
Securing The X Window System

With SELinux

Doug Kilpatrick

NAI Labs

dkilpatr@nai.com

Wayne Salamon
NAI Labs

wsalamon@nai.com

Chris Vance
NAI Labs

cvance@nai.com

This work supported by NSA contract MDA904-01-C-0926 (SELinux)

Initial: January 2003, Last revised: March 2003

NAI Labs Report #03-006

Table of Contents
1. Introduction..2

2. Overview of the X Architecture..3

3. Threats and Security Concerns ..4

3.1. Confidentiality...4

3.2. Integrity ...5

3.3. Availability ..5

3.4. Assurance ..5

3.5. Covert Channels ..5

4. Requirements ...6

4.1. Required Functionality..6

4.2. Requirements for Securing X..6

4.2.1. Labeling..7

4.2.2. Trusted Path ..7

4.2.3. Window Data Snooping..8

4.2.4. Cut-and-Paste ...8

1

Securing The X Window System With SELinux

4.2.5. Application Compatibility ..9

4.2.6. Scope of Changes ...9

4.2.7. Placement of Trust..9

5. Security Architecture for the X Protocol...9

5.1. Design ...10

5.1.1. Object Classes ..10

5.1.2. Permissions...11

5.1.2.1. Client Permissions ...11

5.1.2.2. Drawable Permissions..11

5.1.2.3. Window Permissions..11

5.1.2.4. Font Permissions..13

5.1.2.5. Color and Colormap Permissions ..13

5.1.2.6. Cursor Permissions ..14

5.1.2.7. Input and Server Permissions...15

5.2. Control Requirements ...15

5.2.1. Control Requirements for Drawables ...16

5.2.2. Control Requirements for Windows...16

5.2.3. Control Requirements for Input..19

5.2.4. Control Requirements for Colors and Colormaps ..20

5.2.5. Control Requirements for Fonts and Text ..21

5.2.6. Control Requirements for Pixmaps ..21

5.2.7. Control Requirements for the Cursor object ..22

5.2.8. Control Requirements for the Server object ...22

5.2.9. Extensions...23

5.3. Events ..23

5.3.1. Client Communication Events..24

5.3.2. Input Events..25

5.3.3. Draw Events ...25

5.3.4. Window Change Events..26

5.3.5. Window Change Request Events..26

5.3.6. Server State Change Events..26

5.3.7. Event Control Requirements ..27

6. Implementation ..27

6.1. Enforcing Permissions on Requests ..28

6.2. Enforcing Permissions on Events..28

6.3. Extensions ...28

6.4. Interactions with Flask ..28

6.5. Handling Errors...29

7. Security-Aware Applications ..30

7.1. The Window Manager...31

7.2. Large Integrated Applications...31

7.3. Other Applications ..31

8. Conclusions...31

References...32

2

Securing The X Window System With SELinux

1. Introduction

The X Window System, or ‘X11’, has become the standard graphical engine for the Unix and Linux
operating systems. Its network-based design and platform independent support for a wide range of
operating systems and hardware has contributed greatly to its acceptance. [XOrgIntro]

The X protocol was designed with compatibility and performance in mind, not security. However, since
the X protocol is a constrained channel of communication, it enables the enforcement of a security policy
While there has been quite a bit of research done in the past to secure X11, many solutions are specific to
the government’s Multi-Level Security (MLS) model, and are not in widespread use.

NSA Security-Enhanced Linux (SELinux) [SELinux]. is an implementation of Flask, a flexible and
fine-grained mandatory access control (MAC) architecture [FlaskArch]. SELinux can enforce an
administratively defined security policy over all processes and objects in the system, basing decisions on
labels containing a variety of security-relevant information. The architecture provides flexibility by
cleanly separating the policy decision-making logic from the policy enforcement logic. The policy
decision-making logic is encapsulated within a single component, known as the security server, with a
general security interface. A wide range of security models can be implemented as security servers
without requiring any changes to any other component of the system. The design and implementation of
the SELinux prototype is described in [LoscoccoFreenix2001] and [LoscoccoNSATR2001], both of
which can be found at the NSA SELinux web site (http://www.nsa.gov/selinux).

On a current SELinux system, applications can use the X server as an additional communications vector,
unregulated by the system policy. In addition, applications can manipulate the X server to attack other
client applications, or to mislead the user. By running the X Server on an SELinux system, and by
extending the FLASK architecture to allow the X Server to act as a trusted application, the security of the
user operating environment should be enhanced.

This paper assumes familiarity with the Flask architecture and its Linux implementation. The paper starts
with an overview of the X11 architecture and desirable security functionality. Section 5 lists the object
classes that will need to be labeled, the permissions those object classes support, and the control
requirements for each of the X11 protocol operations. The security features for error and event
processing are then described in Section 6.5 and Section 5.3. Finally, Section 7 discusses security-aware
applications.

2. Overview of the X Architecture
The X Window System is a windowing system for bitmapped graphics displays. It is based on a
client-server architecture. The server controls the display and associated input devices, the clients are the
graphical programs that access those services.

Clients connect to the server via Unix domain sockets (if local) or TCP/IP (if remote). (Other transport
mechanisms can be supported, but are less common) Clients pass requests to the X server and receive
events from the server by a clearly defined protocol [OReilly90], the XProtocol. All communication
between the X server and the clients, with the exception of some image sharing extensions, happens over
this connection.

The clients can only communicate with the X server through this connection, and can not directly
communicate with other clients over this connection. However, the actions a client takes will frequently
be visible to other clients. Some desktop environments (e.g. GNOME) expect applications to

3

Securing The X Window System With SELinux

communicate with each other via other forms of IPC. These communication vectors are outside the scope
of this paper.

Figure 1. X client communication

X proto Xlib Xlib

X Server X Client X Client

Unix domain socket Console

Figure 1 shows two clients connected to a local X server. The client code usually uses the Xlib library to
handle marshaling requests with the X protocol, but this is not required.

The X server also maintains certain data structures as resources that can be shared between clients.
Clients refer to these resources by resource IDs passed over the communication link. Client applications
frequently use these resources to communicate with other client applications, effectively using the X
server as a communications channel.

3. Threats and Security Concerns
In order to design a set of protections needed within the X server, the set of vulnerabilities that are
present in the current X server were investigated. The threats can be broadly classified into the traditional
security property categories of confidentiality, integrity, and availability. The protections presented in this
paper are designed to prevent compromises of these properties by X clients. We also discuss other
relevant properties of secure systems, such as covert channels and the assurance of the system.

The X server does not exist as the only secured element on an otherwise untrusted system. Rather, we
assume the X server is running on a secured SELinux system. The kernel enforcement layers will prevent
unauthorized clients from connecting to the server or otherwise affecting the kernel structures of the
server. Our design only considers clients that successfully connect using the base X Protocol.

We did not investigate attacks directly on the X Server. For example, a buffer overflow may be
discovered which allows a client application to control the X server. Such attacks are outside the scope of
this work. This analysis is only concerned with syntactically valid series of X11 requests.

3.1. Confidentiality

There are many ways applications could use a standard X server to bypass a confidentiality policy. As
screenshot applications demonstrate, standard X servers offer no protection for an application’s output.
Clipboard managers can grab content from an application automatically, without any malicious intent.

4

Securing The X Window System With SELinux

Malicious applications can currently probe the entire state of the X server. By manipulating the input to a
client process, a malicious application could cause the victim process to violate a confidentiality policy.
The protections presented in this paper will make it possible for a policy to protect the confidentiality of
data presented by X clients.

3.2. Integrity

The current X server offers little protection for the integrity of client program data. The X server does not
interact directly with the data of the client. Clients can draw directly into another client’s window and
can send input, or any other type of event, directly to a client. A malicious client can cause another client
to present false information to the user. Or an attacker could insert malicious commands into the input
stream of a terminal emulator. These types of attacks can cause an application to violate the system’s
integrity policy, and the protections presented in this paper are designed to protect the integrity of X
clients.

