
Integrating Flexible Support for Security Policies into the Linux Operating 
System 

Peter Loscocco, NSA, loscocco@tycho.nsa.gov 
Stephen Smalley, NAI Labs, ssmalley@nai.com 

Abstract 

The protection mechanisms of current mainstream op­
erating systems are inadequate to support confidentiality 
and integrity requirements for end systems. Mandatory 
access control (MAC) is needed to address such require­
ments, but the limitations of traditional MAC have in­
hibited its adoption into mainstream operating systems. 
The National Security Agency (NSA) worked with Se­
cure Computing Corporation (SCC) to develop a flexi­
ble MAC architecture called Flask to overcome the lim­
itations of traditional MAC. The NSA has implemented 
this architecture in the Linux operating system, produc­
ing a Security-Enhanced Linux (SELinux) prototype, to 
make the technology available to a wider community 
and to enable further research into secure operating sys­
tems. NAI Labs has developed an example security pol-
icy configuration to demonstrate the benefits of the ar­
chitecture and to provide a foundation for others to use. 
This paper describes the security architecture, security 
mechanisms, application programming interface, secu­
rity policy configuration, and performance of SELinux. 

1 Intr oduction 

End systems must be able to enforce the separation 
of information based on confidentiality and integrity re­
quirements to provide system security. Operating sys­
tem security mechanisms are the foundation for ensur­
ing such separation. Unfortunately, existing mainstream 
operating systems lack the critical security feature re­
quired for enforcing separation: mandatory access con­
trol (MAC) [17]. Instead, they rely on discretionary ac­
cess control (DAC) mechanisms. As a consequence, ap­
plication security mechanisms are vulnerable to tamper­
ing and bypass, and malicious or flawed applications can 
easily cause failures in system security. 

DAC mechanisms are fundamentally inadequate for 
strong system security. DAC access decisions are only 
based on user identity and ownership, ignoring other 
security-relevant information such as the role of the user, 
the function and trustworthiness of the program, and the 
sensitivity and integrity of the data. Each user has com­
plete discretion over his objects, making it impossible to 

enforce a system-wide security policy. Furthermore, ev­
ery program run by a user inherits all of the permissions 
granted to the user and is free to change access to the 
user’s objects, so no protection is provided against ma­
licious software. Typically, only two major categories 
of users are supported by DAC mechanisms, completely 
trusted administrators and completely untrusted ordinary 
users. Many system services and privileged programs 
must run with coarse-grained privileges that far exceed 
their requirements, so that a flaw in any one of these 
programs can be exploited to obtain complete system ac­
cess. 

By adding MAC mechanisms to the operating system, 
these vulnerabilities can be addressed. MAC access de­
cisions are based on labels that can contain a variety of 
security-relevant information. A MAC policy is defined 
by a system security policy administrator and enforced 
over all subjects (processes) and objects (e.g. files, sock­
ets, network interfaces) in the system. MAC can support 
a wide variety of categories of users on a system, and it 
can confine the damage that can be caused by flawed or 
malicious software. 

Traditional MAC mechanisms have typically been 
tightly coupled to a multi-level security (MLS) [7] pol-
icy which bases its access decisions on clearances for 
subjects and classifications for objects. This traditional 
approach is too limiting to meet many security require­
ments [8, 9, 10]. It provides poor support for data and 
application integrity, separation of duty, and least priv­
ilege requirements. It requires special trusted subjects 
that act outside of the access control model. It fails to 
tightly control the relationship between a subject and the 
code it executes. This limits the ability of the system to 
offer protection based on the function and trustworthi­
ness of the code, to correctly manage permissions re­
quired for execution, and to minimize the likelihood of 
malicious code execution. 

To address the limitations of traditional MAC, the Na­
tional Security Agency (NSA), with the help of Secure 
Computing Corporation (SCC), began researching new 
ways to provide strong mandatory access controls that 
could be acceptable for mainstream operating systems. 
An important design goal for the NSA was to provide 



flexible support for security policies, since no single 
MAC policy model is likely to satisfy everyone’s secu­
rity requirements. This goal was achieved by cleanly 
separating the security policy logic from the enforce­
ment mechanism. Through the development of two 
Mach-based prototypes, DTMach [12] and DTOS [20], 
the NSA and SCC developed a strong, flexible security 
architecture. Although high assurance was not a goal of 
the research, formal methods were applied to the design 
to help validate the security properties of the architec­
ture [23, 24]. Likewise, performance optimization was 
not a goal, but significant steps were taken in the archi­
tecture to minimize the performance overhead normally 
associated with MAC. NSA and SCC then worked with 
the University of Utah’s Flux research group to trans­
fer the architecture to the Fluke research operating sys­
tem [25]. During the transfer, what has become the Flask 
architecture was enhanced to provide better support for 
dynamic security policies. 

The NSA created Security-Enhanced Linux, or 
SELinux for short, by integrating this enhanced archi­
tecture into the Linux operating system. It has been ap­
plied to the major subsystems of the Linux kernel, in­
cluding the integration of mandatory access controls for 
operations on processes, files, and sockets. NAI Labs 
has since joined the effort and has implemented sev­
eral additional kernel mandatory access controls, includ­
ing controls for the procfs and devpts file systems. The 
MITRE Corporation and SCC have contributed to the 
development of some application security policies and 
have modified utility programs, but their contributions 
are not discussed further in this paper. 

Using the flexibility of SELinux, it is possible to con-
figure the system to support a wide variety of security 
policies. The system can support: 

� separation policies that can enforce legal restric­
tions on data, establish well-defined user roles, or 
restrict access to classified data, 

� containment policies useful for such things as re­
stricting web server access to only authorized data 
and minimizing damage caused by viruses and 
other malicious code, 

� integrity policies that are capable of protecting 
unauthorized modifications to data and applica­
tions, and 

� invocation policies that can guarantee data is pro­
cessed as required. 

The flexibility of SELinux meets the goal of enabling 
many different models of security to be enforced with 
the same base system. 

The NSA released the SELinux to make the technol­
ogy available to a wider community and enable further 
research into secure operating systems. To help intro­
duce the system in a more immediately useful form that 
helps demonstrate the added value of SELinux, NSA 
contracted NAI Labs to develop an example security pol-
icy configuration for the system designed to meet a num­
ber of common general-purpose security objectives. The 
example configuration greatly reduces the complexity of 
SELinux that would otherwise be present if building the 
policy specification from scratch were required. The ex-
ample configuration released with the SELinux provides 
a customizable foundation with which a secure system 
can be built. 

The remainder of this paper describes SELinux. It 
begins by providing an overview of the Flask architec­
ture and its SELinux implementation in Section 2. The 
security mechanisms added to the system are then de-
scribed in Section 3. The SELinux application program­
ming interface (API) is discussed in Section 4. Section 5 
describes the example security policy configuration cre­
ated for the system. The performance overhead of the 
SELinux mechanisms is described in Section 6. Related 
work is discussed in Section 7. 

2 Security Ar chitecture 

This section provides an overview of the Flask archi­
tecture and the SELinux implementation of the architec­
ture. The Flask architecture provides flexible support 
for mandatory access control policies. In a system with 
mandatory access controls, a security label is assigned 
to each subject and object. All accesses from a subject 
to an object or between two subjects must be authorized 
by the policy based on these labels. The Flask architec­
ture cleanly separates the definition of the policy logic 
from the enforcement mechanism. The security policy 
logic is encapsulated within a separate component of the 
operating system with well-defined interfaces for obtain­
ing security policy decisions. This separate component 
is referred to as the security server due to its origins as 
a user-space server running on a microkernel. In the 
SELinux implementation, the security server is merely 
a kernel subsystem. 

