Restrictect

Declassified and approved for release by NSA on 09-19-2005 pursuant to E.O. 12958, as amended

WAR DEPARTMENT
OFFICE OF THE CHIEF SIGNAL OFFICER washington

MILITARY CRYPTANALYSIS Part III
 SIMPLER VARIETIES
 OF APERIODIC SUBSTITUTION SYSTEMS

By
WILLIAM F. FRIEDMAN

Principal Cryptanalyst
Signal Intelligence Service

PREPARED UNDER THE DIRECTION OF THE CHIDF SIGNAL OFFICER

MILITARY CRYPTANALYSIS. PART III. SIMPLER VARIETIES OF APERIODIC SUBSTITUTION SYSTEMS

CONTENTS

Section Paragraphs Pages
I Introductory 1-4 1-4
II Solution of systems using constant-length keying units to encipher variable-length plain- text groupings, I 5-9 $\quad 5-7$
III Solution of systems using constant-length keying units to encipher variable-length plain- text groupings, II 10-13 8-13
IV Solution of systems using constant-length keying units to encipher variable-length plain- text groupings, III 14-16 14-18
V Solution of systems using variable-length keying units to encipher constant-length plan- text groupings 17-22 19-27
VI Review of auto-key systems 28-29
VII Solution of cipher-text auto-key systems 24-29 30-43
VIII Solution of plain-text auto-key systems 30-33 45-49
IX Methods of lengthening or extending the key. 34-36 50-52
X General principles underlying solution of systems employing long or continuous keys 37-40 53-57
XI The "coincidence" or " k test" 41-44 58-72
XII The "cross-product" or " x test" 45-48 73-78
XIII Applying the cross-product or x test 49-51 79-93
XIV The "monoalphabeticity" or " Φ test" 52-53 94-96
XV Concluding remarks. 54-55 97
Appendix 1 Additional notes on methods for solving plain-text auto-keyed ciphers 98-116
Index 117-118
Analytical key for Part III 119

Sifetion I

INTRODUCTORY

General remarks upon the nature of cryptographic periodicity- - ----- ------------------------------------- 2

Primary and secondary periods, resultant periods 4

1 Preliminary remarks - a The text immediately preceding this devoted itself almost exclusively to polyalphabetic substitution systems of the type called repeating-key ciphers It was seen how a regularity in the employment of a lumted number of alphabets results in the manifestation of periodictity or cyclic phenomena m the cryptogiam, by means of which the latter may be solved The difficulty in solution is directly correlated with the type and number of cipher alphabets employed in specific examples
b Two poocedures suggest themselves for consideration when the student cryptanalyst realizes the foregoing cncumstances and thouks of methols to elmunate the weaknesses inherent in this cryptographic system First, noting that the difficulties in solution increase as the length of the key mereases, he may study the effects of employing much longer keys to see if one would be warranted in placing much tiust in that method of ancreasing the security of the messages Upon second thought, hov ever, rei emilering il at as a general rule the first step in the solution consists in ascertaining the number of alphabets employed, it seems to hum that the most logical thing to do would be to use a procedure which will avord periodicity altogether, will thus elmmate the cychc phenomena that are normally manfested in cryptograms of a periodic construction, and thus prevent an enemy cryptanalyst from takng even a first step toward solution In other words, he wall mestigate the possibilities of aperioduc systems first and if the results are unsatisfactory, he will then see what he can do with systems usng lengthy keys
c Accordingly, the first part of thes text will te devoted to an examination of certain of the very simple varieties of aperiodic, polyalphabetic substitution systems, after this, methods of extending or lengthening short mnemonic keys, and systems using lengthy keys will be studied

2 General remarks upon the nature of cryptographic periodicity - a When the thoughtful student considers the matter of periodicity in polyalphabetic substitution systems and tries to ascertan its real nature, he notes, with some degree of interest and surprise perhaps that it is composed of two fundamental factors, because there are in reality two elements involved in its production He has, of course, become quite famuliar with the idea that periodicity necessitates the use of a keying element and that the latter must be employed in a cyclic manner But he now begins to realize that there is another element involved, the significance of which he has perhaps not fully appreciated, viz, that unless the key is apphed to constant-length plam-text groups no periodicity will be manfested externally by the cryptogram, despite the repetitive or cyclic use of a constant-length key This realization is quckly followed by the idea that possibly all periodicity may be avoided or suppressed by etther or both of two ways (1) By using constantlength keying units to encipher variable-length plan-text groupings or (2) by using variablelength keyng units to encipher constant-length plain-text groupings
b The student at once realizes also that the periodicity exhibited by repeating-key ciphers of the type studied in the preceding text is of a very sumple character There, successive letters of the repetzitive key were applied to successive letters of the text In respect to the employment of the key, the cryptographic or keying process may be said to be constant or fixed in character This terminology remains true even if a single keying unit serves to encipher two or more letters
at a time, provided only that the groupings of plain-text letters are constant in length For example, a single key letter may serve to encipher two successive plain-text letters, if the key is repetitive in character and the message is sufficient in length, perioducity will still be manifested by the cryptogram and the latter can be solved by the methods indicated in the preceding text ${ }^{1}$
Naturally, those methods would Naturally, those methods would have to be modufied in accordance with the specific type of
grouping involved In this case the factoring process would disclose twice that of the real length But study of the frequency distrbbutose an apparent key length the 1st and 2 d distributions were similar, the 3d and 4th, the 5th and 6th, and so on show that upon the length of the key The logical step is therefore to pars and proceed as usual
c In all such cases of encipherment by constant-length groupings, the apparent length of the period (as found by applying the factoring process to the cryptogram) is a multiple of the eal length and the multiple corresponds to the length of the groupings, that is, the number of plain-text letters enciphered by the same key letter
d The point to be noted, however, is that all these cases are still periodic in character 3 both the keying units and the plain-text groupings are constant in length
3 Effects of varying the length of the plain-text groupings - a But now consider the effects of making one or the other of these two elements varuable in length Suppose that the plan-tex Then, even made varable in length and that the keying units are kept constant in length course of encipherment, exy may be cyclic in character and may repeat itself many times in the in plain-text groupmngs is atself pycic more tımes that of the cycle applucable to thas varter, and the length of the message as at least two or
b (1) For example, suppose the correspondents
aphabets with the key word SIGNAL, to encipher a message, thed standard cipher roups as shown below

	I	G	N	A	L	S	I	G	N	A	L	S	I	G
1	12	123	1234	12345	1	12	123	1234	12345	1	12	123	1234	
C	OM	man	DING	GENER	A	LF	IRS	TARM	YHASI	S	SU	EDO	RDER	SEFFE
Q	UW	UGT	KFAH	UWNWJ	L	HN	ARQ	NGPU	PGNV	I	TR	EDO	RFER	E
	A	${ }^{\text {L }}$	S	I	G	N	A	L	S	I	G	N		
1	12	123	1234	12345	1	12	123	1234	12345	1	12	123	1234	
C	TI	VET	WENT	YFIRS	T	AT	NOO	NDIR	ECTIN	G	TH	T	A	
	HS	QHS	WOFZ	KDARQ	N	NU	NMM	YIDU	OQZKF	C	NZ	NUU	WPWL	EX

$\begin{array}{cccccccc}\text { S } & \text { I } & \text { G } & \text { N } & \text { A } & \text { L } & \text { S } & \text { I } \\ \text { I } & 12 & 123 & \text { 1234 } & 12345 & \text { I } & 12 & 123 \\ \text { C } & \text { OM } & \text { MAS } & \text { WITC } & \text { HBOAR } & \text { D } & \text { SC } & \text { OMM } \\ \text { Q } & \text { UW } & \text { UGO } & \text { RFUL } & \text { TZMAJ } & \text { I } & \text { AQ } & \text { UWW }\end{array}$
Cryptogram

QUPUG	TKFAH	UWNWJ	LHNAR	QNGPU	PGNVF	ITROP	ERFER
OCBBC	LHSQH	SWOFZ	KDARQ	NNUNM	MYIDU	OQZKF	CNZNU
UWPWL	EXYHT	QUWUG	ORFUL	TZMAJ	IAQUW	Q	CNENO

(2) The cipher text in this example (Frg 1) shows a tetragraphic and a pentagraphic repetition The two occurrences of QUWUG ($=$ COMMA) are separated by an interval of 90 letters, the two occurrences of ARQN ($=$ IRST) by 39 letters The former repetition (QUWUG) it will be noted, is a true periodic repetition, since the plam-text letters, their grouping, and the key letters are identical The interval in this case, if counted in terms of letters, is the product of the keyng cycle, 6 , by the groupmg cycle, 15 The latter repetition (ARQN) is not a true periodic repetition in the sense that both cycles have been completed at the same point as is the case in the former repetition It is true that the cipher letters ARQN, representing IRST both times, are produced by the same key letters, I and G, but the enciphering points in the grouping cycle are different in the two cases Repetitions of this type may be termed
 especially from the point of view of the meteracting cycles which brought them about, it will be especially from the point of view of the interacting cycles which brought them about, $1 t$ will be
seen that counting according to groupings and not according to single letters, the two pentagraphs seen that counting according to groupings and not according to single letters, the two pentagraphs
QUWUG are separated by an interval of 30 groupings Or, if one prefers to look at the matter in the light of the keying cycle, the two occurrences of QUWUG are separated by 30 key letters Since the key is but 6 letters in length, this means that the key has gone through 5 cycles Thus, the number 3015 the product of the number of letters in the keyng cycle (6) by the number of different-length groupings in the grouping cycle (5) The interaction of these two cycles ay be concerved of as partaking of the nature of two gears which are in mesh, one drven by the other One of these gears has 6 teeth, the other 5 , and the teeth are numbered If the two gears are adjusted so that the "number 1 teeth" ale adjacent to each other, and the gears are caused to revolve, these two teeth will not come together agan until the larger gear has made 5 revolutions and the smaller one 6 During this time, a total of 30 meshings of individual teeth will have occurred But smce one revolution of the smaller gear ($=$ the grouping cycle) epresents the enclpherment of 15 letters, when trans in terms of leters, the 6 complet 0, when sta in terms leter 0 , when stated in terms of letter
d The two occurrences of the other repetition, ARQN, are at an interval of 39 letters, but in terms of the number of intervening groupings, the interval is 12 , which is obviously two times the length of the keying cycle In other words, the key has in thrs case passed through 2 cycles
e In a long message enciphered accordung to such a scheme as the foregong there would be many repetitions of both types discussed above (the completely periodic and the partially periodic) so that the cryptanalyst might encounter some difficulty in his attempts to reach a solution, especially if he had no information as to the basic system it is to be noted in this connection that if any one of the groupngs exceeds say 5 , 6 , or 7 letters in length, the soheme may give itself away rather easily, since it is clear that within each grouping the encupherment is strictly monoalphabetic Therefore, in the event of groupings of more than 5 or 6 letters, the monoalphabetic equivalents of tell-tale words such as ATTACK, BATTALION, DIVISION, ete, would stand out The system is most efficacious, therefore, with short groupings
f It should also be noted that there is nothing about the scheme which requres a regularity in the grouping cycle such as that embodied in the example A lengthy grouping cycle such as the one shown below may just as easiy be employed, it beng guned by arse fing for atter compong the has 2, B (\ldots) has 4, and so on Hence

The groupmg cycle is $3+1+4+4+2$, or 60 letters in length Suppose the same phrase is used as an encipherng key for determining the selection of cipher alphabets Smee the phrase contams 25 letters, the complete period of the system would be the least common multuple of 25 and 60 or 300 letters Thus system might appear to yueld a very high degree of cryptographic security But the student will see as he progresses that the securnty is not so hugh as 4. Primary and secondere it to be
4. Primary and secondary periods, resultant periods - a It has been noted that the length of the complete period in a system such as the foregoung is the least common multiple of the periods constitute component or interacting periods In a way, therefore, smence the component periods constitute the basic element of the scheme, they may be designated as the basic or primary periods These are also hudden or latent periods. The apparent or patent period, that is, the
complete period, may be designated as the secondary or resultant perid cupher machnes there may be more than two primary resultant period In certain types of resultant period, also, there are cases in which the latter may interact with another punniry period to produce a tertary period, and so on The final, or resultant, or apparent period is the one which is usually ascertamed first as a result of the study of the intervals between repetito This may or may not be broken down anto its compentudy of the interval between repetitions
b Although a solution may often be obtamed went primary periods
nto its component primary periods, the reading of many messages pertainng to a widespred stem of secret commung is much fors ortanng to a widespread evel, that is, to the point when is much faclitated when the analysis is pushed to its lowest terms This may involve the uccessive cryptographic strata discovery of a mulizphcity of smple elements whinch interact in

Introductory remorhs

Aperiodic encipherment produced by groupings accordng to word lengths
Solution when direct standard cipher alphabcts art employed Solution when rovelsed standa
Commants on fortgorg caser
\qquad to be classified as aperiodic ir nature The system described in pa- agraph 3 above is obriously not case was based upon miegulanty nature, despite the injection of a vanable factor which in that betic substitution upon riegulanitr in the length of one of the two clements involved in poly alphain character
character
b To make such a syatem truly aperiodic in character, by claborating upon the basic scheme for producing vandable-lensth plan-text grouping, would be possible, but mppractical
For example, using the same methed as is civen in paragraph $3 f$ for determing the lengths of For example, using the same methed as is $\S i v e n ~ i n ~ p a r a g r a p h ~$
the
groupings, one doterming the lengths of the groupings, one might employ the text of a book, and if the latter is longer than the message
to be enciphered, the crvptogram would certanly show no periodicity as regards the intervals to be enciphered, the crvptogram would certaunly show no periodicity as regards the intervals
between repetitions, which would be plentiful Howerer, as already iudicated, such a schome would not be very practical for regular communication between a large number of correspondents, for reasons which are no doubt apparent The book would have to be safeguarded as would a code, encuphering and deciphering would be quite slow, cumbersome, and subject to errol, and, unless the same key text wete used for all messages, methods or mdicators would have to be adopted to show exactly where encupherment begins in each message A sumpler method for producing constantly clanging, aperiodic plan-text groupings therefore, is to be sought

6 Aperiodic encpherment produced by groupings according to word lengths - a The sumplest method for producing aperiodic pla,n-text groupings is one which has doubiless long ago presented itself to the st ident, vzz, encipherment according to the actual word lengths of the message to be enciphered

Although the average number of letters composing the words of any alphabetical language is farly constant, successive words comprising plan text vary a great deal in this respect, and this variation is subject to no law ${ }^{1}$ In telegraphic English, for example, the mean length of words is 52 letters, the words may contan from 1 to 15 or more letters, but the successive
cary in length in an extremely irregular manner, no matter how long the text may be
c As a consequence, the use of word lengths for determinng the number of letters to enciphered by each key letter of a repetitive key commends itself to the mexpenienced cryptographer as soon as he comes to understand the way in which repeating-key ciphers are solved If there is no periodicity in the cryptngrams, how can the letters of the cipher text, written in
${ }^{1}$ It is true, of course, that the differences betucen two writers in respect to the lengths and characters of the words contanined in therr personal vocabrlaning are ofttn markrd and can be measurcd Thesc a fieronces may be subject to certan laws, but the latter are not of thu type in which we are interestud, being paycho'ogical
rather than mathematical in character Sce Ruclert, E, New Metiods for the Study of Laterature, Unversity of Chicago Press, Chicago, 1927

5 -letter groups, be dıstributed into their respective monoalphabets? And if this very first step mpossible, how can the cryptograms be solved?
etorical questions, the solution of this case is really qure employed - a Despite the foregoing rhetorical questions, the solution of this case is really quite simple It merely involves a modification of the method given in a previous text, ${ }^{2}$ wherein solution of a monoalphabetic cipher
employing a direct standard alphabet is accomplished by completing the phan employmg a direct standard alphabet is accomplished by completing the plan-component
sequence sequence There, all the words of the enture message come out on a single generatrix of the
completion diagram In the present case, since the individual, separate words of a message are enciphered by different key letters, these words will reappear on dofferent generatrices of the dragram All the cryptanalyst has to do 1 s to pick them out He can do this once he has found a good starting point, by using a hittle imagination and following clues afforded by the context
b An example will make the method clear The following message (note its brevity) has been intercepted

$$
\begin{aligned}
& \text { IRECS YGETI LUVWV IKMQI RXSP } \\
& \text { XUXPW VMTUC SYXGX VHFFB LLBHG }
\end{aligned}
$$ and try out the possiblity of to routine study, the first step is to use normal alphabet strips d Despite the fact letters of the message is shown in figure 2 a Deneratrix the solution the text does not all reappear on the first three words of the mescage are easly found CAN YOU GET The key letters may be sought in the usual manner and are found to be REA One may proceed to set up the remaing letters of the message on slding normal alphabets, or one may assume various keywords such as READ, REAL, REAM, etc and try to continue the decipherment in that way The former method is easier The completed solution is as follows

$$
\begin{array}{ccccccc}
R & E & A & D & E & R & S \\
\text { CAN } & \text { YOU } & \text { GET } & \text { FIRST } & \text { REGIMENT } & \text { BY } & \text { RADIC }
\end{array}
$$

$\begin{array}{lllllll}\text { CAN } & \text { YOU } & \text { GET } & \text { FIRST } & \text { REGIMENT } & \text { BY } & \text { RADIO } \\ \text { TRE } & \text { CSY } & \text { GET } & \text { ILUVW } & \text { VIKMQIRX } & \text { SP } & \text { JSVAG }\end{array}$
$\begin{array}{ccccc}\text { D } & \text { I } & G & E & S \\ \text { OUR } & \text { PHONE } & \text { NOW } & \text { OUT } & \text { OF }\end{array}$
RXU XPWVM TUC SYX GX COMMISSION
e Note the key in the foregomg case It is composed of the successive key letters of the phrase READERS DIGEST
f The only difficult part of such a solution is that of making the first step and getting a start on a word If the words are short it is rather easy to overlook good possiblities and thus spend some time in frutless searching However, solution must come, if nothing good appears at the beginning of the message, the end the end
${ }^{2}$ Mzltary Cryplanalysis, Part I, Par 20
TRECSYGETI
USFDTZHFUJ WTGEUAIGVK XVIGVBJHW XVIGWCKIXM ZXKIYEMKYN AYLJZFMKAO AYLJZFNLAP

$B Z M A G O M B O$ | BZMKAGOMBQ |
| :--- |
| CANLBHPNCR | | CANLBHPNCR |
| :--- |
| DBOMCIQODS |

 FDQOEKSQFU GERPFLTRGV HFSQGMUSHW IGTRHNVTIX JHUSIOWUJY KIVTJPXVKZ LJWUKQYWLA MKXVLRZXMB NLYWMSAYNC OMZXNTBZOD
 QOBZPVDBQF RPCAQWECRG
SQ D B RXX SQDBRXFDSH Flaver 2
8. Solution when reversed standard cipher alphabets are employed -It should by this time hardly be necessary to indicate that the only change in the procedure set forth in paragraph $7 c, d$ in the case of reversed standard cipher alphabets is that the letters of the cryptogram must be converted into ther plam-component (direct standard) equivalents before the completion sequence is applied to the message
9. Comments on foregoing cases - a The foregoing cases are so simple in nature that the detaled treatment accorded them would seem hardly to be warranted at this stage of study However, they are necessary and valuable as an introduction to the more complicated cases to follow
b Throughout this text, whenever encipherment processes are under discussion, the pair of enciphering equations commonly referred to as characterizing the so-called Vigenere method will be understood, unless otherwise indicated This method involves the pair of enciphering equations $\theta_{1 / 1}=\theta_{1 / 2}, \theta_{p / \Lambda}=\theta_{c / 2}$, that is, the index letter, which is usually the initial letter of the to be enciphered is sought on the plain component and its equivalent is the letter opposite it on the cupher component ${ }^{3}$
c The solution of messages prepared according to the two preceding methods is particularly easy, for the reason that standard cipher alphabets are employed and these, of course, are derived from known components The slgnficance of this statement should by this time be quite obvious to the student But what if muxed alphabets are employed, so that one or both of the components upon which the cipher alphabets are based are unknown sequences? The simple procedure of completing the plain component obviously cannot be used since the messages are polyalphabetic in character, and snce the process of factorng cannot be apphed, it would seem that the solution of messages enclphered in different alphabets and according to word lengths would be a rather difficult matter However, it will soon be made clear that the solution is not nearly so difficult as first impression might lead the student to magine
${ }^{3}$ See in this connection, Military Cryptanalysis, Part I_{i} Section II, and Appendix 1

Section III
SOLUTION OF SYSTEMS USING CONSTANT-LENGTH KEYING UNITS TO ENCIPHER VARIABLE-LENGTH PLAIN-TEXT GROUPINGS, II

\qquad --------------12 13 Illustration of the application of phenomena of isomorphism in solving a cryptogiam $\quad-\cdots-\cdots$ - 10 Solution when the original word lengths are retained in the cryptogram -a This case will be Solution when the original word legths are reta affords a good introduction to the case in which the origmal word cryptography but because it aflords a good introduction to the case in which the orignal word lengths are no longer in evi-
dence in the cryptogram, the latter appearng in the usual 5 -letter groups
b Reference is made at this point to the phenomenon called idiomorphism, and its value in
connection with the application of the principles of solution by the "probable-word" method as explanned in a provious text ${ }^{1}$ When the original word lengths of a message are retained in the cryptogram, there is no difficulty in searching for and locating idiomorphs and then making comparisons between these idiomorphic sequencos in the message and special word patterns set forth in lists main taned for the purpose For example, in the following message note the underlned groups and study the letters within these groups
Message

XIXLP EQVIB VEFHAPFVT RT XWK PWEWIWRD XM NTJCTYZL OAS XYQ ARVVRKFONT BH SFJDUUXFP OUVIGJPF ULBFZ RV DKUKW ROHROZ
Idiomorphic Sfquences

$$
\begin{aligned}
& \text { (4) ROHROZ }
\end{aligned}
$$

c Reference to lists of words commonly found in military text and arranged according to their idiomorphic patteins or formulae soon gives suggestions for these cipher groups Thus
(1) PWEWIWRO
(3) $\begin{aligned} & \text { SF J DUUXFP } \\ & \text { ARTILLERY }\end{aligned}$
(2) ARVVRKFONT

(4) ROHROZ
$\begin{array}{r}\mathrm{OLLOC} \\ \hline\end{array}$
d With these assumed equivalents a reconstruction skeleton or duagram of cipher alphabets (corming a porison of a quadncular table) is estabhshed, on the hy pothesis that the cipher alphabets have been denved from the sliding of a mived component aganst the normal sequence First it is noted that since $\mathrm{O}_{\mathrm{p}}=\mathrm{R}_{\mathrm{e}}$ both in the woid DIVISION and in the woid OCLOCK their crpher equivalents must be in the same alphabet The reconstruction skeleton is then as follows

$\begin{aligned} & \text { Division, } \\ & \text { o'clock_---_(1) } \end{aligned}$	A	B	C	D	E	F	G	H	I	K	L	m	N	0	Q	R	S				X		Y	z
			0	P					W	z	H		D	R			I			E				
Battalion ---- (2)	R	A							F		K		N	0			T	V						
Artillery -----(3)	S				x				D		U					F		J					P	

Noting that the interval between 0 and R in the first and second alphabets is the same, irect symmetry of position is assumed In a few moments the first alphabet in the skeleton becomes as follows

Higura $3 b$

f The key word upon which the mixed component is based is now not dufficult to find HYDRAULIC
g (1) To decipher the enture message, the sumplest procedure is to convert the cipher letters into thar plain-component equivalents (setting the HYDRAULIC Z sequence aganst sequence, as usual The words of the message will then reappear on different generatrices The
key letters may then be ascertained and the solution completed Thus，for the first three words，
the the diagram is as follows

Plan

 ABCDEFGHIJKLMNOPQRSTUVWXYZHYDRAULICBEFGJKMNOPQSTVWXZ
XIXLP

YHYGS	K TWH J	VEFHAPFVT
ZIZHT	L U X I K	XLMBFTMXW
A JAIU	M V Y J L	YMNCGUNYX
B K b J V	NW Z K M	ZNODHVOZY
CLCKW	$0 \times \mathrm{ALN}$	AOPEIWPAZ
D M D L X	PYBMO	BPQFJXQBA
ENEMY	Q ZCNP	CQRGKYRC
$\mathrm{A}_{\mathrm{p}}=\mathrm{S}_{\text {o }}$	RADOQ	DRSHLZSDC
	SBEPR	ESTIMATED
	TCFQS	

TRGGR
UEH
VEHSU
WFITV
XGJUW
YHKVX
ZILTY
AJMXZ
BKNYA
$\begin{array}{lllll}\text { C } & \text { L } & O & Z & B \\ D & M & P & A & C\end{array}$
DMPAC
ENQBD
FORCE
$\mathrm{A}_{\mathrm{D}}=\mathrm{U}_{\mathrm{o}}$
fiedra 4
（2）The key for the message is found to be SUPREME COURT and the complete message is as follows

| SolUTION | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S | U | P | R | E | M | E | C | 0 | U |
| ENEMY | FORCE | ESTIMATED | AS | ONE | DIVISION | OF | INFANTRY | AND | TWO |
| XIXLP | EQVIB | VEFHAPFVT | RT | XWK | PWEWIWRD | XM | NTJCTYZL | OAS | XYQ |
| R | T | S | | U | P | R | E | M | |
| BATTALIONS | OF | ARTILERY | MARCHING | NORTH | AT | SEVEN | OCLOCK | | |
| ARVVRKFONT | BH | SFJDUUXFP | OUVIGJPF | ULBFZ | RV | DKUKW | ROHROZ | | |

號 after the cipher letters have that in the completion diagram the reversed sequence is employed \imath No doubt the student realizes from his previous work that equivalent component has been recovered the latter beis previous work that once the primary mixed subsequent messages employing thater becomes a individual messages are different，then becomes a simple matter

11 Solution when other types of alphabets are employed－a The foregong examples involve the use either of standard cipher alphabets or of muxed cipher alphabets produced by the slding of a mixed component against the normal sequence There is，however，nothing about the general cryptographic scheme which prevents the use of other types of derived， interrelated，or secondary mixed alphabets Cipher alphabets produced by the shing of a nuxed component agamst itself（erther drect or revarsed）or by
b The solution of
解
 position to employ to good advantage and whinout dificulty what he has learned about the principles of indirect symmetry of position in the solution of cases of the kind described
c The solution of a message prepared with muxed alphabets derived as indicated in sub－ paragraph b ，may be a difficult matter，depending upon the length of the message in question the application of the probable－word method But if the message is quis no background for more probable with respect to military communications，should the system be used for regular traffic，so that there are avalable for study several messages enclphered by the same set of alphabets，then the problem becomes much easier In addition to the usual steps in solution by the probable－word method，gulded by a search for and identrfication of idiomorphs，there is the help that can be obtained from the use of the phenomena of rsomorphrsm，a study of which forms the subject of discussion in the next paragraph

12．Isomorphism and its importance in cryptanalytics．－a The term idiomorphism is familar to the student It designates the phenomena arising from the presence and positions of repeated letters in plam－text words，as a result of which such words may be classified according to their compositions，＂patterns，＂or formulae The term asomorphrsm（from the Greek＂isos＂ eannng＂equal＂and＂morphe＂meanng＂orm＂）designates the phem ansing from the xastence of two or more adiomorphs win＂diche
b in orphic
解 ARRANI，LEEIERS，and MLSSION are isomorphic If enciphered monoalphabetically，ther cipher equivalents would also be isomorphic In general，isomorphism is a phenomenon of be made patent in polyalphabetic cryptograms
c In practical cryptanalysis the phenomena of isomorphism afford a constantly astonishing source of clues and ards in solution The alert cryptanalyst is always on the lookout for situations in which he can take advantage of these phenomena，for they are among the most interesting and most important in cryptanalytics

13．Hlustration of the use of isomorphism－a Let us consider the case discussed under paragraph 10，wherem a message was enciphered with a set of mixed cipher alphabets derived from shding the key word－mixed primary component HYDRAULIC XZ against the normal sequence Suppose the message to be as follows（for smphicty，origmal word lengths are etamed）

Cryptogram

VCLLKIDVSJDCI ORKD CFSTV IXHMPPFXUEVZZ FK NAKFORA DKOMP ISE CSPPHQKCLZKSQ LPRO JZWBCX HOQCFFAOX ROYXANO EMDMZMTS TZFVUEAORSLAU PADDERXPNBXAR IGHFX JXI
b (1) Only a few minutes inspection discloses the following three sets of isomorpha

(2) Without stopping to iefer to word-pattern lists in an attempt to rdentify the very triking idiomorphs of the first set, let the student proceed to build up partial sequences of equivalents, as though he were dealing with a case of indirect symmetiy of position Thus From isomorphs (1) (a) and (1) (b)

$$
V \propto C, C \propto S, L \propto P, K \propto H, I \approx Q, D \propto K, S \propto L, J \neq Z,
$$

from which the following partial sequences are constructed

$$
\begin{array}{llll}
\text { (a) VCSLP } & \text { (b) DKH } & \text { (c) IQ } & \text { (d) } \mathrm{JZ}
\end{array}
$$

From isomorphs (1) (b) and (1) (c)
$C \cong P, S \approx A, P \cong D, H \approx E, Q \sim R, K \approx X, L \approx N, Z \approx B$,
from which the following parisal sequences are constructed

$$
\begin{array}{lllllll}
\text { (e) CPD } & \text { (f) } \mathrm{SA} & \text { (g) } \mathrm{HE} & \text { (h) QR } & \text { (l) } \mathrm{KX} & \text { (j) LN } & \text { (k) } \mathrm{ZB}
\end{array}
$$

From isomorphs (1) (a) and (1) (c)

$$
V \approx P, C \approx A, L \cong D, K \approx E, I \approx R, D \cong X, S \approx N, J \approx B,
$$

from which the following partial sequences are constructed

$$
\begin{array}{lllll}
\text { (l) LDX } & \text { (m) VP } & \text { (n) CA } & \text { (o) KE } & \text { (p) IR }
\end{array} \text { (q) SN }
$$

Noting that the data from the three isomorphs of this set may be combined (VCSLP and CPD make VCSLP D, the latter and LDX mahe VCSLP $D \quad X$), the following sequences are established

c (1) The fact that the longest of these chans consists of exactly 13 letters and that no additions can be made from the other two cases of isomorphism, leads to the assumption that a "half-chan" is here disclosed and that the latter represents a decimation of the original primary
 : The symbol \approx is to be read "is equivalent to"
which gives the sequence the appearance of being the latter half of a keyword-mixed sequence running in the reversed drection, let the half-cham be reversed and extended to 26 places, as follows
(2) The data from the two partial chans (JZ B and IQ R) may now be used,and the letters inserted into their proper positions Thus
(3) The sequence H D RA L I C soon suggests HYDRAULIC as the key word When the muxed sequence is then developed in full, complete corroboration will be found from the data of isomorphs 2 (a) (b) and 3 (a) (b) Thus
(4) From idiomorphs (2) (a) and (2) (b), the interval between H and $I_{\text {is }} 7$, it is the same for 0 and X, Q and H, C and M, etc From idiomorphs (3) (a) and (3) (b) the interval between R and N is $13,1 t$ is the same for O and A, Y and K, etc
d The message may now be solved quite readuly, by the usual process of converting the cipher-text letters into their plain-component equivalents and then completing the plain component sequences The solution is as follows
[Key STRIKE mHILE THE IRON IS (HOT?)]
 CGMMMNICATION WITHEFIRSTARTILLERYWILL

 $T H E \quad$ H SECOND
J Z W B C X JZWBCX HOQCFFAO R SWITUGEAORSLAU PADDERXPNBXARIGHFX JXI e (1) In the foregoing lllustration the steps are particularly simple because of the following cricumstances
(a) The actual word lengths are shown
(b) The words are enclphered monoalphabetically by different alphabets belonging to a set of secondary alphabets
(c) Repetitions of plain-text words, enciphered by different alphabets, produce isomorphs and the lengths of the isomorphs are defintely known as a result of circumstance (a)
(2) Of these facts, the last is of most interest in the present connection But what if the actual word lengths are now shown, that is, what if the text to be solved is intercepted in the usual 5-letter-group form?

