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Abstract

Risk Adaptable Access Control (RAJAC) is an important emerging technology that has gained the atten-

tion of many people as a way to change the current information dissemination policies. Systems implementing

RAJAC have the ability to enforce a flexible mandatory access control policy based on various changing factors,

such as situational and environmental factors. Unfortunately, commonly deployed systems are unable to reliably

support this type of access control, but by using existing technology the desired capability could be built. Applica-

tions of the Flask Security Architecture is one such use of a existing technology. This paper describes how the

Flask Security Architecture can be used to provide RAdAC. It describes how this was done in the creation of a pro-

totype RAdAC system.

1. Introduction

The Global Information Grid (GIG)[2] archi-
tecture describes a significant change in the way gov-
ernment systems will interact. Whereas in existing ar-
chitectures, information dissemination is predominate-
ly governed by a “need to know” philosophy that limits
information sharing to only those mission elements
able to demonstrate a need, the massively connected
nature of the GIG and its requirement to support many
interrelated missions mandate a change in information
dissemination philosophy. Emphasis needs to shift to a
“need to share” between different mission elements
that require ready access to each others information in
order to achieve success.

Current access control schemes adhere to a
well defined policy that is often static, but the new
paradigm calls for a more flexible model. To facilitate
this change a new access control model, Risk Adapt-
able Access Control (RAdAC), described in the GIG
Information Assurance documentation, has gained pop-
ularity among many groups. RAJAC systems can be
characterized by their ability to enforce access control
decisions according to a security policy that can dy-
namically change. As risk is perceived to change, the
security policy governing access control decisions
changes accordingly, where risk can be defined by
many independent factors. Factors that might affect

risk include environmental and situational factors as
well as things like characteristics of people or IT com-
ponents.

RAJAC implies that there exists a characteri-
zation of factors that would indicate the policy should
be switched. Defining policies for each distinct set of
risk postures is difficult, as is designing an architecture
that can support changing between them. Any RAJAC
architecture must have the ability to reliably enforce
whatever policies exists for each risk posture. It must
be able to dynamically change access to information,
escalating privileges or revoking accesses as required
by the change in risk.

Although truly supporting RAdAC is beyond
the capabilities of commonly deployed systems, tech-
nology does exist on which a RAdAC system could be
built. This paper describes a prototype that demon-
strates that the Flask Security Architecture[10] is an
example of suitable technology for RAJAC.

2. Risk Adaptable Access Controls

A RAdAC model uses various static and dy-
namic factors to influence access control decisions.
These factors form the basis for deciding what security
policy, or set of access rules by which access decision
are computed, to enforce. By considering each of these
factors, the system can dynamically select a policy that



results in different access decisions as appropriate to
the perceived risk. Under RAdAC, a situation could
allow data to flow to places that might normally be
considered restricted. Any system that correctly imple-
ments RAJAC must always keep all of its data under
its control, even when it is allowed to flow to restricted
places. This condition has to be met because the condi-
tions that allowed data to flow there might change
which would require a revocation.

For example, policy could dictate that in a
time of national crisis first responders need access to
some forms of sensitive information in order to save
lives. Under these conditions, ‘“need to share” out-
weighs the “need to know.” At the conclusion of the
crisis, “need to share” would no longer take prece-
dence. Security policies could be written for each of
these situations. A RAdAC system would be capable of
switching between them.

Network applications under the control of
RAJAC might deliver data to remote systems and later
be required to recall that data from one or more of
those machines. In order to reliably do this, any sys-
tem to which data is released must be capable of con-
trolling where that data can flow. It must be able to re-
spect any information flow restriction imposed upon it
by the originating system. If this can not be done, the
RAdAC system would lose control of the data, making
revocation impossible.

For example, a server accepting requests from
clients on the network should never release data that
would be subject to revocation unless it is satisfied that
the client's system is capable of restricting what hap-
pens to the data once the client's request is fulfilled.
How the server is satisfied is an architectural constraint
on the entire networked RAdAC system. If this con-
straint can not be architecturally met, it will not be pos-
sible to know that security policies are not violated.

The only way to architecturally meet the re-
quirement to support a RAJAC system is through the
appropriate use of mandatory access controls (MAC)
on the collection of systems comprising the RAdJAC
system. If any system fails to correctly implement
MAC, the RAJAC system is subject to failure. No data
protection guarantees involving that system will be
meaningful.