Components in the system that enforce the security 
policy are referred to as object managers in the Flask 
architecture. Object managers are modified to obtain se­
curity policy decisions from the security server and to 
apply these decisions to label and control access to their 
objects. In the SELinux implementation, the other ker­
nel subsystems (e.g. process management, filesystem, 
socket IPC, System V IPC) are object managers. Appli­
cation object managers can also be supported, such as a 
windowing system or a database management system. 



The Flask architecture also provides an access vec­
tor cache (AVC) component that stores the access de­
cision computations provided by the security server for 
subsequent use by the object managers. The AVC com­
ponent also supports revocation of permissions, as de-
scribed later in Section 2.4. An object manager may fur­
ther reduce the cost of a permission check by storing 
references to the appropriate entry in the AVC with its 
objects. As a result, most permission checks can occur 
without even incurring the cost of an extra function call. 

The remainder of this section further elaborates on the 
Flask architecture and its SELinux implementation. It 
begins by discussing how security labels are encapsu­
lated in Flask. This section then discusses how Flask 
supports flexibility in labeling and access decisions. The 
ability of Flask to support policy changes is then de-
scribed. 

2.1 Encapsulation of Security Labels 

Since the content and format of security labels are 
dependent on the particular security policy, the Flask 
architecture defines two policy-independent data types 
for security labels: the security context and the security 
identifier. A security context is a variable-length string 
representation of the security label. Internally, the se­
curity server stores a security context as a structure us­
ing a private data type. A security identifier (SID or se­
curity id t) is an integer that is mapped by the security 
server to a security context. Flask object managers are 
responsible for binding security labels to their objects, 
so they bind SIDs to active kernel objects. The file sys­
tem object manager must also maintain a persistent bind­
ing between files and security contexts. Since the object 
managers handle SIDs and security contexts opaquely, a 
change in the format or content of security labels does 
not require any changes to the object managers. 

The Flask architecture merely specifies the interfaces 
provided by the security server to the object managers. 
The implementation of the security server, including 
any policy language it may support, are not specified 
by the architecture. The SELinux example security 
server defines a security policy that is a combination 
of Type Enforcement (TE) [8], role-based access con­
trol (RBAC) [11], and optionally multi-level security 
(MLS) [7]. The example configuration for the TE and 
RBAC policy components is described in Section 5. The 
SELinux example security server defines a security con-
text as containing a user identity, a role, a type, and op­
tionally a MLS level or range. Roles are only relevant 
for processes, so file security contexts have a generic 
object r role. The security server only provides SIDs for 
security contexts with legal combinations of user, role, 
type, and level or range. The individual attributes of the 

int security_transition_sid(

security_id_t ssid,

security_id_t tsid,

security_class_t tclass,

security_id_t *out_sid);


ret = security_transition_sid(

current->sid,

dir->i_sid,

SECCLASS_FILE,

&sid);


Figure 1: Interface and example call to obtain a security label. The 
input parameters are the subject SID, the SID of a related object (e.g. 
the parent directory), and the class of the new object. The SID for the 
new object is returned as an output parameter. 

security context are not manipulated by the object man­
agers. 

The user identity attribute in the security context is in-
dependent of the ordinary Linux user identity attributes. 
Modifications to the Linux login program and cron dae­
mon are provided to set this new user identity attribute 
appropriately for login sessions and user cron jobs. By 
using a separate user identity attribute, the SELinux 
mandatory access controls remain completely orthogo­
nal to the existing Linux access controls. SELinux can 
enforce rigorous controls over changes in its user iden­
tity attribute without affecting compatibility with exist­
ing applications. 

2.2 Flexibility in Labeling Decisions 

When a Flask object manager requires a label for a 
new object, it consults the security server to obtain a la­
beling decision based on the label of the creating subject, 
the label of a related object, and the class of the new ob­
ject. For program execution, the Flask process manager 
obtains the label for the transformed process based on 
the current label of the process and the label of the pro-
gram executable. For file creation, the Flask file system 
object manager obtains the label for the new file based 
on the label of the creating process, the label of the par­
ent directory, and the kind of file being created. The se­
curity server may compute the new label based on these 
inputs and may also use other external information. Fig­
ure 1 shows the security server’s security transition sid 
interface for obtaining a label and an example call to this 
interface to obtain the label of a new file. 

The SELinux example security server may be config­
ured to automatically cause changes in the role or do-
main attributes of a process based on the role and domain 
of the process and the type of the program. By default, 
the role and domain of a process is not changed by pro-
gram execution. The SELinux security server may also 
be configured to use specified types for new files based 



int security_compute_av(

security_id_t ssid,

security_id_t tsid,

security_class_t tclass,

access_vector_t requested,

access_vector_t *allowed,

access_vector_t *decided,

__u32 *seqno);


Figure 2: Interface for obtaining access decisions from the secu­
rity server. The input parameters are a pair of SIDs, the class of the 
object, and the set of requested permissions. The pair of SIDs may 
be subject-to-object, subject-to-subject, or even object-to-object. The 
granted permissions are returned as output parameters. 

on the domain of the process, the type of the parent di­
rectory, and the kind of file. A new file inherits the same 
type as its parent directory by default. For objects where 
there is only one relevant SID, object managers typically 
do not consult the security server. Instead, they merely 
use this SID as the SID for the new object. Pipes, file 
descriptions, and sockets inherit the SID of the creat­
ing process, and output messages inherit the SID of the 
sending socket. 

2.3 Flexibility in Access Decisions 
Object managers consult the AVC to check permis­

sions based on a pair of labels and an object class, 
and the AVC obtains access decisions from the security 
server as needed. Figure 2 shows the security server’s 
security compute av interface for obtaining access deci­
sions. Figure 3 shows the AVC’s avc has perm ref in­
terface for checking permissions and an example call to 
this interface to check bind permission to a socket. 

Each object class has a set of associated permissions. 
These permission sets are represented by a bitmap called 
an access vector (access vector t). Flask defines a dis­
tinct permission for each service, and when a service ac­
cesses multiple objects, Flask defines a separate permis­
sion to control access to each object. For example, when 
a file is unlinked, Flask checks remove name permission 
to the directory and unlink permission to the file. 

The use of object classes in access requests allows dis­
tinct permission sets to be defined for each kind of ob­
ject based on the particular services that are supported 
by the object. It also allows the security policy to make 
distinctions based on the kind of object, so that access 
to a device special file can be distinguished from access 
to a regular file and access to a raw IP socket can be 
distinguished from access to a UDP or TCP socket. 

2.4 Support for Policy Changes 
The Flask AVC provides an interface to the secu­

rity server for managing the cache as needed for policy 
changes. Sequence numbers are used to address the po­

extern inline

int avc_has_perm_ref(

security_id_t ssid,

security_id_t tsid,

security_class_t tclass,

access_vector_t requested,

avc_entry_ref_t *aeref);


ret = avc_has_perm_ref(

current->sid,

sk->sid, sk->sclass,

SOCKET__BIND,

&sk->avcr);


Figure 3: AVC interface and example call to check permissions. 
The input parameters are the same as for security compute av, except 
for the additional aeref parameter. On its first use, the aeref parameter 
is set to refer to the AVC entry used for the permission check, and on 
subsequent checks this reference is used to optimize the lookup. The 
reference is revalidated on each use to ensure its correctness. 

tential interleaving of access decision computations and 
policy change notifications. When the AVC receives a 
policy change notification, it updates its own state and 
then invokes callback functions registered by the object 
managers to update any permissions retained in the state 
of the object managers. For example, permissions may 
be retained in the access rights in page tables or in the 
flags on an open file description. After updating the state 
of the object managers and the state of the AVC to con-
form to the policy change, the AVC notifies the security 
server that the transition to the new policy has been com­
pleted. 

