DOCID:

4001135

pproved for Release by NSA
n09-26-2012, FOIA Case #
1546

Computers—The Wailing Wall
BY J. A. MEYER .
—Seerei—
A description of the struggle to accomplish cryptonalysis by machine.

INTRODUCTION

Computers are a new kind of cryptanalytic clerk which have, in the
past five years, become the focus of a constellation of ideas, spectacular
feats, and misunderstandings at NSA. Popular clichés, . . . solved
by the computer”, *. . . read by the computer”, subtend the diffi-
cult and fascinating process of machine eryptanalysis, and assign o
halo of achievement to the dominent concrete element, the computer,
as if it were in some way deserving of praise or blame for the results it
produces. For people engaged in the facts of mechanization, this illu-
sion does not persist; the computer is seldom more than a convenient
schpegoat, and it is the aim of this paper to describe some of the
problems, idees and people involved in the development of a crypt-
analytic machine attack, and its consequent machine program.

1. FACTORS IN MBCHANIZATION

The machines, the people, and the nature of the cryptanslytic
problem determine the success of & mechanization.
1.1 Machine Characteristics

A computer is & large electronic machine. Electromechanical
devices such as tape readers, typewriters, and meagnetic tape units
trensfer information in and out of the machine. A memory unit
stores & set of numbers. All processes and data are represented in a
computer s numbers. A switching network provides an arithmetic-
logical unit, and control system. A computer functions by reading
instructions in its memory, and performing simple operations in its
arithmetic-logical unit. Its particular value lies in its ability to per-
form any sequence of simple operations in any specified order. This
distinguishes it from special-purpose machines for which the function
and logical organization are fixed at the time of construction. The
task of specifying sequences of operations is called programming.
The outstanding logical characteristic of digital computers is that they
can be programmed. This is also their principal weakness; they must
be programmed,
1.2 The Technical People

When an attempt is made to mechanize a problem, three kinds of
specialists are involved: the cryptenalyst, the methods analyst, and
the programmer. The eryptanalyst starts s project by conceiving

69 —SEERET

hose of the author(s) and do not
epresent the official opinion of
SA/CSS.

he opinions expressed in this article are

'DOCID: 4001135

—SECRETF COMPUTERS—THE WAILING WALL

of an experiment. If the experiment cannot be carried-out by hahd,
he may seek machine aid. The methods analyst, who is introduced
to the problem at this point, must decide if the experiment can be
done by machine, and if so, he must invent some workable method.
A-methods analyst is usually & cryptanalyst of ‘ability and experience
who also possesses a special flair for transforming vaguely expressed

anelytic ideas into exact logical procedures which can be represented

on a mackhine. The programmer must invent & way of representing
the logical procedure on a computer,' and one of his most challenging
responsibilities is to discover as quickly as possible an efficient repre-
sentation, and produce g timing estimate which is not wrong by more
,than a factor of five or ten. This is frequently & very difficult thing to

‘do, but it may be the most significant single factor in deciding whether

to pursue an attack or not.
1.3 Status of the Problem

Cryptanelytic problems which are solved usually pass through
three stages of development; diagnosis, in which the nature of tie
encipherment- is discovered; recovery, in which components, wheels,
koy, code groups, etc. are “earned”; and setfing, in which the relation
of the known elements to & particular message is sought.? Because of
the leborious routine, which not only bores the analyst, but fre-
quently is too large to carry out by hand, setting has become the
classical machine attack, and exhaustive trials the classical method.

! By ‘‘representing” we do not ordinarfly mean constructing or simulating an
cxact analogue, but rather, abstracting certain characteristics of the problem or
mechanism into an information matrix (a set of function tables and relationships)
which can be manipulated to give the effect of the object. For example, & wired
rotor enciphers by conducting a current through & wire. We do not make an
analogue of the wire and simulste the current flow in terms of electrioal equations;
instead we designate the rofor input as a linear coordinate and the rotor output
88 & number. The characteristic of rotor.encipherment in which we are inter-
ested is a transfer from & point in spaco to a point i space, and this cap be repre-
sented by a function table.. A good representation is simple snd acourate.

