
DOCID: 3928891
@'pproved for release by NSA on 12-01-2011 ,Transparency Case# 63853

RIse Does Windows

UNCLASSIFIED

STATUTORILY EXEMPT

An intriguing trait of several Reduced Instruction Set Computer (RISC) based
architectures is Multiple Overlapping Register Windows (MORW). This technique has been
referred to as a hardware solution for managing large numbers ofregisters. This paper is an
in-depth discussion ofMultiple Overlapping Register Windows, their occurrence in current
RISCprocessors, and alternatives to them.

INTRODUCTION TO RISC AND REGISTER FILES

Recently there has been a great deal of activity within the field of Reduced Instruction
Set Computer (RISC) processors. Most people are used to the concept of Complex
Instruction Set Computer (CISC) processors, where a large instruction set provides the
programmer with just about any instruction that may ever be needed. A basic assumption
made in CISC designs is that compiler developers require these large instruction sets to
easily generate efficient code. This assumption may not be a valid one and may serve only
to cause unnecessary hardware complexity. It has been stated that compiler writers can
only make use of about 30 percent of the instructions in these large instruction sets [6].
The RISC philosophy is to keep the hardware very simple, yet relatively optimized to the
applications that it will be running, providing only those instructions that can be used
efficiently. A major benefit of this is that the complex control mechanisms required to
implement a CISC processor can be eliminated, allowing the processor in most cases to fit
easily within one Very Large Scale Integrated Circuit (VLSI) chip. The impressive result
is that the simple control circuitry and the regular structure of the rest of the RISC
processor allows the RISC design to easily scale to smaller chip dimensions. This
scalability permits a RISC processor to rapidly take advantage of technological advances.

A large part of the RISC design process is determining a relatively small set of
instructions that covers the needs of the applications that will run on the processor. These
instructions must also be easily decodable to enable a simplified control circuit. The goal
is for each instruction to require only one fixed length instruction cycle to complete. This
can be achieved by permitting only load and store instructions to access memory and
requiring all other instructions to use registers as their operands. Consequently, RISC
designs tend to require a large number ofCPU registers (32 to 500+). These registers are
normally presented in some form of register file that can be accommodated due to the space
saved with a simplified control circuit.

Register files can be looked upon as flexible mini-caches. They are flexible because
they are not restricted to being mapped onto memory in any specific way, but cache-like in
that the elements are quickly accessible by the processor. Register files differ from cache
systems in that register files are generally smaller than caches. The benefit here is that
the smaller register file addresses can be encoded within a few bits in the instruction,
resulting in quicker address decoding in hardware.

The RISC designers must decide how to manage this fairly large register file. One
solution is to let the compilers take care of the register allocation problem. This is a
reasonable decision but leads to a more complex compiler. Another solution is to
reorganize the register file, allowing hardware to take care of this problem. A register file
with Multiple Overlapping Register Windows (MORW) is one reorganization technique.

103 UNCLASSIFIED

DOCID: 3928891

UNCLASSIFIED CRYPrOLOGIC QUARTERLY

REGISTER FILES WITH MULTIPLE OVERLAPPING REGISTER WINDOWS

The management of register files with MORWs is a hardware solution for handling a
large register file. In this technique, the register file is broken up into equal sized
windows, of which only the current window is visible to the processor. These windows are
not completely independent; they overlap to provide partial sharing of registers between
windows. This allows the processor to switch to the next or previous window without
losing all ofits old registers. For example, consider figure 1. Window N has registers local

I'lm==~==:r----------

.. WindowN-l

NandN-l

... WindowN

......-..-- Window N+1

Fig. 1. Register Sharing between Multiple Overlapping Register Windows

only to itself, registers shared with N - 1, and those shared with N+1. If the current
window being used by the processor is N and a value is placed into a register shared with
N+1, then this value can be accessed in window N or in N+1 if the processor switches its
current window to N+1. Due to its finite nature, the register file can be viewed as a large
wheel with its first and last windows sharing registers. (See figure 2.)