135922-89—2

Section IV
SOLUTION OF SYSTEMS USING CONSTANT-LENGTH KEYNG UNITS TO ENCIPHER VARIABLE-LENGTH PLAIN-TEXT GROUPINGS, III

General remarks

Word separators
Variations and concluding remarks on foregong

14. General remarks -a the cryptanalyst has before him the messages in therr true or artacularly easy to solve because miltary cryptography this is seldom or ner er the case The problem is thereforgths But in what more difficult by teason of the fact that there is nothing to molem is therefere defintely thade someencupherment by successive keyletters However, the solution merely necessitates more expermmentation in this case than in the preceding The cryptanalyst must take careful note of
repetitions which may serve to "hbel will be able to find and identify cert out" or delumit words, and hope that when this is done he terna, such as those noted above If there suences laving famular idiomorphuc features or patto permit of employng this entering wedge b Of course, if any sort of stere wedge
or endings of the messages, the matter of assuming values for seyed, especially at the beginnungs and affords a quick solution For example, suppose that for sequences of cipher letters is easy, found that many messages begm with the expression REFERRING TO YOUR Nork it has bee Having several messages for study, the selection of one which begins with such found the word REFERRTNG by the word REFERRING is a relatively simple matter, a common NGMBER, the solution 18 probably well under degree of certanty one can add the words TO YOU c (1) Take the case discussed in pararraph
indicated because the message is transmatted in, but assume that word lengths are no longer ascertaining the exact length of sequances which the usual 5 -letter groups The process of ermed, "blocking out isomorphs" becomes a more difficult matter, and the process as briefly rather tenuous threads of reasoning For example, take the illustrat must often rest upon orth and let it be assumed that it was arranged in 5 -letter groups illustrative message just dealt

UEVEZ	FKNAK	FORAD	KOCFS KOMPI	TVIXH	
	1	ZWBCX	HOQPF	$\begin{aligned} & \text { SECSP } \\ & \text { FAOXX } \end{aligned}$	$\begin{array}{ll} P 1 \\ 0 \end{array}$
	Z	ZFVUE	AOQCF		
	I				

special trouble in picking out the following the becomes a more difficult matter There is no somorphic sequences

$$
\begin{aligned}
& \text { (1) V CLLKIDVSJDCI } \\
& \text { (3) CSADPHQKCLZKSQ } \\
& \begin{array}{l}
\text { (14) }
\end{array}
\end{aligned}
$$

since the first one happens to be at the begnning of the message and 1ts left-hand boundary, or "head," is marked by (or rather, comcides with) the beginning of the message By a fortunate crrcumstance, the nght-hand boundary, or "tall," can be fixed just as accurately That the repetition extends as far as inducated above is certam for we have a check on the last column I, Q, R If an additional column were added, the letters would be $0, L, I$ Since the second letter has previously appeared whle the first and third have not, a contradiction results and the new column may not be included

If, however, none of the three letters $0, L, I$ had previously appeared, so that there could be no means of getting a cbeck on their correctness, it would not be possible to block out or ascertann the extent of the somorphism in such a case All that could be said would be that d (1) Howovece first 13 letters, but at maght continue further
ear full extent is nor, the difficulty or even the umpossibility of blocking out the somorphs to not to identafy not usually a senious matter After all, the cryptanalyst uses the phenomenon For example, how many data are lost when the illustrative message of subparagraph $13 a$ is rewritten in 5 -letter groups as in subparagraph 14c (1)? Suppose the latter form of message be studied for isomorphs

VCLLK	IDVSJ	DCIOR	KDCFS	TVIXH	MPPFX	UEVZZ
FKNAK	FORAD	KOMPI	SECSP	PHQKC	LZKSQ	LPROJ
ZNBCX	HOQCF	FAOXR	OYXAN	ORMDM	ZMTST	ZFVUE
AORSL	AUPAD	DERXP	NBXAR	IGHFX	JXI	

(2) If the underscored sequences are compared with those in the message in subparagraph $13 a$, it will be found that only a relatively small amount of unformation has been lost Certannly not enough to cause any diffic ulty have been lost in this case, for all the data necessary for the latter are identical in length in both cases Only the head and tail letters of the second pair of somorphic sequences are not included in the underscored sequences in the 5 -letter versyon of the message The third parr of 1somorphec sequences shown in paragn aph $13 b$ does not appear in the 5 -letter version since there is only one repeated letter in this case In long messages or when there are many short messages, a study of isomorphism will disclose a sufficient number of partial isomorphs to give data usually sufficient for pupposes of alphabet reconstruction
e It should be noted that there is nothing about the phenomenon of 1somorphism which restricts its use to cases in which the cupher alphabets are secondary alphabets ressulting from the sldang of a muxed component aganst the normal It can be useful in all cases of interrelated scondary alphabets no matter what the basis of their denvation may be
f In subsequent studues the mportant role which the phenomenon of isomorphusm plays in cryptanalytics will become more apparent When the traffic is stereotypic in character even to a slight degree, so that isomorphsm may extend over several words or phrases, the phenomenon becomes of highest importance to the cryptanalyst and an extremely valuable tool in his hands

15 Word seperators - a One of the prantical dufficulties in employing systems in which the keying process shifts according to word lengths is that in handling such a message the decryptoraphing clerk is often not certann exactly when the termination of a word has been reached, and thus time is lost by him For unstance, whule decryptographing a word such as INFORN key letter or not The word might be INFORMS, INFORMED, INFORMING, INFORMAL, INFOR-

MATION, ete The past tense of verbs, the plural of nouns, and terminations of various sort capable of berug added to word roots would give rise to duffculties, and the latter would be especially troublesome if the messages contamed a few telegraphie errors Consequently, a word by an unfrequent letter such as Q or X, and encuphering the letter In such usage these letters are called word separators
b When word separators are employed and this fact is once discovered, their presence $1 s$ of as much and to the cryptanalyst in bis solution as it is to the clerks who are to decryptograph the messages Sometumes the presence of these word separators, even when enciphered, and or makes possuble the blockang out of ssomorphs
ding remak on foregong systems - a The systems thus far described are all based upon word-length encipherment using dufferent cipher alphabets Words ampated to imparted to such cryptograms But varnations in the method, aumed at makung the latter somewhat more secure, are possible Some of these varrations whll now be discussed
b Instead of encupherng accordngg to natural word lengths, the irregular groupngs of the (in the normal sequence) of each key letter be used to cantrol the number of letters enciphere by the successive cepher slphabets Dependung then upoa the composition of the key word or key phrase, there would be a varynng number of letters oncuphered in each alphabet If th key word were PREPARE, for unstance, then the first cupher alphabet would be used for 10 ($P=16$) letters, the second cupher alphabet, for $18(\approx R$) letters, and so on Monoalphabetic oncipherment would therefore allow plenty of opportunity for toll-tale word patterns to manufes be achieved rather rapidly Of course, all types of cipher alphabets may be employed in this and the somewhat smmiar schemes described
c If the key is short, and the message is long, periodicity will be manifested in the cryptogram, so that it would be possible to ascertann the length of the bastc cycle (in thus case thelength of the key) despite the urregular groupings in encipherment The determination of the length period would not be clearly evident because of the presence of repetitions whach are not perrodic in therr orgen For example, suppose the word PREPARE were used as a key, each koy letter being employed to encipher a number of letters corresponding to its numerical value in the normal sequence It is clear that the length of the basic period, in termas of letters, would here be the sum of the numerncal values of $P(=16)+\mathrm{R}(=18)+E(=5)$, and so on, totallung 79 letters letter is monoalphabetic there would be plenty of cases in which the first letter P would encpher the same or part of the same word as the second letter P, producing repetstions in the cryptogram The same would be true as regards encupherments by the two $\mathrm{R}^{\prime} \mathrm{s}$ and the two E's in thas key word Consequently, the bastc period of 79 would be distorted or masked by aperiodic repetations, the intervals between which would not be a function of, nor bear any relation to, the length of the key The student will encounter more cases of this kond, im which attributable to the fundamental cycle The experrenced cryptanalyst is on the lookout for phenomena of this type, when he finds in a polyalphabetic clpher plenty of repetitions but with no factorabie constancy which leads to the disclosure of a short perrod He may conclude, then either that the cryptogram involves several prnmary periods which interact to produce a long
resultant period, or that it myolves a farrly long fundamental cycle withun which repetitions of a
mgin d (1) A logical extension of the principle of polyalphabetic encuphesranean exceed 4 letters, so plam-text groupngs is the case in whe for only a very short time, thus breaking up what might otherwise appear as farly long repetitions in the cupher text For example, suppose the letters解 follows
(2) Suppose that a letter in group 1 meens that one letter will be enciphered, a letter in (2) Suppose that a
group 2, that two letters will be encuphered, and so on Suppose, next, that a rather leagtay ohrase were used as a key, for example, PREPARED UNDER THE DIRECTON finally, that each SIGNAL OFFICER FOR USE WITH ARMY EXIENSIN letter of the key were used not ouly to semphed by the selected alphabet, according to th to control the number scheme outhned above Such an encuphering scheme, comgonent, would yreld the followng clpher com

Key.-.

Capher.-.
Grouping Key.-.
Plann. \qquad $\begin{array}{lllllllllllllll}1 & 1 & 2 & I & 1 & 2 & I & 2 & 3 & 1 & 3 & 1 & 2 & 3 & 1 \\ I & E & C & T & I & 0 & N & 0 & F & T & H & E & C & H & I\end{array}$

Clpher
(3) Here it will be seen that any tendency for the formation of lengthy repetitions would be counteracted by the short groupings and quick shattung of adpane it occurs it is enclphered word DIVISION occurs it is enciphered as as RPRNPCKS Before DIVISION can be twice enciphene between the two occurrences of the letters, an interval word key letter P would begus the encupherment of DIV are but one three possible encipherments wall yeld exactly the same sequas tert were such as to place two second time as was obtaned the first tume Cor cen shown below, their encipherments would occurrences of be as follows

Although the wotd DIVISION, on its second appearance, begins but one letter beyond the place where it begins on its first appearance, the cupher equivalents now agree only in the first two letters, the fourth, and the last letters Thus

DIVISION
 (2) $\frac{T H}{T} \mathrm{H}_{\mathrm{Z}} \mathrm{G}$ GPXNM

e Attention $2 s$ durected to the characterstics of the foregong two oncipherments of the same word When they are supermposed, the first two cipher equivalents are the some of the two encipherments, then there is a ssogle unterval where the cipher equivalents are dffierent, the next cpher equivalent is the same, then follow three intervals with dissimular cipher equivalents, finally, the last clpher equvalent is the same in both cases The repetitions here extend only to one or two letters, longer repetitions can occur only exceptionally The two encuphernoreover, the distrubution of the coines,
f This phenomenon of untermittent coincudences, involving of an intermuttent character airs of letters, or short sequences (rarely ever exceeding pantagraphs) is one of thingle letters, atrcs of this general class of polyalphabetic substitution, wheresn the cryptograms commonly anufest what appears to be a disturbed or distorted periodicity
g From a technceal standpoint, the cryptographuc princuple upon whuch the foregoing system 18 based has much mertt, but for practical usage it is entirely too slow and too subject
to error However, if the enciphermen cey were quite lengthy, such a system and were mechanized by machunery, and if the encipherng machunes for accomplishung this type of substitution will be treated in a subsequence text

Section

SOLUTION OF SYSTEMS USING VARIABLE-LENGTH KEYING UNITS TO ENCIPHET CONSTANT-LENGTH PLAIN-TEXT GROUPINGS

Vamable-length groupning of the heying sequence-
Methods of int ruptuing a cyclic keyng sequence...
Interruptor 1 a a plan-text letter
Interruptor is a epherer-text lette
Concluding remarks
$\cdots \cdot \cdots$
2 22 smple methods of elmminatugg or avoiding periodicty by encyhernng variable-length grouping of the plam text, using constnut-length heying unts In pirngraph $2 a$, however, lu was to conout that peroduty can also be suppressed by qpplyng stant-length plair-tcx groups sequence, if the latter is of a hmited or fired enguence becomes equivalent to a serres of keys of dfferent lengths Thus, the hey phase BUSINESS MACHINES may be expanded to a series of irregular-length keyng sequences, such as BUSI/BUSINE/BU/BUSINESSM/BUNL Fanous schemes or p angements for madicating or determus lopted Three methods will be mentroned in the next paragrap
18 Methods of interrupting a cyclic keyng sequence $-a$ There ane many methods of interrupting a keying sequence which is bascally cychc, and which theretore would give nse periodicity in iot is regards what happens after the intern uption occurs
(2) The keyng sequence merely stops and begins agan at my be omitted from tome to time rregularly
(3) The keying scquence arregularly alternates in its drection of progression, with or nthout omission of some of its elements
b These methods may, for clarty, be represented graphically as follows Suppose the保 $1,2,3,10$ Using an asterisk to indicate an minterruption, the following may then represent $, 2,3,10$ Using an astersk to midicate anners ind the element number of the keyng sequences in the three types mentioned above
$\left\{\begin{array}{l}\text { Letter No--- } \\ \text { Key element } \\ \text { Ler }\end{array}\right.$ \qquad
 (1) $\begin{aligned} & \text { Key elemen } \\ & \text { Letter No }\end{aligned}$ \qquad $\begin{array}{lllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 \\ 30 & 31 & 32 & 33 & 34 & 35\end{array}$
Key elemen 1-2-3-4-5-6-7-8-9-10-*-1-2-3-*-1-2- etc
Letter No--.... $\begin{array}{llllllllllll}123 & 4 & 5 & 6 & 8 & 101112 & 1415161718 & 190\end{array}$
(2) $\begin{aligned} & \text { Key eleme } \\ & \text { Letter No } \\ & \text { Ket }\end{aligned}$
1-2-8-*-7-8-9-10-1-2-*-4-5-6-*-3-4-5-6-7-8-9-10
 (19)

LLetter No. (3) $\left\{\begin{array}{l}\text { Key elemen } \\ \text { Letter No. } \\ \text { Key }\end{array}\right.$ \qquad

As regards the third method, which involve $9-2-1-10-9-8-*-9-10-1-2-3$ ete
of the keying sequence, if there were no interruptions in thation in the direction of progression 10 -element keying sequence, for example, could bions in the key it would mean merely that a sequence and the matter could then be handled be treated as though it were an 18 -element nethod But if the principles of the handled as though it were a special form of the second the matter may become quite complex second and third method are combined in one system, c If one knous when the interruption
the basic keying cycle in the three cases may be superimposed cycle, then successive sections of

		[тно	D (1)							
Keying element	2	3	4	4	5	6	7	8	9	
Letter No	2	3		4						
Letter No.---------------------	12	13	8		9	10				
Letter No.	15	16			18	19	20			
Letter No--------------- 21	22	23			25	26	27	28	29	30
Letter No.-------------------3	32 35	${ }_{\text {ete }}$								

Obviously if one does not know when or how the interruptions take place, then the successive d The interruption of the cychc keying sequence usicated above
prearranged plan, and the three basic methods of a short mnemonic key as an example methods of interruption will be taken up in turn, using
e Suppose the correspondents agree that the interruption in the keyng sequence will take place after the occurrence of a specified letter called an interruptor, ${ }^{1}$ whey may be a letter of the plaun text, or one of the cupher text, as agreed upon in advance Then, since in either case there is nothing fixed about the time the noterruption will occur-it will take place at no fixed nitervals-not only does the interruption become quite urregular, following no pattern, but also the method never reverts to one having periodicity Methods of this type will now be discussed in detal
19. Interruptor is a plain-text letter - a Suppose the correspondents agree that the interruption in the key will take place immeduately after a previously agreed-upon letter, say R, occurs in the plan text The key would then be interrupted as shown in the followng example (using the mnemomic key BUSINESS MACHINES and the HYDRAULIC $X Z$ sequence)
Key_- \qquad BUSINESSMACHI|BUS|BUSI|BUSINE Cipher

Key_- \qquad BUSINESSMACHINESBUUBUSINESNMACHI Cipher \qquad

Key.-. -- BUSI|BUS|BUSINE|BUSIN

Cupher $\begin{array}{llllllllllllllll}T & H & I & R & D & A & R & T & I & L & L & E & R & Y \\ D & G & D & X & G & U & F & D & J & U & P & S & Y & I\end{array}$

Cryptogram

BOLYR PJDRO JKXKJ FYXSX DJUPS YIYDP YFXUR AFAEN MJJVB OLYRP JDROJ KXDGD

b Instead of employing an ordinary plain-text letter as the interruptor, one might reserve the letter J for this purpose (and use the letter I whenever this letter appears as part of a plaintext word) This is a quite simple variation of the basic method The letter J acts merely as though it were a plain-text letter, except that in thus case it also serves as the interruptor The interruptor is then inserted at random, at the whm of the enciphering clerk Thus

\qquad | BUSINESSMAC | BUSINESSM | BUSINESSMACHINESBUSIN |
| :--- | :--- | :--- |
| TROOPSWILJ | BEHALTEDJ | ATROADIUNCTIONFIVESIX |

c It is obrious that repetitions would be plentiful in cryptograms of this construction, regardless of whether a letter of high, medium, or low frequency is selected as the signal for key interruption If a letter of high frequency is chosen, repetitions will occur quite often, not be followed by words that are frequently repeated, and since the key starts again with each such interruption, these frequently repeated words will be enciphered by the same sequence of alphabets This is the case in the first of the two foregoing examples It is clear, for instence, that every time the word ARTILLERY appears in the cryptogram the cisher equivalents of TILLERY must be the same If the interruptor letter were A_{p} instead of R_{p}, the repetition

Also called at times an "influence" letter because it influences or modifies normal procedure In some a prevoualy-agreed-upon number of letters has been enciphered
would include the cupher equvalents of RTILLERY, if it were T_{0}, ILLERY, and so on On the other hand, if a letter of low frequency were selected as the interruptor letter, then the enciphermont would tend to approximate that of normal repeating-key substitution, and repetitions would be plentiful on that basis alone
d Of course, the lengths of the intervals between the repetitions, in any of the foregoing cases, would be urregular, so that perioducity would not be manifested The student may attempt to allocat how one would proceed to solve such messages, for it is obvious that an cannot be successful unless the a single message into separate monoalphabetic distributions not become known to the cryptanalyst until he has solved the message, or at least a part of it Thus it would appear as though the would-be solver is here confronted with a more or less insoluble dilemma This sort of reasoning, however, makes more of an appeal to the novice in cryptography than to the experienced cryptanalyst, who specializes in methods of solving cryptographic
dilemmas emmas
e (1) The problem here will be attached upon the usual two hypotheses, and the easier one will be discussed first Suppose the system has been in use for some time, that an original solution has been reached by means to be discussed under the second hypothesis, and that the cipher alphabets are known There remams unknown only the specific key to messages Examword Thas what taking the illustrative message in made on the basis of searching for a probable word ARTILLERY is suspected Attempts are made to locate this word, hasing the of the upon the construction of an intelligible hey Begminng with the very first letter of the message the word ARTILLERY is juxtaposed against the capher text, and the hey letters ascertaned, using the known alphabets, which we will assume in this case are based upon the HyDRAULT

XZ sequence sliding agamst the normal Thus

(2) Since this "key" is certamly not intelligible text, the assumed word is moved one letter to the rght and the test repeated, and so on until the following place in the test is reached

$$
\begin{aligned}
& \text { Clpher----- - -- ---- S X D J U P S Y I } \\
& \text { Plann- }
\end{aligned}
$$

(3) The sequence BUSINE suggests BUSINESS, moreover, it is noted that the key is interiupted both times by the letter R_{p} Now the key may be applied to the beginning of the message, to see if the whole key or only a portion of it has been recovered Thus

$$
\begin{aligned}
& \text { Key---- } \\
& \text { Clpher- } \\
& \text { BUSINESSBUS } \\
& \text { B OLYRPJDROJ }
\end{aligned}
$$

(4) It is obvious that BUSINESS is only a pait of the hey But the deciphered sequence certanly seems to be the word AMMUNITION When this is tried, the key is extended to BUSINESS MA Enough has been shown to clarify the procedure
f The foregoing solution is predicated upon the hypothesis that the clpher alphabets are known But what if this is not the case? What of the steps necessary to arrive at the firs solution, before even the presence of an interruptor is suspected? The answer to this question eads to the presentation of a method of attack which is one of the most important and powerfu means the cryptanalyst has at his command for unraveling many knotty probleng
20. Solution by suparimposition - Basc praceples
20. Solution by superimposition-a Basic princoples - (1) In solving an ordinary repeating-key clpher the first etpp, that of ascertaming the length of the period, is of no signif
cance in itself It merely paves the way for and makes possible the second step, which consists (ance in itself It merely paves the way for and makes possible the second step, which consists in allocating the letters of the cryptogram into individual monoalphabetic distributions The cribed into its perioas and is written out in successive lines corresponding in length with that of the period The diagram then consists of a series of columns of letters and the letters in each column belong to the same monoalphabet Another way of lookng at the matter is to concerve of the text as having thus been tianscribed into supcrimposed periods in such case the letters in each column have undergone the same kind of tieaiment by the same elements (plain and cipher components of the cupher alphabet)
(2) Suppose, however, that the repetitive key is very long and that the message is short, so hat there are only a very few cycles in the text Then the solution of the message becomes difficult, if not impossible, because there is not a sufficient number of superimposable periods to yreld monoalphabetic distributions which can be solved by frequency priniples But suppose also that there are many short cryptogr
(a) The letters in the respor
(a) The leter allons will all belong to individual alphabets, and
(b) If there is a sufficient number of cur h superimposable messages (say $25-30$, for English) then the froquency distributions applicable to the successive columns of text can be solvedarthout knownng the length of the key In other words, any dufficulties that may have arisen on The second step in normal solution is thus "by-passed"
(3) Furthermore, and this is a very mportant point, in case an extremely long key is emloyed ard a series of messages beginning at different intial points are enciphered by such a key, has method of solution by supermposition can be employed, provided the messages can be super imposed correctly, that is, so that the letters which fall in one column really belong to one clphe alphabet Just how this can be done will be demonstrated in subsequent paragraphs, but a clue has already been given in paragraph $18 c$ At this point, however, a simple illustration of the method will be givel, using the substitution system discussed in paragraph 19
b Example - (1) A set of 35 messages has been intercepted on the same day Presumably they are all in the same key, and the presence of repetitions between messages corroborates this assumption But the intervals between repentions with the same message do not show any has been appled, mposed (Fig 5), the frequency distributions for the first 10 columns are as shown in Figure 6
TTEQMXZSYSPRC
CCRWCXTBHH
EFKCSZRIHA
YANCIHZNUW
VZIETIRRGX
HCQICKGUON
ZCFCLXRKQW
HWWPTEWCIMJS
EPDOZCLIKSJ
ZTSSGZPZIE
ZCGYFCSBG
ZCGGYFCSBG
CWZAOOEMHWTP
CIYGIFBDTVX
EAQDRDNSRGAPD
YFWCQQBZCWC
WTEZQSKUHC
ZCVXQZKZYDW

19 AFEOJTDTIT
20 KPVFQWPT
21 ZABGRTXPUQX
2 YHEOCUHMDT
CLCPZIKOTH
24 AFLWWZQMDT
5 ZCWAPMBSAWL
HFLMHRZNAPECE
CLZGEMKZTO
TPYFKOTIZUH ZCCPSNEOPHDYL CIYGIFTSYTLE YTSVWVDGHPGUZ
NOCATFB $\mathrm{N} O C A I F B J B L G H Y$
ZXXF
X
C ZXXFLFEGJL
ZCTMMBZJOO
HCQIWSYSBPHCZV
flauris 5

(2) The 1st and 2d distributions are certanly monoalphabetic There are very marked crests and troughs, and the number of blanks (14) is more than satisfactory in both cases (Let the student at this point refer to Par 14 and Chart 5 of Military Cryptanalysis, Part I) But the 3d, 4th, and remaining distributions appear no longer to be monoalphabetic Note particularly the distribution for the 6th column From this fact the conclusion is drawn that some disturbance in periodicity has been introduced in the cryptograms In other words, although they all start out with the same alphabet, some sort of interruption takes place so as to suppress (3) Ho
(3) However, a start on solution may be made by attacking the first two distributions, frequency studies being aided by consideraticrs based upon probable words In this case, since the text comprises only the beginnings of messages, assumptions for probable words are more easily made than when words are sought in the interiors of messages Such common intro-
ductory words as REQUEST, REFER, ENEMY, WHAT, WHEN, IN, SEND etc, are to assume Furthermore, high-frequency digraphs used as the initial digraphs of common words will, of course, manifest themselves in the first two columns The greatest ard in this process is, as usual, a familuarity with the "word habits" of the enemy
(4) Let the student try to solve the messages In so dong he wll more or less quickly find the cause of the rapid falling off in monoalphabeticity as the columns progress to the right from the intial point of the messages

21 Interruptor is a cupher-text letter - a In the preceding case a plan-text letter serves as the interruptor But now suppose the correspondents agree that the interruption in the key will take place immediately after a prevously-agreed-upon letter, say Q , occurs in the clpher text The key would then be interrupted as shown in the following example
Key-
Plaun. \qquad BUSINESSMACHINESBUSINESSM1
Chpher AMMITIONFORFIRSTARTILLE

Key- \qquad BUSNESSMAOHINBUSINESS

Capher \qquad

Key... \qquad RMYTXHPCRFQ|BEJFIELLBONQOCQ BUSINESSMACH|BUSINE
Clpher \qquad

Chyptogram

B 0	P J D	JKXTP	F Y X S X	BPUUQ	HRNMY
TTXHP	CRFQB	EJFIE	LLBON	Q O Q VE	XBO
FPAZQ	ONUFI	C			

b In the foregoing example, there are no significant repetitions Such as do occur comprise only digraphs, one of which is purely accidental But the absence of siguficant, long repetitions is itself purely accidental, for had the interruptor letter been a letter other than Q_{0}, then the phrase AMMUNITION FOR, which occurs twice, might have been enciphered identically both
tumes If a short key is employed, repetitions may be plentuful For example, note the fol lowing, in which S_{c} is the interruptor letter

Key--lum \qquad BANDSBANDSBANDSBANDSBANBANDSBANDSB Cipher will be methe a will be repetitions within shoit secticns, and the interval between them will sometimes permit of asce taining the lergth of the kev In such shat sec tions, the lettois which intervene between A, C, B, and N nalay be ellminated, in the foreroing example, as interruptor letters By extension of this purche to the leters quikly aspran what letter serves as the interruptor quickly ascertajn what letter serves as the interruptor
"Once the interiuptor lettel has been found, the next step is to break up the message moto "umintcrrupted" sequences aud then attempt a solution by superimposition The princlples explamed in paragraph 20 need only be modfied in minol respects In the first place, in
this case the columns of text formed by the supermposition of uninterrupted sequences be puicly rionoalpnabetic, whereas in the case of the example in paiagraph 20, only the very first column is puiely monoalphabetic, the monoalphabeticity falling off very iapidly with the 2d, 3d, columns Hence, in this case the analyss of the individual alphabets should be an easier task But this would be counterbalanced by the fact that whereas in the former case the cryptanalyst is dealing with the iminal words of messages, in this case he is dealing with interior poitions of the text and has no way of knowing where a word begins The latter remarks naturally coo not apply to the case wheie a whole set of messages in this system, all in the same key, can be subjected to sumultareous study In such a case the cryptanalyst would also have the initial words to work upon

22 Concluding remanks - a The preceding two paragıaphs both deal with the first ani sumplest of the three basic (ases referred to under paragraph 18 The second of those case for the reason that when the interruption take place and the keying sequence recommences, the latter is not invariably the initial point of the b In the second of tho

In the second of those cases the interruptor causes a break in the keyng sequence and a recommencement at any one of the 10 keymg elements Consequently, it is impossible now merely to supermpose sections of the text by shufting them so that their mintial leiters fall in the same column But a superimposition is nevertheless possible, provided the interruptions keyletters In order to accomplish ans of only a very few letters are enciphered by sequen is essential, and for this a good many letiers are requred The nature of this test will be explaned in Section XI
c The same thing is true of the last of the three cases mentioned under paragraph 18 The solution of a case of this sort is admittedly a rather dufficult matter which will be taken up in its proper place late
d (1) In the cases thus far studied, erther the plam-text groupings were variable in length and were enciphered by a constant-length key, or the plan-text groupings were constant in
${ }^{2}$ When no interruptor or "influence letter" is used, the interruption or break in the keying sequence occur after the enciphcrment of a definite number of letters Once this number has been ascertaned, solution of subsequent messages is very simple
length and were enciphered by a variable-length key It is possible, however, to combine both principles and to apply a varnable-length key to variable-length groupings of the plam text
(2) Suppose the correspondents agree to enclpher a message according to word leng at uregular intervals, to add at the end of a word an interiuptors rupt the key Note the following, in which the key is BUSINESS MACHINES and the interrupto letter is X