3.3. Availability

The standard X server offers little protection for the availability of the server. Clients can close the
windows of other clients, manipulate the font lists, and manipulate the host access lists. The design
presented here provides minor improvements for the availability of the X server. While a client will still
be able to cause the X server to use excessive CPU via various denial-of-service attacks, the protections
presented in this paper will allow a policy to protect the X server against other availability attacks.

3.4. Assurance

The focus of this work is to develop a security framework for the X server which can support strong,
flexible security policies. While system assurance is an important element for a secure system, assurance
is beyond the scope of this paper. This is commensurate with the assurance effort associated with the
underlying system, SELinux, that “has not been on system assurance or other security features such as
security auditing, although these elements are also important for a secure system. ” [SELinux] The
primary goal is to develop a MAC framework for the X server. We expect that formal means of verifying
the design should be used.

The X server is a large system component, with a large code base that is hard to evaluate for correctness.
Other mechanisms for providing separation between security domains (e.g., various poly-instantiation
techniques) would provide increased assurance, but would not be as adaptable to the large number of
domains in an SELinux system.

The X server is extensible and still under development. Addressing the common extensions in use and
those being developed is beyond the scope of this paper. However, in order to provide complete coverage
for the X server, the common extensions will also need to be evaluated from an enforcement perspective.

3.5. Covert Channels

The SELinux project has not, in general, addressed covert channels. “Even with covert channels, an
operating system with basic mandatory controls improves security by increasing the required
sophistication of the adversary. Once systems with basic mandatory controls become mainstream, covert

5

Securing The X Window System With SELinux

channel exploitation will become more common and public awareness of the need to address covert
channels in computing systems will increase.” [LoscoccoNISS1998]

As with SELinux, the protections presented here do not consider covert channels. However, this design
should be compatible with attempts to manage covert channels. A more comprehensive design which
considers covert channels will need enhanced visibility controls, and may also need to limit the visibility
of changes to the global server objects.

4. Requirements
The X protocol for graphical applications was not designed with security as a major concern. The X
server applies limits to initial connections from clients, but does not limit actions of connected clients.
Any client on the system can read the state of any objects in the server, can receive and monitor any and
all input, and can manipulate any window.

The base protocol describes 120 separate operations on at least 15 different types of objects. Until the
creation of the X11 Security Extension [WigginsExtension96], no privilege separation was provided.
Even now, the X11 Security Extension simply separates applications into two domains, one of which is
protected from the other. The Security Extension does not provide fine-grained access control.
Fundamental actions in the protocol, such as cut-and-paste, assume permission to modify objects
belonging to other clients, limiting the ability of compatible systems to perform extensive access control.

Normal use of an X window system requires a window manager, an application trusted to manage the
windows of all other clients. By necessity, the window manager needs permission to move, resize, and
hide windows created by other applications, giving it permission to subvert nearly any existing security
policy.

4.1. Required Functionality

One approach for preventing inappropriate communiation between clients of different security domains
is to assign each security domain its own X server, removing all communication channels via the X
protocol. For a user to run two applications in different security domains, the user would need to run two
different X servers. This approach would make it harder to use arbitrary X applications, and might force
the user to be continuously restarting the X server.

If the server is allowed to interact with applications in different domains, but does not enforce any policy
on the applications, the running applications can use the X server as an unregulated means of
communication. Malicious applications can subvert the system’s security policy and gain control over
other programs in other domains by exploiting the X communication protocol.

A secure X server needs to operates within the confines of the system security policy, while enabling the
users to perform theirs tasks. To achieve this goal, the X server needs to enforce the X11-related aspects
of the system policy, and understand the relationship of its clients under that policy. The server needs to
continue to communicate with clients in different domains, yet prevent those clients from
communicating through the server, and it needs to protect the user from malicious clients.

6

Securing The X Window System With SELinux

4.2. Requirements for Securing X

Vendors have previously adapted the X protocol for Multi-Level Security (MLS) systems. The NSA and
DoD specified the requirements in the Compartmentalized Mode Workstation (CMW) specifications.
These specifications are primarily concerned with performing access control on the server objects
according to the MLS policy, but they also require a few extra security features such as window labeling
and trusted input paths.

While a secure X server for an SELinux system does not need to fulfill the same requirements as an
CMW, these requirements serve as a useful starting point and basis for comparison.

4.2.1. Labeling

In CMW systems, top-level windows need to be clearly marked with their current security domain. The
user must be aware that the window he or she is using is considered secret or unclassified. The window
system, along with the window manager, is expected to clearly mark windows with visual labels to pass
this information along to the user. Applications must be prevented from spoofing the label and
misleading the user. In addition to visual labels that indicate which windows are in which security
contexts, visual labels that clearly indicate which windows are capable of receiving input are required.

The visual labeling requirements for a CMW may not apply to SELinux systems running the default
policy. The SELinux Security Identifier (SID) can encapsulate more information than just the
classification level of a process. In an SELinux system, applications are expected to operate in many
different domains and unique, clearly distinguishable visual labels for each domain may not be practical.

While individual windows in an X application rarely contain child windows from another client, it is
possible. For example, the preview screen for screen savers in both KDE an GNOME execute the screen
saver in a small window as the preview pane. This possibility requires us to track data flow on all the
window objects in the X server, and apply policy to sub windows as well as parent windows.

If a secured X Window system needs to provide a visual labels, this functionality will be provided by the
window manager, which is considered to be a trusted client. The window manager is responsible for
determining input focus, so adding CMW-style labeling is an appropriate function for the window
manager. The secured X server will provide information to the window manager to enable it to add the
visual labels, and will protect the window manager from malicious clients.

4.2.2. Trusted Path

Trusted path is a mechanism by which a user can communicate directly with the trusted computing base,
providing confidentiality, integrity, and availability on the input channel. Trusted paths are used for
entering particularly sensitive information, like authentication tokens.

The trusted-path requirements for graphical displays are linked to window labeling, as they require that
the user be made aware of where their input is and require that their input not go elsewhere. Ensuring a
trusted path is most critical at login, so key sequences guaranteed to reset the system to a login state may
be sufficient.

Currently, X provides very little protection for an application’s input stream (keyboard input, mouse
actions). Any client can grab the input stream, observe, discard or otherwise modify it, or fabricate input
before passing it to what appears to be the active client application. Any client can open a
screen-covering input-only window, catching any otherwise non-grabbed input. The protections
developed need to allow a policy to prevent arbitrary programs from grabbing the input and from

7

Securing The X Window System With SELinux

forwarding faked events, but they do not need to prevent clients from snooping non-grabbed input. To
prevent classic X input snooping, the window manager must be trusted. The window manager can then
relabel the input stream according to its knowledge of input focus. The secure X server can then apply
permissions to input events, allowing the policy to limit their visibility.

4.2.3. Window Data Snooping

X clients can easily retrieve the bitmaps of other client’s windows, as demonstrated by the availability of
screen shot applications. This ability allows client programs to violate a systems confidentiality policy.
The Security Extension already in common X servers provides some protection by preventing untrusted
applications from accessing the window data of trusted applications, but it specifies a rather limited
policy and is not widely used.

There are two approaches clients can use to get screen shot information. The first is to simply get the
information directly from the window via the GetImage request. The secure X server must allow the
policy to prohibit this action. The second approach is to create a new empty no-background window over
the screen, and then look at its contents. Optimally, the secure X server could enforce a policy that
prohibits windows that have no background. The policy we present here does not have sufficient
granularity to express this restriction, as window attributes are not suitable objects classes for SELinux.
The policy enforcement layer must recognize that mapping a window may involve copying the contents
of a window being covered. The server must check for that permission and force some kind of default
background upon the window if the permission to copy is denied.

4.2.4. Cut-and-Paste

The cut-and-paste protocol relies on the ability of an application to set properties on the window offering
the data [XSelections]. Unfortunately, properties are used for everything from drag-and-drop to
instructions to the window manager necessary for the proper operation of the application. Properties are
name/value pairs defined outside of the X protocol with specific use dictated both by convention and
other standards documents (Internet RFCs). Clients must cooperate with each other and the X server to
perform cut-and-paste operations.