To correctly implement MAC three conditions
must hold. The system must be in control of all subject
and objects at all times. All security decisions must be
based on all security relevant information. The policy
governing security decisions must be under one central
control[8]. Failure to meet any of these conditions im-
pacts a system's ability to restrict data flow and protect
system integrity.

A correct implementation of MAC on all sys-
tems, although necessary, is not sufficient for a
RAdAC system. Supporting policy changes is funda-
mental to the nature of RAJAC. Each of the systems
being relied on to enforce a MAC policy must be flexi-
ble enough to support the necessary changes to policy
imposed by the RAJAC system. Furthermore, the im-
plementation must be capable of enforcing any revoca-
tions necessitated by a policy change.

3. Problems Impeding RAJAC

There is a fundamental problem inhibiting ef-
fective RAJAC systems from being built. RAJAC re-
quires flexible MAC environments that surpass the cur-
rent capabilities of commonly deployed systems. They
are incapable of meeting the MAC requirements out-
lined in section 2. Even systems that do offer some
form of MAC lack the flexibility necessary to support
policy changes.

Commonly deployed systems have discre-
tionary access controls (DAC). DAC systems are capa-
ble of supporting policy changes. However, they are in-
capable of making the guarantees needed to meet data
flow constraints and revocation requirements. For ex-
ample, data transmitted to a remote machine may be
printed, copied, or sent to another machine. When
these things happen the RAJAC system has lost control
of the data and their is no hope of revoking access to it
on a policy change.

4. Demonstrating RAJAC

Although commonly deployed systems cannot
be used to create a system with RAJAC capabilities,
technology does exist that has the desired MAC prop-
erties with the policy flexibility required for supporting
policy changes and revocation of access based on those
changes. With this technology, it is possible for net-



worked applications to release data to certain remote
systems, knowing that the constraints of RAdJAC can
be met. That technology is the Flask Security Architec-
ture applied at appropriate points throughout the
RAJAC system.

The goal of this work was to demonstrate that
the Flask Security Architecture (Flask) can provide the
functionality needed to support a RAJAC capable sys-
tem. This was achieved by constructing a prototype
system. The prototype uses SELinux, an implementa-
tion of Flask in the Linux operating system, to meet the
system MAC requirements. It meets the requirements
for network MAC, by using Flask applied to a network
application.

The prototype demonstrates that currently
available technology can be used to build a RAJAC
system. SELinux provides a secure operating system
that is a strong foundation for each component of the
RAJAC system. The support that SELinux offers in ap-
plying Flask to user-space components facilitates creat-
ing the components of the system responsible for net-
work MAC. A RAdAC capable system was successful-
ly built using the capabilities provided by these two ap-
plications of Flask.

To demonstrate the RAJAC capability a net-
work application was needed. Any network applica-
tion, such as a database server or web application,
could have sufficed. The principles involved are easily
generalized. The application that was chosen was an
existing XML-based document server designed to run
on SELinux[1].

To best demonstrate the RAJAC capability,
several things were needed from the network applica-
tion. There needed to be a data source and consumer.
An ability to enforce policy on involved systems need-
ed to be shown. In particular, on the system hosting the
data consumer, it needed to be possible for the RAJAC
system to maintain control of any data released from
the source. Policy flexibility and the ability to revoke
access to data once released was key to the demonstra-
tions success.

The demonstration was implemented on a net-
work of SELinux systems, using the capabilities of the
SELinux system for protection. Several security poli-
cies, representing different possible RAJAC situations,
were constructed for the demonstration. An ability to

indicate that a policy change was required throughout
the system was also constructed.

5. Flask Security Architecture

The Flask Security Architecture is designed to
provide support for diverse security policies through
the separation of policy from the enforcement mecha-
nism. Flask has two main components. The first is a se-
curity server that provides a centralized point where
all security policy decisions are made. The security
policy is a set of rules, governing access and labeling
decisions, that are specified through configuration files.

The second component is an object manager
that implements functionality. Object managers are re-
sponsible for requesting access and labeling decisions
from the security server when needed. They are also
responsible for binding labels to the objects they man-
age and enforcing all decisions provided by the securi-
ty server. The implementation of any object manager
must control all security relevant operations on its ob-
ject.