(3) The foregong system is only a minor modification of the simple case of ordinary word length encipherment as explained in Section II If standard cipher alphabets are used, the spasmodıc interruption and the presence of the interruptor letter would cause no difficulty whatever, suce the solution can be achieved mechanically, by completing the plain-component sequence If muxed cupher alphabets are used, and the pumary components are unknown, solution may be reached by following the proceduie outhned in Sections II and III, with such modffications as are suitable to the case
e It is hardly necessary to point out that the foregoing types of aperiodic substitution are rather unsuitable for practical mulitary usage Encipheiment is slow and subject to error in some cases encupherment can be accomplshed only by single-letter operation For if ine, interruptor is a cipher letter the key is interrupted by a letter which cannot be known in advanherIf the interruptor is a plain-text letter, whle the interruptions can be indicated before enion and ment is begun, the megularites occasioned by the interrupthons in keying cause confuso quite materially retard the enciphering process In dectipherng, the rate of spees in all these just as slow in either method It is obvious that one of the principal dsadvanage of if anything methods is that if an error in transmission is made, if some letters are omile or imporicult or impossible to decryptograph happens to the interruptor letter, the message becomes dery by the ordnary code clerk Finalily, the degree of cry
of these methods is not sufficient for military purposes

Section VI

REVIEW OF AUTO-KEY SYSTEMS

The two basic methods of auto-key encipherment
23 The two basic methods of auto-key encipherment -a In auto-key encupherment there e two possible sources for successive key letters the plain text or the cupher text of the message itself In ether case, the initual key letter or key letters are supphed by preagreement between the correspondents, after that the text letters that are to serve as the key are displaced $1,2,3$, intervals to the right, depending upon the length of the prearranged key
b (1) An example of plaun-text keying will first be shown, to refresh the student's recollecLet the previously agreed upon key consist of a single letter, say X, and let the cupher alphabets be drrect standard alphabets

$$
\begin{aligned}
& \text { Crpher }
\end{aligned}
$$

(2) Instead of having a single letter serve as the intial key, a word or even a long phrase may be used Thus (using TYPEWRITER as the imitial key)
\qquad
Plam. NOTIFYQUARTERMASTER NOTIFYQUARTERMASQER $\stackrel{c}{c}$ used

If a key word is used

TYPEWRITERGMIMBPYNEI

(3) Sometimes only the last cupher letter resulting from the use of the prearranged key word is used as the key letter for enciphering the auto-keyed portion of the text Thus, in the last example, the plan text beginning TERMASTER would be enciphered as follows

Key
TYPER
Plain
TYPEWRITERIIBFWI IATX
Clpher GMIMBPYNEIBFWITATXO
(28)
d In the foregoing examples, durect standard alphabets are employed, but muxed alphabets, ther interrelated or independent, may be used just as readily Also, instead of the ordmary either minterrelated or medepen may employ a mathematical process of addition (see par $40 f$ of type of cipher Text No 166, Advanced Military Cryptography) but the dufference between the latter process and the ordinary one using sliding alphabets is more apparent than real
e Since the analysis of the case in which the cipher text constitutes the auto key is usually er than that m which the plain text serves this function, the former will be the first to be discussed

Section VII
SOLUTION OF CIPHER-TEXT AUTO-KEY SYSTEMS
Solution of cipher-text auto-keyed cryptograms when known alphabets are employed. General principles underlyng solution of cipher-text auto-keyed cryptograms by frequency analysi Frequency distributions required for solutio
Examplo of solution by analysis of soomorphism
peeial case of solution of cypher-text auto-keyed cryptograms
(1) First of all it is to bext auto-keyed cryptograms when known alphabets are employed a (1) Furst of all it is to be noted that if the cryptanalyst knows the cupher alphabets which were employed in encipherment, the solution presents hardly any problem at all It is only necessary to decipher the message beyond the key letter or key-word portion and the initial part An example, using standard cy this key letter or key word can be filled in from the contex An example, using standard clpher alphabets, follows herewith

Cryptogram

WSGQV OHVMQ WEQUH AALNB NZZMPESKD
(2) Writing the cipher text as key letters (displaced one interval to the right) and deciphering by durect standard alphabets yields the following
Key_-
\qquad phe \qquad $W S G Q V O H V M Q W E Q U H A A L N B N Z Z M P E S K$
V
SGQOHVMQWEOUHAALNBNZZMPESK WOKFTTOREGIMENTALCOMMANDPOST the iminal key FORCE, so that the the minial word of the message yrelds an intelligible word
\qquad
Ciphor WSGCEVOHVMQ REPORTTORE
(4) A semautomatic method of solving such a message is to use sliding normal alphabets and algn the strips so that, as one progresses from left to right, each cipher letter is set opposite
the Ietter A on the precedung strip Taking the letters VMQWEQUHA in the foregong example, note in Figure 7 the series of placements of the successive strips Then note how the successive plan-text letters of the word REGIMENT reappear to the left of the successive cupher letters

31

AVHXTXNHO WIYUYOHP BWIYUYOIP
CXJZVZPJQ CXJZVZPJQ DYKAWAQKR
EZLBXBRLS FAMCYCSMT GBNDZDTNU HCOEAEUOV IDPFBFVPW JEQGCGWQX KFRHDHXRY LGSIEIYSZ MHTJFJZTA NIUKGKAUB PKWMIMBWD LXNJNDE QLXNJNDXE RMYOKOEYF
SNZPLPFZE SNZPLPFZE
TOAQMQGAH UPAQMQGAH VQCSOSICJ WRDTPTJDK XSEUQUKEL YTFVRVLFM ZUGWSWMGN

Freors 7
b If, as a result of the analysis of several messages (as described in par 25), muxed rmary components have been reconstructed, the solution of subsequent messages may readily primary components have been reconstructed, the solution of subsequent messages may readily alphabets have become known alphabets
25. General prinopples underlying solution of cipher-text auto-keyed cryptograms by requency analysis - a First of all, it is to be noted in connection with clpher-text auto-keying hat repetitions will not be nearly as plentuful in the chpher text as they are in the plam text, ecause in this system before a repetition can appear two throgs must happen simultaneously First, of course, the plain-text sequence must be repeated, and second, one or more cipher-tex letters (depending upon the length of the introductory key) mmedaately before the second appear ance of the plan-text repetition must be identical with one or more cipher-text letters mmediately before the first appearance of the group This can happen only as the result of chance In he following example the introductory key is a single letter, X , and drect standard components re used in the usual Vigenère manner

Key.. XCKBTMDHNVHLY Plam. FIRSTREGIMEN
Clpher CKBTMDHNVHLYR

KDKSJMDHNVHLY THIRDREGIMENT KDKSJMDHNVHLYR

The repeated plan-text word, REGIMENT, has only 8 letters but the repeated cipher-text group contains 9 , of which only the last 8 letters actually represent the plan-text repetition In order that the word REGIMENT be enciphered by D N H L R the second time the word appeared in the text it was necessary that the key leter for its fist letter, R, be M both times, no other key letter will produce the same cipher sequence for the word REGIMENT in this
case Each different key letter for enciphering the first letter of REGIMENT wll case Each different key letter for encipbering the first letter of REGIMENT will produce a
dufferent encipherment for the word, so that the chances ${ }^{1}$ for a repetition in this case are roughly about 1 in 26 This is the principal cause for the reduction in repetitions in this system If an mentroductory key of two letters were used, it would be necessary that the two cipher letters immeduately before the second appearance of the repeated word REGIMENT be identical with the two cupher letters immedately before the first appearance of the word In general, then, an n-letter repetition in the cipher text, in this case, represents an $(n-k)$-letter repetition in the plain text, where n is the length of the cupher-text repetition and k is the length of the introductory key
b There is a second phenomenon of interest in connection with the cipher-text auto-key method Let the letter opposite whach the key letter is placed (when using slidng components for encipherment) be termed, for convenience in reference, "the base letter" Normally the base letter is the mitial letter of the plam component, but it has been seen in preceding texts letter occurs as a plan-text letter ts when the introductory key is a single letter, if the base ceding cipher letter, that is, there is produced a double letter in the wipher the modiately preceding cipher letter, that is, there is produced a double letter in the cipher text, no matter what For example, using the H Y D R A U That i cey letter happens to be for that encipherment ponents, with H , the initial letter of the plan component as the base letter, and using the introductory key letter X , the following encipherment is produced
Key...
Plann
Cupher-
XJOIIFLYUTTDKKYCXG
JOIIFLYUTTDKKYCXGS

Note the doublets II, TT, KK Each time such a doublet occurs it means that the second letter represents H_{p}, which is the base letter in this case (initial letter of plan component) Now if the base letter happens to be a high-frequency letter in normal plam text, for example the letter E , or T , then the cipher text will show a large number of doublets, if it happens to be a low-frequency letter the clpher text will show very few doublets In fact, the number of doublets if the cryptogram contans 1,000 letters there should be letter in normal plann text Thus, if the cryptogram contams 1,000 letters there should be about 72 occurrences of doublets if the base letter is A, since in 1,000 letters of plam text there should be about 72 A's Conversely,
if a cryptogram of 1,000 Ietters shows about 72 doublets, the base letter is likely to if a cryptogram of 1,000 letters shows about 72 doublets, the base letter is likely to be A, if it
shows about 90 , it is likely to be T, and so on Furthermore when a clue to the identity of the shows about ha, it in obtamed in this manner, it is possible immediately to insert the corresponding plan-text letter throughout the text of the message The distribution of this letter may not only serve as a check (if no inconsistencies develop) but also may lead to the assumption of values for other cipher letters
c When the introductory key is 2 letters, then this same phenomenon wll produce groups of the formula ABA, where A and B may be any letters, but the first and third must be identical The occurrence of patterns of this type in this case mdicates the encipherment of the base letter
${ }^{I}$ If all the cipher letters appeared with equal frequency the chances would be exactly 1 in 26 But certain letters appear with greater frequency because some plan-text letters are much more frequent than others
d The phenomena noted above can be used to considerable advantage in the solution of cryptograms of ths type For instance, if it is known that the ordmary Vigenère method of encipherment is used $\left(\theta_{k / 2}=\theta_{1 / 1}, \theta_{\mathrm{D} / 2}=\theta_{c / 2}\right)$, then the initial letter of the plain component the base letter If, further, it is known that the plann component is the normal direct sequence, then the base $\operatorname{ABCCDEG}$ If the plan component is a mıxed sequence and happens to start the formula AABCD with the letter E, then a word such as these are, of course, idromorphic and if words yrelding such idomorphisms are frequent in the text there will be produced in the latter several or many cases of isomorphism When these are analyzed by the principles of indirect symmetry of position, a quick solution may follow
e A final principle underlying the solution of cipher-text auto-keyed cryptograms remans to be discussed It concerns the nature of the frequency distributions required for the analysis of such cryptograms This principle will be set forth in the next paragraph

26 Frequency distributions required for solution -a Consider the message given in paragraph $23 c$ (1) It happens that the letter R_{e} occurs twice in this short message and, because of the nature of the cipher-text auto-keying method, this letter must also appear twice in the key Now it is obvious that all plain-text letters enciphered by key letter $R_{\mathbf{I}}$ will be in the same cipher alphabet, in other words, if the key text is "offset" one letter to the right of the cipher text, then every copher letter which immeduately follows an R_{o} in the cryptogram w cipher alphabet same cupher alphabet, and ent so that were, say, 30 to $40 \mathrm{Re}_{\mathrm{e}}$'s mit, then a frequency Now if there were sufficient text, so that there were, say, What has been said of the letters following the R_{c} 's apphes equally well to the letters following all the other letters of the cipher text, the A_{c} 's, B_{c} 's, C_{c} 's, and so on In short, if 26 distributions are made, one for each letter of the alphabet, showing the cipher letter immediately succeeding are made, one for each letter of the anferent letter of the cipher text, then the text of the cryptogram can be allocated into 26 uniliteral, monoalphabetic frequency distributions which can be solved by frequency analysis, providing there are sufficient data for this purpose
b The foregoing principle has been described as pertaning to the case when the introductory key is a single letter, that is, when the key text is "offset" or displaced but one interval to the right of the clpher text But at applies equally to cases wherenn the key text is ofset mose deterone interval, provided the frequency distibis suppose mined by the displacement due to the length of the intuo atory key consists of two letters,
$\begin{aligned} & \text { Key text.- } \\ & \text { Plam text }\end{aligned}$
$\begin{aligned} & \text { XZMRHFHGFNQRXOMRMVNE } \\ & \text { RELIABLEINFORMATION }\end{aligned}$
Cipher text.
MRHFHGFNQRXOMRMVWEE

The key text in this case is offset two intervals to the right of the cipher text and, therefore, frequency distributions made by taking the cupher letters one interval to the right of a given cipher letter, each time that letter occurs, will not be monoalphabetic because some letter not related at all to the given cipher letter is the key letter for encipherng the letter one interval to the right of the latter For example, note the three R_{c} 's in the foregong illustration The first R_{c} is followed by H_{c}, representing the encipherment of L_{D} by M_{k}, the second R_{c} is followed by X_{c}, representing the encipherment of F_{p} by Q_{k}, the third R_{c} is followed by M_{c}, representing the en$\xrightarrow{\text { cupherment of } A_{D} \text { by } M_{k} \text { The three cipher letters } H, X \text {, and } M \text { are here entirely unrel }}$
not belong to the same cıpher alphabet because they represent encipherments by three different key letters On the other hand, the cipher letters two intervals to the right of the R_{0} 's, viz, $F, 0$, and V, are in the same clpher alphabet because these clpher letters are the results of enciphering plan-text letters I, 0 , and T, respectively, by the same key letter, R It is obvious, then, that when the introductory key consists of two letters and the key text is displaced two will be based upon the the cipher text, the proper frequency distributions for monoalphabeticity the introductory the letter at the second interval to the right of each cipher letter Lakewise, if the introductory key consists of three letters and the key text is displaced three intervals to he nght of the cipher text, the distributions must be based upon the thurd interval, and so on in each case the interval used corresponding to the amount of displacement between key text c Conversel
c Conversely, in solving a problem of this type, when the length of the introductory key nibutions based upon various intervals after not known, the appearance of the frequency dis
 corresponding to that set will be the correct interval
${ }^{d}$ Application of these principles will now be made, using a specific example
27. Example of solution by frequency analysis - a It will be assumed that previous studies have disclosed that the enemy is using the cipher-text auto-key system described It will be further assumed that these studies have also disclosed that (1) the introductory key is usually a single letter, (2) the usual Vigenere method of employng sliding primary components is used, (3) the plain component is usually the normal direct sequence, the cipher component a muxed sequence which changes dauly. The following cryptograms, all of the same date, have been
intercepted

Message I

I J X W X	EECDA	CNQET	U K N M V	D I W P P
Q ZSXD	HIFEL	N NJJI	DIVEY	G T C Z M
EHHLM	RVCUR	GDIEQ	SGTAR	J JQQ Y
CARPH	M GLD Y	FYTCD	GYFKR	FKSET
TDIQK	KMLTU	RQGGN	KMKIX	J XWK K
0 KNTB	TZJOQ	y SCDI	DGETX	G X X X X
Message II				
G R VRM	Z WKX G	W P C K K	R M X A N	J C C X U
RTNJU	AKOBL	N L M W K	Y Y Z J U	CSUHF
FHIJA	Q B M LT	PURRS	UEQEV	ZEYGG
FFNFI	BWNYS	TCETP	DGTTZ	RRQHQ
A $00 \times \mathrm{D}$	B UYNK	LBWCD	G G K X X	
Message III				
RWK A O	LTCJM	Z D K V U	J C D D Y	B Z ELM
M W T Q o	HQ V GX	C HoLm	W V G R K	I BRXD
LA Q Y U	KIROZ	TQYUX		

Message IV

b A distribution table of the type described in paragraph $25 e$ is compled and is shown as Fugure 8 below In making these distributions it is smple to insert a tally in the appropriate Figure 8 below In making these distributions it is simple to insert a tally in the appropriate cell in the pertinent horizontal line of the table, to undicate the cipher letter which immediately follows each occurrence of the letter to which that line apples the first and second letters, the compling the data is to hande the text digraphically, and thard, the third and fourth, and so on, and distriting the final letters of the dgraphs in a quadricular table The distribution merely takes the form of tally marks, the fifth being a diagonal stroke so as to totalize the occurrences visibly

SECOND LETTER

ABCDEFGHI JKLMNOPQRSTUVWXYZ

Figure 8
The individual frequency distributions give
hich checks the assumption that the enemy ise every appearance of being monoalphabetic number of letters of text (excluding the final X 's) is 680 If the base letter is A then there should be approxmately $680 \times 72 \%=49$ cases of double letters in the text There are actually uch cases, which checks quite well with expectancy The letter A is substituted throughout the text for the second letter of each doublet
d The following sequence is noted

Assume that the sequence DDHOOVNBT represents BATTALION Then the frequency of H_{c} in the cipher alphabet should be high, since $H_{c}=T_{p}$ The H has only 2 occurrences Lakewise, the frequency of O_{c} in the H alphabet $\left(=\mathrm{T}_{\mathrm{D}}\right)$ should be high, it is also only 2 The frequency of V The rest of the letters of the assumed word are sit would equal L_{p}, it is 5 , whuch is too high quency distributions, with the result thor are simiarly checked agamst the appropriate fre-
sequence represents BATTALION does not appear to be warranted Smilar attempts are made at other points in the text, with the same or other probable words Some of these attempts at other points in the text, with the same or other probable words Some of these attempts
may have to be carried to the point where the placement of values in the tentative cipher component leads to serious inconsistencles Finally, attention is fixed upon the following sequence
Message VI, line 2------.- B DAQY $\overline{M M} \overline{T T F} \overline{U U N M G}$
The word MMTTFUUNMG $A V A I L A B L E$ is assumed The appropriate frequency distinbutions are consulted to see how well the actual individual frequencies correspond to the expected ones

${ }_{\substack{\text { Alphas } \\ \text { bet }}}^{\text {ater }}$	Assumed		Frequency		$\underbrace{\text { a }}_{\substack{\text { Approxı } \\ \text { mation }}}$
	θ°	${ }^{\text {o }}$	Lxpected	Actual	
M	T	v	Low	2	Far
T	F	I	High	2	Fair
F	U	L	Medium	1	Good
U	N	B	Low	1	Good
N	M	L	Medum	2	Far
M	G	E	High	3	Fair

The assumption cannot be discarded just yet Let the values derivable from the assumption be inserted in their proper places in a cipher component, and, using the latter in conjunction with a normal direct sequence as the plain component, let an attempt be made to find corroboration for these values The following placements may be made

Plann. \qquad $\begin{array}{ll}A B C D E \\ M & F G\end{array}$
$P Q R S T U V$
N
The letter M_{c} appears twice in the cipher sequence and when this partually reconstructed cipher component is tested it is found that the value $L_{p}\left(N_{k}\right)=M_{c}$ is corroborated Having the letters $\mathrm{M}, \mathrm{F}, \mathrm{G}, \mathrm{U}, \mathrm{N}$, and T tentatively placed in the cipher component, it is possible to insert certan plam-text values in the text For example, in the M alphabet, $F_{c}=D_{p}, G_{c}=E_{p}, U_{c}=O_{p}, N_{c}=P_{p}$,
$T_{c}=V_{p}$ In the F alphabet, $G_{c}=B_{p}, U_{c}=L_{p}, N_{c}=M_{p} T_{b}=S_{p}, M_{c}=X_{p}$ The other letters yreld $\mathcal{S}_{\mathrm{c}} \mathcal{V}_{\mathrm{D}}$. inserted in the cupher text No meansistencies appear and moreover, certan "good" duraph are brought to light For nstance note what happens here

Message V, line 4 \qquad $\begin{array}{ccccc}U Q Z H & Z M T F H & Z M L A C & Z \\ U Q Z H Z & \text { MFMZ MLACZ } \\ & \text { VI }\end{array}$
M,
Now if the letter H can be placed in the cipher component, several values might be added to this partial decipherment Noting that F and G are sequent in the cipher component, suppose H follows G theren Then the following is obtaned

Message V, line 4

Suppose the VIC is the beginning of VICINITY This assumption permits the placement of A, C, L , and Z in the cipher component, as follows

$$
\begin{aligned}
& \text { Plain_------------------ M A C F F G F G H I } \\
& \text { Cipher---- }
\end{aligned}
$$

JKLMNOPQRSTUVWXYZ

These additional values check in very nucely and presently the enture cipher component is reconstructed It is found to be as follows

Cupher ABCDEFGHIJKLMNOPQRSTUVWXYZ

The key phrase is obviously UNDERWOOD TYPEWRITER COMPANY All the messages now may be deciphered with ease The following gives the letter-for-letter decipherment of the first three groups of each message

I (Introductory key \mathbf{K})

RIGHT FAIRL
YQUIE
II (Introductory key E)
\qquad EGRVR MZWKX $\begin{array}{lll}\text { GRVRM } & \text { ZWKXG } & \text { WPPCKK }\end{array}$ OGOCPI PECA

Key...----------------	R $\mathrm{R}^{\text {W K K A }}$	OLTC J	D K
Cıpher----------------	RWKAO	LTC J M	Z DKVU
Plain.	ABOU	0 NE	NDRED
	IV (Intro	ory kev J)	
Key.-	¢ X J J	M L T Z K	XECAQ
Capher	X J J PM	L T ZKX	ECAQ
Plam.	GUARD	INSUF	FICIE

VI (Introductory key B)

VII (Introductory key B)

Key.---	B T B J P	A Q A A Z	T R X A
Chpher.	TBJPA	QAAZ T	RXALX
Plown	THERE	ISAMI	U

In the foregoing example the plain component was the normal drect sequence, so that e In the foregoing example the plain component was the normal direct sequence, so that
with the Vigenere method of encipherment the base letter is A If the plain component is a muxed sequence, the base letter may no longer be A, but in accordance with the principle set forth in paragraph 25b, the frequency of doublets in the capher text will correspond with the frequency of the base letter as a letter of normal plan text If a good clue as to the identity of this letter is afforded by the frequency of doublets in the cupher text, the insertion of the correspondmg base letter in the plain text will lead to further clues The solution from there on can be handled along the lines indicated above

27 Example of solution by analysis of isomorphisms - a It was stated in paragraph $25 d$ that in capher-text auto-keying the production of isomorphs is a frequent phenomenon and that analysis of these isomorphs may yeld a quick solution An example of this sort will now be studied
b Suppose the following cryptograms have been intercepted

USYP W	TRXDI	M L EXR	K V D B D	D Q GS U	NS Fibo
BEKVB	MAMMO	TXXB6	ENAXM	QLZ CX	D IXGZ
PMYUC	NEVVJ	LKZEK	URCNI	FQFNN	YGSIJ
TCVNI	XDDQQ	EKKLR	VRFRF	xROCS	S JTBV
EFAAG	ZRLFD	NDSCD	M P B B V	DEWRR	NQICH
ATNNB	OUPIT	J LXTC	VAOVE	Y J J L K	DMLEG
NXQWH	UVEVY	PLQGW	UPVKU	BMMLB	OAEOT
TNKKU	XLODL	W T H C Z	R		
2					
B I I B F	GRXLG	HOUZO	L L z NA	M HCTY	Scat
XRSCT	KVBWK	0 TGUQ	QFJOC	Y Y B V K	IXDMT
KTtcF	K VKRO	B OEPL	Q I G NR	IQOVJ	Y K I P H
J OEYM	RPEEW	H OTJ O	CRIIX	OZETZ	N K
3					
HaLOZ	JRRVM	M HCVB	Y UHAO	EOVAC	Q V V J L
KZEKU	RFRFX	YBHAL	ZOFHM	RS J Y L	APGRS
XAGXD	MCUNX	XLXGZ	J PWUI	FDBBY	PVFZN
B J N N B	I TMLJ	OOSEA	ATKPB	Y	

c Frequency distributions are made, based upon the 2 d letters of pairs, as in the precedung example The result is shown in the table in figure 9 The data in each dustribution are relatavely scanty and it would appear that the solution is going to be a rather difficult matter

SECOND LETTER

ABCDEFGHIJKLMNOPQRSTUVWXYZ
${ }_{\text {figure }} 9$
d However, before becoming discouraged too quickly, a search is made throughout the text to see if any 1somorphs are present Fortunately there appear to be several of them Note the following

> (3) TNKKUXODLWTHCZR|end of message
> Message 2---------.-(4) CRIIXOZETZNK|end of message
> Message 3------(5) C QVVJLKZEKURFRFX

First, it is necessary to delimit the length of the isomorph Isomorph (2) shows that the 1somorphisin begins with the doubled letters For there is an E before the $\mathrm{V} V$ in that case and also an E within the isomoiph, if the phenomenon included the E, then the letter immediately before the D D in the case of isomorph (1) would have to be an N, to match its homo (5) in , Corroborahg data are given by isomo (3), whe the doubled letters

As for the end of the isomorphusm, the fact that isomorphs (2) and (5) are the same for 10 letters eems to indicate that that is the length of the isomorphism The fact that message 2 ends etters after the last "tie-1n" letter, Z , corroborates this assumption It is at least certain that he isomorphism does not extend beyond 11 letters because the recurrence of R in isomorph (5) is not matched by the recurrence of R in isomorph (2), nor by the recurrence of T in isomorph (3) Hence it may be assumed that the isomorphic sequence is probably 10 letters in length, possib 11 But to be on safe ground it is best to proceed on the 10 -letter basis
e Applying the princuples of indrect symmetry to the superimposed isomorphs, partial保 sequence may be derived from the data given

The only missing letters are A, C, H, M, P, and Y By use of the nearly complete sequence on the ext it will be possible to place these 6 letters in their positions in the clpher component Or, if a keyword-muxed sequence is suspected, then the sequence which was reconstructed may be merely dernal by teating the partial sequence for various intervals, when the seventh is selected the following result is obtained

The sequence is obviously based on the keyword HYDRAULIC, and the complete primary clpher component is now available The plain component is then to be reconstructed \mathbf{A} word must be assumed in the text

A good probable word to assume for the 10 -letter repetition found in messages 1 and 3 ARTILLERY This sangle assumption is sufficient to place 7 letters in the plain component Thus

$$
\begin{aligned}
& \text { Key.-------------- VVJLKZEKUR }
\end{aligned}
$$

These few letters are sufficient to indicate that the plann component is probably the normal Thest sequence A few minutes testing proves this to be true The two components are therefore

\qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ
With these two cons at hand, the relatively mple matter Assuming a single-letter introductory key, and trying the first five groups of message 1 the results are as follows

Kөy-- \qquad PUSYPWTRXD IMLEX RKVDBDDQGS Clphe \qquad

It is obvious that an introductory key of more than one letter was used, since the first few letters Held unntelligible text, but it also appears that the last cupher letter of the introductory key was used as the introductory key letter for enciphering the subsequent auto-keyed portion of the text (see par 23c(3)) However, assuming that the IVE before the word FIRE is the ending of the first word of the plain text, and that this word is INTENSIVE, the introductory key word is found to be WICKER Thus

Key --- - TI CKERTRXDTMLEXRKVDBDDQGS.
 Cipher-...-. INTENSIVEFIREOFLIGHTARTIL. USYPWRXDIMLEXRKVDBDDOGSU.