A policy can enforce confidentiality and integrity requirements by preventing a client from setting
window properties on windows belonging to another client. This policy will also prevent cut-and-paste
from working between these clients. If cut-and-paste is required functionality, a mechanism must be
developed to mediate cut-and-paste actions. Previous approaches have created a trusted cut-and-paste
server that manages all requests, limiting the communication between the two processes.

Another approach would require that the properties of a window be labeled. This would require the use
of a property object as a separately managed object inside the X server. This object would be suitable for
labeling despite not appearing as an object type in the X protocol. However, without a separate
labeling-by-name step, there is no way to separately label the cut-and-paste relevant properties from
other client-specific properties. In fact, the property used for passing the actual data in a cut and paste
operation is arbitrarily chosen by the client requesting the data.

A trusted window manager could provide a solution, but only in combination with the proposed
clipboard related extensions currently under development by XFree86 [ClipExt]. One proposed
extension would allow clients to register for notification when the active selection changed. The window
manager will claim the selection when that happens and place it in a window with a special label. The
policy will allow or deny property reads and sending events to that window.

8

Securing The X Window System With SELinux

4.2.5. Application Compatibility

Well-behaved X applications must continue to run unmodified on a secure X system. This high level of
transparency would give an SELinux system a large catalog of useful graphical applications and ease
development of other applications. Certain applications (e.g. screen-shot programs) may not run, but that
is a desired result of policy enforcement.

If possible, actions that would violate the system’s security policy should fail cleanly. For example, a
paste operation of high confidentiality data into a low-confidentiality client should simply fail, as if no
data were available in the clipboard. Screen shot applications should simply fail to accurately represent
the state of the screen. Clients should not, in general, see X protocol errors which might cause them to
abort abnormally.

4.2.6. Scope of Changes

The changes to the XFree86-based X server need to be minimal as XFree86 is an evolving system.
Small, self-contained changes are easier to adapt to changing systems than large intrusive changes, tend
to be easier to understand, and are more likely to be accepted by project maintainers.

Any changes to the X system should be suitable for inclusion into the XFree86 project so that SELinux
systems can gain greater use. Prior experience in proposing changes to software maintained by others has
shown that large complex patches are hard to review are often not applied. If the changes can be pushed
into the primary XFree86 tree, they are more likely to be picked up by other systems, and will ease the
support burden of the SELinux project.

4.2.7. Placement of Trust

The expectation, presented below, is that the X server will operate as a trusted application, capable of
enforcing security decisions. We assume that the X server is able to enforce a wide range of policies, and
able to communicate simultaneously with clients in separate domains.

The SELinux module enforces all security decisions in the kernel, protecting the enforcement
mechanism from tampering by malicious agents. A system policy will be created that will prevent users
from directly controlling the X server. If further assurance is required, then various poly-instantiation
approaches could be used[Kirk97], where the system would limit which clients could connect to any
given X server, but many X servers could be running at any one time. Particularly in the SELinux model
of many domains, a poly-instantiation based approach may consume excessive resources to be practical,
but is possible within the design we present.

5. Security Architecture for the X Protocol
The X protocol specifies four types of messages that can be transferred over the network. Requests are
sent from the client to the server, and replies, events and errors are sent from the server to the client.
Replies contain data requested by a client. Events represent asynchronous activity the client has
expressed interest in. Errors are normally sent in response to malformed requests, but can occur at any
time.

9

Securing The X Window System With SELinux

Requests manipulate server side objects, called resources, referenced by an integer resource ID.
Resources are created by requests, and are freed by requests or when connections are closed. Most
resources are potentially sharable between applications. Resources are identified in the X protocol by
integers. The client that creates the resource gives an initial identifier for it. The X server may change
that identifier, usually adding a client id to the high bits of the integer. Clients normally get resource
identifiers of objects in the X server by using various query methods. However, clients can reference
unknown resources by guessing the resource identifier.

Security labels are placed on objects that may be shared, and hence constitute a communication or
control channel through which the system’s security policy might be violated. Windows are manipulated
explicitly by the client application and the window manager application. Fonts and cursors are shared
automatically across multiple screens, and colormaps are frequently shared by applications.

Graphic Contexts (GC) are never shared between clients, and are not labeled and have no control
requirements. Similarly, Fontable object are not labeled. Any request that takes a Fontable object will
check the security information of the font passed in, or the default font of the graphic context.

The X protocol defines several other primitive types, such as integers of various sizes, time stamps, enum
constants, and atoms. With the exception of atoms, these types in the X protocol do not represent objects
in the server, and so can not be labeled. An atom is an integer type that references a string constant. As
such, atoms have no significant role as objects in the server and are not labeled.

5.1. Design

This section describes the design for integrating the Flask security mechanisms into the X Window
system. It begins with a discussion of the object classes and permissions defined for the X Window
system component. This is followed by a description of the control requirements for the X protocol
operations used to manage X server objects. Finally, an extension for security-aware applications is
described.

5.1.1. Object Classes

The logical abstractions provided by the X Window system were studied to determine the set of object
classes that need to be labeled and controlled by the security enhanced X server. The set of object classes
for the X Window system component is shown in Table 1.

The Drawable object class does not represent a type of object actually found in the X server, although it
is a type recognized by the X protocol. X requests that draw to an object currently take either a Pixmap
or a Window as a target, and the Drawable will represent this object. For the purposes of defining
permissions, the Drawable object class is defined to be a separate entity. In the modified X server,
whenever a Window or a Pixmap object is created, a Drawable permission class will be used for
permission checks related to draw operations.

Table 1. Object classes for the X Window system component

Object Class Description

Drawable A virtual object for output operations

Window The base input and output object for an application

Font An array of glyphs

10

Securing The X Window System With SELinux

Object Class Description

Colormap a color index

Cursor cursor graphics

Client An client to the X server

Server objects other than those listed in Table 1 will be labeled in the secure server. In particular, there
will be labels for a single Server object and the Input object. Those objects do not have particular
permissions, and so are not listed as object classes here.

5.1.2. Permissions

For each object class, a set of permissions is defined to control access to objects in that class. These
permissions were identified by studying the services provided by the X Window system component. For
each service, the objects whose state is observed or modified by the service were identified, and
permissions for the corresponding object classes were defined.

5.1.2.1. Client Permissions

While client objects are frequently used as subjects to permission checks, the Client object class has only
one permission, the permission needed to disconnect a client from the server. For most other checks, the
context of a Window object, or other resource, will be used for the permission checks.

Table 2. Permissions for the Client object class

Permission(s) Description

kill Close down a client

5.1.2.2. Drawable Permissions

Table 3 shows the permissions defined for controlling access to the Drawable object class. Window
objects and Pixmap objects are the actual arguments passed to drawing requests. The context of a
Drawable object is derived from the window or client that created it.

Table 3. Permissions for the Drawable object class

Permission(s) Description

create Create a Drawable object

destroy Destroy a Drawable object

draw Draw into a Drawable object

copy Copy pixels from a Drawable object

getattr Get attributes from a Drawable object

5.1.2.3. Window Permissions

11

Securing The X Window System With SELinux

Table 4 shows the permissions defined for controlling access to the Window object class. A window is a
rectangular area on the screen into which a client can draw. Windows are frequently nested and overlap.
For example, a top-level window for Mozilla could have 20 or 30 windows inside of it. When a top-level
window is created, it is assigned a context derived from the client that created it. When a child window is
created, it is assigned a context derived from its parent.

Since windows are considered Drawable objects, and passed into drawing functions, the create

permission of the Drawable is checked when a Window is created if the window is defined as an
input/output window. The context of a new Drawable is derived from the context of the associated
window, and thus from the context of the client. The context of the Drawable will be used for the checks
for drawing functions.

A window also has a collection of properties. Properties are named bits of data, usually in the form of
text strings. Example properties include window manager hints and cut-and-paste messages. Since the
name is arbitrary, both the name of the property and the value of the property could be used to transmit
information between clients.

Certain common property names are used by convention and are frequently set and queried. It would be
useful for a policy to be able to differentiate between properties by name, but, without any initial labeling
step, it may not be possible. It is possible to avoid labeling property objects, instead relying on a less
fine-grained permission to change any window property. While there is sufficient state contained in a
property object to justify labeling it, there does not appear to be any way to meaningfully distinguish
between properties.