7 A simple le of this is monoalphabetic substitution. Starting with raw
traffio, and perhaps some knowledge of the underlying plain text, the cryptanalyst

. determines by frequency counts, or repeats, or some other ohvious characteristio
of the cipher text, that monoalphabetic substitution is a likely encipherment
systemn. He then tries to recover the substitution, and if he succeeds, this con-
firms the diaguosis. 'He may also discover, after solving a few messages, that a
small family of substitutions is being used for the day’s traffic, and he then tries
placing known alphabets into new messages. This Jast is a setting problem, in
which sil the compovents are known. On a higher level, diagnosis may consist
in proviog that a four-digit code is enciphered by additive key. Recovery may
involve earning new code groups and key frorh messages in depth, and when
enough key and code have been recovered by hand, it may be possible to try
setting messages by sliding sll d key against each
nizing good placements. .

—SEEREF- 70

ge, and recog-

J. A. MEYER SEERET

Thé machine and programs for setting are usually simple and- func-
Liofml, and are often successful. Recovery-is & more difficult prob-
lem to mechanize, because exhaustive trials can never be used, atnd
instead, sn attack must be devised.’ Some of the most striking
advances in the past few years have been made in the development of
machine récoveries, but the attacks and programs are much more
sophisticated end require much more thought and effort than the
setting techniques. :
1.4 The Idea

To attempt mechanization of a problem, 2 state.of knowledge must
be reached io which exsct hypotheses can be formulated. An exact
hypothesis is & question which can be acco_rded 8 Yes-or-no answer
after an experiment. It is the eryptanalyst’s job to-sift the ev:den.ce.
and evolve such a hypothesis. This requires extreres of 6bservation
and insight, and will probably be permanently beyond the power of
eny machine. . : : :
1.6 The Method '

The development of an iterative system of trials is the essence of
mechanized cryptanalysis. Many successful cryptanalysba_ are up-
able to express-in simple terms the techniques théy use for.solvmg
problems even though they may, through worlsheats and sign len-
guage, be able to communicate enough of the idea so bhat' gther
cryptanalysts are sble to derive equivalent methods. In'dewsmg)
gystem of triels, the methods analyst cannot rely on simply con-
structing - an analogue of the hand method, because frequently

. so-called hand mothods are really conceptusl feats of strength, accom-

panied by dosdling.* To suit a machine, an attack must be reducible
to o simple, exact routine with a large volume of work.® Unless the

* The impracticability of exhaustive risls in recovery is easily illustrated by
the case of monoalphabetic substitution. The simplest method would be to ?ry
26! alpbabets, and recognize the resultiog plain text. If the trials were carried
out at the rate of 10 alphabets/second, it would take over one trillion yesrs to
complcte the testing on one message, nnd/&f 2 Bayes factor ecoring systera wers
used to reject null trials, & large number of random trials would outscore the
correot answer. Given fifty groups of ciphor text, a band worker could recover
the correct alphabet in a short time. :))

¢ Ap example of & non-iterative task is reading & depth. A depth is a pair z{f
messages which are enciphered by the same key. Where neither key nor coda is
known, the solution requires a knowledge of language, a hunch about context,
and & feeling for believable plain text. Extremely good guesses are also a help.
For a task like this, the experienced depth reader is unchallengeable.

s A classical iteration is slide-running, in which all recovered key i tried against
all pew messages, and the underlying code, if any, is recognized. The same
operations, differencing and recognition, are performed over and over on each
message, and the fuwiction tables (key and cipher and codebook) permuted
exhaustively. In this sort of task, & machine is unequalled.

7t | —SEERE—

‘DOCID: 4001135

~SEEREL- COMPUTERS—THE WAILING WALL

task is routine, it cannot be done at all, and unless there i & fair
volume of work, it may not be worth doing by machine, since the
program may be more difficult than the process.

1.6 The Program)

The outstanding characteristic of & computer program is its in-
flexibility. Sometimes programs are also very complex, but the
function of a program is a purposeful caleulation, and & program in
operation is always a special-purpose mechanism which uses the
components of 8 general-purpose machine to perform a particular
process. A frequency-counting routine will only do counting; it
cannot be used for slide-running. A decipherment-routine will only

do & particular kind of decipherment, such as modular addition, and

. cannot also do Playfair or Vigenére substitution. Because any
features of flexibility in & program require additional thinking and
effort to incorporate, programmers customerily write the most in-
flexible program possible, since this involves the least work and chance
-of error, and offers great advantages in efficiency and compactness.

A program is usually accomplished in two distinct phases, solution
and-execution. In solving a program, the programmer investigates a
pumber of different ways of representing processes, and concentrates
on the ideas, the statement of the problem, and the invention of
“programming tricks” to increase the efficiency or flexibility of the
program. It is much easier to change an idea than to rewrite a page
of coding, so the programmer makes ah effort to avoid exact commit-
ments until he is sure all the planning is completed. Executing the
program is a feat of construction in which the ideas are reduced to an

exact seb of numbers which will diveet the machine through s specifie

process. What the machine lacks, in comparison with the human clerk,
is any degree of understanding, i. e., the ability to follow general
directions. Hence the programmer must specify every detail exactly,
correctly and completely.

