWOINDU EVTLFZPOHCNABUDMXKJRYIQSGW KRUVOXFITPSMNWGJCDBZLQAEHY DZWRICOQUFEJSYHBPGNXVAMKTL DZWRICOQUFEJSYHBPGNXVAMKTL
GXYZQPIAWOKBELTNFHSCRMJDUV GXYZQPIAWOKBELTNFHSCRMJDUV
HCLXAFQMYIDNKVUSOTEPZJBGWR

NQFVOGKSPTDAWXYMEZLJBHUCRI

 SAORIHDEFUGMYCLJKXVBNTWPZQ EMIZQTGKOWHJLPVBDCRNSUYFXA KJQXAUHDIYTBVFRNGPZSEWLOCM DBACMWTGQLUNROZSHFXEKYVIPJ DBACMWTGQLUNROZSHFXEKYVIPJGNMPJYUHAVWSZIXETOCKDLRQFB GNMPJYUHAVWSZIXETOCKDLRQFB
HS JFBLTTMRYEXQCKUIPDGVZAON HSJFBLTTMRYEXQCKUIPDGVZAON
TEBONVYUJZLKCAPDWQFGHRXMIS TEBONVYUJZLKCAPDWQFGHRXMIS
UKNTSRLWBXVDPMFGYAOHTZCJQE WDSQEZVYNCRGFJOHLMITUXPBAK YGEAKXRLSPZHOBITVJQUWCFNMD LHKMDCZVEFXTINQURBAWYPOSJG VTDJGPXRKOCUQSATZNMYLFIEBH RUGBHFCZDIPWAEMYXSJLVOQKNT RUGBHFCZDIPWAEMYXSJLVOQKNT
ZWHNTOPXGQFYMKJLCEBVRIADSU

 CLUEWQOPTMIVBGNRFDSZXAJHKY
PVWKYAIFUJQRNHSZOGEXCMBTDL FRYDLMQOWBAZSTEXIHKCPJNUGV OZLGVJAIYNMXEUKCQTDPFBSWHR IXVHRBMQLSJCKWDPAUGFONEYTZ QCRTZNJAVEBPDYGFMWHOISKLUX APZUXSBMRKNFGLHOJYTIQEDVWC APZUXSBMRKNFGLHOJYTIQEDVWC
MFXTENJZDSOHVTIBLUQAKGRYP MFXWCENJZDSOHVTIBLUQAKGRYP
JOCYPKSBXGEITRUQNVWAMDHZLF BIPLFDENCHKQUZWASRYMJGTXVO
basac phand-

TKBXIDRQPVOGYNSUJEGFHATMZL UDNCQGZAFRIHLSEWBKPOTMYJXV WGSPAHXMOZQTVEKYNDFIUJLBCR YHEFMTCJIXAURKDLSGOQWBVNPZ LTKOJUPBQCMWZDGVEHIAYNRSFX VUDIBWFNAPJYXGHRKTQMLSZEOC RWGQNYOSMFBLCHTZDUAJVEXKIP ZYHASLIEJONVPTUXGWMBRKCDQF XLTMEVQKBISRFUWCHYJNZDPGAO XLTMEVQKBISRFUWCHYJNZDPGAO
CVUJKRADNQEZOWYPTLBSXGFHMI CVUJKRADNQEZOWYPTLBSXGFHMI
PRWBDZMGSAKXIXLFUVNECHOTJQ FZYNGXJHEMDCQLVOWRSKPTIUBA OXLSHCBTKJGPAVRIYZEDFUQWNM ICVETPNUDBHFMRZQLXKGOWAYSJ QPRKUFSWGNTOJZXAVCDHIYMLEB AFZDWOEYHSUIBXCMRPGTQLJVKN MOXGYIKLTEWQNCPJZFHUAVBRDS MOXGYIKLTEWQNCPJZFHUAVBRDS
JICHLQDVUKYASPFBXOTWMRNZGE JICHLQDVUKYASPFBXOTWMRNZGE
BQPTVAGRWDLMEFONCIUYJZSXHK
 NAFURMHZYGVJKOISPQWLBXECTD
SMOWZJTXLHRBDIQEFAYVNCKPUG EJIYXBUCVTZNGQAKOMLRSPDFWH KBQLCNWPRUXSHAMDIJVZEFGOYT DNAVPSYFZWCETMJGQBRXKOHILU GSMRFELOXYPKUJBHANZCDITQVW HEJZOKVICLFDWBNTMSXPGQUARY
babic platn-twat ajodengers yoz CW6 bifubsed

Appendix V

FIRST-INTERVAL DATA-PLAIN-TEXT RELATIONSHIPS
Table B
B

W ${ }^{2 V} 4 \mathrm{~F} 5 \mathrm{5}$ 6T4V 6 U

S 1 I 2Y 3A 3M 4G 5E 6Y IN 2C
N

M 1Z 2N 3G 4P 4S 4Z 1C 2 S 3Y 5U 5S

Q 1D 1M 20 2S 30 5D 2F 3F 4 S 4K 4A 6U 6C 6M 60
I 1Q 1U 1T 1A 2R 2C 4L 5P 5Q 5W 10 4P 4G 5I 5X 6G
0 2F 2E 3S 4U 4E 5U 6W 5F
F 1H 2P 3P 4C 5K 6J 1P 1V 2A $2 Y 40$ 4J
P 3 Y 3 Z 4 N 6S 2R 2P 2H 4V 5 TT
2K 2M 2A 3C 3F 4M 6F 1E 3X 6
X 2D 3L 3E 3I 5R 5C 5I 6E 6I 2J 5G 5W 6P 6N 6Y 6R
Z 10 1R 4I 6M 6P 1I 2D 2Z 2V 30 3L 3 G 3U 4U

L 1S 4Z 4F 6C 1B 2U 5E 5V 6E
Y IT 1C 2 L 404 R 5 E 5 J 606 U 1 Z 10 2N 2 N
W 1V 1K 3Q 3T 3W 4A 4K 5Z 5N 6D 6L 1J 2X 4I 4C 4O 4M 6D U 2 T 4G 5T 6X 4T 6T
T 1E 1I 1L 2U 2I 3K 2L 3D 3W 5P 6K
H 1P 2X 5M 6B 6F 1H 2C 3A 3K 4H 5Y 5L 5K 6贝 6L