The beginnings of the other two messages are recoverable in the same way and are found to be as follows

Key.PROMISERXLGHOUZO

Clpher. REQUESTVIGOROUS

Key- \qquad CHARGEDRRVMMHCVB
Cipher SECONDBATTALION
HALOZ JRRVMMHCVB
g The example solved in the foregoing subparagraphs offers an important lesson to the student, insofar as it teaches hum that he should not immeduately feel dzscouraged when confronted unth a problem presenting only a small quantity of text and therefore affording what seems at first lance to be an unsufficent quantity of data for solution For in this example, while it is true that solution was achieved data for analysis by simple principles of frequency, it turned out that
recourse to the principles of frequency of occurrence Here, then, is one of those interesting cases of substitution ciphers of rather complex construction which are solvable without any study whatsoever of frequency distributions Indeed, it will be found to be true that in more than a few instances the solution of quite complicated cipher systems may be accomplished not by the application of the principles of frequency, but by recourse to inductive and deductive reasoning based upon other considerations, even though the latter may often appear to be very tenuous and to rest upon quite flimsy supports

29 Special case of solution of cipher-text auto-keyed cryptograms - a Two messages with identical plann texts enciphered accordng to the method of paragraph $23 c$ (3) by initial key words of different lengths and compositions can be solved very rapidly by reconstructing the primary components The cryptographrc texts of such messages unll be esomorphrc after the rninal ey-word portions Note the two following superimposed messages, in which isomorphism beween the two cryptograms is obvious after their 6th letters

1HFPRX CPCRR EHFMU HRAXC NFDUB ATFQR
2 PRETN HEHTT DPRIW PTVNH CRSWY VJRFT

Starting with any pair of superimposed letters (beginnung with the 7th pair), chams of equivalents are constructed
\qquad
 LXNCHPEDSG QFRTJUWMI... AVK

By interpolation, these partial sequences may be united into the key-word sequence
HYDRAULICBEFGJKMNOPQSTVWXZ
b The mitial key words and the plam texts may now be ascertained quite easily by deciphering the messages, using this primary component sid against itself It will be found that the initial key word for the 1st message 18 PENCE, that for the 2 d 18 LATERAL The reason that the cryptographic texts are isomorphic beyond the initial key word portions is, of course, that sunce the text beyond the key word is enciphered auto-key fashion by the preceding cipher letter the letters before the last letter of the key have no effect upon the encipherment at all Hence two messages of identical text cannot be other than isomorphic alter the intal hor portions
c The foregoing solution affiords a clue to the solution of cases in which the texts of two or more messages are not completely identical but are in part identical because they happen to have slmular begnnings or endang, or contan progress in such cases is not so raph as in the case of more much caxe must be struction of the primary comple
d (1) In the components used to encipher the ilrative ondentical components are employed, the interesting case for the application of a principle pointed out in a preceding text
(2) Suppose that the three messages of paragraph $27 b$ had been enciphered by using a plain component different from the muxed component The encrpherments of the word ARTILLERY would still yeld isomorphuc sequences, fro
(3) Having reconstructed the cipher component (or an equvalent) the latter may be
(3) to the cıpher text and a "decpherment" obtamed In this process any sequence of 26 letters may be used as the plain component and even the normal sequence $\mathbf{A} \quad \mathrm{Z}$ may be employed for this purpose The word decipherment in the next to the last sentence is enclosed by quotation marks because the letters thus obtamed would not yeld plain text, since the real or an equvalent plan component has not yet been found Such "deciphered" text may be termed spurrous plam text But the important theng to note is that thrs text rs now monoalphabelio and may be solved by the simple procedure usually employed in solvng a monoalphabetrc cipher produced by a single mixed alphabet Thus, a polyalphabenc apher may bo convod to mon alphabetic terms and the problem much simplified in other words, here ans of the situations in which the principie of conversion into monoalphab the tor of two differantly with gratifyng success it is also an mored component alding against itself or against the normal sequence

- Miluary Cryptanalyse, Part II, par 45o
e (1) If the auto-key method shown in paragraph $23 c$ (2) had been employed in enciphering the two identical texts above, the solution would, of course, have been a bit more difficult To different compositions PENCE and LATER Thus

No 1
Key---- PENCETSBJS MMNRULPUIH JBTXFINNRM Rlam---REQUESTINFORMATIONOFSITUATIONI Clpher.-. TSBJS MMNRULPUIH JBTXFINNRM DWIQV Key------- DWIQV PCKAO DPAZO BCMRIAFNWO GLIHT
 No 2LATER BKKMJ RBTUX SGEBQ YRHHATETUC Plann---

Key-------NOGTM LDQLENGBYEWDSUHPUTZEHHGDK Key_-----NTMFTEENTHINFANTRYSECTORATTONCE

(2) Now let the two cryptograms be superimposed and isomorphisms be sought They are hown underlined below

\qquad BKKMJ RBYUX SGEBQYRHHA TETUC NOGTM
\qquad

It will be noted that the intervals between isomorphic superimposed pars show a constant factor of 5 , indicating a 5 -letter intial key word
(3) A reconstruction duagram for the pairs beyond the first five letters is established, based upon this interval of 5 , and is as follows

1	P	W		N		H		T	Y	D	S	R			L	I	0				F			
2	X	R	D		U						H	B	E		G		W				0	P		
3	B	K		I	N	0		G		Q		S	T		W	X	C	H	E		D	R	R	
4	L	F	E	A			D	B		N	C		P		5	T	U	W			Z	H	-	Y
5	W	D		T	A	U	Q	H		I		C	B	E	F	G		K	X	M	N	0		

The equvalent sequence AWNBDTKIHQGUXOERVMCYSJLZPFis established by indurect symmetry, from this, by decimation on the eleventh interval, the HYDRAULIC XZ component is recovered
(4) It wall be noted that the foregoing case, in which the nutial key words for the two cryptograms are of the same length, is only a special apphcation of the method set forth in paragraph 44 of necessary, since no new principles are involved

Smetion VIII

SOLUTION OF PLAIN-TEXT AUTO-KEY SYSTEMS

 Example of solution by the probable-word method --
Concludug remarks on the solution of suto-key

30 Prelhminary remarks on plam-text auto-keying - a If the oupher alphabets are unknown sequences, plan-text auto-keying gives rise to cryptograms of more intricate character than does cupher-text auto-keying, as has already been stated As a cryptographic principle it is very commonly encountered as a new and remarkable "invention" of tyros in the cryptographic art It apparently gives rise to the type of reasoning to which attention has been durected once before and which was then shown to be a popular delusion of the uninitiated The novice to whom the auto-key principle comes as a brilliant flash of the magination sees only the apparent mpossibility of penetrating a secret which enfolds another secret His reasoning runs about as follows "In order to read the cryptogram, the would-be solver must, of course, first know the key, but the key does not become known to the would-be solver until he has read the cryptogram and has thus found the plan text Since this is reasonng around a crrcle, the system is undecipherable" How unwarranted such reasonng really is in this case, and how readily the problem is solved, wll be demonstrated in the next few paragraphs
b A consideration of the mechancs of the plaun-text auto-key method discloses that a repetition of n letters in the plain text will produce a repetition of ($n-k$) letters in the cipher text, where n represents the length of the repetition and k the length of he an many repetitions
 in course disappar But on the other pand some "accidental" dgraphic repetitions are to be farrly expected, sunce it can happen that two different plain-text pairs, enciphered by dufferent key letters, will produce identical cipher equivalents Such accidental repetitions will happen less frequently, of course, in the case of longer polygraphs, so that when repetitions of 4 or more letters are found in the cipher text they may be taken to be true or causal repetitions it is obvious that in studying repetitions in a cryptogram of this type, when the introductory key is a single letter, a 5 -letter repetition in the cipher text, for example, represents a 6 -letter word, or sequence repeated in the plan text When the introductory key is k letters in length then an n-letter repetition represents an $(n+k)$-letter repetition in the plain text
c The discussion will, as usual, be divided into two principal cases (1) when the cipher alphabets are known and (2) when they are unknown Under each case there may be an introductory key consisting of a sungle letter, a word, or a short phrase The single-letter mitial ductory key consisting
31. Solution of plain-text auto-keyed oryptograms when the introductory key is a single letter - a Note the following plain-text auto-keyed encipherment of such commonly encountered plam-text words as COMMANDING, BATTALION, and DIVISION, using two identical primary components, in this case direct standard alphabets

135922-3a—4
(45)

Key text 1) $\begin{aligned} & \text { Plain te }\end{aligned}$ Cipher Key text $\left\{\begin{array}{l}\text { Key text- } \\ \text { Plan text }\end{array}\right.$ Cipher. \qquad BATTTALITO BTMTLTWB COMMANDING QAYMNQLVG

Plan text

Key text \qquad D I V I S I O N Key textKey text-Plan tex \qquad $\begin{array}{lllll}1 & \\ \text { L } & \text { D } & \text { D } & \text { A } & \text { A }\end{array}$ CAPTATN CAPTAI (4)

These characteristics may be noted
(1) The cipher equivalent of A_{p} is the plain-text letter which immediately precedes A_{p} (See the two A's in BATTALION, in example 1 above)
(2) A plain-text sequence of the general formula ABA yields a doublet as the cipher equivalent of the final two letters (See IVI or ISI in DIVISION, example 2 above)
(3) Every plan-text trigraph having A_{p} as its central letter yields a cipher equvalent the last two letters of which are identical with the initial and final letters of the plain-text trigraph (See MAN in COMMANDING, example 3 above)
(4) Every plain-text tetragraph having A_{p} as the nitial and the final letter yelds a cipher equivalent the second and fourth letters of which are identical with the second and third letters of the plain-text tetragraph, respectively (See APTA in CAPTAIN, example 4 above, also ATTA in BAMALION, example 1)
b (1) From the foregong characternstics and the fact that a repetition of a sequence of n plain-text letters will yield, in the case of a 1 -letter introductory key, a repetition of a sequence of n-l clpher letters, it is obvious that the simplest method of solving this type of cipher is
that of the probable word Indeed, if the system were used for regular traffic it would not be long before the solution would consist merely in referring to lists of apher equivents of com monly used words (as found from previous messages) and searching through the messages for

(2) Note how easily the following message can be solved

BECJI BTMTETWPQ AYMNQ HVNET WAALC
Seeng the sequence BTMTLTHB, which is on the list of equavalents in a above (see example 1), the word BATTALION is inserted in proper position Thus

With this as a start, the decipherment may proceed forward or backward with ease Thus $\begin{array}{lllllll}\text { BECJI } & \text { BTMTL } & \text { TWBPQ } & \text { AYMNQ } & \text { HVNET } & \text { WAALC } \\ \text { EACHB } & \text { ATTAL } & \text { IONCO } & \text { MMAND } & \text { ERWIL } & \text { LPLAC }\end{array}$
c The foregoing example is based upon the so-called Vigenère method of encipherment $\left(\theta_{x n}=\theta_{1 /}, \theta_{\nu n}=\theta_{0,2}\right)$ If in encupherment the plain-text letter is sought in the cipher component, its equivalent taken in the plain component ($\theta_{x / 2}=\theta_{1 / n}, \theta_{p / 2}=\theta_{e n}$), the steps in solution are identical, except that the list of cipher equivalents of probable words must be modified accordingly For instance, BATTALION will now be enciphered
by the sequence _ZTAHLXGZ
${ }^{1}$ The student 18 cautioned that the charactenstics noted apply only to the case where two identical components are used, with the base letter A
d If reversed standard cipher alphabets are used, the word BATTALION will be enciphered by the sequence \qquad BHATPDUB,
which also presents idiomorphic characteristics leading to the easy recognition of the word
all the foregoing phenomena are based upon standard alphabets, but when mixed cipher components are used and these have been reconstructed, sumlar observations may be recorded and the results employed in the solution of additional messages enciphered by the same components

32 Example of solution by the probable-word method.- a The solution of messages enciphered by unknown muxed components will now be discussed by example When the primary components are unknown, the observations noted under the preceding subparagraphs are of course, not applicable, nevertheless solution is not difficult Given the following three clyptograms, all intercepted on the same day, and therefore suspected of beng related

Message I

H U F I I	OCQJJ	IV ZO	$V \mathrm{PDGO}$	V V VK.
UEWHU	UQHUM	R Z VQR	UAKVD	N NEZV
G JPGH	AY J DR	UWNGR	Y SKBL	Q V UXN
PHDPR	SVKZP	P PKG S	L LPRV	R B H AK
WUAVW	YUEZQ	XAPQY	G P S V S	FNRAK
CIFGZ	UVCCP	DKCWV	X TWFM	R F K B V
ROQOJ	DRUWN	GRYSK	B L	
		Message II		
JUFII	0 C Q J J	IVZOZ	I BFEJ	S UBRJ
SPKTS	RZVXT	WFMRF	Q HHFO	RFJPD
GOVVV	KWU HE	NDBDD	RHWUN	K C M P D
G OVZ S	ENDBD	DRHWU	N P P K P	EQ OY
		Mesbage III		
F J U HF	FKDEN	ALUPZ	K Q M V B	J W V P K
EUBDD	RHWUM	RHVGP	DNCUJ	CD CCY
RHUJU	F ZPQP	Y Q CYH	0 EQRV	XKCQF
TVHNS	VCCEJ	PEAMP	APOEP	B H M V J
UNMHH	WKCVG	DSW J A	EQ CBU	FFYUE
ZQXAP	Q YGPA	R P Z V X	CFNRA	KCIFG
zuvcc	PDKCO	G J W Z H	APUFZ	FVHAV
X M HFF	KMy MS	TBSKC	VRQIJ	Y C P Z H
U H C B M	THOFH			

b (1) There are many repetitions, therr intervals show no common factor, and a unuliteral frequency distribution does not appear to be monoalphabetic Plain-text auto-keying is suspected The simplest assumption to make at the start is that sngle-letter introductory keys are beng used, with he normal Vigenere method of encherment, and the assumption that the is the normal sequine Ahempts cherer component is a mised sequence The 13 -letter repetition J DR UW NGR Y S K B L and the 10 -letter repetition PDGOVVVKWU are studied intensively If a
single-letter introduotory key as being used, then these repetitions involve 14-letter and 11-letter plain-text sequences or words, if the normal Vigenere method of encipherment is in effect plain-text sequences or words, if the normal Iigenere method of encipherment is in effect
$\left(\theta_{\mathrm{k} / 2}=\theta_{/ i 1}, \theta_{\mathrm{D}}=\theta_{\mathrm{o} / 2}\right)$, then the base letter is A If the latter is true then a good word which $\left(\theta_{k / 2}=\theta_{i 11}, \theta_{D /}=\theta_{c \mu}\right)$, then the base
would fit the 13 -letter repetition is

$$
\begin{aligned}
& \text { Key_----- } \\
& \text { Plain text } \\
& \text { Clpher---- }
\end{aligned}
$$

RECONNAISSANC RECONNAISSSANCE
and a good word which would fit the 10-letter repetition is

$$
\begin{aligned}
& \text { Key-------------------0 B B S ER VAT T O N } \\
& \text { Chpher- }
\end{aligned}
$$

(2) Inserting, in a mixed component, the values given by these two assumptions yields the following

Plann.-.
ABCDE
HIJKL $\begin{array}{lll}R & A & J \\ E & D & U\end{array}$
(3) It is a simple matter to combine these two partial cipher components into a single (3) It is a sumple matter to combine these
sequence, and the two components are as follows

Plain \qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ
READJUSTINGBCFHKLMOPQVWXYZ
(4) With the primary components at hand, solution of the messages is now an easy matter c The foregoing example uses an unknown muxed cupher component sliding against what was irst assumed (and later proved) to be thenormal durect sequence When both primary components are unknown muxed sequences but are identical, solution is more dufficult, naturally, because the results of assuming values for repeated sequences cannot be proved and established so quickly as in the foregoing example Nevertheless, the general method indicated, and the apphcation of the principles of indirect symmetry will lead to solution, if there is a fair amount of text avalable for study When an introductory key of several letters is used, repetitions are much reduced and the problem becomes still more dufficult but by no means insurmountable Space forbids a detaled treatment of the method of solving these eases but it is beleved that
student is in a position to develop these methods and to expermment with them at his leisure
33. Concluding remarks on the solution of auto-key systems - a The type of solution elucidated in the precedng paragraph is based upon the вuccessfal apphcailion or the probableway not be But soter all Hence, other prociples and methods may be ugeful Some of these methods, useful in special cases, are almost machanical in thar nature Extension of the basic principles involved may lead to rather far-reaching complexties However, because these basic principles involved may lead to rather far-reaching complexities However, because these
methods are applicable only to somewhat special situations, and because they are somewhat methods are applicable only to somewhat special situations, and because they are somewhat
involved they will be omitted from the text proper and placed in Appendux 1 The student involved they will be omitted from the text proper and placed in Appendux 1
who is especially interested in these cases may consult that appendux at his leisure
b. It is thought that sufficient attention has been devoted to the solution of both cipher-text and plain-text auto-key systems to have demonstrated to the student that these cryptographic methods have serious weaknesses which exclude them from practical usage in military cryptography Besides being comparatively slow and subject to error, they are rather easily solvable, even when unknown cupher alphabets are employed
c In both systems there are charactenstics which permit of identifying a cryptogram as belonging to this class of substitution Both cases will show repetitions in the clpher text In cipher-text auto-keying there will be far fewer repetitions than in the onginal plain text, especially when introductory keys of more than 1 -letter in length are employed In plain-text auto-keying there will be nearly as many repetitions in the cupher text as in the origmal plam text unless long introductory keys are used In either system the repetitions will show no cons messas regards intervals betweon them, and a uniliteral frequency distributin wil shod from plan-text to be polyalphabetic in nature Clpher-text auto-keying may be distingushed from plain-text auto-keying by the appearance of the frequency dustribution of the second member of sets of two letters separated by the length of the introductory key (see par $25 h$) In the case of caphertext auto-keying these frequency distributions will be monoalphabetic in nature, in pla

Section IX
METHODS OF LENGTHENING OR EXTENDING THE KEY Preliminary remarks

號
34 Pralım suggest themselves for eliminating the waph $1 b$ of this text it was stated that two procedures duced by sumple, repeating-key methods The first of these, when studied, embraced some of the very sumple methods of suppressing or destroying periodicity, by such devices as interrupting the key and using variable-length groupings of plam text It was demonstrated that subterfuges of thas simple nature are inadequate to elluminate the weaknesses referred to, and must be discarded in any system intended to afford real security The other alternative suggested in paragraph $1 b$ therefore remains now to be nemvestigated, vz, that of lengthening the keys to a point where there would seem to be an insufficient amount of text to lengthening the keys to a solve the traffic Attempts toward this end usually consist of text to enable the cryptanalyst to that the enemy cryptanalysts will have only a very lumited number of periods to work month The key may, mdeed, be lengthened to a point whare it becomes as long as, or longer the th text to be enciphered, so that the key is used only once

35 Extended and nonre the key is used only once
lengtheming the key to a message is to use a long phrase or even a of the simplest methods of it is not too long to remember In addition to the difficulties a that would be encountered practical malltary cryptography in selecting long mnemonic phrases and sentences which would still remains as a powerful tool in there 18 the fact that the probable-word method of solution two of the key can be reconstructed in the hands of enemy cryptanalysts And if only a word or enemy cryptanalysts could readly a phrase or sentence which eadily guess the entire key from a fragment thereof, sunce any lon known to many people
b There are, however, more or less sumple methods of employing a short mnemomic key in order to produce a much longer key Basically, any method of transposition moemonc key in alphabetic sequence repeated several tumes wall yreld a fairly long key, which, apphed to a single advantage of being unnntelligible and thus approaching a random selection of letters example, a numerical key may be derved from a word or a short phrase, this numerical key For then be apphed as a columnar-transposition key for a rectangle within which the normal alphabet has been repeated a previously agreed upon number of tumes in a normal (left to nght) or prearranged manner The letters when transcribed from the transposition rectangle then become the successive letters for encuphering the plain text, using any desired type of primary com-
ponents position will yield a still more mixed up sequence of to be sufficiently secure, a double transmay be eanployed for the purposed up sequence of key letters Other types of transposition may be employed for the purpose, including various knds of geometric figures Also, a non(50)
transposition method of lengthening the keying sequence and at the same tume introducing an urreguianty, such as aperiodic interruption has already been described (see par 18) Guve Another method of developing a long key from a short mnemone one 18 that shown below. Given the keyword CHRISTMAS, a numerical sequence is first derived and then one writes down successive sections of this numencal key, these sections terminating with the successive num-
bers 1, 2, 3, of the numerical key Thus bers $1,2,3$,
of the numerical key Thu
Mnemonchc key------- C H R I S T M A S
Numencal key---- $2-6-4-7-9-1-8$

Thus the orgmal key of only 9 letters 1 expanded to one of 45 letters $(1+2+3+$ The longer key 18 also an interrupted key of the type noted under paragraph 17, but if the mes sage is long enough to require several repetitions of the expanded key the encupherment becomes periodic and can be handled by the usual methods employed in solving repeating-key cuphers If the basic key is farrly long, so that the expanded key becomes a quite lengthy sequence, then the message or messages may be handled in the manner explamed in paragraph 20
d Another method of producing a rather long sequence of digits for keying purposes from a aungle key number is to select a number whose reciprocal when converted by actual division into its equivalent decimal yields a long series of digits For example the reciprocal of 49, or 1/49, key word hke CHRISTMAS, could be used for interrupted keyng, the successive cipher alphabets being used for encuphering as many letters as are undicated by the successive digits In the case of the example cited, the first digit is 0 , hence the C alphabet would not be used The next dgit is 2 , the H alphabet would be used for encipherng the first and second letters The thur digit is again 0 , the R alphabet would not be used The fourth digit is 4 , the I alphabet would be used for encipherng the third, fourth, fifth, and sixth letters, and so on
36. Other systems employng lengthy keying sequences -a The so-called "runnnng-key" system - To be mentioned in connection with this subject of extensive or lengthy keys is the cupher system known as the running-key, contunuous-key, or nonrepeating-key system, in which the key consists of a sequence of elements which never repeats no matter how long the message to be enciphered happens to be The most common and most practical source of such a key is key letters for encpherment ${ }^{1}$ The solution of this type of cipher an accomplishment which wa once thought mpossble, presents some interesting pheses and will be considered shortly At this point it is merely desired to indicate that according to the running-key system the key for an induridual message may be as long as the message and never repeat, but if a large group of correspondents employ the same key sequence, it may happen that there will be several messages in the same key and they will all begin with the same intial key letter, or, there will be several which will "overlap" one another with respect to the key, that 1s, they begin at different initial points in the keyng sequence but one message soon overtakes the other, so that from that pom forward all subsequent letters in both messages are enciphered by the same sequence of key letters
${ }^{2}$ See IX, Advanced Miltary Cryptography See also footnote 8, page 71 of this text.
b The so-called progresswe-alphabet system -In the so-called progressave-alphabet system the basic principle is quite simple Two or more primary elements are arranged or provided for according to a key which may be varied from time to time, the interaction of the pronmary elements results in makng available for cryptographe purposes a set of cipher alphabets, all the latter are employed in a fixed sequence or progression, hence the designation progressivetext to be enciphered is much longer than the sequence of alphabets, then the systom reduce to a periodic method But if the number of alphabets is large, so that the sequence is no repeated, then of course, the cryptographic text will exhibit no periodic phenomena c The series of cipher alphabets in such a system constitutes a keying sequence up, often the only remaming element in the key for a specific message is the starting point in the sequence, that is, the initial cipher alphabet employed in enciphering a given message If this keyng sequence must be employed by a large group of correspondents, and if all messages employ the same starting point in the keyng sequence, obviously the cryptograms may smply be supermposed without any preliminary testing to ascertain proper points for superimposition The student has already been shown how cases of this sort may be solved However, if messages are enclphered with varying starting points, the matter of supermposing them properly takes on a different aspect This will soon be treated in detaul
d The respective clpher alphabets constituting the enture complement of alphabets may be employed in a sumple progression, that is, consecutively from a preselected initial point, or, they may be employed according to other types of progression For example, if the system comprises 100 alphabets one might use them in the sequence $1,3,5,7$, ,or $1,4,7,10$,
rregular types of skipping may be employed
e In addition to the foregong, there are, of course, a great many mechanical methods of producing a long key, such as those employed in mechanical or electrical cipher machines In jontly produce a single, much longer reference can be made at this point in the cryptanalytic studies to cases of this land Ony brief reatment of complex examples would require much time and space so that $1 t$ will be desarved or subsequent texts
f Finally, there must be mentioned certain devices in which, as in encipherment by the uto-key method, the text itself serves to produce the vanation in cipher equivalents, by controlling the selection of secondary alphabets, or by influencing or determining the sequence with which they will be employed Naturally, in such cases the key is automatically extended to a point where it coincides in length with that of the text An excellent example of such a device is that known as the Wheatstone, the solution of which will be described in its proper place ${ }^{2}$ Some writers classify and treat this method as well as auto-key methods as forms of the runningkey system but the present author prefers to consider the latter as being radically different in principle from the former types, because in the true running-key system the key is wholly external to and independent of text being enciphered This is hardly true of auto-key systems or of systems such as the Wheatstone mentioned herem
${ }^{2}$ See Sec XII, Advanced Mzlatary Cryptography

Section X

GENERAL PRINCIPLES UNDERLYING SOLUTION OF SYSTEMS EMPLOYING LONG OR CONTINUOUS KEYS

Solution when the primary components are known sequences
olution of a running-key cipher when an unknown but intelligible key sequence is used and the primar
 General solution for ciphers involving a long keyng sequence of fixed length and composition

37 Solution when the primary components are known sequences - a As usual, the solution of cases involving long or continuous keys will be treated under two headings First, when the primary components are known sequences, second, when these elements are wholly unknown or partially unknown
b Since the essential purpose in using long keys is to prevent the formation of repetitive cycles within the text, it is obvious that in the case of very long keying sequences the cryptanalyst is not going to be able to take the text and break it up into a number of small cycles which will permint the estabhshment of monoalphabethc frequency distribuhons that can readuy equences But there nealy aly method In
 keying sequences, an example using a cryptogram of the latter type will be studied
38 Solution of a running-key apher when an unknown but intelligible key sequence used and the primary components are known - a In paragraph $36 a$ mention was made of the so-called running-key, continuous-key, or nonrepeating-key system, in which the plan text of a previously agreed-upon book serves as the source for successive key letters for encipherment Sunce the running-key system is enturely aperiodic, and the cupher text can therefore not be arranged in superimposed short cycles, as in the case of the repeating-key system, it would ppear on first consideration to be "indecipherable" wrthout the key ${ }^{1}$ But if the student will bear in mind that one of the practical methods of solving a repeating-key clpher is that of the probable word, he wil mmedrately see that the latter method can also be apphed in solving this type of nonrepeating-key system The essence of the matter is this The cryptanalyst may assume the presence of a probable word in the text of the message, if he knows the primary components involved, and if the assumed word actually exists in the message, he can locate it by checkng aganst the key, since the latter 28 intellugble text Or, he may assume the presence of a probable word or even of a phrase such as "to the," "of the," etc, in the key text and cheok his assumption against the text of the message Once he has forced
${ }^{1}$ At one time, indeed, this view was current among certan cryptographers, who thought that the principle of factonng the intervals between repetitions in the case of the repeating-key cipher formed the basis for the only possible method of solving the latter type of system Since, acoording to thise erroneous idea, factoring dered to be impossible How far this idea is from the truth will presently be seen In this same connection see also footnote 8, page 71

See Miltary Cryptanalysts, Part II, par 25
such an entering wedge into either the message or the key, he may buld upon this foundation by extending his assumptions for text alternately in the key and in the message, thus graduthe sequence
 and finds a place in the plain text where this grelds MMUNITI Thus, using reversed standard her alphabets

```
Assumed key text.----.---....-- T H A T T H E
HVGGLOWBESLTR
Resultant plain text
MMUNITI
```

This suggests the word AMMUNITION The ON in the clpher text then yelds PR as the begnning of the word after THE in the key text Thus

Assumed key text_	THATTHEPR
Clipher text---------------------------	HVGGLOWBESLTR
Resultant plan text----------------	MMUNITION

PR must be followed by a vowel, with 0 the most likely candidate He finds that 0 yrelds \mathbb{V} in the plain text, which suggests the word WILL The latter then yrelds OTEC in the key, making the latter read THAT THE PROTEC

Thus

$$
\begin{aligned}
& \text { Assumed key text. } \\
& \text { THATTHEPROTEC } \\
& \text { Clpher text } \\
& \text { text.- } \\
& \text { MMUNITIBESNLTR }
\end{aligned}
$$

This suggests the words PROTECTION, PROTECTIVE, PROTECTING, ete Thus extending one text a few letters serves to "coerce" a few more letters out of the other, somewhat as in the case of two boys who are running approximately abreast in a race, as soon as one boy gets a bit ahead the spirit of competition causes the other to overtake and pass the first one, then the latter puts
forth a little more effort, overtakes and passes the second boy Thus the boys alternate in overtang and peseng, och and pass the ren fals is that while the boys usually run forward all the tion that po in a whale drection, the cryptanalyst is free to work in two directions-forward and backward from an internal point in the message He may, in the case of the example cited above, continue his buldne-up process by adding A to the front of MMUNITI as well as ON to the rear If he reaches the end of process by adding A to the front of minuNITI as well as on to the rear if he reaches the end of his resources on one end, there remains the other end for experimentation He is certanly
unlucky if both ends terminate in complete words both for the message and for the key, leaving unlucky if both ends terminate in complete words both for the message and for the key, leaving of his imagnation, guided only by the context
b In the foregomg lllustration the cryptanalyst is assumed to have only one message avalable for his experimentation But if he has two or more messages which either begin at identical initial points with reference to the key, or overiap one another with respect to the key, the reconstruction process described above is, of course, much easier and is accomplished much more quickly For if the messages have been correctly superamposed woth reference to the key text, the addution of one or two letters to the key yrelds suggestions for the assumptron of words in several messages The latter lead to the addation of several letters to the key, and so on, in an everwidening carcle of ideas for further assumptions, since as the process continues the context affords more and more of a basis for the work
c Of course, if sufficient of the key text is reconstructed, the cryptanalyst might identify he book that is being used for the key, and if avalable, his subsequent labors are very much simplified
d All the foregoing $1 s$, however, dependent not only upon the use of an intelligible text as the keying text but also upon baving a knowledge of the prumary components or cupher alphabets employed in the encipherment Even if the primary components are differently mixed sequences, so long as they are known sequences, the procedure is quite obvious in view of indeate to hm the procedur he follow in that solution, and no further detars will here be ven in reapect to such cases But what if the promery components are not known sequences Tren in respect to such cases But
39. Solution of a progressure-alphab
30. Solanon or cipher when the ciphabets are known -a Takng a very simple case, suppose the interacting elements referred to in paragraph 36b consist merely of two primary cipher components which slide against each other to produce a set of 26 cipher alphabets are employed one after the other consecutively Beginning at an initial juxtaposition, producing say, alphabet 1 , the subsequent secondary alphabets are in the sequence $2,3, \quad 26,1,2,3, \quad$ and so on If a dafferent initial juxtaposition is used, say alphabet 10 is the first one, the sequence is exactly the same as before, only beginning at a dufferent point
b Suppose the two primary components are based upon the keyword HYDRAULIC A message is to be enciphered, beginning with alphabet 1 Thus
Plain component-------HYDRAULICBEFGJKMNOPQSTVWXZHYD Clpher component-----HYDRAULICBEFGJKMNOPQSTVWXZ
Letter No- \qquad 123456789101112131415161718192021 Alphabet \qquad Plam text. \qquad ENEMYHASP L A C E D H E A V Y
Cupher text \qquad 22 OUEYM K Q V M K Z S J Q H E
\qquad

Alphabet $\begin{array}{lllllllllllllll}22 & 23 & 24 & 25 & 26 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array} 11 \begin{array}{ll}12 & 13\end{array}$
lain text. \qquad

Letter No \qquad $\begin{array}{llllllllllllll}40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 \\ 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 1\end{array}$
Alphabet
Plan text. \qquad

c This method reduces to a periodic system involving 26 secondary cipher alphabets and he latter are used in simple progression It is obvious therefore that the 1st, 27 th, 53 d , letters are in the 1st alphabet, the 2d, 28th, 54th, letters are in the 2d alphabet, and so on d To solve such a cryptogram, knowing the two primary components, is hardly a problem at all The only element lacking is a knowledge of the starting point But this is not necessary, for merely by completing the plan-component sequences and examinng the diagonals of the diagram, the plain text becomes evident For example, given the followng HIDCT EHUXI Completing the plain-component sequences intiated by the successive cipher letters, the
plam text, ENEMY MACH I is seen to come out in successive steps upward in Figure 10 Had the clpher component been shfted in the opposite drection in encipherment, the steps would have been downward instead of upward If the sliding strnps had been set up according to the sequence of cipher letters but on a diagonal, then, of course, the plan-text letters would have reappeared on one generatrix
e The student will understand what sumple modufications in procedure would be requred in case the two primary components were different muxed sequences But what if the primary components are not known sequences? How does the cryptanalyst proceed in that case?
40. General solution for ciphers involving a long-keying sequence of fixed length and composition - a It is obvious, as stated at a previous point, that no matter how the keying sequence is derved, of all the correspondents employ the same key, or if thrs key is
used many times by a single office, and of ot always beguns at the same used many times by a single offce, and if ot always beguns at the same point, the rarrous messages may simply be supermmposed Thus, their respective 1st, 2d, 3rd, letters will all fall within columns
key letters which have been enciphered by the 1 st, 2 d , 3rd, key letters If there is a sufficient number of messages, solution then becomes how long the keying sequence may be, and regardless of whether the keying sequence constitutes intelligible text or is a purely random sequence of letters This method of solution by superimposition has already been outlined in paragraph 20 and no further reference to it need here be made
b But now suppose that the keying sequence does not always begin at the same point for all messages Suppose the several correspondents are able to select at will any point in the keying sequence as the point of departure in encipherment Thus, such a keying sequence, if regarded as partaking of the nature of a circle, will afford as many possible starting points as there are letters or characters in that sequence Now if there are no external indications or anducators ${ }^{2}$ in the cryptograms pertaining to such a system, such as would afford enemy cryptanalysts drect and definte information with regard to the imtal keying element for each cryptogram, then it would seem as though the superimposition of messages (to bring letters encuphered by the same cipher alphabets within the same columns) would be difficult or impossible, and therefore that attempts at solution are blocked at their very beginning This, however, is not the end of the story For suppose two of the messages have in common only one polygraph, say of 5 letters, these two messages may be juxtaposed so as to bring these repetitions into superimposition Thus, the possession of this long polygraph in common serves to "tre" these two messages together or to "interlock" them Then, suppose a shorter polygraph, say of 4 letters, is possessed in common by one of Exesension of this process, including the data from shorter repethtions of troraphs and duraphs, will serve to assembe a whole set of such messages in proper supertrigraption Therofe the first step is to examine all the messares for repetitions mposition Therefore, the first step is to examine all the messages for repetitions
${ }^{2}$ Indicastors play an mportant role in practical cryptography An indicator 28 a symbol (conssishing of a letter, group of letters, a figure or a group of figures) which indicates the speaific key used undar the general oryptographre system, or it may indicate which one of a number of general aystems has been used, or it may indhoate both
c When such repetitions are found, and if there are plenty of them so that assumptions for probable words are easy to make, it is clear that the correct assumptions will enable the crypt analyst to set up plain-cipher equvalencies which will make it possible to reconstruct the primary components Depending upon the type used, the principles of drect or indirect symmetry of position will be very useful in this process
d But if it happens that there are no polygraphs by means of which two or more messages
and may be tied together and properly supemmposed, the simple methods mentioned in subparagraphs a-c cannot here be applied However, although the road toward a solution seems to be blocked rather effectively, there is a detour which presents rather interesting vistas The latter are ceally of such importance in cryptanalysis as to warrant detaled treatment