The program script is & special obstacle in any machine attack. The
cryptanslytic idea, the iterative method, the programming tricks,
all represent logical achievements in the attack, and are frequently
the result of considerable cunning and insight; but once the ideas
have been evolved, writing them down is usually a simple process—at
most a fow days work. The program script is opposite in the extreme.
A program which can be described and understood in a few minutes may

require g script of thousands of lines of coding, and the progratamer, -

for months on end must pursue a single, fixed idea. The completion
of a large program script is usually accompanied by & feeling of un-
cortain relief. The minimum requirement for accuracy is ebsolute
perfection, and 2 coding-error rate of one part in & thousand will

| =SEGREE) ®

J. A. MEYER : - 'SEEQH'_

maké s program completely unworkable. An uncompromising re-
reading of the script will remove a Jarge number of ‘‘bugs’’ before the
program is tried op the machine, but the programmer can hardly
bring himself to go back through all that coding again. At the same

_time he knows that the bugs he does not remove by hand n,m'ay
" frustrate him for weeks on the machine. '“Thus conscience doth. ..

2. A SAMPLE PROl}LEM ’

Tn ‘order to describe the interplay of the technicel and human
factors inherent in mechenization, a sample case history has been4
invented.

2.1 Description of the Problem

An electromechanical key generator has been complewly recovered
except for-the current output stecker.® A message is enciphered by
adding key (mod 26) to the text. The key is _genera,ted by a three-
wheel cipher machine with a restricted set of input st,ecl_{ers, and l:
variable output stecker. The cycle of the key generator 18 4 X 10
characters, for each input stecker. The messages are 50 groups long,
and the first group of each message is steckered key with. no text
added. The messages use the key in sequence for amonth,’ then make
a pew start in the key cycle, with & change of output ste(;ker. The
beginning key group is used to locate messages correctly in the key
eycle in case of transmission errors, or loss of & message. The under-

.

* lying text is plain language, which is known and fully catalogued.

9.2 Description of the People .

The cryptanalyst is & unit heed, & band worker? who has ﬁgu}'ed
prominently in the solution and recovery of bhe_-encaphermg dqnpe.
Ho has no special mathematical training, and is completely paive
about machines and machine methods. He would like computer l}elp,
but is skeptical. The methods avalyst is a junior mathematician s
who has been applying formulae to another problexp, and taking
courses in cryptanalysis for three years. Mo has acquired o passable
voeabulary, taken a machine orientation course, md sponsored & small
program for statistical computation which was never completed.
This is his first try at & plaintext problem. The programmer holds 8
BS in mathematics, has been exposed to eight weeks of cry'pumalysls
in training school,.and has been learning programming for six months.

s A steoker I8 a single stage substitution which does ot change duriog a wmachine
getup. It is frequently represented in.cipher machines by & ?6 x 2 plugboard.
The 26 input points are connected by wires to the 26 outputs in some urltmri
sequence, for example, A:X, B:Q, . . . Z:F, and these t can be nged.
periodically by the operator. A wired wheel is & packaged subsm,unon. umtlm
which a et of input and output commutator points are connected by wires, like
the stecker plugging, but for logical reasons the wiring is usually permanent.

73 ~SEERET—

DOCID: 4001135

®)1):

(b)(3)-50 USC 403
(b)(3)-18 USC 798
(b)(3)-P.L. 86-36

TUSECRELL COMPUTERS—THE WAILING WALL

He has ‘done o few small practice routines, but. this is his first oper-
tional program.
2.3 Statement of the Problem)

The problem is to set the first message of the month, and recover
the output stecker. From this start the rest of the month’s traffic
can be read by hand. o

2.4 The Idea

J. A, MEYER

Enoipfxerment is the result of transmitting a current through a number of wheels
juxtaposed in series, A current flowing through s three wheel maze travels from
the input to the output of the first wheel, through somie fixed contact to the input
point of the second wheel, and 80 on in geries, until a closed circuit is completed
between some input source and some output point. Thus:

INPUT

YL WHEELS -
Fig. 1.

