
Integrating Flexible Supportfor Security Policies into theLinux
Operating System

PeterLoscocco,NSA, pal@epoch.ncsc.mil
StephenSmalley, NAI Labs,sds@tislabs.com

February2001

Contents

1 Intr oduction 2

2 Overview 3

2.1 Encapsulation of SecurityPolicy 3

2.2 Flexibility in LabelingDecisions 4

2.3 Flexibility in AccessDecisions. 4

2.4 Support for Policy Changes. 4

2.5 ProcessControls 5

2.6 File Controls 5

2.7 SocketControls 6

3 Security Server 7

3.1 ArchitectureTypesandConstants 7

3.2 Interfacesfor theKernel 7

3.3 SystemCallsfor Applications 10

3.4 Policy ConfigurationLanguage 11

3.4.1 TE configuration 12

3.4.2 RBAC configuration 14

3.4.3 MLS configuration 15

3.4.4 Userconfiguration 15

3.4.5 Constraintsconfiguration 16

3.4.6 Securitycontext configuration . . 16

3.5 Prototype Implementation 17

3.5.1 compute av 18

3.5.2 compute sid 18

3.5.3 sid to context 19

3.5.4 context to sid 19

3.5.5 load policy 19

3.5.6 Otherinterfaces. 20

3.5.7 SystemCall Controls 20

4 AccessVector Cache 20

4.1 Interfacesfor theKernel 20

4.2 Interfacesfor theSecurityServer 23

4.3 Implementation 24

5 ProcessManagement 25

5.1 Design. 25

5.1.1 ObjectClasses 25

5.1.2 Permissions. 26

5.1.3 ControlRequirements 26

5.1.4 API extensions 29

5.2 Implementation 30

5.2.1 Labeling 30

5.2.2 API Extensions 30

5.2.3 ControlRequirements 30

6 File System 32

6.1 Design. 32

6.1.1 ObjectClasses 32

6.1.2 Permissions. 32

6.1.3 ControlRequirements 34

6.1.4 PersistentLabeling 36

6.1.5 API extensions 37

1 INTRODUCTION

6.2 Implementation 37

6.2.1 Labeling 37

6.2.2 API extensions 38

6.2.3 ControlRequirements 39

7 Other File SystemTypes 41
7.1 Procfs 41

7.1.1 ProcfsAnalysis 41

7.1.2 ProcfsLabelingDesign. 42

7.1.3 ProcfsLabelingImplementation . 43

7.2 Devpts 43

7.3 NFSclientsupport 44

8 Networking 44
8.1 Design. 44

8.1.1 ObjectClasses 44

8.1.2 Permissions. 45

8.1.3 ControlRequirements 46

8.1.4 API extensions 48

8.2 Implementation 50

8.2.1 Labeling 50

8.2.2 API extensions 52

8.2.3 ControlRequirements 52

9 SystemV IPC 55
9.1 Design. 55

9.1.1 ObjectClasses 55

9.1.2 Permissions. 55

9.1.3 ControlRequirements 56

9.1.4 API extensions 57

9.2 Implementation 57

9.2.1 Labeling 57

9.2.2 API Extensions 57

9.2.3 ControlRequirements 58

10 SystemCall Review 58
10.1 ProcessManagement 58

10.1.1 Scheduling 58

10.1.2 SessionsandProcessGroups . . . 58

10.1.3 UserandGroupIdentity 59

10.1.4 Capabilities. 59

10.1.5 Timers 59

10.1.6 ResourceLimits andUsage . . . 59

10.1.7 OtherProcessCalls 59

10.2 MemoryManagement 60

10.3 File System 60

10.4 KernelModules 61

10.5 SystemOperations 61

11 To Do 62

Abstract

Theprotection mechanismsof current mainstreamop-
eratingsystemsare inadequate to support confidential-
ity andintegrity requirementsfor endsystems.To ad-
dressthis problem,theNationalSecurityAgency (NSA)
worked with SecureComputing Corporation (SCC) to
develop a strong, flexible mandatory accesscontrol ar-
chitecturebasedonTypeEnforcement. Thearchitecture,
now calledFlask,wasprototypedin theMachandFluke
researchoperating systems.The NSA is now integrat-
ing the Flaskarchitecture into the Linux operating sys-
temto transferthe technology to a largerdeveloperand
usercommunity. NAI Labs,SCC,andMITRE areas-
sistingtheNSA in this integration. This paper presents
the designandimplementationfor integrating the secu-
rity mechanismsof theFlaskarchitecture into theLinux
kernel.

1 Intr oduction

End systemsmust be able to enforce the separation
of informationbasedon confidentiality andintegrity re-
quirementsto provide systemsecurity. Operating sys-
temsecuritymechanismsarethefoundationfor ensuring
suchseparation.Unfortunately, existing mainstream op-
eratingsystemslack thecritical securityfeature required
for enforcing separation: mandatory accesscontrol [4].
As a consequence,applicationsecuritymechanismsare
vulnerable to tampering and bypass,and maliciousor
flawed applications can easily causefailures in system
security.

Toaddressthisproblem,theNational SecurityAgency
(NSA) worked with Secure Computing Corporation

2

2 OVERVIEW 2.1 Encapsulationof SecurityPolicy

(SCC) to researcha strong,flexible mandatory access
control architecturebasedon Type Enforcement [1], a
mechanism first developed for the LOCK system[6].
The NSA and SCC developed two Mach-basedproto-
typesof the architecture: DTMach [2] andDTOS [5].
The NSA andSCCthenworked with the University of
Utah’sFlux researchgroupto transferthearchitectureto
theFlukeresearchoperatingsystem.Duringthetransfer,
the architecture wasenhancedto provide bettersupport
for dynamic securitypolicies[8]. This enhancedarchi-
tecturewasnamedFlask. The NSA is now integrating
the Flask architecture into the Linux operating system
to transferthetechnology to a largerdeveloperanduser
community.

Researchersin theNSA’s InformationAssuranceRe-
searchOffice have implementedthe architecture in the
majorsubsystemsof theLinux kernel, including manda-
tory accesscontrols for operations on processes,files,
andsockets.TheSecureExecution Environments (SEE)
group at NAI Labsis working with the NSA in further
developingandconfiguring thissecurity-enhancedLinux
system.SCCandMITRE areassistingtheNSA in devel-
opingapplicationsecuritypoliciesandenhancedutility
programs.

This paperdescribeswork by theNSA andNAI Labs
in integrating the securitymechanismsof the Flask ar-
chitecture into the Linux kernel. The paperbegins by
providing an overview of the Flaskarchitecture andits
Linux kernel implementationin Section2. The design
andimplementation of two new operating systemcom-
ponents, thesecurityserver andtheaccessvector cache
(AVC), arethendescribedin detailin Section3 andSec-
tion 4. Then, the designand implementation of secu-
rity enhancementsto eachof theexisting Linux operat-
ing systemcomponentsaredescribedin detail.

2 Overview

This sectionprovidesanoverview of theFlaskarchi-
tectureand its Linux kernel implementation. It begins
with a discussionof how the securitypolicy is encap-
sulatedin Flask. The sectionthendiscusseshow Flask
supports flexibility in labelingandaccessdecisions.The
ability of Flask to support policy changes is then de-
scribed.It thendescribesthemandatory accesscontrols
providedfor processes,files,andsockets.

2.1 Encapsulationof Security Policy

In the Flask architecture,the securitypolicy logic is
encapsulatedwithin a separatecomponentof theoperat-
ing systemwith ageneralinterfacefor obtaining security
policy decisions.This separatecomponentis referredto
as the securityserverdueto its origins asa user-space
server running on a microkernel. In the Linux imple-
mentation, thesecurityserver is merelya kernelsubsys-
tem. Theotherkernel subsystemsarereferredto asob-
ject managers in thearchitecture.

The Flask architecture specifiesthe interfacespro-
vided by the securityserver to object managers. The
implementationof thesecurityserver, includingany pol-
icy languageit maysupport, arenot specifiedby thear-
chitecture. The Linux implementationof the Flaskse-
curity server defines a securitypolicy that is a combina-
tionof TypeEnforcement(TE),role-basedaccesscontrol
(RBAC), andoptionally multi-level security(MLS). The
Linux securityserver hasanassociatedpolicy language.
A configurationwritten in this languageis compiledby
a separateprogramcalledcheckpoli cy into a binary
representationreadby thesecurityserveratboottime.

Sincethecontentandformatof securitylabelsarede-
pendentontheparticularsecuritypolicy, theFlaskarchi-
tecturedefinestwo policy-independentdatatypesfor se-
curity labels: thesecuritycontext andthesecurityiden-
tifier. A securitycontext is a variable-lengthstringrep-
resentationof thesecuritylabel. Internally, thesecurity
serverstoresasecuritycontext asastructure usingapri-
vatedatatype. A securityidentifier (SID) is an integer
that is mappedby the securityserver to a securitycon-
text. Flaskobject managersareresponsible for binding
securitylabelsto their objects,so they bind SIDs to ac-
tivekernelobjects.Thefile systemobjectmanagermust
alsomaintaina persistentbindingbetweenfiles andse-
curity contexts. SincetheobjectmanagershandleSIDs
andsecuritycontextsopaquely, achangein theformator
content of securitylabelsdoesnotrequire any changesto
theobjectmanagers.

In the Linux implementation, a securitycontext con-
sistsof a useridentity, a role, a type, andoptionally a
MLS level or range. Rolesare only relevant for pro-
cesses,so file securitycontexts have a genericobject r
role. Thesecurityserveronly providesSIDsfor security
contexts with legal combinationsof user, role, type,and

3

2 OVERVIEW 2.4 Support for Policy Changes

level or range. The individual attributesof the security
context arenotmanipulatedby theobjectmanagers.

2.2 Flexibility in Labeling Decisions
When a Flask object managerrequires a label for a

new object, it consultsthesecurityserver to obtaina la-
belingdecisionbasedonthelabelof thecreatingsubject,
thelabelof a relatedobject, andtheclassof thenew ob-
ject. For programexecution, theFlaskprocessmanager
obtainsthelabelfor thetransformedprocessbasedonthe
current labelof theprocessandthelabelof theprogram
executable.For file creation,theFlaskfile systemobject
manager obtainsthe label for the new file basedon the
label of the creatingprocess,the label of the parentdi-
rectory, andthekind of file beingcreated. Thesecurity
server maycomputethenew labelbasedon theseinputs
andmayalsouseotherexternal information.

In theLinux implementation, thesecurityserver may
beconfiguredto automatically causechangesin therole
or domainattributesof a processbasedon the role and
domain of theprocessandthe typeof theprogram. By
default, therole anddomainof a processis not changed
by program execution. The Linux securityserver may
also be configured to usespecifiedtypesfor new files
basedon thedomain of theprocess,thetypeof thepar-
entdirectory, andthekind of file. A new file inheritsthe
sametypeasits parent directory by default. For objects
wherethereis only onerelevant SID, objectmanagers
typically donotconsultthesecurityserver. Instead,they
merelyusethisSID astheSID for thenew object.Pipes,
file descriptions,andsocketsinherit theSID of thecreat-
ing process,andoutputmessagesinherit theSID of the
sendingsocket.

2.3 Flexibility in AccessDecisions
Objectmanagers consultthe Flasksecurityserver to

obtainaccessdecisionsbasedon a pair of labelsandan
objectclass.Thelabelpair is usuallythelabelof a sub-
jectandthelabelof anobject,but someaccessdecisions
maycontrol relationships amongobjectpairs. Eachob-
ject classhasa setof associatedpermissions.Theseper-
missionsetsare representedby a bitmapcalledan ac-
cessvector. Flaskdefines a distinctpermissionfor each
service,and when a serviceaccessesmultiple objects,
Flaskdefinesa separatepermissionto control accessto

eachobject.For example,whena file is unlinked,Flask
checksremove namepermissionto thedirectory andun-
link permissionto thefile.

Theuseof objectclassesin accessrequestsallowsdis-
tinct permissionsetsto bedefinedfor eachkind of object
basedontheparticular servicesthataresupportedby the
object. It also allows the securitypolicy to make dis-
tinctionsbasedon thekind of object,sothataccessto a
device specialfile canbedistinguishedfrom accessto a
regular file andaccessto a raw IP socket canbe distin-
guishedfrom accessto a UDP or TCPsocket.

2.4 Support for Policy Changes
TheFlaskarchitectureincludesanaccessvectorcache

(AVC) componentthatstorestheaccessdecisioncompu-
tationsprovidedby thesecurityserverfor subsequentuse
by theobjectmanagers. An object manager mayfurther
reduce the costof a permissioncheckby storingrefer-
encesto theappropriateentryin theAVC with its objects.
As a result,mostpermissioncheckscanoccur without
evenincurring thecostof anextra functioncall.

The Flask AVC provides an interface to the secu-
rity server for managing the cacheasneededfor policy
changes. Sequencenumbersareusedto addressthepo-
tential interleaving of accessdecisioncomputationsand
policy changenotifications. Whenthe AVC receivesa
policy changenotification, it updatesits own stateand
theninvokescallbackfunctions registeredby theobject
managersto updateany permissionsretainedin thestate
of the object managers.For example, permissionsmay
be retainedin the accessrights in pagetablesor in the
flagsonanopenfile description. After updating thestate
of theobjectmanagers andthestateof theAVC to con-
form to thepolicy change, theAVC notifiesthesecurity
serverthatthetransitionto thenew policy hasbeencom-
pleted.

In the Linux implementationof Flask,many permis-
sions are revalidated on use, such as permissionsfor
reading andwriting files andpermissionsfor communi-
catingon anestablishedconnection.Consequently, pol-
icy changesfor thesepermissions areautomatically rec-
ognized andenforcedwithout the needfor objectman-
ager callbacks. Permissionscan be efficiently revali-
datedby objectmanagersusingreferencesto entriesin
the AVC. However, the revalidation of permissions on

4

2 OVERVIEW 2.6 File Controls

useis not adequatefor revoking accessto mapped file
pagesin the Linux page cache.Thecurrent implemen-
tationdoesinvalidatetheappropriatepagecacheentries
whena file is relabeled, but a callbackhasnot yet been
definedto invalidatethe appropriatepage cacheentries
whenapolicy changenotificationis received.

TheLinux implementationof theFlasksecurityserver
provides an interface for changing the security policy
configuration at runtime. The securityload policy call
may be usedto reada new policy configuration from a
file. After loading thenew policy configuration, these-
curity server updatesits SID mapping, invalidating any
SIDs thatareno longer authorized,andresetstheAVC.
Subsequentpermissionchecks on processesandobjects
with invalid SIDsalwaysfail, preventing any furtherac-
cessesbysuchprocessesandany furtheraccessesto such
objects.Support for automatically relabelingthesepro-
cessesandobjectsto a labelthat is accessibleto admin-
istratorshasnotyetbeenimplemented.

2.5 ProcessControls

Flask provides several controls over the ability to
change the label of a process. The security label of a
processis only allowedto change upon programexecu-
tion so that the inheritance of stateandtheinitialization
of theprocessin thenew labelcanbecontrolled. Flask
controls the ability of a processto transitionto a new
securitylabelupon programexecution through the tran-
sition permission,andit controls whatprogramsmaybe
usedto perform suchtransitionsthrough the entrypoint
permission. It also controls the ability of a processto
inheritopen file descriptionsacrossa transition.

Flaskprovidesstrongcontrolsoverthefull setof code
thatcanbeexecutedby aprocessthrough theprocessex-
ecutepermission. This permissionis checked between
the label of the transformed processand the label of
the executableon every program execution. It is also
checked whenan ELF or script interpreter is executed,
andwhena file is memory-mappedwith execute access
(i.e. a sharedlibrary). This processexecutepermission
differs from the separateentrypointpermission,which
only controls what programs may be usedto enter a
new label. It alsodiffers from the file executepermis-
sion, which only controls what programsmay be initi-
atedby aprocess,regardlessof whethertheprocesslabel

is changedby theexecution.

Flask controls the sendingof signals, including the
ability to indirectly senda signalvia asynchronous I/O.
It alsocontrols the ability to traceanother process,in-
cludingtheability to continue tracinga processwhena
transitionoccurs. Flaskcontrols severaladditional pro-
cessmanagementservices,suchas fork, wait, setpgid,
getpgid, getsid, setpriority, getpriority, and the sched
calls.Thesecontrols aredescribedfurther in Section5.1.

Flask provides an equivalent permission for each
Linux capability . This allows thesecuritypolicy to con-
trol the useof capabilities. Flaskcould be extendedto
provide a finer-grainedreplacementmechanism for ca-
pabilities. Sucha mechanism wasdevelopedfor oneof
Flask’s predecessors,the DTOS system. This mecha-
nismpermittedprivilegesto begrantedbasedonboththe
attributesof theprocessandtheattributesof therelevant
object,e.g. discretionary readoverride couldbegranted
to aparticularsetof files. Sincethemechanismobtained
privilege decisionsfrom theFlasksecurityserver, man-
agement of privileges was centralized and verification
that privilegesweregrantedappropriately wasstraight-
forward.

2.6 File Controls
Sinceopenfile descriptions may be inherited across

execveor transferredthrough UNIX socket IPC, Flask
labelsandcontrols openfile descriptions. An openfile
description is labeledwith theSIDof its creatingprocess,
sinceits stateis usuallytreatedaspartof theprivatestate
of theprocess.It is importantto distinguish betweenthe
labelof anopen file descriptionandthe labelof thefile
it references.A readoperation on a file changes thefile
offsetin theopenfile description, soit maybenecessary
to prevent a processfrom readinga file usingan open
file description received or inherited from another pro-
cesseventhough theprocessis allowedto directly open
andreadthefile.

Flasklabelsfile systemsandcontrolsservicesthatma-
nipulatefile systems,including calls for mounting and
unmountingfile systems,thestatfscall andthefile cre-
ation calls. Flaskcontrols the mounting of file systems
through several permissionchecks. It requiresthat the
processhave mounton permissionto themount point di-
rectoryandmount permissionto thefile system.It also

5

2 OVERVIEW 2.7 SocketControls

requires that the mountassociatepermissionbe granted
betweenthe root directory of the file systemand the
mount point directory. Flaskdoesnot yet perform any
check betweenthe device special file and the mount
point.

Flaskbinds securitylabelsto files anddirectoriesand
controls accessto them.Flaskstoresapersistentlabeling
tablein eachfile systemthatspecifiesthesecuritylabel
for eachfile anddirectory in thatfile system.Forefficient
storage,Flask assignsan integer value referred to asa
persistentSID (PSID) to eachsecuritylabelusedby an
object in a file system. The persistentlabelingtable is
partitioned into a mapping betweeneachPSID and its
securitylabel and a mapping betweeneachobjectand
its PSID. Sincethe table is storedin eachfile system,
file labelsarepreserved if thefile systemis mountedat
a different locationor if the file systemis moved to a
differentsystem.

In the Linux implementation, the mapping between
eachPSID and its securitylabel is implemented using
regular files in a fixedsubdirectory of theroot directory
of eachfile system.This mapping is loadedinto mem-
ory whenthefile systemis mounted,andis updatedboth
in memory andon thedisk whena new securitylabel is
usedfor an object in the file system.The mapping be-
tweeneachobjectandits PSID is implementedby stor-
ing the PSID in an unusedfield of the on-disk inode.
SincethePSID is availablein theon-disk inode,no ex-
traoverheadis incurredeitherto obtainthePSIDwhena
file is accessedor to setthePSIDwhena file is created.
Additionally, sincethemapping betweeneachobjectand
its PSIDis inode-based,changesto thefile systemname
spacedonotaffect themapping.

Whenanunlabeled file systemis first mounted,a per-
sistentlabeling table is createdfor the file system,us-
ing a default labelfor all files obtained from thesecurity
server. Subsequently, existing files mayberelabeled us-
ing new systemcalls. A program calledsetfiles is
usedto initially setfile labelsfrom a configuration file
that specifieslabelsbasedon pathname regular expres-
sions. This program andconfiguration file may alsobe
usedto resetfile labelsto a well-definedstate.However,
unlesstheconfigurationfile is updatedto reflectruntime
changes in file labels,thesechanges will be lost when
theprogramis executed.Runtimechangesmayoccuras

a result of new files being created,existing files being
relabeled, or changesto thenamespace.

Flaskprovidesa separatepermissionfor eachfile and
directory service.For example,Flaskdefinesanappend
permissionfor files in addition to the write permission,
andit definesseparateadd nameandremove name per-
missionsfor directories to support append-only files and
directories. Flaskalsodefinesa reparentpermissionfor
directoriesthatcontrols whethertheparentdirectory link
canbechangedby a rename.

Flask provides control over eachobject affectedby
a file or directory service. For example, in addition to
checkingaccessto theparent directory, Flaskdefinesper-
missionsfor controlling accessto the individual file it-
self for operationssuchasstat, link, rename, unlink, and
rmdir.

2.7 Socket Controls
Flaskprovidescontrol over socketIPCthroughasetof

layeredcontrolsoversockets,messages,nodes,andnet-
work interfaces. At the socket layer, Flaskcontrols the
ability of processesto perform operationsonsockets.At
thetransport layer, Flaskcontrols theability of socketsto
communicatewith othersockets. At the network layer,
Flaskcontrols the ability to sendandreceive messages
on network interfaces,andit controls theability to send
messagesto nodesandto receive messagesfrom nodes.
Flaskalsocontrols the ability of processesto configure
network interfacesandto manipulatethe kernel routing
table.

Sockets effectively serve as communication proxies
for processesin theFlaskcontrolmodel. Consequently,
socketsarelabeledwith thelabelof thecreatingprocess
by default. A processmaycreateandusea socket with
a different label to perform socket IPC with a different
sourcesecuritylabel. A processmay setup a listening
socket so thatserver socketscreatedby connectionsare
labeledwith eithera specifiedlabelor with the labelof
theconnectingclientsocketto actasaserverfor multiple
labels.

Flaskallowsthesecuritypolicy to distinguishbetween
clientsandserversfor streamsocketconnectionsthrough
theconnectto andacceptfrom permissions.Flaskallows
thesecuritypolicy tobasedecisionsonthekindof socket
through the useof object classes,and it allows the se-

6

3 SECURITYSERVER 3.1 Architecture TypesandConstants

curity policy to basedecisionson the messageprotocol
throughtheper-protocol nodeandnetwork interfaceper-
missions.

Flask provides control over the associationbetween
INET domainsocketsandportnumbers andtheassocia-
tion betweenUNIX domainsocketsandfiles. Hence,the
securitypolicy canrestrictthe useof port numbersand
pathnamesfor useby particular processes.Flask also
provides control over openfile description transfervia
UNIX domainsockets.

In Flask,messagesareassociatedwith both the label
of their sendingsocketanda separatemessagelabel.By
default, this messagelabel is the sameas the sending
socket label. A process may explicitly label individual
messagesif the underlying protocol supports message
boundaries,i.e. datagram sockets. Messagessenton a
streamsocket all have thesamelabel,which is thelabel
of thestreamsocket.

Support for communicatingmessagelabelsacrossthe
network hasnot yet beenimplementedin theLinux im-
plementation of Flask. The Fluke implementation of
Flask usedIPSEC/ISAKMP both to label and protect
messages,storingthelabelinginformationin theIPSEC
securityassociation. During an ISAKMP negotiation,
theappropriatesecuritycontexts aresentacrossthenet-
work andthe peerobtainsSIDs for thesesecuritycon-
texts andstoresthemin its IPSECsecurityassociation.
Whenmessagesaresubsequently received that usethe
IPSECsecurityassociation,the messagesarevalidated
andthenlabeledwith theSIDsfrom theassociation.

3 Security Server

The securityserver is a new operating systemcom-
ponent thatprovidessecuritypolicy decisionsto theob-
ject managers,permitting theobject managers to remain
independentof the specificsecuritypolicy that is used.
This sectiondescribesthe setof interfaces provided by
the securityserver for kernel object managers and the
set of systemcalls provided by the securityserver for
security-awareapplications. This sectionthendescribes
the policy configuration language andthe implementa-
tion of thecurrent Linux securityserverprototype.

3.1 Ar chitecture Typesand Constants
The basic Flask types and constantsare definedin

the headerfile include/linux/flask/flask types.h. The se-
curity context type (securitycontext t) is definedas a
string. The security identifier type (securityid t) is
definedas an unsigned32-bit integer value. A null
SID, SECSIDNULL, is definedto usewhenno partic-
ular SID is specified.A wildcardSID, SECSIDWILD,
is definedthat matchesany other SID when usedfor
certainaccessvectorcache(AVC) operations. Certain
SIDs (specifiedin flask/initial sids) are predefined for
systeminitialization. The correspondingconstantsare
definedin the automaticallygenerated headerfile in-
clude/linux/flask/flask.h.

The accessvector type (accessvector t) is defined
as an unsigned 32-bit integer value. Each ob-
ject class is identified by an unsigned 16-bit inte-
ger value, with the securityclasst type. The set of
security classesis specified in flask/securityclasses,
with the corresponding constantsin the automatically
generated headerfile include/linux/flask/flask.h. The
permissions for each security class are specified in
flask/accessvectors, andthecorrespondingconstantsare
definedin the automaticallygenerated headerfile in-
clude/linux/flask/avpermissions.h.

3.2 Interfacesfor the Kernel
The function prototypesfor the securityserver inter-

facesprovidedfor thekernel object managersarein the
include/linux/flask/security.hheaderfile. Thissubsection
describeseachof theseinterfaces.For eachinterface,the
function prototypeis listed followedby a description of
theinterfaceandadiscussionof how theinterfaceis cur-
rentlyusedby thekernelobjectmanagers.

int security_in it(void);

The securityinit function initializes the security
server. The kernelcalls this function after the root file
systemis mounted(fs/super.c:mount root) sothatthese-
curity server may readconfiguration datafrom the root
file system.

int security_co mpute_av(
securit y_id_t ssid,
securit y_id_t tsid,

7

3 SECURITYSERVER 3.2 Interfacesfor theKernel

securit y_class_t tclass,
access_ vector_t requested ,
access_ vector_t *allowed,
access_ vector_t *decided,

#ifdef CONFIG_FLASK_AUDIT
access_ vector_t *auditall ow,
access_ vector_t *auditden y,

#endif
#ifdef CONFIG_FLASK_NOTIFY

access_ vector_t *notify,
#endif

__u32 *seqno) ;

The securitycomputeav function computes access
vectors basedon a SID pair for the permissions in
a particular class. The accessvector cache (AVC)
componentcalls this function when no valid entry ex-
ists for the requestedpermissionsin the cache (in-
clude/linux/flask/avc.h:avc haspermref audit). The
first SID parameter, ssid, is referredto asthesourceSID
andthesecondSID parameter, tsid, is referred to asthe
targetSID. Thereturned accessvectorsmustcontainde-
cisionsfor every permissionspecifiedin the requested
accessvector.

Thesecurityservermayoptionally returndecisionsfor
otherpermissions in thesameclass.Thedecidedaccess
vectorcontains thesetof permissionsfor which a deci-
sionwasreturned.Theotherreturnedaccessvectorsmay
only be usedfor permissionsin this set. The security
server maychooseto defercomputationof permissions
until they areexplicitly requested.

Theallowedaccessvector contains thesetof granted
permissions. The seqnoparameter contains a sequence
number associatedwith the accessgranting. If the se-
quence number provided by the latestpolicy change is
greaterthanthis value,thentheaccessgrantingmaybe
invalid andmustbediscarded. Thesequencenumberad-
dressestheissueof aninterleaving of anaccessgranting
andapolicy change.

Two additional accessvectors are returned if audit-
ing support is enabled in the kernelconfiguration. The
auditallow andauditdenyaccessvectors containthe set
of permissionsthat shouldbe auditedwhengranted or
whendenied, respectively. Thesevectors enablethese-
curity server to preciselycontrol the auditing of per-
missionchecks. The AVC componentensures that au-

diting is performed in accordancewith thesevectors
(avc haspermref audit).