In several RISC architectures a register file structure similar to this is used for a more
specific reason. Every time a procedure or function call occurs, the parameters are placed
in the registers shared with the next window and that window becomes the current
window. The procedure or function then has its parameters in a fresh register window.
When the procedure or function is done, results are stored in the registers shared with the
previous window and the previous window becomes the current window. In this model,
procedure and function CALURETURN can be viewed as the register window wheel
rolling back and forth. But with a structure such as that in figure 2, the CALURETURN

UNCLASSIFIED 104

OOCIO: 3928891

RISCDOESWINDOWS UNCLASSIFIED

Current
Window

Fig. J. Wheellike Structure ofa Register File with Four
Multiple Overlapping Register Windows

stack cannot grow very large without overwriting itself. For this reason the register file is
refined to emulate a push-down stack of register windows.

In figure 3 a structure to implement the push-down stack of register windows is shown.
In this figure the register file has two windows in use. As more procedures and functions
are called the unused register windows will be activated, but eventually the register file
will become full. A full register file in this example would be WO, W1, and W2 in use, or
(Next Window + 1) mod 4 = Save Window in this example. This is termed "full" because
if W3 was used, the input parameters for procedure PO in WO could be altered. If the
register file is full and another procedure or function call occurs, the contents ofWO will be
pushed onto the saved window stack, then the values of Save Window, Next Window and
Current Window will all be incremented by 1 modulus 4 in this case. This action is a
window overflow. The opposite action, a window underflow, can occur during a procedure
or function return. An underflow occurs if the Current Window = Save Window and a
return is encountered. To handle an underflow, a window is popped off of the Saved
Window Stack and is restored into the unused window adjacent to the Save Window (Save
Window -1) mod 4 in this example. Then the Save Window, Current Window, and Next
Window are all decremented by 1 modulus 4. The register file wheel can be viewed as
rolling counterclockwise for a CALLISAVE and clockwise for a RETURNIRESTORE.

105 UNCLASSIFIED

DOCID: 3928891
UNCLASSIFIED

Save
Window

Z8
Local

Z8in
Shared

..

CRYPTOLOGIC QUARTERLY

Saved Window Stack

Fig.3. Register File with Unused Register Windows [10]

Current
Window

Next
Window

The next issues concerning this type of register file organization is the number of
register windows to provide, the number of local registers in each window and their
organization, and finally how to optimize the management of this register file. A great
deal of research has been done in this area as part of the Berkeley RISC II development [6,
4, 11]. In the Berkeley RISC research, the CALURETURN patterns, parameter passing,
and scalar variable usage were analyzed within programs representing a wide variety of

UNCLASSIFIED 106

DOCID: 3928891.,

RISC DOES WINDOWS UNCLASSIFIED

..,

processing needs. From their own research and the analysis of research done by others,
the researchers concluded the following:

In all cases, we saw that programs are organized in procedures and that procedure calls are
frequent and costly in terms of e:w:ecution time. Procedures usually have a few arguments and
local variables, most of which are scalars and are heavily used. The <CALURETURN) nesting
depth fluctuates within narrow ranges for long periods oftime. [4]

This conclusion indicates that the register file with MORWs is a viable architectural
technique. Since the nesting depth can be characterized as fluctuating within narrow
ranges most of the time, a register file with enough windows to contain the average long
term fluctuation could avoid costly saves and restores to/from the saved window stack.
Overlapping register windows are beneficial to computer architectures, due to the local
variable and parameter usage patterns of a typical procedure. Finally, due to the
frequency of procedure calls in most programs, the architecture will benefit from a
windowed register file that is properly tuned for procedure calls and returns.

The Berkeley RISe researchers also studied strategies for managing this type of
register file [11]. The main variables they were concerned with were the number of
register windows to be pushed on or popped off the Saved Window Stack when an overflow
or underflow occurred and the number of register windows that the register file should
contain. Their findings can be summarized as follows.