The wheels are usually permuted to each new setting by mechanical action, and
for this reason they are so constructed that the change of setting does not disable
the circuits—as by opening a switoh—but changes the effeot of the serial substitu-
tion. The mechanical action is called slepping, and the number of sucqessive
steps before the same encipherment effeot recurs is called the cycle of the machine.
The key generation can be represented as (Input = 8 M F E->Xey) where E desig-
nates the output stecker, and S M F (8low, medium, and fast) stand for the three
wheels,

? This is cailed “tailing”, the messages following one another without intermis-
sion or overlap, like elephants holding each others tails.

¢ The hand cryptanalyst evolves his solutions by heuristio experiment, insight
and “cheating”. The machine cryptanslyst designs a simple, honest procedurs,
and when the trials have been carried out, he surveys the results, .

? A junior mathematician usuelly artives with an M8 degree, and some speciali-
zation in 2 field of mathematics totally uarelated to eryptanalysis

1 The key can be generated through three wheels, S, M, and F. The actual key
usad in the message ig a substitution of this: f(B, By=K', K'+ Pa=(.

“SEERET- 74

B

75

(b)(3)-50 USC 403
(b)(3)-18 USC 798
(b)(3)-P.L. 86-36

DOCID: 4001135

TSECRER- COMPUTERS—THE WAILING WALL 1. A. MEYER —SEGREF—

2.5:6 Secondary Testing Procedure
The methods analyst feels that everything is taken care of and

—that the secondary test can be simply stated
ab 18 neede OW] e alll,
2.6 Tlge Program)

The programmer is usually kept; out of a problem until the people
concerned with the cryptanalysis feel that all the thinking has been
done. :)

2.8.1 Communication .

The methods analyst is impatient to see concrete results emerge
from his now perfect attack, and he harries the powers that be to have
a prograramer assigned to the task immediately. In an ‘exceedingly
short time, perhaps only two or three weeks, he is notified that a
programmer will be sent, and only ten days later the programmer is
led into the section.

e _ 76) o ib)ﬁ) " ' —SEeRET—
(b)(3)-50 USC 403 :

(b)(3)-18 USC 798 —— e
(b)(3)-P.L. 86-36

[

DOCID: 4001135

(b)(1)
(b)(3)-20°US
. (b)(3)-18'US
~SECRET. COMPUTERS~~THE WAILING WALL (b)(3)-P.L. 86
The methods analyst, in the interest of efficiency and quick results,
dispenses with any unvecessary explanation of the problem azd the
idea, and races through a detailed description of the exact process
be wants the machine to do. He then asks, “How fast will it run?”,
and “How soon can you have it done?” and leans back, waiting
for an answer. The programner, feeling he should break the silence
in some way, says, “I ‘don’t know,” end then, without apparent
premeditation, asks, “What do you want the program to do?”’)
.Under careful grilling the programmer reveals that he does not
understand the least bit. of the cryptology nor the cryptanalysis,
and in fact has never heard terms like “stecker”, “three wheel cycle”,
“isomorphic poker hand”, and “wheals not on & true base” in his life.
Amid cries of despair, the methods analyst settles down to the task of
drilling the ideas into the programmer’s hesd, and he is doing fairly
well in explaining the nature of electromechanical encipherment,
steckers, and additive arithmetic until one of tho hand workers, in a
helpful mood, begins explaining to the methods analyst the proper
method for explaining wired wheels.
All those present then unite efforts in a semantic log jam, trying
to convince each other that a simple device like a wired rotor is best
* represented as a square, 10, a strip, no, an inverse, converse, encipher,
- decipher table, no, an sbstraction of rotating points in space, no,
Listening to the raised voices and supercapital erypto-idioms,
-+ . you've got to correct the twist . . ”, “ . .. you can’t ‘use
strips in & machine . .”, “ . . . but what happens when you step the
F?”, the programmer is apt to undergo a serious ignorance trauma.
He hopes that it will soon be time for lunch . . ¢ 2

o

2.6.2 System Design ’ '

After & few more hours of help the programmer is sble to recite
back the setting and testing procedure well enough to fry writing the
program. At his own desk he sketc i i

i ili ha

The workload 1s to be
ime, rather ‘than running time, i
target, and the minimum program which will do the jo

G
the alleged
is i.nt;er_lded.
268 Timing 1 /

“The way the programmer solves the timiog problem is to write 2
routine which will do the primary pert of the program, i e., scan for

1% This is not really. exaggerated. Cryptanalysts are not.oti&usly inaitiouln
even in their own idiom T :

(b)(1) .
(b)(3)-50 USC 403
(b)(3)-18 USC 798
(b)(3)-P.L. 86-36"

—SECRET— 78

126

403
798...