One additional accessvector is returned if notifica-
tion support is enabledin thekernel configuration. The
notify accessvector containsthe setof permissionsfor
whichthesecuritynotify permfunctionshouldbecalled
when the operation associatedwith the permissionhas
successfullycompleted. This vectorpermits thesecurity
server to requestthat theAVC componentnotify these-
curity server of thesuccessfulcompletion of operations
so that thesecurityserver maybaseits decisionson the
history of operationsin the system. This differs from
merelybasingdecisions on the history of grantedper-
missions,sincean operation may still fail dueto other
conditions even if permissionis grantedfor that oper-
ation. To support this functionality, the kernel object
managers must be changed to notify the AVC compo-
nentof thesuccessfulcompletion of operationsby call-
ing the include/linux/flask/avc.h:avc notify permref in-
line function. TheAVC componentmaythennotify the
securityserver if any of therequestedpermissions arein
thecorresponding notify vector. Thenecessarychanges
to thekernelobjectmanagersto notify theAVC compo-
nenthavenotyetbeenimplemented.

int security_no tify_perm(
securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,
access_ vector_t requested);

Thesecuritynotify permfunctionnotifiesthesecurity
server thatanoperation associatedwith thepermissions
in the requestedaccessvector hascompleted success-
fully. The AVC componentcalls this function when it
is calledby anobjectmanager to indicatethat theoper-
ationhascompletedsuccessfullyif any of the requested
permissions are in the corresponding notify vector (in-
clude/linux/flask/avc.h:avc notify permref). Since the
kernelobjectmanagershavenotyetbeenchangedto no-
tify the AVC of operation completion, this function is
currently nevercalled.

int security_tr ansition_sid (
securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,

8

3 SECURITYSERVER 3.2 Interfacesfor theKernel

securit y_id_t *out_sid);

The securitytransitionsid function computesa SID
for a new objectbasedon a SID pair anda class. The
kernelobjectmanagers call this function whenobjects
arecreatedif a SID wasnot specifiedfor theobjectand
thereis morethanonerelevant SID thatmight beusedas
input in determining theSID of thenew object. In par-
ticular, thefile systemcodecalls this functionto obtain
the SID of a new file basedon the SID of the creating
processandtheSID of theparentdirectory, andthepro-
cessmanagement codecalls this function to obtain the
SID of a processtransformedby anexecvebasedon the
current SID of theprocessandtheSID of theexecutable
program.

int security_me mber_sid(
securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,
securit y_id_t *out_sid);

Thesecuritymembersid function computesa SID to
usewhenselectinga memberof a polyinstantiatedob-
ject basedon a SID pair anda class. Certainfixed re-
sources,suchasthe /tmpdirectoryor theTCP/UDPport
number spaces,needbepolyinstantiatedto restrictshar-
ing amongprocesses.Eachinstantiationis referredto as
a member. Thekernelobjectmanagers call this function
whenapolyinstantiatedobjectisaccessedandthentrans-
parently redirect theprocessto theappropriatemember.
The necessarychanges to the file systemcodeand the
networking code to support polyinstantiateddirectories
andport numberspacesarenot yet implemented,sothis
function is currentlynever called.

int security_ch ange_sid(
securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,
securit y_id_t *out_sid);

The securitychange sid function computesa SID to
usewhenrelabeling anobjectbasedon a SID pair anda
class.The login programwill bemodified to call this
interfacetoobtaintheSID tousewhenrelabelingdevices
for a usersession,basedon theSID for theusersession

andthecurrent SID of thedevice. This modification to
login hasnotyetbeenimplemented.

int security_si d_to_context (
securit y_id_t sid,
securit y_context_t *scontext,
__u32 *scontext_l en);

Thesecuritysid to context function returns thesecu-
rity context associatedwith a particular SID. The AVC
componentcallsthisfunctiontoobtainbothsecuritycon-
textsfor aSID pairwhenwriting anauditrecord. Thefile
systemcodecalls this function to obtaina securitycon-
text to usewhenadding an entry to the persistentlabel
mapping. Theprocfscodecallsthisfunction toobtainthe
securitycontext of a processto includein its statusfile.
Thescontext parameteris setto point to a dynamically-
allocatedstringof thecorrectsize. Thescontext len pa-
rameteris setto thelengthof thesecuritycontext string,
including theterminating NULL character. Thestring is
allocatedusingkmallocandmustbefreedwith kfreeby
thecaller.

int security_co ntext_to_sid (
securit y_context_t scontext,
__u32 scontext_le n,
securit y_id_t *out_sid);

Thesecuritycontext to sid function returns a SID as-
sociatedwith a particular securitycontext. Thefile sys-
temcodecallsthis functionto obtaintheSID thatcorre-
sponds to a securitycontext storedin thepersistentlabel
mapping. Thescontext lenparameterspecifiesthelength
of the securitycontext string, including the terminating
NULL character.

int security_fs _sid(
char *dev,
securit y_id_t *fs_sid,
securit y_id_t *file_sid);

Thesecurityfs sid function returnsSIDsto usefor an
unlabeledfile systemmountedfrom thedevice specified
by dev. Thefile systemcodecalls this function whena
processattemptsto mount anunlabeledfile system.The
valuefor thedev parameteris a stringof the form “ma-
jor:minor” whereboththemajorandminor number are

9

3 SECURITYSERVER 3.3 SystemCallsfor Applications

in hexadecimalandareright justifiedin a two character
field, asreturnedby thekdevnamefunctiononthedevice
number. The fs sid parameteris setto theSID to usefor
thefile system,andthefile sidparameteris setto theSID
to usefor any existingfiles in thefile system.

int security_po rt_sid(
__u16 domain,
__u16 type,
__u8 protocol ,
__u16 port,
securit y_id_t *out_sid);

The securityport sid function returnsthe SID to use
for theport number port in theprotocol specifiedby the
triple (domain, type, protocol). The networking code
callsthis functionwhenaprocessattemptsto bindaport
outsideof therange usedto automatically bindsockets.

int security_ne tif_sid(
char *name,
securit y_id_t *if_sid,
securit y_id_t *msg_sid);

Thesecuritynetif sid function returnsSIDsto usefor
anetwork interface. Thenetworking codecallsthisfunc-
tion whenaprocessfirst attemptsto configureanetwork
interface.Thevaluefor thenameparameteris typically
the driver name followed by the unit number, e.g. the
nameeth0would beusedfor thefirst Ethernet interface.
Theif sid parameter is setto theSID to usefor theinter-
face,andthemsgsid parameter is setto theSID to use
for any unlabeledmessagesreceived on theinterface.

int security_no de_sid(
__u16 domain,
void *addr,
__u32 addrlen ,
securit y_id_t *out_sid);

Thesecuritynodesid function returnstheSID to use
for the nodewhoseaddressis specifiedby addr. The
addrlenparameterspecifiesthe lengthof theaddressin
bytes,andthedomain parameterspecifiesthecommuni-
cationsdomainor addressfamily in which the address
shouldbe interpreted. The networking codecalls this
functionwhenpacketsaresenttoanodeor receivedfrom
a node.

int security_nf s_sid(
__u16 domain,
void *addr,
__u32 addrlen ,
securit y_id_t *fs_sid,
securit y_id_t *file_sid);

The securitynfs sid function returns the SIDs to use
for thefile systemsandfiles providedby theNFSserver
whoseaddressis specifiedby addr. Theaddrlen param-
eterspecifiesthe lengthof theaddressin bytes,andthe
domain parameterspecifiesthecommunicationsdomain
or addressfamily in which the addressshould be inter-
preted. The NFS client code calls this function whena
NFSfile systemis mounted.

3.3 SystemCalls for Applications
Security-awareapplications in thesystemrequirethe

ability to convert betweenSIDsandsecuritycontexts in
orderto usethe extended systemcalls provided by the
kernel object managers. Furthermore, somesecurity-
awareapplicationsactasobjectmanagersfor theabstrac-
tionsmanagedby theapplication, e.g. a windowing sys-
tem actsasthe objectmanagerfor its windows. These
applicationsrequire accessto mostof thesecurityserver
interfaces.Consequently, the securityserver providesa
setof systemcallsfor security-awareapplications.

Thefunctionprototypesfor thesecurityserversystem
calls usedby applicationsarein the include/ss.hheader
file in thesyscallspackage. Currently, thesecurityserver
systemcallsareimplementedusingaseparateentrypoint
for eachcall. All of thecallscouldalternatively be im-
plementedusingasingleentrypoint,asis donefor sock-
ets with the socketcall systemcall. Sincethe security
server systemcalls arederived from the interfacespro-
vided to the kernel, this subsectioncomparesandcon-
traststhesystemcall interfacewith the interfacefor the
kernel.

Several of the system calls are identical to the
corresponding interface: securitynotify perm, se-
curity transitionsid, securitymembersid, secu-
rity change sid and securitycontext to sid. These
calls are not discussedfurther in this subsection.
There are currently no system calls that correspond
to the interfacesthat provide SIDs for kernel objects:
securityfs sid, securityport sid, securitynetif sid,

10

3 SECURITYSERVER 3.4 Policy ConfigurationLanguage

and securitynode sid. Calls could be added for these
interfacesif applications require thesameinformation.

Two of thesystemcalls,securitycomputeav andse-
curity sid to context, differ from the corresponding in-
terfaceonly in the way in which their parametersare
passed.For eachof thesesystemcalls,thefunction pro-
totype is listed below followed by a descriptionof the
call anda discussionof how thecall shouldbe usedby
applications.

struct security _query {
securit y_id_t ssid;
securit y_id_t tsid;
securit y_class_t tclass;
access_ vector_t requested ;

};

struct security _response {
access_ vector_t allowed;
access_ vector_t decided;
access_ vector_t auditallo w;
access_ vector_t auditdeny ;
access_ vector_t notify;
__u32 seqno;

};

int security_co mpute_av(
struct security_q uery *query,
struct security_r esponse *response) ;

Theinput parameters to thesecuritycomputeav sys-
tem call are provided in a struct securityquery struc-
ture, andthe output parametersarereturned in a struct
securityresponsestructure. Like thekernelobject man-
agers,application objectmanagers should usean AVC
componentto cachetheresultsof a securitycomputeav
call. Like the kernelAVC component,the application
AVC componentmustprovide an interfaceto the secu-
rity server for managing the cacheasneededfor policy
changes.An applicationAVC componentlibrary hasnot
yetbeenimplemented.

int security_si d_to_context (
securit y_id_t sid,
securit y_context_t scontext,
__u32 *sconte xt_len);

Whereasthe securitysid to context interface for the
kernelreturns adynamically-allocatedstring,thesystem

call interface requirestheapplication to provide a buffer
for scontext andto initialize the scontext len parameter
with the size of the buffer. If the buffer is not large
enough,thenthescontext lenparameter is setto thecor-
rect length,-1 is returned,anderrnois setto ENOSPC.
In this case,theapplicationmayallocatea buffer of the
specifiedlengthandinvoke the call againwith the new
buffer.

Two othersystemcalls,securityload policyandsecu-
rity get sids, do nothave a corresponding interfaceused
by kernel object managers. For eachof thesesystem
calls, thefunctionprototypeis listedbelow followed by
a description of thecall.

int security_lo ad_policy(
char *path,
__u32 pathlen);

Thesecurityload policy systemcall loadsa new pol-
icy configuration from a file containing a binary rep-
resentationof the configuration. The pathlenparame-
ter specifiesthe lengthof path, including the terminat-
ing NULL character. If pathlenis zero,thenthedefault
policy configurationfile is reloaded. After thenew pol-
icy configurationhasbeenloaded, thesecurityserver in-
vokestheavc ss resetinterfaceof theAVC component.

int security_ge t_sids(
securit y_id_t *sids,
__u32 *nel);

Thesecurityget sidssystemcall returnsthesetof ac-
tive SIDs. Thenel parameteris initialized by theappli-
cationto thenumber of elements in thearrayassociated
with thesidsparameter, andmodified on return to indi-
catethenumber of active SIDs. If thearrayis not large
enough, thennel is setto thenumberof active SIDs,-1
is returned,anderrno is setto ENOSPC.

3.4 Policy Configuration Language
The current Linux security server prototype imple-

mentsasecuritypolicy thatis acombinationof threesub-
policies: typeenforcement(TE), role-basedaccesscon-
trol (RBAC), andmulti-level security(MLS). TheMLS
policy is only includedif theCONFIG FLASKMLSker-
nel configurationoption is enabled. TheTE andRBAC

11

3 SECURITYSERVER 3.4 Policy ConfigurationLanguage

policiesarealwaysincluded in the current implementa-
tion. This subsectiondescribesthepolicy configuration
languagethatmaybeusedto customizethesepolicies.

Thepolicy configurationfiles arelocatedin thepolicy
directory. The m4 macroprocessoris appliedto these
configurationfiles during thepolicy build, with theout-
put written to policy.conf, and this output file is then
compiled by thecheckpolicy programinto a binaryrep-
resentationstoredin policy. The policy file is installed
as /ss policy, andthis file is readby the securityserver
during initialization.

3.4.1 TE configuration The all.te file contains the
configurationinformationfor thetypeenforcement(TE)
policy. This file is automaticallygeneratedfrom a col-
lectionof files. Themacros.tefile containsglobalmacros
usedthroughout theconfigurationfor commongroupings
of classesandpermissionsandfor common setsof rules.
Theassert.tefile contains assertionsthatarecheckedaf-
terevaluatingtheentireTE configuration.

Thetypessubdirectorycontainsseveralfiles with dec-
larationsfor general types(typesnot associatedwith a
particular domain) andsomerulesdefiningrelationships
among thosetypes. Relatedtypesaregroupedtogether
into eachfile in this directory, e.g.all device typedecla-
rationsarein thedevice.tefile.

The domains subdirectory contains several subdirec-
torieswith aseparatefile containing thedeclarationsand
rulesfor eachdomain. Relateddomainsaregroupedto-
getherinto eachsubdirectory, e.g.all domaindefinitions
for systemprocessesarein thedomains/systemsubdirec-
tory. Thedomains/every.te file containsrulesthatapply
to everydomain.

In a traditional TE policy, eachsubjectis labeledwith
a domain, and eachobject is labeledwith a type. A
domain definitiontable(DDT) specifiesthepermissions
granted betweendomainsand types,anda domainin-
teractiontable (DIT) specifiesthe permissionsgranted
betweendomain pairs. In contrast, the securityserver
prototypemergestheconcept of domains andtypesinto
asingletypeabstraction, andmaintainsasingletablethat
specifiesthepermissions grantedbetweenpairsof types.
To thesecurityserver, adomainis simplyatypethatcan
beassociatedwith a process.TheTE configurationcon-
tainsseven kinds of statements:type declarations,type

type syslogd_t, domain;
type syslogd_exec _t, file_type,

exec_type;
type devlog_t, file_type ;

Figure1: Typedeclarations.

transitionrules, type memberrules, type change rules,
accessvector rules,cloning rules,andaccessvectoras-
sertions.

A typedeclaration specifiesaprimary namefor atype,
anoptional setof aliasnames,andanoptional setof at-
tributes.Theprimary nameis alwaysreturnedasthetype
by thesecuritysid to context call. Theprimary nameor
any of thealiasnamesmaybeusedfor the typein a se-
curity context to sid call. An attribute may be usedto
identify a setof typeswith similar properties. Whenan
attributenameis usedin a rule, it is expandedto theset
of types with thatattribute.Primarynames,aliasnames,
andattributenamesall exist in thesamenamespace.

Although domainsarenotdistinguished from typesby
thesecurityserver, they canbeoptionally distinguished
in thepolicy configurationusinga“domain” attribute.A
“domain” attributehasno intrinsic meaning to thesecu-
rity server, andis onlymeaningful to theextentthepolicy
configurationusestheattributein rules.

Sampletypedeclarations for the syslogd daemonare
shown in Figure1. Thesyslogd t type is thedomainof
thedaemonprocess,so a domainattribute is associated
with it. The syslogd exec t type is the type of the dae-
monprogramexecutable, so it is associatedwith botha
file typeattributeanda exec typeattribute. Thedevlog t
typeis thetypeof the /dev/log socket file createdby the
daemon for receiving local log messages,soit is associ-
atedwith a file typeattribute. Theseattributeshave no
intrinsic meaningto thesecurityserver, but they canbe
usedin rulesin theconfiguration.

A type transitionrule specifiesthe default type of a
transformed processor the default type of a new file
basedon the type of the creatingsubjectand the type
of arelatedobject.For aprocess,therelatedobjectis the
program executable. For a file, the relatedobjectis the
parent directory. If no rule is specified,thenthedefault
typeof atransformedprocessis thesameasits typeprior

12

3 SECURITYSERVER 3.4 Policy ConfigurationLanguage

type_transi tion
initrc_t
syslogd_exec _t:process
syslogd_t;

type_transi tion
syslogd_t
device_t:soc k_file
devlog_t;

Figure2: Typetransition rules.

to theexecvecall, andthedefault typeof anew file is the
sameasthetypeof its parent directory. Thedefault type
is returnedby thesecuritytransitionsid call.

Eachtype transitionrule hasa creatingsubjecttype
field, a relatedobjecttype field, a classfield, anda de-
fault typefield. To permitconcisespecificationof multi-
ple typetransitions, thetypefieldsotherthanthedefault
typefield maycontain a setof types,andtheclassfield
maycontaina setof classes.An attributenamemaybe
usedto indicatethe set of typeswith that attribute. A
tilde mayprecede a setof typesto indicatethecomple-
mentof theset. An asteriskmaybeusedto indicateall
types. If multiple type transitionrulesarespecifiedfor
a giventypepair andclass,thenwarningsareissuedby
thepolicy compilerandthelastsuchrule is used.

Sampletype transitionrules for the syslogd daemon
are shown in Figure 2. The first transitionrule speci-
fies thatwhenanrc scriptexecutesthesyslogd program
executable,the transformedprocessshouldbe assigned
thesyslogd t typeby default. Thesecondtransitionrule
specifiesthatwhensyslogd createsa socket file in /dev,
the socket file should be assignedthe devlog t type by
default. Thedevice t typeis thetypeassignedto the/dev
directory, andthesock file classis thesecurityclassfor
socketfiles.

A type memberrule specifiesthe type of the mem-
berobjectin a polyinstantiatedobjectthatshouldbeac-
cessedby defaultbasedon thetypeof theaccessingpro-
cessand the type of the polyinstantiatedobject. If no
rule is specified,thenthetypeof thepolyinstantiatedob-
ject is usedfor themember. A typemember rule hasthe
samesyntaxasa type transitionrule except that it uses
thetypememberkeyword.

allow
domain init_t:proces s
sigchld;

allow
syslogd_t device_t:d ir
{ read getattr access search

add_name remove_na me };

allow
syslogd_t devlog_t:s ock_file
create;

Figure 3: Accessvector rules

A type change rule specifiesthe type to usefor rela-
belinganobject basedon thetypeof theprocessandthe
current type of the object. If no rule is specified,then
the typeof theobjectis unchanged. A typechangerule
hasthesamesyntaxasa typetransitionrule except that
it usesthetypechangekeyword.

An accessvector rule specifiesthe permissionsin an
accessvector basedon a source type,a target type,and
a class.Therearefour kindsof accessvectorrules: al-
low, auditallow, auditdeny, andnotify. Theserulesde-
fine the corresponding accessvectors returned by secu-
rity computeav. If no rule is specified,thenno permis-
sionsarereturned in allowed, auditallow, or notify, and
all permissionsare returned in auditdeny. All permis-
sionsarealwaysreturned in the decidedaccessvector,
sincethe TE policy does not defer the computationof
any permissions.

Eachaccessvectorrule hasa sourcetypefield, a tar-
get typefield, a classfield, anda permissionsfield. As
with type transitionrules,setsof typesandclassesmay
bespecifiedin thecorresponding fields,andtheasterisk
andtilde charactersmaybeused.Asteriskandtilde may
alsobeusedin thepermissionfield. Thenameself may
be usedin the target type field to indicatethat the rule
shouldbeapplied betweeneachsourcetypeanditself. If
multipleaccessvectorrulesarespecifiedfor agiven type
pair andclass,thentheunionof thepermissionfields is
used.

Sampleallow accessvector rules are shown in Fig-
ure 3. The first rule grantsevery domain the ability to
senda SIGCHLDsignalto init, so that init canreapev-

13

3 SECURITYSERVER 3.4 Policy ConfigurationLanguage

clone
user_t sysadm_t;

neverallow
syslogd_t
˜{ syslogd_ex ec_t ld_so_t shlib_t }:process
execute;

Figure4: Domaincloning andaccessvector assertions.

ery process. The secondrule grantssyslogd the ability
to access/dev to replace /dev/log. The third rule grants
syslogd theability to createthe/dev/log socketfile.

A cloning rule specifiesthat the type transitionand
accessvector rulesdefinedfor aspecifiedsourcedomain
shouldbe cloned for a specifiedtarget domain. A type
transitionrule for a processis not clonedif the default
typein therule is equalto thesourceor targetdomain in
theclonestatement.Hence,transitionsfrom thesource
domain to itself or to thetargetdomainarenotclonedfor
thetarget domain. An accessvectorrule is not clonedif
thetargettypein therule is equalto thesourceor target
domain in the clonestatement.Hence,permissionsbe-
tweenthesourcedomainanditself or betweenthesource
domain andthetarget domain arenot cloned for thetar-
getdomain.

An accessvectorassertionspecifiespermissionsthat
shouldnotbein anaccessvectorbasedonasourcetype,
a target type, and a class. If any of the specifiedper-
missionsarein thecorresponding accessvector, thenthe
policy compilerwill rejectthepolicy configuration.Cur-
rently, thereis only onekind of accessvector assertion,
neverallow, but support for the other kinds of vectors
couldbeeasilyadded. Accessvector assertionsusethe
samesyntaxasaccessvector rules.

A sampledomain cloning rule and a sampleaccess
vectorassertionareshown in Figure 4. Thecloning rule
clonesthetypetransitionrulesandtheaccessvector rules
of the user t domainfor the sysadmt domain. The ac-
cessvector assertionrule verifies that the syslogd dae-
mon process may only execute codefrom its program
executable, the dynamic loader, and the systemshared
libraries.

role system_r types {
init_t getty_t };

role user_r types user_t;
role sysadm_r types sysadm_t;

Figure5: Roledeclarations

role_transi tion system_r login_exec_t login_r;
role_transi tion sysadm_r untrusted_ex ec_t user_r;

Figure6: Roletransitionrules

3.4.2 RBAC configuration The rbac file contains
the configuration information for the role-basedaccess
control (RBAC) policy. Although roles could be im-
plemented directly using TE domains, this policy pro-
videsanadditional layerof abstractionfor groupingTE
domains into rolesand for expressinga role hierarchy.
Rolesareonly relevant for processes.Files arelabeled
with a generic object r role.

TheRBAC configurationcontains four kindsof state-
ments:role declarations,role transitionrules,role allow
rules,androledominancedefinitions.A roledeclaration
specifiesa namefor therole anda setof typesthatmay
beassociatedwith that role. This limits thesetof types
thatmaybeenteredby aprocessin therole. Thegeneric
object r role maybeassociatedwith any type,sinceob-
ject rolesarenot relevant to thepolicy.

Samplerole declarations areshown in Figure5. The
first declarationdefinesa systemr role for systempro-
cessessuchasinit andgetty. Theseconddeclaration de-
finesa user r role for ordinary users.Thethird declara-
tion definesa sysadmr role for systemadministrators.

A role transitionrule specifiesthe default role of a
transformedprocessbasedon its prior role andthe type
of the programexecutable. If no rule is specified,then
thedefault role of a processis thesameasits role prior
to theexecvecall. Sampleroletransitionrulesareshown
in Figure6. The first rule specifiesthat whena system
processexecutesthelogin programexecutable,thetrans-
formed processshouldbe assignedthe login r role by
default. Thesecondrulespecifiesthatwhenasystemad-
ministratorexecutes an untrustedexecutable, the trans-
formedprocessshouldbeassignedtheuser r role.

14

3 SECURITYSERVER 3.4 Policy ConfigurationLanguage

allow system_r user_r;
allow system_r sysadm_r;
allow system_r secadm_r;

Figure7: Roleallow rules

sensitivity unclassified alias u;
sensitivity top_secret alias ts;
dominance { u ts }
category nato;
category usuk;
level u;
level ts:nato,usu k;

Figure8: MLS declarations

A role allow rule specifiesallowable transitions be-
tweenrolesonanexecve. If norule is specified,thenthe
changein roleswill notbepermitted. Additional controls
over roletransitionsbasedonthetypeof theprocessmay
bespecifiedthrough theconstraintsfile, asdiscussedin
Section3.4.5. Sampleroleallow rulesareshown in Fig-
ure7. Thefirst rulegrantsprocessesin thesystemr role
thepermissionto transitionto theuser r role. Thesec-
ond and third rules provide similar permissionsto the
sysadmr andsecadmr roles.

A role dominance definition specifiesa hierarchy
among a setof roles. A role automaticallyinheritsany
typesthatcanbeassociatedwith any role it dominatesin
thehierarchy. As discussedin Section3.4.5, this domi-
nancerelationship mayalsobeusedto defineconstraints
on specificpermissions.Roledominancedefinitions are
notcurrently usedin thesamplepolicy configuration.

3.4.3 MLS configuration The mls file contains the
configuration information for the multi-level security
(MLS) policy. This policy is an extension of the Bell
LaPadula (BLP) modelof multi-level securityin which
eachsubjectandobject arelabeledwith arangeof levels.
If asubjectis multi-level, i.e. its low leveldiffersfrom its
high level, thenit is trustedto handle dataat any level in
its rangewhile maintaining proper separation among the
different levels. Multi-level objectsmaybeusedfor the
private stateof multi-level subjectsandfor datasharing
betweenmulti-level subjects.

TheMLS configurationbeginsby declaring thesensi-

class tcp_socket {
connectto : { read write }
acceptfrom : { readby writeby }

}

Figure9: MLS basepermissions

tivities anddefining thedominanceordering for them.It
thendeclaresthecategories,anddefineslevelsby speci-
fying whatcategoriesmaybeassociatedwith eachsensi-
tivity. SampleMLS declarationsareshown in Figure8.

After the declarations, eachaccessvectorpermission
is mappedto asetof MLS basepermissions (read, write,
readby, andwriteby). ThereadMLS basepermissionis
onlygrantedif thehighlevelof thesourceSIDdominates
thehighlevel of thetarget SID.Thewrite MLS baseper-
missionis only grantedif the target SID is single-level
andit dominatesthe low level of the source SID, or if
therangeof thetargetSID is asubsetof therangeof the
sourceSID. Thelatterrestrictiononwritesto multi-level
targets protectstheintegrity of suchobjects.

The readbyandwriteby MLS basepermissionshave
the samerequirementsasthe readandwrite MLS base
permissions, respectively, with the sourceand target
SIDs exchangedto reflect the target SID actingon the
sourceSID. An accessvector permissionis only granted
if all of the MLS basepermissionsassociatedwith it
aregranted.SampleMLS basepermissionmappingsare
shown in Figure9.

The current policy configuration language doesnot
support specificationof MLS rangetransitionrules. A
MLS rangetransitionrule would specifythe range of a
new objectbasedontherangeof thecreating subjectand
therange of a relatedobject. By default, theMLS range
of a processdoesnot change acrossan execve, andthe
MLS rangeof anobject is inheritedfrom its creator.

The current policy configuration languagealso does
notsupport specificationof MLS rangememberrulesfor
polyinstantiatedobjects.TheMLS range of themember
is currently alwaysinherited from theprocess.Hence,a
separatememberis createdfor eachdistinctMLS range
thataccessestheobject.

3.4.4 User configuration The users file, or the
users.mlsfile if theMLS policy is enabled, containsone

15

3 SECURITYSERVER 3.4 Policy ConfigurationLanguage

user system_u roles system_r
ranges u-ts;

user sds roles { secadm_r user_r }
ranges { u s };

user pal roles user_r
ranges { u s-ts };

Figure10: Userdeclarations.

or more declarations for users,as shown in Figure10.
Eachuserhasa corresponding setof allowedrolesthat
may be associatedwith that user. This limits the setof
roles that may be enteredby a processwith that user
identity. If the MLS policy is enabled, theneachuser
alsohasa corresponding setof allowedMLS rangesthat
may be associatedwith the user. This limits the setof
MLS rangesthatmaybeenteredby theuserandtheset
of MLS ranges that may be usedfor objectsownedby
the user. Any MLS rangethat is a subsetof oneof the
specifiedMLS rangesis allowed.

The current policy configuration language doesnot
support specificationof user transitionrules. It is ex-
pected that the user identity of a processwill only
changethroughuserauthentication programsthatexplic-
itly specifythenew identity. By default, theuseridentity
of a processdoesnot change acrossan execve, andthe
userownerof afile is inheritedfromthecreatingprocess.
Controlsover explicit useridentity transitions basedon
thetypeof theprocessmaybespecifiedthrough thecon-
straintsfile, asdiscussedin Section3.4.5.

The current policy configuration languagealso does
not support specification of user member rules for
polyinstantiatedobjects. The userowner of the mem-
ber is currently always inheritedfrom the polyinstanti-
atedobject. Hence,separatemembersarenotcreatedfor
differentusersof processesthataccesstheobject.

3.4.5 Constraintsconfiguration Theconstraintsfile
definesadditional constraintsonpermissionsin theform
of booleanexpressionsthatmustbesatisfiedin order for
specifiedpermissionsto be granted. Theseconstraints
areusedto furtherrefinethetypeenforcementtablesand
roleallow rules.Constraintsmaycompare theuseriden-
tity, role, or type of the sourceand target SIDs. Con-
straintsmayalsocomparetheuseridentity, role,or type

constrain process transition
(u1 == u2 or

t1 == privuser);

constrain process transition
(r1 == r2 or

t1 == privrole);

Figure11: Processtransition constraints.

sid kernel system_u:syst em_r:kernel_t :u
sid init system_u :system_r:init _t:u
sid kmod system_u :system_r:kmod _t:u

Figure12: Security contexts for initial SIDs.

of either SID against a set of specifiedusers,roles or
types.Rolecomparisonsmayalsobebasedonany dom-
inancehierarchiesdefinedin theRBAC configuration.