D 6K 1K 20 5A 6S 6I

E 1G 2G 3M 4B 4J 4Q 6A 6Q 3N 3E 4TIE
S 3X 3D 3J 5Y 5L 50 6H 1T 1S $2 T$ 20 3S 3P 4B 5R 6H
N 1 J 2 Z 3 B 3 N 4 H 5 F 6 Z 1M 2B 3T 3 J 4Y 5Z 6 X

[^2] J
M
A 1A $203 H 4 Q 4 T 4 A 1 B 2 R 3 X \frac{5 T}{5 R}$

F 2G 2F 3T 4V 4F 5V 6X 5E

- 3Z 3A 40 6T 20 20 2G 4U 5S

X 2L 2N 2B 3D 3G 4N 6G 1D 3W 6
Z 2E 3M 3F 3J 5S 5D 5J 6F 6J 2I 5F 5V 60 6M 6X 60
R 1P 1S 4J 6N 6Q 1H 2C 2Y 2U 3N 3 K 3F 3 T 4T

Y 1T 4A 4G 6D $\frac{1 A}{} \frac{2 T}{5 F} \frac{5 D}{5 K} \frac{5 U}{6 P} \frac{6 D}{6 V}$
W 1X $1 \mathrm{D} 2 \mathrm{M} 4 \mathrm{P} 4 \mathrm{~S} 5 \mathrm{~F} \frac{\mathrm{KK}}{6 \mathrm{~K}}$ 6V 1Y 1 N 2M 2L
U 1m IL 3R 3U 3X 4B 4L 5A 50 6E 6M II 2m $4 H$ 4B 4 P 4L 6C
T 2 X 4 H 5 U 6Y 4S 6S
H 1F 1J 1M 2V 2 J 3 L 2 K 3 C 3 V 506 J
G 102 X 5 N 6 C 6G 1G 2 B 3Z 3 J 4G 5 X 5 K 5 J 6V 6K
D 2C 2I 2 K 3 I 5 H 6 S 1C 1 M 2D 2 V 30 4 II 5C 5 N
K 6L 1J $2 \mathrm{P} \underline{5 Z} \underline{6 R} \underline{6 H}$

s 1H 2H 3N 4C 4K 4R 6B 6R 3M 3D 4V 4D

Underlined type denotea wheole in reverved positions.

B 3 Z 3 F 3L 5A 5 N 5 Q 6J 1 R 10 2 R 2 M 30 3N 4 Z 5P 6F

M

Q 1B 2P 3 I 4 R 4 U 4 B 1A 203 THS 50

F	$1 S$	$1 W$	$1 V$	$1 C$	$2 T$
\mathbf{P}	2 E	4N	5R		

x 3 A 3B 4P 6U 2P 2N 2F $\frac{4 T}{} \frac{5 R}{}$
Z 2M 20 2C 3E 3H 40 6H 1C 3V 6y
R 2F 3N 3G 3K 5T 5E 5K 6G 6K 2H 5E 5U 6N 6L 6W
v 1Q 1T 4K $606 R 1 G 2 B 2 X 2 T 3 M$ 3J $3 E 3 S 4 S$
L $3 \times 4 \mathrm{~V} 5 \mathrm{~J} 6 \mathrm{~V}$ 1E 1Y 1 S 2I 2 E 3T 4B 6M 6D $6 T$

H 2Y 4I 5V 6Z 4R 6R
G 1G 1K 1N 2W 2K 3M 2J 3B 3U 5N 6I
D 1R 2Z 50 6D 6H 1F 2A $3 \underline{Y}$ 3I 4F 5W 5J 5I 6U 6J
K 2D 2J 2L 3J 5I 6T 1B 1 L 2C 2U 3P 4V 5B 5M
K 6M II 20 5Y 6Q 6G
F 6M $\frac{11}{20} \frac{5 Y}{2 T} \frac{60}{3 T} \underline{6 G}$
S 1A 1Z 1P 2 S 3T 4Z 5Z 5C 5D 5U 6P 2G 3A 3 Z 30 3G 4L 4J 4P 6X N 1I 2 I 304 D 4 L 4 S 6 C 6 S 3L 3C 4U 4C
Underlined type denotes wheels in reversed positions.

B 1J 2J 3P 4E 4M 4T 6D 6T 3K 3B 4T 4B
J 3A 3G 3M 5B 50 5R 6K 10 1P 20 2L 3P 3M 4 Y 50 6E
M 1M 2C 3E 3Q 4K 5I 6C 1J 2Y 3Q 3G 4V 5W 6U
A
I 1C 2Q 3J 4S 4V 4C 1Z 2P 3V 5R 5P
0 1E 2Y 2B 3D 4G 4Y 6Y 10 1C 1V 3J 3IW 4C 5N 5G 5E 5Z 6G
F 1G 1P 2R 2V 3R 5G 2C 3C $\frac{4 \mathrm{P}}{4 \mathrm{H}} \frac{4 \mathrm{X}}{6 R} \underline{6 \mathrm{~K}}$ GJ 6N

2I 2H 3V 4X 4H 5X 6Z 5C

Z 3B 3C $4 Q 6 \mathrm{~V}$ 20 2M 2巨 4 S 5Q
R 2N 2P 2D 3F 3I 4P 6I 1B 3U 6X
V 2G 30 3H 3L 5U 5F 5L 6H 6L 2G 5D 5T 6M 6K 6V 60
L IR IU 4L 6P 6S 1F 2A 2 W 2S 3 L 3I 3 D 3R 4R

U IV 4C 4I 6F 1Y 2R 5B 5S 6B

H 1 Y 1N 3T 3 W 3 Z 4 D 4 N 5 C 5 Q 6G 60 1G 2U 4 F 4Z 4 N 4J 6A
G 2Z.4J 5W. 6A 4060
D 1H 1L 102 X 2L 3N 2I 3A 3T 5M 6H

N $1 \mathrm{~B} \frac{1 \mathrm{H}}{1 A} \frac{2 N}{1 Q} \frac{5 X}{2 T} \frac{6 P}{3 U} \frac{6 F}{4 A} 5 A 5 D 5 E 5 V 6 Q \underline{2 F} \underline{3 Z}$ 3Y $\underline{3 N} \underline{3 F} \underline{4 K}$ 4I 40 6T Underlined type denotes wheels in reversed positions.