J. A. MEYER

i Aftér'a.few days work he has a set of coding which he
. do the job. This routine is several hundred.lines of coding

in size, and, using tables which predict the operating ti!l:.le for each
instruction, the programmer calculates the number of microseconds
required to go through the basic iteration or “loop” for one character.
This basic time is about .001 seconds, so the completx

[can-be done in sbout 20 minutes. This estimate is greeted enthu-
siastically by the analyst, and in the optimism o.f th.e moment the
programmer ventures that he can complete the coding in three weeks.

2.84 Strategy and Tactics ‘
The computer being used hes a small (1024 cells) high-speed memory,
an auxiliary magnetic drum, and & magnetic tape system. In order

decides to build his progrem in several discrete segments, ‘and to
store the major portion of his n the magnetic drum.

to manage his table storage and secondary testing, the programmer -

—SEEREF—

His cycle control bookkeeping will|

to worry about; but these are straightforward, and the programmer
defers work on them until the main program is written.
2.6.5 Writing and Coding
At this point all the reasonably interesting parts are done. Accurate
tJmmg estimates can be given, and the programmer has familiarized
“himself with the functional penetralia. To complete the job hq must
" execute 8 great mass of coding: & clerical feat requiring & capacity for

kind of exacting toil & person of imagination and intelligence most

" monotonous drudgery and uncompromising attention to detail; the

~ Tour mimmutes. LRere 15 also &n Mput routine &nd an output routine

9

DOCID: 4001135

—SEERE— COMPUTERS—THE WAILING WALL

abhors.® However, there is no other way of getting the program
done. : ’

2 In the craft, this is referred to os “grinding out the program”, and is the most
prominent factor in diseouraging people from pursuing programming b & ¢ateer.
Programming ordinarily does not present ihe intellestual ohallenge that eryptan-
alysis does; it is practiced in an environment of facts, rules, exaot logic, endless

detafl—and generally requires more talent for giaphic formalism than abstraot .

reasoning. At the same time the average program seems (t0 programmers)
harder to do than the average oryptanalytic problem, The term ‘“programrning’
covers 8 wide range of skills and tagks whish vary from machine and systems
design to keypunching. Furthermore, the programmer I assigned maximum
responsibility for. his program and frequently executes it a3 a siogle-handed
achievement, working for roonths from the staternent of the problem through
every detail of the job till the.results emerge—an unique and rewarding ab-
solutisa. Bome aspects of programming, particularly the solution of eritical
processes within the exact restrictions of machine hardware and logic, are fas-
cinating to everyone who tries them. Other sxpscis, howover, seem to condition
programmers into o dotormined negativism towards their jobs. Ths dilefams
lies in & basic conflict between thinking and coding. In order to convert an
abstract idea ifito an operating mechanism, a programmer must think end code.
Most of a programmer's life is devoted to developing and exercising exceptional
skills in coding, trivial invention, and memory. The concentration required to
produce pages of correct coding preciudes reflection, imagination, or inventive
fantasy, #nd so when & programmer, who usually knows {or months at a-time
exaotly what he must do, finds himself with a new, strange, and incomprehensible
problem, be mey cease work entirely, and stare into space. Outside of NSA

this is referred to as the “stupor period”. The NSA term is “planning”. It is)

during this time that the programmer is trying to think.

. This is & justifiable lethargy, since one good idea is worth much more then a
month of coding, but sponsors never understand this sort of unproductive delay;
all they want is results—immediately—and they usually demand hasty action,
which from the sponsor's point of view is-the sensible thing to do.. Aside from
the resulting friction, however, the intelectual hazard is that the programmer, to
get quick results, will be foroed not to invent, but rather to use cliché representa-
_tions which he is certain will work. It is difficult for sponsors to appreciate the
value of originality until they are stalled on a massive problem which oannot be
programmed because no-one has discovered a sufficlently creative representation.

- Programmers who argue the merits of good idess over treadmill coding are -
regarded as egenls provocatsirs. Nevertheless, afler the ideas have been evolved, -

and are found functional ag well as aesthetically pleasing, they must be converted
into realities of a program soript. Trying to get other people t6 do the work at
this point involves a severs communications problem—-the more original the
ideas and, representations, “the more difficult it is to explain them to other paople,
especiglly if the recipients are also naive about the analytic ideas.