There is also a third component called the ac-
cess vector cache (AVC). AVCs are incorporated into
object managers. The AVC stores previously computed
access decisions. The security server is only consulted
on cache misses.

Flask supports policy changes through reload-
ing of the security policy configuration. The security
server maintains control over AVCs, enabling policy
changes to be propagated throughout the system. Revo-
cation is handled through flushing of the AVC causing
future access decision to require consultation to the se-
curity server running with the new policy. Additional
revocation comes from the ability of the object manag-
er to request notification of policy changes. On policy
changes, object managers can then perform special pro-
cessing to ensure no access allowed under the original
policy is still granted after it would be prohibited by
the new policy.

Flask has been shown to be suitable to be in-
corporated into a wide variety of object managers.
Flask has been applied to operating systems, as well as
applications. Flask has been shown as a suitable archi-
tecture to implement flexible MAC.



5.1. SELinux

SELinux is an application of the Flask Securi-
ty Architecture, resulting in a version of Linux with
flexible mandatory access control over Linux abstrac-
tions. The Linux kernel acts as an object manager. A
security server and an AVC have been incorporated
into the kernel. The kernel has been instrumented to
make all the necessary access and labeling decision re-
quests. The security server implements a security mod-
el that is a combination of type enforcement, role-
based access control, and multi-level security.[7]

SELinux is capable of supporting many types
of policies enabling it to meet various system goals.
Policies can be defined to provide strong process isola-
tion and to support least privilege. They can be used to
meet the integrity goals of the system. The flexibility
of SELinux allows policies to be tailored to meet the
specific security goals of applications.

The features of SELinux enable client/server
applications to be made more secure. SELinux policy
can be written to enforce separation between client and
server processes from other applications on the system.
Stronger guarantees about the integrity of applications
are possible because of policies written to protect the
application's executable image and configuration data.
The interactions between all processes on the system
can be tightly controlled. If the client or server is con-
nected to the network, SELinux's integration of labeled
IPSec|[5,6] allows data communicated over the network
to be tightly bound to the process using the connection
while guaranteeing no other process has access to it.

5.2. Network MAC

It is possible to extend Flask to network appli-
cations. The network application is treated as a user-
space object manager. Traditionally, user-space object
managers implement functionality local to the system
and enforce a security policy represented in the local
security server. Network object managers differ in that
they implement functionality over network objects and
must enforce a network security policy which may be
different than the local policy of any of machines in-
volved. In all other aspects, they are fundamentally the
same as user-space object managers.

Permissions are defined to control access to
the objects maintained by network object managers.
Like other object managers, network object managers
are responsible for enforcing security decisions. They
rely on a security server for all security decisions.
However, the security server for network object man-
agers is likely to reside on a different machine. This
places a network security requirement on the imple-
mentation to protect the communications between the
network security server and all object managers in ad-
dition to any network security requirements already
present to support the network application.

Network object managers can be used to sup-
port revocation. The network security server retains
control over the operation of AVCs. It can notify the
object managers of policy changes allowing it to imple-
ment any special processing required as a result of a
network policy change, including the revocation of ac-
cess to data. Because the object manager is not under
the direct control of the network security server, net-
work object managers must reside on systems capable
of protecting them and of restricting data flow from the
object manager.

SELinux includes support for user-space ob-
ject managers. There is an AVC library that includes
all the necessary functionality for an AVC and interac-
tion with a security server, whether that security server
is in the kernel or user space. As part of this work, the
AVC library was modified to have better support for
network object managers by allowing the network se-
curity servers that implement security models and poli-
cies distinct from the security server on the host
SELinux system.

5.3. SE-XML

SE-XML is an XML[4] parser that has had
Flask applied to it. It enables a customized view of
XML documents based on a security policy. With SE-
XML, it becomes possible to put internal markings,
like paragraph markings, on a document and offer dis-
tinct views of that document depending on security at-
tributes of the viewer.

SE-XML applies security labels to XML
nodes used by the security server to determine access
to nodes within a document. The XML parser is an ob-
ject manager enforcing access decisions about each op-



eration on each XML node. A new security class with
permission over documents was defined.

