
Application of the Flask Architecture to the X Window System Server

Eamon F. Walsh
National Information Assurance Research Laboratory

National Security Agency
ewalsh@tycho.nsa.gov

Abstract

This paper will outline the progress that has been made
on extending the coverage of Security-Enhanced Linux
access controls to the X Window System server, a major
component of the Linux desktop. This has been accom-
plished by applying the Flask architecture to the X server
and extending the reach of SELinux policy to cover X
server objects. Modifications have been made to both
SELinux library and the X.Org X server implementa-
tion in support of this goal. In the SELinux library, im-
proved capabilities for obtaining policy decisions from
the kernel were added. In the X server, a set of general
security hooks was added, followed by a Flask module
which makes use of them. This module extends the en-
forcement of kernel-based security policy to the X server
in userspace, providing fine-grained access and informa-
tion flow control to this vital desktop component using
the existing SELinux policy store and toolchain.

1 Introduction

The Flask architecture, as currently implemented in
SELinux [5], lacks control over key subsystems of mod-
ern GNU/Linux distributions that are implemented in
userspace. These subsystems manage security-relevant
objects, provide information transfer facilities, or both,
but for historical or technical reasons are not part of the
Linux kernel. Extending the Flask architecture to these
subsystems is necessary to fully secure the desktop sys-
tem. These extensions or “userspace object managers”
are a current area of development activity, involving both
the userspace subsystems themselves and supporting in-
frastructure in the kernel and in the SELinux userspace
libraries. This paper describes the progress on perhaps
the most important userspace subsystem to receive such
attention, the X Window System.

The X Window System serves as the graphical user in-
terface (GUI) foundation for desktops such as GNOME
and KDE [15][16]. A userspace program, the X server,
manages the desktop system’s display, draws windows,
cursors, and other GUI constructs, delivers mouse and
keyboard events to GUI applications, and provides basic
clipboard and drag & drop support. Client applications,
usually with the help of an X library and a toolkit such

as GTK or Qt, connect to the X server and issue com-
mands to create and manipulate their GUI [17][18]. The
protocol used by X clients and servers to communicate
is extensible, and new command sets have been added to
support shared memory, advanced rendering, hardware-
accelerated graphics, and other features.

Existing security mechanisms in X mostly involve au-
thenticating clients at connection time. Once connected,
however, there are few controls in place to prevent client
applications from engaging in malicious behavior. The
X protocol allows client applications to manipulate win-
dows belonging to other clients, including moving them,
reading their contents, drawing into them, changing their
focus, or listening for keyboard and mouse events be-
ing sent to them [7]. Clients are also permitted to send
events, including fabricated keyboard or mouse input, to
other clients. Mechanisms exist for arbitrary data trans-
fer between clients, such as by setting and reading win-
dow properties. Clearly, access controls are needed on
windows and other X server objects to prevent malicious
behavior and control the flow information between X
clients.

The Linux kernel provides limited support to the X
server, in the form of access to video RAM, but other-
wise has no knowledge of the X server’s internal objects
such as windows. To the kernel, X client applications
are simply normal processes which have a socket con-
nection to the X server over which opaque data is being
transferred. Current SELinux policy can prevent client
applications from connecting to the X server entirely, but
this solution is too coarse-grained from a usability per-
spective. What is needed are fine-grained controls on
individual X server objects. An application of the Flask
architecture to the X server itself will provide these con-
trols, after which SELinux policy can be written for X
objects and the X server made a policy enforcer in the
same manner as the kernel.

Several steps are required to achieve this goal. A
mechanism for obtaining policy decisions in userspace
must be established, and supporting infrastructure must
be provided in the SELinux libraries. Flask object
classes and permissions must be selected to allow natu-
ral, comprehensive policy expressions governing X pro-
tocol operations, including protocol extensions. En-



forcement logic of some form must be implemented in
the X server and Flask semantics implemented. Finally,
appropriate policy must be written. The following sec-
tions will discuss completed and ongoing work in all of
these areas.