In SELinux, many permissions are revalidated on use, 
such as permissions for reading and writing files and 
permissions for communicating on an established con­
nection. Consequently, policy changes for these permis­
sions are automatically recognized and enforced without 
the need for object manager callbacks. Permissions can 
be efficiently revalidated by object managers using ref­
erences to entries in the AVC. However, the revalidation 
of permissions on use is not adequate for revoking ac­
cess to mapped file pages in the Linux page cache. The 
current SELinux implementation does invalidate the ap­
propriate page cache entries when a file is relabeled, but 
a callback has not yet been defined to invalidate the ap­
propriate page cache entries when a policy change noti­
fication is received. 

The SELinux example security server provides an in­
terface for changing the security policy configuration at 
runtime. 
read a new policy configuration from a file. After load­
ing the new policy configuration, the security server up-
dates its SID mapping, invalidating any SIDs that are 
no longer authorized, and resets the AVC. Subsequent 
permission checks on processes and objects with invalid 

The security load policy call may be used to 



PERMISSION(S) DESCRIPTION 
execute Execute 
transition Change label 
entrypoint Enter via program 
sigkill Signal 
sigstop 
sigchld 
signal 
fork Fork 
ptrace Trace 
getsched Get schedule info 
setsched Set schedule info 
getsession Get session 
getpgid Get process group 
setpgid Set process group 
getcap Get capabilities 
setcap Set capabilities 

Table 1: Permissions for the process object class. 

SIDs always fail, preventing any further accesses by 
such processes and any further accesses to such objects. 
Support for automatically relabeling these processes and 
objects to a label that is accessible to administrators has 
not yet been implemented. 

3 Security Mechanisms 

This section describes the security mechanisms de-
fined by the Flask architecture and the SELinux imple­
mentation of these mechanisms. It begins with a discus­
sion of the mandatory access controls for process man­
agement. Mandatory access controls for file system ob­
jects are then described. This section concludes with a 
discussion of socket mandatory access controls. 

3.1 Process Controls 
Table 1 shows the permissions defined for the process 

management component. The process execute permis­
sion is used to control the ability of a process to exe­
cute from a given executable image. This permission 
is checked between the label of the transformed process 
and the label of the executable on every program execu­
tion. It is also checked when an ELF or script interpreter 
is executed, and when a file is memory-mapped with ex­
ecute access (i.e. a shared library). This process execute 
permission is distinct from the file execute permission 
which is used to control the ability of a process to initi­
ate the execution of a program. 

The transition permission is used to control the abil­
ity of a process to transition from one security identifier 
(SID) to another. The entrypoint permission is used to 
control what programs may be used as the entry point 
for a given process SID. This permission is similar to 
the process execute permission, except that it is only 
checked when a process transitions to a new SID. Hence, 

the security policy can distinguish between what pro-
grams may be used to initially enter a given process SID 
and the full set of programs that may be executed by that 
process SID. 

This entrypoint permission is especially necessary in 
an environment with shared libraries, since most pro­
cesses must be authorized to execute the system dynamic 
loader. Without separate control over entry point pro-
grams, any security label could be entered by executing 
the system dynamic loader. Separate entry point control 
is also necessary in order to support security label tran­
sitions on scripts, since the new security label must be 
authorized to execute the interpreter and the script. 

Separate permissions for each signal could easily be 
defined, but until empirical evidence suggests this is nec­
essary, this will not be done. Separate permissions were 
defined for the SIGKILL and SIGSTOP signals, sigkill, 
sigstop respectively, since these signals cannot be caught 
or ignored. A separate permission, sigchld was also de-
fined to control the SIGCHLD signal because experience 
demonstrated that it was useful to control this signal sep­
arately. A single permission, signal, is used to control 
the remaining signals. 

The ptrace permission is used to control the ability 
of a process to trace another process. The getsched, 
setsched, getsession, getpgid, setpgid, getcap, and set-
cap permissions are used to control the ability of a pro­
cess to observe or modify the corresponding attributes of 
another process. 

In addition to the permissions listed in this table, 
SELinux provides an equivalent permission for each 
Linux capability. This allows the security policy to con­
trol the use of capabilities based on the SID of the pro­
cess. SELinux could also be extended to provide a finer-
grained replacement mechanism for capabilities. Such a 
mechanism was developed for one of SELinux’s prede­
cessors, the DTOS system [20]. This mechanism per­
mitted privileges to be granted based on both the at-
tributes of the process and the attributes of the relevant 
object, e.g. discretionary read override could be granted 
to a particular set of files. Since the mechanism ob­
tained privilege decisions from the security server, man­
agement of privileges was centralized and verification 
that privileges were granted appropriately was straight-
forward. 

3.2 File Controls 

Table 2 lists the permissions for controlling access 
to open file description objects. Since open file de­
scriptions may be inherited across execve or transferred 
through UNIX socket IPC, SELinux labels and controls 
open file descriptions. An open file description is labeled 
with the SID of its creating process, since its state is usu-



PERMISSION(S) DESCRIPTION 
create Create 
getattr Get attributes 
setattr Set attributes 
inherit Inherit across execve 
receive Receive via IPC 

Table 2: Permissions for the open file description object class. 

ally treated as part of the private state of the process. It 
is important to distinguish between the label of an open 
file description and the label of the file it references. A 
read operation on a file changes the file offset in the open 
file description, so it may be necessary to prevent a pro­
cess from reading a file using an open file description 
received or inherited from another process even though 
the process is allowed to directly open and read the file. 

Permissions for controlling access to file systems are 
shown in Table 3. SELinux labels file systems and 
controls services that manipulate file systems, includ­
ing calls for mounting and unmounting file systems, the 
statfs call and the file creation calls. SELinux controls 
the mounting of file systems through several permission 
checks. It requires that the process have mounton per-
mission to the mount point directory and mount permis­
sion to the file system. It also requires that the mountas­
sociate permission be granted between the root directory 
of the file system and the mount point directory. 

SELinux binds security labels to files and directories 
and controls access to them. It stores a persistent label­
ing table in each file system that specifies the security la­
bel for each file and directory in that file system. For effi­
cient storage, SELinux assigns an integer value referred 
to as a persistent SID (PSID) to each security label used 
by an object in a file system. The persistent labeling ta­
ble is partitioned into a mapping between each PSID and 
its security label and a mapping between each object and 
its PSID. Since the table is stored in each file system, file 
labels are preserved if the file system is mounted at a dif­
ferent location or if the file system is moved to a different 
system. 