The optimal management strategy would be a dynamic strategy that could predict the
future behavior of the program being executed and from this information select the proper
number of register windows to be pushed or popped. The researchers' attempts to do this,
relying on the past behavior of the program, did not succeed. Also analyzed were static
strategies. These strategies always pushed and poppe.d a certain number of register
windows off of the Saved Window Stack. The findings with these strategies were that
pushing or popping only one register window from or to the Saved Window Stack seemed to
work well, within a factor of two o(the cost of the theoretical optimal strategy. For larger
register files (more than eight register windows), pushing or popping two register windows
at a time improved the register file performance slightly.

In terms of hardware, this type of register file is slightly expensive. Extra hardware
must be included to detect overflows and underflows and to keep track of the current
register window. The register windows also add an extra level of address decoding by
requiring the register address to be added to the current window displacement to get the
actual address within the register file. The use of fixed sized windows may cause
utilization problems by not using all registers in a register window. In a large register file
this may add up to a large amount of expensive wasted storage. The benefits are that this
type ofregister file is regular in structure and fairly straightforward.

There are alternatives to this design, but there are trade-oft's associated with these as
well. Variable length register windows take care of the potential wasted storage problem.
Because of this, a smaller register file may be possible. The problem is that detecting
overflow and underflow becomes much more difficult since there are no fixed window
boundaries. A third type of windowed register file, termed a Dribble-Back Register File,
eliminates the problem of underflow and overflow detection. This type of register file
takes care of saving and restoring register windows in the background during unused
memory cycles. This method is very good for register files with small numbers of register
windows since the overhead of saving and restoring windows is diminished. One trade-off
with this method is that it can require a large memory bandwidth if it must accomplish a
large number of save and restores. Another drawback is that if calls and returns occur in
rapid succession, the program may have to wait while the register windows are being
saved and restored [4J.

107 UNCLASSIFIED

DOCID: 3928891

UNCLASSIFIED CRYPTOLOGIC QUARTERLY

In the software arena, the windowed register file is very beneficial. The windows
provide procedure calls that have very little overhead if the register file is properly tuned.
This type ofregister file is also easier on the compiler writers in that the compiler does not
have to manage the allocation of registers across procedure boundaries. The problem with
this arrangement is that the hardware restricts a procedure to a single window of fixed
size. This may limit some procedures that require an extreme amount of registers, but
since the architecture should be fairly well tuned it should not be that much of a problem
under normal circumstances.

COMPILER MANAGEMENT OF LARGE REGISTER FILES

A different method for dealing with a large register file is to allow the system's
compiler to take care of the problem. In this method every procedure has access to all
registers in the register file and it is up to the compiler to allocate, save, or restore each
register as needed. A method for accomplishing this was developed by IBM for the IBM
801 project [7]. The technique likens register allocation to the graph coloring problem
where the nodes ofa graph must each be assigned a color so that no two nodes connected by
a vertex are the same color.

(

Symbolic
Registers

A
B
C
D
E

Instructions
Using Register

1-5
3-8
6-7
8-9
9-10

Symbolic Registers Required
to Coexist Connected

(

Coloring with Three Physical Registers

AandC
BandE

D

RO
R1
R2

Fig. 4. Coloring Example with Three Physical Registers

In the IBM approach the compiler generates an intermediate code in which every
variable is allocated its own symbolic register. The compiler then compares the lifetimes
required for each symbolic register. A graph is constructed where every symbolic register
is a node in the graph and nodes are connected by vertices if there is a point in the program
where the nodes (symbolic registers) must coexist. The compiler then colors the graph
with the available physical registers so that no two symbolic registers connected by a
vertex use the same physical register. The object in coloring is to minimize the number of

UNCLASSIFIED 108

DOCID: 3928891

RISC DOES WINDOWS UNCLASSIFIED

symbolic registers that share each physical register while maximizing the number of
physical registers in use. The final result is the compiled code with the proper register
saves and restores inserted to facilitate the sharing of the register file.

An example of coloring is given in figure 4. :'I'his example shows five symbolic
registers, A through E, that are to be mapped onto three physical registers. The graph is
drawn with each symbolic register as a node and a vertex connecting those nodes that
must coexist within the processor's physical registers. Information regarding the
instructions that use each symbolic register is used to determine those registers that must
coexist. After the graph is constructed, it is easily determined that coloring A and C with
RO, Band E with R1, and D with R2 allows the five symbolic registers to be mapped onto
the three physical registers without conflict. If this example was limited to two physical
registers, then coloring A, C, and D with RO as well as Band E with R1 could be used.