B 1C 1B 1R 2 U 3V 4B 5B 5E 5F 5W GR 2E 3Y 3 X 3M 3E 4J 4H 4 N 6V J 1 K 2 K 3 Q 4 F 4 N 4 U 6 E 6 U 3 J 3 A 4 S 4 A
M 3B 3H 3N 5C 5P 5S 6L 1P 102 AP 30 2L 4 X 5 N 6D

0
0 1D 2R 3K 4T 4T4D 1Y 20 3U 5050

X 2J 2 I 3 I 4 Y 4 I 5Y 6A 5B

R 3C 3D 4R 6W 2N 2L 2D 4 KR
$\nabla 20$ 2Q 2E 3G 3J $4 Q$ 6J 1A 3T 6h
L 2H 3P 3I 3M 5V 5G 5M 6I 6M 2F 5C 5S 6L 6J 6U 6N

T 1T 4D 4J 6G 1X 20 5A 5R 6A
H 1A 1G 2P 4S 4V 5 EI 5 N 6S 6Y 1V 1K 2N 2I

D 2A 4K 5X 6B 4P 6P
K 1I IM 1P 2Y 2M 30 2H 3Z 3S 5L 6G
1T 2B 5Q 6F 6J 1D 2Y 3T 3G 4D 5U 5H 5G 6S 6H

IT 60 1G 2M 5W 60 6E
nderlined type denotes wheels in reversed position.

Tabuir 0

1
0
F 1E 2S 3L 4U 4X 4E 1X 2N 3T 5P 5N

D 1A 1P 3V 3Y 3B 4F 4P 5E 5S 6I 6Q IE 2S 4D 4X 4L 4H 6Y
K 2B 4L 5Y 6C 40 60

2G 2M 20 3M 5L 6TIY 1I 2Z 2R 3M 4S 5Y 5

J 6Q $\underline{1 E} \underline{2 K} 5666$
M 1E 1D 1T 2 TH 3X 4D 5D 5G 5H 5Y 6T 2C
A 1m 2M 3 S 4 H 4 P 4 W 6 G .6 W 3H 3 Y 404 X
Q 3 D 3 J 3 P 5 ER 506 N IN 1 M 2N 2

0

R 2 L 2 KK 3 Y 4 A 4 K 5 A 6 C 5 Z

E 2 C 4 M 5 Z 6D $\frac{\mathrm{NN}}{\mathrm{N}} \mathrm{KN}$

Underlined type denotes wheels in reversed positions.

Tabin P

M 6R 1D 2J 5T 6L 6B

Q in 2 N 3 T 4 I 4 Q 4 X 6H 6X 3 G 3X 4 P 4X
I 3 E 3 K 3 Q 5 F 5 S 5 V 60 IM 1L $2 \mathrm{2M}$ 2H 3 L 3I 4 U 5K 6

$\underset{\mathbf{p}}{\mathbf{F}}$
P

z 1 K 1 T 2 V 2 Z 3 V 5 K 2Y 3 Y 4L 4 D 4T 6 N 6V 6F 6J
R 1X 1B 1A 1H 2Y 2 J 4 S 5 F 5 X 5 D 1J 4I 4Z 5B 5Q 6Z
V 2 M 2L 3Z 4B 4L 5B 6D 5Y

G 1M 2A 3B 4D 5C 6F 1 IE 1Q IP 3A 4S 5G 5F 5U 6U

D 1Z 4G 4M 6J 1 IU 2N $\frac{5 X}{50}$ 6X

s 2D 4N 5A 6E 4 M 6M

Underlined type denotee wheels in revereed positions.

B IM 1Q 1T 2C 2Q 3S 2D 3 V 30 5H 6C

M 2J 2P 2R 3P 506 Z 1V 1F 2W 20 3J 4P 5V 5G
A 6S $1 \mathrm{C} \frac{2 \mathrm{I}}{5 \mathrm{~S}} \frac{6 \mathrm{~K}}{2 \mathrm{GA}}$

0 3F 3L 3R 5G 5T 5W 6P 1L $\frac{1 K}{2 L}$ 2G 3K 3H 4T 5J 6Z
F 1 R 2 H 3 J 3 V 4 P 5 N 6 H 1E $\underline{2 T}$ 3L $3 \mathrm{~B} \frac{4 \mathrm{Q}}{\underline{5 R} 6 \mathrm{P}}$
$\stackrel{P}{\mathbf{P}}$
x 1H 2V 30 4X 4A 4H 1U 2 KK 305 MK
1J 2D 2G 3I 4L 4D 6D 1J 1X 10 3E 3R 4X 5I 5B 5Z 5U 6B R 1L IU 2W 2A 3W 5L 2X $\frac{2 X}{3 K} \frac{4 C}{4 S} \frac{6 M}{6 U} \frac{61}{6 E} \frac{6 T}{6 T}$

$\begin{array}{llllll}\mathrm{V} & 1 \mathrm{Y} & 1 \mathrm{C} & 1 \mathrm{~B} & 1 \mathrm{I} & 2 \mathrm{Z} \\ \mathrm{L} & \mathrm{K} & 4 \mathrm{~T} & 5 \mathrm{X} \\ \mathrm{L} & \mathrm{NN} & 2 \mathrm{M} & 3 \mathrm{~A} & 4 \mathrm{C} & 4 \mathrm{M} \\ 5 \mathrm{C} & 6 \mathrm{E} & 5 \mathrm{X}\end{array}$

L	$2 N$	2 M	$3 A$	4 C	4 M	5 C
Y	6 E	5 X				

Y 1P $2 \times 3 \times 4 K 5 S 6 R 1 H \frac{1 N}{2 S} 2 \Omega 4 G 4 B$
W 3G 3H 4V 6A 2J 2H 2Z 4N 5L
U 2 S 2 U 2 I 3 K 3 N 4 U 6 N 1TI 3P 6 S
T 2L 3T 3M 3Q 5Z 5K 5Q 6M 6Q 2B 5Y 50 6H 6F 60 6J
H 1 W 124 Q 6 U 6 X 1A 2 V 2R 2 N 3G 3 D 3Y 3M 4M

S 1D 1S 3Y 3B 3E 4I 4S 5H 5V 6L 6 T 1B 2 IP 4A 4 U 4I 4E 6V N 2E 40 5B 6F 4L 6L
Underllned type denotes wheels in reversed positions.