Stection XI

The basc theory of the coincidence or k (kappa) test
The basic theory of the conncidence or κ (kappa) test ubspee of application of the x te
41. 4
41. The basic theory of the comeldence or κ (kappa) test - a In Appendix 2 of the preceding text ${ }^{1}$ certam simple applications of the theory of probability were presented for the student's consideration, by way of pointing out to hm the impoitant role which certain phases of that branch of mathematics play in cryptanalysis Reference was there made to the subject In this section the matter will be pursued a few steps fuither
b In the appendix referred to, it was shown that the probability of monographic comcidence (1) in random text employing a 26 -letter alphabet is 0385 , (2) m Enghsh telegraphic plain text, 0667 These two parameters were represented by the symbols κ_{r} and κ_{p}, respectively The important role which these values play in a certan cryptanalytic test will now be explaned
c One of the most important techniques in cryptanalytics is that known as applynng the corncudence or "kappa test" This test is useful for several cryptanalytic purposes and one of the most mportant of them is to ascertain when two or more sequences of letters are correctly superimposed By the word "correct" in thus case is merely meant that the sequences are so arranged relative to one another as to facilitate or make possible a solution The test has for its theoretical basis the following circumstances
(1) If any two rather lengthy sequences of characters are supermposed, it will be found on examining both members of the successive pairs of letters brought into vertical juxtaposition, hat in a certain number of cases the two supermposed letters wull coincude

数 38 letters constitute random text (of a 26 -letter alphabet), there will be about 38 or 39 such cases of coincidence per thousand parrs examined This, of course, is (3) If both
(3) In both sequences of letters constitute plain text, there will be about 66 or 67 such cases (4) If ther thousand pars examined This is because κ_{p} is 0667
(4) If the superimposed sequences are wholly monoalphabetic encipherments of plain text by the same cipher alphabet, there will still be about 66 or 67 cases of comcidence in each 1,000 cases examined, because in monoalphabetic substitution there is a fixed or unvarying lation between plam-test letters and cipher letters so that for statistical purposes monoalphabetic cipher text behaves just the same as if it were normal plain text
(5) Even if the two supermposed sequences are not monoalphabetically enclphered texts, but are polyalphabetic in character, there will still be about 66 or 67 cases of identity between superimposed letters per thousand cases examined, provzded the two sequences really belong to the same cryptographuc system and are supermposed at the proper point wuth respect to the keynng sequence The reasons for this will be set forth in the succeeding subpaaagraphs
${ }^{\prime}$ Milhtary Cryptanalysis, Part II It is recommended that the student refresh his memory by reviewing that appendx
(6) Consider the two messages below They have been enciphered polyalphabetically by the same two primary components slding agaunst each other The two messages use the same messages are identically enciphered, letter for letter, and the only dufferences between them are those occasioned by differences in plain text

Note, now, that (a) in every case in which two supermposed cipher letters are the same, the plain-text letters are identical and (b) in every case in which two supermposed cipher letters re different, the plain-text letters are difterent in such a system, even though in case ind members of a parr of superimposed cipher letters will still be about 66 or 67 per thousand cases examined, because the two members of each paur of superimposed letters are in the same copher alphabet and ut has been seen in (4) that in monoalphabetcc cipher text $\mathrm{\kappa} 28$ the same as for plan text,' $n \mathrm{n}, 0667$ The two messages may here be said to be superimposed "correctly," that 1s, brought into proper juxtaposition with respect to the keyng sequence
(7) But now suppose the same two messages are superimposed "ncorrectly," that is, they

No 1

No
No
 $\begin{array}{lllllllllllllllllll}18 & 21 & 12 & 5 & 6 & 1 & 17 & 10 & 21 & 21 & 2 & 6 & 3 & 5 & 13 & 13 & 1 & 7 & 12 \\ W & H & E & N & I & N & T & H & E & C & 0 & U & R & S & E & L & 0 & N & G\end{array}$ Clpher
It is evident that the two members of every par of superimposed letters are no longer in the same cupher alphabet, and therefore, if two superimposed cupher letters are identical this is merely an "accident," for now there is no basic or general cause for the simularity, such as is rue in the case of a correct supermposition The smalarity, if present, is, as already stated, ue to chance and the number of such cases of similarity should be about the same as tho no onger true that (a) in every case in which two superimposed cipher letters are the same, the plan-text letters are identical, or (b) in every case in which two superimposed capher letters are different, the plan-text letters are dufferent Note, for example, that the superimposed $T_{\text {a }}$'s represent two different plan-text letters and that the S_{p} of the word COURSE in the first message gives J_{0} whle the S of the word ABSOLUTELY in the second message gives H_{0} Thus, it becomes clear that in an incorrect superimposition two dufferent plain-text letters encuphered by two different alphabets may "by chance" produce identical cipher letters, which on supermposition yield a

The fact that in thrs case each monoalphabet contanns but two letters does not affect the theoretical value of x, and whether the actual number of coincidences agrees closely with the expected number based upon $x=$ 0687 depends upon the lengths of the two superimposed sequences
concidence having no external indications as to dissimularity in plan-text equivalents Hence, f there are no other factors which enter into the matter and which might operate to distor the results to be expected from the operation of the basic factor, the expected number of cases of dentical cipher letters brought together by an incorrect superimposition will be determined by the value $\kappa_{\mathrm{r}}=0385$
(8) But now note also that in the foregoing incorrect superimposition there are two Z_{o} 's and that they represent the same plam-text letter L This is occasioned by the fact that the plaintext messages happened to have L's in just those two places and that the cipher alphabet hap pened to be the same both times Hence, it becomes clear that the same cipher alphabet brough into play twice may "by chance" happen to encipher the same plain-text letter both times, thus producing identical cipher letters In some systems this source of identity in superimposed cipher letters is of little mportance, in other systems, it may materially affect the actual number of coincidences For mnstance, if a system is such that it produces a long secondary keying cycle composed of repetitions of short primary keyng cycles, an incorrect supermposition of two ryptograms may brig in juxtaposition many of these short cycles, whth the result that the actual number of cases of identical superimposed cipher letters is much greater than the ex pected number based upon $\kappa_{r}=0385$ Thus, this source for the production of identical capher letters in an incorrect superimposition operates to increase the number of cases to be expected from the fundamental constant $\kappa_{\mathrm{r}}=0385$
(9) In some systems, where nonrelated cipher alphabets are employed, it may happen hat two identical plain-text letters may be enciphered by two different cupher alphabets which "by chance," have the same equivalent for the plam-text letter concerned This is, however a function of the particular cryptographic system and can be taken into account when the ature of the system is known
(10) In general, then, it may be said that in the case of a correct supermposition the
解
 alled the "kappe tost" led the "kappa test
d The way in which the comcidence test may be apphed will now be explamed The tatement that $\kappa_{\mathrm{D}}=0667$ means that in 1,000 cases where two letters are drawn at random com a large volume of plain text, there will be about 66 or 67 cases in which the two letters concide, that is, are identical Nothing is specified as to what the two letters shall be, they If many comparisons of mangle be two E's This constant, 0667, really denotes a percentage those constituting a large volume of plain text, 667 percent of these comparisons made will yreld coincidences So, if 2,000 such comparisons are made, the theory indicates that there hould be about $0667 \times 2,000=133$ concidences, if there is sufficient text to permit of making 0,00 comparisons, there should be about 1,334 comcidences, and so on

Another way of handing the matter is to find the ratio of the observed number of coardences to the total number of cases in which the event in question might possibly occur, 1 e the total number of comparisons of superimposed letters When this ratio is closer to 0667 than it is to 0385 the correct supermposition has been ascertaned This is true because in he case of a correct superimposition both members of each parr of superimposed letters actually belong to the same monoalphabet and therefore the probability of their coinciding is 0667 whereas in the case of an incorrect superimposition the members of each parr of superimposed
letters belong, as a general rule, to dufferent monoalphabets ${ }^{3}$, and therefore the probability of ther councidng is nearer 0385 than 0667
f. From the foregoing, it becomes clear that the kappa test involves ascertaining the total number of comparisons that can be made in a given case, as well as ascertainng the actual number of comcidences in the case under consideration When only two messages are supermposed, this is easy The total number of comparisons that can be made is the same as the number of superimposed pairs of letters But when more than two messages are superimposed in a superampostrion dragram it is necessary to make a sumple calculation, based upon the fact that n letters yield $\frac{n(n-1}{2}$ pars or comparisons, where n is the number of letters in the column 4 For example, in the case of a column of 3 letters, there are $\frac{3 \times 2}{2}=3$ comparsons This can be checked by noting that the 1st letter in the column may be compared with the 2d, the 2 d with the 3d, and the lst with the 3d, making 3 comparisons in all The number of comparisons per column tumes the number of columns in the superimposition diagram of letters gives the total number of comparisons The extension of this reasoning to the case where a superimposition diagram has columns of various lengths is quite obvious one merely adds together the number of comparisons for columns of different lengths to obtann a grand total For convenuence, the following brief table is given

Number of letterynn column	Number of comparisoni	$\begin{aligned} & \text { Number of } \\ & \text { lettctrs in } \\ & \text { column } \end{aligned}$	Number of	$\substack{\text { Number of } \\ \text { letter nn } \\ \text { column }}$	
2	1	11	55	21	210
3	3	12	66	22	231
4	6	13	78	23	253
5	10	14	91	24	276
0	15	15	105	25	300
7	21	16	120	26	325
8	28	17	136	27	351
9	36	18	153	28	378
10	45	19	171	29	400
		20	190	30	435

g In ascertamng the number of comeidences in the case of a column contanning several letters, it is again necessary to use the formula $\frac{n(n-1)}{2}$, only in this case n is the number of identical letters in the column The reasoning, of course, is the same as before The total ${ }^{3}$ The qualufying phrase "as a general rule" is intended to cover any distortion in results occasioned by the presence of an unusual number of those cases of concidence deseribed under subpar c (8) and (9) "This has already been encountered (footnote 3, Appendıx 2, Military Cryptanalysıs, Part II) It 18 merely a
special case under the general formula for ascertainng the number of combinations that may be made of n (fferent things taken r at a tume, which is $\frac{C}{=}=\frac{n!}{n}$ In studying coinendences by the method udeated different thungs taken r at a tme, which is $\frac{a}{n r}=\frac{n}{r(n-r)!}$ In studying coincidences by the method indicated, since only two letters are compared at a time, r is always 2 , hence the expression $\frac{n^{\prime}}{r!(n-r)!}$ which is the same as $\frac{n(n-1)(n-2)!}{2(n-2)!}$, becomes by cancellation of ($\left.n-2\right)$ ', reduced to $\frac{n(n-1)}{2}$
number of councidences is the sum of the number of comendences for each case of identity For example, in the column shown at the side, containing 10 letters, there are $3 \mathrm{Bs}, 2 \mathrm{Cs}, 4 \mathrm{Ks}$, and C

\section*{| K | |
| :--- | :--- |
| B | |
| K | |} the foregoneral procedure to be followed in making the κ test.- a The steps in applying the foregoing principles to an actual case will now be described Suppose several messages enciphered by the same keying sequence but each beginning at a different point in that

sequence are to be solved The indicated method of solution is that of superimposition, sequence are to be solved The indicated method of solution is that of superimposition, the problem being to determine just where the respective messages are to be superimposed so that the cipher text within the respective columns formed by the supermposed messages will be monoalphabetic From what has been indicated above, it will be understood that the various messages may be shifted relative to one another to many duserent pomts of
supermposition, there being but one correct superimposition for each message with respect to all the others First, all the messages are numbered according to their lengths, the longbeing assigned the number 1 Commencing with messages 1 and 2 and keeping number 1 in est being assigned the number 1 Commencing with messages 1 and 2, and keeping number 1 in
a fixed position, message 2 is placed under it so that the initial letters of the two messages comcide a fixed position, message 2 is placed under it so that the initial letters of the two messages comcide
Then the two letters forming the successive pairs of supermposed letters are examined and the Then the two letters forming the successive pairs of superimposed letters are exammed and the
total number of cases in which the superimposed letters are identical is noted, thas giving the total number of cases in which the superimposed letters are identical is noted, this giving the
observed number of coincidences Next, the total number of superimposed pars is ascertaned, and the latter is multiphed by 0667 to find the expected number of compidences If the observed number of comerdences is considerably below the expected number, or if the ratio of the observed number of coincidences to the total number of comparisons is nearer 0385 than 0667, the supermposition is incorrect and message 2 is shafted to the next superimposition, that is, so that its first letter is under the second of message 1 Agan the observed number of concidences is ascertained and is compared with the expected number Thus, by shifting message 2 one space at a time (to the right or left relatue to message 1) the comncidence test finally should inducate the proper relative positions of the two messages When the correct point of supermposition is reached the cryptanalyst is iarely left in doubt, for the results are sometumes quite startling After messages 1 and 2 have been properly superimposed, message 3 is tested first agannst messages 1 and 2 separately, and then against the same two messages combined at their correct superimposition ${ }^{\text {s }}$. Thus message 3 is shifted a step each tume until its correct position with respect to messages 1 and 2 has been found Then message 4 is taken and its proper point of supermposition wnth respect to messages 1,2 , and 3 is ascertained The process is continued It is obvious that as messages are added to the superimposition diegram the determination correct pont of supenmportion for subsequent mease ber correct points or sup b In the forer

In the foregoing procedure it is noted that there is necessity for repeated displacement of one message agaunst another or other messages Therefore, it is advisable to transcribe the messages on long strips of cross-section paper, joming sections accurately if several such strips are necessary to accommodate a long message Thus, a message once so transcribed can be sewriting the minious points of superimposition relative to another such message, without repeatedly
c Machinery for automatically comparing letters in applying the concidence test has been devised Such machines greatly facilitate and speed up the procedure
${ }^{6}$ At first thought the student might wonder why it 18 advisable or necessary to test message 3 against message
1 and message 2 separately before testing it arainst the oombinstion of messages 1 and 2 The first two tests, it seems to hm, might be omitted and time saved thereby The matter will be explained in par $43 f$ (3)
43. Kaxample of apphcation of the κ test - a With the foregoing in mind, a practical example will now be given The following messages, assumed to be the first 4 of a series of 30 messages, supposedly enciphered by a long keying sequence, but each message commencing at a differen point in that sequence, are to be arranged so as to bring them into correct superimposition

Message 1

PGLPN	H UFRK	SAUQQ	A QYU	Z AK G A	EOQCN
PRKOV	HYEIU	Y N B O N	NFDMW	Z L UKQ	AQAHZ
MGCDS	Leagc	JPIVJ	WVAUD	BAHMI	HKORM
LTFYZ	LGSOG	K			
Megsage 2					
C W H P K	K X F L U	M K URY	XCOPH	W N J U W	K W I H L
0 KZTL	AWRDF	GDDEZ	D L B OT	FUZNA	SRHHJ
N G U Z K	PRCDK	Y 00 BV	D D X C D	OGRGI	RMICN
H S G G 0	PYAOY	\mathbf{X}			
Mebsage 3					
WFWTD	NHTGM	RAAZG	P J D S Q	AUPFR	$0 \times \mathrm{JRo}$
HRZWC	ZSRTE	EEVPX	OATDQ	LDOQZ	HAWNX
THDXL	HYIGK	V Y Z WX	BKOQ 0	A Z Q N D	T NALT
CNYEH	TSCT				
Mebsage 4					
TULDH	NQEZ Z	UTYGD	UEDUP	S DLIO	L N N B O
NYLQQ	VQGCD	UTUBQ	X S O SK	NOXUV	K C Y J X
CNJKS	ANGUI	FTOWO	M S N B Q	D BAIV	I K N W G
V SHIE	P				

b Superimposing ${ }^{6}$ messages 1 and 2, beginning with their 1st letters,
 No 2----CWHPKKXEUMKURYXCOPHWNJUWKWIHLOKZTL
 No 2------AWRDFGDEZDLBOTFUZNASRHHJNGUZKPRCDK
 No 2------ YOOBVDDXCDOGRGIRMICNHSGGOPYAOXX
the number of concidences is found to be 8 Since the total number of comparisons is 101 , the expected number, if the supermposition were correct, should be $101 \times 0667=67367$, or about 7 comcidences The fact that the observed number of concidences matches and is even greater than the expected number on the very first trial creates an element of suspicion such good even of the results are favorable, for this close agreement between theoretical and actual numbers

[^0]of coincidences might just be "one of those accidents" Therefore message 2 is shifted one space to the right, placing its 1st letter beneath the 2d letter of message 1 Agaun the number of coincidences is noted and this time it is found to be only 4 The total number of compansons is now 100, the expected number is still about 7 Here the observed number of compldences is considerably less than the expected number, and when the relatively small number of comparisons is borne in mind, the discrepancy between the theoretical and actual results is all the more strikng The hasty cryptanalyst might therefore jump to the conclusion that the 1st supermposition is actually the correct one But only two trials have been made thus far and a few more are still advisable, for in this scheme of superimposing a series of messages it is absolutely essential that the very first superimpositions rest upon a perfectly sound foundationotherwise subsequent work will be very diffcult, if not entirely fruitless Additional trials will therefore be made
c Message 2 is shifted one more space to the right and the number of coincidences is now ound to be only 3 Once again message 2 is shifted, to the position shown below, and the observed number of coincidences jumps suddenly to 9
 No $2-\cdots \quad$ CWHPKXFLUMKURYXCOPHWNJUWKWIHL

 No 2-----. CDKYOOBVDDXCDOGRGIRMICNHSGGOPYAOYX
The total number of comparisons is now 98, so that the expected number of comeldences is $98 \times$ $0667=65366$, or still about 7 The 2 d and 3 d superimpositions are definitely incorrect, as to the 1st and 4th, the latter gives almost 30 percent more conncidences than the former Agan he 4th superime relatively small number of comparisons, this 30 percent difference in favor of ary, and the student may now be told that it happens that the 4th superimposition is rally correct, if the messages were longer, all doubt would be dispelled The relatively large number of coincidences found at the 1st superimposition is purely accidental in this case large number
d The phenomenon noted above, wheren the observed number of cancid aden increase in moving from an incorrect to a correct superimposition is not at all unusual, nor should it be unexpected, because there is only one correct supermposition, while all other superimpositions are entirely incorrect In other words, a superimposition is either 100 percent correct or 100 percent wrong-and there are no gradations between these two extremes Theoretically, therefore, the dafference between the correct superimposition and any one of the many incorrect supermpositions should be very marked, since it follows from what has been noted above, that one cannot expect that the discrepancy between the actual and the theoretical number of comecidences should get smaller and smaller as one approaches closer and closer to the correct superimposition ${ }^{7}$. For if letters belongung to the same cupher alphabet are regarded

Which statistical expectations have a better beppreciated when the stud
as being members of the same family, so to speak, then the two letters forming the successive pairs of letters brought into superimposition by an incorrect placement of one message relative to another are total strangers to each other, brought together by pure chance This happens time and again, as one message is sld against the other-until the correct superimposition is reached, whereupon in every case the two superimposed letters belong to the same family There may be many different familes (clpher alphabets) but the fact that in every case two members of the same family are present causes the marked jump in number of coincidences
e In shfftung one message agaunst another, the cryptanalyst may move to the right constantly, or he may move to the left constantly, or he may move alternately to the left and right from a selected intial point Perhaps the latter is the best plan
f (1) Havng properly superimposed messages 1 and 2, message 3 is next to be studied whout further wupormen the 3 , soon become apparent it is better, even though much more work is unvolved, first to test messere 3 aganst message 1 alone and against message 2 alone This will really not involve much addi3 aganst message 1 alone and against message 2 alone the wil really tional work after all, tional work after all, sance the two tests can be conducted simultaneously, because the proper
superimposition of messages 1 and 2 is already known If the tests against messages 1 and 2 superimposition of messages 1 and 2 is already known If the tests agamst messages 1 and 2
separately at a given supermposition give good results, then message 3 can be tested, at that separately at a given supermposition give good results, then message 3 can be tested, at that
superimposition, against messages 1 and 2 combined That is, all 3 messages are tested as a superimposition, against messages 1 and 2 combined That is, all 3 messages are tested as a
single set \quad Since, according to the scheme outlined, a set of three closely related tests is involved, one might as well systematize the work so as to save time and effort, if possible With this in view a diagram such as that shown in Figure 11a is made and in it the concidences are recorded in the approprate cells, to show separately the comidences between messages 1 and 2,1 and 3 , 2 and 3, for each superimposition tested The number of tallies in the cell 1-2 is the same at the beginning of all the tests, it has already been found to be 9 Therefore, 9 talles are inserted in cell 1-2 to begin with A column which shows identical letters in messages 1 and 3 yields a angle tally for cell 1-3, a column whuch shows identical letters in messages 2 and 3 yrelds a single tally for cell $2-3$ Only when a superimposition pields 3 identical letters in a column, is a tally to be recorded simultaneously in cells 1-3 and 2-3, since the presence of 3 identical letters in the column yelds 3 concidences

Figura $11 a$
(2) Let message 3 be placed beneath messages 1 and 2 combined, so that the lst letter of message 3 falls under the ist letter of message 1 (It is advisable to fasten the latter in place
so that they cannot easily be disturbed) Thus
\qquad
 WFWTDNHKKKXFLUMKURYXCOPHWNJU WFWTD NHTKGMRAAZGPJDSQAUPFROX

\qquad
2--------

\qquad
\qquad UZNASRHHJNGUZKPRCDKYOOBVDDX

\qquadCDOGRGIRMICNHSGGOPYAOYX

Framzz $11 b$
The successive columns are now examined and the comeidences are recorded, remembenng that only comcidences between messages 1 and 3 , and between messages 2 and 3 are now to be tabulated in the dragram The results for this first test are shown in Figure $11 b$ This superimposition yields but 3 coincidences between messages 1 and 3, and the same number between is drawn up

Combinaton	(tatal mumber	Number of conndidenes		${ }_{\substack{\text { Diecrep } \\ \text { ancy }}}$
		Expected	Observed	
Messages 1 and 3	99			Percent
Messages 2 and 3	96	About 6	3	-50
Messages 1, 2, and 3	291	About 19	15	${ }_{-21}$

Note how well the observed and expected numbers of coincidences agree in all three combinaNote how well the observed and expected numbers of coincidences agree in all three combina-
thons Indeed, the results of this test are so good that the cryptanalyst might well hesitate to thons Indeed, the re
make any more tests
(5) Having ascertaned the relative positions of 3 messages, the fourth message is now studied Here are the results tor the correct superimposition

No 1-------
No 2----

\qquad WFWHPKKXFLUMKURYXCOPHWNJUWKWIHEDK
No ${ }^{\text {No }}$---------FW

 No 3------ CZSRTEEEVPXOATDQLDOQZHAWNXTHDXLHYIG No 4 --QQVQGCDUTUBQXSOSKNOXUVKCYJX $\underline{C} \underline{N} \mathrm{~J} \mathrm{~K}$ S A $\mathbb{N} \underline{G}$

No 2--.-- CDKYOOBVDDXCDOGRGIRMICNESGGOPYAOYX
No 3----- KVYZWXBKOQOAZQNDTNALTCNYEHTSCT

The results for an incorrect superimposition (1st letter of message 4 under 4th letter of message 1) are also shown for comparison

No 1
\qquad
 No 3 CWHPKKXFLUMKURYXCOPHWNJUWKWIHLOK

No 1
\qquad
 ZTLAWRDFGDDEZDLBOTFUZNASRHHJNGUZKPR
No 3
\qquad CZSRTEEEVPXOATDQLDOQZHAWNXTHDXLHYIG
. LQQVQGCDUTUBQXSOSKNOXUVKCYJXCNJKSAN
\qquad

No 2.--- CDEYOOBVDDXCDOGRGIRMICNHSGGOPYAOYX No 3------ KVYZWXBKOQOAZQNDTNALTCNYEHTSCT
No 4-----GUIFTOWOMSNBQDBAIVIKNWGVESIEP

	1		2	3

Combination		Numbor of conceidences		
		Expeoctead	Observed	
Messages 1 and 4.	96	About	3	$\begin{aligned} & \text { Percent } \\ & -50 \end{aligned}$
Messages 2 and 4	96	About 6	3	-50
Messages 3 and 4.- ----	96	About 6	1	-83
Messages 1, 2, 3 and 4 .	582	About 39	33	-18

(6) It is beleved that the procedure has been explained with sufficient detail to make further examples unnecessary The student should bear in mind always that as he adds messages to the supenmposition diagram it is necessary that he recalculate the number of comparisons so that the correct expected or theoretical number of councidences will be before hum to compare with the observed number In adding messages he should see that the results of the separate tests are consistent, as well as those for the combined tests, otherwise he may be led astray at tumes by the overbalancing effect of the large number of councidences for the already ascertaned, correct superimpositions

44 Subsequent steps - a Jn paragraph $43 a$ four messages were given of a series supposedly enciphered by a long keying sequence, and the succeeding paragraphs were devoted to an explanation of the preparatory steps in the solution The messages have now been properly superimposed, so that the text has been reduced to monoalphabetic columnar form, and the matter is now to be pursued to its ultumate stages
b The four messages employed in the demonstration of the principles of the κ test have served their purpose The information that they are messages enclphered by an intelhgible running key, by reversed standard capher alphabets, was withheld from the student, for pedagogical reasons Were the key a random sequence of letters instead of intellhgible text, the explanation of the comcidence test would have been unchanged in the slightest particular, so far as concerns the mechanics of the text itself Were the clpher alphabets unknown, mixed alphabets, the explanation of the κ test would also have been unchanged in the sllghtest particular But, as stated before, the four messages actually represent encipherments by means of an intelligible running key, by reversed standard alphabets, they wll now be used to illustrate the solution of cases of this sort
c Assuming now that the cryptanalyst is fully aware that the enemy is using the runningkey system with reversed standard alphabets (obsolete U S Army cipher disk), the method of solution outined in paragraph 38 will be illustrated, employing the first of the four message referred to above, that beginning PGLPN HUFRK SAUQQ The word DIVISION will be taken as a probable word and tested aganst the key, beginning with the very first letter of the messag Thus
Cipher text
PGLPNHUFRKSAUQQ
Assumed plam text
text.--
$\begin{aligned} & \text { DIVISI } \\ & \text { SOGXF }\end{aligned}$

The resultant key text is unntelligible and the word DIVISION is shifted one letter to the right Chpher text \qquad PGLPNHUFRKSAUQQ Assumed plain text
Resultant key text DIVISION Resultant key text .------------- J T K
Agan the resultant key text is unintelligible and the hypothetical word DIVISION is shifted once more Contmuation of this process to the end of the message proves that the word is not once more Continuation of this process to the end of the message proves that the word is not
present Another probable word is assumed REGIMENT When the point shown below is reached, note the results

Clpher text- \qquad PGLPNHUFRKSAUQQ..
Assumed plain text \qquad REGIMENT
ELANDOFT It certainly looks as though intelligible text were being obtained as key text The words LAND OF T suggest that THE be tried The key letters HE give NO, makng the plain text read REGIMENT NO The four spaces preceding REGIMENT suggest such words as HAVE, SEND, MOVE, THIS, etc A clue may be found by assuming that the E before LAND in the key is part of the word THE Testing it on the cipher text gives IS for the plan text, for the first two key letters And so on the process of checking one text egenst the other con tinuing until the entire message and the key text have been reconstructed
solution When the reconstruction process is appled to all four sumultaneously it naturally goes much faster, with reduced necessity for assuming words after an mintial entering wedge has
been driven into one message For example, note what happens in this case just as soon as the word REGIMENT is tried in the proper place

It is obvious that No 2 begins with FIELD TRAIN, No 3, with ROLLING KITCHEN, No 4 with ANTITANK GUN These words yeld additional key letters, the latter suggest additional with ANTITANK
plain text, and thus the process goes on until the solution is completed
e But now suppose that the key text that has been actually employed in encipherment is not intelligible text The process is still somewhat the same, only in this case one must have at least two messages in the same key For instead of checkng a hypothetical word (assumed to be present in one message) aganst the key, he an the cose just described the key text, instead of being intelhghle text, were a series of letters produced by applyng a rather complex transpoof ben to an orgonally intellighle key text Then if the word REGIMENT were assumed to be sition to an orngnally intelligible key text Then if the word REGMENT were assumed to be present in the proper place in message No 1 the resultant key letters would yreld an unntelligible
sequence But these key letters when apphed to message No 2 would nevertheless yield sequence But these key letters when apphed to message No 2 would nevertheless yield
IELDTRAI, when appled to message No 3, LINGKITC, and so on In short, the text of one message is checked against the text of another message or messages, if the orginally assumed word is correct, then plan text will be found in the other messages ${ }^{8}$