2 Background

2.1 Library Support

The Flask architecture requires a separation between
policy decisions and their enforcement [10]. In the
SELinux runtime environment, policy decisions are ob-
tained from the “security server” which is part of the
kernel [5]. One of the key decisions made in the plan-
ning stages for the X work was to continue using the
kernel security server to obtain policy decisions. This al-
lows the existing SELinux policy toolchain to be reused
and keeps policy centralized in a single place [8]. How-
ever, it required the development of supporting infras-
tructure to allow efficient retrieval of policy decisions
from userspace, as well as notification of significant pol-
icy events such as reloading or invalidation.

Thesecurity compute av SELinux library call
may be used to obtain policy decisions from the ker-
nel. However, this interface returns raw decision vectors
rather than a simple yes/no answer, provides no audit-
ing, and does not cache decisions, requiring a resource-
intensive trap into kernel space on each use. These is-
sues were resolved by porting the existing access vec-
tor cache (AVC) from the kernel into userspace, mak-
ing it a part of the SELinux library. The userspace AVC
usessecurity compute av internally but provides
an improved interface to the user, including automatic
logging and caching of decisions in the same manner as
the kernel AVC.

The security compute av call allows syn-
chronous retrieval of policy decisions, but some policy
events, such as policy reloads, are asynchronous. The
userspace AVC must be made aware of these events in
order to discard any cached decisions that may have
been rendered invalid. The existingselinuxfs in-
terface being insufficient for asynchronous communica-
tion, a new, netlink-based interface was introduced. An
SELinux message family was created along with mes-
sage types for enforcement mode changes and policy
reloads. The userspace AVC was then enhanced to lis-
ten for these messages, optionally on a dedicated back-
ground thread, updating its cached decisions as appro-
priate.

The userspace AVC is substantially complete, and has
been a part of the SELinux library (libselinux) since ver-
sion 1.8. However, userspace object manager support in
libselinux is not yet complete; refer to Section 5.1 for a
discussion of the proposed labeling interface.

2.2 X Server Security Hooks
SELinux in its current form relies on the Linux Secu-
rity Modules (LSM) project to provide access to key de-
cision points throughout the kernel [9]. LSM provides
general-purpose security hooks and a number of secu-
rity projects besides SELinux have made use of them.
Since X is a general-purpose windowing system just as
Linux is a general-purpose operating system, the provi-
sion of LSM-style security hooks was determined to be
the best method to provide enforcement logic in the X
server. These hooks were added by what is now known
as the X Access Control Extension (XACE).

The development of XACE was simplified by an ex-
isting security extension (“Security”) developed by the
X Consortium in 1996 [12][13]. The Security exten-
sion provides a simple two-level trust hierarchy for client
connections, where “untrusted” clients are restricted in
several ways. The two-level trust model is too coarse-
grained for general use, but the extension authors had
conducted an analysis of the core X protocol, identi-
fying places in which untrusted clients should be re-
stricted and introducing checks into the X server code
at those places. Much of the XACE development pro-
cess consisted of simply replacing those checks with
more generic callbacks. The Security extension was
then rewritten to use the new callbacks, maintaining full
backwards compatibility.

XACE has been accepted into the X.org mainline as of
xserver release 1.2. A full discussion of the capabilities
of XACE is beyond the scope of this paper [11], and
the set of hooks may change slightly as work progresses
(refer to Section 5.2). However, two specific areas where
XACE provides coverage are worth discussing in detail,
because they together provide the basis for nearly all of
the enforcement activity of the Flask module discussed
in the next section.

