NSA Security-Enhanced Linux (SELinux)

http://www.nsa.gov/selinux

Stephen D. Smalley

sds@tycho.nsa.gov

National Information Assurance Research Laboratory

National Security Agency
What is SELinux?

- Flexible Mandatory Access Control (MAC) for Linux.
- Configurable policy engine supporting:
 - Type Enforcement (TE), Role-Based Access Control (RBAC)
 - Optionally Multi-Level Security (MLS)
- Ability to enforce confidentiality and integrity guarantees.
- Ability to confine flawed and malicious applications.
- Ability to enforce assured pipelines.
SELinux: Key Properties

- Complete mediation
 - Control over all processes, objects, operations.

- Control based on all security-relevant information.
 - Properties of the actual process and object, not just its name.

- Configurable support for meeting application security requirements transparently.
 - Assured pipelines.

- Infrastructure for security-aware applications.
 - A secure system requires more than just a secure OS.
SELinux: Background

- Originated from NSA R&D.
- First public release by NSA in Dec 2000.
- Large and growing user and developer community.
- First packaged externally for Debian.
- Integrated into Hardened Gentoo.
- Integrated into mainline Linux 2.6 in Aug 2003.
- Included and enabled in Red Hat distributions.
 - Fedora Core 3, 4, and 5; Red Hat Enterprise Linux 4
Recent Advances in SELinux

- Improved integration with audit subsystem.
- Enhanced network packet labeling and control.
- Enhanced filesystem labeling support.
- Key management controls.
- Improved base policy.
- Loadable policy modules.
- Policy management infrastructure and tools.
- Improved and new policy development tools.
Improved Audit Integration

- Extended syscall audit records with security contexts.
- Enabled filtering based on security contexts.
- Added auditing of SELinux specific events.
- Enabled audit of netlink capability checks.
- Some parts included in Linux 2.6.17, further support added for 2.6.18.
Network Labeling: IPSEC/xfrm

- Implicit packet labeling via IPSEC/xfrm.
- Security context stored in xfrm policy rules and states.
- Authorize socket's use of policy based on context.
- Build SAs with context of policy.
- Included in Linux 2.6.16.
- TCP SO_PEERSEC support, UDP SCM_SECURITY support added in Linux 2.6.17.
Network Control: SECMARK

- **Motivation:** Existing SELinux network controls very limited in expressiveness and coverage.
- **Solution:** Separate labeling from enforcement.
 - Use iptables to select and label packets.
 - Use SELinux to enforce policy based on those labels.
- SECMARK and CONNSECSECMARK targets added.
- For 2.6.18.
Network Labeling: MLS enhancements

• Granular IPSEC associations
 – Allow a single xfrm policy rule to cover a MLS range.
 – Instantiate individual SAs for individual levels within the range.

• Flow labeling outside of socket context
 – Label based on origin when no socket involved (e.g. forward)

• Label socket IPSEC policy from socket.
• Label TCP child sockets from peer.
• In progress, see redhat-lspp and netdev lists.
Network Labeling: NetLabel

- Explicit packet labeling via IP option.
- Motivation: Compatibility with other trusted OSes.
 - Also avoids requiring use of iPSEC for labeling.
 - Also enables packet filtering based on the explicit labels.
- Presently limited to CIPSO, MLS labels.
- Code and info at http://free.linux.hp.com/~pmoore/projects/linux_cipso/
Filesystem Labeling

- Jffs2 xattr support (for 2.6.18)
- Improvements to mount context options (for 2.6.18)
- Atomic labeling of new files (2.6.14)
- VFS fallback for security xattrs (2.6.14)
- Canonicalization of getxattr results (2.6.15)
Key Management Controls

- Added security labeling of keys upon creation.
- Added basic permission checks on key operations.
- Added keycreate support to specify key labels.
- Randomized key serial number generation.
- Filtered /proc/keys output.
- For 2.6.18.
Reference Policy

- Improved base policy for SELinux, replaces old example policy.
- Strong modularity with explicit interfaces.
- Inline documentation.
- Ability to build policy variants from single source base.
- Deployed as the base policy in Fedora Core 5.
- http://oss.tresys.com
Loadable Policy Modules

- Ability to build and package policy modules separately.
- Avoids need for policy sources for local customizations.
- Enables third party policy and decomposition of distro policy.
- Initially deployed in Fedora Core 5.
- Ongoing work to migrate policy into individual packages for Fedora Core 6.
Policy Management

• Standard library for applications to use to manipulate policy (libsemanage).

• Designed to support multiple back-ends transparently.
 – Initial support for direct manipulation of policy store.
 – Work in progress for policy management server daemon.

• Used by policy management tools.
 – Semodule, semanage, setsebool
Policy Development Tools

- SLIDE, http://oss.tresys.com
 - Integrated Development Environment for policy
 - Eclipse plugin, integrates with reference policy
 - Policy editor with simplified policy language, GUI
- Polgen, http://www.mitre.org/tech/selinux
 - Policy generation tool based on pattern recognition
 - Policy analysis tools
allow apm_t self: capability { dac_override sys_admin };

corenet_non_ipsec_sendrecv

corenet_raw_bind_all_nodes

corenet_raw_receive_all_nodes

corenet_dontaudit_udp_bind

corenet_dontaudit_tcp_connc

corenet_dontaudit_tcp_bind

corenet_dontaudit_tcp_sendn

corenet_dontaudit_udp_sendn

corenet_raw_bind all_nodes

corenet_raw_receive all_if

corenet_raw_receive all_node

Load and execute functions from shared libraries, with legacy support.
Next Steps

• Securing the desktop
 – Reviving the XACE/XSELinux implementation, upstreaming it.
 – Labeled windowing.
 – Addressing other desktop infrastructure components.
 – Ensuring that user applications function properly in a secured environment.

• Improved useability
 – New troubleshooting tool
 – Continued improvements to policy tools
Next Steps (Cont)

• Policy Management
 – Completing the policy management server daemon and the libsemanage backend support.
 – Extending management to collections of SELinux hosts, including support for local variations and policy splitting.
 – Reconciling differences in policies between SELinux systems.

• Improvements to policy modules
 – Language support for interfaces
 – Integration with package management
Next Steps (Cont)

- **Integration with SE-Xen**
 - Flask architecture in Xen hypervisor.
 - Support for Xen object managers, like XenStore.
 - Policy management for Xen policy (shared toolchain).
 - Coordination with guest policies.

- **NFS integration**
 - Extending NFSv4 to support process and file security attributes.
 - Ensuring correct enforcement on client and server.
Credits

• HP (audit, MLS, NetLabel)
• IBM (audit, MLS, IPSEC labeling)
• MITRE (Polgen)
• NEC (SMP scalability, jffs2 xattr, embedded)
• Red Hat (audit, fs labeling, SECMARK, semanage)
• Tresys Technology (refpolicy, modules, semanage, policy server, SLIDE, SETools)
• Trusted Computer Solutions (audit, MLS, IPSEC labeling)
• And the entire SELinux community...
Resources

- SELinux News http://selinuxnews.org
- Sourceforge project http://selinux.sourceforge.net
- SELinux Symposium http://selinux-symposium.org
- NSA SELinux site http://www.nsa.gov/selinux
- Tresys Technology site http://oss.tresys.com
End of Presentation