Sampleconstraints for changes in user identity and
role for processesareshown in Figure11. Thefirst con-
straint requiresthat the user identity remain the same
acrossanexecveunlesstheprocessis in a typewith the
“privuser” attribute. u1 andu2 refer to the useridenti-
tiesof thesourceandtarget SIDs,respectively. t1 refers
to the type of the sourceSID. The “privuser” attribute
would typically belimited to thedomain for login.

Thesecondconstraintrequiresthattheroleremainthe
sameacrossanexecveunlesstheprocessis in atypewith
the“privrole” attribute.r1 andr2 referto therolesof the
sourceandtargetSIDs,respectively. Thisconstraintis in
additionto the requirement that any role changebe au-
thorizedby a role allow rule in theRBAC configuration.
The“privrole” attributewould typically belimited to the
domain for login. It might alsobe associatedwith the
domain for a newrole programto allow usersto change
roleswithin a session.

3.4.6 Security context configuration The ini-
tial sid contexts file, or the initial sid contexts.mlsfile
if the MLS policy is enabled, contains the security
context for eachSID that was predefined for system
initialization. Eachsecuritycontext consistsof a user,
a role, a typeand,if theMLS policy is enabled, a MLS
range, as shown in Figure 12. Since the initial SIDs
do not correspond to authenticated users, they use a

16

3 SECURITYSERVER 3.5 PrototypeImplementation

3 2 system_u:obje ct_r:public_t: u
system_u:obje ct_r:public_t: u

Figure13: Security contexts for unlabeled filesystems.

tcp 21 system_u:o bject_r:ftp_t: u

eth0 system_u:obj ect_r:netif_et h0_t:u
system_u:obj ect_r:netmsg_e th0_t:u

127.0.0.1 255.255 .255.255
system_ u:object_r:nod e_lo_t:u

10.33.1.2 255.255 .255.255
system_u:ob ject_r:nfs_cli pper_t:u
system_u:ob ject_r:nfs_cli pper_t:u

Figure14: Security contexts for network objects.

systemu useridentity.

The fs contexts file, or the fs contexts.mlsfile if the
MLS policy is enabled, contains thesecuritycontexts to
usewhenanunlabeledfile systemis mountedfrom ade-
vice, asshown in Figure13. For eachfile system,the
majorandminordevicenumbersof thedevicearespeci-
fied,followedby thefile systemsecuritycontext andthe
securitycontext for existingfiles in thefile system.If no
entryis specifiedfor a device, thenthesecuritycontexts
associatedwith theinitial SIDsfsandfileareused.These
initial SIDs arealsousedfor the root file systemif it is
unlabeled,sincethesecurityserver is not yet initialized
whentheroot file systemis mounted.

Thenet contextsfile, or thenet contexts.mlsfile if the
MLS policy is enabled, containsthe securitycontexts
for port numbers, network interfacesnodes, and NFS
servers,asshown in Figure14. Thecurrent policy con-
figuration languageonly supportsportsandaddressesin
theAF INET addressfamily, althoughthesecurityserver
interfacesaremoregeneral. For eachport, theprotocol
(tcpor udp) andport rangearespecifiedfollowedby the
port securitycontext. If no entry is specifiedfor a port,
thenthesecuritycontext associatedwith the initial SID
port is used.

For eachnetwork interface,theinterfacenameis spec-
ified followed by the interfacesecuritycontext andthe
securitycontext for any unlabeledmessagesreceived on

theinterface. If noentryis specifiedfor a network inter-
face,thenthesecuritycontextsassociatedwith theinitial
SIDs netif andnetmsgareused. For eachnode,a net-
work addressandanetwork maskarespecified,followed
by thenodesecuritycontext. Themaskis appliedto the
nodeaddress passedto the securitynode sid interface,
andthe result is thencomparedto the network address.
In the current implementation, the entriesare checked
for a matchin the sameorderthat they arespecifiedin
theconfiguration. If no matchingentryis specifiedfor a
node, thenthesecuritycontext associatedwith theinitial
SID node is used.

For eachNFSserver, anetwork addressandanetwork
maskarespecified,followedby thefile systemsecurity
context andfile securitycontext. Themaskis applied to
thenodeaddresspassedto thesecuritynfs sid interface,
andthe result is thencomparedto the network address.
In the current implementation, the entriesare checked
for a matchin the sameorderthat they arespecifiedin
theconfiguration. If no matchingentryis specifiedfor a
node, thenthesecuritycontext associatedwith theinitial
SID nfs is used.

3.5 Prototype Implementation

This sectiondescribes the implementationof thecur-
rentLinux securityserverprototype.Thesecurityserver
sourcecodeis locatedin the securitysubdirectory. In
additionto beingusedto build the securityserver, this
codeis usedin combinationwith policy scan.landpol-
icy parse.y to build thecheckpolicy program.Thecheck-
policy program is usedto compile the policy configu-
ration datainto a binary representation for the security
server. The -d option to the checkpolicy programmay
beusedto interactively testthesecurityserver functions
on a policy configuration.This optionpermits testingof
a policy configuration prior to loadingit into a running
securityserveror prior to bootingakernelwith it.

The securityinit interface of the security server
is implemented in init.c. This function calls pol-
icydb.c:policydb read to create an in-memory rep-
resentation of the policy configuration data (poli-
cydb.h:policydb t) from the /ss policy file. It then
calls policydb.c:policydb load isids to load the initial
SIDs from the policy configuration into the SID ta-
ble (sidtab.h:sidtab t). Finally, it sets a global flag,

17

3 SECURITYSERVER 3.5 PrototypeImplementation

ss initialized, to indicatethat thesecurityserver hasini-
tialized.

All of theotherinterfacesof thesecurityserver areim-
plemented in services.c, with the correspondingsystem
call functions in syscalls.c. Eachof the interfacefunc-
tionsdisablesinterrupts locally andtakesa singleglobal
spinlock (ss lock) on entryusingspin lock irqsave, and
eachfunction usesspin unlock irqrestore before return-
ing. This locking schemeis likely to change to onethat
usesreader-writer spinlocks, sinceseveral of the secu-
rity serverfunctionsonly requirereadaccessto its global
datastructures.Severalof thesefunctions aresplit into
a small stub function that handleslocking anda sepa-
ratefunction with the prefix unlocked that implements
the interface functionality. Although this separationis
notcurrently used,it couldbeusedto permitthesecurity
serverto call oneof theunlocked functionsfromanother
function withoutdoubly locking.

3.5.1 compute av The un-
locked securitycompute av function setsthe sequence
number to thevalueof latestgranting, a global counter
that is incrementedby thesecurityload policy function
whena new policy configuration is loaded. Then, the
function setsthe decidedvector to containall permis-
sions, since none of the policies implemented by the
securityserver prototypedefer the computationof any
permissions.

If the securityserver hasnot yet initialized, thenthe
unlocked securitycompute av function simply returns
therequestedpermissions in boththedecided vector and
theallowedvector. Hence,all requestedpermissionsare
granted until the initialization of thesecurityserver has
completed. This is necessarybecausesomepermission
checksoccurbefore the securityinit function is called,
e.g. fork permissionfor kernel threadsandcreateper-
missionfor the ICMP socket andthe TCP resetsocket.
Additionally, asearch permissioncheckoccurswhenthe
securityinit functionopensthepolicy configurationfile.

A moresecuresolutionwould beto preloadthesecu-
rity server stateor theaccessvector cachestatewith the
exact set of permissionsthat are required to initialize.
This initial statecould thenbe includedin the analysis
of theoverall securitypolicy. However, sincethesystem
is still under development,thefull initial stateis not yet

known.

If the security server has initialized, then the un-
locked securitycompute av function looks up the se-
curity contexts for the SID pair in the SID hash ta-
ble (sidtab.h:sidtabt). These security contexts are
storedusing a structure that is private to the security
server (context.h:context struct t). The function then
looks up the attributesassociatedwith the class(poli-
cydb.h:classdatumt).

The function setsthe valuesof the accessvectors to
theirdefaultvalues.It thenlooksfor anaccessvector rule
in the TE accessvector table (avtab.h:avtab t) for the
typepairandclass.If a ruleexists,thenthefunctionsets
thecorresponding accessvectors to thevectors specified
by therule.

If the MLS policy is enabled,the function thencalls
the MLS policy (mls.c:mlscompute av) to remove any
permissions from theallowedvector thatareprohibited
by the MLS policy. The MLS policy removesany per-
missionsfrom allowed that aremapped to a MLS base
permissionthatwouldbedenied.

The function thenchecksthe list of constraints asso-
ciatedwith theclassfor any constraints thatapplyto the
permissions in allowed. Theconstraint expr eval func-
tion is invokedon eachsuchconstraint. If theconstraint
evaluates to false, then the function removes the con-
strainedpermissionsfrom allowed.

If theprocesstransitionpermissionis beingcomputed
and the role is changing, then the function looks for a
role allow rule that authorizesthe role transition. If no
suchruleexists,thentheprocesstransitionpermissionis
denied.

3.5.2 compute sid The un-
locked securitycompute sid function is used for
the securitytransitionsid, securitymembersid, and
securitychange sid interfaces. It returns the current
process SID or the relatedobject SID if the security
server is not yet initialized depending on the security
class. Although therearecurrently no situationswhere
thefunction is calledprior to initialization, it is possible
that future developmentwill introduce such cases. If
suchcasesdo arisein thefuture,a bettersolutionwould
beto preloadthesecurityserver statewith theSIDsthat
arerequiredto initialize.

18

3 SECURITYSERVER 3.5 PrototypeImplementation

If the security server has initialized, then the un-
locked securitycompute sid functionlooksup thesecu-
rity contexts for theSID pair in theSID hashtable.The
function thensetsthe useridentity for the new context
basedon which interfaceis beingused,andit initializes
therole andtypebasedon thesecurityclass.Thefunc-
tion thenlooksfor atyperule in thepolicy configuration.
If atyperuleexists,thenthetypeis changedaccordingly.

The function thenappliesclass-specificlogic. For a
process, if a transitionis beingrequested,the function
checksfor a role transition rule and changes the role
if a rule is found. If thereis no change in the process
atributes,thenthefunctionsimply returns theSID of the
process. For an object, if thereis no change in the ob-
ject attributesfrom the relatedobject,thenthe function
simply returns theSID of therelatedobject.

The function then sets the MLS attributes
from the processcontext. It then calls the poli-
cydb.c:policydb context isvalid function to verify that
the securitycontext is valid. If the context is not valid,
then the function returns an error. Otherwise,it calls
the sidtabcontext to sid function to obtain a SID that
correspondsto thecontext andreturns.

3.5.3 sid to context The un-
locked securitysid to context function panics if it
is calledbefore thesecurityserverhasinitialized,unless
theSID is predefined. In this case,this function returns
a string containing the nameof the initial SID. This
permits the AVC to call this function for a SID pair
whenwriting anauditrecordprior to theinitializationof
thesecurityserver.

If the security server has initialized, then this
function looks up the security context for the SID
in the SID hash table. It then calls the ser-
vices.c:context struct to string function. This function
computesthe lengthof the securitycontext string,call-
ing mls.c:mlscompute context len to obtain the length
of theMLS fieldsof thestring if theMLS policy is en-
abled.It thenallocatesabufferof thatlengthusingkmal-
loc, copiestheuser, role,andtypenamesinto thebuffer,
andcalls mls.c:mlssid to context to write the MLS at-
tributesinto thebuffer. Thefunction thenreturns.

3.5.4 context to sid The un-
locked securitycontext to sid function panics if it
is calledbefore thesecurityserverhasinitialized,unless
thecontext is simply thenameof an initial SID. In this
case,this function returns thecorrespondinginitial SID.
This is not necessary, but it is provided to parallel the
unlocked securitysid to context function.

If the securityserver has initialized, then this func-
tion createsa copy of the securitycontext string that it
canmodify as it parsesthe string. It thenlooks up the
username,role name,and type namefrom the string
and setsthe valuesin a securitycontext structure for
thesefields. This function callsmls.c:mlscontext to sid
to set the MLS fields in the security context struc-
ture basedon the remainder of the string. Then, it
calls policydb context isvalid to verify that the context
is valid. If the context is valid, the function calls the
sidtabcontext to sid function to obtainaSID thatcorre-
sponds to the context andreturns. Otherwise,it returns
anerror.

3.5.5 load policy The securityload policy function
calls policydb read to createan in-memory representa-
tion of the new configuration. It then applies the ser-
vices.c:validate classfunction to eachentryin theclass
hashtableto verify thateachclassthat is definedunder
theexistingpolicy is still definedwith thesameattributes
in the new policy. Sincethe classandpermissionval-
uesarecompiled into the objectmanagers, the security
server cannotpermit its valuesfor existing classesand
permissions to change during systemoperation.

After checkingthe classes,the securityload policy
function appliesthe services.c:convert context function
to eachentry in the SID hashtable to convert the val-
uesof users,roles,types,sensitivities andcategories in
thesecuritycontext structurefor eachSID to thecorre-
sponding valuesin the new policy. This function calls
mls.c:mlsconvert context to convert the MLS fields of
thestructure. After convertingall of thevalues,thisfunc-
tion alsocallspolicydb context isvalid to verify that the
context is still validunderthenew policy. If it is not,then
theSID is removedfrom theSID hashtable.

Thesecurityload policyfunctiontheninstallsthenew
policy configurationastheactive policy, incrementsthe
latestgranting counter, andcalls the avc ss resetinter-

19

4 ACCESSVECTORCACHE

PERMISSION(S) DESCRIPTION
computeav Compute accessvectors
notify perm Notify about permissions
transition sid Compute new object SID
membersid Compute memberSID
changesid Compute relabel SID
sid to context Obtain context
context to sid Obtain SID
load policy Loadnew policy
get sids Getactive SIDs

Table1: Permissionsfor thesecurity object class.

faceof theAVC componentto resettheAVC. Theglobal
spin lock (ss lock) is releasedbeforecalling the AVC.
This is necessarybecausetheAVC invokesany callback
functions registeredby the object managers for resets,
and thesecallback functions may perform permission
checksto revalidatepermissionsthatareretainedin the
stateof theobjectmanagers.

3.5.6 Other interfaces Since none of the imple-
mentedpolicies basetheir decisionson the history of
completedoperations, thesecuritynotify permfunction
simply returns immediately whencalled. This function
is currently nevercalledsincethekernelobjectmanagers
havenotyetbeenchangedto notify theAVC of operation
completion.

The securityfs sid, securityport sid, secu-
rity netif sid, securitynode sid, and securitynfs sid
functions look for a matching entry from the policy
configuration. If no entry is found, thenthesefunctions
returntheappropriateinitial SIDs. If anentry is found,
then thesefunctions checkto seeif a SID hasalready
beenallocatedfor eachsecuritycontext in the entry. If
not, then thesefunctions call sidtabcontext to sid to
obtaina SID for eachsecuritycontext in the entry and
cachethe SID in the entry. Thesefunctionsthenreturn
thecachedSIDs.

3.5.7 SystemCall Controls Thesecurityserverpro-
totypedefinesa securityclasswith a setof permissions
to control the ability of applications to usethe security
serversystemcalls,asshown in Table1. Thepredefined
security initial SID is usedas the target SID for most
of thesepermissionchecks.The load policy permission

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
compute av security compute av current security
notify perm security notify perm current security
transition sid security transition sid current security
membersid security membersid current security
changesid security changesid current security
sid to context security sid to context current sid
context to sid security context to sid current security
load policy security load policy current file
get sids security get sids current security

Table2: Control requirementsfor security calls.

checkusesthe SID of the configuration file as the tar-
get SID to permit control over the files usedfor policy
configurations.Thesid to context permissioncheckuses
theSID parameterasthetarget SID to permitindividual
control overaccessto securitycontexts. Thepermissions
currently required to invoke eachsystemcall areshown
in Table2. Thesepermissionchecksareimplemented in
thesystemcall functionsin syscalls.c.

Thecontext to sidpermissioncheckcouldbechanged
to similarly usetheSID associatedwith thecontext pa-
rameterasthetargetSID. However, this is not currently
useful,sincethe SID hasalready beenallocatedat that
point. If SID descriptors are implemented, then this
checkshouldbe changed to usethe SID descriptor. In
thatcase,theSID descriptor canbereleasedif thecheck
fails.

4 AccessVector Cache
Theaccessvector cache(AVC) is anew operatingsys-

temcomponentthatprovidescachingof accessdecision
computationsto minimize the performanceoverheadof
the Flask securitymechanisms. This sectiondescribes
the setof interfacesprovided by the AVC to the kernel
objectmanagers. It thendescribesthe setof interfaces
providedby theAVC to thesecurityserver. Finally, this
sectiondescribestheimplementationof theAVC.

4.1 Interfacesfor the Kernel
The datatypesand function prototypesfor the AVC

interfacesprovided for the kernel object managers are
in the include/linux/flask/avc.hheader file. Theseinter-
facesareusedby thekernelobjectmanagersto perform

20

4 ACCESSVECTORCACHE 4.1 Interfacesfor theKernel

permissionchecksandto notify the AVC of completed
operations. This subsectiondescribeseachof the data
typesandinterfacesusedby thekernelobject managers.
For eachdatatype and function prototype, the type or
prototypedefinitionis listedfollowed by adescription of
thetypeor function.

void avc_init(v oid);

Theavc init function initializes the AVC. Thekernel
callsthis function afterthesupport for dynamicmemory
allocationhasbeeninitialized (init/main.c:start kernel)
so that the AVC may allocatememoryusing kmalloc.
Alternatively, theAVC couldbechanged to reserve low
memory for its useduring thekernelinitialization.

typedef struct avc_entry_re f {
avc_ent ry_t *ae;

} avc_ent ry_ref_t;

#define AVC_ENTRY_REF_INIT(h) \
{ (h)->ae = NULL; }

#define AVC_ENTRY_REF_CPY(dst,src) \
(dst)->ae = (src)->ae

The AVC entry reference type (avc entry ref t) con-
sists of a pointer to an entry in the AVC. The AVC
returns a referenceto the entry usedfor a permission
check.An object manager maysave this referencewith
the corresponding object for subsequent use in other
permissioncheckson the object. An object manager
must initialize a reference before its first usewith the
AVC ENTRY REF INIT macro.An object manager may
copy areferencewith theAVC ENTRY REF CPYmacro.
AVC entryreferencesshouldonlybedereferencedby the
AVC functions.

typedef struct avc_audit_da ta {
char type;

#define AVC_AUDIT_DATA_FS 1
#define AVC_AUDIT_DATA_NET 2

union {
struct {

struct dentry *dentry ;
struct inode *inode;

} fs;
struct {

char *netif;
struct sk_buff *skb;
struct sock *sk;
__u16 port;
__u32 daddr;

} net;
} u;

} avc_aud it_data_t;

#define AVC_AUDIT_DATA_INIT (_d,_t) \
{ memset((_d), 0, \

sizeof(struct avc_audit_d ata)); \
(_d)->t ype = AVC_AUDIT_DATA_##_t; }

The AVC audit datatype (avc audit data t) consists
of object or parameterinformation provided by the
objectmanager for the AVC to usewhena permission
check is audited. This data supplements the audit
information directly available to the AVC (i.e. the
SID pair, the class, the requestedpermissions,and
information about the current process). The type field
indicateswhat type of data is being provided by the
object manager to the AVC. Currently, two types
are supported: file system (AVC AUDIT DATA FS)
and networking (AVC AUDIT DATA NET). The
AVC AUDIT DATA INIT macromay be usedto initial-
ize thedatawith a specifiedtype.

If thefile systemtypeis used,thentheobjectmanager
mayseteitherof thefields in the fs structureto identify
the file involved in a permissioncheck. If a dentry for
the file is available,thenthe dentryfield shouldbe set.
Otherwise,the inodefor thefile maybeset.

If thenetworking typeis used,thentheobjectmanager
may setany of the fields in the net structure. The netif
field maybesetto identify a network interface.Theskb
field may be set to identify a packet. The sk field may
besetto identify a socket. Theport field maybesetto
identify a port number. The daddr field may be set to
identify anIPv4address.

inline int avc_has_pe rm_ref_audit (
securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,
access_ vector_t requested ,
avc_ent ry_ref_t *aeref,
avc_aud it_data_t *auditda ta);

21

4 ACCESSVECTORCACHE 4.1 Interfacesfor theKernel

The avc haspermref audit inline function deter-
mineswhether therequestedpermissionsaregrantedfor
thespecifiedSID pairandclass.If aeref refersto avalid
AVC entryfor thispermissioncheck,thenthereferenced
entryis used.Otherwise,this function obtainsavalid en-
try andsetsaeref to referto this entry. To obtaina valid
entry, this function first searchesthecache.If this fails,
thenthis functioncallsthesecuritycompute av interface
of thesecurityserver to compute theaccessvectorsand
addsa new entry to the cache. If the appropriateaudit
accessvector (auditallow or auditdeny) in theentryindi-
catesthat the permissioncheckshouldbe audited,then
this function auditsthe permissioncheck,usingtheau-
ditdataparameter to supplementtheauditinformation.

This function returns 0 if permission is granted.
If the security server returns an error upon a secu-
rity computeav call, then this function returns that er-
ror. If thesecurityserver returnsasequencenumber that
is less than the latestpolicy change sequencenumber,
then this function discardsthe securityserver response
andreturns-EAGAIN . If permissionis denied, thenthis
function returns-EACCES.

The kernel objectmanagerscall this function to per-
form permission checks. Kernelobjectmanagers may
alsousevariantsof this function,suchasavc hasperm,
avc haspermaudit, and avc haspermref, in order to
omit the referenceor auditdataparameters.Kernelob-
ject managers mayalsousemacroversionsof this func-
tion, suchasAVC HASPERMREF, AVC HASPERM,
andAVC HASPERMAUDIT, in order to automatically
includetheclassname in thepermissionsymbol.

inline int avc_notify _perm_ref(
securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,
access_ vector_t requested ,
avc_ent ry_ref_t *aeref)

The avc notify permref inline function notifies the
AVC componentthatanoperationassociatedwith there-
questedpermissionshascompletedsuccessfully. If any
of therequestedpermissionsarein thenotifyaccessvec-
tor of the corresponding AVC entry, then this function
calls the securitynotify perm interface of the security
server to notify thesecurityserver thattheoperation has

completedsuccessfully. If aeref refersto a valid AVC
entry for the requestedpermissions,thenthereferenced
entry is usedto obtainthenotify vector. Otherwise,this
function obtainsa valid entry andsetsaeref to refer to
thisentryin thesamemannerasavc haspermref audit.

This function returns 0 if the notification is success-
ful. If the securityserver returns an error upona secu-
rity computeav call or a securitynotify permcall, then
this functionreturns thaterror. If thesecurityserver re-
turnsasequencenumberthatis lessthanthelatestpolicy
change sequencenumber, thenthis function discardsthe
securityserver responseandreturns -EAGAIN .

Thekernel objectmanagershavenotyetbeenchanged
to call this function. Kernelobjectmanagersmay also
usea variant of this function, avc notify perm, in order
to omit thereferenceparameter. Kernel objectmanagers
may also usemacroversionsof this function, suchas
AVC NOTIFY PERMREFandAVC NOTIFY PERM, in
orderto automatically include theclassnamein theper-
missionsymbol.

#define AVC_CALLBACK_GRANT 1
#define AVC_CALLBACK_TRY_REVOKE 2
#define AVC_CALLBACK_REVOKE 4
#define AVC_CALLBACK_RESET 8
#ifdef CONFIG_FLASK_AUDIT
#define AVC_CALLBACK_AUDITALLOW_ENABLE 16
#define AVC_CALLBACK_AUDITALLOW_DISABLE 32
#define AVC_CALLBACK_AUDITDENY_ENABLE 64
#define AVC_CALLBACK_AUDITDENY_DISABLE 128
#endif
#ifdef CONFIG_FLASK_NOTIFY
#define AVC_CALLBACK_NOTIFY_ENABLE 256
#define AVC_CALLBACK_NOTIFY_DISABLE 512
#endif

int avc_add_cal lback(
int (*callb ack)(

__u32 event,
security_ id_t ssid,
security_ id_t tsid,
security_ class_t tclass,
access_ve ctor_t perms,
access_ve ctor_t *out_retain ed),

__u32 events,
security_id _t ssid,
security_id _t tsid,
security_cl ass_t tclass,

22

4 ACCESSVECTORCACHE 4.2 Interfacesfor theSecurityServer

access_vect or_t perms);

The avc add callback function registers an object
manager callbackfunctioncallback with theAVC com-
ponent for policy changenotifications. Whenthe secu-
rity server callsanAVC interfacethatcorrespondsto an
event in the set eventswith a SID pair, classand per-
missionsthatmatchssid, tsid, tclassandperms, theAVC
componentcallstheregistered callback function with the
parametersprovided by the securityserver. The call-
back functionmaythenupdateany affectedpermissions
thatareretainedin thestateof theobjectmanager. The
wildcardSID, SECSID WILD, maybeusedfor thessid
andtsid parameters to matchall SID values.Permission
vectors matchif they have a non-null intersection. The
meaning of eachevent valueis explainedin thedescrip-
tion of the corresponding interface in the next subsec-
tion. Callbackfunctionshave not yet beenimplemented
for the kernel object managers, so this function is not
currently called.

4.2 Interfacesfor the Security Server
The function prototypes for the AVC interfaces

provided for the security server are in the in-
clude/linux/flask/avcss.hheaderfile. Theseinterfaces
areusedby the securityserver to managethe cacheas
neededfor policy changes. This subsectiondescribes
eachof theseinterfaces. For eachinterface,the func-
tion prototypeis listed followedby a descriptionof the
interface.

int avc_ss_gran t(
securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,
access_ vector_t perms,
__u32 seqno);

The avc ss grant function grants previously denied
permissions for a SID pair andclass.ThewildcardSID,
SECSIDWILD, maybeusedfor thessidandtsid param-
etersto matchall SID values.This functionaddstheper-
missionsin permsto theallowedvectorin any matching
entriesin thecache.It thencallsany callbacks registered
by anobjectmanager for theAVC CALLBACK GRANT
event with a matchingSID pair, classandpermissions.

Permissionvectors matchif they have a non-null inter-
section. This function updatesthe latestpolicy change
sequence number to the greaterof its current valueand
theseqnovalue.

int avc_ss_try_ revoke(
securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,
access_ vector_t perms,
__u32 seqno,
access_ vector_t *out_reta ined);

The avc ss try revoke function tries to revoke previ-
ously grantedpermissionsfor a SID pair andclass,but
only if they arenotretained in thestateof anobjectman-
ager. If any of thepermissionsin permsareretained,the
retainedpermissions are returnedin out retained. The
wildcardSID, SECSID WILD, maybeusedfor thessid
andtsid parametersto matchall SID values. This func-
tion calls any callbacksregisteredby an object man-
agerfor theAVC CALLBACK TRY REVOKE event with
a matching SID pair, classandpermissions.Permission
vectors matchif they have a non-null intersection. Each
callbackis expectedto identify which matchingpermis-
sionsareretained in thestateof theobjectmanager. The
setof retainedpermissions returned by eachcallbackis
addedto out retained. This function thenremovesany
permissions in permsthatwerenot retainedfrom theal-
lowedvectorin any matchingentriesin thecache.This
function updatesthelatestpolicy changesequencenum-
berto thegreaterof its current valueandtheseqnovalue.

int avc_ss_revo ke(
securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,
access_ vector_t perms,
__u32 seqno);

Theavc ss revokefunctionrevokespreviouslygranted
permissions for a SID pair andclass,evenif they arere-
tainedin the stateof an objectmanager. The wildcard
SID, SECSIDWILD, may be usedfor the ssid and tsid
parametersto matchall SID values. This function re-
movesany permissions in permsfrom theallowedvec-
tor in any matchingentriesin the cache. It then calls

23

4 ACCESSVECTORCACHE 4.3 Implementation

any callbacks registered by an object manager for the
AVC CALLBACK REVOKE event with a matchingSID
pair, classandpermissions.Permissionvectorsmatchif
they have a non-null intersection. Eachcallbackis ex-
pectedto revoke any matchingpermissions that arere-
tainedin the stateof the objectmanager. This function
updatesthelatestpolicy changesequencenumberto the
greaterof its current valueandtheseqnovalue.

int avc_ss_rese t(__u32 seqno);

Theavc ss resetfunction flushesthecacheandreval-
idatesall permissions retainedin the stateof the ob-
ject managers. This function invalidatesall entriesin
the cache. It thencalls any callbacksregistered by an
objectmanager for theAVC CALLBACK RESETevent.
Eachcallbackis expectedto revalidatepermissions that
areretainedin thestateof theobjectmanager by calling
avc haspermref audit or oneof its variants.This func-
tion updates thelatestpolicy changesequencenumberto
thegreaterof its currentvalueandtheseqnovalue.

int avc_ss_set_ auditallow(
securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,
access_ vector_t perms,
__u32 seqno,
__u32 enable) ;

Theavc ss set auditallow functionenablesordisables
auditingof grantedpermissionsfor a SID pairandclass.
ThewildcardSID, SECSID WILD, maybeusedfor the
ssidandtsid parametersto matchall SID values.Theen-
ableflag shouldbe1 to enableauditingand0 to disable
auditing. This function addsor removes,depending on
the valueof enable, the permissions in permsfrom the
auditallow vector in any matching entriesin thecache.It
thencallsany callbacks registeredby anobjectmanager
for the AVC CALLBACK AUDITALLOW ENABLE or
AVC CALLBACK AUDITALLOW DISABLE event with
a matching SID pair, classandpermissions.Permission
vectors matchif they have a non-null intersection. This
function updatesthelatestpolicy changesequencenum-
berto thegreaterof its current valueandtheseqnovalue.

int avc_ss_set_ auditdeny(

securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,
access_ vector_t perms,
__u32 seqno,
__u32 enable) ;

Theavc ss setauditdenyfunction enablesor disables
auditingof denied permissions for a SID pair andclass.
It hasthesamebehavior asavc ss set auditallow, except
that it modifies theauditdenyvectorandit is associated
with the AVC CALLBACK AUDITDENY ENABLE and
AVC CALLBACK AUDITDENYDISABLEevents.

int avc_ss_set_ notify(
securit y_id_t ssid,
securit y_id_t tsid,
securit y_class_t tclass,
access_ vector_t perms,
__u32 seqno,
__u32 enable) ;

Theavc ss setnotify functionenablesor disablesno-
tification of completed operations for a SID pair and
class.It hasthesamebehavior asavc ss setauditallow,
except that it modifiesthe notify vectorand it is asso-
ciatedwith theAVC CALLBACK NOTIFY ENABLEand
AVC CALLBACK NOTIFY DISABLE events.