6. Implementation

The goal of the RAdJAC prototype is to
demonstrate how a network application running on
SELinux systems can achieve the capabilities described
previously. A document server using SE-XML was
chosen as the prototype network application. This
client/server application has server and viewer compo-
nents each residing on different machines. The server
has the ability to respond to the clients request for doc-
uments. The clients have the ability to display the doc-
uments and nothing else. Because the server is respon-
sible for the release of the documents, it must maintain
control over them, including when then they have been
released to the viewer. When events dictate a policy
change is required, all client access to the documents
must be revalidated, and if necessary, revoked.

In addition to the server and viewer, the proto-
type contains a network security server and risk knob.
The network security server is able to make access
control decisions for network objects based on a flexi-
ble MAC policy. Network security between all compo-
nents is provided by IPSec. The risk knob provides a
simple graphical interface to change the network poli-
cy. The risk knob represents the system's ability to rec-
ognize changing security conditions and initiate policy
changes.

6.1. Document Server

The SE-XML document server was imple-
mented as a user-space object manager running on
SELinux. Local SELinux policy was written to provide
the necessary protections from the rest of the system.
The objects that it controls are documents. These are
network objects and are labeled with a network label
that is distinct from the local SELinux labels. SE-XML
is used to bind network labels to documents. Docu-
ments are stored and protected on the server by the
SELinux filesystem access controls.

There are two kinds of access decisions that
must be made in servicing any request for a document.
The first is a check to see if the requester is authorized
to use the server. This is handled by SELinux on the

server's machine. No requester will be granted access
to the server without being approved to use the [PSec
connection. From the IPSec connection, the IP address
for the client can be reliably extracted. The IP address
is then used to determine the security label in all future
access checks for that session.

The second kind of access decision comes
from the network security server. The network security
server handles all labeling and access decisions about
the documents. This kind of access control is what en-
ables the document server to determine which files can
be released to authorized users. Access checks are of
the form “can a document with a particular network la-
bel be released on request from a system with a partic-
ular session label.”

6.2. Document Viewer

The document viewer is a simple GTK[3] ap-
plication running on SELinux. The document viewer
requests documents by connecting to the server using
IPSec. In order for a client to receive a document, it
must have access to both the IPSec security association
and pass the network access checks for that document
at the server. Local SELinux policy protects the exe-
cutable image from the rest of the system. Because la-
beled IPSec is used, there is a tight binding between the
network connection and the viewer application.

The viewer application is only capable of dis-
playing documents it receives. Local SELinux policy
was written to close all channels that might be used to
release the document beyond the viewer's control. This
in effect creates a confined space on the viewers ma-
chine to which documents can be released while re-
maining under the control of network security policy.
When a revocation is required as a result of a network
policy change, the viewer is able to support the revoca-
tion of access to the document since it is still within its
control.

It is important to limit the functionality of the
viewer to just viewing documents. If more functionali-
ty is allowed, it becomes increasingly difficult, if not
impossible, to keep the document under the control of
the network policy. There would have to be a much
more complex policy controlling the interactions with
all parts of the system to which the document could be
released. Any attempt to revoke access to that docu-



ment would have to involve all the areas where the
document could have migrated.

For example, if the viewer were able to write
the document to a database, any application able to
read from the database could potentially have access to
the document. In order for the network security server
to maintain control over the document, the database
would have to enforce decisions about the documents
released and the local SELinux policy would have to
isolate the database and any other application that
could potentially access the document. Additional re-
lease of the document would have to be restricted. Fur-
thermore, revoking access to the document would re-
quire that it be purged from the database and all appli-
cations that have touched it. This only becomes more
complicated as more applications are involved. So by
constraining the functionality of the viewer, the con-
finement and revocation problems were kept manage-
able.

6.3. Network Security Server

The network security server is implemented
on SELinux. It is an example of a user-space security
server for a network application. Its clients are docu-
ment servers. The network security server implements
the network policy over the documents. Local SELinux
policy protects the network security server, and IPSec
protects the communications and access to it, as was
the case for the server and viewer. The network securi-
ty server is itself a user-space object manager control-
ling access over its own services.