B 2F 4P 5C 6G 4K 6K
J IN 1R 1 U 2D 2R 3 T 2C 3 U 3N $\underline{5 G}$ 6B
M 1Y 2G 5V 6K 60 1Y 2T 3R 3B 4 Y 5P 5C 5B 6N 6C

A 2 KT 1 B 2 H 5R 6 JJ 6 Z

P 1S $2 I 3 K 3 T 4 Q 506 I$ 1D 2S $3 K$
$\underset{x}{ }$
Z 1I 2T 3P 4Y 4B 4I 1T 2J 3P 5L 5J
R 1K 2E 2H 3J 4M 4E 6E 1I 1T 1 P 3 D 30 4T 5H 5A 5Y 5T 6A
v 1M 1V 2X 2B 3X 5M 2m 3T 4J 4B 4R 6L 6T 6D 6H

W 1Q 2Y 3Y 4L 5T 6S 1G 1M 2R 2P 4F 4A
U 3 H 3 I 4 W 6B 2I 2 G 2Y $4 \mathrm{M} 5 \underline{K}$
T 2T 2V 2J 3L 304 V 60 1V 30 6R
H 2N 3U 3N 3R 5A 5L 5R 6N 6R 2A 5X 5N 6G 6E 6P 6I
G 1 X 1 A 4 R 6 V 6 Y 1 Z 2U $2 \mathrm{Q} \underline{2 \mathrm{I}} 3 \mathrm{~F}$ 3C 3 X 3L 4 L

स $1 B 4 \mathrm{I} 406 \mathrm{~L}$ 1S 2L 5V 5M 6V
S 1F IL 2U 4X 4A 5N 5S 6X 6D 10 1F 2E 2D
IT 1E 1T 3Z 3C 3F 4J 4T 5I 5W 6M 6U 1A Underlined type denotes wheels in reversed positions,

Tabum Z
B 1F 1U 3A 3D 3G 4K 4U 5J 5X 6N 6V 1Z $2 \mathbb{N}$ 4Y J 2 G 4 Q 5 D 6 H 4 J 6 J
M 10 1S 1V 2E 2S 3 U 2B 3 T 3M $\underline{5 F}$ 6A
A 1 Z 2H 5W 6L 6P 1X $\underline{2 S}$ 30 3A 4X 50 5B 5A 6M 6B
Q 2L 2R 2T 3R 5Q 6B 1T 1D 2U 2M 3H 4N 5T 5E
I 6U 1A 2 GG 50 6I 6Y

\mathbf{X}
\mathbf{Z}
\mathbf{Z}

R 1J 2 X 3 Q 4 Z 4 C 4 J 1S 2 II 305 K 5 I
V 1L 2F 2I 3K 4N 4F 6F 1H 1V 10 3C 3P 4V 5G 5Z 5X $\underline{5 S}$ 6Z
I 1N 1W 2Y 2 C 3 Y 5 N 2V 3V 4I 4A 40 6K 6S 6C 6G

(T) 2P 20 3C 4E 40 5E 6G 5V

U IR 2Z 3Z 4M 5U 6T 1F IL 2020 4E 4Z
T 3I 3J 4X 6C 2H 2F 2X 4L 5J
H 2 U 2 W 2K 3M 3P 4W 6P 1 U 3N 60
G 2N 3V 30 3S 5B 5M 5S 60 6S 2Z 5W 5M 6F 6D 60 6H
D 1Y 1B 4S 6W 6 Z 1Y 2 T 2P 2 L 3E 3 B 3T 3 K 4K
K 3F 4D 5R 6D 1T 10 1K 2A 2TI 3L 4T 6E 6V 6L

s 1C 4J 4 P 6M $\underline{1 R} \underline{2 K} \underline{5 U} \underline{5 L} \underline{\underline{5 U}}$

Underlined type denotes wheels in reversed positions.

Tabim R
B 1H 1N 2 W 4 Z 4C 5P 5 U 6Z 6F 10 1D 2C 2 B
J IG IV 3B 3E 3H 4L 4V 5K 5Y 60 6W IX 2 M 4X 4 R 4F 4 B 6S
M 2H 4R 5E 6I 4I 6I
A 1P 1T 1T 2 F 2T 3V 2A 3S 3L 5E 6Z

I 2M 2S 2U 3S 5R 6C $\frac{2 R}{1 S} \frac{3 T}{1 C} \frac{3 Z}{2 T} \frac{3 G}{2 M} \frac{5 S}{5 D}$
0 6V 1Z 2F 5P 6H 6X

P IR $2 R 3 X 4 M 4 U 4 B 6 L 6 B \quad 3 C$ 3T 4L 4 TI

V 1 K 2 Y 3R 4A 4D 4K 1R 2 H 3N 5 J 5 H

U 2Q 2P 3D 4F 4P 5F 6H $\underline{5 \mathrm{U}}$
T 1S 2A 3A 4N 5V 6U 1E 1K 2P 2N 4D 4Y
H 3J 3K 4Y 6D 2G 2巨 $2 \underline{1}$ 4K 5I
G 2 V 2 X 2L $3 \mathrm{~N} 3 \mathrm{Q} 4 \mathrm{X} 6 \mathrm{Q} \frac{1 T}{} 3 \mathrm{M}$ 6P
D 20 3W 3P 3T 5C 5N 5T 6P 6T 2Y 5V 5L 6E 6C 6N 6G

Underlined type denotes wheels in reversed positions.

abis ∇

B 1E 4L 4R 601 P 2 I 5 S 5 J 6 S
J $11102 \times 4 \mathrm{~A} 4 \mathrm{D} 5 \mathrm{Q} 5 \mathrm{~V}$ 6A 6G 1 N 1 C 2 B 2 A
M 1H 1W 3C 3F 3I 4M 4T 5L 5Z 6P 6X 1X 2L 4iT 40 4E 4A 6R
A $2 I 455 \mathrm{~F}$ 6J 4 H 6H
Q 1Q 1U 1X 2G 2U 3W 2Z 3 3K 5D GY