4.3 Implementation
This subsectiondescribesthe implementation of the

AVC. The include/linux/flask/avc.h header file contains
the inline AVC functions that are called by the kernel
objectmanagers. The kernel/avc.csourcefile contains
therestof theimplementationof theAVC.

The avc init interface is implemented in avc.c. This
function allocatesmemory for all of the cache en-
tries using kmalloc and addsthem to an internal free
list. This function also allocatesa page of mem-
ory using get freepage to use as a buffer for the
fs/dcache.c:d pathfunction whencreatingpathnamesfor
auditrecords.

Both avc haspermref audit andavc notify permref
are implemented as inline functions in avc.h. Each
of thesetwo functions disablesinterrupts locally and
takes a single global spin lock (avc lock) on en-
try using spin lock irqsave, and each function uses

24

5 PROCESSMANAGEMENT

spin unlock irqrestore before returning. The avc lock
is releasedbefore calling securitycompute av andreac-
quiredupon thereturnfrom thatcall so that theAVC is
not lockedduring the accessvector computation by the
securityserver. Similarly, the avc lock is releasedbe-
fore calling securitynotify perm. The two inline AVC
functions call avc.c:avc lookupto searchthe cacheand
avc.c:avc insert to adda new entry to the cache. The
avc haspermref audit functioncallsavc.c:avc audit to
auditpermissionchecks.

The avc.c:avc audit function uses printk to log
whetherpermissionwas granted or denied, the names
of therequestedpermissions, thesecuritycontexts of the
SID pair, andthenameof theclass.If thecurrent process
hasa nonzero PID, thenthePID andexecutablepathof
thecurrent processarealsologged. Theexecutablepath
is determined by using the fs/dcache.c:d path function
on theexecutable’s dentry.

If file systemaudit datais set, then the path,device
number andinodenumber arelogged. Thepathis like-
wise determinedusingd path. If networking auditdata
is set,theninformationabouteachfield that is setin the
net structureis logged. If the socket field is set to an
AF INET socket, then the local and foreign addresses
of the socket are logged. If the socket field is set to
an AF UNIX socket, then the pathor abstractnameis
logged. If the abstractnamespacewas used,then the
initial NULL character is replacedwith an“@” charac-
ter. If thepacket field is setto an IPv4 packet, thenthe
sourceanddestinationaddressesarelogged. If thenet-
work interfacefield is set,thenthenameis logged.

The avc ss grant, avc ss try revoke, avc ss revoke,
avc ss setauditallow, avc ss setauditdeny and
avc ss setnotify functions are implemented in avc.c.
Eachof thesefunctionscallsavc.c:avc control with the
corresponding event value. The avc control function
calls avc.c:avc update cache to update any matching
entriesin the cache,and avc control calls eachof the
callbacksregisteredfor theeventwith matchingparam-
eters. If the event is AVC CALLBACK TRY REVOKE,
then avc update cache is not called until after the
callbacks have been called, since the function must
obtainthesetof retainedpermissionsfrom thecallbacks.
The avc update cache function disables interrupts
locally and takes the global spin lock (avc lock) on

entry, releasingthe lock andenabling interrupts before
returning. The avc control function disablesinterrupts
andtakesthelock only to updatethelatestpolicy change
sequence number.

The avc ss reset function is also implemented in
avc.c. This function disablesinterrupts and takes the
global spin lock to invalidate the cache. Then, af-
ter enabling interrupts and releasing the lock, this
function calls each of the callbacks registered for
the AVC CALLBACK RESET event. Finally, the
avc ss reset function disablesinterrupts and takes the
lock againto update the latestpolicy change sequence
number.

5 ProcessManagement

This sectiondescribes thedesignandimplementation
of theFlasksecuritymechanismsfor Linux processman-
agement.

5.1 Design

In this section,thedesignof theFlasksecuritymech-
anismsin the Linux processmanagement component is
described. This sectionbegins by discussingthe object
classesthatrequire control. Next followsadiscussionof
thenew permissions.Thenthecontrol requirementsfor
the processmanagementsystemcalls areoutlined. Fi-
nally, thechanges to theAPI aredescribed.

5.1.1 Object Classes Processesare the major ab-
stractionin the processmanagementcomponent. The
processobject class was defined for this abstraction.
Whena processis created, it is assignedthe SID of its
parent. ThatSID mayonly bechanged whena new pro-
gramis executed. Unlessotherwisespecified,the new
SID dependsontheold SID andtheSID of thenew pro-
gram.Sincethecomputationof thenew securitycontext
may involve policy-specificlogic, it mustbe computed
by thesecurityserver.

An additional objectclass,capability , wasdefinedto
control the useof Linux capabilities. It is sufficient to
only checkcapabilityuse,but it couldalsobe useful to
placecontrols over their distribution thatcouldaugment
thecurrent approach . However, at this time thatwill not
bedone.

25

5 PROCESSMANAGEMENT 5.1 Design

PERMISSION(S) DESCRIPTION
execute Execute
transition SID Transition
entrypoint Entervia program
sigkill Signal
sigstop
sigchld
signal
fork Fork
ptrace Trace
getsched Getschedule info
setsched Setschedule info
getsession Getsession
getpgid Getprocessgroup
setpgid Setprocessgroup
getcap Getcapabilit ies
setcap Setcapabilit ies

Table3: Permissions for theprocessobjectclass.

5.1.2 Permissions Table3 showsthepermissionsde-
finedfor theprocessmanagementcomponent.Thepro-
cessexecutepermissionis usedto control theability of a
processtoexecutefromagivenexecutableimage.Thisis
distinctfrom thefile executepermissionwhichis usedto
control theability of aprocessto initiatetheexecution of
aprogram.SinceLinux onthex86doesnotsupport read
without executepermissionson memorypages,thebest
degreeof control that canbe obtained in secureLinux
will befrom theprocessexecutepermissioncheckthatis
done. The implicationof this is that it will be possible
for a processto be tricked into executing memory that
waswritten asdata.This problem would not bepresent
onotherarchitecturesthatdonothave this limitation.

Thetransitionpermissionis usedto control theability
of a processto transitionfrom oneSID to another. The
entrypoint permissionis usedto control whatprograms
maybeusedastheentrypoint for a givenprocessSID.
Thispermissionis similar to theprocessexecutepermis-
sion,except that it is only checkedwhena processtran-
sitionsto a new SID. Hence,thesecuritypolicy candis-
tinguishbetweenwhatprogramsmaybeusedto initially
entera given process SID andthe full setof programs
thatmaybeexecutedby thatprocessSID.

This entrypoint permissionis especiallynecessaryin
an environment with sharedlibraries, since most pro-
cessesmustbeauthorizedto executethesystemdynamic

loader. Without separatecontrol over entry point pro-
grams,any securitylabelcouldbeenteredby executing
thesystemdynamic loader. Separateentrypoint control
is alsonecessaryin orderto support securitylabel tran-
sitionson scripts,sincethe new securitylabel mustbe
authorizedto executetheinterpreterandthescript.

Separatepermissionsfor eachsignalcould easilybe
defined, but until empiricalevidencesuggeststhis is nec-
essary, this will not bedone.Separatepermissionswere
definedfor the SIGKILL andSIGSTOP signals,sigkill,
sigstoprespectively, sincethesesignalscannot becaught
or ignored. A separatepermission,sigchld wasalsode-
finedto control theSIGCHLDsignalbecauseexperience
demonstratedthatit wasuseful to control thissignalsep-
arately. A singlepermission, signal, will beusedto con-
trol theremaining signals.

Theptracepermissionisusedtocontrol theability of a
processto traceanotherprocess.Thegetsched, setsched,
getsession, getpgid, setpgid, getcap, andsetcappermis-
sionsareusedto control the ability of a processto ob-
serve or modify the correspondingattributesof another
process. Additional potential controls for scheduling,
sessions,processgroups,andcapabilitiesarediscussed
in Section10.

Currently, a separatepermission for eachLinux ca-
pability is definedfor the capability objectclass. This
allows control over all of theabstractions for which ca-
pabilitiesarecurrently defined. In the future, the con-
trol points for eachcapability will require reexamination
to determine if the capability permissionis sufficient to
control theresource.

5.1.3 Control Requirements Table4 showsthecon-
trol requirementsfor processmanagementsystemcalls.
In it, the control requirementsfor eachsystemcall are
specified,whereeachcontrol requirement is described
by theclass,permission,sourceSID,andtargetSID used
in apermissioncheck.Sincemultiplecallsmayhavethe
samerequirements,morethanonecall maybe listed in
theleftmostcolumnof a singletableentry. In this case,
all of therequirementsin that tableentryapply to all of
thecalls. In the table,thepath target SID indicatesthat
thepermissioncheckshould beappliedto eachdirectory
in thepathprefix, andthedirectory classis abbreviated
by dir.

26

5 PROCESSMANAGEMENT 5.1 Design

CONTROL REQUIREMENT(S)
CALL(S) Class Permission SourceSID TargetSID
execve Dir search Current Path

File execute Current File
Process transition Current New
Process entrypoint New File
Process execute New File
Process ptrace Parent New
FD inherit New FD

kill Process sigkill Current Target
sigstop
sigchld
signal

wait Process sigkill Child Current
sigstop
sigchld
signal

fork Process fork Current Current
clone
uselib Process execute Current File
ptrace Process ptrace Current Target
getpriority Process getsched Current Target
getscheduler
getparam
setpriority Process setsched Current Target
setscheduler
setparam
getsid Process getsession Current Target
getpgid Process getpgid Current Target
setpgid Process setpgid Current Target
capget Process getcap Current Target
capset Process setcap Current Target

Table4: ProcessManagementControl Requirements.

The execvesystemcall is the mostcomplicated pro-
cessmanagementcall to control. Therearetwo relevant
file systempermissionchecks,thesearch checkbetween
theprocessSID andSID of eachcomponentof thepath-
nameto verify thattheprogramcanbeaccessedandthe
executecheckbetweenthecurrent processSID andnew
program’sSID to verify thattheprogramcanbeinitiated
by a processwith thatSID. Thefile systemcontrols are
describedin Section 6.1. A processexecutecheckbe-
tweenthenew processSID andthenew programSID is
doneto verify thatthenew processimagecanexecutein
thesecuritycontext of theprocess.

SinceLinux supportsa variety of binaryformatsthat
mustbehandledduringtheexecvesystemcall, not only
must accessto the program that is to be executed be
controlled, but accessto whatever programsareusedto
support theexecution of thatprogrammustalsobecon-
trolled. An example of this is that whena script is ex-
ecuted,accessto the script mustbe checked aswell as
accessto the interpreterof thescript. Similarly, execute
checksfor sharedlibrariesareneeded. In addition, exe-
cutioncheckswill beplacedin theLinux-specificsystem
call, uselib, to control a process’ability to specifya par-
ticularsharedlibrary duringexecution.

Theability of aprocesstochangeits SIDmustbecare-
fully controlled. This is done during theexecveprocess-
ing sincethis is theonly placewhereaprocess’SID may
change. Whetherthenew SID is specifiedor resultsfrom
a default transition,the transitionpermissionis checked
betweenthe old andnew SIDs, andthe entrypointper-
missionis checked betweenthe new SID and the pro-
gramSID. SID transitions on executablescriptsarenot
preventedasis currently donein Linux with setuidtran-
sitions. Transitionsareprevented,however, if the pro-
cessis sharingpartsof theprocessstate,suchasthefile
descriptor tableor signalhandlers,ascouldbe thecase
whencertainvaluesfor theflagsaresuppliedto clone. If
theprocessis beingtraced,thentheptracepermissionis
checkedbetweentheparentprocessandthenew SID.

Whena SID transitiondoesoccurit is alsonecessary
to revalidateany descriptors.Theneedto control file de-
scriptorsis further discussedin section 6.1. The inherit
permissionfor file descriptors is checkedfor eachopen
descriptor. Any descriptor that doesnot passthe check
will beclosed.Oneconsequenceof this is thatit is quite

27

5 PROCESSMANAGEMENT 5.1 Design

possiblethatstdin, stdout, andstderrcouldbeunexpect-
edly closedon anexecve. This is only aninconvenience
except in theconstructionof commandpipelines.Several
options to minimizethis impactexist. It maybepossible
to addressthis solelywithin thecurrent framework with
correct policy specification.It mayprove worthwhile to
control thesedescriptors separatelyfrom therest.It may
alsobepracticalto modify theshellor construct special
wrapper programsto handle descriptorinheritanceand
securitytransitionsproperly. Theissueis still beingstud-
ied.

The sigkill, sigstop, sigchld and signal permissions
wereaddedto control whetherparticularsignalsmaybe
sentto a processwith a given SID. As signalsareonly
generatedfrom within thekernelor local processes,per-
missionchecking will only be done whenthe signal is
sentandwill not berequired whenit is received. Before
a signal canbe deliveredthe appropriatepermissionis
checkedbetweenthesenderandreceiver SIDs. Because
the fcntl call canbeusedto settherecipientof a signals
generatedfrom asynchronousI/O, theSID of theprocess
mustbesavedin thedescriptionto allow appropriatesig-
nal checking to be done whenthe kernelgeneratesthe
signal.

The ability of one process to wait on anotherneeds
to becontrolledbecauseinformationcanbepassedwith
theexit status.Originally, thedesigncalledfor aprocess
wait permission.It wasplannedthatwhenever asecurity
context transitionwasto occur, thispermissionwouldbe
checkedto determine if theparentprocesswouldbeable
to wait on thechild. If so,thennormal processingcould
proceed. However, if the parentwasto be forbiddento
wait onthechild, thechildwouldhavebeenreparentedto
the init processandtheparent awakenedwith anappro-
priateerror status.This approach hadto be abandoned
becauseit proveddifficult to guaranteetheprocessgroup
semanticsof Linux.

The sameeffect can be more cleanly achieved with
thesignalpermissions.Whenthewait systemcall is ex-
ecuted,theprocesswill only beallowedto wait if there
is a child processthat matches the argument to the call
that is permitted to sendits exit signal to the process.
Thisexit signalis setduring processcreationandcannot
be changed. If the permissioncheckfails andno other
matching childrenprocessesthatcansendtheir exit sig-

nal to the parentexist, the calling processis given an
errormessageindicatingthatnochild wasfound.

WhenaprocessundergoesaSID transition,it is possi-
blethatthepolicy will nolonger permitasignalto bede-
liveredto any processeswaitingonthatprocesswhenthe
transformedprocessterminates.To ensurethatawaiting
processis not left waiting in suchsituations,SID transi-
tions causewaiting processesto be awakened. Waiting
will continueonly if it is in accordancewith thepolicy.

Control of the exit systemcall is not required. The
two issuesassociatedwith it, receiving exit statusinfor-
mationandbeingsignaledby a child process,arehan-
dled by the checking donefor the wait call andsignal
mechanism. A sideeffect of this decisionis thata zom-
bie processmayberetainedin theprocesstableuntil its
parent diessinceits parentmaybepreventedfrom reap-
ing it. In that case,the zombied processwill have to
be reparented to the init processfor reaping, a mecha-
nismalreadypresentin Linux. To makethisdesignwork
properly, it mustbepossiblefor all processes,regardless
of their securitydomain,to signalthe init processto en-
surethatit will beableto reaporphanedprocesses.This
couldbeguaranteedusingthesecuritypolicy mechanism
or throughcodemodifications to thesignalmechanism.

An additional ramificationof usingsignalcontrols to
handle wait and exit notifications comesas a result of
aPOSIXrequirement(POSIX3.2.2.2) to signalany pro-
cessgroupwith stoppedjobswhichbecomesorphanedas
aresultof anexit. If aprocesshasundergoneaSID tran-
sition after it hasdoneoneor moreforks, its deathwill
causea signal to be sentto thosechildreneven though
thepolicy mightprohibit it.

Linux presentsanadditional issuewith regard to sig-
nalsandexiting. It is possiblefor aprocessto setthesig-
nalthatit will receivewhenits parent exits. Thechecking
in thesignalmechanismwill determine if this signalcan
bedelivered,but it maybedesirableto control theability
to usethe prctl systemcall which setsthis signal. This
issueis still beingexplored.

BecauseSID transitionsdo not occurduring the fork
systemcall, mostsecuritypolicieswouldnot require the
explicit control of thiscall. Somepolicies,however, may
have a needto restricta process’ability to createa new
process.The fork permissionwasadded to support such
policies.It is checkedduring calls to fork andits Linux-

28

5 PROCESSMANAGEMENT 5.1 Design

specificgeneralization clone.

The ptrace call is controlled using the ptrace per-
mission. This permissionis initially checked upon
a PTRACE ATTACH or PTRACE TRACEME request.
In the caseof PTRACE TRACEME, the permissionis
checkedbetweentheparentprocessandthecalling pro-
cess.Otherwise,it is checkedbetweenthe calling pro-
cessandthetargetprocess.Thepermissionis alsoreval-
idatedon theotherptracerequestssincethecalling pro-
cessmay have changed its SID or the policy may have
changed. As describedearlier, the ptracepermissionis
alsocheckedduring execveif theSID of a tracedprocess
changes.Finally, theptracepermissionis checkedwhen
a processattemptsto accessthememfile of another pro-
cessin theprocfsfile system.

The getpriority, schedgetscheduler, and
schedgetparam calls arecontrolled using the getsched
permission. The setpriority, schedsetscheduler, and
schedsetparam calls are controlled using the setsched
permission. The getsid, getpgid, and setpgidcalls are
controlled using the getsession, getpgid, and setpgid
permissions, respectively. The capget andcapsetcalls
arecontrolled usingthegetcapandsetcappermissions,
respectively. Thesepermissionsare checked between
thecallingprocessandthetarget processif they differ.

Most systemcalls that requiresuperuserprivilegesto
run should also be controlled by the policy. For these
calls, it may only be necessaryto assigna permission
thatdeterminesif aprocesswith agiven SID canexecute
the call. SincetheLinux capability mechanismalready
controls many of thesecalls, the capability permissions
areusedto makethemsubjectto thecentralsecuritypol-
icy. The sourceandtarget SIDS usedin the capability
permissionchecking areboththatof thecurrent process.
Capabilitiesarediscussedfurtherin Section10.

Systemcalls thatonly permit a processto observe its
own private stateor to modify its own unprivileged pri-
vatestatetypicallydonotrequirecontrols. Someof these
calls are listed in Table5. Otherprocessmanagement
systemcallsmayneedto becontrolled by thepolicy. A
review of the systemcall interfaceto determine the set
of callsthatneedadditional controls is describedin Sec-
tion 10.

Editorial Note:

CALL(S) DESCRIPTION
get*uid Obtain currentprocessinformation
get*gid
getgroups
getitimer
getpgrp
getpid
getppid
getrlimit
getrusage
signal Signal handling
sigaction
sigalstack
sigprocmask
sigpending
sigsuspend
nanosleep Pauseexecution
pause

Table5: ProcessManagementSystemCalls without Control Re-
quirements.

execve secure(..., sid)
Executea file with a specified SID.

getsecsid()
GettheSID of currentprocess.

getosecsid()
GettheSID of currentprocessprior to thelastexecve.

Figure 15: New Linux processmanagement systemcalls for
security-aware applications.

Tables4 and5 respectively will be augmented to include
all PM systemcalls thatdo or do not requirecontrol.

5.1.4 API extensions Figure 15 lists the new pro-
cessmanagementsystemcalls for security-awareappli-
cations.A new call, execvesecure, wasaddedto allow
a security-aware applicationto specify a new SID for
thetransformedprocessresultingfromtheexecutionof a
new program.Currently, thistheonlywaytoallow apro-
cessto specifya SID to which it will transition.Theex-
ecvecall will bea wrapper around this call thatrequests
thetransitionSID to becalculatedby thesecuritypolicy.
Two othersystemcalls, getsecsidandgetosecsid, were
addedto allow a processto get its SID andits SID prior
to thelastexecvecall respectively.

29

5 PROCESSMANAGEMENT 5.2 Implementation

STRUCT FIELD
task sid

osid
avc ref

linux binprm sid
fown struct sid

Table6: Changes to processmanagement datastructuresfor label-
ing.

5.2 Implementation
In this section,the implementationof theFlasksecu-

rity mechanismsin theLinux processmanagementcom-
ponent is described. This sectionbegins by discussing
theimplementationof support for labelingprocessman-
agement objects. Then, the implementation of the new
systemcalls is described. Finally, the mapping of the
control requirementsto thecodeis specified.

5.2.1 Labeling Only minimal modificationsto Linux
datastructuresarerequired to support theprocessman-
agement labelingrequirements,asshown in table6. New
fields for the SID of a processandits SID prior to the
last call to exec were addedto the task structure. To
allow the systemto function properly, the INIT TASK,
definedin include/linux/sched.h had to be modified to
initialize thesenew fields to the initial SID definedin
flask/initial sids. A pointer into theaccessvectorcache,
avc ref, wasalsoaddedto thetaskstructureto beusedas
a performance enhancing hint to theaccessvectorcache
entry likely to containthe resultsof permissioncheck-
ing for that process. A SID field was required in the
linux binprm structurewhich is usedduring exec pro-
cessingto prepare the transformedbinary imageof the
process. Lastly, a SID field was also required in the
fown structto allow proper permissionchecking on sig-
nalsgeneratedby asynchronousI/O.

5.2.2 API Extensions The existing Linux API was
extendedto includeanexecvesecure systemcall which
hasoneadditionalparameterto specifythesecuritycon-
text for the transformedprocess.The main routine for
execveprocessing,do execvein fs/exec.c, wasrenamed
to bedo execvesecure, andanadditional parameter was
addedfor the SID of the specifiedcontext. A new
do execvethat calls do execvesecure with a null SID

was addedto handle the existing execvecall. Whena
null SID is encounteredduring processing, the security
server is consultedvia the securitytransitionsid inter-
facefor adefaultSID thatwill beused.

The two new processmanagementsystemcalls were
straightforwardly implemented in the sysgetsecsidand
sysgetosecsidroutines addedto kernel/sched.c. Like
othersimilar calls, thesetake no argumentsand return
the appropriateelementof the taskstructure aspointed
to by current. As theinformationis requestedonly in the
context of thecalling process,no securitychecking was
requiredfor thesecalls.

All threecallswereaddedto thenew securitylibrary
libsecure anda new header file, proc secure.h wascre-
ated. Additionally, new secure versions of the other
forms of execwhichallow thespecificationof a security
context wereaddedto this library. Alternatively, these
couldhave,andprobablyshould have,beenplacedin the
C library. They wereadded to this new library for ease
of implementation and for portability reasonsand will
likely bemoved to theC library in thefuture.

5.2.3 Control Requirements The processmanage-
ment permissionswere definedin flask/accessvectors
andinterpretedfor eachcomponentpolicy in theappro-
priatefiles in policy. It is throughthesepolicy files that
theneedto allow everyprocessto signaltheinit process
wasaddressed.PermissionchecksusingtheAVC inter-
facewereadded at variousplacesthroughout thekernel
asneeded.

A convenient location to place the execve access
checkswas in the prepare binprm kernel routine used
in the implementation of the execvecall. This routine
wasthenatural choice becauseit is usedfor loadingthe
executable requestedin the systemcall argumentsand
also any otherexecutablesindicatedby the binary im-
ageheader. The specifiedSID for the new processim-
agewas madeaccessiblefrom the linux binprm struc-
ture built for the call. The otherSID valuesnecessary
for permission checkingwere already accessiblefrom
within this routine. In general,placingtheaccesschecks
in this routinemadeit unnecessaryto placeadditional
checksin all of theindividual binaryhandlers. However,
it wasnecessaryto addprocessexecuteandfile execute
checksin the ELF binary handler since it was possi-

30

5 PROCESSMANAGEMENT 5.2 Implementation

ble that it could call other interpreters that otherwise
would have gone unchecked. Thesecheckswereadded
to do load elf binary in fs/binfmtelf.c.

Sincesharedlibrariesareloadedusingmmap, a pro-
cessexecutecheckwasneeded in theold mmaproutine
definedin arch/i386/kernel/sysi386.c. Section6.1.3de-
scribesthecompletecontrol requirementsof mmap. This
check,however, is not sufficient on thex86 architecture
sincea file maybemmappedreadonly andstill beexe-
cuted.This is actuallyaninstanceof thegeneral problem
of not beingableto control execution of anything thata
processcanread. Thesecurityimpactof this particular
problem andthe bestway to minimize it arestill being
investigated.

Whenever acall toexecveis goingto resultin achange
in securitycontext, additional action must be taken to
ensurethat the policy cannot be violated. The call is
aborted with the global variable errno set to EPERM
when there is inappropriatesharingthat resultedfrom
a previous call to clone. Similarly, the call is aborted
with EPERMif theprocessis beingtracedandthepar-
ent processlacksptracepermissionto the new SID for
the process.Opendescriptors mustbe revalidatedwith
the inherit permissionandclosedwhennecessary. This
is done in a new function, revalidate fds which is mod-
eled after the flushold files routine usedto check the
closeon exec flag, called from the flushold exec rou-
tine. Finally, the computecreds routine was modified
to updatethesid andosidfieldsof thetaskstructureand
to call wake up interruptibleon theparent to forceper-
missioncheckingif theparentwaswaiting on thetrans-
formedprocess.If theprocessis not waiting, this action
is harmless.A small sideeffect to this approachis that
it is possiblefor a parentprocessto noticethat its child
hasundergone a SID transitionwhich preventsit from
waiting.

Linux currently checks if signalsmaybedeliveredin
thesendsig info routinedefinedin kernel/signal.cwhich
is thecentralcontrol point for thesignalmechanism.The
appropriate signal permissioncheckswere placedim-
mediatelyafter the existing checks. When the checks
fail, theglobal variable errno is setto EACCES.Linux’s
signalchecking for signalsresultingfrom asynchronous
I/O is donein thesendsigio routinedefinedin fs/fcntl.c.
Heretoo, thepermissioncheckingis done following the

existingchecks.On failure,nosignalis sent.

Signalcheckingis alsousedto control aprocess’abil-
ity to wait on another. Checksto determine if a child’s
exit signalcanbedeliveredto theparent wereaddedto
the syswait4 routine in kernel/exit.c. Whenever a pro-
cessis awakened, Linux checksto seeif the wait call
shouldreturnor if theprocessshouldbeplacedbackto
sleep. At this time, the permissionchecksarerepeated
to ensurethat the waiting processcancontinue to wait.
If not,thewait call returnswith theglobal variableerrno
settoECHILD. Thisensuresthatthewaitingprocesswill
not beblocked indefinitely. In this case,whenthechild
eventually exits, it will remainazombiedprocessuntil it
canbereapedby the init process.

The executepermission check for a sharedlibrary
specifiedin uselib was placed in sysuselib. Failure
abortsthecall with theglobal variableerrnosetto EAC-
CES.

No specialchanges to fork or clone were necessary
to handlethe initialization of the new fields of the task
structure. Whenthe init process is properly initialized
during systemstartup, thosefields are inherited from
theparentprocessduring processcreationautomatically
without modification to the existing code. Since fork
is implemented as a special caseof clone, only the
clonecall actuallyneededmodification. Thepermission
checking wasaddedto thedo fork routinedefinedin ker-
nel/fork.c. TheSID of thecurrentprocesswasusedtwice
in the call to the AVC. Failure abortsthe call with the
global variableerrno setto EACCES.