The first of the two areas is control over access to X
server resources. Most X server objects or “resources,”
including windows, pixmaps, cursors, fonts, and col-
ormaps, are assigned unique ID numbers and stored to-
gether in a large hash table. The ID numbers include
space for a client index number, allowing resources to
be assigned a client “owner,” usually the client respon-
sible for creating the resource. The resource system is
extensible, allowing X protocol extensions to create new
resource types for objects that they introduce [1]. Clients
refer to resources by ID number when making protocol
requests; the request handling code then calls a lookup
function to retrieve a pointer to the object itself. An
XACE hook is present in the lookup code. The hook
includes as parameters the resource ID (from which the
client owner and type of resource can be ascertained) and
the client on whose behalf the lookup is being made [13].
This important hook allows security modules to vet any



and all resource lookups.
The second of the two areas is control over the X pro-

tocol dispatch table. Briefly, X protocol requests include
major and minor codes. The major code specifies the
protocol extension, with the first several major codes re-
served for “core” X protocol requests. Major codes are
assigned to extensions dynamically, but extensions have
fixed names which can be checked to determine which
extension is assigned to a given major code [7]. The mi-
nor code, by convention, specifies the individual request
within the protocol extension. All incoming requests are
dispatched through an array indexed by major code, con-
taining function pointers to request handlers. For core
protocol requests, the request handler processes the re-
quest immediately. For extension protocol requests, by
convention, the request handler switches on the minor
code, calling a second handler which performs the spe-
cific request.

XACE fills the server’s dispatch array entirely with
calls to an XACE intercept function. This function calls
an XACE hook, allowing security modules to examine
and potentially reject all incoming requests before they
are dispatched to the actual request handlers. Using
the published protocol specifications, security module
authors can write code to parse the incoming requests,
checking resource ID numbers, flags, and other parame-
ters. This powerful capability is used extensively by the
Flask module.

2.3 X Server State Storage
XACE does not provide a mechanism for attaching state
(labels) to X server objects. This mechanism is provided
through a separate subsystem, devPrivates, which was
originally intended for device driver writers to use for
storing private data [1]. Certain server objects possess
a devPrivates field, which points to a dynamically
allocated array of generic value/pointer unions. At ini-
tialization time, drivers, extensions, and other modules
can register for a slot in this array, and can additionally
specify an amount of memory which will be allocated
and referred to by the generic pointer in that slot. When
object instances are created, the registrations are used to
allocate the array and any extra space requested. In this
way, devPrivates provides the ability to hang extra data
from certain server objects.

The objects supported by devPrivates include the
client structure itself, which is the main structure created
when a new client connection is made. Device-related
structures, including the ScreenRec object which repre-
sents a single screen, and the DeviceIntRec object which
represents an input device, are also supported. The Ex-
tensionEntry structure that represents each protocol ex-
tensions is supported (this support was added as part of
the XACE work). Finally, some resource objects, in-

cluding window and pixmap objects, are supported.
However, many resource types do not include a

devPrivates field in their structure definitions. Mi-
nor objects such as individual window properties, and
ephemeral objects such as event messages are likewise
not supported. Extending the reach of the devPrivates
mechanism to these objects is a priority; refer to Sec-
tion 5.2.

3 Flask Module
The first step in the development of a Flask module for
X was to determine the appropriate set of object classes
and permissions for X. In 2003, Kilpatrick, Salamon,
and Vance described a set of object classes and permis-
sions1 for use in securing the core X protocol [4]. This
set is the one in use today, with the following deviations:

• A GC object class was introduced, representing
graphics contexts, one of the basic server resource
types. This class was added mainly for complete-
ness, so that all the base resource types would be
covered.

• A Property object class was introduced, represent-
ing named window properties. Objects of this class
are meant to be labeled with a type derived from the
name, so that for example, the standardWM CLASS
property would be labeledwm property t. The
class works in conjunction with thechprop per-
mission on the window class to allow fine-grained
control over which properties client applications
can read and write on given windows.

• An Extension object class was introduced, repre-
senting named X protocol extensions. Like the
property class, objects of this class are meant to be
labeled with a type derived from the name. For ex-
ample, theXKEYBOARD andXInput extensions
would be labeledinput ext t. Client applica-
tions are denied use of any protocol requests be-
longing to an extension unless they have theuse
permission on that extension, and may not query
the extension’s existence unless they possess the
query permission. Restricting entire extensions at
a time is coarse-grained, but is a useful mechanism
particularly for extensions that have not yet been
analyzed to determine what fine-grained checks to
perform on each protocol request.