Creative programming seems practically to exclude the adalyst-coder relation-
ship, and it is much easier and faster for the programmer to write the program
himself than to turn it over to others, unless they have an advantage of intel-
lectual superiority. This is one of the hard facts of programming, and an ironie
side effect is that as & programmer’s skill and strength inorease, the aspects of
programming which require thinking become much easier for him, but the coding
tasks retain their intractability.

- , 80

J. A. MEYER “SECREF—

2.6.6 Debugging

When all the instructions and tables have been coded and checked,
and the program appears to be finished, there 1u.}‘k_a number of sma;l_l
£170%8 in the script, which are advertised when it is run on t_he com-
puter. The most obvious of these can usually be corrected in a f'ew
weeks and the program may then give the appearance .oi runping
through correctly. This is when the roal debugging begins? It is
& discoursging exiom that a program ¢an mever be p}‘oved to be
completely debugged, and the process of d§tectmg, _loc&}tmg, and cor-
recting the more elusive bugs is an experience which is only appre-
ciated by people who have endured it.

2.8.7 Checking Out) .

A completely correct program msy have several vamfbles such a8
message length, number of input steckers, output options, and so
{orth, for which the boundary conditions must.be proved. The more
inflexible the program, the mors easily it is checked out.

2.7 PFirst Resulls . . .
Not only is the program completed two weeks late, buhlin studying
the results of the first hurried ran, the cryptenalyst notices that all
the hits are false, and the key generation is incorrect.™ The program-
mer, who has been congratulating himself on finishing the job, turns
livid with shack. The methods analyst regards him with chagrin,
and the handworkers all nod knowingly. The fault.is traced to an
incorrect stepping-sequence for one of the whedls, & misusderstanding
which occurred wher the problem was first explained. 4

% Debugging is a contest of logic and willpower against the idiotic résourees of
the machine. It is not unlike chess in the formal alternation of guccessive maves,
but the special ability the machine has is the ability to conceal the ocourrence ag
well as the cause of errors. For sxample, an incorrectly set counter may let &
routine exceed its geographic limits, and modify a table, which will in turn cause
a wrong-deciphermeht—none of this being detectable to the programimer until &
combination of circumstances fortuitously causes him to get & false bit, or lose a
correct answer. At this point he bas to determine which of his million characters
is wrong, and trace baok through the logical implications and branchpoinis of the
program to isolate the incorrectly set sounter. ; .

Cryptanalysts and other professionals who face the machine for the first time
in progremming are ususlly completely baffied by the problem of detecting ervors
in o dynamic process. This depends upon interrupting the events of .the program
at exactly the right point so that the erroneous eslculations and all the implications
thereof can be traced. At 30,000 computations/second, with millions of oharac-
ters and bits of data being procesaed, this pinpointing reguires cunning strategy
and judgment. The machine designer can help to some degree, but the classical
solution depends prinoipally on the programmer's ipgenuity snd thorough
understsoding of his program. .

1t Every program should be made to solve & toy prpblem before completion
is'advertised. s

81 _ ~SEEREI—

J: A. MEYER

DOCID: 4001135
—S5EERET— COMPUTERS—THE WAILING WALL
2.8.3 Extension of Secondary Testing-

2.7.1 Success . E

The tide of battle turns, and after three more days of furious
debugging, the message is run again, and this time, luckily, a hit is
discovered. This is the hour of glory for the methods analyst] and a
long parade of supervisors and colleagues salute his ingenuity, while
he in turn pays generous tribute to the handworkers, A meeting next
day, in the flush of victory, decrees revision of the program t0 meef,
new conditions. . :

2.8.1 Cribbing Procedure

2.8.2 Number of Hits

2.84 Modified Quiput Format

83

) .
(b)(3)-50 USC 403

(b)(3)-18 USC 798

(b)(3)-P.L. 86-36

DOCID: 4001135
“SECREL. COMPUTERS—THE WAILING WALL

2.8.5 New Specifications

2.9 Leonomy
The program which was-intended as & casual ﬁroject has mush-
roomed info a large production job, and'the programmer seeks some
- way to improve the efficiency of his main routine, i. e., generation
and scanning. - :

J. A. MEYER

(ﬁ (1)

(8)(3)-50 USC 403
(b)(3)-18 USC 798
(b)(3)-P.L. 86-36

85

an

o . o)
DOCID: 4001135 (b)(3)-50 USC 403
] (b)(3)-18 USC 798

—SEERF~ COMPUTERE—THE WAILING WALL (b)(3__)I-P.L. 86-36

294 Rebugging -

The programmer tackles the job with misgivings, and after a week of
coding, he sttempts to connect a group of simple routines into the
existing program. This, and the writing of the glorified output rou-
tine, are the most unpleasent parts of the entire job. In reopening old
hostilities, he discovers that he hss forgotten many detsils and
implications of the previously debugged routines, and & discouraging
succession of trivial and obscure errors have to be isolated and
corrected .