This type of register file management greatly simplifies the circuitry required to deal
with the register file. Basically no special circuitry other than the register file itself is
required. This frees space within the processor to be used for other purposes, even more
registers if desired. This method influences some design decisions. The design greatly
benefits by providing the most registers possible. The compiler's job of register allocation
becomes easier as more registers are provided. If too few registers are provided, registers
may have to be saved and restored often and memory bandwidth may become a concern.

Requiring the compiler to take on the management responsibilities of the register file
greatly increases its complexity. The compiler must optimize register file usage on top of
everything else that must be done. A benefit of this technique is that all the processor's
registers are available if they are required.

CURRENT RISC ARCHITECTURES

Berkeley RISC II is a 32-bit single chip processor built at the University of California
at Berkeley. This processor is characterized by a small powerful instruction set and a
large register file. The instruction set contains 39 instructions with only two instruction
formats. The register file contains 138 registers and is implemented using eight
overlapping register windows. Each register window contains six input registers (l0-15),
six output registers (26-31), and ten local registers (16-25). The register file also contains
ten global registers (0-9) accessible to all register windows. Another characteristic is a
delayedju~p that always executes the instruction following a branch or jump to allow the
smooth operation of the processor's instruction pipeline [4, 6].

The RISC processor produced by Sun Microsystems is called Scalable Processor
ARChitecture (SPARC). The 32-bit SPARC processor is very similar to the Berkeley RISC
II design. The register file is fairly large with 120 registers in its current implementation.
The register file uses seven overlapping register windows. Each window contains eight
input, eight output, eight local, and eight global registers. The instruction set, with three
basic instruction formats, contains 46 integer operations and provides support for floating
point and co-processor operations. This processor also uses delayed branching to simplify
the instruction pipeline [8,91.

The IBM 801, named for the project's building number, is a RISC version of the IBM
370 architecture. This design utilizes compiler management of a 32-element register file.
Backing up the register file is a very efficient cache system. The instruction set is a
streamlined yet enhanced version of the IBM 370 instruction set and provides a delayed
branch as an instruction separate from a normal branch. The system is heavily compiler
dependent as the assembly language is not meant for normal programming use.

109 UNCLASSIFIED

DOCID: 3928891

UNCLASSIFIED CRYPTOLOGIC QUARTERLY

Stanford's Microprocessor without Interlocked Pipeline Stages (MIPS) uses only 55
instructions and 16 global registers. This system uses the compiler based register
management methods employed in the IBM 801 system. In most computers the
instruction pipeline hardware enforces pipe stage interlocking. Interlocking handles the
case wherein two instructions in the instruction pipeline use the same registers as
operands by enforcing some form of wait state between the yr,structions. The MIPS
processor does away with the hardware technique and forces the compiler to enforce
pipeline stage interlocking. To accomplish this task the compiler must order the
instructions so that a pipline wait is never needed.

These four architectures differ in the hardware and software trade-offs made by their
designers yet are still very similar. All four are register to register architectures, meaning
that all instructions except LOADs and STOREs use only registers or constants as their
operands. The instruction sets are all relatively small yet contain a powerful set of
primitive instructions. Each processor performs single-cycle instruction execution due to
streamlined control circuitry, Most of all, these processors were designed with this basic
assumption - the more registers the better.

CONCLUSION

The IBM and MIPS usage of the register file as a global array of registers allows for
maximum utilization of the register resources. But the cost paid in compiler complexity
may be detrimental. Giving the compiler more responsibility in providing efficient use of
the hardware may cause this utility to become an unwieldy, unmanageable beast.

Using a register file with Multiple Overlapping Register Windows increases the
complexity of the register file circuitry yet yields many benefits. A study carried out at
Carnegie-Mellon University [1] suggests that this type of register file management yields
a substantial increase in processor performance. The Overlapping Register Windows free
the compiler from globally optimizing register allocation yet provide procedures with a
reasonable number of registers.