Theptracepermissioncheckwasaddedto theptrace
system call (arch/i386/kernel/ptrace.c:sysptrace), the
execve call (fs/exec.c:must not traceexecflask), and
the access routines for the mem file in procfs
(fs/proc/mem.c:get task). The scheduling, session,and
process group permissionchecks were added to the
corresponding systemcalls in kernel/sched.cand ker-
nel/sys.c. The setcapand getcap permission checks
were addedto the corresponding systemcalls in ker-
nel/capability.c.

Thechecking for all of thecapability permissions was
centralizedin a singlelocation, thecapable functionde-
fined in include/linux/sched.h. Becausethe capability
checksaredone here,not all of thecontext information
thatmightmakemoreinterestingsecuritypoliciespossi-

31

6 FILE SYSTEM 6.1 Design

OBJECTCLASS
pipe
directory
regular file
symboliclink
characterdevice
block device
FIFO
socket file
file system
file description

Table7: Object classesfor theLinux file systemcomponent.

ble is available.This limits thecheckto only thecurrent
processSID andpreventsthe ability to limit the useof
a capabilityon a per-objectbasisaswaspossiblein the
DTOSsystem.TheAVC referencein the taskstructure
wasusedfor thesepermissionchecks. An important note
is thatthecapabilitypermissionscorrespondto thecapa-
bility definitions in linux/include/linux/capability.h. The
implementationof thechecking mechanismis dependent
onthecorrect orderingof thepermissiondefinitionswith
respectto thecapabilitydefinitions.

6 File System

This sectiondescribes thedesignandimplementation
of theFlasksecuritymechanismsfor theLinux file sys-
tem.

6.1 Design
This sectiondescribes our designfor integrating the

Flask security mechanisms into the Linux file system
component. It begins with a discussionof the object
classesandpermissions definedfor thefile systemcom-
ponent. This is followed by a descriptionof the con-
trol requirementsfor the systemcalls usedto manage
andperform directory andfile operations. Then,theap-
proach for providing persistentlabelsfor files, directo-
ries,andfile systemsis discussed.Finally, thenew file-
relatedsystemcalls definedfor security-aware applica-
tionsaredescribed.

6.1.1 Object Classes The logical abstractionspro-
videdby theLinux file systemcomponentwerestudied
to determine the setof objectclassesthat neededto be

labeledandcontrolledby theFlaskmechanisms.Theset
of objectclassesfor thefile systemcomponentis shown
in Table7. Threeabstractions thatneedto becontrolled,
pipes,files,anddirectories,wereimmediatelyevidentin
the Linux API. Files were further refinedinto separate
objectclassesfor eachfile typedefinedby theLinux API,
i.e. regularfiles,symboliclinks, characterdevices,block
devices,FIFOs,andUnix domainsocketfiles.

Whenapipeis created,it inherits theSID of thecreat-
ing processby default. Whena directory or file is cre-
ated, it is assigneda SID that represents the security
context in which it is createdby default. This context
depends on the securitycontext of the creatingprocess
and the securitycontext of the parent directory. Since
thecomputationof thenew securitycontext mayinvolve
policy-specificlogic, it mustbecomputedby thesecurity
server.

Although file systemsarenot treatedasfirst-classob-
jects in the Linux API, a separateobjectclasswasde-
finedfor thefile systemabstraction. Entirefile systems
arelabelednotonly to control operationssuchasmount-
ing andunmounting but alsoto representthe aggregate
labelof all files within thefile system.

Finally, an object classwas definedfor the file de-
scription abstraction. The term file descriptionis used
by POSIX[3] to describetheinformationreferencedby
afile descriptor, e.g. thefile offset,file statusandfile ac-
cessmodesfor anopen file. File descriptorsmaybein-
heritedacrossexecvecalls,andthey maybetransferred
through IPC. Consequently, it is necessaryto label and
control file descriptions. TheSID of a file description is
inheritedfrom theSID of theprocessthatcreatedit.

6.1.2 Permissions For eachobject class,asetof per-
missionswasdefinedto control accessto objectsin that
class.Thesepermissionswereidentifiedby studying the
servicesprovided by the Linux file systemcomponent.
For eachservice,theobjectswhosestateis observedor
modifiedby theservicewereidentified, andpermissions
for thecorresponding objectclassesweredefined.

Table 8 shows the permissionsdefined for control-
ling accessto the pipe object classand to the file ob-
ject classes.Unlike theexisting Linux file permissions,
which only control the ability to opena file, the Flask
readandwrite permissionsaredefinedfor theactualser-

32

6 FILE SYSTEM 6.1 Design

PERMISSION(S) DESCRIPTION
read Read
write Write or append
append Append
poll Poll/select
ioctl IO control
create Create
execute Execute
access Checkaccessibility
getattr Getattributes
setattr Setattributes
unlink Remove hardlink
link Create hardlink
rename Renamehardlink
lock Lock or unlock
relabelfrom Relabel
relabelto
transition

Table8: Permissionsfor thepipeandfile object classes.

PERMISSION(S) DESCRIPTION
add name Add a name
remove name Remove a name
reparent Changeparentdirectory
search Search
rmdir Remove
mounton Useasmountpoint
mountassociate

Table9: Additional permissionsfor thedirectory object class.

vicesof reading from a file or writing to a file. Theim-
plicationsof this stricterdefinitionarediscussedfurther
in Section6.1.3. A separateappendpermissionwasde-
fined to support append-only accessto a file. Whereas
theexistingLinux accesscontrols permit certainservices
basedonly on theattributesof thedirectory, suchasthe
servicefor obtaining a file’s attributesandthe services
for adding, removing or renaming a hardlink to a file,
Flaskprovidesfiner-grainedcontrol throughcorrespond-
ing file permissionssuchasgetattr, link, unlink, andre-
name. Threepermissionsaredefinedfor therelabel ser-
vice,sinceit is usefulto control therelationshipbetween
eachpairingof the threeSIDs involved: theSID of the
subject,theold SID of thefile, andthenew SID for the
file.

Table9 shows the additional permissionsdefinedfor

PERMISSION(S) DESCRIPTION
mount Mount
remount Changeoptions
unmount Unmount
getattr Getattributes
relabelfrom Relabel
relabelto
transition
associate Associate file

Table10: Permissionsfor thefile systemobject class.

PERMISSION(S) DESCRIPTION
create Create
getattr Getattributes
setattr Setattributes
inherit Inherit acrossexecve
receive Receive via IPC

Table11: Permissions for thefile description object class.

manipulatingdirectories.Threeseparatepermissionsare
providedfor addingentriesto directories, removing en-
triesfrom directoriesandchanging theparent entry(the
.. entry) of a directory during a rename. In contrast,
theLinux accesscontrols usethewrite accessmodefor
all threeservices.Two permissionsaredefined for the
mount service,where the mounton permissionis used
to control the ability of a subjectto mount on a given
mountpoint and the mountassociatepermissionis used
to control the relationshipbetweenthe mounteddirec-
tory andthemountpoint.

Permissionsfor controlling accessto file systemsare
shown in Table10. Permissionsareprovided for con-
trolling mounting andunmountingandfor obtaining file
systemattributes,suchasthenumberof freeblocks.As
with files, threepermissionsaredefinedfor the relabel
service.Theassociatepermissioncontrols whatfiles are
permittedin thefile system.

Table11 lists thepermissions for controlling accessto
file description objects.Eachof thesepermissionsis im-
plicitly grantedfor file descriptionobjects with thesame
SID asthe subject. The getattr andsetattrpermissions
control servicesthatobserve or modify theflagsandthe
file offsetof thefile description. The inherit andreceive
permissions control theserviceof inheriting descriptors

33

6 FILE SYSTEM 6.1 Design

acrossanexecveandtheserviceof receiving descriptors
through IPC,respectively.

6.1.3 Control Requirements After defining permis-
sionsfor theservicesprovidedby theLinux file system
component,control requirementsweredefinedfor each
Linux systemcall thatprovidesoneor moreof theseser-
vices.Thecontrol requirementsspecifythepermissions
that mustbe grantedfor the systemcall to successfully
execute.

In the following tables,the control requirementsfor
eachsystemcall are specified,whereeachcontrol re-
quirement is describedby the class,permission, source
SID (SSID),andtarget SID (TSID) usedin a permission
check.Sincemultiple calls mayhave thesamerequire-
ments,more thanonecall maybe listed in the leftmost
columnof a single tableentry. In this case,all of the
requirementsin thattableentryapplyto all of thecalls.

In thetables,thepathtargetSID indicatesthattheper-
missioncheckshould beappliedto eachdirectory in the
pathprefix. File systemclassesandSIDsareabbreviated
by fs, file descriptionclassesandSIDsareabbreviatedby
fd, anddirectory classesandSIDsareabbreviatedby dir.
A file permissioncheckusesthe classof the file being
accessed,so the file classin the tablesmay be the pipe
class,thedirectory class,or any of thefile objectclasses.

Several of the systemcalls listed in the tableshave
two forms, one of which takes a pathname parameter
andtheothertakesa file descriptor parameter, e.g. stat
andfstat. In the tables,this is expressedas(f)stat. The
corresponding control requirementsareidenticalexcept
thatthedescriptor-basedcall naturally doesnot have the
search requirement.

Table 12 shows the control requirementsfor system
calls that manipulate files. The control requirements
listed in this table for the opensystemcall are the re-
quirementsfor opening an existing file ratherthan the
requirementsfor creatinga new file. The processmust
beableto searchthedirectoriesin thepathprefix, andit
mustbeabletocreatethefile description. Theread, write
andappendrequirementsontheopen systemcall areen-
forcedin accordancewith the flagsto open. The write
permissiongrantseitherwrite accessor append access.
Theappend permissionis only checkedif write permis-
sionis notgrantedandtheO APPEND flag is specified.

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
open dir search current path

fd create current fd
file read current file
file write current file
file append current file

read, fd setattr current fd
readv, file read current file
pread
write, fd setattr current fd
writev, file write current file
pwrite file append current file
sendfile fd setattr current in fd

file read current in file
fd setattr current out fd
file write current out file
file append current out file

mmap fd setattr current fd
mprotect file read current file

file write current file
file append current file
process execute current file

(f)stat dir search current path
lstat file getattr current file
(f)chmod, dir search current path
(f)chown, file setattr current file
lchown,
(f)truncate,
utime(s)
access file access current file
poll, file poll current file
select
fcntl: file lock current file
F GETLK,
F SETLK,
F SETLKW
flock
ioctl: file getattr current file
FIBMAP
ioctl: fd getattr current fd
FIONREAD file getattr current file
ioctl: file getattr current file
FIGETBSZ
ioctl: file getattr current file
GETFLAGS,
GETVERSION
ioctl: file setattr current file
SETFLAGS,
SETVERSION
ioctl file ioctl current file

Table12: Control requirementsfor manipulating files.

34

6 FILE SYSTEM 6.1 Design

Sincethe read, write, andappend permissions arein-
tendedto control the actualservicesof reading from a
file andwriting (or appending) to afile, it is necessaryto
verify that the permissionsarestill granted whenthose
servicesareperformed.Thepriorchecksduringtheopen
call mayno longerbevalid, sincetheprocessmayhave
changedSID, thefile mayhavechangedSID, adifferent
processmaybeusingthefile description, or a change in
the securitypolicy mayhave occurred. Hence,the sys-
tem calls which implement thoseservices,suchas the
read, write andsendfile systemcalls,mustrevalidatethe
permissions obtained during open. The calls mustalso
verify that setattrpermissionto the file description pa-
rametersis granted, sincethe file offset is modified by
thesecalls.

Whenafile is mappedinto memory via themmapcall,
theread, write, andappendpermissionsarerevalidated.
However, thepermissionsmaybecome invalid while the
file is still mapped. Consequently, thepermissionsmust
berevalidatedwhenpages arereadfrom thefile or writ-
ten to thefile, andthepagesfor a file in thepagecache
mustbeinvalidatedwhenthefile is relabeled or a policy
change that would affect accessto the file occurs. The
mmapcall mustalsocheckthe processexecutepermis-
sion to control the ability of a processto executefrom
a particularsharedlibrary. The mprotectcall mustalso
revalidatethesepermissionswhenthecurrent protection
is changed.

Table 13 shows the control requirementsfor system
callsthatmanipulate directories. In additionto requiring
search permissionto directories in the pathprefix, the
chdir, fchdir, andchroot systemcallsrequiresearch per-
missionto the last componentof the path. The control
requirementslisted in this table for the openandcreat
systemcallsaretherequirementsfor creatinga new file.
Theprocessmusthavesearch permissionto thedirecto-
ries in the pathprefix, createpermissionto the file de-
scription,add namepermission to the parentdirectory,
andcreatepermissionto thenew file. Furthermore,the
file must have associatepermission to the file system.
The requirementsfor mkdir, mknod, and symlinkonly
differ from therequirementsfor openin that thereis no
file description.

Therenamesystemcall requiressearch permissionto
both paths,remove namepermissionto the old parent

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
(f)chdir, dir search current path
chroot dir search current dir
open, dir search current path
creat fd create current fd

dir add name current parent
file create current file
fs associate file fs

mkdir, dir search current path
mknod, dir add name current parent
symlink file create current file

fs associate file fs
rename dir search current oldpath

dir remove name current oldparent
file rename current file
dir reparent current file
dir search current newpath
dir add name current newparent
dir remove name current newparent
file unlink current newfil e
dir rmdir current newfil e

link dir search current path
dir add name current parent
file link current file

unlink dir search current path
dir remove name current parent
file unlink current file

rmdir dir search current path
dir remove name current parent
dir rmdir current dir

getdents, fd setattr current fd
readdir dir read current dir
readlink file read current file

Table13: Control requirementsfor manipulating directories.

35

6 FILE SYSTEM 6.1 Design

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
remount dir search current path

fs remount current fs
mount dir search current devpath

dir search current dirpath
fs mount current fs
dir mounton current dir
dir mountassociate root dir

umount dir search current path
fs unmount current fs

ustat fs getattr current fs
(f)statfs dir search current path

fs getattr current fs

Table14: Control requirementsfor manipulating file systems.

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
lseek, fd setattr current fd
llseek
fcntl: fd setattr current fd
F SETOWN,
F SETSIG
fcntl: fd setattr current fd
F SETFL file write current file
fcntl: fd getattr current fd
F GETFL,
F GETOWN,
F GETSIG
ioctl: fd setattr current fd
FIONBIO,
FIOASYNC

Table15: Control requirementsfor manipulatingdescriptions.

directory, renamepermission to the file and add name
permissionto thenew parent directory. If thefile being
renamedis a directory, andits parent directory wouldbe
changed by the rename,then reparent permissionmust
be granted to the file. If a file alreadyexists at the
new pathname, then remove namepermission must be
granted to the new parentdirectory andunlink permis-
sionor rmdir permissionmustbegrantedto theexisting
file or directory.

Table 14 shows the control requirementsfor system
calls that manipulate file systems.The remount call in
thetablerepresents themount systemcall usedwith the
MS REMOUNTflag. The mount call in the table rep-
resentsthe mount systemcall usedto mount a file sys-

tem. Mounting a file systemrequiressearch permission
to boththedevicespecialfile pathnameandto themount
pointpathname,mount permissionto thefile system,and
mounton permission to the mount point directory. The
root directory of thefile systemmusthave mountassoci-
atepermissionto themount point directory.

Table 15 shows the control requirementsfor system
callsthatmanipulatefile descriptions. If a file is opened
with the O APPENDflag, andthis flag is subsequently
clearedvia the F SETFLcommandof the fcntl system
call, thenwrite permissionmust be grantedto the file.
Theothersystemcallsin this tableonly observeor mod-
ify thestateof thefile descriptionitself, sothey only re-
quiregetattr or setattrpermissionto thefile description.
The F SETOWN andF SETSIG commands to the fcntl
systemcall mustalsobe checked againstprocessman-
agement control requirementsto ensurethat the calling
processmaycausesignalsto besentto theowner.

Note that Table 15 does not include entries for
fcntl.F SETFD, fcntl.F GETFD, ioctl.FIONCLEX or
ioctl.FIOCLEX. Theseoperations may be usedto ob-
serve or modify theclose-on-exec flag of a file descrip-
tor. Theclose-on-execflag of a file descriptor is private
to thatfile descriptorandis notpartof thefile description
state.Hence,this flag is not sharedandaccessto it does
not require any permissions.

6.1.4 Persistent Labeling Since file systems,files,
and directories are persistentobjects, an approach for
providing persistentlabelsfor theseobjectswasdevel-
oped. To ensurethat thesecurityattributesof theseob-
jects arepreserved even if the file systemis moved to
another system,the Linux file systemcomponentmust
maintainatablewithin eachfile systemthatspecifiesthe
securitycontext of the file systemandeachfile anddi-
rectorywithin that file system. This approachalsoen-
suresthatthesecurityattributesarepreservedover time,
evenif thepolicy changes,andthatthesecurityattributes
canbeinterpretedby auserif amanual translationof at-
tributesfor anew policy is required.

TheLinux file systemcomponentcanhandle security
contexts without sacrificingpolicy flexibility or perfor-
manceby treating security contexts as opaque strings
andby mapping theselabelsto SIDs by a queryto the
securityserver for internaluseby the file systemcom-

36

6 FILE SYSTEM 6.2 Implementation

open secure(..., fd sid, f sid)
Opena file with a file description labeled fd sid. If creating,
create thenew file with label f sid.

mkdir secure(..., sid)
Create a directory labeledsid.

mknod secure(..., sid)
Create a nodelabeledsid.

symlink secure(... , sid)
Create a symboliclink labeled sid.

stat secure(..., sidp)
Getfile SID of pathname.

lstat secure(..., sidp)
Getsymboliclink SID of pathname.

fstat secure(..., sidp)
Sameasabove, except usinga fd.

statfs secure(..., sidp)
GetfilesystemSID of file systemfor pathname.

fstatfs secure(... , sidp)
Sameasabove, except usinga fd.

chsid(pathn ame, sid)
Relabel file pathnameto sid.

fchsid(fd, sid)
Sameasabove, except usinga fd.

lchsid(path name, sid)
Relabel symboliclink pathnameto sid.

chsidfs(pat hname, fs sid, f sid)
Relabel thefilesystemfor pathname.

fchsidfs(fd , fs sid, f sid)
Sameasabove, except usinga fd.

Figure16: New Linux file-relatedsystemcalls for security-aware
applications.

ponent. For efficient storage,thefile systemcomponent
mayassigna fixed-sizevalue,referredto asa persistent
SID (PSID),to eachsecuritycontext associatedwith an
objectin thefile system,andmaythenpartitiontheper-
sistentlabelingtableinto a mapping betweeneachPSID
andits securitycontext anda mapping betweeneachob-
jectandits PSID.ThePSIDis purely aninternalabstrac-
tion within thefile systemandhasa distinctnamespace
for eachfile system.Hence,PSIDsmaybe lightweight
andthe allocationof PSIDsmay be optimizedfor each
file system.

6.1.5 API extensions To permit applications to cre-
ateobjectswith a specifiedlabel ratherthanthedefault

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
(f)chsid dir search current path

file relabelfrom current file
file relabelto current new
file transition old new
fs associate new fs

(f)chsidfs dir search current path
fs relabelfrom current fs
fs relabelto current new fs
fs transition old new fs
fs associate new file new fs

Table16: Control requirementsfor relabeling.

label,anextendedform of eachof thefile creationsys-
tem calls mustbe addedthat acceptsan additional SID
parameter. To permit applicationsto obtainthe SID of
anobject,anextendedform of eachof thefile statussys-
tem calls must be addedthat return an additional SID
parameter. To permitapplications to change the SID of
an object, new systemcalls must be added. The new
Linux systemcallsthatmustbeaddedfor security-aware
applicationsareshown in Figure16.

For the new systemcalls that are simply extended
formsof existingLinux systemcalls,thesamesetof con-
trol requirementsapply. Thecontrol requirementsfor the
new systemcallsfor relabeling areshown in Table16.

6.2 Implementation
In thissection,ourimplementationof theFlaskfile se-

curity mechanismsin theLinux file systemcomponent is
described. Theimplementationbeganby adding support
for labelingfile systemobjects,followedby theaddition
of thenew systemcalls.Finally, thecontrolrequirements
wereimplemented.

6.2.1 Labeling Thekernel datastructureswerestud-
ied to identify thestructuresusedinternallyfor mounted
file systems(structsuperblock), activefilesanddirecto-
ries (struct inode), andfile descriptions(structfile). All
threeof thesestructuresaredefinedin include/linux/fs.h.
Sincethesestructuresareprivateto thekernelandhave
no specificsizerequirements,a SID field wasaddedto
eachstructure. Sincea struct inode object is usedto
represent all typesof files, anobject classfield wasalso
addedto thestructure.

37

6 FILE SYSTEM 6.2 Implementation

Two otherprivatekernel datastructuresalsorequired
theaddition of SID fields. Theinodeattributesstructure
(struct iattr) is usedfor changing theattributesof a file,
so a SID field wasaddedto this structure,anda corre-
sponding flag (ATTRSID) was definedto indicatethat
the SID is being changed. The file description owner
structure(structfown struct) is usedto storetheidentity
of theprocessthatsettheowneron a file description, so
a SID field wasaddedto this structure.

The implementation of the persistentlabeling table
was partitionedinto a component that is independent
of the file systemtype (fs/psid.c) and a set of compo-
nentsthatarespecificto eachfile systemtype. Most of
theimplementationresidesin thefilesystem-independent
component; hence,persistentlabeling support for ad-
ditional file systemtypes may be easily added. The
filesystem-independent componentimplements themap-
ping betweeneachPSID and its securitycontext using
regular files in a fixedsubdirectory of theroot directory
of eachfile system.TwoPSIDsarereserved: PSID0 rep-
resentsthedefault labelto assignto unlabeledobjectsin
thefile system,andPSID1 representsthelabelof thefile
systemitself. The subdirectory andits files arealways
treatedasbeinglabeledwith a fixedsecuritycontext so
that the securitypolicy may control accessto the map-
ping. Synchronouswrites areusedto update the map-
ping files andthewritesareordered to ensurethat there
arenodangling references.

The interface to the filesystem-independentcompo-
nent is defined in include/linux/flask/psid.h. The file
systemcalls the fs/psid.c:psidinit function to initial-
ize the mapping betweenPSIDsand securitycontexts
whenthefile systemis mounted(fs/super.c:mount root,
fs/super.c:do mount). If the file systemis unlabeled,
then this function obtains the SIDs for the unlabeled
file systemfrom the security server. If the file sys-
tem is unlabeledand it is being mounted read-write,
then this function createsa new PSID mapping on the
file system. If an unlabeled file systemis mounted
read-only initially andis subsequently remountedread-
write, then the fs/psid.c:psidremount function creates
a new PSID mapping on it when it is called by
fs/ext2/super.c:ext2 remount. The file systemcalls the
fs/psid.c:psidreleasefunction to free any memory and
releaseany files usedfor the PSID mapping when the

file systemis unmounted(fs/super.c:do umount).

The filesystem-specificcomponents implement the
mapping betweeneach file and its PSID. Currently,
thefilesystem-specificcomponenthasonly beenimple-
mentedfor thenative Linux file systemtype,ext2. The
ext2-specificcomponentstoresthePSIDfor eachfile in
a formerly unusedfield of the on-disk inode structure
(struct ext2 inode). Sincethe PSID is readily available
in theon-disk inode,noextraoverheadis incurredeither
to obtainthe PSID whena file is accessedor to set the
PSIDwhena file is created.

The ext2fs code calls the fs/psid.c:psidto sid
function to obtain the SID of an existing inode
based on its PSID when the inode is read from
the disk (fs/ext2/inode.c:ext2 read inode). The
fs/psid.c:sidto psid function is calledto obtaina PSID
for aninode basedon its SID whenaninodeis allocated
(fs/ext2/ialloc.c:ext2 new inode) or whenthe SID of an
inodeis changed (fs/ext2/inode.c:ext2 notify change).

6.2.2 API extensions Due to the large number of
new file-relatedcalls and the potential needfor future
expansion, the new file-relatedcalls were implemented
as library functions that invoke a single systemcall,
flaskfilecall, with a first parameter that identifies the
specificcall. Internally, the Linux file systemcompo-
nentusesa variant of theVirtual File System(VFS) in-
terface. Extended forms of the file creationoperations
were addedto this interface to permit the filesystem-
independentcodeto passthe SID of the new file to the
filesystem-specificcode. New operationswouldnothave
beennecessaryif theexistingfile creationoperationsac-
cepteda general attributestructureasa parameter, asin
theBSD VFS interface.

SID parametersneededto beaddedto several internal
functionsto support thenew systemcalls.Someof these
internal functions are called from many different loca-
tions within the kernelandmay be calledfrom kernel-
loadedmodules. Consequently, it was not practicalto
simply change theexisting function andupdate all calls
to it. For suchfunctions, secure wasappendedto the
function name,andthe interfaceandimplementationof
the function wereextended for the new processing. A
stubfunction thatmerelycallsthenew functionwith de-
fault parameterswasadded usingtheold function name

38

6 FILE SYSTEM 6.2 Implementation

andinterface.This permitstheexistingcodeto continue
to usetheold function interface,but introducestheover-
headof anextra function call in thesecases.

6.2.3 Control Requirements TheLinux file system
codewasstudiedto determine thelocationto implement
eachpermissioncheckassociatedwith the control re-
quirementsspecifiedin the design. Several factorsin-
fluencedtheplacement of permissionchecks.Whenever
possible,thepermissioncheckswereimplementedin the
filesystem-independent codeso that they areappliedto
all file systemtypes. Only a few control requirements
arespecificto theext2file systemtype,sothiswasfeasi-
ble for almostall of thepermissionchecks. Permissions
aretypically checkedasearlyaspossiblein theprocess-
ing of eachsystemcall to simplify cleanupfrom permis-
sionfailuresandto easemaintenanceof thechecksasthe
file systemcodeevolves. For servicesthatarealsocon-
trolled by a Linux accesscontrol check, the Flaskper-
missioncheckwasusuallyimplementedat thesamelo-
cation. However, a Flaskpermissioncannot bechecked
until thekerneldatastructuresfor thenecessaryobjects
areaccessibleandappropriately locked. This required
deferring someof the Flask permissionchecks until a
laterpoint in theprocessing.

To reducetheoverheadof permissionchecks, thefile
systemcomponentwas changed to storereferences to
AVC entrieswith its file description(struct file) objects
and inode (struct inode) objects. Two reference fields
were addedto the struct file: one for the permissions
granted to the file description, andone for the permis-
sionsgrantedto thefile. Sincemany of thefile operations
usepathnameparametersratherthanfile descriptors, a
field for storinga referenceto theAVC entrycontaining
thepermissionsgranted to thefile wasalsoaddedto the
structinode.

Table17showsthecontrol requirementsimplemented
in eachkernel function usedto manipulate files. Only
the class and permission are shown for each control
requirement; the sourceSID and target SID can be
found in the corresponding design table. The func-
tionsthatimplement theservicesfor readingandwriting
files revalidate the permissionsinitially checked during
opennamei, using the AVC entry referencein the file
description. Sincethesepermissionsalso migrate into

CONTROL REQUIREMENT(S)
FUNCTION(S) CLASS PERM
filp open fd create
opennamei file read

file write
file append

sys read, fd setattr
sys pread, file read
filemap nopage
do readvwritev fd setattr

file read
file write
file append

sys write, fd setattr
sys pwrite, file write
filemap write page file append
sys sendfile fd setattr

file read
fd setattr
file write
file append

old mmap fd setattr
sys mprotect file read

file write
file append
process execute

cp new stat,cp old stat file getattr
inode changeok file relabelfrom
(SID) file relabelto

file transition
fs associate

inode changeok file setattr
(other)
sys access file access
do select, file poll
do poll
sys fcntl: file lock
F GETLK,
F SETLK,
F SETLKW
sys flock
file ioctl: file getattr
FIBMAP
file ioctl: fd getattr
FIONREAD file getattr
file ioctl: file getattr
FIGETBSZ
ext2 ioctl: file getattr
GETFLAGS,
GETVERSION
ext2 ioctl: file setattr
SETFLAGS,
SETVERSION
sys ioctl file ioctl

Table17: Implementing thefile control requirements.

39

6 FILE SYSTEM 6.2 Implementation

CONTROL REQUIREMENT(S)
FUNCTION(S) CLASS PERM
lookup dentry dir search
sys (f)chdir, dir search
sys chroot
may create dir search

dir add name
opennamei, file create
do mkdir, fs associate
do mknod,
do symlink
do link file link
may delete dir search

dir remove name
vfs unlink file unlink
vfs rmdir dir rmdir
vfs rename file rename
vfs rename dir dir reparent

dir rmdir
vfs rename other file unlink
sys getdents, fd setattr
old readdir dir read
sys readlink file read

Table18: Implementing thedirectory control requirements.

the pagecachefor memory-mapped files, any cached
pagesfrom a file are invalidatedwhen the SID of a
file is changed. As a result, subsequent accessto the
pageswill causefilemapnopage to beexecuted.The in-
odechange ok function implementsboththepermission
checksfor changing theSID of a file andthepermission
checkfor changingtheordinaryLinux attributesof afile.
Only thecontrol requirementsimplementedin ext2 ioctl
arespecificto thefilesystemtype.