2.9.5 Making the Program Operalional

‘When the program appears to be working, the programmer must
tie up the loose ends and turn it over fo the operations group, who
will run it on the computer. At this time he must prepare lists of
simple instructions for people to follow in preparing the data, running
the program and dealing with the answers. Anticipating human and
machine errors, he must provide routines to restart the program,
check the running of the program, and check sll the variables, such as
messages, steckers, end cribs, which may be loaded into it. The
peripheral routines for input, output, checking, and reset frequently
require more time and work to program than the basic eryptanalytic
process.

2.10 Operational Resulls -

Eventuslly a program, consisting of a small inefficient core and a
patchwork of periphersl routines, is delivered with & sigh of relief.
A massive processing of cribs and messages is immediately undertaken
in 8 hurried effort to read something. Hours of rununing time are -
logged, hits are punched out by the thousands, and electromatic type-
writers run to destruction prepsring the worksheets. Greet stacks
of printouts are shipped to the sponsor, and clerks grind over the '

_answers, trying to force readable text into the reams of inert three-
stecker stops. Finally the backlog is processed, and the programmer
goes up to the erypt section to see.how his answers are faring.

¥ Programs approach perfection asymptoticelly with respect io time. Re-
bugging introduces & regression. Bee Fig. 2.

—SECRET— S 86

1. A. MEYER “SECRET.

0. OF GRACRS REMANNG

NORMAL . REBUBGED
Fig. 2.

He discovers & lone olerk crumpling the pages into & bm~bg, and
learns that the problem has crashed to the ground, the maoh_.\ge has
been changed, the methods analyst has gone off to another wing, the
crypt section is busy with efforts at a.new recovery, and ?he messages
ho has run are considered too difficult to continue working on w_hen
there is s good chance they are totally unreadable. The only residue
is the program, which is no longer wa.nt,ed.

2.11 Epilogue
A machine attack which started off well bogged down, and finally

disintegrated. Why?

2.11.1 The Logical Method

The program failed as & machine project because it did not go far
enough. When the number of answers, or rather the work. reguu'ed to
evaluate them, becomes too great, the answers aro usually given very
cursory hand treatment snd tossed awsy? Too maNy ANEWErs are
worse than none at oll, because the handworkers, if thy are not
impeded by scanning yards of results Jooking for “something”’, may
solve the problem by some intuitive method which defies mechs-
pization. :) s »

From the exploitation viewpoint, if the key generator had not
changed, and a few new hits had turned up, greater eﬁorf., would bave
been expended on the answers, but the program would still have been
unsatisfactory because of the weakness of the secondary test and t..he
risk of losing answers from fatigue, and falling bebind the machine
processing. In the case of a success, further work on the secondary
testing would be imperative, and & good solution would be & great
personal triumph for the snalyst. To the progrepuner, & success

" The analyst always assumes that he will be able to \'ecogniz‘e the right anewes
at & glance. Unless the problem i very easy, or the attack is' very good, this is
ot true. The real test of a scoring system is its ability to isolate a causal hypoth-
esls from a great population of trisls. As hive apeeds i and trial tactors
are multiplied, greater exertiong must be undertaken to develop adequate ex-

tension and scoring Bystems edrly in the design of the attack, .
87 - _ —SEeRET—

DOCID: 4001135

—SEERET COMPUTERS—THE WAILING WALL

would mean, st best, an opportunity to make a really efficient and

elegint job of the program to compensate for the dissatisfactions of

the existing miscarriage.®

2.11.2 Communications

 After several months,of impatient fuming for results, the crypt
people have come to regard programmers as very obstinate and unde-
pendable people who have no grasp of the problem, bother a great
deal about petty details, appear crushed by the slightest change of
plans, and never get jobs done on time. This is not only true—at
least as to outward manifestations—but e natural consequence of the
state of the art. The programmer meeting a new problem is faced

by the double hazards of understanding the ideas; and representing

them to the machine. Waste, delay and confusion are sure indications
of a poorly stated problem. Furthermore, in 8 completed program
the basic eryptanalytic process is usually only a fraction of the job, and
the calisthenics of input, output and housekeeping, which the analyst
completely disregards, represent the major exertion. The analyst
should make some attempt to understand the problems of packaging,
system design, machine limitations and -efficient representation,
because these factors will force his hand as well as the programmer’s.