Table 4. Permissions for the Window object class

Permission(s) Description

addchild Create a new window

create Create a new window

destroy Destroy a window

map Map a window

unmap Unmap a window

chstack Change stacking order

chproplist Change property lists

chprop Change a property

listprop Query properties

getattr Get window attributes

setattr Set window attributes

move Move window

chselection Change selection

chparent Change parent

ctrllife Control lifetime

enumerate List child windows

12

Securing The X Window System With SELinux

Permission(s) Description

clientcomevent
inputevent
drawevent
windowchangeevent
windowchangerequest
serverchangeevent

Send an Event

5.1.2.4. Font Permissions

Table 5 shows the permissions defined for controlling access to the Font object class. See Table 15 for
the control requirements.

Increasingly, fewer applications use X server provided fonts objects. The anti-aliased font support from
the Xft library actually loads the font metrics on the client, then uses the RENDER extension to draw
them with transparency support. Mediation on font objects may not be needed except for legacy
applications.

Table 5. Permissions for the Font object class

Permission(s) Description

load Load a font

free Free (dereference) a font

getattr Obtain font names, path, etc.

use Use a font for drawing

5.1.2.5. Color and Colormap Permissions

Table 6 shows the permissions defined for controlling access to the Color object class. As with
colormaps (below), it may be possible to assume static, high color displays, eliminating the need to track
Color objects.

Table 6. Permissions for the Color object class

Permission(s) Description

create Create a new Color

free Free a Color

lookup Look up string name of color

Table 7 shows the permissions defined for controlling access to the Colormap object class. A colormap is
a color lookup table. It is simply an array of colors in any order. The color of a given pixel is obtained by
combining the pixel values with the colormap.

Colormaps are associated with windows. Before the colors of a given colormap are reflected on the
screen, the colormap must be installed.

13

Securing The X Window System With SELinux

Colormaps only have meaning in relation to Visuals. Visuals can be grey-scale or color, static or
dynamic. The most frequently used Visuals under Linux are PseudoColor and TrueColor. On a
PseudoColor screen, pixel values index into a changeable colormap of red, green, and blue values.
PseudoColor is usually used for 8-bit-per-plane color displays. On a TrueColor screen, pixel values
are decomposed into separate red, green, and blue fields. Each component is then used as an index into a
pre-defined fixed color lookup table. TrueColor is usually used for 24-bit-per-plane color displays.

Applications can share colormaps. Windows inherit the colormap of their parent, and most applications
inherit the colormap of the root window. The standard dynamic colormap starts with just black and white
defined, with other colors being defined as applications need them. An application that wants more
control over the colormap can create its own colormap and then alter it.

A security policy needs to control colormaps both to prevent unwanted communication between client
applications and to protect client applications from modifying the display of other applications. For
example, a malicious application can blank out a terminal emulator window by setting the foreground
and background colors in that window’s colormap to be the same.

In recent years, the trend has been toward 24-bit-per-plane and higher displays, usually running the
TrueColor visual. On displays with only static colormaps, the Color objects in the Colormap can not be
changed by client applications, thereby reducing mischief. Control requirements for the full set of
colormap definitions are provided in Section 5.2.4.

Table 7. Permissions for the Colormap object class

Permission(s) Description

create Create a new Colormap

free Free a Colormap

install Copy a virtual colormap into the display hardware

uninstall Remove a virtual colormap from the display hardware

list List installed colormaps

read Read color cells of colormap

store Change color cells in colormap

getattr Get the color gamut of a screen

setattr Set aspects of color conversion

5.1.2.6. Cursor Permissions

Table 8 shows the permissions defined for controlling access to the Cursor object class. Cursor objects
are constructed with the CreateCursor request from a bitmap object, or more commonly created with
CreateGlyphCursor from a font glyph. Normally the cursor is created from a standard cursor font.
Cursor objects, particularly ones created from the standard cursor font, are logically local to a single
client, but in practice are shared for the whole server. Cursor objects are associated with windows, and
set via the CreateWindow request.

Table 8. Permissions for the Cursor object class

Permission(s) Description

14

Securing The X Window System With SELinux

Permission(s) Description

create Create an arbitrary cursor object

createglyph Create a cursor object from a font

assign Associate a cursor object with a window

setattr Set attributes of the cursor

5.1.2.7. Input and Server Permissions

Table 9 shows the permissions defined for controlling access to the Input object class. The
mousemotion permission is listed here for detailed mouse motion events. However, there are no explicit
permissions for normal mouse and keyboard input, as nearly all applications receive these events. If an
application should not receive any input events, the policy can restrict the applications access to input
events by controlling the inputevent permission in the Window Object class.

The permission to relabel the input device will be used by a trusted window manager to help properly
direct input. See Table 19 for the relevant control requirements.

Table 9. Permissions for the Input object classes

Permission(s) Description

getattr Get input device attributes, such as keyboard mapping, pointer controls,
etc.

setattr Set input device attributes

grab Grab server input, mouse or keyboard

passivegrab Arrange to Grab server input, mouse or keyboard

bell Ring the bell

mousemotion Get Mouse Motion Events

relabelinput Relabel the Input Stream

Table 10 shows the permissions defined for controlling access to the Server object class. Few
applications need these permissions, generally only system configuration tools. Usually the objects
protected by these permissions will receive their initial values during the X server startup process, and
not be modified again.

Table 10. Permissions for the Server object classes

Permission(s) Description

screensaver Manage the screen saver

hostcontrol Control host access

setfontpath Set the font search path

getext Query or list extensions

getattr Get attributes of the server

15

Securing The X Window System With SELinux

5.2. Control Requirements

In this section control requirements are now defined for each X protocol request that manipulates the
objects managed by the X server. The control requirements specify the permissions that must be granted
for the request to successfully execute.

In the following tables, the control requirements for each request are specified, where each control
requirement is described by the class, permissions, source SID (SSID), and target SID (TSID) used in a
permission check. Since multiple requests may have the same requirements, more than one request may
be listed in the leftmost column of a single table entry. In this case, all of the requirements in that table
entry apply to all of the requests.

5.2.1. Control Requirements for Drawables

The requests that reference objects of the Drawable object class are mostly draw functions. The only
permission that they need to checked is the permission to draw to that object. The CopyArea,
CopyPlane, and GetImage requests can also copy the contents of a Drawable, so these methods will
also check for this permission.

The GetGeometry request returns the geometry of the Drawable, which could have been either a
Window or a Pixmap. The X server will only check the permissions relevant to the actual object type.

The PolyText8, PolyText16, ImageText8, and ImageText16, requests are listed in Table 15 with
other font requests.

Table 11. X Server Drawable Object Control Requirements

Operation Class Permission Source SID Target SID

ClearArea
FillPoly
PolyArc
PolyFillArc
PolyFillRectangle
PolyLine
PolyPoint
PolyRectangle
PolySegment
PutImage

Drawable draw client window.drawable

CopyArea
CopyPlane

Drawable draw
copy

client dst.drawable
src.drawable

GetImage Drawable copy client drawable

GetGeometry Drawable getattr client drawable

5.2.2. Control Requirements for Windows

As windows are the base input and output object for most X applications, the control requirements for
the Window object class are extensive.

The entry in the control table for CreateWindow is abbreviated. The CreateWindow request takes an

16

Securing The X Window System With SELinux

array of attributes which it uses to set the initial values for the window. This array is the same array that
is passed to ConfigureWindow, and so the same permission checks will need to be performed.

Table 12 covers many of the situations in which event permissions will be checked, but not all of them.
The event permissions will be checked whenever an event of the appropriate type is sent to the client.
This may be as direct result of a client request, in which case the permissions are listed with the request,
or it may be more indirect. If the event was spawned directly from a client request, as in the case of the
SendEvent and the SelectionClear requests, the SSID will be the SID of the client. Otherwise, the
SSID will be the SID of the X server. For input events, the SID will be the SID of the Input object, a
second virtual singleton object. The label of the Input object will initially be the same as the server’s
SID, but may be changed by a trusted window manager. The target SID checked is the SID of the
window which is nominally the target of the event.