The mapping between each PSID and its security la­
bel is implemented using regular files in a fixed subdi­
rectory of the root directory of each file system. This 
mapping is loaded into memory when the file system is 
mounted, and is updated both in memory and on the disk 
when a new security label is used for an object in the file 
system. The mapping between each object and its PSID 
is implemented by storing the PSID in an unused field of 
the on-disk inode. Since the PSID is available in the on-
disk inode, no extra overhead is incurred either to obtain 
the PSID when a file is accessed or to set the PSID when 
a file is created. Additionally, since the mapping be-

PERMISSION(S) DESCRIPTION 
mount Mount 
remount Change options 
unmount Unmount 
getattr Get attributes 
relabelfrom Relabel 
relabelto 
transition 
associate Associate file 

Table 3: Permissions for the file system object class. 

tween each object and its PSID is inode-based, changes 
to the file system name space do not affect the mapping. 

SELinux currently only implements file labeling for 
the ext2 file system. However, only the binding between 
on-disk inodes and PSIDs is filesystem-specific, so sup-
port for other local file system types can be easily added. 
For NFS file systems, a single label is currently used for 
all files mounted from a given NFS server. A design 
has been developed to provide complete file labeling and 
controls for NFS filesystems, but this design has not yet 
been implemented. SELinux also implements file label­
ing for the special procfs and devpts file systems based 
on the labels of the associated process, but these special 
file system types do not require the use of persistent label 
mappings. 

When an unlabeled file system is first mounted, a per­
sistent labeling table is created for the file system, us­
ing a default label for all files obtained from the security 
server. Subsequently, existing files may be relabeled us­
ing new system calls. A program called setfiles is 
used to initially set file labels from a configuration file 
that specifies labels based on pathname regular expres­
sions. This program and configuration file may also be 
used to reset file labels to a well-defined state. However, 
unless the configuration file is updated to reflect runtime 
changes in file labels, these changes will be lost when 
the program is executed. Runtime changes may occur as 
a result of new files being created, existing files being 
relabeled, or changes to the name space. 

Table 4 shows the permissions defined for control-
ling access to files, and Table 5 shows the additional 
permissions defined for controlling access to directories. 
SELinux defines a separate permission for each file and 
directory service. For example, SELinux defines an ap­
pend permission for files in addition to the write permis­
sion, and it defines separate add name and remove name 
permissions for directories to support append-only files 
and directories. SELinux also defines a reparent per-
mission for directories that controls whether the parent 
directory link can be changed by a rename. 

SELinux provides control over each object affected 
by a file or directory service. For example, in addition to 



PERMISSION(S) DESCRIPTION 
read Read 
write Write or append 
append Append 
poll Poll/select 
ioctl IO control 
create Create 
execute Execute 
access Check accessibility 
getattr Get attributes 
setattr Set attributes 
unlink Remove hard link 
link Create hard link 
rename Rename hard link 
lock Lock or unlock 
relabelfrom Relabel 
relabelto 
transition 

Table 4: Permissions for the pipe and file object classes. 

checking access to the parent directory, SELinux defines 
permissions for controlling access to the individual file 
itself for operations such as stat, link, rename, unlink, 
and rmdir. 

3.3 Socket Controls 
SELinux provides control over socket IPC through a 

set of layered controls over sockets, messages, nodes, 
and network interfaces. Currently, the SELinux proto­
type only provides labeling and controls for INET and 
UNIX domain sockets. At the socket layer, SELinux 
controls the ability of processes to perform operations 
on sockets. At the transport layer, SELinux controls the 
ability of sockets to communicate with other sockets. At 
the network layer, SELinux controls the ability to send 
and receive messages on network interfaces, and it con­
trols the ability to send messages to nodes and to receive 
messages from nodes. SELinux also controls the abil­
ity of processes to configure network interfaces and to 
manipulate the kernel routing table. 

Since sockets are accessed through file descriptions, 
the socket object classes inherit the permissions defined 
for controlling access to the file object classes. Only a 
subset of these permissions are meaningful for sockets. 
Table 6 shows additional permissions that are specifi­
cally defined for controlling access to the socket object 
classes. The connection-oriented service provided by 
stream sockets requires several additional permissions, 
as shown in Table 7. Permissions for network interfaces 
and nodes are shown in Table 8. 

Sockets effectively serve as communication proxies 
for processes in the SELinux control model. Conse­
quently, sockets are labeled with the label of the creat­
ing process by default. A process may create and use a 
socket with a different label to perform socket IPC with 

PERMISSION(S) DESCRIPTION 
add name Add a name 
remove name Remove a name 
reparent Change parent directory 
search Search 
rmdir Remove 
mounton Use as mount point 
mountassociate 

Table 5: Additional permissions for the directory object class. 

PERMISSION(S) DESCRIPTION 
bind Bind name 
name bind Use port or file 
connect Initiate connection 
getopt Get socket options 
setopt Set socket options 
shutdown Shut down connection 
recvfrom Receive from socket 
sendto Send to socket 
recv msg Receive message 
send msg Send message 

Table 6: Additional permissions for the socket object classes. 

PERMISSION(S) DESCRIPTION 
listen Listen for connections 
accept Accept a connection 
newconn Create new socket for connection 
connectto Connect to server socket 
acceptfrom Accept connection from client socket 

Table 7: Additional permissions for the TCP and Unix stream 
socket object classes. 

PERMISSION(S) DESCRIPTION 
getattr Get attributes 
setattr Set attributes 
tcp recv Receive TCP packet 
tcp send Send TCP packet 
udp recv Receive UDP packet 
udp send Send UDP packet 
rawip recv Receive Raw IP packet 
rawip send Send Raw IP packet 

Table 8: Permissions for the network interface and node object 
classes. 



a different source security label. A process may set up 
a listening socket so that server sockets created by con­
nections are labeled with either a specified label or with 
the label of the connecting client socket to act as a server 
for multiple labels. 

SELinux allows the security policy to distinguish be-
tween clients and servers for stream socket connec­
tions through the connectto and acceptfrom permissions. 
SELinux allows the security policy to base decisions on 
the kind of socket through the use of object classes, and 
it allows the security policy to base decisions on the mes­
sage protocol through the per-protocol node and network 
interface permissions. 

SELinux provides control over the association be-
tween INET domain sockets and port numbers and the 
association between UNIX domain sockets and files. 
Hence, the security policy can restrict the use of port 
numbers and pathnames for use by particular processes. 
SELinux also provides control over open file description 
transfer via UNIX domain sockets. 

In SELinux, messages are associated with both the la­
bel of their sending socket and a separate message label. 
By default, this message label is the same as the sending 
socket label. A process may explicitly label individual 
messages if the underlying protocol supports message 
boundaries, i.e. datagram sockets. Messages sent on a 
stream socket all have the same label, which is the label 
of the stream socket. 

Support for communicating message labels across the 
network has not yet been implemented in SELinux. The 
Fluke implementation of the Flask architecture used 
IPSEC/ISAKMP both to label and protect messages, 
storing the labeling information in the IPSEC secu­
rity association. During an ISAKMP negotiation, the 
appropriate security contexts are sent across the net-
work and the peer obtains SIDs for these security con-
texts and stores them in its IPSEC security associa­
tion. When messages are subsequently received that use 
the IPSEC security association, the messages are vali­
dated and then labeled with the SIDs from the associa­
tion. Similar support will be provided in SELinux using 
the FreeSWAN [14] IPSEC implementation. Integrating 
FreeSWAN with the SELinux network mandatory access 
controls is the next major phase for SELinux develop­
ment. 