0 2N 2T 2V 3T 5S 6D 1 1R 1B 2S 2K 3F 4L 5R 5C

0 1S $2 S$ 3Y 4N 4V 4C 6M 6C 3B 3S 4K 4S
x 3J 3P 3 V 5 K 5 X 5 A 6 T 1H 1 G 2H 2C 3 G 3D 4 P 5F 6V

$\underset{\sim}{\mathbf{R}}$
I 1 L 2 Z 3 S 4 B 4 E 4 L 10 2G 3M 5I 5G

W 1P 1Y 2A 2E 3A 5P 2T 3T 4G 4Y 40 6I 60 6A $6 E$

T 2R 2Q 3E 4G 4Q 5G 6I 5T
H 1T 2B 3B 40 5T 6V 1D 1J 20 2u 4C 4X
G 3 K 3 L 4 Z 6E 2F $2 \mathrm{D} \underline{2 \mathrm{~V}} \frac{1 \mathrm{~J}}{4 \mathrm{~J}} \frac{2 \mathrm{H}}{5 \mathrm{H}}$

S 3H 4F 5T 6F 1U 10 1I 2Y 2U 3J 4R 6C 6T 6J
N 1R 2F 3G 4I 5H 6K 1Z IL IK 3V 4N 5B 5A 5P 6P

Table
B 1S 2G 3H 4J 5I 6L 1Y 1K 1J 3U $4 \mathbb{M}$ 5A $5 Z 5060$ J 1F 4M 4S 6P 10 2H 5R 5I 6R
M 1J 1P 2Y 4B 4E 5R 5W 6B 6H 1M 1B 2A 2 Z
A II 1X 3D 3G 3J 4N 4X 5M 5A $6 Q 6 \mathrm{Y}$ 1T $2 K$
Q 2 J 4 T 5 G 6 K 4G 6 G

0 1C 2 K 5 Z 606 S 1U 2 P 3N 3 X 4 U 5L 5Y 5X 6J 6Y
F 20 2U 2 W 3 U 5 T 6E 10 1A 2R 2J 3E 4K 50 5B
P 6X 1X 2D 5N 6F 6V

X 1T 2 T 3 Z 404 T 4 D 6 N 6 D 3 A 3R 4J 4P

$\stackrel{\mathbf{V}}{\boldsymbol{\nabla}}$
\mathbf{L}
F 1M 2A 3T 4C 4F 4M 1P 2F 3L 5H 5F
W 10 2I 2L 3N 4Q 4I 6I 1E 1S 1L 3Z 3M 4S 5D 5W 5U 5P 6if
U 1Q 1Z 2B 2F 3B 5Q 2S 3 S 4F 4 XX 4N 6H 6P GZ 6D
T 1D 1H 1G 1N 2E 2P 4Y 5C 5D 5J 1D 4C 4T 5V 5K 6T
H 2 S 2 R 3 F 4 H 4 R 5 H 6 J 5 S

D 3L 3M 4A 6F 2E 2C 2U $\frac{1 \mathrm{I}}{\mathbf{4 I}} \underline{5 \mathrm{G}}$

F 2Q 3Y 3R 3V 5E 5P 5V 6R 6V 2II 5T 5J 6C 6A 6L GE
s 1B IE 4V 6Z 6C II 20 2M 2I 3B 3Y 3T 3H 4H
N 3 I 4 G 5U 6G 1T 1N 1H 2 X 2T 3I 40 6B 6S 6I
Underlined type denotes wheels in reversed positions.

116

Tabis \mathbf{Y}
B 3J 4H 5V 6H 1S 1M 1G 2M 2S 3H 4P 6A 6R 6H J 1T 2H 3I 4K 5J 6M 1X 1J 1I 3T 4L 5Z 5Y 5N 6 N M 1G 4N 4T 6Q IN 2G 50 5H 60
A 1K 1Q 2Z 4C 4F 5S 5X 6C 6I IL 1A 2Z 2 Y
Q 1J 1Y 3 E 3 H 3 K 404 Y 5 N 5 B 6 R 6 Z 1V 2J 4 U 404 C 苗 6P I 2 K 4 U 5 H 6 L 4F 6F
0 1S 1T 1Z 2I 2T 3Y $2 \times$ 3P 3I 5B 6T

O 6Y 1T 2C 5M $\frac{6 E}{2 F} \frac{6 U}{4 L}$
 Z 1 U 2 U 3A 4P 4X 4E 606 E 3Z 304 I

V 1X 2N 3P 3B 4V 5T 6N 1Y 2N
\mathbf{I}
W 1N 2B 3U 4D 4G 4N 10 2E 3 K 5 G 5E
U 1P 2J 2M 30 4R 4J 6J 1D 1R 1 K 3Y 3L 4R 5C 5V 5T 50 6V T 1R 1A 2C 2G 3C 5R 2R 3R 4E 4TM 4 M 6G 60 6Y 6C
H 1E 1I 1H 10 2F 2 Q 4 Z 5D 5E 5 K 1C 4 B 4S 5U 5J 6S
G 2T 2S 3G 4I 4S 5I 6K 5R
D 1V 2D $3 D 4 Q 5 Y 6 X 1 B$ 1H $2 K 2 K 4 A$

N IC 1F 4T 6A 6D 1U 2P 2L 2H 3A $\underline{3 X}$ 3S 3G 4G

J 3K 4I 5W 6I 1R 1L 1F 2V 2R 3G 40 6Z 60 6G

A 1H 404 U 6R 1M 2F 5P 5G 6P

0 2L 4V 5I GM 4E 6E
F 1T IX 1A 2 J 2X $3 Z$ 2W 30 3H 5A 6V
P 1E 2M 5B 6Q 6U 1S 2 N 3L 3 V 4S 5J 5W 5V 6H 6TI

x 6Z 1V 2B 5L 6D 6T
Z 1N 1M 1C 2 F 3G 4M 5M 5P 5Q.5H 6C 2T 3N R 1V 2V 3B 4Q 4Y 4F 6P 6F 3Y 3P 4H 4P
3M 3S 3Y 5N 5A 5D 6T 1E 1D 2E 2Z 3D 3A 4M 5C 6S

\mathbf{Y}
W
U 102 C 3 V 4 E 4 H 40 1N 2 D 3J 5F 5 D
T 1Q 2 K 2 N 3 P 4 S 4 K 6 K 1 C 10 1J 3 X 3 K 40 5B 5U 5S 5N 6U
H 1S 1B 2D.2H 3D 5S 20 3Q 4D 4V 4L 6F 6N 6X 6B
G 1F 1J 1I 1P 2G 2R-4A 5E 5F 5L 1B 4A 4R 5T 5I 6R
D 2U 2T 3H 4J 4T 5J 6L 50
K 1T 2E 3E 4R 5 Z 6Y 1A 1 G 2L 2 J 4 Z 4 U

N 2S 3A $3 T 3 X 5 G 5 R 5 X \frac{1 P}{6 T} \frac{31}{6 X} \underline{\underline{2 U}} \underline{5 R} \underline{5 H} \underline{6 A} \underline{6 Y} \underline{6 J} \underline{6 C}$ Underlined type denotes wheels in reverred positions.