Table 12. X Server Window object Control Requirements

Operation Class Permission Source SID Target SID

ChangeProperty Window chprop
chproplist
listprop

client
client
client

window
window
window

ChangeSaveSet Window ctrllife
chparent

client
client

window
window

ChangeWindowAttributes Window setattr
getattr

client window

CirculateWindow Window chstack client window

ConfigureWindow Window
Window
Window
Window
Window
Window
Cursor

setattr
move
chstack
windowchangeevent
windowchangeevent
windowchangerequest
assign

client
client
client
client
client
client
client

window
window
window
window
window.parent
window.parent
cursor

ConvertSelection Window clientcomevent client selection.owner

CreateWindow Window
Window
Window
Window
Window
Window
Drawable

create
setattr
chstack
move
addchild
windowchangeevent
create

client
client
client
client
client
client
client

window
window
parent
window
parent
parent
window

DeleteProperty Window chprop
chproplist

client
client

window
window

DestroyWindow
DestroySubwindows

Window
Window
Window
Drawable
Window

enumerate
unmap
destroy
destroy
windowchangeevent

client
client
client
client
client

window
twindow
twindow
twindow.drawable
twindow

17

Securing The X Window System With SELinux

Operation Class Permission Source SID Target SID

GetMotionEvents Input mousemotion client window

GetProperty Window listprop client window

GetWindowAttributes Window getattr client window

KillClient Client kill client resource.owner

ListProperties Window listprop client window

MapWindow Window
Window
Window
Window
Drawable

getattr
windowchangeevent
windowchangeevent
drawevent
copy

client
client
client
client
client

window
window
window.parent
window
coveredwindow

MapSubwindows Window
Window
Window
Window
Window
Drawable

enumerate
getattr
windowchangeevent
windowchangeevent
drawevent
copy

client
client
client
client
client

window
window.child
window.child
window
window
window.child
coveredwindow

QueryTree Window enumerate client window

RotateProperties Window chproplist
windowchangeevent

client window

ReparentWindow Window addchild
chparent
move
windowchangeevent
windowchangeevent
windowchangeevent

client
client
client
client
client
client

parent
window
window
window
parent
event

SendEvent Window clientcomevent
inputevent
drawevent
windowchangeevent
windowchangerequest
serverchangeevent

client window

SetInputFocus Window
Input

inputevent
grab

client
client

window
screen

SetSelectionOwner Window chselection
chselection
clientcomevent

client
client
client

selection.window
window
selection.window

TranslateCoordinates Window getattr
getattr

client
client

source
destination

18

Securing The X Window System With SELinux

Operation Class Permission Source SID Target SID

UnmapWindow
UnmapSubwindows

Window enumerate
getattr
windowchangeevent
windowchangeevent

client
client
client
client

window
window
window
window.parent

WarpPointer Input
Window
Window
Window

grab
inputevent
inputevent
getattr

client
client
client
client

input
srcwindow
destwindow
srcwindow

5.2.3. Control Requirements for Input

Sometimes an X client wishes to prevent other clients from receiving input from the keyboard or the
mouse. For example, an application wishing to see if a click is a click or a drag will need to compare
button press and release events. This is much easier if it can prevent other applications from receiving
pointer events until drag is finished. The X server implements “grab” functionality to support these
applications.

By calling GrabKeyboard or GrabPointer, the application immediately grabs the input from the
keyboard or the pointer, redirecting all future input to the client until the grab is released. The GrabKey

and GrabButton calls specify conditions when a grab will occur. Pointer grabs are used to generate
system modal dialogs, a practice of declining popularity. Keyboard grabs are rarely used, but the ssh-ask
graphical application for grabbing the pass-phrase for ssh uses it to prevent keyboard snooping.

A malicious application can currently change the keyboard mappings in order to disrupt the user.
Changes to the input settings are closely related to user preferences, so prudent policies will limited these
changes to direct action from the user.

As the keyboard keymap is shared by all applications, the context of the single server object will be used
on permission checks. Like other server parameters, these settings may be changed during the server
initialization, but generally won’t be during normal use. This may not be the case with international
users, however. Both KDE and GNOME come with mini applications to change the keyboard mappings,
primarily targeted at users of international keyboards.

Applications need to query the state of they keyboard to translate the keycode in a ButtonDownEvent
with the character that keycode represents. Very few policies will want to restrict the ability of a client to
query the keyboard state.

Table 13. Input Control Requirements

Operation Class Permission Source SID Target SID

GrabButton
GrabKey

Input passivegrab client server

GrabKeyboard
GrabPointer

Input grab client screen

19

Securing The X Window System With SELinux

Operation Class Permission Source SID Target SID

AllowEvents
UngrabButton
UngrabKey
UngrabKeyboard
UngrabPointer

Input ungrab client server

GetKeyboardControl
GetPointerControl
GetPointerMapping
GetModifierMapping
QueryKeymap
QueryPointer

Input getattr client Server

ChangeKeyboardControl
ChangePointerControl
SetModifierMapping
SetPointerMapping

Input setattr client Server

5.2.4. Control Requirements for Colors and Colormaps

The control requirements for X protocol operations that manage Color and Colormaps objects are
described in this section.

Table 14. Color and Colormap Control Requirements

Operation Class Permission Source SID Target SID

AllocColor Color
Colormap

create
read
store

client
client
color

color
colormap
colormap

AllocColorCells Color
Colormap

create
read
store

client
client
color

color
colormap
colormap

AllocColorPlanes Color
Colormap

create
read
store

client
client
color

color
colormap
colormap

AllocNamedColor Color
Colormap

create
read
store

client
client
color

color
colormap
colormap

CopyColormapAndFree Colormap create
read
free

client
client
client

new colormap
source
colormap
source colormap

CreateColormap Colormap
Drawable

create
draw

client
client

colormap
window.draw

FreeColormap Colormap free client colormap

20

Securing The X Window System With SELinux

Operation Class Permission Source SID Target SID

FreeColors Color
Colormap

free
store

client
client

color
colormap

InstallColormap Colormap install client server

ListInstalledColormaps Colormap list client server

LookupColor Color lookup client colormap

QueryColors Colormap read client colormap

StoreColors Colormap store client colormap

StoreNamedColor Colormap store client colormap

UninstallColormap Colormap uninstall client colormap

5.2.5. Control Requirements for Fonts and Text

The control requirements for X protocol operations that manage Font objects and text manipulation are
described in this section.

The Font objects are centralized in the server for performance reasons. An application lists the fonts,
loads the fonts it wants to use, and then uses the font to draw into a Drawable. The SID for a Font object
will be derived from the label of the font source file, allowing the policy to make font-specific decisions.

Table 15. Font and Text Control Requirements

Operation Class Permission Source SID Target SID

CloseFont Font free client font

GetFontPath Font getattr client server

ImageText8
ImageText16

Font
Drawable

use
draw

client
client

font
drawable

ListFonts
ListFontsWithInfo

Font getattr client server

OpenFont Font load
use

client
client

server
font

PolyText8
PolyText16

Font
Font
GContext
Drawable

load
use
chattr
draw

client
client
client
client

server
font
gc
drawable

QueryFont Font getattr client font

QueryTextExtents Font getattr client font

5.2.6. Control Requirements for Pixmaps

A Pixmap object is normally used by applications to cache the results of drawing operations. The client
will initially draw some complex entity to a pixmap, then copy that pixmap to the target window.
Reading a client’s pixmap is therefore equivalent to reading the data from the client’s window, and

21

Securing The X Window System With SELinux

writing to the pixmap may be equivalent to writing to the client’s window.

While a Window object is more than just a Drawable object, the same can not be said for a Pixmap; thus
Pixmap object in the server is represented in the policy only by Drawable objects. Creating a Pixmap
creates a Drawable. The Drawable’s context is derived from the context of the client that creates it.

Table 16. Pixmap Control Requirements

Operation Class Permission Source SID Target SID

CreatePixmap Drawable create client pixmap

FreePixmap Drawable free client pixmap

CreateCursor Drawable draw client pixmap

5.2.7. Control Requirements for the Cursor object

Cursor objects are associated with windows. When the pointer is over a window, the Cursor object
associated with that window will be shown as the pointer image. Most applications create their cursors
from a standard cursor font loaded by the server. To limit an application to the standard cursors, the
policy should deny the create permission and limit the use of fonts.