4 Application Programming Interface 

Typically, the SELinux mandatory access controls op­
erate transparently to applications and users. The label­
ing decisions of the Flask architecture provide appropri­
ate default behaviors so that the existing Linux applica­
tion programming interface (API) calls can be left un­
changed. The mandatory access controls are only vis­

ible to applications and users upon access failures, in 
which case they return the normal Linux error codes 
(e.g. EACCES, EPERM, ECONNREFUSED, ECONNRE­
SET) for such failures. In most cases, the potential for 
these same error conditions already existed with the or­
dinary Linux kernel, so most applications should handle 
these conditions. Only a few controls, such as the con­
trols on individual read and write calls, can cause access 
failures where an access failure was not previously pos­
sible. 

Although existing applications can be used unmodi­
fied, it is desirable to provide new API calls to allow 
modified and new applications to be developed that have 
some degree of awareness of the new security features. 
Each SELinux kernel subsystem provides a set of new 
API calls that extend existing API calls with additional 
parameters for SIDs. The process management subsys­
tem provides calls to get the current and old SIDs of a 
process, and a call to execute a program with a specified 
SID. The filesystem subsystem provides calls to create 
files with particular SIDs, calls to obtain the SIDs of files 
and filesystems, and calls to change the SIDs of files and 
file systems. The socket IPC subsystem provides calls to 
create sockets and messages with particular SIDs, calls 
to obtain the SIDs of sockets and messages, and calls to 
specify the desired SID for peer sockets. The same set of 
controls used for the existing API calls are also applied 
to these extended API calls, with the only difference be­
ing the use of an application-provided SID rather than a 
default SID. 

Applications that use these new calls need to be able 
to convert between SIDs and security contexts. Further-
more, it is desirable to allow applications to obtain se­
curity policy decisions from the security server so that 
security policies can be defined that control access to 
application abstractions. For example, a windowing sys­
tem might be enhanced to provide labeling and separa­
tion of windows, with controlled cut-and-paste between 
windows, or a database system might be enhanced to 
provide labeling and separation of individual database 
records maintained in a single file. Such application 
policy enforcers would still be controlled by the kernel 
mandatory access controls but could further refine the 
granularity of protection provided by the kernel. To sup-
port such applications, the security server provides a set 
of new API calls that export its services for converting 
between SIDs and contexts and obtaining security pol-
icy decisions. A set of controls is defined for these new 
API calls to ensure that the policy can control the ability 
to use them. An application access vector cache library 
could easily be created based on the SELinux kernel ac­
cess vector cache implementation to provide security de­
cision caching for applications. 



5 Security Policy Configuration 

This section describes the example security policy 
configuration that has been developed for the Security-
Enhanced Linux. At a high level, the goals of the ex-
ample security policy configuration are to demonstrate 
the flexibility and security of the mandatory access con­
trols and to provide a simple working system with mini­
mal modifications to applications. The example security 
policy configuration consists of a combination of Role-
Based Access Control (RBAC) [11] and Type Enforce­
ment [8]. The configuration draws from the Domain 
and Type Enforcement (DTE) configuration described 
in [26], although it uses a different configuration lan­
guage described in [16]. 

The example security policy configuration defines a 
set of Type Enforcement domains and types. Each pro­
cess has an associated domain, and each object has an as­
sociated type. The policy configuration specifies the al­
lowable accesses by domains to types and the allowable 
interactions among domains. It specifies what program 
types can be used to enter each domain and the allow-
able transitions between domains. It also specifies au­
tomatic transitions between domains when certain pro-
gram types are executed. These transitions ensure that 
system processes and certain programs are placed into 
their own separate domains automatically. 

The configuration also defines a set of roles. Each 
process has an associated role. All system processes run 
in the system r role. Two roles are currently defined for 
users, user r for ordinary users and sysadm r for sys­
tem administrators. These user roles are initially set by 
the login program and can be changed by a newrole 
program similar to the su program. 

The policy configuration specifies the set of domains 
that can be entered by each role. Each user role has 
an associated initial login domain, the user t domain 

role and the sysadm t domain for thefor the user r 
sysadm r role. This initial login domain is associated 
with the user’s initial login shell. As the user executes 
programs, transitions to other domains may automati­
cally occur to support changes in privilege. Often, these 
other domains are derived from the user’s initial login 
domain. For example, the user t domain transitions to 
the user netscape t domain and the sysadm t domain 
transitions to the sysadm netscape t domain when the 
netscape program is executed to restrict the browser 
to a subset of the user’s permissions. 

Figure 4 shows a portion of the policy configuration 
that allows the administrator domain (sysadm t) to run 
the insmod program to insert kernel modules. The ins-
mod program is labeled with the insmod exec t type and 
runs in the insmod t domain. The first rule allows the 
sysadm t domain to run the insmod program. The sec­

allow sysadm_t insmod_exec_t:file x_file_perms;

allow sysadm_t insmod_t:process transition;

allow insmod_t insmod_exec_t:process { entrypoint execute };

allow insmod_t sysadm_t:fd inherit_fd_perms;

allow insmod_t self:capability sys_module;

allow insmod_t sysadm_t:process sigchld;


Figure 4: Configuration for running insmod. 

ond rule allows the sysadm t domain to transition to the 
insmod t domain. The third rule allows the insmod t do-
main to be entered by the insmod program and to execute 
code from this program. The fourth rule allows the ins-
mod t domain to inherit and use file descriptors from the 
sysadm t domain. The fifth rule allows the insmod t do-
main to use the CAP SYS MODULE capability. The last 
rule allows the insmod t domain to send the SIGCHLD 
signal to sysadm t when it exits. 

From this small portion of the policy configuration, it 
is clear that the flexibility of the mandatory access con­
trols also yields a corresponding increase in the com­
plexity of managing the security policy. Creating and 
maintaining a configuration to meet a set of security re­
quirements and verifying that the configuration is con­
sistent with those requirements can be a challenging 
task. In order for SELinux to be widely deployed and 
used, a collection of base policy configurations must be 
developed to meet common sets of security requirements 
to allow its use by end users with no security expertise. 
Furthermore, higher-level configuration languages and 
policy analysis tools are needed to address these chal­
lenges. 

The security policy configuration controls various 
forms of raw access to data. The policy configuration 
defines distinct types for kernel memory devices, disk 
devices, and /proc/kcore. It defines separate do-
mains for processes that require access to these types, 
such as klogd t and fsadm t. 

The configuration protects the integrity of the kernel. 
The policy configuration defines distinct types for the 
boot files, module object files, module utilities, module 
configuration files and sysctl parameters, and it defines 
separate domains for processes that require write access 
to these files. As illustrated by the example in Figure 4, 
the configuration defines separate domains for the mod­
ule utilities, and it restricts the use of the module ca­
pability to these domains. It only allows a small set of 
privileged domains to transition to the module utility do-
mains. 

The integrity of system software, system configura­
tion information and system logs is protected by the 
configuration. The policy configuration defines distinct 
types for system libraries and binaries to control access 



to these files. It only allows administrators to modify 
system software. It defines separate types for system 
configuration files and system logs and defines separate 
domains for programs that require write access. 

The configuration confines the potential damage that 
can be caused through the exploitation of a flaw in a pro­
cess that requires privileges, whether a system process 
or privilege-enhancing (setuid or setgid) program. The 
policy configuration places these privileged system pro­
cesses and programs into separate domains, with each 
domain limited to only those permissions it requires. 
Separate types for objects are defined in the policy con-
figuration as needed to support least privilege for these 
domains. 