тавые 0

J 1E 1H 4Y 6C 6F 1S 2N 2J 2F 3Y 3V 30 3E 4E

A 1V 2J 3 K 4 M 5 L 60 1V 1H 1G 3R 4J 5X 5II 5L 6 L

- II 4P 4V 6S 1L 2E $50 \underline{5 F} 60$

I 1M 1S $2 \mathrm{~B} 4 \mathrm{E} 4 \mathrm{H} 5 \mathrm{U} 5 \mathrm{Z} 6 \mathrm{E} 6 \mathrm{~K} 1 \mathrm{~J} \quad 1 \mathrm{Y} 2 \mathrm{X} 2 \mathrm{H}$
0 IL IA 3G 3J 3M 4Q 4A 5P 5D 6T 6B 1T 2H 4 S 4M 4A 4in F 2 M 4 T 5 J 6 N 4 D 6 D
P IU IY 1B $2 K 2 Y \frac{6 D}{3 A}$ 2V 3N $3 G \underline{5 Z}$ 6U

X 2R 2X 2Z $3 \times 5 W$ 6H IN 1X 20 2G
Z 6A 1U 2A 5K 6C 6S
R 10 IN 1D 2G 3H 4N 5N 5Q 5R 5I 6D 2S 3M 3L 3A 3S 4X 4V 4B 6J
∇ IT 2W 3C 4R 4Z 4G 6Q 6G 3X 30 4G 40
L 3N 3T 3Z 50 5B 5E 6X 1D 1C 2D 2Y 3C 3Z 4L 5B 6R

W
U
T 1P 2D 3 W 4F 4I 4P 1M 2C 3I 5E 5 C

G 1T 1C 2E 2I 3E 5T 2P 3P 4C 4U 4K 6E GM GIT 6A
D 1G 1K 1J 1Q 2H 2S 4B 5F 5G 5M 1A 4 Z 40 5S 5H 60
K 2 V 2 U 3 I 4 K 4 U 5 K 6 M 5P
1X 2F 3F 4S 5A 6Z 1Z 1F 2K 2I 4Y 4T
s 30 3P 4D 6I 2B 2Z 2R 4F $\frac{5 D}{}$

ind ate

Tabli T
B 2B 2D 2R 3T 3W 4D 6TIN 1NG 6T

A 3M 4K 5Y 6K 1P 1J 1D 2T 2P 3E 4M 6X 60 6E

I 1 J 404 m 6T 1K 2 D 5N 5E 6N
0 1N 1T 2C 4F 4I 5V 5A 6F 6L 1I 1X 2T 2V

1N 1B 3H 3K 3N 4R

Z 2S 2Y 2A 3Y 5X 6I 1M 1T 2N 2F 3A 4G 5M 5X

I 1X 2 X 3 D 4 S 4 A 4 H 6 R 6 H 3Im 3 N 4 F 4 N
Y $30303 A 5 P 5 C 5 F 6 Y 1 C$ 1B $2 C$ 2X 3B 3Y 4K 5A 60

$\mathbf{Y} 30$	$3 U$	$3 A$	$5 P$
W	$5 C$	$5 F$	$6 Y$

\boldsymbol{U}

\mathbf{T}
H $1 Q 2 \mathrm{E} 3 \mathrm{X} 4 \mathrm{G} 4 \mathrm{~J} 4 \mathrm{Q}$ 1L 2 B 3H 5D 5B

D 1U 1D 2F 2J 3F 5020 30 4B 4T 4J 6D 6L 6V 6Z
K 1H 1L 1K 1R 2I 2T 4C 5G 5H 5N 1Z 4Y 4P 5R 5G 6P
K 2 H 2 L 3J 4L 4V 5L 6N 50
E 1Y 2G 3G 4T 5B 6A 1Y 1E 2J 2H 4 X 4S

Table \boldsymbol{H}

B $3 \mathrm{Q} 3 \mathrm{R} 4 \mathrm{~F} 6 \mathrm{~K} \underline{2 Z}$ 2X 2 P 4D 5B
J 2C $2 E 2 S$ 3U $3 \times \frac{2 X}{4 E} \frac{2 P}{6 X} \underline{\frac{14}{1 M}} \frac{5 B}{3 F} \frac{6 I}{}$
M 2V 3D 3 W 3A 5J 5U 5A 6 W 6A $\underline{2 R}$ 50 5E 6X 6Y 6G 6Z

0 3N 4L 5Z 6L 10 1I 1C 2S 20 3D 4L 6T 6N 6D
I 1X 2 L 3 M 405 N 6 Q 1T 1F 1E 3P 4H 5V 5U 5J 6J
0 1K 4R 4X 6U 1J 2C 5M 5D

0204 Y 5 L 6P 4 B 6B
X 1T 1A 1D 2M 2A 3C 2T 3L 3E 5X 6S
Z 1H 2P 5E 6T 6X 1P 2 KK 3I 3S 4P 5G 5T 5S GE 6T
R 2T 2Z 2B 3Z 5Y 6J LL 1V 2M 2E 3Z 4F 5L 5II
V 6C 1S 2Y 5I 6A 60
L 1Q 1P 1F 2I 3J 4P 5P 5S 5T 5K 6F 2Q 3K 3J 3Y 3Q 4V 4T 4Z 6H
Y 1Y 2 Y 3E 4T 4B 4I 6S 6I 3V 3M 4E 4M

U 1B 2R 3T 3F 4Z 5X 6R 1U 2

T

G 1R 2F 3 Y 4 H 4 K 4 R 1K 2 A 3G 5 C 5A
D 1T 2N 2Q 3S 4V 4N 6N 1Z 1 N 1G 3U 3H 4N 5Y 5R 5P . 5 K 6R

HiIIM LL 1S 2J 2U 4D 5H 5I 50 IY
s $2 \mathrm{X} 2 \mathrm{~W} 3 \mathrm{~K} 4 \mathrm{M} 4 \mathrm{~W} 5 \mathrm{M} 60 \frac{5 \mathrm{~N}}{}$
N 2 H 3H 4U 5C 6B 1X 1D $2 I$ 2G 4II 4R