Table 17. Control requirements for the cursor

Operation Class Permission Source SID Target SID

CreateCursor Cursor create client cursor

CreateGlyphCursor Cursor
Font

createglyph
use

client cursor
font

RecolorCursor Cursor setattr client cursor

5.2.8. Control Requirements for the Server object

The Server object does not represent any object actually managed by the X server. Instead, it is a virtual
object used to provide a label for properties of which are global to the X server, and not specific to any
one client.

The screen saver requests also need to be enforced on the requests in the MIT-SCREEN-SAVER extension.
Those control requirements are not listed here, as this paper has not addressed the control requirements
of any extensions.

The host-based access controls secured by the hostcontrol permission have generally been
deprecated. The replacement, MIT magic cookies, are not managed through the X server, and therefore
can not be controlled by X server permissions.

Table 18. Control requirements for the server

Operation Class Permission Source SID Target SID

22

Securing The X Window System With SELinux

Operation Class Permission Source SID Target SID

ForceScreenSaver
GetScreenSaver
SetScreenSaver

Server screensaver client server

ChangeHosts
SetAccessControl

Server hostcontrol client server

SetFontPath Server setfontpath client server

ListExtensions
QueryExtension

Server getext client server

QueryBestSize Server getattr client server

5.2.9. Extensions

To permit applications to create objects with a specified label rather than the default label, an extended
form of each of the object creation requests must be added that accepts an additional context parameter.
To permit clients to obtain the context of an object, an extended form of each of the object status requests
must be added that returns an additional context parameter. To permit clients to change the context of an
object, new requests must be added for these security-aware applications and are shown in Table 19.

For the new requests that are extended forms of existing requests, the existing set of control requirements
apply.

Table 19. Control requirements for relabeling

Operation Class Permission Source SID Target SID

RelabelWindow Window relabelfrom client window

RelabelInput Input relabelinput client input

5.3. Events

Events are sent asynchronously to clients, sometimes as the result of a request but usually as the result of
user actions. Events include notification that the mouse moved, notification that a portion of the window
needs to be redrawn, or messages passed between clients. There are 36 different events in the base X
protocol, which are grouped into 6 permissions in the Window object class. These groups are shown in
Table 20.

To avoid duplication, only the permission to send an event is shown in the table. The source SID will be
the source of the event. For example, for real input events the source context will be input object. The
target SID will be the owner of the window being targeted by the event.

While these permissions are listed under SendEvent and other requests, in fact there are many ways
events can be sent to windows. The control requirements tables list event permissions when a request
could generate an event, but events generated by the server are not listed. The server will need to be
modified to always check for permission to send an event. The permission to register for events is not
covered by this framework. Instead the policy is expected to enforce the event permissions.

23

Securing The X Window System With SELinux

The type of event is important to any policy. A well-behaved client that claims the clipboard will need to
be able to send a SelectionClear event, to let the client that currently owns the clipboard know about the
change. However, no well-behaved client will send a KeyPress event. Policies that seek to enforce good
behavior should limit the types of events that clients can generate.

Table 20. Event Permissions

Events Event Permission Description

SelectionClear
SelectionNotify
SelectionRequest
ClientMessage
PropertyNotify

clientcomevent Events for inter-client communication

ButtonPress
ButtonRelease
KeyPress
KeyRelease
KeymapNotify
MotionNotify
EnterNotify
LeaveNotify
FocusIn
FocusOut

inputevent User Input Events

Expose
GraphicsExpose
NoExpose
VisibilityNotify

drawevent Events telling the client to redraw

CirculateNotify
ConfigureNotify
CreateNotify
DestroyNotify
MapNotify
UnmapNotify
GravityNotify
ReparentNotify

windowchangeevent Events informing the client of changes to a
window

CirculateRequest
ConfigureRequest
CreateRequest
DestroyRequest
MapRequest
ResizeRequest
SubStructureNotify

windowchangerequest Events to the Window Manager requesting
changes to a window

ColormapNotify
MappingNotify

serverchangeevent Events telling the client about global server
changes

24

Securing The X Window System With SELinux

5.3.1. Client Communication Events

Client communication events exist to enable client communication, and will be sent by clients to other
clients. While any event can be sent via SendEvent the expectation is that all other event types are only
generated by the server.

The SelectionClear, SelectionNotify, and SelectionRequest events are used to notify clients of changes to
selection buffers used for cut-and-paste functionality. When a client wishes to export a selection buffer, it
will use the SetSelectionOwner request, which will generate the SelectionClear event to the previous
owner of the selection. When a client wants to get the selection in a different format, it calls the
ConvertSelection request, which causes the server to send a SelectionRequest event to the owner of
the selection. The owner of the selection is expected to convert the selection to the requested type, and
send a SelectionNotify event to the requesting client by the SendEvent request.

The ClientMessage event is an arbitrary event. Two clients who have agreed on the interpretation of data
can exchange ClientMessage events. The X server will never generate this type of event.

The PropertyNotify event is sent to a client when properties on a window change. Since the server never
changes a windows properties, this event results from client communication.

A policy should only allow clients to send these events to each other, or cause these events to be sent to
each other, if it would otherwise allow direct communication between the clients.

5.3.2. Input Events

Input events should only be sent by the server. Input events are generated by the user’s interactions with
the input hardware. They tell the client about input, and alert the client when input will be directed to the
client.

The ButtonPress and ButtonRelease events inform the client when any buttons on the pointing device
have been pressed or released. The client can also find out the state of the modifier keys on the keyboard
as part of these events. The MotionNotify event gives the client information about the motions of the
mouse pointer. A MotionNotify event is guaranteed to be generated only if the motion begins or ends
inside the window.

The KeyPress and KeyRelease events inform the client when any keys on the keyboard have been
pressed or released. There is no way for a client to select event notification on a subset of the keyboard. If
the client receives key events it will receive them when any key on the keyboard is pressed, even the
modifier keys.

The KeymapNotify event is reported to clients when a window acquires keyboard input focus. The event
allows the client to determine which keys were pressed when the input focus was transfered to the
window.

The EnterNotify and LeaveNotify events inform the client when the mouse pointer has entered or left a
window. The FocusIn and FocusOut events inform the client when the window has keyboard input focus.

5.3.3. Draw Events

These events alert the client that some portion of its window needs to be redrawn. The Expose event
gives the client a list of rectangular areas that need to be redrawn in the given window. In normal
operation this event, like most, will only be generated by the server.

25

Securing The X Window System With SELinux

The VisibilityNotify event can be used to alert clients that a section of their window is no longer visible.
A client could use this information to avoid updating that portion of their window when it changes, for
example. The event will also be issued when the window regains visibility.

The NoExpose and GraphicsExpose events are generated by CopyArea and CopyPlane requests. If the
copy failed because the source region is obscured, unmapped, or otherwise unavailable, a
GraphicsExpose event will be generated. Otherwise, a NoExpose event will be generated.

5.3.4. Window Change Events

These events alert a client when the window manager performs various window operations. They
originate only from the X server. There will rarely be any need to prevent a client from receiving any of
these events, as they only inform the client of operations that have already occurred. The majority of
these events can be sent to both the window that was modified, and the parent of that window.

The CirculateNotify event informs a client when the stacking order has changed. This is normally related
to focus changes. The ConfigureNotify event is sent to the client when a window has had its
configuration changed by ConfigureWindow.

The CreateNotify and DestroyNotify events are sent to a client when a sub window is created or
destroyed. The MapNotify and UnmapNotify events are sent to the window being mapped and
unmapped. The GravityNotify event is sent to a window when it has moved because of a change in size
of its parent. The ReparentNotify event is sent to a window that has been re-parented.

5.3.5. Window Change Request Events

These events are used by the Window Manager to control certain window manager functionality. If a
client requests an operation that the Window Manager controls, the X server will send an appropriate
event to the window manager instead of performing the operation. The Window manager can then
determine if the operation should be performed, and if so, tell the X server to perform the operation.

