
b) (1)

I OF Jl!!llll!•

Computer Virus Infections: Is NSA Vulnerable?

-------- --- --- --- -- --- --(b) (3) -P.L. 86-36

This paper is concerned with computer viruses - a potentially dangerous attack
on computer systems. The virus is a special case of the trojan horse problem,
distinguis · · · ·
programs.

INTRODUCTION

What is a computer virus? A computer virus is a self-propagating trojan
horse. 1 A computer virus has three main parts: a mission component, a trigger
mechanism, and a self-propagation component. The mission com-Ponent is the
executor of the deed the virus is designed to accomplish, e.g., erasure: of all data on
a computer system. The mission component lies dormant until activated by the
trigger mechanism. The trigger mechanism tests one or more dspects of the
system state such as the current date to determine whether to[activate the
mission component. For example, a possible virus may be of the form: if today's
date is 10/01/85 then erase all accessible data on the computer system, otherwise
propagate self. Indeed an actual simple virus is not much longer o,r complicated
than this. The third part of the virus, the self-propagation compone'nt, allows the
virus to quickly spread to other programs to which the virus is not already
attached. I call this the arocess of"viral infection." 1,

I
1. A trojan horse, in the tnost general sense, is a computer program which, in addition to performing
a desired function, causes a malicious side effect when run by an unsuspecting user .I. Even though the
trojan horse problem is widely recognized, trojan horse identification is difficult. I ·

I

47 T8PS£ERET

(b) (3) -P.L. 86-36

lApprovecl for· Release by f\JSA. od
b2-28-20D8 FC1IA. Case# 518211

-----------------------------·-·-·-·-

'F8P SEEAET CRYPTOLOGIC QUARTERLY

DISCUSSION

Tne question of whether or not an algorithm exists to decide whether .a
:rov=~: j: infe;~ with a virus appears to be unresol3donsultation with Dr. I_ __ _ ---·and a number of colleagues withi. has indicated that· a

:" orma izat10n o t e meaning of "infected" is requ~te m order to make !-iny
rigorous statements about viruses. A theory of ,Viral infection is require.cl to
characterize properties associated with viruses and ultimately to prove whether
or not a decision algorithm exists. · ...,. ·

Based on Rice's Theorem, 2 it is the author's intuition that a decision alg9rithm
to determine whether or not a program is infected does not exist_ Iri fact, ev'en if it
is proved that such an algorithm exists, .there is no guarantee that the actual
algorithm can be found. If the algoritlp:h does not exist or cannbt be (ound, it
would not mean that the problem is hop~less. It would mean only that it.~ general
solution is not open to mathematicallJ~igorous proof. This result ~ould/leave two
approaches: (1) restrict the computer system specification so that/a general
solution is not required or (2) solve the problem heuristically, acknbwl~dging that
the solution is not rigorously cqrii.plete. The second method seems'. to"provide the
cheapest and easiest appro&ih without drastically changing the.1 operational
environment. · ./ · / i

The thrust of the recorhmended actions proposed in this paper' is to provide
"mechanisms to make .the virus attack more difficult and e~pensive to a
penetrator. This method is known as increasing the work factor~ the a.mount of
resources the attacker must expend to-accomplish a successful pii!~etration. The
cost is measured in terms of both time and money. If the time required to mount a
virus attack against a given system exceeds the life of the systeqi, then the system
is effectively secure. Similarly, if the cost is made high enough, t~e attacker will
divert his resources to a more fruitful target_ In either case, an effective solution
is reached. · / /

I

Rice's Theorem states that any nontrivial property of the recUrsively enumerable sets is
undecidable. A property is Mtrivial~ if it is either true of all membe~:in the setoiofno members in
the set. Since the set of all possible algorithms is a recu.rs!vely eni.imerable se~ it would seem to
follow that the nontrivial property nf being infected would be undetidable. For furtheJ:' reading on
Rice's Theorem, see Hnpcroft(ci~d in the bibliography). / j

TQP SEERE'F 48

I l,\ U \
b) (3) -P. L. 86-36 (b) (3) -F. L.

(1)

COMPUTER VIRUS INFECTIONS 1"8P SEEIU!lf'

Attack CkJsses

The three major types of computer attacks are compromise, spoofing, and
denial of services. They are discussed in detail in the following paragraphs.

b. Snoofine: - the unauthorized alteration of classified data.