- Perhaps this 18 as good a place as any to make some observations which are of ganeral interest in conneotion with the running-key prnnuple, and which have no doubt been the subject of speculation on the part of some students Suppose a basic, unntelligible, random sequence of keying oharacters which is not derived from the inferaction of two or more shorter keys and which never repeats is employed but once as a sey for encupheiment
Can a cryptogram encuphered in such a systom be solved? The answer to this question must unqualfiedly be this even if the oipher alphabets are known sequences, cryptanalytic science is certannly powerless to attack such a cryptogram Furthermore, so far as can now be discerned, no method of attack is likely ever to be devised Short of methods based upon the alleged phenomena of relepathy-the very objective existence of which 19
denied by most "sane" mvestigators today-1t 18 mpossible for the present author to concelve of any way of attacking such a cryptogram

This 18 a case (and perhaps the only case) in which the mmpossibilty of oryptanalysis is mathematically demonstrable Two things are involved in a complete solution in mathomatios not only must a satisfactory
(logical) answer to the problem be offered, but also it must be demonstrated that the answer offered is unnque. (logical) answer to the problem be offered, but also it must be demonstrated that the answer offered 1s unquuf,
that 1s, the only possmble one (The mistake is often made that the latter phase of what constitutes a valld that is, the only possible one (The mistake is often made that the latter phase of what constitutes a valid
solution is overlooked-and this ss the basic error which numerous alleged Bacon-Shakespeare "cryptographers" commit) To attempt to solve a cryptogram enciphered in the manner indicated is analogous to an attempt to find a unquee solution for a single equation contanning two unknowns, whth absolutely no data available for solution other than those given by that equation itself It is obvious that no unique solution is possible in such
a case, since any one quantity whatsoever may be chosen for one of the unknowns and the other will follow as a sonsequence Therefore an infinte number of different answers, all equally vald, ss possible In the case of a
f All the foregoing work is, of course, based upon a knowledge of the capher alphabets employed in the encipherment What if the latter are unknown sequences? It may be stated at once that not much could be done with but four messages, even after they had been superimposed correctly, for the most that one would have in the way of data for the solution of the individual columns of text would be four letters per alphabet-which is not nearly enough Data for solution by indrrect symmetry by the detection of isomorphs cannot be expected, for no isomorphs are produced in this system Solution can be reached only if there is sufficient text to permit of the analysis of the columns of the superimposition daagram When there is this amount of text there are also repetitions which afford bases for the assumption of probable words Only then, and after the values of a few clpher letters have been established can indrect symmetry be apphed to facilitate the reconstruction of the primary components-if used
g Even when the volume of text is great enough so that each column contams say 15 to 20 letters, the problem is still not an easy one But frequency distributions with 15 to 20 letters can usually be studied statistically, so that if two distributions present sumilar characteristics, the latter may be used as a basis for combining distributions which pertann to the same clpher alphabet The next section will be devoted to a detailed treatment of the implications of the last statement
cryptogram enciphered in the manner indicated, there is the equivalent of an equation with two unknowns, the key is one of the unknowns, the plann text is the other One may conjure up an unfinte number of different
plain texts and offer any one of them as a "solution" One may even perform the perfectly meanngiess labor of reconstructing the "key"for thes selected "solution", Dune may even perform the perfectly meaningless labor there is no way of proving from the cryptogram itself, or from the reoonstructed key (whoh is unntelligible) whether the "solution" so seleoted is the actual
plain text, all of the plain text, all of the infinite number of "solutions" are equally valid Now since it is mberent in the very idea of cryptography as a practioal art that there must and can be only one actual solution (or plain text), and since
none of this infinte number of duffeent solutions can be proved to be the one and only correct solution, therefore, our common sense rejects them one and all, and it may be sald that a cryptogram encephered in the manner our common sense rejects them one and
indicated is absolutely impossible to solve
It is perhaps unnecassary to point out that the foregoing statement is no longer true when the running key constitutes untelligible text, or if it is used to encipher more than one message, or if it is the secondary resultant of the interaction of two or mure ghort primary keys which go through cycles themselves For in these cases there s additional information avalable for the dellitation of one of the par of unknows and hence a unique soluon becomes possible
Now although
ryptographe securty running-key system described in the first paragiaph reprosents the ultumate goal of wide abyss to be bydgd betwideql toward which cryptographo experts have striven for a long time, there is practical means of seeret intercommunioation For the mere mealiy perficit system and its establishment as a practical means of secret intercommunioation For the mere meohanioal detals involved in the production,
reproduction, and distribution of such keys present difficulties which are so formidable as to destroy the effective ness of the method as a system of secret intercommunication suttable for groups of correspondents engaged in a voluminous exchange of messages

Section XII
THE "CROSS-PRODUCT SUM" OR " χ TEST""
Preluminary remarks Preliminary remarks Dervation of the x te Applying the x test in matching distributions.
5. Preliminary remar Th
45. Preliminary remarks. - a The real purpose of making the concidence test in cases such as that studued in the preceding section is to permit the cryptanalyst to arrange his data so as to arcumvent the obstacio whe the enemy, by adopting a complicated polyalphabetic scheme of vidually with the respective columns of the supermmposition diagram the cryptanalyst has arranged the polyalphabetic text so that it can be handled as though it were monoalphabetic arranged the polyaiphabetic text so that it can be handled as though it were monoalphabetic
Usually, the solution of the latter is a relatively easy matter, especially if there is sufficient text in the columns, or if the letters within certain columns can be combined into single frequency distributions, or if some cryptographic relationship can be established between the columns
b It is obvious that merely ascertamng the correct relative positions of the separate messages of a sernes of messages in a supenmposition diagram is only a means to an end, and not an end in itself The purpose is, as already stated, to reduce the complex, heterogeneous, polyalphabetic text to sumple, homogeneous, monoalphabetic text But the latter can be solved only when there are sufficient data for the purpose-and that depends often upon the type of cupher alphabets involved The latter may be the secondary alphabets resulting from the sliding of the normal sequence agaunst its reverse, or a muxed component against the normal, and so on The student has enough information concernng the various cryptanalytic procedures which may be apphed, dependung upon the curcumstances, in reconstructing different types of primary components and no more need be said on this score at thrs point
c The student should, however, realze one point which has thus far not been brought specfically to his attention Although the supernmposition dagram referred to in the preceding subparagraph may be composed of many columns, there is often only a relatively small number 26 letters each there is a maximum of 26 secondary cipher alphabets Consequently, it follows that in such a case if a supenmposition diagram is composed of say 100 columns, cartain of those columns must represent simular secondary alphabets There may, and probably will be, no regulanty of recurrence of these repeated secondaries, for they are used in a manner directly regulanty of recurrence of these repeated secondaries, for they are used in a manner directiy
governed by the letters composing the words of the key text or the elements composing the keying sequence
d But the latter statement offers an excellent clue It is clear that the number of times a given secondary alphabet is employed in such a superimposition dagram depends upon the com-
${ }^{1}$ The χ test, presented in this section, as well as the Φ test, presented in Section XIV, were first described
 analyat, Signal Intelligence Service I take pleasure in acknowledging my indebtedness to Dr Kullback's
paper for the basic material used in my own expoostion of these tests, as well as for has halpful criticisms thereof paper for the baste m
while in manuscript
position of the key text Since in the case of a running-key system using a book as a key the key text constitutes intellgible text, it follows that the varrous secondary alphabets wrll be em ployed wuth frequencres which are directly related to the respective frequencres of occurrence of letter in normal plain text Thus, the alphabet corresponding to key letter E should be the most frequently used, the alphabet corresponding to key letter T should be next in frequency, and so on From this it follows that instead of being confronted with a problem involing as many different secondary chpher alphabets as there are columns in the supenmposition dagram, the cryptmeobio that the cryptandrst will have to handlo only about 10 or 20 seconday alphabets Myplan y
e. umposition diagram with a new to assembling those distributions which belong to the same cipher ulphabet, thus matang the actual detarmination of values much easer in the combined distributions than would otherwise be the case
f However, if the keyng sequence does not itself constitute intelligible text, even if it is a random sequence, the case is by no means hopeless of solution-provided there is sufficien text within columns so that the columnar frequency distributions may afford indications enabling the cryptanalyst to amalgamate a large number of small distributions into a smaller number of larger distributions
g In this process of assembling or combining individual frequency distributions which be long to the same cipher alphabet, recounc may be had to a procedure merely alluded to in con nection with previous problems, and designated as that of "matching" dsstributions The next few paragraphs will deal whth this umportant subject

46 The nature of the "Cross-product sum" or " x (Chi) test" in cryptanalysis - a The student has already been confronted with cases in which it was necessary or desirable to reduc a large number of frequency distributions to a smaller number by identifying and amalgamating distributions which belong to the same cipher alphabet Thus, for example, in a case in which there are, say, 15 distributions but only, say, 5 separate cipher alphabets, the difficulty in solvn mol which belong together can be identified and allocated to the respective cupher auphabets to which they apply
his process of identufyng distributions which belong to the same cipher alphabet in volves a careful examination and comparison of the various members of the entire set of distributions to ascertain which of them present sufficiently sumular characteristics to warrant ther being combined into a single distribution applicable to one of the clpher alphabets involved in or 60 letters, the matter is relatively easy for the experienced cryptanalyst and can be made by the eye, but when the distributions are small, each contaming a rather small number of lettera ocular comparison and identification of two or more distributions as belonging to the same alpha bet become quite dufficult and often inconclusive In any event, the tume required for the suc cessful reduction of a multiphicity of mdividual smail distributions to a few larger distribution is, in such cases, a very matoral factor in determing whether the solution will be accomplished in time to be of actual value or merely of histoncal interest
c However, a certan statistical test, called the "cross-product sum" or " x test", has been devised, which can be brought to bear upon this question and, by methods of mathematical comparison, elminate to a large degree the uncertannties of the ocular method of matching and combining frequency distributions, thus in many cases materially reducing the time required for solution of a complex problem
d It is adrisable to point out, however, that the student must not expect too much of a mathematical method of comparing distributions, because there are limits to the size of distributhons to be matched below which these methods will not be effective If two distributions contain some similar characteristics the mathematical method will merely afford a quantitative measure of the degree of sumularity Two distributions may actually pertann to the same cipher alphabet but, as occasionally happens, they may not present any external evidences of the elationship, in which case no mathematical method can ons are really sumular and belong to the same alphabe
47. Derivation of the x test - a Consider the following plan-text distribution of 50 letter

In a previous text ${ }^{2}$ it was shown that the chance of drawing two identical letters in normal English telegraphic plann text is the sum of the squares of the relative probabilities of occurrence of the 26 letters in such text, which is 0667 That is, the probabilty of monographic coincidence Hon of 50 letters apphes, the number of possible parrngs (comparisons) that can be made between single letters is $\frac{50 \times 49}{2}=1,225 \quad$ According to the theory of comcidences there should, therefore be $1,225 \times 0667=817065$ or approximately 82 comcidences of sungle letters Examining the distribution it is found that there are 83 comeidences, as shown below

The actual number of concidences agrees very closely with the theoretical number, which is of course to be expected, sunce the text to which the distribution apphed has been indicated as being normal plain text
b In the foregoing simple demonstration, let the number of comparisons that can be made in the distribution be indicated symbolically by $\frac{N(N-1)}{2}$, where $N=$ the total number of letters in the distribution Then the expected number of coincidences may be written as $\frac{0067 N(N-1)}{2}$, which may then be rewritten as
c Lakewise, if f_{A} represents the number of occurrences of A in the foregoing distribution, then the number of comcidences for the letter A may be indicated symbolically by $\frac{f_{1}\left(f_{A}-1\right)}{2}$ And sumularly, the number of comeidences for the letter B may be indicated by $\frac{f_{B}\left(f_{B}-1\right)}{2}$, and so on down to $\frac{f_{z}\left(f_{z}-1\right)}{2}$ The total number of actual comendences found in the distribution is, of course, the sum of $\frac{f_{A}\left(f_{A}-1\right)}{2}+\frac{f_{B}\left(f_{B}-1\right)}{2}+\quad \frac{f_{Z}\left(f_{7}-1\right)}{2}$ If the symbol f_{θ} is used to inducate any of the letters A, B, $\quad \mathbf{Z}$, and the symbol Σ is used to indicate that the sum of all the : Mrlitary Cryptanalyss, Part II, Appendıx 2
elements that follow this sign is to be found, then the sum of the actual concidences noted in the distribution may be indicated thus $\sum \frac{f_{\theta}\left(f_{\theta}-1\right)}{2}$, which may be rewritten as
(II)

$$
\sum \frac{f_{0}^{2}-f_{\mathrm{e}}}{2}
$$

d Now although derived from defferent sources, the two expressions labeled (I) and (II) above are equal, or should be equal, in normal plain text Therefore, one may write

Simplifying this equation
(III)

$$
\sum \frac{f_{0}{ }^{2}-f_{0}}{2}=\frac{0667 N^{2}-0667 N}{2}
$$

(III)
$\Sigma f_{9}{ }^{2}-\Sigma f_{\theta}=0667 N^{2}-0667 N$
Therefore $\mathfrak{Z f}_{\theta}=N$
(IV)
hich on reduction becomes
(V)

$$
\Sigma f f^{2}-N=0667 N^{2}-0667 N
$$

$$
\Sigma f_{\theta^{2}}=0667 N^{2}+9333 N
$$

This equation may be read as "the sum of the squares of the absolute frequencies of a distribution is equal to 0667 times the square of the total number of letters in the distribution, plus 9333 is equal to 0667 times the square of the total number of letters in the distribution, plus 9333
times the total number of letters in the distribution " The letter S_{2} is often used to replace the symbol $\Sigma f_{9}{ }^{2}$
f Suppose two monoalphabetic distributions are thought to pertan to the sume cipher alphabet Now if they actually do belong to the same alphabet, and if they are correctly ${ }^{3}$ combined into a single distribution, the latter must still be monoalphabetic in character That is, again representing the individual letter frequencies in one of these distributions by the general symbol $f_{e_{1}}$ the individual letter frequencies in the other distribution by $f_{e_{2}}$, and the total frequency in the first distribution by N_{1}, that in the second dastribution by N_{2}, then
(VI)
$\Sigma\left(f_{\theta_{1}}+f_{\theta_{2}}\right)^{2}=0667\left(N_{1}+N_{2}\right)^{2}+9333\left(N_{1}+N_{2}\right)$
Expanding the terms of this equation
(VII) $\quad \Sigma f_{e_{2}}{ }^{2}+2 \Sigma f_{\theta_{1}} f_{\theta_{2}}+\Sigma f_{\theta_{2}}{ }^{2}=0667\left(N_{1}{ }^{2}+2 N_{1} N_{2}+N_{2}{ }^{2}\right)+9333 N_{1}+9333 N_{2}$

But from equation (V)
$\Sigma f_{\theta_{1}^{2}}^{2}=0667 N_{1}^{2}+9333 N_{1}$ and
$\Sigma f_{\theta_{2}}^{2}=0667 N_{2}^{2}+9333 N_{2}$,
so that equation (VII) may be rewritten thus
$0667 N_{1}{ }^{2}+9333 N_{1}+2 \Sigma f_{\theta_{1}} f_{\theta_{2}}+0667 N_{2}{ }^{2}+9333 N_{2}=$

$$
0667\left(N_{1}^{2}+2 N_{1} N_{2}+N_{2}^{2}\right)+9333 N_{1}+9333 N_{2}
$$

${ }^{5}$ By "correctly" is meant that the two distributions are sld relative to each other to their proper super-
imposition

Reducing to simplest terms by cancelling out sumular expressions

$$
2 \Sigma f_{\theta_{1}} f_{\theta_{2}}=0667\left(2 N_{1} N_{2}\right) \text {, or }
$$

(VIII)

$$
\frac{\Sigma f_{e_{1}} f_{\theta_{2}}}{N_{1} N_{2}}=0667
$$

g The last equation thus permits of establishing an expected value for the sum of the products of the corresponding frequencres of the two drstrıbutions being considered for amalgamation The cross-product sum or x test for matching two dzstrbbutions is based upon equation (VIII)

48 Applying the χ test in matching distributions - a Suppose the following two distributoons are to be matched

Let the frequencies be juxtaposed, for convenence in finding the sum of the cross products Thus:

In this case $\Sigma f_{e_{1}} f_{e_{2}}=8+3+1+1+9+2+2+4=30$

$$
\begin{aligned}
& N_{1} N_{2}=26 \times 17=442 \\
& \frac{\Sigma f_{e_{1}} f_{2}}{N_{1} N_{2}}=\frac{30}{422}=0711
\end{aligned}
$$

6 The fact that the quotient (0711) agrees very closely with the expected value (0667) means that the two distributions very probably belong together or are properly matched Note the qualifyng phrase "very probably" It imphes that there is no certanty about this business of matchng distributions by mathematical methods The mathematics serve only as measuring devices, so to speak, which can be employed to measure the degree of simularity that exsts
c Instead of dividing $\Sigma f_{\theta_{1}} f_{\theta_{2}}$ by $N_{1} N_{2}$ and seeing how closely the quotient approximates the value 0667 or 0385 , one may set up an expected value for $\Sigma f_{f_{1}} f_{e_{2}}$ and compare it with the observed value Thus, in the foregoing example $0667\left(N_{1} N_{2}\right)=0667 \times 422=2815$, the observed value of $\Sigma f_{\theta_{1}} f_{\theta_{2}}$ is 30 and therefore the agreement between the expected and the observed values is quite close, indicating that the two distributions are probably properly matched
d There are other mathematical or statistical tests for matching, in addition to the x test Moreover, it is possible to go further with the x test and find a measure of the relance that may be placed upon the value obtained, but these points will be left for future discussion in subse
quent texts
e One more point will, however, here be added in connection with the x test Suppose the very same two distributions in subparagraph a are again juxtaposed, but with $f_{e_{2}}$ shifted one interval to the left of the position shown in the subparagraph of reference Thus

$$
\text { Here } \Sigma f_{\mathrm{e}_{1}} f_{\mathrm{e}_{2}}=2+3+2+3=10 \quad \text { and } \quad \frac{\Sigma f_{\mathrm{e}_{1}} f_{\mathrm{e}_{2}}}{N_{1} N_{2}}=\frac{10}{442}=0226
$$

The observed ratio (0226) is so much smaller than the expected (0667) that it can be said that if the two distributions pertain to the same primary components they are not properly superimposed In other words, the x test may also be applied in cases where two or more frequency distributions must be shafted relatively in order to find their correct supermposition The theory underlyng this applcation of the χ test is, of course, the same as before two monoalphabetic distributions when properly combined will yreld a single distribution which should still be monoalphabetic in character In applying the x test m such cases it may be necessary to shift two 26 -element distributions to various superimpositions, make the x test for each superimposition, and take as correct that on which grelds the best value for the test
f The nature of the problem will, of course, determine whether the frequency distributions which are to be matched should be compared (1) by durect superimposition, that is, setting the as in subparagraph a or (2) by shifted supermpestion, that is first distribution fixed and shding the whole sequence of tallies of the second distrbution to various superimpositions agaunst the first

Section XII

APPLYING THE CROSS-PRODUCT OR \times TES

Study of a situation in which the x test may be apphed$\begin{array}{r}\text { Paragraph } \\ \hline---49\end{array}$ Solution of a plogressive-alphab 49
50 Alternative method of solution

49 Study of a situation in which the x test may be applied $-a$ A simple demonstration of how the x-test is applied in matching frequency distributions may now be set before th student The problem mvolved is the solution of cryptograms enciphered according to the progressive-alphabet system (par 36b), with secondary alphabets dernved from the interaction of two identical muxed primary components It will be assumed that the enemy has been using a system of thas kund and that the primary components are changed daily
b Before attacking an actual problem of thas type, suppose a few minutes be devoted to a general analysis of its elements It is here assumed that the prumary components are based upon the HYDRAULIC $\quad Z$ sequence and that the cupher component is shfted toward the aght one stop at a tme Consider a cipher square It has been arranged in the form of a decipherng aphicable to the type of problem untal sequences are all identical but merely shofted relatively, the letters insude the square are plain-text letters

Fiourr 12
c If, for mere purposes of demonstration, mstead of letters within the cells of the square there are placed tallies corresponding in number with the normal frequencies of the letters there are placed tallies corresponding in number with the normal frequencies of the letters
occupyng the respective cells, the cipher square becomes as follows (showing only the 1st occupying the respective
three rows of the square)

Alphabet No

d It is obvious that here is a case wheren if two distributions pertaning to the square are isolated from the square, the χ test (matching distributions) can be applied to ascertain how the distributions should be shufted relative to each other so that they can be supenmposed and made possublities In this case, the B row of talles must be displaced 5 intervals to the ught in order to match it and amalgamate it with the A row of tallies Thus

e Note that the amount of displacement, that is, the number of intervals the B sequence must be shifted to make it match the A sequence in Figure 13b, corresponds exactly to the distance mest been the letters A and B in the primary cipher component, which is 5 intervals Thus
$\begin{array}{lllllll}0 & 1 & 2 & 8 & 4 & 5 \\ A & U & \text { L } & \text { I C C }\end{array}$ with the primary cipher component has nothing to do with the matter The displacement interval with berng measured on the copher component It is important that the student see this point very clearly He can, if he like, prove the point by expermenting with two different primary components
f Assuming that a message in such a system is to be solved, the text is transcribed in rows of 26 letters A uniliteral frequency distribution is made for each column of the transcribed text, the 26 separate distributions being compled within a single square such as that shown in Figure 14 Such a square may be termed a frequency distribution square
g Now the vertical columns of tallies within such a distribution square constitute frequency distributions of the usual type They show the distribution of the various capher letters in each column of the frequency square could be solved in the usual manner, by the applucation of the simple principles of monoalphabetic frequency But what do the horizontal rows of tallies within the square represent? Is it not clear that the first such row, the A row, merely shows the distribution of A_{c} throughout the successive cipher alphabets? And does not thes graphec pucture distribution of A_{c} throughout the successive clpher alphabets? And does not thes graphuc pucture
of the dzstrbution of A_{c} correspond to the sequence of letters composing the primary plain component? of the distribution of A_{c} correspond to the sequence of letters composing the primary plain component?
Furthermore, is it not clear that what has been said of the A row of talles applies equally to the F, C, D, $\quad Z$ rows? Finally, is it not clear that the graphic pictures of all the distributions correspond to the same sequence of letters, except that the sequence begins with a different letter in each row? In other words, all the horizontad rows of talles within the distribution square apply to the same sequence of plain-text letters, the sequences in one row merely beginning with a different letter from that with which another row begins The sequences of letters to which the tallies apply in the various rows are merely displaced relative to one another Now of there are sufficient data for statistical purposes in the various horizontal sequences of tallies within the distinbution square, these sequences, being approximately similar, can be studied by means of the x lest to find their relatve dosplacements And in finding the latter a method is provided whereby the primary cipher component may be reconstructed, since the correct assembling of the displacement data will yield the sequence of letters constituting the primary cipher component If the plain component is identical with the cipher component, the solution is immediately at
hand, if they are defferent, the solution is but one step removed Thus, there has been elaborated a method of solving this type of cipher system without making any assumptions of values for cupher letters

50 Solution of a progressive-alphabet system by means of the x test $-a$ The following cryptogram has been enciphered according to the method indicated, by progressive, sumple, uninterrupted shifting of a primary cipher component against an identical primary plan component

G J J M	M M J X E	DGCOC	F TR P B	M I I I K	R Y N N
BUFRW	WWWY0	IHFJK	OKHT T	A CCL L	EPPFR
WCKOO	FFFGE	P Q R Y Y	IWXMX	UDIPF	EXMLL
WFKGY	P B B X C	HBFY I	ETXHF	BIVDI	
RPWTM	GIMPT	ECJBo	K V B U Q	G V G F	Y
CKBIW	MXUD	I PFFU	Y NVS S	IHRMH	ZHAU
Q W GK T	I UXY J	J A OWZ	0 CFTR	PPOQU	-
VCXUC	J L M L L	Y EKF	ZVQJQ	SIYSP	
UAHYN	L 0 C X	SDQVC	YVSIL	IW N	0 M
LTYJ G	TVPQK	PKTLH	SROON	ICFEV	M NVWN
BNEHA	MRCRO	VSTXE	NHPVB	TWKUQ	IOCAV
WBRQN	FJVNR	V DOPU	QRLKQ	NFFFZ	H URV
W L X G S	HQWHP	J BCNN	JQSOQ	ORCB	RRAO
RKWUH	Y Y C I W	D GS J C	T GP GR	M I Q M	SGCTN
M F G J X	EDGCo	P TGP W	Q Q V Q	W X T T	C O JVa
AABWM	X I H O W	HDEQU	AINFK	FWHP	A H Z T
WZKFE	XSR R Y	QIOVR	ERDJ	DKHIR	QWEDG
EbYBM	LABJV	TGFFG	XYIVG	R JYEK	FBEPB
JOUAH	CUGZL	X I A J K	WDVTY	b FRUC	CCUZ
INNDF	R J FMB	HQLXH	M H Q Y Y	YMWQV	CLIPT
WTJYQ	BYRLI	TUOUS	RCDCV	WDGIG	G U B H J
V V P WA	BUJKN	FPFYW	\checkmark Q ZQF	L H T W J	PDRXZ
OTUSS	GAMHN	CWHSW	WLRYQ	Q USEV	D NXAN
VNKHF	UCVVS	S S PLQ	UPCVV	VWDGS	JOGTC
HDEVQ	SIJPH	Q JAWF	RIZDW	XXHCX	Y C TMG
USESN	DSBBK	RLVWR	VZEEP	PPATO	IANEE
EEJNR	CZBTB	L X P J J	K A P PM	JEGI	RTGFF
HPVVV	YK J EF	HQSXJ	Q D Y V Z	GRRH	Q L Y X K
XAZOW	R R X Y K	Y GMGZ	BYNVH	Q BRVF	EFQLL
W ZEYL	JEROQ	SOQKO	M WIOG	M BKFF	LXDXT
LWILP	QSEDY	IOEMO	I B JML	N NSYY	XJZJM
LCZBM	SDJWQ	XTJVL	FIRNR	XHYBD	BJUFI
RJICT	UUUSK	K W D V M	FWTTJ	K C K C G	CVSAG
Q BCJM	EbyNV	S S J K S	DCBDY	FPPVF	DWEMT

6 The message is transcribed in lines of 26 letters, since that is the total number of secondary alphabets in the system The transcribed text is shown below

	WGJJMMMJXEDGCOCFTRPBMIIIKZ
2	RYNNBUFRWWWWYOIHFJKOKHTTAZ
3	CLJEPPFRWCKOOFFFGEPQRYYIWX
4	MXUDIPFEXMLLWFKGYPBBXCHB
5	IETXHFBIVDIPNXIVRPWTM
6	ec Jbokvbuqg VGFFFKLYyck
7	MXUDIPFFUYNVSSIHRMHYZH
8	GKTIUXYJJAOWZOCFTRPPOQUS
9	CXVCXUCJLMLLYEKFFZVQJQSI
10	PDSBBJUAHYNWLOCXSDQVCYVS
11	IWNJOOMAQSLWYJGTVPQKPKTLH
12	ROONICFEVMNVWNBNEHAMRCROV
13	TXENHPVBTWKUQIOCAVWBRQNFJ
14	NRVDOPUQRLKQNFFFZPHURVWLXG
15	SHQWHPJBCNNJQSOQORCBMRRAON
16	RKWUHYYCIWDGSJCTGPGRMIQMPS
17	GCTNMFGJXEDGCOPTGPWQ
18	TCOJVAAABWMXIHOWHDEQ
19	JAHZITWZKFEXS
20	RERDJVDKHIRQWEDGEBY
21	TGFFGXYIVGRJYEKFBEP
22	JKWDVTYBFRUCCCUZZ
23	BHQLXHMHQYYYMWQV
24	JYQBYRLITUOUSRCDCVITD
25	GGUBHJVVPWABUJKNFPFYWVQZQ
26	LHTWJPDRXZOWUSSGAMHNCWHS
27	LRYQQUSZVDNXANVNKHFUCVVSSS
28	PLQUPCVVVWDGSJOGTCHDEVQSIJ
29	PHQJAWFRIZDWXXHCXYCTMGUSES
30	NDSBBKRLVWRVZEEPPPATOIANEE
31	EEJNRCZBTBLXPJJKAPPMJEGIKR
32	TGFFHPVVVYKJE
33	RHEQLYXKXAZO
34	VHQBRVFEFQLLWZEYLJEROQ
35	OMWIOGMBKFFLXDXTLWILPQSEDY
36	I OEMOIBJMLNNSYKXJZJMLCZBMS
37	D JWQXTJVLFIRNRXHYBDBJUFIRJ
38	ICTUUUSKKWDVMFWTTJKCKCGCVS
39	AGQBCJMEBYNVSSJKSDCBDYFPPV
40	FDWZMTBPVTTCGBVTZKHQDDRMEZ

c A frequency distribution square is then compled, each column of the text forming a separate distribution in columnar form in the square The latter is shown in figure 14

The x test will now be apphed to the horizontal rows of tallies in the distribution square in accordance with the theory set forth in paragraph 49g Since this test is purely statistical in character and becomes increasingly reliable as the size of the distributions increases, it is best in character and beco wh the These are the V and \mathbb{W} distributions, with 53 and 52 occurrences, respectively The results of three relative displacements of these two distributions are shown below, labeled "First test," "Second test," and "Third test"

$$
F_{\text {ingt }} \text { Tmest }
$$

$\frac{2 f_{\text {盉 }}}{N_{r} N_{F}}=\frac{103}{2756}=037$
Sicond Tegt
$f_{r}\left\{\left.\begin{array}{lllllllllllllllllllllllll|l}1 & 0 & 2 & 0 & 0 & 2 & 6 & 4 & 8 & 0 & 0 & 7 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 6 & 4 & 0 & 2 & 4 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26\end{array} \right\rvert\, \quad N_{V}=53\right.$

$$
\frac{2 f f_{f} f_{v}}{N_{V} N_{F}}=\frac{122}{2756}=044
$$

Third Test
$f_{v}\left\{\begin{array}{llllllllllllllllllllllllll}1 & 0 & 2 & 0 & 0 & 2 & 6 & 4 & 8 & 0 & 0 & 7 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 6 & 4 & 0 & 2 & 4 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & N_{v}=53\end{array}\right.$
(1) $f_{w}\left\{\begin{array}{llllllllllllllllllllllllllll}4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 1 & 2 & 3 \\ 3 & 0 & 1 & 0 & 0 & 2 & 8 & 1 & 7 & 6 & 0 & 1 & 0 & 0 & 2 & 3 & 0 & 2 & 1 & 2 & 0 & 4 & 2 & 1 & 1 & 5\end{array} N_{W}=52\right.$
 $\frac{2 f \nu f_{w}}{N_{v} N_{w}}={ }_{275 \mathrm{~b}}^{190}=069$
e Since the last of the three foregoing tests gives a value somewhat better than the expected 0667 , it looks as though the correct position of the W distribution with reference to the V distribution has been found In practice, several more tests would be made to insure that other close approximations to 0667 will not be found, but these will here be omitted The test mincates that the primary cipher component has the letters V and W in these positions $V^{1}{ }^{3} \mathrm{~W}$, sunce the correct supermposition requres that the 4th cell of the \mathbb{W} distribution must be placed under the 1st cell of the V distribution (see the last superimposition above)
f The next best distribution with which to proceed is the F distribution, with 51 occurrences Paralleling the procedure outhned in paragraph 43, and for the same reasons, the F sequence is matched aganst the W and V sequences separately and then against both W and V sequences distributions
$f_{v}\left\{\begin{array}{lllllllllllllllllllllllllll}1 & 0 & 2 & 0 & 0 & 2 & 6 & 4 & 8 & 0 & 0 & 7 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 6 & 4 & 0 & 2 & 4 & N_{\mathbf{v}}=53 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & \\
\hline\end{array}\right.$
$f_{P}\left(\begin{array}{lllllllllllllllllll}8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 \\
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right]$