Only the window manager should be allowed to to select the StructureRedirectMask events on the
root window, and clients should not be allowed to set the override_redirect attribute on their
top-level windows. Some older applications may set the attribute for transient windows, but more recent
applications will generally use window hints instead. Applications which set the attribute will generally
work with the attribute unset.

The different events covered by the windowchangerequest permission contain the same information,
and have the same meaning as the equivalent event listed under the windowchangeevent permission.
Those permissions are discussed in Section 5.3.4.

5.3.6. Server State Change Events

These events are sent to clients when global server state changes. These events should only be sent from
the server, although they will frequently result directly from client requests. These events should
generally not be quelled by the policy.

The ColormapNotify events is reported to clients when the colormap attribute of a window is changed, or
the currently installed colormap changes. Clients that wish to correct their colors based on the currently
installed colormap need to receive this event.

26

Securing The X Window System With SELinux

The MappingNotify event is reported to all clients when the mappings for the input devices change.
Clients need to receive this event to keep their model of the keyboard and pointer mappings consistent
with the X server’s model.

5.3.7. Event Control Requirements

The control requirements for events generated as the result of client requests are shown in the client
request tables. Events can also be dispatched directly from the server, particularly in the case of input
events. Any client can forge any event through the SendEvent. Events sent through SendEvent will
always have the source SID of the sending client, and the target SID of the target window.

The control requirements for events covered by the clientcomevent are included in Table 12. The
source SID and target SID used are listed there. The target will always be the window receiving the
event, and the source will be the client sending the event, or the client that invoked the request that
directly caused the event to be sent.

By itself, applying a policy to the inputevent permission will not enforce Trusted Path functionality, as
there is not sufficient information to determine the window which has focus. As previously mentioned, a
trusted Window Manager could apply a label to the input. The source SID for events covered by the
inputevent permission will be that of the input object. Applications will also need to carefully grab
input when required, and policies will need to prevent malicious applications from grabbing the input.

For events covered by the serverchangeevent, the source SID will be that of the server object, even
though these events happen in response to actions of the client. Clients need to receive these events to
properly understand the state of the server, yet these events are indirectly generated by clients. These
events allow a high-bandwidth covert channel, and so the permissions to install colormaps or change
keyboard mappings should be tightly regulated.

The events covered by the drawevent permission are considered to be asynchronous events. The source
SID will be that of the server object. Like the serverchangeevent events, Expose and VisibilityNotify
events can result from client requests, and so could be used for covert channels. When the expose event
is the result of client actions the server should modify the information in the event to reduce the
information passed. The server should enlarge the exposed rectangle to include the entire window.

The events covered by the windowchangerequest permission should only be sent to the window
manager. The events are generated as the result of client requests, so the source SID will be that of the
client, and the target SID will be that of the window manager. The events covered by the
windowchangeevent permission will use the source SID of the client performing the operation, which
should be that of the window manager.

6. Implementation

Many of the checks that will be required have been added to the XFree X server by the X11 Security
Extension. While the Security Extension does not fully label both subjects and objects, it does do a
certain amount of labeling, and defines an API that is widely used in the X server for the checks.

Unfortunately, the Security Extension does not appear to be fully implemented at the time of this report.
Only four types of access (actions) are recognized, one of which is Unknown_Access, and

27

Securing The X Window System With SELinux

Unknown_Access is always permitted. The degree of effort required to expand the extension to support a
richer policy is unknown.

6.1. Enforcing Permissions on Requests

All communication between an X client and the X server happens over the protocol. Performing
mediation at the X protocol interface is sufficient to ensure that clients can not communicate via the
server without authorization. Extensions like the MIT-SHM (the MIT Shared Memory Extension) merely
allow clients to share image data with the server, and do not present additional channels of
communication.

One place to put the hook for all requests is ProcessWorkQueue (dix.c) in the XFree86 source tree, the
central dispatch loop for the X server. However, it is likely that each request will need to be modified to
check permissions, as the central dispatch loop does not know the data contained in the request.

6.2. Enforcing Permissions on Events

For events, there are several control points. Some events are sent via WriteToClient, a low level
output method. Some events are sent via DeliverEvents, some by MaybeDeliverEventsToClient,
and most by WriteEventsToClient.

Since there is no single interface for intercepting the events being sent to a client, the X server will need
to be modified to be more consistent about sending events to a client. The X server currently treats events
like any other bit of opaque data that needs to be sent to the client: it queues the event onto an output
buffer. While one could certainly place a hook in the low level WriteToClient method, the hook will
need to implement a significant amount of logic to determine the type of the opaque data being queued.

6.3. Extensions

Another feature that needs access control is the use of extensions. The X protocol is flexible, and allows
arbitrary extensions to be registered. It is not practical for an ongoing security project to know the
security properties of a new extension, so part of the policy will need to limit extensions. While
extensions could be aware of the security policy, they do constitute code running inside a trusted
enforcement module. Limiting extensions should be possible from the kernel-level policy for the X
server, as the extensions are implemented as shared libraries that the X server links in at run time.

6.4. Interactions with Flask

The SELinux framework currently trusts only the kernel to make security decisions, and trusts only the
kernel to enforce security decisions. However, it is not practical to refactor the X server to allow
enforcement to take place in the kernel. The X server will need to enforce the policy.

Policies for X objects will likely be incorporated with the general system policy. If two processes should
not communicate by more traditional system means like Unix domain sockets, then they should also be
prevented from communicating through the X server. If one application’s output should not be allowed as
input to a different application, then that second application should not be allowed to copy a window
belonging to the first application.

28

Securing The X Window System With SELinux

The X server should use the Access Vector Cache (AVC) component from the Flask architecture. The
AVC component is not currently included in libSecure, and will need to be. The AVC will need a security
server to make policy decisions. The security server could be included in libSecure, or the AVC could
use the security server in the kernel. Both approaches are valid, but we recommend initially using the
kernel’s security server. Using the security server already in SELinux will consolidate the security server
code and simplify the process of changing the current policy. If the performance of this approach is
unacceptable, the AVC architecture would make moving the security server into the X server
straight-forward.

Figure 2. Interface Diagram

X server X Client

Kernel/Userspace interface

Server
Security

libSecure

SELinux changes

Flask Server

Base kernel

X Client

The diagram in Figure 2 represents the classical layer diagram of the proposed design. The X server will
use the AVC implementation in libSecure for authorization, which in turn will use a security server. The
X server will rely on the SELinux controls for protection against other processes. The clients will
communicate with the server through TCP/IP connections or Unix Domain Sockets via the normal X
protocol, where the server will enforce the systems policy upon the client requests.

6.5. Handling Errors

The core X protocol defines 17 errors; some are generic (e.g. Access). Other errors are specific to a
request; BadPixmap for example. Most of these errors are returned to a client when the client provides
bad arguments to a request.

29

Securing The X Window System With SELinux

When a client attempts to perform an operation that is not permitted by the security policy, the X server
must decide how best to respond. Depending on the severity of the error, there are at least three options.
The X server can ignore the request, send a protocol error to the client, or terminate the client. The
SELinux security server typically returns errors that only have meaning within the Linux kernel; these
error values must be translated into something that is more appropriate for X. Some probable translations
are listed in Table 21. The actual error, if any, returned when a request is denied will be dependent on the
request, and the exact reason why a request was denied. For example, if a client invokes the QueryTree

request, and some child window is not visible to the client, the child window should just be eliminated
from the output and no error sent. If the client attempts to set a property on a window that should not be
visible (by guessing its Resource ID), then a BadWindow error should be sent.

Table 21. Translation table for SELinux error codes

SELinux error code X Error
ENOENT BadColormap

BadCursor
BadDrawable
BadFont
BadPixmap
BadValue
BadWindow

EAGAIN no direct translation

EACCESS BadAccess

EPERM BadAccess

EEXIST BadIDChoice

EINVAL BadValue

If the error reflects an intermittent failure within the security server (ENOMEM), it may be preferable to
report the error to the application and allow the user to potentially retry the operation. In this case,
ENOMEM would translate to a BadAlloc error condition. The X protocol already defines a BadAccess

error that may be returned for some operations. However, a BadAccess error is not an expected result of
many operations and there may be unexpected consequences for the client application.