Tasim G
B 1A 2 I 3 I 4 V 5 D 6 C 1 T 1C 2 H 2F 4 V 40
J $3 R 3 S 4 \mathrm{G}$ 6L $2 Y \frac{2 T}{20} \frac{20}{4 C} \frac{2 H}{5 A}$

I 30 4M 5A 6M 1 N 1H 1 B 2R $2 \mathbb{N}$ 3C 4 K GV 6M 6C
0 1Y 2M 3N 4P 50 6R 1S 1E 1D 30 4G 5U 5T 5I 6I
F 1L 4S 4Y 6V 1I 2B 5L 5C 6L

$\mathbf{x} 2 P 4 Z 5 M 6 Q 4 A$ 6A
Z 1X 1B 1E 2N 2B 3D 2S 3K 3D 5M 6R

v 2U 2A 2C 3A 5Z 6K 1K 1 U 2L 2 D 3Y 4 E 5K $\underline{\underline{V}}$
L 6D 1R 2X 5H 6Z 6P

W 1 Z 2 Z 3 F 4 U 4 C 4 J 6 T 6 J 3 U 3L 4 D 4 I

H
G
D 1S 2G 3Z 4I 4L 4S 1J 2Z 3F 5B 5Z

H 1\% 1F 2H 2L 3H 5W 2M 3M 4Z 4R 4H 6B 6J 6T 6X
g 1J iN 1M 1T 2 K 2V 4E 5I 5J 5P 1X
N 2 Y 2 X 3L 4N 4X 5N 6P 5M

B 2Z 2Y 3M 40 4Y 50 6Q 5L
J 1B 2 J 3 J 4 W 5 E 6D 1V 1B 2G 2E 4 U 4 P
M 3S 3 T 4 H 6 M 2X 2 V 2N $4 \mathrm{~B} \frac{\mathrm{EZ}}{2}$
A 2E 2G $2 U 3 T \frac{2 K}{3 Z} \frac{2 G}{4 Z} \underline{1 K} \underline{3 D} \underline{6 C}$
Q 2X 3F 3Y 3C 5L 5T 5C 6Y 6C 2P 5M 5C 6V 6T 6E 6X
I 1I IL 4C 6G 6J 10 2J $2 F \operatorname{2B}$ 3U 3R 3M 3A 4 A
0 3P 4N 5B 6N 1M 1G 1A 2Q 2N 3B 4J 6U 6L 6B
F 1Z 2N 3040 5P 6S 1R 1D 1C $3 \mathbb{N}$ 4F 5T 5S 5H 6H

0 1Q1m 2F 4I 4L 5Y 5D 6I 60 1F 1U 2T 2S

Z $2 Q 4 A$ 5N 6R 4Z $\frac{6 Z}{3 \mathrm{Z}}$
R 1Y 1C 1F 20 2C 3E 2R 3J 3 C 5V 60

L 2V 2B 2D 3B 5A 6L 1J 1T 2K 2C 3X 4D 5J 5U
Y 6E 102 TW 6Y 60

U 1A 2A 3G 4V 4D 4K 6U 6K 3T 3K 4C

H 1D 2T 3V 3H 4B 5Z 6T 1S 2H 3Z 3P 4E 5F 6D
G
\mathbf{D}

K 1T 2H 3A 4J 4M 4T 11 2Y 3E 5A 5Y
R 1V 2P 2S 3U 4X 4P 6P 1X 1L 1E 3S 3F 4L 5II 5P 5N 5I 6P
s 1X 1G 2I 2M 3I 5X 2L 3 L 4Y 40 4G 6A 6I 6S 6"

Tabia K
B 1L IP 10 IV 2M 2X 4G 5K 5L 5R IV 4 U 4L 5N 5C 6L J 2A 2Z 3N 4P 4Z 5P 6R 5K
M 1C $2 \mathrm{~K} 3 \mathrm{~K} 4 \times 5 \mathrm{~F}$ 6E $\underline{1 \mathrm{U}}$ 1A $2 \mathrm{~F} \underline{2 \mathrm{D}} 4 \mathrm{~T}$ 40
A 3T 3U 4I 6N 2TI 2U 2M 4A 5Y
Q 2F 2H 2V 3X 3A 4H 6A 1J 3C 6F
I 2Y 3G 3Z 3D 5M 5X 5D 6Z 6D 20 5L 5B 6U 6S 6D 6T
0 1J 1M 4D 6H 6K 1N $2 I 2 \mathbb{2 E}$ 2T 30 3L 3Z 4Z

Z 1Q 1F 3L 30 3R 4V 4F 5U 5I 6Y 6G 10 2C 4 N 4H 4V 4R 6I
R 2R 4B 50 6S $\frac{4 \mathrm{Y}}{\mathbf{6 Y}} \underline{\underline{Y}}$
V 1Z 1D 1G 2P 2D 3F 20 3I 3B 5U 6P
L 1 K 2 S 5 H 6W 6A 1M 2H 3F 3P 4M 5D 50 5P 6B 60
Y 2T 2C 2E 3C 5B.6M 1I 1S 2J 2B 3IT 4C 5I 5T
W 6F 1P 2V 5F 6x 6N

T 1 B 2B 3 H 4 T 4 E 4 L 6 V 6 L 3S 3J 4B 4J

D
T 1 U 2 I 3 B 4 K 4 N 4 U 1 H 2 X 3 D 5 Z 5

N 1Y 1H 2J 2N 3J 5Y 2K 3K 4X 4P 4F GZ GH GR GV

124

тавme \mathbf{E}

M 2B 2A $304 Q 4 A 5 Q 6 S 5 \mathrm{~J}$
A 1D 2L 3L 4Y 5G 6F 1T 1Z 2E 2C 4S 4N
(3 U 3V 4J 60 2V 2T 2L 4Z 5 X
I 2G 2I 2W 3Y 3B 4I 6B 1I 3B 6E
02 Z 3H 3A 3E 5N 5Y 5E 6A 6E 2N 5K 5A 6T 6R 6C 6V
F 1 K IN 4 E 6I 6 L 1M 2 H 2 D 2Z 3 S 3P 3 K 3Y 4 Y
P 3R 4P 5D 6P 1K 1E 1Y 20 2K 3Z 4H 6S 6J 6Z

X $104 \mathrm{~V} 4 \mathrm{~B} \mathbf{6 Y}$ 1F 2 Y 5I $\underline{\underline{5 Z}} \underline{6 I}$

 ∇ 2S 4C 5P 6T 4X 6X
L 1A 1E 1H 2Q 2E 3G 2P 3H 3A 5T 60
Y 1 L 2T 5I 6X 6B 1L 2 ZG 3E 30 4L 5C 5P 50 6A 6P

H 1C 2 C 3 I 4 X 4 F 4 M 6 W 6 M 3 R 3I 4 A 4 I

D 1F 2V 3X 3J 4D 5B 6V 10 2F 3X 3N 4C 5D 6B K
s 1V 2J 3C 4 L 404 V 1G 2 T 3C 5 Y 5T
 Underlined type denotea wheels in reversed positions.