• Several permissions were added to the Win-
dow object to control certain core protocol re-
quests; these aresetfocus,transparent, and
mousemotion. Having the transparent permis-
sion allows clients to create windows with no back-
ground or otherwise unfilled so that windows be-

1The full list of classes and permissions is not enumerated here but
can be found in reference [4].



neath it show through. Another new permission
extensionevent was added to control permis-
sions for sending events defined by protocol exten-
sions. This is likely too coarse-grained to cover all
such event types, but can serve as a fallback for
those events which have not been categorized into
the other event-sending permissions.

• A few other miscellaneous permissions were
added.

The next step was to begin implementing the Flask
module as an extension to the X server. Extensions make
use of internal X server API’s to initialize themselves,
obtain a major code and provide a dispatch handler for
new protocol requests, and register callbacks for vari-
ous events, including XACE hooks. Extensions can be
built as loadable modules provided that they rely only on
the published API’s and do not change the core X server
code; the Flask module meets these requirements. All
loading and initialization of extensions occurs before the
server begins accepting client connections; clients can-
not interfere with this process.

One of the first operations performed in the mod-
ule initialization code is to register for space in server
objects through the devPrivates mechanism described
above. Of the eleven X object classes, ten correspond
directly to internal objects, and ideally all instances of
those objects would carry labels. However, due to the
current limitations of devPrivates, many of the objects in
question, including resource objects such as font, cursor,
and color, do not have devPrivates support and cannot
be directly labeled. For the time being, the Flask mod-
ule maintains a list of labels attached to the main client
object, one for each object class. The trouble with this
scheme is that it limits to one label all objects of a given
class belonging to a given client. Thus it is not currently
possible for a client to have, for example, two windows
of different types.

When a new client connection is made, the Flask mod-
ule is notified via a client state callback. The callback
function obtains the security context of the new client
by calling thegetpeerconSELinux library call on the
client’s socket descriptor (if the connection is from a re-
mote machine, a default context is used). Then, succes-
sive security compute create library calls are
used to determine labels for each of the client’s object
classes and these are stored in the list attached to the
client structure. Once devPrivates support is available,
this step will be performed at object creation time, and
the label will be stored with the object.

A peculiar concept in the X server is that of the “server
client.” The X server itself owns resources and other
objects, notably the root windows on each screen. A
fake client object called the server client is present as
a stub in the resource system to server as the owner of

these objects. The Flask module treats this client the
same way as regular clients, but uses the context of the X
server process as the starting point for computing labels.

The property and extension object classes are not as-
sociated with a particular client, but rather are labeled
based on the name of the object instance as described
above. When labeling these objects, the Flask module
combines the user and role fields from a base context
with a type looked up from the name. The base context
used for extensions is that of the server process, and the
one used for properties is that of the client object owning
the window to which the property is attached. The type-
to-name mapping is kept in a configuration file read by
the Flask module on startup, although ideally this infor-
mation would be maintained as part of the SELinux pol-
icy configuration in the same manner as the filecontexts
database, which serves a similar purpose.

Also at initialization time, the Flask module regis-
ters callbacks on XACE hooks, the major one being the
dispatch intercept hook described above. After this is
done, initialization is complete and the X server pro-
ceeds into its dispatch loop, waiting for client requests
to arrive. For the most part, the permissions on each
object class correspond closely to the core protocol re-
quests involving that class, and this is reflected in the
dispatch-oriented structure of the module’s enforcement
code.

For example, suppose aChangeWindowAttri-
butes request arrives at the server. This request con-
tains the resource ID of a window along with new win-
dow attributes to be set. The XACE dispatch inter-
cept hook calls the Flask module callback, which drops
through a switch statement to the ChangeWindowAt-
tributes handler. That handler parses the incoming re-
quest, first determining the context of the client mak-
ing the request (the source), then extracting the window
ID and from it determining the client owner of the re-
source. The list of labels in the owner’s client structure
is consulted to determine the context of the window (the
target). Finally, a call toavc has perm is made, pass-
ing the source and target contexts, window class value,
and thesetattr permission. If the result is a denial,
XACE returns aBadAccess error to the client, other-
wise the request continues on to its “real” handler. All
of the core protocol requests are handled in this manner,
and extension protocol requests will likely be handled in
the same manner.