Privileged processes are protected from executing ma­
licious code. The policy configuration defines an exe­
cutable type for the program executed by each privileged 
process and only allows transitions to the privileged do-
main by executing that type. When possible, it limits 
privileged process domains to executing the initial pro-
gram for the domain, the system dynamic linker, and the 
system shared libraries. The administrator domain is al­
lowed to execute programs created by administrators as 
well as system software, but not programs created by or­
dinary users or system processes. 

The configuration ensures that the administrator role 
and domain cannot be entered without user authentica­
tion. The policy configuration only allows transitions to 
the administrator role and domain by the login pro-
gram, which requires the user to authenticate before 
starting a shell with the administrator role and domain. 
It prevents transitions to the administrator role and do-
main by remote logins to prevent unauthenticated remote 
logins via .rhosts files. A newrole program was 
added to permit authorized users to enter the administra­
tor role and domain during a remote login session, and 
this program re-authenticates the user. To provide con­
fidentiality of secret authentication information, the pol-
icy configuration labels the shadow password file with 
its own type and restricts the ability to read this type to 
authorized programs such as login and su. 

Ordinary user processes are prevented from interfer­
ing with system processes or administrator processes. 
The policy configuration only allows certain system pro­
cesses and administrators to access the procfs entries of 
processes in other domains. It controls the use of ptrace 
on other processes, and it controls signal delivery be-
tween domains. It defines separate types for the home 
directories of ordinary users and the home directories of 
administrators. It ensures that files created in shared di­
rectories such as /tmp are separately typed based on the 
creating domain. It defines separate types for terminals 
based on the owner’s domain. 

The configuration protects users and administrators 
from the exploitation of flaws in the netscape browser 
by malicious mobile code. The policy configuration 
places the browser into a separate domain and limits its 
permissions. It defines a type that users can use to re-
strict read access by the browser to local files, and it de-
fines a type that users can use to grant write access to 
local files. 

6 Performance 

This section discusses the impact of the SELinux se­
curity mechanisms on the performance of the the Linux 
kernel. The set of benchmarks used was influenced by 
the Linux Benchmarking HOWTO [6]. Microbenchmark 
tests were performed to determine the performance over-
head due to the SELinux changes for various low-level 
system operations. Macrobenchmark tests were per-
formed to determine the impact of the SELinux changes 
on the performance of typical workloads. 

Each test was performed with two different kernel 
configurations. The base kernel configuration corre­
sponds to an unmodified Linux 2.4.2 kernel. This con-
figuration was measured to provide the performance 
baseline for each benchmark. The selinux configuration 
corresponds to an enforcing Security-Enhanced Linux 
2.4.2 kernel. The performance measurements of the 
selinux configuration can be compared against the base-
line to determine the overhead imposed by the SELinux 
security mechanisms. 

6.1 Micr obenchmarks 
The microbenchmark tests were drawn from the 

UnixBench 4.1.0 benchmark [21] and the lmbench 2 
benchmark [18] suites. These microbenchmark tests 
were used to determine the performance overhead of the 
SELinux changes for various process, file, and socket 
low-level operations. These benchmarks were executed 
on a 333MHz Pentium II with 128M RAM. The lm­
bench network tests ran server programs on a 166MHz 
Pentium with 64MB RAM. Both the client and server 
machines ran the same kernel for the lmbench network 
benchmarks so that the results show the total cost of the 
SELinux overhead on both systems. 

6.1.1 UnixBench The results for the UnixBench sys­
tem microbenchmarks are shown in Table 9. The file 
copy benchmark measures the rate at which data can be 
transferred from one file to another, using various buffer 
sizes. For small buffer sizes, the system call overhead 
dominates the time to copy the file. The SELinux over-
head consists of revalidating permissions for each read 
and write for the file copy. As the buffer size increases, 
the time to copy the file becomes dominated by the unaf-



Microbenchmark Base SELinux Overhead 
file copy 4KB 49.5 48.6 2% 
file copy 1KB 40.4 38.6 5% 
file copy 256B 23.0 21.0 10% 
pipe 6.17 7.17 16% 
pipe switching 12.7 15.0 18% 
process creation 485 494 2% 
execl 2480 2610 5% 
shell scripts (8) 659 684 4% 

Table 9: UnixBench system microbenchmarks. File copy through-
put is in megabytes per second. The other UnixBench microbench­
marks are in microseconds per loop iteration (or milliseconds for the 
shell scripts benchmark). These results were converted into units that 
can be more easily compared with the lmbench results. 

fected memory copying costs, so the SELinux overhead 
becomes negligible. 

The pipe benchmark measures the number of times 
a process can write 512 bytes to a pipe and read them 
back per second. The pipe switching benchmark mea­
sures the number of times two processes can exchange 
an increasing integer through a pipe. The SELinux over-
head consists of revalidating permissions for each read 
and write on the pipe. 

The process creation test measures the number of 
times a process can fork and reap a child that immedi­
ately exits. The SELinux overhead consists of perform­
ing a permission check on each fork and wait operation. 
The execl benchmark measures the number of execl calls 
that can be performed per second. The SELinux over-
head consists of computing the label for the transformed 
process and performing permission checks for searching 
the path, executing the program, and inheriting open file 
descriptions. 

The shell scripts test measures the number of times 
per minute a process can start and reap a set of 8 concur-
rent copies of a shell script, where the shell script applies 
a series of transformations to a data file. The SELinux 
overhead consists of computing the label for processes 
for each program execution, computing the label for new 
files created by the scripts, and performing permission 
checks for the various process and file operations. 

6.1.2 lmbench The results for the lmbench mi­
crobenchmarks are shown in Table 10. The null I/O 
benchmark measures the average of the times for a 
one-byte read from /dev/zero and a one-byte write to 
/dev/null. The SELinux overhead consists of revalidat­
ing permissions on each read and write. 

The stat benchmarks measures the time to invoke the 
stat system call on a temporary file. The SELinux 
overhead consists of performing permission checks for 
searching the path and obtaining the file attributes. The 
open/close test measures the time to open a temporary 

Microbenchmark Base SELinux Overhead 
null I/O 1.45 1.93 33% 
stat 8.06 10.3 28% 
open/close 11.0 14.0 27% 
0KB create 22.0 26.0 18% 
0KB delete 1.72 1.90 10% 
fork 499 505 1% 
execve 2730 2820 3% 
sh 10K 11K 10% 
pipe 12.5 14.0 12% 
AF UNIX 20.6 24.6 19% 
UDP 310 356 15% 
RPC/UDP 441 519 18% 
TCP 389 425 9% 
RPC/TCP 667 726 9% 
TCP connect 675 738 9% 

Table 10: lmbench microbenchmarks. Measurements are in mi­
croseconds. Measurements below the bar represent round-trip latency 
for various forms of IPC. 

file for reading and immediately close it. The SELinux 
overhead consists of performing permission checks for 
searching the path and opening the file with read access. 

The 0K create and 0k delete benchmarks measure the 
time required to create and delete a zero-length file. For 
the 0K create, the SELinux overhead consists of com­
puting the label for the new file and performing permis­
sion checks for searching the path, modifying the direc­
tory, and creating the file. The SELinux overhead for the 
0K delete consists of performing permission checks for 
searching the path, modifying the directory, and unlink­
ing the file. 

The fork, execve, and sh benchmarks measure three 
increasingly expensive forms of process creation: fork 
and exit, fork and execve, and fork and execlp of the 
shell with the new program as a command to the shell. 
For the fork benchmark, the SELinux overhead con­
sists of permission checks on fork and wait, as with 
the UnixBench process creation benchmark. For the ex­
ecve benchmark, the SELinux overhead consists of the 
fork overhead plus the label computation and permis­
sion checks associated with program execution, as with 
the UnixBench execl benchmark. For the sh benchmark, 
this overhead is further increased by the additional layer 
of process creation, program execution, and path search­
ing by the shell. 