Paradoxically, the type of program in which the virus lies can tell
much about the system. Using a biological analogy, a human who fihds himself in
an alien environment knows a great deal about that environment by virtue of the
fact that he is alive, e.g., there is enough oxygen to breath,/ the ambient
temperature is within the human-tolerable range, etc. By the same token, a C
language program, for example, "knows" with a high degree of ce~tainty that it
will be running in a UNIX-type environment. If the host program in which a
virus hides will not run in a given computer system, there is no teason to ever
import that program. If it is imported, it will not execute and pre~ents no direct
threat to the computer system. The following two scenarios exemplify the
spoofing attack. The scenarios are. not intended to be of sufficiettt detail to be
beyond criticism, but to give a flavor for attacks that might be i>ossible.

I

49 r TOP l!eRE'f

(b) (3) -P. L. 86-36

(l)_ -·

"F9PSEERET CRYPTOLOGIC QUARTERLY

c. Denial or Service - the unauthorized use of system rd~ources to the
exclusion of s.uthorized users. Examples of denial-of-service attacks include
"unfair" CPU utilization or "excessive" disk storage space usag~ by a user or
process to a degree that negatively impacts the other users on the 1system. More
concretely, if a user gets control of the CPU scheduling process, thJ computer can
be directed to execute only his process to the exclusion of all others. J ·

At first glance, the infecti~n process itself may seem to represent a
denial-of-service attack. To a small extent this is true; however, a ~iable infection
must conceal itself by minimizing the time required to accomplish the infection
process before executing the legitimate.program. Specifically, the/infection time
required must be small compared to the time required to execute 1the legitimate
program so that the user does not notice the delay. lnde~d, 0;nce all of the
programs have been infected, a process which can occur exponen~ially fast, the
infection process consumes no more system resources until its mission component
is activated. I

The denial-of-service attack is similar to the spoofing attack but uses
more brute force. Instead of providing--false information during times of crises,
programs are instructed to bring th~ system to a halt. I

l=QP&EERET 50

(b) (3) -P. L. 86-36

(b) (1)

COMPUTER VIRUS INFECTIONS T611 !l!ER!f

e t reat o computer virus attac 1s very rea .
preliminary investigations reported in the paper cited in the bibliography,
involving the actual production of working viruses on systems which included the ·
Univac llOB, TOPS-20, VM/370, and VMS, demonstrates viral production times
ranging from 6 to 30 hours. The average time to acquisition of full system
privileges giving the virus unchallenged access to any data on the computer
system was 30 minutes after virus introduction to the targeted computer. ·

Virus Uniqueness

What makes the computer virus problem different from the more general
trojan horse problem? The difference is analogous to the differehce between
having one traitorous soldier in your ranks versus an infectious disease which
converts your soldiers to enemy soldiers. The effect of one bad soldier is usually
limited to his own group. The effect of the infectious disease is likely to be the loss
of the entire war. I

Current computer security research suggests that good security is
accomplished by the separation of the computer system into small, isolated groups
of related programs. Should a problem occur, this limits the damage to within
that group. This is analogous to the bulkhead separation of compartments in
ships and submarines to prevent uncontrolled flooding from a single leak.

The virus and the trojan horse, in any given partition, are indi~tinguishable
in terms of the amount of damage they can cause. The difference is ,in the ability
of the infections to escape the-partition. The trojan horse is active Of'llY within the
partition. The virus, on the other hand, has the potential to spread itself to other
partitions as well. The virus quickly infects virtually all probams in the
partition. The process is very simple and very fast. When the ori~nal infected
program is run, it first finds an executable file, appends a copy of itself to the file,
executes its mission component if the triggering event has occuried, and then

I executes the program b-Ody of the host program. '
When a program runs in the user's space, it runs with the same/access as the

user himself. The algorithm for infection requires only reads, writes, and file
renaming. For example, the algorithm could be to copy the vifus part to a
temporary file, append the reloaded executable program code to t~e virus code,
delete the old program version, and then rename the temporary file to the name of

. I

51 I "F9P §IOEAliiT

(b) (3) -P.L. 86-36

(l i

T8P 5EEftET CRYPTOLOGIC QUARTERLY

the old program. At this point, there would be two infected programs, the original
and the program the virus infected. The accesses required for these operations are
almost universally allowed to the owner of the files and, hence, are available to
the virus when run in the user's space; The collection of programs to which a
virus has the required access to propagate when executed by a given user will be
called a "partition."