The control requirementsimplemented in eachker-
nel function usedto manipulate directories are shown
in Table18. The lookupdentry function checkssearch
permissionon eachdirectory in the pathprefix. All of
the systemcalls usethis function to perform pathname
lookup. Thefunctionsfor changing thecurrent androot
directoriesmustalsoperform a search permissioncheck
against the last componentof thepath. Themaycreate
and maydeletefunctions provide convenient locations
for theFlaskcontrol requirementson thecontaining di-
rectory. Theunlink andrmdir permissioncheckshadto
beimplementedseparatelyfromthemaydeletefunction,
sincethosechecks shouldnot be appliedwhen the re-

CONTROL REQUIREMENT(S)
FUNCTION(S) CLASS PERM
do remount fs remount
do mount fs mount

dir mounton
dir mountassociate

do umount fs unmount
sys ustat fs getattr
sys (f)statfs fs getattr
sys (f)chsidfs fs relabelfrom

fs relabelto
fs transition
fs associate

Table19: Implementing thefile systemcontrol requirements.

CONTROL REQUIREMENT(S)
FUNCTION(S) CLASS PERM
sys lseek, fd setattr
sys llseek
sys fcntl: fd setattr
F SETOWN,
F SETSIG
sys fcntl: fd setattr
F SETFL file write
sys fcntl: fd getattr
F GETFL,
F GETOWN,
F GETSIG
sys ioctl: fd setattr
FIONBIO,
FIOASYNC

Table20: Implementing thefile description control requirements.

namecall removes the old link. The sysgetdentsand
old readdir functions revalidate read permissionusing
theAVC entryreferencein thefile description.

The remaining tables(Table 19 andTable 20) show
thecontrol requirementsimplementedin thekernel func-
tions usedto manipulate file systemsand file descrip-
tions. The mount and mountassociatepermissionsde-
pendon the SID of the file systembeingmounted and
the SID of the root directoryof that file system. Con-
sequently, thesechecksare deferred until after the file
systemmetadatahasbeenloaded,just prior to linking
thefile systeminto thefile systemnamespace.

40

7 OTHERFILE SYSTEMTYPES 7.1 Procfs

7 Other File SystemTypes

This section describeshow the Flask file security
mechanisms were applied to control accessto several
additional file systemtypes. Thesectionbegins by dis-
cussingthe analysis,design,andimplementationof la-
beling for the procfsfile system. It thendiscussesthe
designandimplementationof labelingfor thedevptsfile
system.Finally, it discussesthedesignandimplementa-
tion of labelingfor NFSclientsupport.

7.1 Procfs

This subsectionbegins with an analysisof the procfs
file systemandits implementation. Thedesignfor label-
ing procfsfiles is thendescribed.Finally, theimplemen-
tationof labelingandcontrols is discussed.

7.1.1 Procfs Analysis The Linux procfsfile system
providesan interface to kernel datastructuresasan al-
ternative to thetraditional /dev/kmeminterface.This file
systemis typically mountedat /proc. The /proc file sys-
tem hierarchy is describedin the proc(5) manualpage
andin theDocumentation/proc.txt file.

TheLinux sysctlsystemcall providesaninterfacefor
reading andwriting systemparameters. Thissystemcall
is describedin the sysctl(2)manualpage. The system
parametersarearranged in a treestructure,andthey are
typically alsoaccessiblethrough aparalleldirectory tree
under the /proc/syssubdirectory. In additionto thepre-
viously mentioneddocuments,the /proc/syshierarchy is
describedin thefiles in theDocumentation/sysctldirec-
tory. Basedon the documentationfor sysctl, it appears
that applications should always usethe /proc/sysinter-
faceinsteadof the systemcall interfacefor portability
acrosskernelversions.

Thereis a subdirectory for eachrunning processun-
der /proc, named by its processidentifier. A process
may alwaysusethe /proc/self symbolic link to refer to
its own subdirectory. Theeffective uid andeffective gid
of theprocessis usedfor theuserandgroupownership of
thefiles andsubdirectorieswithin eachprocess-specific
subdirectory. Severalfiles in thesesubdirectoriespermit
any userto readthem: the cmdline, maps, stat, statm,
andstatusfiles. The remainingfiles may only be read
by the owner. The memfile, which providesaccessto

the memory of the process,mayonly be readandwrit-
ten by the owner. The procfs implementation only per-
mits a processto accessits own memfile or the mem
file of a child processthat is stoppedandbeing traced
(fs/proc/mem.c:get task). The Linux 2.2.12 kernel im-
plementation doesnot support write accessto the mem
files dueto a risk of overwriting kernelmemoryif a pro-
cessdiesin themiddleof a write, but future versionsof
thekernelarelikely to support suchaccess.

Most of the files in /proc outside of the process-
specific subdirectoriesare readableby all users. The
mostnotableexceptionsare/proc/kmsgand/proc/kcore,
which are only readable by the superuser. The
/proc/kmsgfile is usedby klogd asasourceof kernellog
informationasanalternativeto thesyslog systemcall in-
terface.The/proc/kcorefile providesaccessto thephys-
ical memoryof the systemin corefile format, andcan
beusedby gdbto examinethecurrent stateof any kernel
datastructures.Thekernel implementationalsorequires
thataprocesspossesstheCAP SYSRAWIOcapabilityto
openthe/proc/kcorefile (fs/proc/array.c:openkcore).

Only the superuser may write to files in /proc out-
side of the process-specificsubdirectories. Most files
that can be written correspond to systemparameters
and are located in /proc/sys. A few files outsideof
/proc/sys also permit writing for configuration. For
example, /proc/mtrr may be written to manipulate the
memory type range register, as described in Docu-
mentation/mtrr.txt. Someof the files under /proc/ide,
/proc/scsi, /proc/bus, and /proc/parport may be written
for device configuration.

The types and functions provided by the
procfs file system to the kernel are defined in in-
clude/linux/proc fs.h. Entries in the /proc file system
are defined by struct proc dir entry objects. The
proc register function maybeusedto addanentryunder
a given parent entry, andthecreateproc entry function
may be used to create and register a dynamically
allocatedentry given a name,mode,and parent entry.
Functions arealsoprovidedfor registering entriesunder
certainwell-definedsubdirectories, such as the net or
scsisubdirectories.

Whenan entry in /proc is lookedup, an inodeis ob-
tainedfor the entry. The fs/proc/inode.c:proc get inode
function copiestheownerandmode attributesfrom the

41

7 OTHERFILE SYSTEMTYPES 7.1 Procfs

entry into the inode when it is requestedby a lookup.
This function alsocalls the entry’s fill inodeoperation.
For process-specificfiles, this operation is implemented
by thebase.c:proc pid fill inodefunction, which copies
theeffective uid andeffective gid of theassociatedpro-
cessinto the inode. The inode.c:proc read inode func-
tion alsocopiesthe effective identity attributesinto the
inodewhentheinodefor aprocess-specificfile is initial-
ized.

Thetypesandfunctionsprovidedby thesysctlcall to
thekernel aredefinedin include/linux/sysctl.h. A sysctl
table is definedby an array of struct ctl table objects.
Eachobjectmay containa pointer to an arrayof child
objects.Thestaticallydeclared kernel/sysctl.c:root table
contains the baseset of sysctl entries. The sysctl init
function calls the register proc table function to create
thecorrespondingentriesunder /proc/sys.

Additional sysctl tablesmay be addeddynamically
by using the register sysctl table function. Unlike
proc register, this function doesnot link the new table
into an existing tablein thehierarchy. Instead,the new
table is addedto a linked list of top-level tables. Con-
sequently, dynamically-registered tables must contain
dummy entriesto provide the pathfrom the root of the
hierarchy to thenewly registeredparameters. Theregis-
ter sysctltablefunctionalsocallstheregister proc table
function on thenewly registeredtable.

When the sysctl system call is called, the ker-
nel/sysctl.c:parse table function looks up the appropri-
atestruct ctl table object,calling the ctl perm function
to checkthat the processhassearchaccessto eachta-
ble in the prefix. Whena matchingentry is found, the
do sysctlstrategy function calls ctl perm to checkthat
theprocesshastheappropriatereadand/orwrite access
to the table. Thectl permfunction is alsocalledby the
do rw proc functionwhenasysctlparameteris accessed
through /proc/sys.

7.1.2 ProcfsLabeling Design To enable thesecurity
policy to control accessto eachprocess-specific subdi-
rectorybasedon thesecurityattributesof theassociated
process,eachprocess-specific subdirectory andits files
will belabeledwith theSID of theassociatedprocess.If
thesecuritypolicy needsto beableto distinguish thein-
dividual files within eachprocess-specificsubdirectory,

thenanew interfacecouldbeaddedto thesecurityserver
thatwould returntheSID for eachfile basedon theSID
of theassociatedprocess.However, it is notevidentthat
the securitypolicy will require suchdistinctions. This
contrasts with the distinctions in file modesamongthe
files in theprocess-specificsubdirectory.

Of particular notein the process-specific subdirecto-
riesarethememfiles,sincethesefiles have thepotential
to provide readandwrite accessto thememory of other
processes.However, the existing restrictionson access
to memseemadequate if theability to ptraceachild pro-
cessis controlledby the securitypolicy. Suchcontrols
needto beaddedto theprocessmanagementcomponent.

Mostof thefiles outsideof theprocess-specificsubdi-
rectorieshave thesamefundamentalsecurityproperties:
readable by everyoneandwriteableonly by administra-
tors. Consequently, mostof thesefiles may be labeled
with a singleSID. This labelingschememaybefurther
refinedover time to providebettersupport for leastpriv-
ilege. It seemsdesirableto provide support for easily
specifying a distinct SID at any point in the /proc hier-
archy and automatically assigningthat SID to all files
below that point that are not explicitly labeled. This
will permit gradual refinement of labelingwith minimal
changes.

Due to the highly sensitive natureof the kmsgand
kcore files,eachof thesefiles will belabeledwith a dis-
tinct SID to permit fine-grainedcontrol over accessto
eachfile. Note that the Flaskcapabilitypermissionfor
CAP SYSRAWIOwill alsoneedto begrantedfor access
to thekcorefile.

As with theLinux accesscontrols for sysctl, theFlask
controls should be samewhether a parameteris ac-
cessedthrough /proc/sysor through the sysctl system
call. Hence,file mandatoryaccesscontrols will beadded
to thesysctlsystemcall codeto parallel thecontrols that
arealready enforcedwhen/proc/sysis accessed.As an
initial step toward leastprivilege, the kernel, vm, net,
fs, and dev subtreeswill eachbe labeledwith a dis-
tinct SID. Additionally, the /proc/sys/kernel/modprobe
file will have a distinct SID to permit fine-grainedcon-
trol over the ability to change the pathexecuted by the
kernelto automatically loadkernelmodules. Theother
files anddirectoriesunder /proc/syswill belabeledwith
a SID thatdistinguishesthemfrom therestof /proc.

42

7 OTHERFILE SYSTEMTYPES 7.2 Devpts

7.1.3 Procfs Labeling Implementation The
base.c:proc pid fill inode function and the in-
ode.c:proc read inode function in fs/proc were
changed to copy the SID of the associatedprocess
into the inode for the process-specificfiles. The in-
ode.c:proc readsuperfunctionwaschangedto initialize
the SID of the root directory andthe file systemof the
procfs file systemto the proc initial SID. The initial
SID wasdeclaredin flask/initial sidsanddefined in the
securitypolicy configuration.

A sid field was addedto the struct proc dir entry
structurein include/linux/proc fs.h. Thefield wasadded
at the end of the structure to ensurethat the stati-
cally declared structurescould be left unchanged. The
proc root kcore, proc root kmsg, andproc sysroot def-
initions in fs/proc/root.cwerechangedto settheSID ex-
plicitly to a distinct initial SID value. The initial SIDs
weredeclaredin flask/initial sidsanddefinedin these-
curity policy configuration.

The inode.c:proc get inode function was changed to
copy theSID fromthestructproc dir entrystructureinto
the inode if the SID is non-null. This change permits
entriesto be individually labeledby settingthe SID in
the structure. If the SID is null, then the inode is left
unlabeledby proc get inode.

The fs/proc/root.c:proc lookup and
fs/proc/fd.c:proc lookupfd functions were changed
to copy the SID from the parent directory inode if the
inodeis unlabeledafterthecall to proc get inode. These
changes causeunlabeled entries to be automatically
labeledwith theSID of theirparentdirectory.

A sid field was addedto the struct ctl table struc-
turein include/linux/sysctl.h. Thefield wasaddedat the
endof thestructureto ensurethat thestaticallydeclared
structures couldbeleft unchanged.Thekernel, vm, net,
fs, anddev entriesin the kernel/sysctl.c:root table def-
inition werechanged to set the SID of eachentry to a
corresponding initial SID. The modprobe entry in the
kern table definition waschanged to set the SID of the
entry to a corresponding initial SID. The initial SIDs
weredeclaredin flask/initial sidsanddefinedin these-
curity policy configuration.

The ctl table inherit sid function was addedto ker-
nel/sysctl.c. Thisfunction traversesasysctltableanden-
suresthatall entriesarelabeled,usinginheritance from

the parent entry as necessary. The sysctl init function
waschangedto call this function ontheroot table.

Thectl table root sid function wasalsoaddedto ker-
nel/sysctl.c. This function is usedto copy theSIDsfrom
theroot sysctltableinto thedummyentriesin a dynam-
ically registeredsysctl table. The ctl table inherit sid
function may thenbe usedto ensurethat all of the en-
triesin thedynamicallyregisteredsysctltablearelabeled
properly. Theregister sysctltablefunctionwaschanged
to call thetwo functions.

Theregister proc table function waschangedto copy
theSID of thectl tablestructure into theproc dir entry
structurereturnedby createproc entry. This change en-
suresthatthe /proc/sysentriesarelabeledwith thesame
SID asthecorresponding sysctlentry.

Thectl permfunction waschangedto checktheFlask
directory search permissionwhena tableentry is being
traversed. This function wasalsochangedto checkthe
Flask file read and/orwrite permissionswhen a table
entry is beingaccessed.Thesechangesensurethat the
Flaskcontrols areenforcedwhenthe sysctlsystemcall
is used. Sincethe ctl perm function is also called by
do rw proc, thesechecksarealsoredundantlyperformed
whenasysctlparameter is accessedthrough /proc/sys.

7.2 Devpts
Thedevptsfile systemprovidesaninterfaceto pseudo

terminal(pty) devices.It is typicallymountedat /dev/pts.
A new pty device file is dynamically createdwhenthe
/dev/ptmx pty mastermultiplex device is opened. At
mount time,auseridentity, group identity, andmodecan
bespecifiedfor all ptyfilesin thedevptsfile system.Typ-
ically, this featureis usedto set the group andmodeto
allow write accessby programsthataresetgidto the tty
group. A useridentity is typically notspecifiedat mount
time. In theabsenceof thecorrespondingmount option,
theuserand/or group identity is inheritedfrom thepro-
cessthatcreatedthepty.

As with theprocfsfile system,an initial SID wasde-
fined for the devpts file systemand its root directory.
The SIDs of the file systemand root directory are set
to this valueby the fs/devpts/inode.c:devpts readsuper
function. Thedevptsstatfsfunction returns this SID as
theSID of thefile system.Thedevpts read inodefunc-
tion returns this SID astheSID of theroot inode.

43

8 NETWORKING

To permitthesecuritypolicy to controlaccessto indi-
vidual ptys,thedevptspty new functionwasmodified to
call thesecurityserver’s securitytransitionsid interface
to obtaina SID for eachnew pty file. The SID of the
creatingprocessandtheSID of theroot directory of the
devptsfile systemarepassedto this interface asinputs.
Thesecurityserverreturns aSID derived from thesetwo
SIDs.Ptyfilesmayneedto besubsequentlyrelabeledby
programsto reflectchangesin thelabelof theassociated
process.For example, the login programcouldrelabel
a pty createdby rlogind basedon the initial security
context of theusershell.

7.3 NFSclient support
To allow thesecuritypolicy on anNFSclient to con-

trol accessto file systemsmountedfrom ordinary NFS
servers,eachNFSfile will be labeledbasedon theNFS
server identity. A file systemsecuritycontext anda file
securitycontext canbespecifiedfor eachNFSserver in
thepolicy configuration.Thesecontextsareappliedtoall
file systemsandall files mountedfrom theNFSserver.

An initial SID is definedasthe default SID for NFS
file systemsandtheir files. If securitycontexts arenot
definedfor the NFS server in the policy configuration,
thenthesecuritynfs sid functionreturnsthis initial SID.
Otherwise,thesecuritynfs sid function returnstheSIDs
thatcorrespondto thesecuritycontexts in theconfigura-
tion.

The fs/nfs/inode.c:nfs readsuperfunction obtainsthe
SIDs for the file systemandroot directoryfrom these-
curity server using the securitynfs sid function. The
nfs statfs function returns the file system SID. The
nfs fill inodefunctioncopiestheinodeSID fromtheSID
of theroot directory. Thenfs notify change function re-
turnsEACCESif theSID is beingchanged,or it checks
setattrpermissionotherwise.

Separatelabelscould be supported for different file
systemsmounted from the sameNFS server, but this
would require thenfs readsuperfunction to passanad-
ditionalparameter to securitynfs sid to identify thepar-
ticularfile system.Sincethemountcall is only provided
with the NFS file handlefor the root directory (asop-
posedto the pathname on the server), this is currently
not implemented. If themount programweremodified
to alsopassthe pathname,thenthe configurationcould

OBJECTCLASS
TCPsocket
UDP socket
raw IP socket
Unix streamsocket
Unix datagramsocket
node
network interface

Table21: Object classesfor theLinux networking component.

specifysecuritycontexts basedon both theserver iden-
tity andthepathnameontheserverfor theroot directory.

8 Networking

This sectiondescribes thedesignandimplementation
of theFlasksecuritymechanismsfor Linux networking.

8.1 Design
This sectiondescribes our designfor integrating the

Flask security mechanismsinto the Linux networking
component. It begins with a discussionof the object
classesandpermissionsdefinedfor thenetworking com-
ponent. This is followedby a descriptionof thecontrol
requirementsfor the systemcalls usedto manage and
perform network interprocesscommunication. Finally,
the new socket systemcalls definedfor security-aware
applicationsaredescribed.

8.1.1 Object Classes The object classes for the
Linux implementation of the AF INET and AF UNIX
protocol families are shown in Table 21. SinceLinux
usesthe BSD socket API, the socket is the principal
controlled objectclass. Thesocket objectclasswasre-
fined into separateobject classesfor the different types
of sockets. Whena socket is createdvia thesocket call,
it inherits the SID of the processthat createdit by de-
fault. If the socket is createdby a connection, then it
inherits the SID of the listeningsocket by default. An
alternativeapproachwouldbeto havethesecurityserver
compute theSID of thenew socket basedon theSID of
thelisteningsocketandtheSID of theclient socket.

The Linux network component createstwo special
purposesockets for useby the AF INET protocol fam-
ily. The tcp socket is usedto sendresetswhena TCP

44

8 NETWORKING 8.1 Design

packetis rejected,sincetheremaybenolocalsocketcor-
respondingto thepacket.Theicmp socket isusedtosend
ICMP messages.Two initial SIDsweredefinedfor these
sockets, with the corresponding securitycontext deter-
minedby thesecurityserver.

For socket types that maintainmessageboundaries,
eachmessageis separatelylabeled. For other socket
types,eachmessageis implicitly associatedwith theSID
of its sendingsocket. Althoughmessagesarelabeledand
controlled,aseparateobjectclassis notnecessary. When
a messageis senton a socket, it inherits theSID of the
sendingsocket by default. When the network compo-
nentreceivesamessagefrom thenetwork, theSID of the
messageis initially setto a default messageSID associ-
atedwith the receiving network interface. This default
messageSID is computedby the securityserver. If the
messagewasprotectedusingthe IPSECprotocols, then
theSID of thereceived messageis setbasedontheinfor-
mationin thecorresponding securityassociation.

Eachmessageis also associatedwith the SID of its
sourcesocket and the desiredSID for its destination
socket. By default, the desiredSID for the destination
socket of a messageis setto theany socket initial SID.
Whenamessageis receivedfromthenetwork, thesource
socket SID of the messageis initially set to the default
messageSID for the receiving network interface. If the
messagewasprotectedusingIPSECprotocols,thenthe
sourcesocketSID andthedestinationsocket SID areset
basedoninformationin thecorresponding securityasso-
ciation.

The nodeobjectclasswasdefinedto permit controls
on inboundmessagesbasedonthesourceaddressandto
permitcontrols on outboundmessagesbasedon thedes-
tinationaddress.Thenetwork interfaceobjectclasswas
definedto permit controls basedonthenetwork interface
usedto sendor receive a message.TheSIDs for nodes
andtheSIDsfor network interfaces arecomputedby the
securityserver.

TCPandUDPportnumbersarelabeledto permitcon-
trols over the ability to bind to particular ports. Only
thoseport numberswhich areoutsideof the rangeused
to automatically bind sockets, ip local port range, are
labeledandcontrolled. Like messages,a separateob-
jectclassis notnecessaryfor port numbers.Thesecurity
servercomputesSIDsfor theportnumbers.

PERMISSION(S) DESCRIPTION
bind Bind name
namebind Useport or file
connect Initi ateconnection
getopt Getsocket options
setopt Setsocket options
shutdown Shutdown connection
recvfrom Receive from socket
sendto Sendto socket
recv msg Receive message
sendmsg Sendmessage

Table22: Additionalpermissionsfor thesocket object classes.

If anAF UNIX socket is associatedwith anobjectin
thefile systemnamespace,therearetwo different objects
with separateSIDs that representthesocket in different
ways. TheAF UNIX socket objectis createdfirst using
thesocket call andit inheritstheSID of thecreatingpro-
cessby default. The socket file object is createdby a
subsequentbind call on thesocket,andit is labeledwith
a SID computedby thesecurityserverbasedon theSID
of the creatingprocessandtheSID of the parent direc-
tory. The socket file objectcontinuesto exist until it is
explicitly unlinkedfrom thefile systemnamespace.If an
AF UNIX socketis associatedwith anamein theabstract
namespace,thereis noseparateobjectfor thename.

8.1.2 Permissions Since sockets are accessed
through file descriptions, the socket object classes
inherit thepermissions definedfor controlling accessto
the file objectclasses.Only the read, write, poll, ioctl,
create, lock, getattr, setattr, relabelfrom, relabelto, and
transitionfile permissionsaremeaningful for sockets.

Table22showsadditional permissionsthatarespecif-
ically defined for controlling accessto thesocket object
classes.Thebind, connect, getopt, setopt, andshutdown
permissionscontrol theability of processesto invokevar-
ioussocket-specific systemcalls. For AF INET sockets,
the namebind permission controls the relationship be-
tweena socket andits port number. For AF UNIX sock-
ets, the namebind permissioncontrols the relationship
betweena socket andits file. The recvfrom andsendto
permissions control the relationshipbetweenthe send-
ing socket andthe receiving socket for datagrams. The
recvmsgandsendmsgpermissionscontrol therelation-

45

8 NETWORKING 8.1 Design

PERMISSION(S) DESCRIPTION
listen Listenfor connections
accept Accept a connection
newconn Create new socket for connection
connectto Connect to server socket
acceptfrom Accept connection from client socket

Table 23: Additional permissions for the TCP and Unix stream
socket objectclasses.

PERMISSION(S) DESCRIPTION
getattr Getattributes
setattr Setattributes
tcp recv Receive TCPpacket
tcp send SendTCPpacket
udp recv Receive UDP packet
udp send SendUDPpacket
rawip recv Receive Raw IP packet
rawip send SendRaw IP packet

Table24: Permissionsfor thenetwork interfaceobject class.

ship betweena datagrammessageandthe receiving or
sendingsocket. Thesetwo permissionsare implicitly
granted if themessageSID is equalto thesending socket
SID.

The connection-orientedserviceprovided by stream
socketsrequiresseveral additionalpermissions,asshown
in Table23. The listen andaccept permissions control
theability of processesto invoke thecorresponding sys-
temcalls.Thenewconn permissioncontrols therelation-
ship betweenthe server socket createdby a connection
and the listeningsocket. This permission is implicitly
granted if thesocketshave thesameSID. Theconnectto
andacceptfrom permissions control the relationshipbe-
tweentheclientsocketandtheserversocket.

The setof permissionsfor the network interfaceob-
ject classis shown in Table24. The setattrandgetattr
permissions control the ability of processesto manip-
ulate the interfaceparameters. The remaining permis-
sionscontrol therelationshipbetweenamessageandthe
network interfaceon which it is sentor received. Simi-
lar permissionsaredefinedfor thenode object class,as
shown in Table25,to control therelationshipbetweenan
inboundmessageandits sourceaddressandtherelation-
ship betweenan outbound messageand its destination

PERMISSION(S) DESCRIPTION
tcp recv Receive TCPpacket
tcp send SendTCPpacket
udp recv Receive UDP packet
udp send SendUDPpacket
rawip recv Receive Raw IP packet
rawip send SendRaw IP packet
enforcedest Enforcedestinationsocket

Table25: Permissionsfor thenodeobject class.

PERMISSION(S) DESCRIPTION
route control Manipulaterouting tables
arp control ManipulateARP table
rarp control ManipulateRARPtable
net io control Usedevice-specific ioctl

Table26: Additionalpermissionsfor thesystemobject class.

address.Theenforce destpermissionfor thenodeobject
classwasdefinedto support theextendedsocketcalls,as
describedin Section8.1.4.

Table 26 shows permissionsthat were addedto the
systemobjectclassfor thenetworking component.The
routecontrol permissioncontrols the ability of a pro-
cessto manipulate the kernel IP routing table. The
arp control and rarp control permissionscontrol the
ability of a processto manipulatethekernelARP cache
and RARP table, respectively. The net io control per-
mission controls the ability of a processto invoke a
device-specificioctl onanetwork device.

8.1.3 Control Requirements This subsectionde-
scribesthe control requirementsfor eachLinux system
call thatprovidesa serviceimplementedby thenetwork
component. The control requirementsspecify the per-
missionsthatmustbegrantedfor thesystemcall to suc-
cessfullyexecute. In the following tables,the control
requirementsfor eachsystemcall arespecified,where
eachcontrol requirementis describedby the class,per-
mission,sourceSID (SSID),andtargetSID (TSID) used
in apermissioncheck.Sincemultiplecallsmayhavethe
samerequirements,morethanonecall maybe listed in
theleftmostcolumnof a singletableentry. In this case,
all of therequirementsin that tableentryapply to all of
thecalls.

46

8 NETWORKING 8.1 Design

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
listen socket listen current so

socket newconn so newconn sid
connect socket connect current client so

socket connectto client so server so
netif tcp send client so netif
node tcp send client so node
netif tcp recv server so netif
node tcp recv server so node

accept socket accept current listen so
socket newconn listen so server so
socket acceptfrom server so client so
netif tcp send server so netif
node tcp send server so node
netif tcp recv client so netif
node tcp recv client so node

write, socket write current so
send, socket connectto so peerso
sendto, socket acceptfrom so peerso
sendmsg netif tcp send so netif

node tcp send so node
netif tcp recv peerso netif
node tcp recv peerso node

read, socket read current so
recv, socket connectto so peerso
recvfrom, socket acceptfrom so peerso
recvmsg netif tcp send so netif

node tcp send so node
netif tcp recv peerso netif
node tcp recv peerso node
fd receive current fd

Table27: Control requirementsfor connection-oriented communi-
cation. The tcp sendandtcp recvpermissionrequirementsonly apply
to TCPtraffic, not Unix stream traffic. Thereceivepermissionrequire-
mentonly appliesto Unix streamtraffic containing file descriptors.

In the tables,network interfaceclassesandSIDs are
abbreviated by netif. A socket permission checkuses
the class of the socket being accessed,so the socket
classin the tablesmaybeany appropriatesocket object
class.Socket SIDsareabbreviatedby so. Sincea single
call may involve multiple sockets,socket SIDs may be
prefixed with a distinguishing identifier, suchas listen ,
client , server, or dst .

Table 27 shows the control requirementsfor system
calls usedto perform connection-orientedcommunica-
tion. For eachof thesecalls, permission is required to
invoke the call on the socket, i.e. the listen, connect,
accept, write, and read permissions.For Unix stream

socketsthatarebound in thefile systemnamespace,the
client processmustbegranted search permissionto the
directoriesin thepathandwrite permissionto thesocket
file in orderto useconnect.