The EAGAIN error indicates that the system has a temporary issue, and that the client should try the
request again. In most cases, this return code indicates a transient issue with the security server, and the
modified X server will rerun the query instead of passing the error back to the client.

It will often be the case that most operations can simply be stopped. This may cause problems with some
clients, since few X protocol methods are expected to fail. Even considering the impact upon client
applications, it is preferable to err on the side of stronger security. Even though clients may freeze as a
result of access denials, the X server may not need to terminate the application. [WigginsProtocol96]

7. Security-Aware Applications
In this report, we have assumed that the vast majority of X applications will be unmodified, traditional,
security-oblivious applications. None of the preexisting base of X applications are aware of security

30

Securing The X Window System With SELinux

enhancements. However, there will be some applications which will need or want awareness of the
security policy they are running under. An obvious example would be a large office application, which
would want to execute document macros in the context of the document. While a graphical login program
will need to be security aware, we do not expect it will need to be aware of the X security policies.

7.1. The Window Manager

As we have mentioned throughout the report, the design of the security-aware X server assumes the
existence of a trusted window manager. Certain security decisions need input that the X server can not
provide, but the window manager can. By relying on the window manager to make proper visual labeling
decisions, we can express these policies in the general policy language.

The server will have a single labeled object to represent the input stream. As mentioned in Section 5.2.3,
the window manager is responsible for labeling this object appropriately for the window which has input
focus.

Most current window managers provide visual labels to let the user know which window has keyboard
focus. Client applications provide desired strings for a title bar. The window manager could also visually
label windows according to their security context, if this functionality was desired.

Linux systems may use a variety of window managers, all with slightly different functionality.
Fortunately, KDE and GNOME have become the defacto standards for desktop environments, and either
desktop works when using the other desktop’s window manager. By modifying the either of the two
window managers to supports the security extensions, we will get suitable coverage for a large portion of
the Linux user base.

7.2. Large Integrated Applications

Large integrated applications, like StarOffice/OpenOffice present unique issues for security. A single
application may have several documents open at the same time, and so be managing multiple security
domains. These large office applications also include sufficient macro functionality to be considered a
run-time environment instead of merely being a document editor and viewer.

While no one has yet started making these large applications security aware, we expect that future work
will need to consider their needs. These applications will also need to be aware of the security policies of
the X server, if just to help properly direct input.

7.3. Other Applications

The free desktop environments will also need to be security aware, but may not be aware of any X
related security policies. While you want your file browser to be able to show you the extended security
information of your files, it should not need special handling by the X server when it does so.

The file browsing functionality of KDE’s file manager and the GNOME equivalent may be crossing
security domains, but at least in the KDE case, the file viewer application is a separate program, and can
run in a separate domain. To handle these applications, the policy needs to handle applications with
sub-windows belonging to other applications, but this should be possible without needing help from the
parent application.

31

Securing The X Window System With SELinux

8. Conclusions
Having recognized the need for additional security for commonly used and freely available operating
systems, the NSA undertook development of Security Enhanced Linux. By integrating strong, flexible
mandatory access control into Linux, overall system security has been improved. However, there is still
more work that can be done to secure the user operating environment while still providing a usable
workstation. By extending the SELinux security server to user-space applications such as the X Server, it
becomes easier to apply a consistent security policy to the system as a whole.

By modifying the SELinux policy to place the X11 Server into a trusted domain, and by further
permitting the Server to enforce policy upon X clients, it is possible to allow uses to run a graphical
environment and still provide system integrity and to restrict information flow. Through a careful
examination of the X protocol, this report describes which objects must be secured and which types of
operations may be performed upon them. In this way, all communication between an X server and X
clients can be intercepted and a security policy may be enforced.

This document defines the set of object classes within X11 that must be labeled and controlled in order to
provide reasonable security over the X protocol. While the lists of permissions for these objects are quite
extensive, after further experimentation and testing, it may be reasonable to combine some similar
permissions and yield a smaller effective permission set.

Most X Server implementations allow for modular extensions to be loaded so that the Server
functionality can be enhanced. This document does not address the issue of X Server extensions, but due
to their similarity to Linux kernel modules, they can likely be handled in a similar manner. Like kernel
extensions, it is difficult to know the exact contents of an extension, and what affect it will have on the
system. For this reason, the decision to support modules and extensions is often binary; either all
extensions are permitted or not.

References

[ClipExt] Lubos Lunak, Proposal for Clipboard Extensions,
https://listman.redhat.com/pipermail/xdg-list/2002-November/000881.html , November 2002.

[FlaskArch] Ray Spencer, Peter Loscocco, Stephen Smalley, Mike Hibler, David Anderson, and Jay
Lepreau, “The Flask Security Architecture: System Support for Diverse Security Policies”,
Proceedings of The Eighth USENIX Security Symposium, The USENIX Association, August 1999.

[Kirk97] Kirk Bittler, “A Policy-Independent Secure X Server”, A Thesis Submitted To The Master of
Science in Computer Science Program at Portland State University, 1997.

[LoscoccoFreenix2001] Peter Loscocco and Stephen Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System”, Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, The USENIX Association, June 2001.

[LoscoccoNSATR2001] Peter Loscocco and Stephen Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System”, NSA Technical Report, February 2001.

[LoscoccoNISS1998] Peter Loscocco, Stephen Smalley, Patrick Muckelbauer, Ruth Taylor, S. Turner,
and John Farrell, “The Inevitability of Failure: The Flawed Assumption of Security in Modern

32

Securing The X Window System With SELinux

Computing Environments”, Proceedings of the 21st National Information Systems Security
Conference, October 1998.

[OReilly90] Edited by Adrian Nye, “X Protocol Reference Manual, Second Edition”, O’Reilly &
Associates, Inc., 1990.

[SELinux] The National Security Agency, Security-Enhanced Linux.

[SpencerUsenixSec1999] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen,
and Jay Lepreau, “The Flask Security Architecture: System Support for Diverse Security Policies”,
Proceedings of the Eighth USENIX Security Symposium, The USENIX Association, August 1999.

[WigginsProtocol96] David Wiggins, “Analysis of the X Protocol for Security Concerns: Draft Version
2”, The X Consortium, Inc., May 10, 1996.

[WigginsExtension96] David Wiggins, “Security Extension Specification Version 7.1 X11 Release 6.fi”,
The X Consortium, Inc., November 15, 1996.

[Xlib] Adrian Nye, “The Definitive Guides to the X Window System”, Volume One, Xlib Programming
Manual for Version 11, O’Reilly & Associates, Inc., 1989.

[Xlib2] Jim Gettys and Robert Scheifler, “Xlib”: C Language X Interface, The X Consortium, Inc., 1996.

[XlibRef] Jim Gettys, Ron Newman, and Robert Scheifler, Edited by Adrian Nye, “The Definitive
Guides to the X Window System”, Volume Two, Xlib Reference Manual for Version 11, O’Reilly
& Associates, Inc., 1989.

[XOrgIntro] Introduction: About the X Window System, Available at http://www.x.org/X11.html.

[XProtocol] Robert Scheifler, “X Window System Protocol: X Version 11, Release 6.1”, The X
Consortium, Inc., 1994.

[XSelections] Keith Packard, “The X Selection Mechanism”: How to Cut and Paste in 1000 Lines or
More, The X Consortium, Inc., Laboratory for Computer Science, Massachusetts Institute of
Technology, 1990.

33

	Securing the X Window System With SELinux
	Table of Contents
	Introduction
	Overview of the X Architecture
	Threats and Security Concerns
	Confidentiality
	Integrity
	Availability
	Assurance
	Covert Channels

	Requirements
	Required Functionality
	Requirements for Securing X

	Security Architecture for the X Protocol
	Design
	Control Requirements
	Events

	Implementation
	Enforcing Permissions on Requests
	Enforcing Permissions on Events
	Extensions
	Interactions with Flask
	Handling Errors

	Security-Aware Applications
	The Window Manager
	Large Integrated Applications
	Other Applications

	Conclusions
	References