The Flask module also includes preliminary support
for window labeling. Via an XACE hook, a callback
function is called whenever new windows are created.
That callback function sets a property on the window
containing the window’s security context, and in the fu-
ture additional properties may be added to communicate
other contexts, such as that of the client connection own-



Figure 1: Example cut buffer access policy.

Figure 2: Example screen capture policy.

ing each window. The property name begins with an
SELINUX prefix and it can be protected from modifi-

cation via SELinux policy. Window managers can be
modified to display the property contexts alongside or in
lieu of the normal window title; Figure 4 (located on the
last page) shows a screen shot of a modifiedtwm that
does this. Secure window labeling is discussed further
in Section 5.4.

4 Policy
In the following sections, sample policy is presented to
address some different security goals in X. Some as-
sumptions are made in the policy fragments:

• Some type definitions and other statements are
omitted to save space.

• Window objects are labeled directly with the own-
ing process domain.

• The configuration file that maps extension and
property names to the associated types is not
shown.

The policy fragments are meant to be examples and are
not comprehensive. As with all SELinux policy, all ac-
tions not explicitly allowed are denied. The examples
thus consist of allow rules expressing the actions which
we wish to permit.

4.1 Clipboard Access
The policy in Figure 1 allows a client application to ac-
cess the cut buffers, which consist of 8 properties on the
root window. They are intended for use as a simple 8-
slot clipboard [3].

Line 1 grants the domain access to cut buffer prop-
erties, while line 2 allows reading and writing of prop-
erties on the root window. Removing thechprop and
write permissions would permit reading from the clip-
board only.

X Windows provides another clipboard mechanism,
selections, which is more complex than cut buffers. Pol-
icy coverage of selections is possible but not covered

here.

4.2 Screen Capture
The policy in Figure 2 allows a client application to cap-
ture screen contents.

Line 1 by itself allows the domain to use the
GetImage andCopyArea core protocol requests on
all application windows, allowing their contents to be
captured. This is the mechanism used by the GIMP
application’s window capture feature. However, there
is a “back door” method for capturing contents: cre-
ate a window with no background, which causes the
windows beneath it to show through, and then copy its
contents [12]. Line 3 allows the application to create
such no-background windows; denying this permission
would prevent their creation.

The three capture methods described here are the only
ones the author is aware of in the core protocol. There
may be other methods available through extensions; it
is hoped that thecopy permission will cover all direct
capture methods whiletransparent will cover any
indirect methods such as alpha blending or translucency,
which are becoming common.

4.3 Window Managers
Window managers in X are regular client applications
that control the surroundings and placement of other
windows on the screen. Window “decorations” such as
title bars, borders, and resize handles are drawn by the
window manager. Window managers have a great deal
of control over other application windows, reparenting,
moving, hiding, and resizing them as necessary. Because
of this, it would be beneficial to run window managers
in a separate domain from regular clients. Refer to Fig-
ure 3.

Line 1 allows the domain to access X protocol exten-
sions designed specifically for window managers. Line
4 grants access to window manager related properties
while line 5 grants permission to read and write proper-
ties on any application window; together these two lines



Figure 3: Example window manager domain policy.

grant access to window manager related properties (and
only those properties) on all application windows. An
example of such a property would beWM NAME.

Lines 8-13 grant extensive control over application
windows, including the ability to move, hide, and repar-
ent them, change the stacking order, and send notifica-
tion messages of these activities to clients. Lines 16-21
grant permission to change the input focus to any win-
dow, move the mouse cursor, and create “grabs” on the
server, which are used to redirect or temporarily inter-
rupt input events.