The remaining lmbench tests measure round-trip la­
tency in microseconds for various forms of interprocess 
communication between a pair of processes. The lm­
bench bandwidth benchmark results are omitted since 
they did not show any significant difference between the 
base and selinux configurations, as expected. 

The SELinux overhead on the pipe benchmark con­
sists of revalidating permissions on each read and write, 
as with the UnixBench pipe switching benchmark. For 



the AF UNIX benchmark, the SELinux overhead con­
sists of checking permission to each socket and revali­
dating the permissions for the connection between the 
sockets on each send and receive. For each of the net-
working benchmarks, the SELinux overhead includes 
checking permission to each socket, host, and network 
interface for each packet. The overhead for the UDP and 
RPC/UDP benchmarks also includes checking permis­
sion between the socket pair on each send and receive. 
For the TCP and RPC/TCP benchmarks, SELinux reval­
idates the permissions granted during connection estab­
lishment between the socket pair on each send and re­
ceive. The SELinux overhead for the TCP connection 
benchmark includes the permission checks between the 
socket pair for the connection on connect and accept. 

6.1.3 Conclusion Although the percentage overhead 
for some of the microbenchmark results is large, the real 
difference in absolute times is typically quite small and 
becomes insignificant for macro operations, as shown 
by the results in Section 6.2. Furthermore, these results 
must be viewed as an upper bound on the performance 
overhead, since neither the AVC nor the security server 
implementation have been optimized. Other known ar­
eas where the performance could be improved include 
making better use of AVC entry references and improv­
ing the AVC locking scheme. 

6.2 Macrobenchmarks 

The first macrobenchmark consisted of compiling the 
Linux 2.4.2 kernel sources, since this involves signifi­
cant file system activity and is representative of a work-
load experienced commonly by Linux users. The sec­
ond macrobenchmark was the WebStone 2.5 benchmark 
for web servers [19], which is representative of a typical 
workload for a web server. 

For the kernel compilation macrobenchmark, the time 
to execute “make” was measured. The 2.4.2 kernel 
sources were configured with the default options, and 
a “make dep” was done prior to the testing. Three ker­
nel compilations were performed, each immediately af­
ter a reboot into single-user mode, and the results were 
averaged. This benchmark was executed on a 333MHz 
Pentium II with 128M RAM. 

For the WebStone macrobenchmark, one hundred 10-
minute trials were run with 32 web clients requesting 
the standard WebStone file set. A Sun Ultra 5 running 
SunOS 5.6 with 128M RAM was used as the test con-
troller and client machine. This machine was directly 
connected using a 10Mbit Ethernet crossover cable to a 
133MHz Pentium with 64M RAM running the Apache 
web server provided with RedHat 6.1. 

Table 11 displays the results of the macrobenchmarks. 

Base SELinux Overhead 
elapsed 11:14 11:15 0% 
system 00:49 00:51 4% 
latency 0.56 0.56 0% 
throughput 8.29 8.28 0% 

Table 11: Macrobenchmark results. The elapsed and system times 
for a “time make” on the Linux 2.4.2 kernel sources are shown in min­
utes and seconds. The latency in seconds and throughput in MBits per 
second are shown for the WebStone benchmark. 

There was no significant change in the total elapsed time, 
and there was only a 4% increase in the system time for 
a kernel compilation. There was no significant change 
in either the latency or the throughput measurements for 
WebStone. At the macro level, there appears to be little 
noticeable difference. 

7 Related Work 

The project that is most similar to SELinux is the 
Rule Set Based Access Control (RSBAC) [22] for Linux 
project. RSBAC is based on the Generalized Framework 
for Access Control (GFAC) [4]. Like the Flask architec­
ture, the GFAC separates policy from enforcement and 
can support a variety of security policies. RSBAC pro­
vides a Role Compatibility policy module that is very 
similar to the SELinux Type Enforcement policy mod­
ule. 

However, RSBAC also differs from SELinux in a 
number of ways. The GFAC does not specifically ad-
dress the issue of atomic policy changes, so RSBAC 
lacks the SELinux support for dynamic security policies. 
Since the GFAC places the responsibility for managing 
security labels in its Access Control Information (ACI) 
module, RSBAC does not provide policy-independent 
data types for security labels. The RSBAC Access De­
cision Facility (ADF) depends on kernel-specific data 
structures, and RSBAC does not provide a security de­
cision cache mechanism, because the RSBAC ADF was 
directly implemented as a kernel subsystem. In contrast, 
since SELinux’s predecessor systems implemented the 
security server as a user-space server running on a mi­
crokernel, the SELinux security server is cleanly decou­
pled from the kernel and SELinux provides the access 
vector cache. 

Since RSBAC was not designed with security-aware 
applications and application policy enforcers in mind, 
it lacks equivalents for the extended API calls and new 
API calls of SELinux, only providing calls for setting 
and getting attributes of existing subjects and objects. 
RSBAC uses the Linux real user identity attribute for its 
decisions and must control changes to this attribute, so it 
is not completely orthogonal to the existing Linux access 
controls. Finally, RSBAC lacks a number of the controls 



provided by SELinux for each of the kernel subsystems. 

Type Enforcement [8] (TE) and Domain and Type En­
forcement (DTE) [5] have a number of similarities to 
SELinux, since SELinux provides a generalization of TE 
in its example security server. Two projects are integrat­
ing DTE into Linux [15, 1]. SELinux was designed to 
provide flexible support for a variety of policy models, 
while DTE was only designed to implement an enhanced 
form of TE. DTE is distinguished from traditional TE by 
the DTE Language (DTEL) for expressing access con­
trol configurations and by an implicit typing mechanism 
based on the directory hierarchy for labeling files. The 
SELinux TE policy module likewise has a configuration 
language for expressing access control rules. SELinux 
stores file labels explicitly, but allows labels to be man-
aged using a higher-level specification based on path-
name regular expressions. NAI Labs’ DTE prototype 
also provided labeling and controls for NFS and was in­
tegrated with IPSEC. 

The TrustedBSD project is developing a variety of 
trusted operating system features, including mandatory 
access controls, for FreeBSD [27]. SELinux differs from 
TrustedBSD in that SELinux is a more mature system, 
that it addresses only mandatory access controls, and 
that it uses a flexible mandatory access control archi­
tecture rather than hardcoded policies. The TrustedBSD 
project plans to migrate to a more flexible mandatory ac­
cess control architecture in the future [28]. 

The Medusa DS9 [3] project is similar to SELinux at 
a high level in that it is also developing a kernel access 
control architecture that separates policy from enforce­
ment. However, Medusa is very different in its specifics. 
In Medusa, the kernel consults a user-space authoriza­
tion server for access decisions. The Medusa access 
controls are primarily based on labeling subjects and ob­
jects with sets of virtual spaces to which they belong and 
defining what virtual spaces can be seen, read, and writ-
ten by each subject. The authorization server can also 
require explicit authorization in addition to the virtual 
space checking, in which case it can apply other kinds 
of policy logic and can even override the ordinary Linux 
access controls. Medusa DS9 also provides support for 
system call interception by the authorization server and 
for forcing a process to execute code provided by the 
authorization server. 