7	
7	$N_{F}=51$

$f_{v} f_{F} 10$| | 0 | 0 | 0 | 36 |
| :--- |

$\frac{\Sigma f_{v} f_{r}}{N_{F} N_{r}}=\frac{212}{2,703}=078$
$f_{W}\left\{\left.\begin{array}{lllllllllllllllllllllllll}1 & 1 & 5 & 3 & 0 & 1 & 0 & 0 & 2 & 8 & 1 & 7 & 6 & 0 & 1 & 0 & 0 & 2 & 3 & 0 & 2 & 1 & 2 & 0 & 4 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\ 26\end{array} \right\rvert\, \begin{array}{ll}N_{W}=52\end{array}\right.$ $f_{r}\left[\begin{array}{llllllllllllllllllllllllll}5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 1 & 2 & 3 & 4 \\ 0 & 7 & 1 & 1 & 2 & 1 & 0 & 0 & 6 & 3 & 9 & 3 & 0 & 2 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 2 & 0 & 4 & 2\end{array}\right]$

$$
\frac{\sum f_{w} f_{F}}{N_{W} N_{F}}=\frac{210}{2,703}=078
$$

$f(v+w)\left\{\left.\begin{array}{lllllllllllllllllllllllllll}4 & 0 & 3 & 0 & 0 & 4 & 14 & 5 & 15 & 6 & 0 & 8 & 0 & 0 & 4 & 4 & 1 & 3 & 2 & 3 & 0 & 10 & 6 & 1 & 3 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26\end{array} \right\rvert\, \begin{array}{l}N_{\mathbf{i}}+\boldsymbol{w}=105\end{array}\right.$ $f_{F}\left\{\begin{array}{llllllllllllllllllllllll}8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 1 & 2 & 3 & 4 & 5\end{array} \mathbf{6}^{7}\right.$

$\frac{\Sigma f_{\left(V+m f^{2}\right.} f_{r}}{N_{\left(T+W_{2}\right)} N_{r}}=\frac{422}{5,355}=079$

The test yelds the sequence | 1 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| V | 2 | 8 | 4 | 8 | 0 | 7 |
| W | | | F | | | |

g The process is continued in the foregoing manner untul the entire primary cipher component has been reconstructed It is obvious that as the work progresses the cryptanalyst is forced to employ smaller and smaller distributions, so that statistically the results are apt to become less and less certain But to counterbalance this there is the fact that the number of possible superimpositions becomes progressively smaller as the work progresses For example, sequence against the first is 25 , after the relative positions of 5 distr supermposing a second taned and a 6 th distribution is to be placed in the primery 5 dince beng reconstructed, there are 21 possible positions, after the relative positions of 20 distrabutions have been ascertaned there are only 6 possible positions for the 21st distribution, and so on there are h l

解

Snce it was stated that the problem involves identical primary components, both components are now at hand
\imath Of course, it is probable that in practical work the process of matching distributions would be interrupted soon after the positions of only a few letters in the primary component had been ascertanned For by trying partially reconstructed sequences on the cipher text the skeletons of some words would begin to show By fillng in these skeletons with the words suggested by them, the process of reconstructing the components is much faciltated and hastened certain their initial position in enciphering the message It is only necessary to juxtapose the two components so as to give "good" values for any one of the vertical distributions of ${ }^{2}$ This then gives the juxtaposition of the components for that column, and the rest follows 14 easily for the plann text may now be obtaned by direct use of the components The plann text of the message is as follows

WG J JMMMJXEDGCOCFTRPBMIIIK K WITHTHEIMPROVEMENTSINTHEAIRYNNBUFRWWWWYOIHFJKOKHTTAZ RPLANEANDTHEMEANSOFCOMMUNI 3 CL JEPPFRWCKOOFFFGEPQRYYIWX CATIONANDWITHTHEVASTSIZEOF MXUDIPFEXMLLWFKGYPBBXCHBFY MODERNARMIESSTRATEGICSURPR IETXHFBIVDIPNXIVRPWTMGIMPT ISEWILLBECOMEHARDERANDHARD ECJBOKVBUQGVGFFFKLYYCKBIWX ERTOATTAINXINTHEPRESENCEOF MXUDIPFFUYNVSSIHRMHYZHAUQW MODERNAVIATIONANDFASTMOVIN GKTIUXYJJAOWZOCFTRPPOQUSGY GMECHANIZEDELEMENTSGREATER CXVCXUCJLMLLYEKFFZVQJQSIYS COMPLEXITIESMORESUBTLEDECE $P D S B E J U A H Y N W L O C X S D Q V C Y V S I L$
$P T I O N S S T R A T E G E M S A N D F E I N T S W$ PTIONSSTRATEGEMSANDFEINTSW
IWNJOOMAQSLWYJGTVPQKPKTLHS I WN J O OMAQSLWYJGTVPQKPKTLHS ROONTCFEVMNVWNBNEHAMRCROVS RNWARFAREITISSTILLPOSSIBLE 13 TXENHPVBTWKUQIOCAVWBRQNFJV TXENHPVBTWKUQIOCAVWBRQNFJV
$T O G A I N T A C T I C A L S U R P R I S E B Y M A$ NRVDOPUQRLKQNFFFZPHURVWLXG NYMEANSXWHILETHEMEANSOFOBS 15 SHQWHPJBCNNJQSOQORCBMRRAON SERVINGANDTRANSMITTINGINFO
 RMATIONOFTROOPMOVEMENTQMPS GCTNMFGJXEDGCOPTGPWQQVQIWX GREATLYIMPROVEDOVERTHOSEOF TTTCOJVAAABWMXIHOWHDEQUAIN THEPASTTHEMECHANICALMEANSO RHZQLYXKXAZOWRRXYKYGMGZBYN RECYMOVEMENTSMUSTBEUNDERCO

89
\qquad FTARTILLERYANDCOMBATAVIATI
00

WITH THE IMPROVEMENTS IN THE AIRPLANE AND THE MEANS OF COMMUNICATION AND WITH HE VAST SIZE OF MODERN ARMIES STRATEGIC SURPRISE WILL BECOME HARDER AND harder to attain X in the presence of modern aviation and fast moving mechanized ELEMENTS GREATER COMPLEXITIES MORE SUBTLE DECEPTIONS STRATEGEMS AND FEINTS ILL HAVE TO BE EMPLOYED X IN MODERN WARFARE IT IS STILL POSSIBLE TO GAIN TACTICAL SURPRISE BY MANY MEANS X WHILE THE MEANS OF OBSERVING AND TRANSMITTING INFORMATION OF TROOP MOVEMENTS ARE GREATLY IMPROVED OVER THOSE OF THE PAST THE mechanical means of moving troops are likewise far speedier x also false INFORMATION CAN BE FAR MORE EASILY AND QUICKLY DISTRIBUTED X THE LESSON TO BE LEARNED FROM THE OPENING PHASE OF ALLENBYS BATTLE OF MEGGIDO IS THAT SURPRISE IS POSSIBLE EVEN IN MODERN WARFARE BUT ONLY BY PERFECT DISCIPLINE ON THE PART OF THE TROOPS AND ALMOST SUPERHUMAN FORETHOUGHT AND ATTENTION TO DETAIL ON THE PART OF THE STAFF BACKED UP BY RESOLUTE ACTION IN THE AIR X TO MAINTAIN SECRECY MOVENTNG DION OF HOSTIL AIR OBSERRATION BY AMIIAIRCRAFT ARTILLERY ADD COMBAT AVIATIO
k The student should clearly understand the real nature of the matching process employed to such good advantage in this problem In practically all the previous cases frequency distributions were made of cipher letters occurring in a cryptogram, and the tallies in those distributions represented the actual occurrences of cipher letters Furthermore, when these distrrbuthons represented the actual occurrences of clpher letters Furthermore, when these distribuThat is, the text was arranged in a certann way, so that letters belonging to the same cipher alphabet actually fell within the same column and the frequency distribution for a specific cipher alphabet was made by tabulating the letters in that column Then if any distributions were to be compared, usually the entire distribution applicable to one cipher alphabet was compared with the ntire distribution applyng to another clpher alphabet But in the problem just completed, what were compared in realty were not frequency distributhons applying to the columns of the pher text as hanscribed on p er, bugaphic representations of the vanations in the frequencies of plain-text letters falling in vdentical sequences, the dentities of these plain-text letters being unknown for the moment Only after the reconstruction has been completed do their identities become known, when the plain text of the cryptogram is established

51 Alternative method of solution - a The foregoing method of solution is, of course almost entrely statistical in nature There is, however, another method of attack which should be brought to notice because in some cases the statistical method, involving the study of relatively large distributions, may not be feasible for lack of sufficient text Yet in these cases there may be sufficient data in the respective alphabets to permit of some assumptions of values of cipher letters, or there may be good grounds for applying the probable-word method The present paragraph will therefore deal with a method of solving progressive cipher systems which is based upon the apphcation of the principles of indirect symmetry to certan phenomena arising from the mechanics of the progressive encipherment method itself
b Take the two sequences below and encipher the phrase FIRST BATTALION by the progressive method, shding the cipher component to the left one interval after each encipherment

Components
Plan. \qquad HYDRAULICBEFGJKMNOPQSTVWXZ
Cipher. F BPYRCQZIGSEHTDJUMKVALWNOX

Message

c Certann letters are repeated in both plan text and cipher text Consider the former There are two I's, three T's, and two A's Ther encipherments are isolated below, for convemence in study

The two I's in line (1) are 10 letters apart, reference to the cipher component will show that the interval between the clpher equivalent of the first I_{p} (which happens to be I_{0}) and the second I_{p} (which is K_{o}) is 10 Consideration of the mechancs of the enciphering system soon shows why his is so: since the cipher component is dasplaced one step with each encipherment, two identical letters n intervals apart in the plam text must yield capher equivalents which are n interval apart in the cipher component Examination of the data in lines (3) and (4), (5) and (6) wil confirm this finding Consequently, it would appear that in such a system the successful applcation of the probable-word method of attack, coupled within indirect symmetry, can quickly lead to the reconstruction of the cupher component
d Now consider the repeated cipher letters in the example under b There happens to be only two cases of repetition, both involving Y's Thus

Reference to the plan component will show that the plan-text letters represented by the three Y's appear in the order N 0 1, that 13, reversed with respect to ther order in the plain text But the intervals between these letters is correct Agam a consideration of the mechanics of the enciphering system shows why this is so since the cipher component is displaced one step with each encipherment, two identical letters n intervals apart in the cipher text must represen plain-text letters which are n intervals apart in the plain component In the present case the direction in which these letters run in the plan component is opposite to that in which the cipher component is displaced That is, if the cipher component is displaced toward the left the values obtamed from a study of repeated plain-text letters give letters which comcide in sequence (interval and direction) with the same letters in the cipher component, the values obtaned from a study of repeated cipher-text letters give letters the order of which must be reversed in order to make these letters concide in sequence (interval and direction) with the same letters in the plam component If he cipher compon is dyp of the repeated plan-text relationship is morely lelvers by a study of order
e Of course, of the primary components are identical sequences the data from the two sources referred to in subparagraphs c and d need not be kept separate but can be combined and made to yield the primary component very quickly
f With the foregoing principles as background, and given the following message, which is assumed to begin with COMMANDING GENERAL FIRST ARMY (probable-word method of attack), the data yielded by this assumed text are shown in Figure 15

Message

```
IMMKI
FNIIG XGAMX CADUV AZVISS YNUNLetc, etc
```

 Cipher-.------------- IKMKILIOLWLPNMVWPXWDUFFTF

92

Analysis of the data afforded by Figure 15, in conjunction with the principles of indirect symmetry, yields the following partual components

Setting the two partial components into juxtaposition so that $C_{D}=I_{0}$ (first encipherment) th 8th value, $I_{p}=D_{e}$, gives the position of D in the cipher component and permits the addition of X to it, these being two letters which until now could not be placed into position in the clpher component With these two partial sequences it becomes possible now to decupher many other
letters in the message, gaps being filled in from the context For example, the first few letters after ARMY decipher as follows

$$
\begin{aligned}
& \begin{array}{lllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 0 & 10 & 11 \\
\mathrm{~N} & \mathrm{I} & \mathrm{I} & \mathrm{G} & \mathrm{X} & \mathrm{G} & \mathrm{~A} & \mathrm{M} & \mathrm{X} & \mathrm{C} & \mathrm{~A} & \mathrm{D}
\end{array} \\
& \text { IL XGAMCA }
\end{aligned}
$$

The word after ARMY is probably WILL Thus leads to the insertion of the letter W in the plain component and G in the cupher component In a short tume both components can be completely establshed
g In passing, it may be well to note that in the illustrative message in paragraph $50 a$ the very frequent occurrence of tripled letters (MMM, WWW, FFF, etc) indicates the presence of a frequently used short word, a frequently used ending, or the like, the letters of which are sequen in the plam component An astute cryptanalys wo of such triplets could assum by triplats by HE , and the With that much as a start, solution of the enture message would be considerably smphified.
h The principles elucidated in this paragraph may, of course, also be appled to cases of progressave systems in which the progression is by intervals greater than 1 , and, with necessary progressave systens to cases in which the progression is not regular but follows a specific pattern, such as $1-2-3,1-2-3, \quad$, or $2-5-7-3-1,2-5-7-3-1$, and so The latter types of progression are encountered future texts

Section XIV

THE "MONOALPHABETICITY" OR "Ф TEST"

Purpose of the Φ test
62. Purpose of the Φ
. Purpose of the Φ (phi) test - a The student has noted that the χ test is based upon the general theory of concidences and employs the probability constants κ_{p} and κ_{r} There is one mave torl of an
b In paragraph $48 e$ it was stated tha
all combuned will yield a single distribution which should still be monoalphabetic in character Thus question arises, therefore, in the student's mind Is there a test whereby he can ascertan which has relatively few data? Such a test has been devised and is termed the " Φ (phi) test " 53. Denvation of the Φ test.- a Consider a monographic or unditeral frequency distribution which is monoalphabetic in composition If there is a total of N letters in the distribution in a system in which there are n possible elements, then there is a possible total of $\frac{N(N-1)}{2}$ pars of letters (for comparison purposes)
b Let the symbol f_{A} represent the number of occurrences of A, f_{B} the number of occurrences of B, and so on to $f_{Z} \quad$ With regard to the letter A then, there are $\frac{f_{A}\left(f_{A}-1\right)}{2}$ comendences (Agan the combinations of f_{A} things taken two at a time) With regard to the letter B, there are $\frac{f_{B}\left(f_{B}-1\right)}{2}$ comendences, and so on up to $\frac{f_{Z}\left(f_{z}-1\right)}{2}$ comeldences for the letter Z Now it has been seen that according to the κ test, in $\frac{N(N-1)}{2}$ comparisons of letters forming the two members of pars of letters in normal Englsh plam text, there should be $\frac{\kappa_{p} N(N-1)}{2}$ concidences, where α_{p} is the probability of monographec comendence for the language in question
c Now the expected value of $\frac{f_{A}\left(f_{A}-1\right)}{2}+\frac{f_{B}\left(f_{B}-1\right)}{2}+\quad+\frac{f_{Z}\left(f_{z}-1\right)}{2}$ is equal to the theoretcal number of comeidences to be expected in $\frac{N(N-1)}{2}$ comparisons of two letters, which for normal plain text is κ_{p} times $\frac{N(N-1)}{2}$ and for random text is $\kappa_{r} \operatorname{times} \frac{N(N-1)}{2}$ That is, for plam text

$$
\begin{aligned}
& \text { Expected value of } \frac{f_{A}\left(f_{A}-1\right)}{2}+\frac{f_{B}\left(f_{B}-1\right)}{2}+\quad+\frac{f_{Z}\left(f_{Z}-1\right)}{2}=\kappa_{p} \times \frac{N(N-1)}{2} \text {, or } \\
& \text { (IX) Expected value of } f_{A}\left(f_{A}-1\right)+f_{B}\left(f_{B}-1\right)+\quad+f_{Z}\left(f_{Z}-1\right)=\kappa_{p} N(N-1) \text {, and for random }
\end{aligned}
$$ text

Expected value of $\frac{f_{A}\left(f_{A}-1\right)}{2}+\frac{f_{B}\left(f_{B}-1\right)}{2}+\quad+\frac{f_{Z}\left(f_{z}-1\right)}{2}=\kappa_{r} \times \frac{N(N-1),}{2}$ or
(X) Expected value of $f_{A}\left(f_{A}-1\right)+f_{B}\left(f_{B}-1\right)+\quad+f_{z}\left(f_{z}-1\right)=\kappa_{T} N(N-1)$ If for the left-hand side of equations (IX) and (X) the symbol $E(\Phi)$ is used, then these equations become
(XI) For plain text $\quad E\left(\Phi_{p}\right)=\kappa_{p} N(N-1)$
(XII) For random text $\quad E\left(\Phi_{r}\right)=\kappa_{r} N(N-1)$,
where $E(\Phi)$ means the average or expected value of the expression in the parenthesss, κ_{p} and κ_{r} are the probabilities of monographic concidence in plain and in random text, respectively d Now in normal Enghsh plann text it has been found that $\kappa_{p}=0667$ For random text of a 26-letter alphabet $\kappa_{r}=038$ Therefore, equations (XI) and (XII) may now be written thus
XIII) For normal Englsh plain text $\quad E\left(\Phi_{p}\right)=0667 N(N-1)$
(XIV) For random text (26-letter alphabet) $\quad E\left(\Phi_{r}\right)=0385 N(N-1)$
e By employing equations (XIII) and (XIV) it becomes possible, therefore, to test a puece of text for monoalphabeticity or for "randomness" That is, by using these equations one can mathematically test a very short cryptogram to ascertain whether it is a monoalphabetically equren al al practical purposes it is equivalent to random text This test has been telmed the Φ test
normal English plain Φ test - a Given the following short prece of text, is it likely that it is encrphered monoalphabetically?

For this case the observed value of Φ is
$(1 \times 0)+(1 \times 0)+(2 \times 1)+(3 \times 2)+(4 \times 3)+(2 \times 1)+(1 \times 0)+(4 \times 3)+(2 \times 1)+(1 \times 0)+(1 \times 0)+$ $(3 \times 2)=2+6+12+2+12+2+6=40$
If this text were monoalphabetically enciphered English plann text the expected value of Φ is

$$
E\left(\Phi_{p}\right)=\kappa_{p} N(N-1)=0667 \times 25 \times 24=400
$$

If the text were random text, the expected value of Φ is

$$
E\left(\Phi_{r}\right)=\kappa_{r} N(N-1)=0385 \times 25 \times 24=231
$$

The conclusion is warranted, therefore, that the cryptogram is probably monoalphabetic substitution, since the observed value of $\Phi(40)$ more closely approximates the expected value for Englsh plan text (400) than it does the expected value for random text (231) (As a matter of fact, the cryptogram was enciphered monoalphabetically)
b Here is another example Given the following series of letters, does it represent a selection of Englsh text enciphered monoalphabetically or does it more nearly represent a random selection of letters?
YOUIJ ZMMZZ MRNQC XIYTW RGKLH

The distribution and calculation are as follows

$\Sigma f(f-1)=18$ (That is, observed value of $\Phi=18$)
 $E\left(\Phi_{p}\right)=0667 \times 25 \times 24=400$ (That is, expected value of $\Phi_{p}=400$)

Section XV

CONCLUDING REMARK

The conclusion is that the series of letters does not represent a selection of English text monoalphabetically enciphered Whether or not it represents a random selection of letters cannot be told but it mey be said that if the letters actually do constitute a cryptog probably polyalphabetically enciphered (As a matter of fact, the latter statement is true for the message was enciphered by 25 alphabets used in sequence)
c The Φ test is, of course, closely related to the χ test and derves from the same general theory as the latter, which is that of comcidence When two monoalphabetic distributions have been combined into a single distribution, the χ test may be applied to the latter as a chec upon the test. It is also useful in testing the colun
tain whether or not the columns are monoalphabetic

appendix 1

Additional Notes on Methods for Solving Plain-Text Auto-Keyed Ciphers
Introductory remarks
Sumple "mechanical" solution
Another "mechanical" solution
Solution of plaun-text auto-keyed cryptograms when the introductory key is a word or phrase
Subsequent steps after determinng the length of the introductory key
Conversion of foregong aperiodic cipher into periodic form-

1. Introductory remarks.-a In paragraph 33 of the text proper it was indicated that the method elucidated in paragraph 32 for solving plain-text auto-heyed ciphers is likely to be successful only if the cryptanalyst has been fortunate in his selection of a "probable word " Or, to put it another way, if the "probable words" which his imagination leads him to assume to be present in the text are really not present, then he is unfortunate, for solution will escape him Hence, it is desirable to point out other principles and methods whicli are not so subject to chance But because most of these methods are applicable only in special cases and because in general it is true that auto-key systems are no longer commonly encountered in practical military cryptography, it was thought best to exclude the exposition of these principles and methods from the text proper and to add them in an appendix, for the study of such students as find them of particular interest
b A complete discussion of the solution of plam-text auto-key systems, with examples, ould require a volume in itself Only one or two methods will be described, therefore, leaving the development of additional principles and methods to the ingenuity of the student who wrshes to go more deeply into the subject The discussion herem will be presented under separate headings, dependent upon the types of primary components employed
c As usual, the types of primary components may be classsfied as follows
(1) Primary components are identical
(a) Both components progress in the same direction
(b) Both components progress in opposite directions
(2) Primary components are different
2. Simple "mechanical" solution $-a$ (1) Taking up the case wheren the two identical primary components progress in the same direction, assume the following additional factors to be known by the cryptanalyst
(a) The primary components are both normal sequences
(b) The encipherment is by plain-text auto-keyng
(c) The encuphering equations are $\theta_{k^{\prime} / 2}=\theta_{1 / 4}, \theta_{D / 1}=\theta_{0}$
$\begin{array}{ll}\text { (c) A message beginning QVGLB TPJTF } & \text { is intercepted, the only unknown factor is }\end{array}$ the initial key letter Of course, one could try to decipher the message using each key letter in turn, beginning with A and continuing until the correct key letter is tried, whereupon plann text will be obtained But it seems logical to thank that all the 26 possible "decipherments" might be derived from the first one, so that the process maght be much simplified, and this is true, as
the ones resulting from the successive "decipherment" of Q_{0} by the successive key letters A, B, C, Now since the "decipherment" obtaned from the 1st clpher letter in any row in Figure 1 becomes the key letter for "deciphering" the 2d cipher letter in the same row, it is apparent that as the letters in the 1st column progress in a reversed normal (descending) order the letters in the 2 d column must progress in a drect normal (ascending) order The matter may perhaps become more clear if encıpherment is regarded as a process of addition and de-
cipherment as a process of subtraction. Instead of prmmary components or a Vigenère square, one may use simple arithmetic, assigning numerical values to the letters of the alphabet, begin one may use simple anthmetic, assigning numerical values th the the the $A=\emptyset$ and ending with $Z=25$ Thus on the basis of the par of enciphering equations $\theta_{k / 2}=\theta_{t /}, \theta_{\mathrm{D} / 2}=\theta_{\mathrm{o} / 2}$, the letter H_{c} enciphered by key letter M_{k} with direct primary components yrelds T_{0} But using the following numerical values
the same result may be obtamed thus $H_{p}\left(M_{k}\right)=7+12=19=T_{c}$ Every time the number 25 is exceeded in the addution, one subtracts 26 from it and finds the letter equivalent for the remainder In decipherment, the process is one of subtraction " For example $T_{0}\left(M_{k}=19-12=7=\right.$ $H_{p}, D_{0}\left(R_{k}\right)=3-17=[(26+3)-17]=29-17=12=M_{p} \quad$ Using this arthmetical equivalent of normal shding-strip encipherment, the phenomenon just noted can be set down in the form of a diagram (Fig 2) which will perhaps make the matter clear
${ }^{1}$ It will be noted that if the letters of the alphabet are numbered from 1 to 26 , in the usual manner, the arithmetical method must be modified in a minor particular in order to obtain the same results as are given by employing the normal Vigenere square This modification consists merely in subtracting 1 from the numerical value of the key letter Thus
$\mathrm{H}_{\mathrm{p}}\left(\mathrm{M}_{k}\right)=8+(13-1)=8+12=20=\mathrm{T}_{\mathrm{o}}$
$\left.\mathrm{T}_{0} \mathrm{M}_{k}\right)=20-(13-1)=20-12=8=\mathrm{H}_{\mathrm{p}}$
For an interesting extension of the basic idea involved in arithmetic cryptography, see Hill, Lester S Cryptography in an Algebrazc Alphabet American Mathematical Monthly, Vol Xxxvi, 6, 1929
(Vol XXXVIII, No 3, 1931

101

* * * * * * * * * * * * * * * * * * * * * *

$Q_{0}\left(B_{k}\right)=16-\quad 1=15$
$\mathrm{V}_{\mathrm{G}}\left(\mathrm{P}_{\mathrm{k}}\right)=21-15=6$
$\mathrm{G}_{\mathrm{c}}\left(\mathrm{G}_{\mathrm{k}}\right)=6-6=0=\mathrm{A}$
$L_{0}\left(A_{\mathrm{K}}\right)=11-0=11=\mathrm{L}$
$\mathrm{B}_{\mathrm{o}}\left(\mathrm{L}_{\mathrm{z}}\right)=1-11=16=\mathrm{Q}$

Note how homologous letters of the three rows (jomed by vertical dotted lenes) form alternately descending and ascending normal sequences
c When the method of encipherment based upon enciphering equations $\theta_{x / 2}=\theta_{1 / 2}, \theta_{D / 2}=\theta_{0 n}$ is used instead of the one based upon enciphering equations $\theta_{\mathrm{k} / 2}=\theta_{1 /}, \theta_{\mathrm{p} / 2}=\theta_{\mathrm{o}} / 2$, the process indicated above is simplified by the fact that no alternation in the direction of the sequences in the completion diagram is required For example

> Deciphered $A=A$.
> YHEBPDTBJD
> FJKZCVWF AHLMBEXYHK
JNODGZAJ
DKOPEHABKN
$\begin{aligned} & \text { FMQRGJCDMP } \\ & \text { GNRSHKDEN }\end{aligned}$
$\begin{array}{r}\text { GNRSHKDENQ } \\ \text { *HOSTILEFOR }\end{array}$

Fladar 3
d (1) In the foregoing example the primary components were normal sequences, but the se of identical mixed components may be handled in a simular manner Note the following xample, based upon the following primary component (which is assumed to have been reconstructed from previous work)

$$
\begin{gathered}
\text { FBPYRCQZIGSEHTDJUMKVALWNOX } \\
\text { Message.--------- USINL YQEOP... etc }
\end{gathered}
$$

(2) First, the message is "deciphered" with the intial key-letter A, and then a completion dagram is established, using shding strips bearng the mixed primary component, alternate strips bearin', the reversed sequence Note Figure 4, in which the plain text, HOSTILE FOR (CE), reappears on a single generatrix Note also that whereas in Figure 1 the odd columns contain the pi mary sequence in the reversed order, and the even columns contain the sequence in the direct order, in Figure 4 the situation is reversed the odd columns contann the primary This point is brought orcer, and so eve that is immoterial whether the drect order is use for odd colurns or for even columns, the alternation in direction is all that is required in this type of solution
e (1) There is next to be considered the case in which the two prinary components progies m opposite ducctions [par 1c (1) (b)] Here is a message, known to have been enciphered by reversed standard alphabets, plam-text auto-keying having been followed
X T W Z L X H Z R X
(2) The procedure in this case is exactly the same as before, except that it is not necessary to have any alternation in direction of the completion sequences, which may be either that of the plann component or the cipher component Note the solution in Figure 5 Let the studen ascertan why the alternation in direction of the completion sequences is not necessary in this case ${ }_{(3)}$
(3) In the foregoing case the alphabets were reversed standard, produced by the sliding of the normal sequence against its reverse But the underlyng principle of solution is the sam even if a mixed sequence were used instead of the normal, so long as the sequence is known, the procedure to be followed is exactly the same as demonstrated in subparagraphs (1) and (2) hereo Note the following solution

Message

VDDNCTSEPA
Plain component FBPYRCQZIGSEHTDJUMKVALWNOX Cipher component XONWLAVKMUJDTHESGIZQCRYPB

Note here that the primary mixed sequence is used for the completion sequence and that the plain text, HOSTILE FOR(CE), comes out on one generatrix It is immaterial whether the direct or reversed muxed component is used for the completion sequence, so long as all the sequences in the diagram progress in the same direction (See Fig 6)
f (1) There remans now to be considered only the case in which the two components are different mixed sequences Let the two primary components be as follow

Plan. ABCDEFGHIJKLMNOPQRSTUVWXYZ
Clpher. FBPYRCQZIGSEHTDJUMKVALWNOX
and the message

$$
\text { CFUYL } \quad V X U D J
$$

USINLYQEOP WDAYKELUIA NTLPVSWJGV 0 HWBAGNDSK XENFLIOTEM FSOXWZXHHU BGXONQFETJ PIENOCBSDD Y ZBWXRPGJT RQPLFYYIUH CCYABPRZME QRRVPBCQKS ZYCKYFQCVG IPQMRXZRAI GBZUCOIYLZ SFIJQNGPWQ EXGDZWSBNC HOSTILEFOR* TNEHGAHXXX JITESEKDNBP UADGEKDMBF M ADGAMUYY KKUZDJMARO KMMQDDMARN AUKCUTVKQW AUKCUTVKQW
JVRMHAMZL
 mavaz