Execution of either of the two infected programs can infect other programs in
the partition. Given that programs in the partition are run with some regularity,
the number of infected programs increases geometrically until all programs are
infected. Furthermore, information flows must also occasionally take place across
partitions by operational necessity. When upgrading system software facilities,
software systems such as data base managers or editors developed on other
computers must be loaded on the computer system. Programs often need to be
copied from one partition to another in -order to share the benefits of a program
developed by users on the system. Since all programs within the virus-infected
partition are potentially infected, the probability of transmission of the virus is
greatly increased.

With the infectiousness of viruses-established, I turn to the question of
virulence. Even though the potential damage within a partition is equivalent
between the virus and the trojan horse, the reliability and ease with which the
damage can be done is greatly increased in the case of a virus. Given a fairly large
number of programs within a partition. a virus infection obviously h~s many more
traitorous agents doing its bidding. This could mean either a large number of
agents (programs) attempting the exact same subversive tas~ or possibly
cooperating in subtle ways to accomplish a larger integrated task. fl'he first case
yields a high reliability of task success by simple redundancy. The second case is
much more theoretical and sophisticated but provides the potedtial for more
subtle tasks to be achieved. · /

The infectiousness and virulence unique to a virus arises from its ability to
propagate itself. Solutions should address this particular featu;e in order to
demote the virus to a trojan horse subject to the correspondfug protection
mechanisms, inadequate as they may be. Specific solutions are offeted later in the

I
I

paper.

Specific Vulnerabilities

fOP lECREI 52

(b) (3)-P.L. 86-36

/

(1)
(bi (3)-P.L. 86-36

COMPUTER VIRUS INFECTIONS TQP&EERET

SOLUTIONS

The nature of the virus problem requires the simultaneous pursuit of several
different solutions. First, both long- and short-term solutions should be sought.
Immediate stopgap countermeasures should be taken to minimiz~ the risk from
this threat. Furthermore, some long-term, fundamental research is required to

53 'l'CP lfSRET

lbi !l i
!bi (C;J -P.L. 86-36

l'8P &EERE'f CRYPTOLOGIC QUARTERLY

investigate the offensive potential of and defensive mechanisms for sophisticated
viral attacks.

Before [recommend specific solutions, I must preface my remarks with some
cautions. Persons using the computers should carefully evaluate these
suggestions, along with· any others made as a result of the virus problem, in terms
of operational impact. Knee-jerk reactions can cause more problems than they
solve. Perfect computer security can be achieved by hermetically sealing all
computers, but they could then do no useful work. Clumsy, complicated
procedures and policies are more likely to be ignored than followed.

The cost and benefit of each sug~estion should be compared and properly
weighed and, in turn, compared to the risk. I suggest that formal:techniques of
risk analysis be applied to the problem to establish a procedure of measuring this
trade-off. \.

Considering the above mentioned specific vulnerabilities, the steps towards
preventing trojan horse importation are as follows: J

T8P SEERET 54

COMPUTER VIRUS INFECTIONS T8f 5EERET

Virus-specific Countermeasures

55 T9P§&'ERET

(1)
(b) (3)-P.L. 8 6-36

-- ··- - ·---- .. ·-.

"F8P,liERH. CRYPTOLOGIC QUARTERLY

Operational Rami(tcation.s ·

I
This section may be more appropriately labeled, "What does this all mean to

me?'' This paper should have an immediate effect on operation as wkll asp.&0.ia1iiia.i..i.01.1...-..
T :