The power required by window managers warrants
a thorough review of any candidate before admitting it
to the domain. However, the limited number of such
programs in common desktop use should make this a
tractable task.

4.4 Events
Another area of concern is the malicious sending of X
events to windows belonging to other clients. This sort
of behavior enables the “shatter” attack which has been
demonstrated on Microsoft Windows systems. This at-
tack involves sending malicious configuration events to a
window owned by a privileged process, causing a buffer
overflow that allows arbitrary code to be run as the priv-
ileged user. [6].

It should be noted that X events are part of a wire pro-

tocol, not an internal API such as in Windows, nor can
X events used to configure individual text fields or other
widgets as in done in the shatter attack. However, there
is aSendEvent protocol request which allows clients
to send arbitrary events, including fabricated keyboard
and mouse input or other unexpected notification nor-
mally generated only by the server.

In Kilpatrick et. al., the various core protocol events
were grouped into rough categories which are expressed
as permission bits on the window object class [4]. Thus,
sending aKeyPress event to a window requires the
inputevent permission on that window. In Figure 3,
line 12, the window manager domain is granted permis-
sion to send events from two different categories to all
application windows.

In this manner, SELinux policy may be used to con-
trol the sending of events. In the future, however, the
category model may be discarded in favor of X events as
a distinct object class, labeled based on the event name
(or number) in a similar manner to the property class.

5 Future Work

5.1 Library Interfaces
As discussed previously, the property and extension ob-
ject classes are labeled with a type that is derived from
the name of the object. Types are defined in the SELinux



policy, but currently, the mapping from names to types
is kept in a configuration file that is part of the X.org
code base and installed as part of the X server. The X
Flask module must load this file and parse its contents
on server startup, and the parsing code constitutes a large
part of the module at present.

The X server is not the only instance of a userspace
object manager needing a string to type mapping. The
D-Bus daemon uses such a mapping to label D-Bus
messaging channels from their names, and the file con-
texts configuration consists essentially of such a map-
ping with regular expression matching semantics. In
general it is likely that there will be a need for more
such mappings as more userspace object managers are
developed.

The author is developing a standard mechanism for
use in querying such mappings, which would be a part of
libselinux and store the mapping data in the policy con-
figuration in a similar manner to the filecontexts data.
This would work well with a modular policy that ships
policy modules with each application, and would allow
userspace object manager code to call a streamlined API
instead of having to load and parse configuration data on
a per-manager basis. This “labeling API” is a work in
progress and early versions of it have been posted to the
SELinux mailing list for review.

5.2 Security Hooks
As the XACE framework matures through use in the X
community, the set of security hooks it provides will
likely change to meet the needs of new and existing X
server extensions and drivers, as well as other projects
which may find it useful. For example, it is possible that
the Solaris Trusted Extensions for X may make use of
XACE to assist in an upstreaming to X.org [2]. XACE
hooks that were introduced to support the legacy exten-
sions Security and Appgroup may be removed, and oth-
ers may be moved out of XACE and made a part of other
X server mechanisms, such as the commonly used client
state callback [1].

As discussed in Section 2.3, the devPrivates state stor-
age mechanism must be extended to additional server
structures to support full labeling of server objects and
resources. Another problem with devPrivates is that the
mechanism is not consistent from object type to object
type. For example, the devPrivates support for the col-
ormap object includes an initialization callback function,
while other objects do not. Work is necessary to unify
and extend this important supporting interface.

5.3 Policy
The author is preparing patches which will add support
for X to the Reference Policy. However, in light of the
continuing work on the supporting infrastructure and the

extension of the Flask module’s coverage to additional
extensions, it is unlikely that the current set of object
classes and permissions will remain unchanged. Pol-
icy development itself also reveals areas in which the set
needs refinement.

Providing MLS support for X is an area that has not
yet been seriously investigated. Because of data trans-
fer mechanisms within the X server, notably the clip-
board, an MLS desktop system will almost certainly re-
quire support within X and other desktop layers.