XTWZLXHZRX JNODGZAJM DKOPEHABKN LPQFIBCLO FMQRGJCDMP GNRSHKDENQ OSTILEFOR* PTUJMFGPS JQUVKNGHQT KRVWLOHIRU SWXMPIJSV MTXYNQJKTW NUYZORKLUX OVZAPSLMVY WABQTMNWZ QXBCRUNOXA RYCDSVOPYB SZDETWPQZC TAEFGVYRRAD VBGHWZSTC WDHIXATUDG DEIXABUDE XEIJYBUVEH YFJKZCVWFI
ZGKLADWXGJ A HLMBEXYHK AHLMBEXYMK
BIMNCFYIL

VDDNCTSEPA ZVCIYUQLVX IAQGRMZWAF GLZSCKINLB SWIEQVGOWP ENGHZASXNY HOSTILEFOR TXEDGWHBXC DFHUSNTPFQ UPDMHXDYBZ MPDMHXJRPI
M JKTUCYG KRUVDBMQRS VCMAJPKZCE AQKLUYVIQH L ZVWMRAGZT WIANKCLSID NGLOVVQWEGJ
OSWXAZNHSU OSNXAZNASU XENFIOMEM FTXPNSFJTK PDFYOEBUDA YJBRXHPMJL RUPCFTYKUW CMYQBDRVMN QKRZPJCAKO ZVCIYUQLVX
(2) Frrst "decipher" the message with any arbitrarly selected mintial key letter, say A, and complete the plann component sequence in the first column (Fig 7a)

Capher------ C F Y L V U D J	CFUYLVXUDJ	C FUYLVXUDJ
Plann------- L F X W A W S F	LFQXWXAWSE	LFQXWXAWSE
M	M J	M J B C
N	N	N D C Y
0	0 C	0 CLI
P	P Y	PYNG
Q	Q U	Q U A J
R	R W	R W U N
S	S Q	S Q K L
T	T N	T NTQ
U	U K	UKYA
v	V H	V HES
w	W E	WEFD
x	X B	χ B P B
Y	Y X	Y X R Z
z	Z T	Z TDP
A	A G	AEHR
B	B Z	B Z J 0
C	C V	CVXE
D	D M	D M Z W
E	E P	EPOF
F	F A	FAWH
G	G R	G R M M
H	H 0	* H O S T
I	I S	I S G
J	J L	J L V
K	K I	K I I
maers $7 a$	Flaver 76	Fiours 76

Now prepare a strip bearng the cipher component reversed, and set it below the plam component so that $F_{p}=L_{c}$, a setting given by the 1st two letters of the spurious "plain text" recovered Thus.
\qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ
FXONWLAVKMUJDTHESGIZQCRYPB
Clpher.--FXONWLAVKMUJDTHESGIZQCRYPB
(3) Now opposite each letter of the completion sequence in column 1 , write its plamcomponent equivalent, as given by the juxtaposed sequences above This gives what is shown in Figure $7 b$ Then reset the two sequences (reversed cipher component and the plain component) so that $Q_{p}=F_{0}$ (to correspond with the 2d and 3d letters of the spurious plain text), write down the plain-component equivalents of the letters in column 2, forming column 3 Continue this process, scanning the generatrices from time to time, resetting the two components and finding equivalents from column to column, until it becomes evident on what generatrix the plam text beginning HOST, and from this point on the solution may be obtained directly, by using the
two primary components
(4) When the plain component is also a mixed sequence (and dufferent from the clpher component), the procedure is identical with that outlined in subparagraphs (1)-(3) above. The fact that the plan component in the preceding case is the normal sequence is of no particula To dementrate, suppose the two followng components were used in encpherment of the To demonstrate, suppose the two following components were used in encipherment of the message below
\qquad WBVIGXLHYAJZMNFORPEQDSCTKU
FBPYRCQZIGSEHTDJUMKVALWNOX
Cipher \qquad Message.---...... B BVZU DQXJD
To solve the message, "decipher" the text with any arbitrarnly selected mitial key letter and proceed exactly as in subparagraphs (2) and (3) above Thus

Note the completion diagram in Figure 8 which shows the word HOST very soon in the process From this point on the solution may be obtained drectly, by using the two primary components
3. Another "mechanical" solution $-a$ Another "mechanical" solution for the foregoing and now be described because it presents rather interesting cryptanalytic sidelights Take the message

REFERENCEHIS PREFERENCE IN REFERENCE BOOKS AND REFERENCECHARTS
and encıpher it by plan-text auto-key, with normal duect primary components, mitial key setting $A_{D}=G_{c}$ Then note the underscored repetitions

> REFERENCEHISPREFERENCEINREFE XVJJVVRPGLPAHGVJJVVRPGMVEVJJ RENCEBOOKSANDREFERENCECHARTS VVRPGFPCYCSNQUVJJVVRPGGJHYK
b Now suppose the message has been intercepted and is to be solved The only unknown factor will be assumed to be the intial key letter Let the message be "deciphered" by means factor will be assumed to be the intial key letter Let the message be "deciphered by means
of any mitial key leiter," say A, and then note the underscored repetitions in the spurious plain text

The ongmal four 8 -letter repetitions now turn out to be two different sets of 9 -letter repetitions This calls for an explanation Let the spurious plan text, with its real plan text be transcribed as though one were dealing with a periodic cipher nvolving two alphabets, as shown in Figure 9 It will here be seen that the letters in column 1 are monoalphabetic, and so are those in column 2 In other words, an auto-key cpher, which is commonly regarded as a polyalphabetic, aperiodic cipher, has been converted into a 2 -alphabet, periodic cipher, the individual alphabets of which are now monoalphabetic in nature The two repetitions of X Y L Y X Y the word R G K Z K L K H I y epetition K Z K

o-key cupher into a periodic cipher may be appled to the case where an introductory key word is used is the initial keyng element instead of a single letter, as in the present case
${ }^{2}$ Except the actual key letter or a letter 13 intervals from it See subparagraph (7) belo
d The student has probably already noted that the phenomena observed in this subparagraph are the same as those observed in subparagraph $2 b$ In the latter subparagraph it a lon text would plapear an tan toxt would
two monoalphabets
" whe are employed, the spurious plan text obtained by "decipherment" with a key setting other than the actual one will be monoalphabetic throughout Note he following encipherment (with intial key zetting $A_{p}=G_{c}$, using a reversed standard sequence slding aganst the direct standard) and its "decipherment" by setting these two components $A_{D}=A_{\text {o }}$
Plam text
Cupher
$\begin{aligned} & \text { Cipher -...-..------- } \\ & \text { Spurious plain text }\end{aligned}$
REFERENCEHISPREFERENCE
ext LYZYLYHWYBCMJLYZYLYHWY
f ere purnous plain text is wholly monoalphabetic
f The reason for the exception noted in footnote 2 on page 106 now becomes clear For if the actual intial key letter (\mathcal{G}) were used, of course the deciphernent yelds the correct plam text, if a letter 13 intervals removed from G is used as the key letter, the clpher alphabet selected for the first "decipherment" is the reciprocal of the real mitial cıpher alphabet and thereafter all alternate cipher alphabets are reciprocal Hence the spurious text obtaned from such a decipherment" must be monoalphabetic
g In the foregoing case the primary components were identical normal sequences progressing in the same direction If they were muxed sequences the phenomena observed above would still hold true, and so long as the sequences are known, the mdicated method of solution may be apphed
h When the two promary components are known but differently mived sequences, this method of solution is too involved to be practical It is more practicable to try successive mitial key letters, noting the plain text each time and resetting the strips until the correct setting has been ascertaned, as will be evidenced by obtanning intelligible plain text

4 Solution of plain-text auto-keyed cryptograms when the introductory key is a word or phrase - a In the foregong discussion of plain-text auto-keying, the introductory key was to the right with respect to the text of the message itealf But sometimes a word or phrase may serve this function, in which case the subuequent key is displaced as many letters to the right of the initial plain-text letter of the message as there are letters in the mitial key This will not, as a rule, interfere in any way with the apphcation of the principles of solution set will not, as a rule, interfere in any way with the apphcation of the principles of solution set
forth in paragraph 28 to that part of the cryptogram subsequent to the introductory key, and forth in paragraph 28 to that part of the cryptogram subsequent to the introductory key, and
a solution by the probable-word method and the study of repetitions can be reached
However, a solution by the probable-word method and the study of iepetitions can be reached However,
it may happen that trial of this method is not successful in certan cryptograms because of the paucity of repetitions, or because of falure to find a probable word in the text When the cipher alphabets are known there is another point of attack which is useful and interesting The method consists in finding the length of the introductory key and then solving by frequency principles Just how this is accomplished will now be explamed
b Suppose that the introductory key word is HORSECHESTNUT, that the plam-text message is as below, and that identical primary components progressing in the same direction are used

It will now be noted that since the introductory key contains 13 letters the 14th letter of the message is enciphered by the 1st letter of the plain text, the 15th by the 2d, and so on Lukewise cipher letter is deciphered, this will he key for the 27 th and so on An important step in the solution of a message of the kio would therefore involve ascertaning the length of the introductory koy. This of would theref explan

Since the plain text itself constitutes the key letters in this system (after the introductory key), these key letters will occur with their normal frequencies, and this means that there will of these same higes of E, T, O, A, N, I, R, S, enciphered by E_{k}, there will be many occurrence umber of tumesh-frequency letters encuphered by $\mathrm{T}_{\mathbf{k}}$, by $\mathrm{O}_{\mathbf{k}}$, by $\mathrm{A}_{\mathbf{k}}$, and so on In fact, the the enciphering conditions set forthbuations will occur may be calculated statistically above, E, the same cipher equivalent as T_{D} enciphered by E_{k}, in other words two encipherments of any pair of letters of which either may serve as the key for enciphering the other must yield the same ipher resultant it is the cryptographic effect of these two phenomena working togethe which permits of ascertaining the length of the introductory key in such a case For every time a given letter, $\theta_{\mathfrak{p}}$, occurs in the plan text it will occur n letters later as a key letter, $\theta_{\mathbf{k}}$, and n in this case equals the length of the introductory key Note the following illustration
and direction If thas is not the case, the entire reasoning is mapplicable

Here it will be noted that E_{p} in line (2) has a T_{p} on either side of it, at a distance of 13 intervals,
the first encipherment (E_{p} by T_{k}) yelds the same equivalent (X_{o}) as the second encipherment the first encipherment (E_{p} by T_{k}) yrelds the same equivalent (X_{o}) as the second encipherment (T_{D} by E_{k}) Two cipher letters are here identical, at an interval equal to the length of the intro ductory key But the converse is not true, that is, not every parr of identical letters in the cipher the result of the followng three condition cach hang a statstically ascertanable poblut of of occurrence
(1) A given plain-text letter is enciphered by the same key letter two dufferent times, at an interval which is purely accidental, the capher equivalents are identical but could not be used to give any information about the length of the introductory key
(2) Two different plan-text letters are enciphered by two different key letters, the cipher equivalents are fortuitously identical
(3) A given plam-text letter is enciphered by a given key letter and later on the same plam text letter serves to encipher another plain-text letter which is identical with the first key letter, the cupher equivalents are causally identical

It can be proved that the probability for identities of the thrd type is greater than that for identities of either or both 1st and 2d types for that anterval whach corresponds wuth the length die introductory key, thatis, if a tabuation is made of the intervals between identical letters in such a system as the one being studied, the interval which occurs most frequently should coincide with the length of the introductory key The demonstration of the mathematical basis for this fact is beyond the scope of the present text, but a practical demonstration will be convincing d Let the illustrative message be transcribed in lines of say 11, 12, and 13 letters, as in Figure 10
 CLDCNINONYG LDCNINONYGUO DCNINONYGUOIN UOINPETXQGT INPETXQGTRXF PETXQGTRXFJ IM RXFJIMCEEXU JIMCEEXUJTWD CEEXUJTWDYXAZ JTWDYXAZRKGYXAZRKGVAMXK RKGVAMXKFODWN VAMXKFODWNG FODWNGLKFBHP GLKFBHPFWQZRH LKFBHPFWQZR FWQZRHXSKFNM XS K F NMIAJCFGK HXSKFNMIAJC IMACFGKPYXIY PYXIYMPRXEOPQ FGKPYXIYMPR MPRXEOPQWWRV WWRVCWJSEWFZ J SEWFZMCLOP PIUGWAXWUGVM VMFYXJXWZFWEV IUGWAXWUGVMFYXJXWZFWEVE EURZRHHGUTQBG FYXJXWZFWEV URZRHHGUTQBG EURZRHHGUT
B G

135922-30 - 8

In each transcription, every pair of supermposed letters is noted and the number of identitied is indicated by ringing the letters involved, as shown above The number of identities for on assumed introductory-key length 13 is 9 , as against 3 for the assumption of a key of 11 letters, and 5 for the assumption of a key of 12 letters
e Once having found the length of the introductory key, two lines of attack are possible the composition of the hey may be studied, which will yield sufficient plan text to get a stait the composition of the hey may be studied, which will yield sufficient plain text to get a stalt
toward solution, or, the message may be roduced to periodic terms and solved as a repeating-key cupher The first line of attack will be discussed first, it being constantly borne in mind in this paragraph that the entire discussion is based upon the assumption that the cipher alphatets are known alphabets The illustrative message of b above will be used

5 Subsequent steps after determining the length of the introductory key - a Assume that the first letter of the introductory key is A and decipher the 1st cipher letter T_{c} (with durec t standard alphabets) This yields T_{p} and the latter decomes the hey letter for the 14th letter of the message The 14th letter 15 deciphered $D_{c}\left(T_{k}\right)=K_{p}$, the latter becomes the key letter for 13 letters The same procedure is followed using B as the mital key letter then C and so on 13 letters The same procedure is followed using B as the initial key letter, then C, and so on The message as it appe
is $h o w n$ in Figure 11

	12345678910111213	1234567891011213
TMCW JVMPS GXCL	TMCWJVMPSGXCL	TMCWJVMPSGXCL
T	S	R
D	D	D
K	L	M
P	P	P
F	E	D
C	C	C
X	Y	Z
R	R	R
U	T	S
G	G	G
M	N	0
X	X	x
L	K	J
P	P	P
E	F	G
W	W	W
S	R	Q
C	C	C
K	L	M
v	v	v
L	K	J
E	E	E
T	U	V
(a) Firat column of 5 igure 10 (c) 'de eyhtered with initidl $\mathbf{O}_{\mathbf{k}}=\mathrm{A}$	(b) First column of Figure 10 (c) 'deciphatred' with inital $\mathrm{C}_{\mathrm{k}}=\mathrm{B}$	Frst column of Fixure 10 (a) decphesed with $\boldsymbol{O}_{\mathrm{k}}=\mathbf{C}$
	ногия 11	

b Inspection of the results of these three trials soon shows that the entire series of 26 trials need not be made, for the results can be obtained from the very first trial This may be shown graphically by supermposing merely the results of the first three trials horizontally
Thus

Cipher letters of Col 1, Fig 11.------- T D P C R G X P W C V E
Keyletters

TKFXUMLESKIT
 11111111111
c It will be noted that the vertical sequences in adjacent columns proceed in opposite directions, whereas those in alternate columns proceed in the same direction The explanation

TDPCRGXPWCVE TKFXUMLESKLT SLEYTNKFRLKU RMDZSOJGQMJV QNCARPIHPNIW POBBQQHIOOHX OPACPKGJNPGY NQZDOSFKMQFZ MRYENTELLREA* LSXFMUDMKSDB KTWGLVCNJTCC J VHKWBOIUBD HWTIJXAPHVAE GXSJHYZQGWZF FYRLGAXSEYXH EZQMFBWTDZWI DAPNECVUCAVJ CBOODDUVBBUK | CBCNPCETWACTK |
| :--- |
| B | BCNPCETWACTL

ADMQBFSXZDSM ZELRAGRYYERN YFKSZHQZXFQO
F XGJTYIPAWGPP WHIUXJOBVHOQ VIHVWKNCUINR
U J GWVLMDTSMS

Ftouras 13

e Identical procedure is followed with respect to columns 2, 3, 4,
of Figure 10c, with the result that the mitial key word HORSECHESTNUT is reconstructed and the whole message may be now deciphered quite readly

6 Conversion of foregoing aperiodic cipher into periodic form -a In paragraph 4 it was stated that an aperiodic cipher of the foregoing type may be reduced to periodic terms and solved as though it were a repeating-key cipher, provided the primary components are known sequences The basis of the method lies in the phenomena noted in paragraph $2 b$ An example will be given
b Let the cupher text of the message of paragraph $4 b$ be set down again, as in Figure $10 c$

1	2	3	4	5	0	7	8	D	10	\mathbf{n}	12	13
T	M	C	W	J	V	M	P	S	G	X	C	L
D	C	N	I	N	0	N	Y	G	U	0	I	N
P	E	T	X	Q	G	T	R	X	F	J	I	M
C	E	E	X	U	J	T	W	D	Y	X	A	Z
R	K	G	V	A	M	X	K	F	0	D	W	N
G	L	K	F	B	H	P	F	W	Q	Z	R	H
X	S	K	F	N	M	I	A	J	C	F	G	K
P	Y	X	I	Y	M	P	R	X	E	0	P	Q
W	W	R	V	C	W	J	S	E	W	F	Z	M
C	L	O	P	I	U	G	W	A	X	W	U	G
V	M	F	Y	X	J	X	W	Z	F	W	E	V
E	U	R	Z	R	H	H	G	U	T	Q	B	G

Using direct standard alphabets (Vigenère method), "decipher" the second line by means of the first line, that is, taking the letters of the second line as clpher text, those of the first line as key letters Then use the thus-found "plain text" as "key letters" and "decipher" the third line of Figure 10c, as shown in Figure 14 Thus
"Key"
Plapher, \qquad PETYOJOORGC PETXQGTRXFJIM Flagri 14

Continue this operation for all the remaning lines of Figure $10 c$ and write down the results in lines of 26 letters Thus

$$
\begin{aligned}
& \text { FOILM NUS JRS CKXXQWMEWZ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LBKJEVRRYTENBEXNZURYAZLKCE }
\end{aligned}
$$

> LAVFXUCSETVMMTUWUUNFOQAVUU
> Fraver 10

Now write down the real plain text of the message in lines of 26 letters Thus
 YARTILLERYFIREENEMYISMASS NGTROOPSTOLEFTFRONTANDCNO ENTRATINGARTILLERYTHEREXWI

Flogrif 16
When the underluned repetitions in Figures 15 and 16 are compared, they are found to be identical in the respective columns, and if the columns of Figure 15 are tested, they will be found to be monoalphabetic The cipher message now gives every indication of being a repeating-key cipher It is not difficult to explain this phenomenon in the hight of the demonstration given in paragraph $3 g$ First, let the key word HORSECHESTNUT be enciphered by the following alphabet

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZYXWVUTSRQPONMLKJIHGFEDCB
"Plam" \qquad HORSECHESTMNUT
TMS I WYTWI HNGH

Then let the message MY LEFT FLANK, etc, be enciphered by dırect standard alphabets as before, but for the key add the monoalphabetic equivalents of HORSECHESTNUT TMJTW before, but for the key add the monoalphabetic equivalents of HORSECHESTNUT TMJIW to
the key itself, that is, use the 26 -letter key HORSECHESTNUTTMJIWYTWIHNGH in a repeatng-key manner Thus (Flg^{17})

y.------------ HORSECHESTNUTTMJIWYTWIHNGH	
\qquad MYLEFTFLANKISRECEIVINGHEAV Cipher \qquad TMCWJVMPSGXCLKQLMETZJOORGC	
Plan. y ARTILLERYFIREENEMYISMASSI Cipher. \qquad FOILMNUIJRSCKXQWMIWZOUHFYP	
Plain \qquad NGTROOPSTOLEFTFRONTANDCONC Cipher- \qquad UUKJSQYWLHYYYMRAWJRRJLJBTJ	
Plam \qquad ENTRATINGARTILLERYTHEREXWI Cipher \qquad LBKJEVRRYTENBEXNZURYAZLKCP	
Plam \qquad LLNEEDCONSIDERABLEREINFORC Cıpher. \qquad S Z EWIFLSFLVXXKMKTAPVEVMBXJ	
\qquad EMENTSTOMAINTAINMYPOSITION pher. \qquad LAVFXUCSETVHMTUWUUNFOQAVUU	

The cipher resultants of this process of encuphering a message comcide exactly with those obtanned from the "deciphering" operation that gave rise to Figure 15 How does this happen"
d First, let it be noted that the sequence TMJI, which forms the second half of the key for enciphering the text in Figure 17 may be described as the standard alphabet complement key for encipherng the text in Figure 17 may be described as the standard alphabet complement of the sequence HORSECHESTNUT, which forms the first half of that key Arithmetic
sum of a letter of the first half and its homologous letter in the second half is 26 Thus

$$
\begin{aligned}
& \mathrm{H}+\mathrm{T}=7+19=26=0 \\
& 0+\mathrm{M}=14+12=26=0 \\
& \mathrm{R}+\mathrm{J}=17+9=26=0 \\
& \mathrm{~S}+\mathrm{I}=18+8=26=0 \\
& \mathrm{E}+\mathrm{W}=4+22=26=0
\end{aligned}
$$

That is, every letter of HORSECHESTNUT plus its homologous letter of the sequence TMJIWYTYIHNGH equals 26 , which is hero the same as zero In other words, the sequence TMJIWYTWIHNGH is, by cryptogiaphc anthmetıc, equivalent to "minus HORSECHESTNUT" Therefore in Figure 17, enciphering the second half of each line by the key letters TMJIWYTWIHNGH (e , adding $19,12,9,8, \quad$) is the same as deciphering by the key letters HORSECHESTNUT (e , subtracting 7, 14, 17, 18,) For example
$\mathrm{R}_{\mathrm{D}}\left(\mathrm{T}_{\mathrm{k}}\right)=17+19=36=10=\mathrm{K}$, and
$\mathrm{R}_{\mathrm{p}}\left(-\mathrm{H}_{\mathrm{k}}\right)=17-7=10=\mathrm{K}$
$\mathrm{E}_{\mathrm{p}}\left(\mathrm{M}_{\mathrm{k}}\right)=4+12=16=\mathrm{Q}_{\mathrm{c}}$, and
$\mathrm{E}_{\mathrm{p}}\left(-\mathrm{O}_{\mathrm{k}}\right)=4-14=(26+4)-14=16=Q_{\mathrm{c}}$, and so on
e Refer now to Figure 15 The letters in the first half of line 1, beginning TMCW are identical with those in the first half of line 1 of Figure 17 They must be identical because are identical with those in the iirst half of line 1 of Figure in They must be identical because
they are produced from identical elements The letters in the second half of thas same line in Figure 15, begnning KQLME were produced by deciphering the letters in the second line of Figure $10 c$ Thus (taking for illustrative purposes only the first five letters in each case)
$K Q L M E=D C N I N-T M C W J$
$D C N T N G E C E I+M Y L E F$

Hence, $K Q L M E=(R E C E I+M Y L E F)-(M Y L E F+H O R S E)$
$\begin{array}{ll}\text { Hence, } & K Q L M E=(R E C E I \\ \text { Or, } & K Q L M E=R E C E I-H O R S E \quad \text { (1) }\end{array}$
As for the letters in the second half of line 1 of Figure 17, also beginning KQLME , these etters were the result of encıphering RECEI by TMJIW Thus

$$
K Q L M E=R E C E I+T M J I W
$$

But it has been shown in subparagraph d above that

$$
\text { TMJIW }=-H O R S E
$$

Hence, K QLME=RECEI $+(-H O R S E)$

Thus, equations (1) and (2) turn out to be identical but from what appear to be quite diverse sources
f What has been demonstrated in conneetion with the letters in hne 1 of Figures 15 and 17 holds true for the letters in the other lines of these two figures, and it is not necessary to repeat the explanation The steps show that the orignally aperiodic, auto-key clpher has been
converted, through a knowledge of the primary components, into a repeatung-key cipher with a period twice the length of the introductory key The message may now be solved as an ordinary repeating-key clpher
g (1) The foregoing case is based upon encipherment by the enciphering equations $\theta_{k / 2}=\theta_{1 / 1}, \theta_{\mathrm{D} / 2}=\theta_{\mathrm{c} / 2}$ When encipherment by the enciphering equations $\theta_{\mathrm{K} / 2}=\theta_{1 / 1}, \theta_{\mathrm{D} / 2}=\theta_{\mathrm{c} / 1}$ has been followed, the conversion of a plain-text auto-keyed cupher yields a repeating-key cipher with a period equal to the length of the introductory key In this conversion, the enciphering equations $\theta_{\mathrm{k} / 2}=\theta_{1 / /}, \theta_{\mathrm{D} /}=\theta_{\mathrm{o} / 2}$ are used in finding equivalents
(2) An example may be useful Note the encipherment of the followng message by auto-key method by enciphering equations $\theta_{k / 2}=\theta_{1 / 1}, \theta_{p / 2}=\theta_{c / 1}$
TUESDAYIINFORMATIONFROMRELIABLESOURCESINDIC INFORMATIONFROMRELIABLESOURCESINDICATESTHE PTBWOMCLVJZOFOTJQYDJNZNODMRBTOQZJRAWBWFQZC
(3) If the message is written out in lines coriesponding to the length of the introductory key, and each line is enciphered by the one drectly above it, using the encıphering equations $\theta_{\mathrm{K} / 2}=\theta_{1 / 1}, \theta_{\mathrm{p} / 1}=\theta_{\mathrm{o} / 2}$ in finding equivalents, the results are as shown in Figure $22 b$ But if the same message is enciphered by equations $\theta_{\mathbf{x} / 2}=\theta_{1 / 2}, \theta_{D / 2}=\theta_{c / 1}$, using the word TUESDAY as a repeating key, the clpher text (Fig 18c) is identical with that obtamed in Figure $18 b$ by enciphering each successive line with the line above it

(4) Now note that the sequences joined by arrows in Figure 186 and c are identical and sunce it is certain that Figure 18c is periodic in form because it was enciphered by the repeating-key method, it follows that Figure $18 b$ is now also in periodic
could be solved as though it were a repeating-key clpher
could be solved as though it were a repeating-key cipher
h (1) case of prmary components consisting of a drect normal sequence sliding against reversed normal (U S Army disk), the process of converting the auto-key text to periodic terms is accomplished by using two direct normal sequences and "deciphering" each line of the text (as transcribed in periods) by the line above it For example, here is a message autoenciphered by the aforementioned disk, with the mitial key word TUESDAY
TUESDAYIINFORMATIONFROMRELIABLESOURCESINDIC INFORMATIONFROMRELIABLESOURCESINDICATESTHE LHZEMOYPFRBMVMHRKCXRNBNMXOJZHMKBRJAEZEVKBY
(2) The cupher text is tianscribed in periods equal to the length of the intial key word (7 letters) and the 2 d line is "deciphered" with key letters of the 1st line, using encipherng (7 letters) and the 2 d line is "deciphered" with key letters of the 1st he, using enciphernge,
equations $\theta_{\mathrm{x} / \mathrm{n}}=\theta_{1 /}, \theta_{\mathrm{p} / 月}=\theta_{\mathrm{c} / 2}$ The resultant letters are then used as key letters to "decipher" equations $\theta_{z / n}=\theta_{1 / 2}, \theta_{p / 2}=\theta_{c / 2}$ The resultant letters are then used as key letters to "decipher"
the 3d line of text and so on \quad The results are as seen in Figure 19b Now let the orignal message be encuphered in repeating-key manner by the disk, with the key word TUESDAY, and the result is Figure 19c Note that the odd or alternate lines of Figure 19b and c are identical, showing that the auto-key text has been converted into repeating-key teat

Orignal elphar tast	Orginal cipher text and converted text	Repeating key enclpher ment
		TUESDAY
		INFORMA
LHZEMOY	LHZEMOY	LHZEMOY
PFRBMVM	PFRBMVM	TIONFRO
	AMQFYJK	AMQFYJK
HRKCXRN	HRKCXRN	MRELIAB
	HDAHVAX	HDAHVAX
BNMXOJZ	BNMXOJZ	LESOURC
	IQMEJJW	I QMEJ JTW
HMKBRJA	HMKBRJA	ESINDIC
	PCWFASW	PCWFAS W
EZEVKBY	EZEVKBy	ATESTHE
EZENK	TBAAKTU	TBAAKTU

2 The foregong procedures indicate a sumple method of solving caphers of the foregong types, when the primary components or the secondary clpher alphabets are known It consists in assuming introductory keys of various lengths, converting the cipher text into repeating-key form, and then examining the resulting diagrams for repetitions When a correct key length is assumed, repetitions will be as numerous as should be expected in clphers of the repeating-key class, incorrect assumptions for key length will not show so many repetitions

3 All the foregoing presupposes a knowledge of the cupher alphabets involved When these are unknown, recourse must be had to first principles and the messages must be solved purely upon the basis of probable words, and repetitions, as outlined in paragraphs 27-28

INDEX

Lengthy keys
Systems using
Mechanical methods of producing
Making the κ test, general procedure
Matching of frequency distributions
Monoalphabeticity or Φ test
Monographe coincidence, probability of
Nonrepeating key system.
Overlap
Partıal periodicity

Patterns

Idiomorphic
Word
Period, apparent, basic, complete, hidden,
latent, patent, primary, resultant, secondary-
Periodicity, masked
Periods
Component
Superimposed
Phi test
Applying
Derivation of
Purpose of
Related to x test
Probability, theory of
Proll 58
Probabilety of monographic coincidence
Progressive-alphabet cıpher, solution of ---.-.-52, 55, 82

Reconstruction skeleton.
Repetitions
Completely periodic
Page

1,50
52

62
73
94
58

Repetitions--Continued

 Running-key cıpher, solution of .-.-...... 53, 56, 63, 71

Secondary key 4, 52
Separators, word 15
Sequences, uninterrupted 26
Solution by superimposition 23, 53, 58
Spurious plann text 43, 104
Statistical test 26
Stereotypic phraseology 14
Superimposable periods 23
Superimposed sequences and the coincidence test 58
Superimposition 53
Basic principles of 53
Correct and incorrect 58
Solution by 53
Diagram 61
Synoptic table 97, 119
Symmetry of position, direct 9
Variable-length
Groupings of keying sequence 19
Key enciphering 19
Plan-text groupings 5
Vigenere method 46
Wheatstone cryptograph 52
Word habits of the enemy, familiarty with 14
Word-length encipherment, solution of 5
Word separators 15

Analytical Key for Mılitary Cryptanalysis, Part III

[Numbers in parentheses refer to Paragraph Numbers in this text]

[^0]: - The student will have to imagine the messages written out as continuous sequences on cross-section paper