' '

i //~sl!'!!r!'!!o-~y-.u!'ll'r"ge""'.-----------_.------.-... -.. -.. ·---...... ---..
i / This paper is essentially a call to arms for all.computer systems research and
i / support groups to focus attention on this ve~y real problem. 'r;r'he solutions
i / proposed are in various stages of-development. Each should be analyzed,
, , implemented, and tested. ~ewideas should be generated. More re~ources should

be dedicated to the problem to find viable solutions for both the long and short

te.r~. " " .· . . I

!>· " ' " " " 'fel' SE!fltEf
56

(b) (1)
(b) (3) -P.L. 86-36

I I 11

COMPUTER VIRUS INFECTIONS 'fef !EERE'f

Implications to Computer Security Criteria

All right then, how about adding Biba's' integrity extensions to the
mandatory model requirements in the Criteria. The addition of intekrity levels to
the mandatory access control mechanisms is certainly a step [in the right
direction. This additional control, however, is not a panacea; in fact, it is only
another measure to increase the work factor of viral penetrations. I

The integrity dual model suggests the segregation of all of the programs on a
computer system based on the degree of trust that the program does exactly what
it is designed to accomplish and nothing more. For example, if the designing
software engineers were all Top Secret cleared, the software :was formally
specified and verified correct, and a large panel of experts reviewed the final code,

3. Biba suggested the addition of the integrity dual of simple security and the •-prop'erty proposed by
Bell and LaPadula.. In swn the model requires (1) no writing "up,. in integrity (simi)Ie integrity) and
(2) no reading "down" in integrity (integrity •-property). Note that here, read and execute may be
consideredequivalentaccessea. J

57 lOP i lifiiAiiT
(b) (3)-P.L. 86-36

b) (1)

T9P5EEftEf CRYPTOLOGIC QUARTERLY

such a program might be placed in the class of "high integrity" programs.
Conversely, if a program's origin is no longer known and the source code is not
available for inspection, th~n such a program might be· placed in the "low
integrity" class of programs. All programs would be labeled as to which class they
belong. Now, if the system prevents all "low integrity" programs from accessing
any "high integrity" programs, then there is some measure of protection against
the spread of viral infection from lower integrity levels to higher integrity levels.

The establishment of a hierarchy of integrity levels requires some way of
determining the relative degree of reliability. With respect to the virus problem,
this corresponds to determining the probability of an algorithm being infected or
its susceptibility of infection. The method of such a determination is unclear and
may itself be unreliable. If the method were implemented as an algorithm on the
computer system, it too would be susceptible to the very same viral attacks as the
other programs.

There is no way of guaranteeing ·that the routines labeled as "highest
integrity" are not infected if a decision algorithm to detect viruses does not exist
or cannot be found. Infection of the highest integrity routines could then
eventually lead to a system-wide infection. This would make the whole integrity
structure useless and could give a fal~e sense of assurance. Therefore, the
addition of integrity levels into mandatory access can only be a part of an
integrated strategy to combat the virus attack.

CONCLUSION

t appears t at a arge variety o mexpens1ve measures can e en o
counteract a large percentage of the potential viral attacks. FurthJrmore, other
countermeasures can be adopted to increase the work factor of any virus
attem tin s stem netration.

ow to increase wor actors tot e extent o ma ing t is attac i eas1 e is a
matter for more research. I suspect the soluti~n will be heuristic ih nature, and
the final protection system will probably come to resemble1 the human
immunological system in approach. In general, I believe pattern r~cognition and
artificial intelligence will play a key role in long-term research into this problem.

(b) (3) -P.L. 86-36

"'F8P 5EEltET 58

COMPUTER VIRUS INFECTIONS

•

Jl!BLIOGRAPHY

Bell, D. E. and L. J. LaPadula. "Secure Computer Systems: Unified Exposition
and Multics Interpretation," MTR-2997 Rev. 1, MITRE CorporS:tion, Bedford,
Massachusetts, March 1976. I· ·
Biba, K. J. "Integrity Considerations for Secure Computer Systems," ESD-TR-76-
372, Electronic Systems Division, AFSC, Hanscom AFB, Bedford, Massachusetts,
April 1977. . . I ·
Cohen, Fred. "Computer Viruses: Theory and Experiments," 7th DOD/NBS
ComputerSecurityConferenceProceedings, 1984. / . .

Department of Defense Trusted Computer System Evaluation Criteria, DOD
Computer Security Center, Fort Meade, Maryland, 15 August 1983!

Hopcrofl, John E. and Jeffrey Ullman. Introduction to Autbmata Theory,
Languages, and Computation, Addison-Wesley, 1979, pp. 177-213.

(°?.' -P. L. 8l;-3l;
(bi I l;l

59 FQA QFFl&IAL l:ISE BNL'/