On theserver node,thenewconnpermissionmustbe
granted betweenthe listeningsocket andthenewly cre-
atedserver socket, andthe acceptfrom permissionmust
be granted betweenthe server and client sockets. For
TCP, thesepermissionsarecheckedwhentheserver re-
ceivestheclient’s SYNpacket on a listeningsocket. On
theclientnode, theconnecttopermissionmustbegranted
betweentheclientsocketandtheserversocket. For TCP,
this permissionis checked when the client obtains the
label of the server socket from the server’s SYN-ACK
packet. If a TCP simultaneous openoccurs, thenboth
nodes checkconnecttopermissionwhenthey receive the
other node’s SYNpacket. The appropriate connection
permission(connectto or acceptfrom) must be revali-
datedwhentraffic is sentor received on an established
connection, sincea policy changemay revoke permis-
sionfor theconnection. In thiscase,theconnectionmust
bereset.ForTCP, oneachnode,theappropriatetcp send
andtcp recvpermissionsmustbegrantedfor thenetwork
interfaceandthepeernode.

For Unix streamsockets, the connectto permission
check is redundant with the acceptfrom permission
check,sincethe connectionis local. Nonetheless,both
permissionchecks are performed to maintain consis-
tency with the TCP controls. The network control re-
quirementsfor Unix streamsocketsonly differ from the
TCP requirementsin that thereis no equivalent for the
tcp sendandtcp recvpermissionchecks.

Thereis alsoanadditional file control requirementfor
Unix streamor datagramcommunication, thereceivere-
quirement on file descriptions. As explained in the file
systemcontrol design, openfile descriptionsmustbela-
beledand controlled. The receivepermission must be
granted betweenthereceiving processandeachopenfile
description received through Unix streamor datagram
communication.

Thecontrol requirementsfor connectionlesscommu-
nicationareshown in Table28. As with theconnection-
orientedcalls,permissionis required to invoke eachcall
on the socket, i.e. the connect, write, andreadpermis-
sions. For Unix datagram socketsthatarebound in the

47

8 NETWORKING 8.1 Design

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
connect socket connect current so
write, socket write current so
send, socket sendto so dst so
sendto, socket sendmsg so msg
sendmsg netif udp send msg netif

node udp send msg node
netif rawip send msg netif
node rawip send msg node

read, socket read current so
recv, socket recvfrom so src so
recvfrom, socket recv msg so msg
recvmsg netif udp recv msg netif

node udp recv msg node
netif rawip recv msg netif
node rawip recv msg node
fd receive current fd

Table 28: Control requirementsfor connectionlesscommunica-
tion. Theudp sendandudp recvpermission requirementsonly apply
to UDP traffic. The rawip sendand rawip recv permissionrequire-
mentsapply to any IPv4 traffic other than TCP or UDP. The receive
permissionrequirementonly appliesto Unix datagramtraffic contain-
ing file descriptors.

file systemnamespace,theclientprocessmustbegranted
search permissionto thedirectories in thepathandwrite
permissionto the socket file in order to use connect,
sendto, or sendmsg.

On the sendingnode,the sendtopermissionmustbe
granted betweenthesource anddestinationsockets,and
the sendmsgpermissionmust be grantedbetweenthe
sourcesocket andthe message.For AF INET sockets,
by default,theany socket initial SID is usedasthedesti-
nationsocket SID in thesendtopermissioncheck, since
thesendingnode doesnot know theSID of thedestina-
tion socket. On thereceiving node, therecvfrompermis-
sionmustbegrantedbetweenthedestinationandsource
sockets, and the recvmsgpermissionmust be granted
betweenthe destinationsocket and the message.For
IPv4 traffic, on eachnode, theappropriateudp sendand
udp recvpermissions,or therawip sendandrawip recv
permissions, mustbe grantedfor the network interface
andthepeernode.

For Unix datagram communication, the SID of des-
tination socket is known when the sendtopermission
checkis performed,soit is usedin thecheck.Thesendto
permissioncheckis redundantwith therecvfrompermis-

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
socket socket create current so
bind socket bind current so

socket namebind so port
getsockname socket getattr current so
getpeername socket getattr current so
getsockopt socket getopt current so
setsockopt socket setopt current so
shutdown socket shutdown current so

Table29: Control requirementsfor othersocket calls.

sion check,sincethe communicationis local andsince
the actualdestinationsocket SID is usedin the sendto
permissioncheck.Nonetheless,bothpermissionchecks
are performed to maintain consistency with the UDP
andraw IP controls. Thenetwork control requirements
for Unix datagramcommunicationonly differ from the
UDP requirementsin that thereis no equivalent for the
udp sendandudp recvpermissionchecks. As with Unix
streamcommunication, thereis theadditional receive(fd)
file control requirementwhenreceiving file descriptors.

The control requirementsfor the other socket calls
areshown in Table29. The createpermissionmustbe
granted in orderto createa socket with the socket call.
Theothercalls all require permissionto invoke thecall
on an existing socket, e.g. the getattr permission. For
AF INET sockets,if thebind call is invokedwith a port
number outsideof the rangeusedto automatically bind
sockets,thenthenamebind permissionmustbegranted
betweenthe socket andtheport number. For AF UNIX
sockets,if thebindcall is invokedwith anamein thefile
systemnamespace, thenthenamebind permissionmust
begrantedbetweenthesocketandthesocketfile.

The control requirementsfor the ioctl commands are
shown in Table30. Thecommandsfor manipulating the
attributesof a network interfacearecontrolled through
the setattrandgetattr permissionson eachnetwork in-
terface.Theremainingcommandsarecontrolledthrough
systempermissions.

8.1.4 API extensions Figure 17 shows the new
Linux socket system calls that must be added for
security-aware applications. The getsocknamesecure,
getpeernamesecure, accept secure, recvfrom secure,

48

8 NETWORKING 8.1 Design

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
ioctl: TIOC- socket getattr current so
OUTQ,
INQ
ioctl: SIOC- netif getattr current netif
GIFADDR,
GIFBRDADDR,
GIFDSTADDR,
GIFNETMASK
ioctl: SIOC- netif setattr current netif
SIFFLAGS,
SIFADDR,
SIFBRDADDR,
SIFDSTADDR,
SIFNETMASK
ioctl: SIOC- system route- current kernel
ADDRT, control
DELRT,
RTMSG
ioctl: SIOC- system arp- current kernel
DARP, control
GARP,
CSARP
ioctl: SIOC- system rarp- current kernel
DRARP, control
GRARP,
CSRARP
ioctl: system net io- current kernel
device-specific control

Table30: Control requirementsfor ioctl commands.

and recvmsgsecure calls permit applications to obtain
theSIDsof local andpeersocketsandtheSIDsof mes-
sages.The socket secure and listen secure calls permit
applications to specify a particular SID to usewhen a
new socket is created.Thelisten securecall alsopermits
applications to specify that server socketscreatedby a
connectionshouldbe labeledwith theSID of the client
socket. Thesendtosecureandsendmsgsecurecallsper-
mit applications to specifya particular SID to usefor a
message.

The connect secure, sendtosecure, and
sendmsgsecure calls also permit applications to
specifyadesiredSID for thepeersocket. For connection
requests and outbound datagrams, this restriction can
only be enforced by the destinationnode. However,
a destinationnode may not be capableof enforcing
the restrictionor it may not be trustedto enforce the
restriction. Consequently, the sourcenode performs an
enforce destpermissioncheckbetweenthedesiredSID
andthe destinationnode SID. This checkis not neces-
sary for AF UNIX sockets,sincethe communication is
local.

Whenusedwith streamsockets,connect secure spec-
ifies thedesiredSID of thelisteningsocket. TheSID of
the server socket createdby the connectionmay differ
from thisSID sincetheserverapplication mayhaveused
listen secure. If a client wishesto ensurethat theserver
socket hasa particularSID prior to sending data,thenit
mayobtaintheSID usinggetpeernamesecure. Alterna-
tively, a clientmayspecifythedesiredserversocketSID
with sendtosecure. In this case,sincetheserver socket
SID wasobtained by the client node during connection
establishment,theclientnodemaycheckthedesiredSID
against it.

Sincesockets areaccessedthrough file descriptions,
the fstat secure call mayalsobeusedto obtaintheSID
of a socket. The fchsidcall maybeusedto relabelUDP
sockets,raw IP sockets,Unix datagramsocketsor Unix
streamsockets. Relabelingof TCP sockets is not sup-
portedin thecurrent designbecausethereis no mecha-
nism for synchronizing the change with the peertrans-
port layer. The change might alsoneedto be synchro-
nizedwith thepeerapplication,becausethepeerapplica-
tionmayberelyingonthesocketSIDprovidedby theex-
tendedsocket calls. No mechanismis providedfor such

49

8 NETWORKING 8.2 Implementation

getsockname secure(..., sidp)
GettheaddressandSID of thelocal socket.

getpeername secure(..., sidp)
GettheaddressandSID of thepeersocket.

accept secure(..., sidp)
Accept a connection andreturn theSID of thepeersocket.

recvfrom secure(.. ., sso sidp,msg sidp)
Receive a message,its sourceaddress,the SID of the source
socket, andtheSID of themessage.

recvmsg secure(... , sso sidp,ms g sidp)
Sameasabove, except usingthe recvmsginterface.

socket secure(..., sid)
Create a socket with a specifiedSID.

listen secure(..., sid, useclient)
Set the state of a socket to accept connections andspecify the
SID to usefor server sockets created by connections. If sid is
non-zero, theneach server socket created by a connection will
be labeled with the specified SID. If useclient is non-zero, then
each server socket created by a connection will be labeled with
the SID of its peer socket. It is an error to specifyboth sid and
useclient.

connect secure(... , sid)
Specify theaddressandthedesiredSID of thepeersocket. If the
socket is of type SOCK DGRAM, thendatagramsmayonly be
sentto or received from a socket with the specified SID. If the
socket is of typeSOCK STREAM,then theconnection will fail
unlessthelisteningsocket hasthespecified SID.

sendto secure(..., dso sid, msg sid)
Senda messageandspecify the desiredSID for the destination
socket and/ortheSID of themessage.

sendmsg secure(... , dso sid, msg sid)
Sameasabove, except usingthesendmsginterface.

Figure17: New Linux socket systemcalls for security-awareappli-
cations.

STRUCT FIELD
sock sclass

sid
newconn sid
useclient
peersid

openrequest conn requestsid
newconn sid

sk buff ssosid
dsosid
msgsid

device sid
default msg sid

Table31: Changes to network datastructuresfor labeling.

synchronizationwith thepeerapplication for eitherTCP
socketsor Unix streamsockets.

8.2 Implementation
In this section,the implementationof theFlasksecu-

rity mechanismsin theLinux networking component is
described. This sectionbeginsby discussingthe imple-
mentationof support for labelingnetwork objects.Then,
theimplementationof thenew socketsystemcallsis de-
scribed.Finally, themapping of thecontrolrequirements
to thecode is specified.

8.2.1 Labeling Thekernel datastructureswerestud-
ied to identify the structuresusedinternally for sockets
(structsock andstructsocket), openconnection requests
(structopenrequest), messages(structsk buff), andnet-
work interfaces(structdevice). Sincethesestructuresare
private to the kernel andhave no specificsize require-
ments,they wereextended to include additional fields,
asshown in Table31.

Thestruct sock structurewasextendedto includethe
securityclass(sclass) and the SID (sid) of the socket,
the SID to usefor new socketscreatedby connections
to the socket (newconn sid), a flag to indicate the use
of the client SID for this purpose(useclient), and the
SID of the peer socket (peer sid). The allocator for
structsock objects,sk alloc, initializesthesecurityclass
field to the general socket class, the SID field to the
SID of the current process,and the peerSID field to
theany socket initial SID. The inet createfunction sets
the securityclassfield to be one of TCP socket, UDP

50

8 NETWORKING 8.2 Implementation

socket, or raw IP socket basedon the specifiedsocket
type. The unix create function setsthe securityclass
field to be eitherUnix streamsocket or Unix datagram
socket. The inet listen andunix listen functionsset the
newconn sid field to the SID of the socket by default.
The udp connect andunix dgram connect functions re-
setthepeersid field to theany socket initial SID if the
associationis broken.

Themore abstractstructsocket structure is embedded
in an inodestructure (struct inode), which hasa secu-
rity classandSID field usedby the file controls. The
allocatorfor struct socket objects,sock alloc, initializes
thesecurityclassandtheSID of theinode to thegeneral
socket classandtheSID of thecurrent process,respec-
tively. The inet createandunix createfunctionssetthe
securityclassfield in the inodeto the samevalueasin
thestructsock object.

The struct openrequest structure was extended
to include the SID of the connection request
(connrequestsid) and the SID to use when the
socket for theconnectionis created(newconn sid). This
structuretemporarily storestheseSID valuesfor TCP
until the new server socket is createdat the completion
of theconnectionestablishment.

The struct sk buff structure wasextended to include
theSID of thesourcesocket(ssosid), thedesiredSID of
thedestinationsocket (dsosid) andtheSID of themes-
sage(msgsid). Theallocatorfor struct sk buff objects,
alloc skb, initializesthesourcesocket SID andthemes-
sageSID to theunlabeledinitial SID,andit initializesthe
destinationsocketSID to theany socket initial SID. The
skbclone, skbcopy, and skbrealloc headroom func-
tionspreserve thevaluesof thesethreeSID fieldswhen
messagesare copied. The ip defrag and ip glue func-
tions ensurethat all fragmentsof a messagehave the
samevaluesfor the threeSID fields and that the three
SID fieldsaresetcorrectlyfor thecompletemessage.

When a messageis allocatedfrom a socket’s send
buffer, thesock wmallocfunction setsthesourcesocket
SID andmessageSID to theSID of thesocket, andthe
destinationsocket SID to the peer SID of the socket.
Whenan unlabeledmessageis associatedwith a send-
ing socket, the skbsetownerw inline function setsthe
threeSID fields in thesamemanner. There aretwo spe-
cial casesfor settingtheSID fieldsof anoutboundTCP

message.Whena SYN-ACK is createdfor anormalcon-
nection, tcp make synack setsthesourcesocketSID and
themessageSID to thevalueof thenewconnsid field of
the struct openrequestobject,so that the SYN-ACK is
labeledwith theSID of theserver socket thatwill becre-
atedby theconnectionratherthantheSIDof thelistening
socket. WhenanACK is sentto completea connection
handshake,thetcp sendack functionsetsthedestination
socket SID to the any socket initial SID, sincethe lis-
teningsocket may have a different SID thanthe server
socket.

The struct device structurewas extended to include
the SID of the network interface(sid) and the default
messageSID for the interface (default msgsid). The
devinet ioctl function setsthe SID field andthe default
messageSID field of the network interfaceif it hasnot
beenpreviouslyset.TheseSID valuesareobtainedfrom
thesecurityserverbasedon thenameof thenetwork in-
terface.Whenanunlabeledmessageis received onanet-
work interface,the ip rcv functionsetsthesourcesocket
SID andthemessageSID to thedefault messageSID of
thenetwork interface,andthedestination socket SID to
theany socket initial SID.

When a TCP SYN is received on a listening
TCP socket, the tcp v4 conn requestfunction setsthe
connrequestsid field of the newly allocated struct
openrequestobjectto thesourcesocketSID of themes-
sage. If the useclientflag is set for the socket, then
the newconn sid field of the openrequestobjectis also
set to this value. Otherwise,the newconnsid field of
the openrequestobject is copiedfrom the correspond-
ing field of the socket. If SYNcookies arebeingused,
thenthe openrequestobject is discarded andrecreated
when the client’s ACK is received. In this case,the
connrequestsid field is setto theSID of theACK mes-
sage.

When a TCP ACK is received for an existing struct
openrequestobject,the tcp createopenreq child func-
tion setsthepeerSID of thenewly allocatedstructsock
object to the connrequestsid field of the openrequest
object,andit setstheSID of thenew socket to thenew-
connsid field of the openrequest object. The security
classfor thenewly allocatedstructsock objectis copied
from the listening socket. When a connection is ac-
cepted,the inet accept function copiesthe socket SID

51

8 NETWORKING 8.2 Implementation

andsecurityclassfrom thestructsock objectinto thein-
odefor thestructsocket object.

Whena TCP SYN-ACK is received in theSYNSENT
state,thetcp rcv stateprocessfunction setsthepeerSID
of theclient socket to thesourcesocket SID of themes-
sage. Whena SYN is received in the SYNSENTstate
(asimultaneousopen), thetcp rcv stateprocessfunction
setsthepeerSID of eachsocket to thesourcesocketSID
of themessage.

For Unix streamsockets, the equivalent processing
for connectionestablishment occursentirely within the
unix streamconnect function. If theuseclientflag is set
on the listeningsocket, thenthe SID of the newly allo-
catedstruct sock object is set to the SID of the client
socket. Otherwise,the SID of the new server socket is
copiedfromthenewconn sidfieldof thelisteningsocket.
ThepeerSID of theclient socket is setto theSID of the
serversocket,andthepeerSID of theserversocket is set
to theSID of theclientsocket.

8.2.2 API extensions TheLinux socketcallsareim-
plemented aslibrary functions that invoke a singlesys-
tem call, socketcall, with a parameterthat indicatesthe
kind of call. Consequently, the extended socket calls
wereimplementedsimplyby definingnew call valuesto
thesocketcall systemcall. To permit theexisting fchsid
call to beusedonsockets,theinodesetattrfunction was
changed to call a new sock chsid function if a socket is
beingrelabeled.

Internally, the Linux network componentusesan ab-
stractinterfaceto call thecodespecificto eachprotocol
family. Extendedforms of theconnect, accept, getname,
listen, sendmsgand recvmsgoperationswere addedto
thestructproto opsstructureto support thecorrespond-
ing extendedsocket calls. A chsid operationwasadded
to thestructproto opsstructureto support relabeling of
sockets. An extendedform of the createoperation was
addedto the net proto family operations vector to sup-
port thesocket secure call. Within eachprotocol family,
an abstractinterfaceis usedto call the transport layer
protocol code.Extendedforms of theconnect, sendmsg,
and recvmsgoperationswereaddedto the struct proto
structureto support the corresponding extended socket
calls.

The initialization function for ICMP

(icmp.c: initfunc) was modified to use the extended
create operation to create the icmp socket with the
icmp socket initial SID. Likewise, the initialization
function for TCP(tcp ipv4.c: initfunc) wasmodifiedto
createthetcp socket with thetcp socket initial SID.

The inet create and unix create functions were
changed to set the SID of the socket when a partic-
ular SID is specified. The inet listen and unix listen
functions were changed to set the newconn sid field
or the useclientfield of the socket if the correspond-
ing parameter was specified. The udp connect and
unix dgram connect functions were changed to set the
peer SID of the socket. The unix dgram sendmsg,
ip build xmit, and ip build xmit slow functions were
changedto setthedestinationsocketSID and/orthemes-
sageSID of themessageif particularvalueswerespeci-
fied. Thetcp v4 connect function waschangedto setthe
destinationsocket SID for the connectionrequest mes-
sageto thespecifiedpeerSID. The tcp v4 sendmsgand
unix streamsendmsgfunctions were changed to com-
parethespecifiedmessageSID and/ordestinationsocket
SID with theactualvaluesdetermined duringconnection
establishment.

The udp deliver, raw rcv skb, unix find other and
unix dgram sendmsgfunctions were changed to com-
parethe peerSID of the socket with the source socket
SID of the messageand to compare the SID of the
socket with the destination socket SID of the message.
The tcp v4 do rcv functionwaschangedto compare the
socket SID with the destination socket SID of the mes-
sagewhenamessageis receivedona listeningsocket. If
a mismatchoccursona raw IP socket, thenthepacket is
silently dropped.If a mismatchoccurs on a UDP socket
andthe packet wasto a unicastaddress, thenan ICMP
port unreachablemessageis sentin reply. If a mismatch
occursonaUDPsocketandthepacketwassenttoamul-
ticastor broadcastaddress,thenthe messageis silently
dropped.If amismatchoccursonalisteningTCPsocket,
thenaTCPresetis sentin reply. If amismatchoccurson
a Unix domainsocket, a connectionrefusederror is re-
turnedto theconnecting or sendingprocess.

8.2.3 Control Requirements To minimize theover-
headof permissionchecks, two AVC entry reference
fields(avcr andpeeravcr) wereaddedto thestructsock

52

8 NETWORKING 8.2 Implementation

structureandoneAVC entryreferencefield wasaddedto
thestructdevicestructure.Thesk alloc function initial-
izesthesefieldsfor new socketobjects.Thedevinet ioctl
function initializes this field for devices whenthey are
first accessed.

Sinceacceptfrom permission is initially checked by
TCP when the openrequest object is created,an AVC
entry reference field (avcr) was added to the struct
openrequeststructure.This field is initialized whenan
openrequestobject is createdby the cookiev4 check
function or the tcp v4 connrequestfunction. The field
is set in thesefunctions whenit is usedfor the accept-
frompermissioncheck.

To permit the connectto andacceptfrom permissions
to be revalidatedwhentraffic is sentor received on an
establishedconnection, a connection permissionfield
(connperm) was also addedto the struct sock struc-
ture. When a new TCP server socket is created,the
tcp createopenreq child function setsconnperm field
to theacceptfrompermission,andit copiestheavcr field
from the openrequest object into the peeravcr field.
For client TCP sockets, the tcp rcv stateprocessfunc-
tion setsthe conn perm field to the connectto permis-
sion. The peeravcr field is set in this function when
it is usedfor theconnectto permissioncheck. For Unix
streamsockets, the connpermandpeeravcr fields are
setby unix streamconnect for boththeclientsocketand
theserversocket.

Thecontrol requirementsimplemented in eachkernel
function for TCPcommunicationareshown in Table32.
Only the classandpermissionareshown for eachcon-
trol requirement;the sourceSID andtarget SID canbe
found in the corresponding designtable. If connectto
permissionis deniedduring connectionestablishment,a
connectionrefusederror is returnedto the local process
andthe socket is shutdown. If acceptfrom or newconn
permissionis deniedduring connection establishment,
a TCP resetis sent in reply to the connection request.
The permissionstoredin the connperm field is reval-
idated by the tcp do sendmsgand tcp rcv established
functions. If permission is no longer granted when
tcp rcv establishedreceivesa messageon a connection
or whentcp do sendmsgattemptsto senda messageon
a connection, thena connection reseterroris returnedto
thelocalprocessandthesocket is shutdown. If tcp send

CONTROL REQUIREMENT(S)
FUNCTION(S) CLASS PERM
inet listen socket listen

socket newconn
inet stream connect socket connect
inet accept socket accept
inet sendmsg socket write
inet recvmsg socket read
tcp v4 conn request socket newconn
cookie v4 check socket acceptfrom
tcp rcv stateprocess socket connectto
tcp do sendmsg socket connectto

socket acceptfrom
tcp rcv established socket connectto

socket acceptfrom
ip queue xmit, netif tcp send
ip build andsendpkt, node tcp send
ip forward,
ipmr queuexmit
ip recv netif tcp recv

node tcp recv

Table32: Implementing thecontrol requirementsfor TCPcommu-
nication.

CONTROL REQUIREMENT(S)
FUNCTION(S) CLASS PERM
unix listen socket listen

socket newconn
unix accept socket accept
unix streamrecvmsg socket read
scm detach fds fd receive
unix streamconnect socket connect

socket connectto
socket newconn
socket acceptfrom

unix streamsendmsg socket write
socket connectto
socket acceptfrom

Table33: Implementing the control requirementsfor Unix stream
communication.

53

8 NETWORKING 8.2 Implementation

CONTROL REQUIREMENT(S)
FUNCTION(S) CLASS PERM
inet dgramconnect socket connect
inet sendmsg socket write
inet recvmsg socket read
udp sendmsg, socket sendto
raw sendmsg socket sendmsg
udp deliver, socket recvfrom
raw rcv skb socket recv msg
ip build xmit, netif udp/rawip send
ip build xmit slow, node udp/rawip send
ip forward
ip rcv netif udp/rawip recv

node udp/rawip recv

Table34: Implementing the control requirementsfor UDP or raw
IP communication.

CONTROL REQUIREMENT(S)
FUNCTION(S) CLASS PERM
unix dgramconnect socket connect
unix dgramrecvmsg socket read
scm detach fds fd receive
unix dgramsendmsg socket write

socket sendto
socket sendmsg
socket recvfrom
socket recv msg

Table35: Implementing thecontrol requirementsfor Unix datagram
communication.

CONTROL REQUIREMENT(S)
FUNCTION(S) CLASS PERM
inet create, socket create
unix create
inet bind, socket bind
unix bind socket namebind
inet getname, socket getattr
unix getname
sock getsockopt socket getopt
inet getsockopt
sock setsockopt socket setopt
inet setsockopt
inet shutdown, socket shutdown
unix shutdown

Table 36: Implementing the control requirementsfor the other
socket calls.

CONTROL REQUIREMENT(S)
FUNCTION(S) CLASS PERM
unix ioctl socket getattr
devinet ioctl netif getattr

netif setattr
ip rt ioctl system route control
arp ioctl system arp control
rarp ioctl system rarp control
inet ioctl system net io control

Table 37: Implementing the control requirementsfor ioctl com-
mands.

or tcp recvpermissionis denied, thenanICMP port un-
reachable messageis sentif themessagewaslocallygen-
eratedoranICMPhostunreachablemessageissentif the
messageis beingforwarded.

Table33showsthecontrol requirementsimplemented
in eachkernel function for Unix streamcommunication.
If newconn, acceptfrom, or connecttopermissionis de-
niedduring connectionestablishment, thena connection
refusederror is returned to the connecting process. If
acceptfromor connecttopermissionis no longer granted
whendatais sentontheconnection, thenaconnection re-
seterror is returnedto thesending processandthesocket
is shutdown. If receivepermissionis not grantedfor an
openfile description, thenthedescriptorsandany subse-
quent descriptors in themessagearediscarded.

Table34showsthecontrol requirementsimplemented
in eachkernelfunction for UDP or raw IP communica-
tion. If recvfromor recvmsgpermissionis deniedwhen
a UDP unicastmessageis received, thenan ICMP port
unreachablemesssageis sentin reply. If eitherof these
permissions are deniedfor a UDP multicastor broad-
castmessageor a raw IP message,thenthe messageis
silently dropped. If udp sendor rawip sendpermission
is denied,thena permissiondenied error is returnedto
thelocalprocessif themessagewaslocally generatedor
anICMP hostunreachablemessageis sentif themessage
is beingforwarded.If udp recvor rawip recvpermission
is deniedfor a unicastmessage,thenan ICMP port un-
reachable messageis sent.

Table35showsthecontrol requirementsimplemented
in eachkernelfunction for Unix datagramcommunica-
tion. If recvfromor recvmsgpermissionis deniedwhen
a messageis sent,thena connectionrefusederror is re-

54

9 SYSTEMV IPC 9.1 Design

OBJECTCLASS
semaphoreset
messagequeue
message
sharedmemory

Table38: Objectclassesfor theLinux SystemV IPC component.

turnedto the sendingprocess. If receivepermission is
notgrantedfor anopenfile description, thenthedescrip-
tors andany subsequent descriptors in the messageare
discarded.

The implementation of the control requirements for
theother socketcallsis shown in Table36. Theinet bind
function only checks namebind permission if the port
numberis outsideof therangeusedto automaticallybind
sockets. Theunix bind function only checksnamebind
permissionif the nameis in the file systemnamespace.
Table 37 shows the implementation of the control re-
quirementsfor theioctl commands.

9 SystemV IPC

This sectiondescribes thedesignandimplementation
of the Flask securitymechanisms for Linux SystemV
Inter-ProcessCommunication.

9.1 Design
This sectiondescribes our designfor integrating the

Flasksecuritymechanismsinto theLinux SystemV IPC
component. It begins with a discussionof the object
classesandpermissionsdefinedfor thecomponent.This
is followedby a description of thecontrol requirements
for thesystemcallsusedto manageandperform IPCop-
erations. Finally, the new IPC-relatedsystemcalls de-
finedfor security-awareapplicationsaredescribed.

9.1.1 Object Classes Thesetof objectclassesfor the
SystemV IPC componentis shown in Table38. A class
is defined for eachSystemV IPC abstraction.Addition-
ally, a classis definedfor individual messageswithin a
messagequeue,sothatmessagescanbeindividually la-
beledandcontrolled. By default, the SID of a System
V IPC objectwill besetto theSID of thecreatingpro-
cess.For SystemV messagequeues,anadditional SID

PERMISSION(S) DESCRIPTION
associate Associate a key with a semaphoreset
read Read
write Write
create Create
destroy Destroy
getattr Getattributes
setattr Setattributes

Table39: Permissionsfor thesemaphoreobjectclass.

PERMISSION(S) DESCRIPTION
associate Associate a key with a queue
read Read
write Write
create Create
destroy Destroy
getattr Getattributes
setattr Setattributes
enqueue Messagemayresideon queue

Table40: Permissionsfor themessagequeueobject class.

attributewill bebound to eachmessage.ThatSID is set
by default to theSID of themessagesendingprocess.