The Linux Intrusion Detection System (LIDS) [2] 
provides a set of additional security features for Linux. 
It supports administratively-defined access control lists 
for files that identify subjects based on their program. 
Like Medusa, LIDS can control the ability to see files 
and processes in directory listings. LIDS also supports 
defining capability sets for programs, preventing certain 
processes from being killed, sending security alerts on 

access failures, and detecting port scans. 

The LOMAC [13] project has implemented a form of 
mandatory access control based on the Low Water-Mark 
model in a Linux loadable kernel module. LOMAC was 
not designed to provide flexibility in its support for se­
curity policies; instead, it focuses on providing useful 
integrity protection without any site-specific configura­
tion, regardless of the software and users present on a 
system. It should be possible to implement the Low 
Water-Mark model in SELinux as a particular policy 
module. 

8 Summary 

This paper explains the need for mandatory ac­
cess control (MAC) in mainstream operating systems 
and presents the NSA’s implementation of a flexible 
MAC architecture called Flask in the Security-Enhanced 
Linux (SELinux) prototype. The paper explains how 
the Flask architecture separates policy from enforcement 
and provides the necessary interfaces and infrastructure 
for flexible policy decisions and policy changes. It de-
scribes the fine-grained labeling and controls provided 
by SELinux for kernel objects and services. The pa-
per explains how existing Linux applications can run un­
changed on the SELinux kernel, and it describes the sup-
port for security-aware applications. The paper shows 
how the SELinux controls can be applied to meet real se­
curity objectives by describing the example security pol-
icy configuration. It demonstrates that the performance 
overhead of the SELinux controls is minimal. Finally, 
the paper highlights the differences between SELinux 
and related systems. 

Availabili ty 

The Security-Enhanced Linux software is available 
under the GNU General Public License (GPL) at 
http://www.nsa.gov/selinux. 

Acknowledgments 

We thank Timothy Fraser for his contributions to the 
example policy configuration and for his assistance in 
porting the kernel modifications to the 2.4 kernel. We 
thank Anthony Colatrella and Timothy Fraser for assist­
ing with the performance benchmarking and analysis. 
We also thank Ted Faber, Timothy Fraser and the anony­
mous reviewers for reviewing earlier drafts of this paper. 

References 
[1]	 Configurable Access Control Effort. http://research– 

cistw.saic.com/cace. 

[2] Linux Intrusion Detection System. http://www.lids.org. 



[3] Medusa DS9. http://medusa.fornax.sk. 

[4]	 M. D. Abrams, K. W. Eggers, L. J. L. Padula, and I. M. Olson. 
A Generalized Framework for Access Control: An Informal De­
scription. In Proceedings of the Thirteenth National Computer 
Security Conference, pages 135–143, Oct. 1990. 

[5]	 L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. 
Haghighat. Practical Domain and Type Enforcement for UNIX. 
In Proceedings of the 1995 IEEE Symposium on Security and 
Privacy, pages 66–77, May 1995. 

[6]	 A. D. Balsa. Linux Benchmarking HOWTO, Aug. 1997. http://­
www.linuxdoc.org/HOWTO/Benchmarking-HOWTO.html. 

[7]	 D. E. Bell and L. J. La Padula. Secure Computer Systems: Math­
ematical Foundations and Model. Technical Report M74-244, 
The MITRE Corporation, Bedford, MA, May 1973. 

[8]	 W. E. Boebert and R. Y. Kain. A Practical Alternative to Hierar­
chical Integrity Policies. In Proceedings of the Eighth National 
Computer Security Conference, 1985. 

[9]	 D. F. C. Brewer and M. J. Nash. The Chinese Wall security pol-
icy. In Proceedings of the 1989 IEEE Symposium on Security 
and Privacy, pages 206–214, May 1989. 

[10]	 D. D. Clark and D. R. Wilson. A Comparison of Commercial 
and Military Computer Security Policies. In Proceedings of the 
1987 IEEE Symposium on Security and Privacy, pages 184–194, 
Apr. 1987. 

[11]	 D. Ferraiolo and R. Kuhn. Role-Based Access Controls. In Pro­
ceedings of the 15th National Computer Security Conference, 
pages 554–563, Oct. 1992. 

[12]	 T. Fine and S. E. Minear. Assuring Distributed Trusted Mach. In 
Proceedings IEEE Computer Society Symposium on Research in 
Security and Privacy, pages 206–218, May 1993. 

[13]	 T. Fraser. LOMAC: Low Water-Mark Integrity Protection for 
COTS Environments. In Proceedings of the 2000 IEEE Sympo­
sium on Security and Privacy, May 2000. 

[14] J. Gilmore. FreeSWAN. http://www.freeswan.org. 

[15]	 S. Hallyn and P. Kearns. Domain and Type Enforcement for 
Linux. In Proceedings of the 4th Annual Linux Showcase and 
Conference, Oct. 2000. 

[16]	 P. Loscocco and S. Smalley. Integrating Flexible Support for 
Security Policies into the Linux Operating System. Technical 
report, NSA and NAI Labs, Oct. 2000. 

[17]	 P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, 
S. J. Turner, and J. F. Farrell. The Inevitability of Failure: The 
Flawed Assumption of Security in Modern Computing Environ­
ments. In Proceedings of the 21st National Information Systems 
Security Conference, pages 303–314, Oct. 1998. 

[18]	 L. McVoy and C. Staelin. lmbench 2. http://www.bitmover.com/­
lmbench. 

[19] MindCraft. Webstone. http://www.mindcraft.com/webstone. 

[20]	 S. E. Minear. Providing Policy Control Over Object Operations 
in a Mach Based System. In Proceedings of the Fifth USENIX 
UNIX Security Symposium, pages 141–156, June 1995. 

[21]	 D. C. Niemi. Unixbench 4.1.0. http://www.tux.org/pub/tux/­
niemi/unixbench. 

[22]	 A. Ott. Rule Set Based Access Control as proposed in the Gener­
alized Framework for Access Control approach in Linux. Mas­
ter’s thesis, University of Hamburg, Nov. 1997. pp. 157. http://­
www.rsbac.org/papers.htm. 

[23]	 Secure Computing Corp. DTOS Formal Security Policy Model. 
DTOS CDRL A004, 2675 Long Lake Rd, Roseville, MN 55113, 
Sept. 1996. http://www.securecomputing.com/randt/HTML/­
dtos.html. 

[24]	 Secure Computing Corp. DTOS Generalized Security Policy 
Specification. DTOS CDRL A019, 2675 Long Lake Rd, Ro­
seville, MN 55113, June 1997. 

[25]	 R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, 
and J. Lepreau. The Flask Security Architecture: System Sup-
port for Diverse Security Policies. In Proceedings of the Eighth 
USENIX Security Symposium, pages 123–139, Aug. 1999. 

[26]	 K. W. Walker, D. F. Sterne, M. L. Badger, M. J. Petkac, D. L. 
Sherman, and K. A. Oostendorp. Confining Root Programs with 
Domain and Type Enforcement. In Proceedings of the 6th Usenix 
Security Symposium, San Jose, California, 1996. 

[27]	 R. Watson. Introducing Supporting Infrastructure for Trusted 
Operating System Support in FreeBSD. In Proceedings of the 
2000 BSD Conference and Expo, Oct. 2000. 

[28]	 R. Watson. Robert Watson on FreeBSD and TrustedBSD, Jan. 
2001. http://slashdot.org/interviews/01/01/18/1251257.shtml. 