Computer designers are faced with many design trade-offs. In RISC architecture
design, the management of the usually large number of registers becomes important
because the performance of the architecture is directly correlated with how well the
register file management performs. The Register File will always be a feature of RISC
architectures, but a Register File with Multiple Overlapping Register Windows may
become a characteristic ofsuccessful RISC architectures.

UNCLASSIFIED 110

DOCID: 3928891

RIse DOES WI!'iDOWS

GLOSSARY

Berkeley RISC I and II - RISC architecture processors from the Cniversity of California at
Berkeley (1980-1983).

CISC - Complex Instruction Set Computer

Coloring - Graph coloring based algorithm for performing register allocation.

Compiler - A program that translates a High Level Language into another Language.

Cost - A measure of how well a management strategy performs.

Dribble-Back Register File - A windowed register file which performs the saving and
restoring of register windows in the background during unused memory cycles.

IBM 801 - RISC version of an IBM 370 (1980).

MIPS - Stanford's RISC ~icroprocessorwithout Interlocked Pipeline stages (1983).

MORW - Multiple Overlapping Register Windows

Register File - A group of internal processor registers accessed with an address.

RISC - Reduced Instruction Set Computer.

Scalability - Refers to the ease in which an architecture can be reimplemented using the
smaller feature sizes possible with VLSI technology advances.

SPARC - Sun Microsystems' Scalable Processor Architecture, RISC based processor
implementation (987).

VLSI- Very Large Scale Integrated Circuits.

111 ~9R 9HICIAb l:lS~ 9NbY

DOCID: 3928891

UNCLASSIFIED

REFERENCES

CRYPTOLOGlC QUARTERLY

[1] Colwell, Robert P., Charles Y. Hitchcock III, Douglas E. Jensen, H.M. Brinkley
Sprunt, and Charles P. Kollar. "Computer, Complexity, and Controversy." IEEE
Computer, September 1985, pp. 8-19.

[2] Ditzel, David A. "Register Allocation for Free: The C Machine Stack Cache."
Proceedings of the Symposium for Programming Languages and Operating
Systems, Palo Alto, California, 1982, in ACM SIGARCH Computer Architecture
News, Vol. 10, No.2, March 1982, pp. 48-56.

[3] Hennesy, John, et al. "HardwarelSoftware Trade-offs for Increased Performance."
Proceedings of the Symposium for Programming Languages and Operating
Systems, Palo Alto, California, 1982, in ACM SIGARCH Computer Architecture
News, Vol. 10, No.2, March 1982, pp. 2-11.

[4] Katevenis, M. Reduced Instruction Set Computer Architectures for VLSI. Ph.D.
Dissertation, Computer Science Department, University of California at Berkeley,
October, 1983. Reprinted by MIT Press, Cambridge, Massachusetts, 1985.

[5] Markoff, John. "RISC Chips." Byte, November 1984, pp. 191-206.

[6] Patterson, David A. "Reduced Instruction Set Computers," Communications of the
ACM, Vol. 28, No.1, January 1985, pp. 8-21.

[7] Radin, George. "The 801 Minicomputer." Proceedings of the Symposium for
Programming Languages and Operating Systems, Palo Alto, California, 1982, in
ACM SIGARCH Computer Architecture News, Vol. 10, No.2, March 1982, pp. 39
47.

[8] Sun Microsystems, Inc. A RISC Tutorial, 1987.

[9] Sun Microsystems, Inc. The SPARC Architecture Manual, 1987.

[10] Stallings, W. Computer Organization and Architecture. New York: Macmillan,
1987.

[11] Tamir, Yuval and Carlo H. Sequin. "Strategies for Managing the Register File in
RISC." IEEE Transactions on Computers, Vol. C-32, No. 11, November 1983.

[12] Wallich, Paul. "Toward Simpler, Faster Computers." IEEE Spectrum, August
1985, pp. 38-45.

UNCLASSIFIED 112