Table S
B 1Y 2S 2V 3X 4A 4S 6S 1U 1I 1 B $\underline{3 P} \underline{3 C} \underline{4 I} \underline{5 T} \underline{5 M} \underline{5 K} \underline{5 F} \underline{6 M}$

A 2C 2B 3P 4R 4B 5R 6T 5I
(1E 2M 3M 4Z 5H 6G 1S $\underline{1 Y}$ 2D 2B $\underline{\text { 4R }}$ 4M
I 3V 3W 4K 6P 2U 2 S 2K 4Y 5 W
0 2H 2J $2 \times 3 Z 3 \mathrm{C} \frac{\mathrm{JJ}}{6 \mathrm{C}}$ 1H 3 AB 6D
F $2 A 3 I 3 B 3 F 505 Z 5 F \frac{1 H}{6 B} \frac{3 A}{6 F} \underline{2 M} \underline{5 \mathrm{~J}}$ 5Z 6 S 60 6B $\underline{6 \mathrm{U}}$

R 1T 1Z 2I 4L 40 5B 5G 6L 6R 1C 1 R 20 2
∇ 1S 1H 3N 3Q 3T 4X 4H 5W 5K 6A 6I 1M 2A 4L 4F 4T 4P 6G
I 2T 4D 5Q 6U 4 TW 6T
Y 1B 1F 1I 2R 2 F 3H 20 3G 3 Z 5S 6 N

U 2Y 2E 2G 3E 5D 60 IG 10 2H $2 Z$
T 6H IN 2T 5D 6V 6L
H 1V 1U 1K 2 N 304 U 5 U 5 X 5 Y 5 P 6K 2L 3 F 3E 3 T 3L 40404 U 6C
G 1D 2D 3J 4Y 4G 4N 6X 6N 30 3H 4Z 4 H
D 3U 3A 3G 5V 5I 5L 6E 1T 1V 2 T 2R 3 V 3S 4 E 5U 6K
K 1G 2W 3Y 3K 4E 5C 6T IP 2E 3II 3M 4B 5C 6A
\mathbf{K}
\mathbf{R}
\mathbf{S}
N 1 N 2 K 3 D 4 M 4 P 4 W 1F 2V 3B 5X 5V
Underilined type denotes wheels in reversed positions.

B 1X 2L 3E 4N 4Q 4X 1E $2 \mathbb{2 U}$ 3A 5W 5U

(2 D 2 C 3 Q 4 S 4 C 5 S 6 U 5H
I $1 \mathrm{~F} 2 \mathrm{~N} 3 \mathrm{~N} 4 \mathrm{~A} 5 \mathrm{I} 6 \mathrm{H} \underline{1 R} \underline{1 X} \underline{2 C} \underline{2 A} 40$ 4L
0 3W 3X 4L 6Q 2 T 2 R 2J 4 X 5 V

v 1U 1A 2J 4M 4P 5C 5H 6M 6S 1B 10 2P 20

H 6I MM 2S $\underline{5 C} \underline{60} \underline{6 K}$

D 1E 2E 3 K 4 Z 4 H 406 Y 60 3P $3 \mathrm{G} \frac{4 \mathrm{Y}}{} 4 \mathrm{G}$

E $1 \mathrm{H} 2 \times 3 Z 3 \mathrm{~L} 4 \mathrm{~F} 5 \mathrm{D}$ 6X $\underline{10} \underline{\underline{2 D}} \underline{\underline{3 V}} \underline{\underline{3 L}} \underline{4 A} \underline{5 B} \underline{6 Z}$
$\stackrel{\mathbf{S}}{\mathbf{N}}$
Underlined type denotes wheels in reversed poaitione.

Appendix VI

SUMMARY OF RESULTS

By using the values derived from a study of the " V " and " Z " messages it was possible to find messages in which three values of the indicator were known-the first, second, and fifth letters. A little experimentation soon yielded the value of the remaining two indicator letters and also values for the "dog setting" square.
The lines d and r indicate which letters correspond to direct and reversed setting, respectively, of the wheels.

Figure 1 gives the dog setting corresponding to the various combinations of the first two wheels. There are no values entered in row 5 or in column 5 because in the messages submitted wheel 5 was not used.

Figure 2 gives the plain-text equivalents for the enciphered indicators.
Figure 3 gives the complete settings of those cipher messages which were read. No attempt was made to read any further messages since it appeared that a complete solution would be a matter of time only.
(127)

 MRLDO = DAXUC (179)
 LPDUU $=$ CFFTEA (189) SSSVJ = GVHDE (196) $\mathrm{VGBKL}=\mathrm{HIAFQ}(210)$
 SCRLT $=$ GOJJCK (218) DRTUV=FANEH (252) NNBQU $=$ NQAIA (253) DDJQP $=$ FKKIIH $_{2013}(229)$ QRPCP $=\underset{31012}{J A O M B}(206)$ PSYLV $=$ ZVCCH (177) RNTLE $=$ IqNCO $_{20314}$ (165)
Figurn 3

[^0]: ${ }^{1}$ This test was made at request of the Code and Signal Section, Office of Naval Communications, Navy Department. The test was conducted by Mr. F. B. Rowlett, Dr. S. Kullback, and Dr. A. Sinkov, under the supervision of Mr. W. F. Friedman, Chief of Signal Intelligence Section.

[^1]: The setting of the ratchet action from the table is ACY.

[^2]: Underilined type denotes wheels in reversed positione.