5.4 Trusted Labeling & Input

The preliminary labeling scheme discussed in Section 6
relies on the window manager to obtain the label from
a property attached to each window and display it in the
window’s decoration. This scheme is subject to spoofing
attacks, since a malicious client application could recre-
ate window decorations itself, misleading or confusing
the user.

A more secure method would be to reserve an area
of the screen for displaying labels. This area would
be off-limits to client drawing; the server itself would
be responsible for drawing the labels as the input focus
changes from window to window. This scheme is em-
ployed by Solaris Trusted Extensions for X [2].

Secure input, input event labeling, and trusted path are
areas that need addressing. However, the input subsys-
tems in the X.org X server are in a state of churn as new
features are added. For example, recently improved de-
vice hotplugging support was added, which has resulted
in deep changes to the server. Other proposals on the ta-
ble include support for multiple concurrent mouse point-
ers and new ways for selecting input focus on windows
for use in 3D environments. This author does not plan to
study the X input model in depth until development has
settled down.

6 Conclusion

Application of the Flask architecture to the X server is
a key security development that provides a foundation
for securing the Linux desktop. Vigorous work on the
projects described in this paper and in other userspace
object manager and desktop-related areas is expected in
the coming months of 2007.

As mentioned, the XACE framework has been ac-
cepted into the X.org mainline for release 1.2 of the X
server. The current, tentative target for acceptance of the
Flask module is release 1.3, which is scheduled for mid-
2007.



Figure 4: Screen capture of simple labeling demonstration

References
[1] S. Angebranddt et. al. “Definition of the Porting

Layer for the X v11 Sample Server.” X Consor-
tium, Inc, and X.org Foundation (2004).

[2] G. Faden. “Solaris Trusted Extensions:
Architectural Overview.” Sun Microsys-
tems white paper (2006). Available URL:
http://opensolaris.org/os/
community/security/projects/tx/.

[3] J. Gettys et. al. “Xlib - C Language X Interface.”
The Open Group (1996).

[4] D. Kilpatrick, W. Salamon, and C. Vance. “Se-
curing the X Window System with SELinux.”
NAI Labs Report #03-006 (2003). Available URL:
http://www.nsa.gov/selinux/info/
docs.cfm.

[5] P. Loscocco and S. Smalley, “Integrating Flexible
Support for Security Policies into the Linux Oper-
ating System.” InProc. 10th USENIX Conference
(FREENIX Track) 2001.

[6] C. Paget. “Exploiting design flaws in the Win32
API for privilege escalation.” (2002).

[7] R. Scheifler. “X Window System Protocol.” X Con-
sortium, Inc. (2004).

[8] S. Smalley. “Configuring the SELinux Policy.”
NAI Labs Report #02-007 (2002). Available URL:
http://www.nsa.gov/selinux/info/
docs.cfm.

[9] S. Smalley, C. Vance, and W. Salamon. “Imple-
menting SELinux as a Linux Security Module.”
NAI Labs Report #01-043 (2001). Available URL:
http://www.nsa.gov/selinux/info/
docs.cfm.

[10] R. Spencer, S. Smalley, P. Loscocco, M. Hibler,
D. Andersen, and J. Lepreau. “The Flask Security
Architecture: System Support for Diverse Security
Policies” InProc. 8th USENIX Conference (Secu-
rity Symposium) 1999.

[11] E. Walsh. “X Access Control Extension Specifica-
tion.” X.org Foundation (2006).

[12] D. Wiggins. “Security Extension Specification:
Version 7.1.” X Consortium, Inc. (1996).

[13] D. Wiggins. “Security Extension Server Design
(Draft Version 3.0).” X Consortium, Inc. (1996).

[14] The X.org Foundation. Available URL:http://
www.x.org.

[15] GNOME: The Free Software Desktop Project.
Available URL:http://www.gnome.org.

[16] K Desktop Environment. Available URL:http:
//www.kde.org.

[17] GTK+: The GIMP Toolkit. Available URL:
http://www.gtk.org.

[18] Qt: Trolltech. Available URL:http://www.
trolltech.com/products/qt.