9.1.2 Permissions Thepermissionsdefinedfor con-
trolling accessto eachSystemV IPC object classare
shown in Table39,Table40,Table41,andTable42.

Thesemget, msgget, andshmgetsystemcallsandtheir
associatedsecurevariantseachrequireassociateaccess
to associateakey with anID whenaccessinganexisting
objectby key. If anobjectis beingcreatedandthepro-
cesshascreatepermission, it is assumedthatit implicitly
hastheability to associateakey with thecreatedIPCob-
ject andassociatepermissionis not required. Sincethe
key canalsobe obtainedvia semctl, msgctl, andshmctl
callswith theSEM STAT, MSG STAT, SHM STAT, and
IPC STAT optionsthesealso require associatepermis-
sion.

The semctl(IPC INFO), semctl(SEM INFO),
msgctl(IPC INFO), msgctl(MSG INFO), shm-
ctl(IPC INFO) and shmctl(SHM INFO) system calls
return information to the calling processthat is com-
binedfrom all objectsof the given type without regard
to the object SID. The designtherefore restrictsuseof
thesecalls to processeswith a new systempermission

55

9 SYSTEMV IPC 9.1 Design

PERMISSION(S) DESCRIPTION
send Add a messageto a queue
receive Remove a messagefrom a queue

Table41: Permissionsfor themessageobject class.

PERMISSION(S) DESCRIPTION
associate Associate a key with a segment
read Read
write Write
create Create
destroy Destroy
getattr Getattributes
setattr Setattributes
lock (Un)lock page(s) in memory

Table42: Permissionsfor theshared memoryobject class.

(ipc info.) This accessis now necessaryfor correct
functioning of the ipcs program. It may be desirable
in the future to modify the ipcs programto selectively
returninformationbasedontheexecutingSID.

9.1.3 Control Requirements The control require-
mentsfor the SystemV IPC systemcalls areshown in
Table43,Table44,andTable45. For themostpartthese
areobviousextensions of thestandard Linux permission
bits.

Unlike for the file systemopencall, semget, msgget,
shmget and their secure variants can not validate the
requestedreador write permissions sincethesesystem
callsmayalsobeusedto obtainanid for usein thesem-
ctl, msgctl, andshmctlcalls which may require neither
readnorwrite permissionto besuccessful.Thereadand
write permissionsarecheckedwhenmaking systemcalls
whichperformtheactualdataoperations.

Themessagequeueobjectemploys thereadandwrite
permissionto determine if a specificprocessmayutilize
a specificqueuefor receiving or sending messages,re-
spectively. In contrastthemessage objectemploys send
andreceivepermissionsto determine if a givenprocess
is allowed to receive or senda given message.The en-
queuepermissionis usedto determineif agivenmessage
is permittedto “passthrough” thegivenqueue.

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
semget, sem create current sem
semgetsecure sem associate current sem
semsid sem getattr current sem
semop(semop==0) sem read current sem
semop(semop!=0) sem write current sem
semctl.SEMSTAT, sem getattr current sem
IPC STAT sem associate current sem
semctl.IPCGETNCNT, sem getattr current sem
IPC GETPID,
IPC GETZCNT
semctl.IPCSET sem setattr current sem
semctl.IPCRMID sem destroy current sem
semctl.IPCGETALL , sem read current sem
IPC GETVAL
semctl.IPCSETALL , sem write current sem
IPC SETVAL
semctl.SEMINFO, system ipc info current kernel
IPC INFO

Table43: Control requirementsfor manipulatingsemaphores.

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
msgget, msgq create current msgq
msggetsecure msgq associate current msgq
msgsid msgq getattr current msgq
msgsnd, msgq write current msgq
msgsndsecure msg send current msg

msgq enqueue msg msgq
msgrcv, msgq read current msgq
msgrcvsecure msg receive current msg
msgctl.MSGSTAT, msgq getattr current msgq
IPC STAT msgq associate current msgq
msgctl.IPCSET msgq setattr current msgq
msgctl.IPCRMID msgq destroy current msgq
msgctl.MSGINFO, system ipc info current kernel
IPC INFO

Table44: Control requirementsfor manipulating messagequeues.

56

9 SYSTEMV IPC 9.2 Implementation

CONTROL REQUIREMENT(S)
CALL(S) CLASS PERM SSID TSID
shmget, shm create current shm
shmgetsecure shm associate current shm
shmsid shm getattr current shm
shmat(SHM RDONLY) shm read current shm
shmat(!SHM RDONLY) shm read current shm

shm write current shm
shmctl.SHMSTAT, shm getattr current shm
IPC STAT shm associate current shm
shmctl.IPCSET shm setattr current shm
shmctl.IPCRMID shm destroy current shm
shmctl.SHMLOCK, shm lock current shm
SHM UNLOCK
shmctl.SHMINFO, system ipc info current kernel
IPC INFO

Table45: Control requirementsfor manipulatingsharedmemory.

9.1.4 API extensions New calls wereadded to per-
mit a processto createa SystemV IPC object with a
specifiedSID andto permita processto obtaintheSID
of anexisting object.New callswerealsoaddedto per-
mit a sendingprocessto specifya particularSID for a
messageandto permita receiving processto obtainthe
SID of thereceivedmessage.

The semsid, msgsid, and shmsidsystemcalls were
addedto retrieve the securityID for a given semaphore
set, message queue, or shared memory segment re-
spectively. The semget secure, msgget secure, and
shmget securesystemcallswereadded to providea way
to requestanIPC objectwith a specificsecurityID.

The msgsndsecure and msgrcv secure systemcalls
wereaddedto enablesendingandreceiving a message
with aspecificSID to or from amessagequeue. Thems-
grcv secure call takesa SID reference parameterwhich
is eithera specificSID to usein selectinga message,or
a null or wildcardSID to allow the return of a message
at any SID to which accessis permitted. The call also
returns theSID of thereturnedmessageusingthis refer-
ence.

9.2 Implementation

This sectiondescribesour implementationfor inte-
grating the Flask security mechanisms into the Linux
SystemV IPC component.

9.2.1 Labeling New structures (semidkernel and
msqidkernel) were added to parallel (and contain)
semidds and msqidds respectively. This permits the
kernel to maintainSIDs in the datastructureswithout
altering the public versions of eachstructureand the
thereby the existing API. A number of small changes
weremadein sem.h, msg.h, sem.candmsg.c to accom-
modate the new structures. Thesearesimilar to theex-
isting shmidkernel structurewhich is usedto maintain
kernelmappingsfor memory segments.Theadditionof
label datato eachof thesethreestructuresis controlled
by conditionalcompile directives,however, thenew ker-
nelstructures themselveswereaddedto thebasecodeas
weretherelatedstructurereferences.

9.2.2 API Extensions In reality no new systemcalls
were added, although eight new APIs were added to
the systemcall interface. The new APIs utilize the
previously existing sysipc systemcall demultiplexer in
sysi386.c to dispatchthe new IPC relatedcalls. Cur-
rently only the Intel 32-bit architecture hasbeenmodi-
fied.

Thesemget secure, msgget secure, andshmgetsecure
callsallow a callerto requestanIPC objectwith a given
key andagivenSID. If thecallerhascreateaccessbut the
key is alreadyallocatedto anIPC object with a different
SID, thecalleris returnedEACCES.

The msgrcv and msgrcv secure calls skip messages
thatarelabeledwith a SID for which thecallingprocess
doesnothavereceiveaccessratherthanreturnEACCES.
This may result in accesschecksbeingperformedand
denialof accessbeingauditedfor messageswhoseex-
istenceis not evenapparentto thecalling processwhen
a) the msgrcv call is used,or the msgrcv secure call is
usedwith a SID of SECSIDWILD or SECSIDNULL,
andb) messagesexist on the queuefor which the pro-
cessdoesnot have receivepermission,andc) accesshas
beenrevoked from the processfor the queue or from
messagesto which it hadaccesswhenit calledmsgrcv
or msgrcv secure. In that(unusual)case,thecallingpro-
cesswill alsowait indefinitelyfor a message.

A beneficial implication of the interactions between
the read, write, receive, send, andenqueuepermissions
andindependentSIDs for message queuesandindivid-
ual messages is that policies may be developedwhich

57

10 SYSTEMCALL REVIEW

allow restrictedmulti-level messagequeues.Thesemay
be desiredto createa convenient one-way communica-
tion mechanismfor processes.Policy writers,of course,
needto carefully considerthetheimplicationsof sucha
one-way channel if it is desiredandimplemented.

9.2.3 Control Requirements The semctl, ms-
gctl and shmctl system calls with the IPC RMID
or IPC SET options each allowed a process with
CAP SYS ADMIN to bypassthestandardLinux owner
checks.TheFlaskchecks,however, arenot bypassedby
CAP SYS ADMIN, andasdescribedin Section5.2,the
useof CAP SYS ADMIN even to bypassthe standard
ownerchecksis subjectto additional Flaskchecks.

Eachcontrol point that hasthe potential to generate
an audit record addsthe ID of the semaphore set,mes-
sagequeue, or sharedmemory region to the audit data
included in therecord.

The shmat(!SHM RDONLY) control point is imple-
mentedas a check for read and write since the logi-
cal semanticsaswell asthex86 implementationof not-
readonly arereadandwrite.

Sinceshmatalso writes the accessgranted into the
memory segmentstructuresfor hardwareuseoneachac-
cess,acall-back will eventually benecessarytoallow the
accesscontrol embodied in thememory structuresto be
revalidatedor revokedonapolicy change.

Thecasestatementconditions in thesyssemctlfunc-
tion wereslightly reorderedto collect somereadbased
accesschecksandgetattr accesschecksthat wereboth
covered by the standardLinux readpermissionbit. A
seeminglyredundantcheckwas found for the ”ID Re-
moved” (EIDRM) condition betweenswitch statements
in thatfunction thatwasalready coveredby thecheckat
thebeginning of syssemctl. Thefirst casein theswitch
following the EIDRM checkis a permissioncheckfor
GETALL thatalsoseemsto beredundantwith thecheck
previously performed in the casesabove. No control
point wasaddedfor thesecondpermissioncheckasthe
previous permissioncheckshould still be valid. (There
are no processsleepsin the GETALL code path be-
tweenthesepoints.) No otherchangesweremadeto im-
prove theflow of thecasestatements,asthis wasseenas
counter-productive given thereorganization in laterker-
nelversions.

The semexit function performs a checkwhen free-
ing undostructuresthatthesemaphore values donotbe-
comenegative. A printk wasaddedafter that checkto
allow detectfailureof thatassumption. Sincetheprintk
shouldnever be executed unlessthereis a kernelbug,
thereshouldbeno impactfrom thischange.

10 SystemCall Review

This sectioncontains the resultsof a review of the
Linux/i386 systemcall interfaceto determine what ad-
ditional Flaskcontrolsareneeded. The following sub-
sectionsdescribetheresultsfor eachcategory of system
calls.As controlsrecommendedin thisreview areimple-
mented, thecorrespondingdiscussionshouldberemoved
from this sectionandintegratedinto anappropriatesec-
tion of thedocument.

10.1 Process Management

Thissubsectiondescribestheresultsof thesystemcall
review for callsrelatedto processmanagement.

10.1.1 Scheduling Flask provides controls over the
ability to observe or modify the scheduling characteris-
ticsof otherprocessesandtheability to increasepriority.
However, Flaskdoesnot yet provide a scheduling pol-
icy. Support for a new scheduling policy basedon the
securitycontexts of processeswould bedesirable. Such
support will likely requirea new interfaceto thesecurity
server.

10.1.2 Sessionsand ProcessGroups The ability to
observeorsetthesessionandprocessgroupidentifiersof
otherprocessesiscontrolledbyFlask,but thesessionand
processgroup abstractions arenot labeledor controlled.
TheFlaskmechanismscould beusedto provide a label
for eachsessionandprocessgroup, to control whatpro-
cessesmaybein eachprocessgroup, andto control what
terminalmay serve asthe controlling terminal for each
processgroup. However, it is notclearthatsuchlabeling
andcontrols areneeded,sincesignaldelivery andtermi-
nal accessarecontrolled through theexisting Flasksig-
nal andfile controls. Furtherstudyof theuseof session
andprocessgroups is needed.

58

10 SYSTEMCALL REVIEW 10.1 ProcessManagement

10.1.3 Userand Group Identity Thesetuid, seteuid
, setreuid , setresuid, andsetfsuidcallsmaybeusedto
settheuseridentityattributesof thecallingprocess.The
setgid, setegid , setregid , setresgid, setfsgid, andset-
groupscalls may be usedto set the group identity at-
tributesof the calling process. Linux permits unprivi-
legedprocessesto perform certainkinds of changes to
their identity attributes,suchas changing the effective
identity to the real identity or vice versa,or changing
theeffective identity to thesavedidentity. Linux permits
moregeneral changesin identity for processesthathave
theCAP SETUIDandCAP SETGIDcapabilities.

Thesecalls only affect theprivatestateof thecalling
process. Furthermore, the Flaskcontrols arenot based
on theLinux identity attributes. Consequently, changes
in Linux identityattributesareirrelevantto theFlaskse-
curity policy anddonotneedto becontrolledby thepol-
icy. However, it maybe valuable to provide Flaskcon-
trolsonthesecallsto allow thepolicy to confinechanges
in Linux identity. The Flaskcap setuidandcap setgid
permissions arechecked whenthe corresponding capa-
bilities are required by Linux. If it is desirable for the
policy to beableto confine Linux identitychanges,then
new Flaskpermissionsneedto bedefinedto control all
usesof thesesystemcalls.

10.1.4 Capabilities The ability to get or set the ca-
pability setsof another processis controlled by Flask.
Flask controls the useof capabilities by requiring that
a processalsohave a corresponding capabilitypermis-
sion. Hence,possessionof a capability is necessarybut
not sufficient to have the corresponding privilege when
Flaskis enabled. SinceFlaskdirectlycontrols theuseof
capabilities,it is not necessaryto controlthesettingand
inheritanceof capabilitysetsotherthanensuringthatthe
ability of a processto observe or change the capability
setsof anotherprocessis controlled.

Flaskcouldbeextendedto provide a finer-grainedre-
placement mechanismfor capabilities. Sucha mecha-
nismwasdevelopedfor oneof Flask’s predecessors,the
DTOS system.This mechanismpermittedprivilegesto
begrantedbasedonboththeattributesof theprocessand
the attributesof the relevant object, e.g. discretionary
readoverridecouldbegrantedto a particular setof files.
Sincethe mechanism obtainedprivilege decisionsfrom

theFlasksecurityserver, managementof privilegeswas
centralizedandverification thatprivilegesweregranted
appropriatelywasstraightforward.

10.1.5 Timers Thealarm andsetitimercallsmaybe
usedto arrangefor a signalto besentto thecalling pro-
cessafteraninterval. Thegetitimercall obtainsthevalue
of an interval timer. The calls are implementedin ker-
nel/sched.c and kernel/itimer.c. Currently, no controls
areperformed. A processcould arrange for a signal to
bedelivered andperformanexecveor execvesecure be-
fore the signal is generated,thus effectively delivering
a signal to itself after a SID change. This signal is not
subjectto any accesschecking,soadditionalcontrolsare
necessarywhenthe execveis performed. Timerscould
be clearedupon an execvethat changesSID if the call-
ing processlackstheappropriatesignalpermissionto the
transformedprocess.

10.1.6 Resource Limits and Usage The setrlimit
call may be used to change the resource limits for
the calling process. The call is implementedin ker-
nel/sys.c. Linux requirestheCAP SYSRESOURCEca-
pability to usethe setrlimit call to increasethe soft or
hardlimit abovethecurrent hardlimits, soFlaskrequires
cap sysresourceunder thesameconditions. Flaskdoes
not provide a processresourcelimit policy. Support for
definingresource limits basedonthesecuritycontextsof
processeswould bedesirable. For now, Flaskonly con-
trols the ability to increasethe limit above the current
hardlimit.

The getrusage call may be usedto get resourceus-
ageinformationfor thecalling processandits children.
Similarly, the timescall maybeusedto obtainthe time
usageof thecallingprocessandits children.Linux does
not control theuseof thesecalls. Sincetheusagestatis-
tics of a child processareonly addedinto the parent’s
combinedstatisticsfor its childrenif theparentreaps the
child, theexisting Flaskwait controls aresufficient. No
othercontrols seemnecessary.

10.1.7 Other ProcessCalls The prctl call is a gen-
eral interfacefor performing operationson a process.It
only supports a single operation that setsor clearsthe
signalthat thecalling processwill receive whenits par-
ent dies. The existing Flaskcontrolsfor signalsensure

59

10 SYSTEMCALL REVIEW 10.3 File System

that thedelivery of thesignalis controlled. However, it
would beusefulto checktheappropriatesignalpermis-
sionwhenthiscall is usedsothatthecallingprocesswill
beawareof any permissionfailure.

The rt sigqueueinfo call is a variant of kill for real-
time signals.This call is already controlled through the
existingFlasksignalpermissions.

Thegetpidandgetppidcallsmaybeusedto obtainthe
processidentifierof thecallingprocessandits parent,re-
spectively. Thegetpidcall doesnot requireany controls,
sinceit only revealsprivatestateof thecalling process.
The getppidcall would only needto be controlled if it
would be useful to conceal the PID of the parent, but
sucha needis notevident.

10.2 Memory Management

Thissubsectiondescribestheresultsof thesystemcall
review for callsrelatedto memory management.

The mprotect call may be usedto set the protection
on a region of memory. The call is implemented in
mm/mprotect.c. Linux requiresthatthenew protectionbe
asubsetof themaximumprotectiononthemapping. For
anonymous memory or aprivatecopy-on-writemapping
of a file, the maximum protectionallows all accesses.
For a sharedmapping, the maximum protection always
allows readandexecuteaccessbut only allows write ac-
cessif thefile is openfor writing.

Flaskensuresthatmprotectcannot beusedto increase
the current protection on memory-mappedfiles beyond
what the securitypolicy authorizes. Flask shouldalso
control theability toexecuteanonymousmemory. A new
permissioncould be introducedbasedon the SID of a
process that controls whetherthe process is allowed to
execute anonymous memory.

The mlock andmunlock calls maybe usedto disable
andreenable paging for a rangeof memory. Themlock-
all andmunlockall callsmaybeusedto disableandreen-
ablepagingfor all pages mappedinto theaddressspace
of the calling process.Thesecalls are implemented in
mm/mlock.c. Linux requiresCAP IPC LOCK to disable
paging, so Flask requirescap ipc lock permission. No
additional controls seemnecessary.

10.3 File System
Thissubsectiondescribestheresultsof thesystemcall

review for callsrelatedto thefile system.

The nfsservctlcall is the interfaceto the kernelNFS
daemon. The call is implemented in fs/nfsd/nfsctl.c.
Linux requires CAP SYSADMIN to use the call, so
Flask requirescap sysadmin permission. Since the
Flaskcontrolshavenotyetbeenintegratedinto theLinux
NFSimplementation,no further controls arerequired at
this time. Separatepermissionsfor theindividual opera-
tionsmaybeintroducedat a latertime.

Thequotactl call maybeusedto manipulatediskquo-
tas. This call is implemented in fs/dquot.c. Linux re-
quiresCAP SYSRESOURCEfor enablingor disabling
quotas, getting the quota of another useror group, or
settinga quota. Hence,Flaskrequires cap sysresource
permissionfor thesecommands. When enabling quo-
tas,a quotafile is specified.This file mustalreadyexist,
typically beingcreatedby thequotacheck program. The
file is openedfor readandwrite access,andtheexisting
Flaskfile accesscontrols areapplied.It might beuseful
to adda new permissioncontrolling what files may be
usedasquotafiles. Linux doesnot control thequotactl
commandsfor syncingthe quota files, obtainingquota-
relatedstatistics,orobtaining thequotalimits andcurrent
usagefor useror groupof thecallingprocess.Flaskdoes
notprovideadiskquotapolicy. Support for definingdisk
quotasbasedonthesecuritycontextsof processeswould
bedesirable.

The bdflush call may be usedto start, flush or tune
the buffer-dirty flush daemon. The call is implemented
in fs/buffer.c. Linux requires the CAP SYSADMIN ca-
pability, soFlaskrequirescap sysadminpermission.It
might be useful to addnew permissionsto control the
individualoperationsprovidedby thecall.

The swaponandswapoff calls may be usedto start
and stop swappingto a file or device. Linux requires
CAP SYSADMIN andsearchaccessto thefile to useei-
ther call. Flaskrequires cap sysadminpermissionand
search permission. It might beusefulto adda new per-
missioncontrolling whatfiles maybeusedasswapfiles.

The chroot systemcall may be usedto changethe
root directory. The call is implementedin fs/open.c.
Linux requires searchaccessto the new root directory
andCAP SYSCHROOT. Flask requires search permis-

60

10 SYSTEMCALL REVIEW 10.5 SystemOperations

sion to the new root directory and cap syschroot per-
mission.No further controls seemto benecessary.

10.4 Kernel Modules

Thissubsectiondescribestheresultsof thesystemcall
review for callsrelatedto kernelmodules.

Thecreatemodulecall maybeusedto registeraname
andto reservekernel memory for aloadablemodule. The
init module call may be usedto load a relocatedmod-
ule imageinto kernelmemoryandto run the module’s
initialization function. The deletemodulecall may be
usedto removemodules.Thesecallsareimplementedin
kernel/module.c. Linux requiresCAP SYSMODULE to
useany of thesethreecalls,andFlaskrequiresthe cor-
responding cap sysmodulepermission. No additional
controls seemto benecessaryfor thesecalls.

The querymodule call may be usedto obtain infor-
mationrelatedto loadable modules.Theget kernel syms
call maybeusedto obtainthekernel andmodulessym-
bols.Thiscall is obsoletedby querymodule. Linux does
not control the useof thesetwo calls. Flask controls
shouldbedefinedfor thesecallsto control theiruse.

The kernel module loader(kernel/kmod.c) runsmod-
probe to automatically load moduleswhenthey arere-
quested.Thekernelmodule loader runsasthesuperuser
with all capabilitiesenabled. Thekernelmodule loader
waschangedfor Flaskto run with thekmodinitial SID.
Otherwise,theFlaskcontrolswouldbebasedontheSID
of theuserprocess.

Although the Flask controls for module-relatedcalls
arestraightforward,protectionof the kernel module fa-
cility requiresconfigurationof thesecuritypolicy to label
andcontrol accessto themodule objectfiles, themodule
utilities, the module configuration files, and the kernel
pathfor modprobe. Thepolicy configuration for kernel
modulesis describedin [7].

10.5 SystemOperations

Thissubsectiondescribestheresultsof thesystemcall
review for callsrelatedto theoverall system.

Thestimeandsettimeofdaysystemcallsmaybeused
to set the systemtime anddate. Both calls are imple-
mentedin kernel/time.c. Linux requiresCAP SYSTIME
to use thesecalls, so a processmust have the Flask

cap systime permission to usethesecalls. No further
controls seemto benecessary. Theadjtimex call maybe
usedto reador modify theclock adjustment parameters.
Thiscall is implementedin kernel/time.c. Linux requires
CAP SYSTIME to usethis call to modify the parame-
ters,soFlaskrequirescap systime. No furthercontrols
seemnecessary.

The sethostname and setdomainname calls may be
used to set the host and domain namesfor the sys-
tem.Linux requiresCAP SYSADMIN to useeithercall.
Flaskrequires cap sysadminpermission. No other con-
trolsseemnecessary.

The acct call may be used to enable or disable
process accounting. The call is implemented in ker-
nel/acct.c. Linux requires the calling processto have
CAP SYSPACCT to usethe call. If the call is usedto
settheaccountingfile, thenthecallingprocessmustalso
be ableto openthe accounting file with append access.
TheFlaskcap syspacct permissionis checkedwhenthe
call is used,andtheFlaskfile mandatory accesscontrols
arechecked if an accounting file is specified. It might
beusefulto adda new permissioncontrolling whatfiles
maybeusedfor accounting.

The reboot call may be usedto reboot the systemor
to enable or disablethereboot keystroke. Thecall is im-
plementedin kernel/sys.c. Linux requiresthatthecalling
processhaveCAP SYSBOOT, soFlaskrequiresthatthe
calling processhave cap sysbootpermission. No other
controls seemnecessary.

The ioperm call may be used to set I/O port ac-
cesspermissionbits for the calling process for a spec-
ified port and range. The call may only be usedfor
the first 0x3ff I/O ports. This call is implemented in
arch/i386/kernel/ioport.c. If thepermissionbits arebe-
ing setto anything non-zero,thenLinux requiresthatthe
calling processhave CAP SYSRAWIO. Thus,Flaskre-
quiresthecorrespondingcap sysrawiopermission.Port
accesspermissions arenot inheritedon fork but they are
inheritedacrossexecve. New Flaskcontrolsshould be
definedto control inheritanceof port accesspermissions.
It mayalsobedesirableto support individual labelingof
different I/O ports and to adda permission controlling
accessto particularports.

The iopl call maybeusedto change theI/O privilege
level of the calling process. The call is necessaryfor

61

REFERENCES REFERENCES

moreportsthan0x3ff. For example, thecall is usedby
8514-compatibleX serversto rununderLinux. Thiscall
is implementedin arch/i386/kernel/ioport.c. If theprivi-
legelevel is beingincreased, thenLinux requiresthatthe
calling processhave CAP SYSRAWIO. Thus,Flaskre-
quiresthecorrespondingcap sysrawiopermission. The
privilege level is inherited on fork and acrossexecve.
New Flaskcontrols shouldbe definedto control inher-
itanceof I/O privilege levels. It mayalsobedesirableto
addseparatepermissionsfor thedifferentlevels.

The syslog call may be used to read or clear the
kernel messagering buffer and to set the consolelog
level. Linux requires that the calling processhave
CAP SYSADMIN to useany syslogoperation exceptfor
theoperation to readthe last4k of messagesin thering
buffer. Hence,Flaskrequirescap sysadminpermission
for all of the otheroperations. SeparateFlask permis-
sionsshouldbedefinedfor thedifferentkinds of syslog
operations,e.g. separatepermissionsto control reading
andclearingthelast4k of messagesversuschanging the
consolelog level. Additionally, it seemsdesirabletocon-
trol the ability of processesto readthe last 4k of mes-
sages,soa Flaskpermissionshouldbeaddedto control
this operation.

Thesysinfocall maybeusedto obtaininformationon
overall systemstatisticssuchasthe loadaverage,avail-
ablememory, andnumber of current processes.Linux
doesnot control theability to usethis call. A Flaskper-
missionshouldbedefinedto control theuseof this call.

11 To Do

This sectionlists tasksthat have not yet beencom-
pletedfor integratingtheFlasksecuritymechanismsinto
theLinux kernel.

� Add controls identifiedby systemcall review

� Performfunctionalandperformancetesting

� Add mandatorycontrols for SystemV IPC

� IntegrateIPSECwith network mandatorycontrols

� Add mandatorycontrols for NFS

� Add support for polyinstantiateddirectories

� Add support for polyinstantiatedports

� Add notificationsfor completedoperations

� Add policy change callbacks

� Integratefile cryptography with file mandatorycon-
trols

� Replace SIDs with SID descriptors (reference-
countedSIDs)

References
[1] W. E. Boebert andR. Y. Kain. A Practical Alternative to Hierar-

chical Integrity Policies. In Proceedings of the Eighth National
Computer Security Conference, 1985.

[2] T. FineandS.E. Minear. AssuringDistributedTrustedMach. In
Proceedings IEEE Computer Society Symposiumon Research in
Security andPrivacy, pages206–218,May 1993.

[3] Institute of Electrical and Electronics Engineers, Inc. Informa-
tion Technology — Portable Operating System Interface (POSIX)
— Part 1: System Application Program Interface (API) [C Lan-
guage] , 1996.Std1003.1,1996Edition.

[4] P. A. Loscocco,S. D. Smalley, P. A. Muckelbauer, R. C. Taylor,
S. J. Turner, and J. F. Farrell. The Inevitability of Failure: The
Flawed Assumptionof Security in Modern Computing Environ-
ments. In Proceedings of the 21stNational Information Systems
Security Conference, pages303–314,Oct.1998.

[5] S.E. Minear. Providing Policy Control Over ObjectOperationsin
a MachBasedSystem.In Proceedingsof theFifth USENIXUNIX
Security Symposium, pages141–156,June1995.

[6] O. S. Saydjari, J. M. Beckman, andJ. R. Leaman. LOCK Trek:
Navigating Uncharted Space. In Proceedingsof the 1989 IEEE
Symposiumon Security andPrivacy, pages167–175, 1989.

[7] S.Smalley andT. Fraser. A Security Policy Configuration for the
Security-EnhancedLinux. Technical report,NAI Labs,Oct.2000.

[8] R. Spencer, S.Smalley, P. Loscocco,M. Hibler, D. Andersen, and
J. Lepreau. TheFlaskSecurity Architecture: SystemSupportfor
DiverseSecurity Policies. In Proceedingsof the Eighth USENIX
Security Symposium, pages123–139,Aug. 1999.

62