2.11.3 Modification

A vital technical problem ignored by the methods analyst was the
difficulty of modifying the program. The coding of a program
- Tequires exact commitment of thousands of details of logic and storage,
and is usually achieved as a feat of sustained concentration and
imagination. Successive revision alters the organization of the
program and forces the programmer to rebuild in his imagination all
the details and implications of his coding and rememorize the intended
chain of events, in spite of the persistence of earlier commitments.
This is quite difficult if the program is complex, and & secondary
cffect is that it destroys the programmer’s feeling for design; blocking
and rejection of the task frequently result. Consequently, a pro-
grammer threatened by modifications prefers to start over rather

A programmer can never identify himsell with the results of a program, but
only with the mechanism; thus the dominant motive which earries him through a
burdensome program is pride in his work. The success or failure of the attack is
the responsibility of the analyst, and the programmer must execute the program
perfeotly even when he is certain it is & dead horse. When tbis pride or identifica-
tion is absent or thwarted the job becomes a millstone rather than 2o achievement,
end the programmer {8 vsually lost. He may continue to draw pages of numbers,
‘but he no longer creates. '

—SEERET 88

J. A. MEYER

than tamper with an old progrem,® just as an architect would resist
building = railway station on the foundation for a doghouse. The
changes in the program from the simple poker-hand sesrch to the
fruitléss cribbing were dictated by the problem rather t.l:}a.n by the
whim of the analyst, but this did not meke it any easier for the
programruer. . . ' N

A completely accurate statement of the problem is the minimtm
precondition'to the wriling of . program, yet unfortunately ibis
acouracy is frequently attainable only after considerable cut and try.

» This is a yniversal practice when inheriting someone else's half-coded project,
or Tevisiting a forgotten program of one’s own. The reason is laziness. A bare

. page of coding is really an idea recorded in private shorthand, and the teincarna-

tion and understanding of the ides first requires recovery of someone else’s short-
hand system—a valueless achievernent. 3 o
One of the harshest seniences & programmer can teceive is the task of finighing
someone else's fiasco. These homeless programs, for whit:}_l1 tpe s‘ponsgr ‘h&s
usually abandoned all hope, have blished in elapse time
between the desire and the delivery. Two or three years delgy in ﬁx.nshing a
program of a few thousand lines is not considered exceptional; in fact it is con-
sidered rather good. Many programs simply wander off and are Iost: Conven-
tionally, when & pr quits or is pr ted out.of useful service halfway

. through & program, the greenest member of the group i8 given the task of

« . finishing it up.” ‘This may be the tyro's first nnd'last program, and there
are oryptanalytic sestions where the sponsors have jindoctrinated new pro-
grammers on the same task st monthly intervals.)

The)or;g delays are of course trying to the gponsors, who _generally l?x?rmse
their frustration by pr each ive chall with a new list of
desired modifioati Few aspeots of programming are as thankless or }mpnpu_lar,
and the certain characteristics of & dereliot program are that it i8 uninteresting,
messy, and wanted in a great hurry. o

The besic problem in hand-me-down programs js communioation. A pro-
grammer’s progress through a job should always be marked by accurate deso}'lp-
tion of the program, the coding, the changes, and the status of tl}a deb}xggmg.
A workable system, used outside of NSA, requires that one peréon in sdfhuon to
the programmer be familiar with and .responsible for the (':odmg and logic 'ot' the;
program. Orderly and exacting methods such as this will delay tl.w arrival o
first results, but provide greater insurance. Sponsors usually disregard the
merits of orderly progress through a large job, and spur the programmers to
stake overything on the race for the esteemed first results.

First results are usuaily wrong or insignificant, and may provoke an avalanche
of modifications,

89 | SEEREF

—5EERET—

pocIp, 4001135

CCMTUTERS THE WAILING WALL

8. SUMMARY

It is much more difficult to do cryptanalysis by machine than by
hand, and even simple problems often conceal pitfalls. Significantly,
the computer plays no active part in the solution except to carry out
& chain of operations for which the programmer has corroctly specified
every detail. The programming poses some special problems in
ingenuity and endurance, but, regardiesa of the crudeness or elegance
of the machine representation, the design of the logical method is the
dominant factor in the success of the attack. When the logical
method fails, the program sinks with it.