When labeling was added to the network, a
network wide abstraction was created that made it pos-
sible to have a consistent view of attributes associated
with network objects. All documents throughout the
network, regardless on which document server they re-
side, must be labeled with a network label. However,
the documents are represented on their host system by
system objects with labels specific to that system. Sim-
ilarly, sessions need network labels but are established
with one local to the system. In order for the network
security server to be able to make network access deci-
sions, all labels must be translated into a corresponding
network label prior to any access check. This transla-
tion is done by document servers in the prototype.

6.4. Policy Changes due to Changing Risk

In a system that supports RAJAC, the security
policy that is in effect at any given time is in some way
determined by risk. When the perception of risk
changes, the system must change its security policy to
reflect the new perceived risk. How different percep-
tions of risk are quantified is beyond the scope of this
effort, but the prototype demonstrates that given sever-
al different security policies for different levels of risk,
it is possible to switch between them safely. The mech-
anism that initiates that switch is the risk knob.

In the RAdAC prototype, the risk knob was
implemented as a GUI tool that allows a security ad-
ministrator to alternate between a collection of prede-
fined security policies. The risk knob resides on an
SELinux system, using the MAC capabilities of SELin-
ux to protect the use of the knob. When an administra-
tor indicates that a change in risk has occurred, the cor-
rect security policy corresponding to the new risk is se-
lected and the change initiated.

The first thing that happens when the GUI tool
triggers a change is the network policy is reloaded. The
network security server exports a load policy interface.
The risk knob tool uses it to load the new policy. The
network security server restricts access to that interface
to authorized systems. Whenever a policy is loaded, the
network security server flushes all the AVCs that are
relying on the old policy and calls registered notifica-
tion routines in the document servers.

When a document server receives notification
of the policy change, it must ensure all documents for
which it is responsible are only viewable in clients au-
thorized to do so under the new policy. If any viewer is
currently accessing a document to which it is no longer
entitled, access must be revoked. The document server
does this by forwarding the policy change notification
to each of its client viewers. The server does the notifi-
cation to relieve the security server of maintaining state
of all client sessions.

When a viewer receives a policy change noti-
fication, it is responsible for revalidation of all access
to all documents being viewed. The viewer does this by
re-requesting access to each document from the server.
This model was chosen to limit the state kept on the
server. On any request that fails, access to the docu-
ment is terminated. There is no effect to any document



where access decision is unchanged. The decision to
limit the functionality of the viewer to only displaying
documents enables the revocation to be completed at
this point.

7. Future Work

The prototype demonstrates the ability to cre-
ate a RAdJAC system by applying Flask to a network
applications and running its components on SELinux,
but more work is required before it is ready for real-
world use. As work continues on a secure windowing
environment and gets included into SELinux distribu-
tions, vulnerabilities within the viewer systems can be
addressed. Also, work can be done to ease the burden
of initial policy configuration for system administra-
tors.

The biggest hurdle to overcome in order to
mature this technology is to demonstrate how to loosen
the restriction imposed on the viewer. Work is needed
to allow data to flow deeper into client systems while
retaining control over it. Work is required to write ad-
ditional policy and modify applications to handle net-
work policy changes. One idea is to use NetTop[9] to
increase functionality in the client. The flow of data to
NetTop virtual machines can be controlled, and experi-
ments can be done to determine the best way to handle
revocation.

Real applications supporting RAJAC may
need a more automated way of identifying the need to
change policy than a manually operated risk knob. The
replacement of the risk knob with external sensors to
identify changes in the environment will assist in this
automation. Identifying the best way to utilize these ex-
ternal inputs to make the decision to change the policy
is an area of future work.

8. Conclusion

In conclusion, the demonstration showed the
that Flask could be use to build a system capable of
supporting RAdAC. A network application utilizing
the Flask architecture has the ability to enforce a net-
work MAC policy and the flexibility to support
changes in policy and revoke previously granted ac-
cesses according to policy changes. SELinux on the
end systems of the network application provided the in-
formation flow guarantees needed to ensure the appli-

cation was able to reliably enforce its policy and re-
voke granted access when necessary.

The network application is fairly rudimentary
and is not indicative of the applications that are really
wanted or needed. Additional work is needed to bridge
the gap between the prototype and a deployable
RAdAC system. Experience with the prototype shows
that future work is warranted.
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