Restrinica

Declassified and approved for release by NSA on 09-19-2005 pursuant to E.O. 12958, as amended

MILITARY CRYPTANALYSIS. PART II. SIMPLER VARIETIES OF POLYALPHABETIC SUBSTITUTION SYSTEMS

Section
I Introductory remarks
aragraph Pages
5-7 4-9
III Theory of solution of repeating-key sy stems8-12V Repeating-key systems with mixed cıpher alphabets, I13-1510-16

$$
17-23
$$

$$
24-48
$$

VI Repeating-key systems with mised cipher alphabets, II 27-30

$$
49-51
$$

VII Theory of indirect symmetry of position in secondary alphabets.
31

$$
52-59
$$VIII Application of princıples of indırect symmetry of position 32-36

IX Repeating-key systems with mixed cipher alphabets III $32-36$
$37-40$
X Repeating-key systems with mused cupher alphabets, IV

41-46
Appendix 1

$$
96-107
$$

$$
\text { Appendix } 2
$$

108-118
Index --
119-120

Sedtion I

INTRODUCTORY REMARKS

The essential difference betreen monoalphabetic and polyalphabetic substitution Paragraph
 Primary classification of penodic systems.

1 The essential difference between monoalphabetic and polyalphabetic substitution - a In the substitution methods thus far discussed it has been pointed out that their basic feature is that of monoalphabeticity From the cryptanalytic standpoint, nether the nature of the cipher symbols, nor their method of production is an essential feature, although these may be differentiating characteristics from the cryptographic atandpomt It is true that in those cases designated as monoalphabetic substitution with variants or multiple equivalents, there is a departure, more or le s considerable, from strict monoalphabeticity In some of those cases, indeed, there may be arailable two or more wholly independent sets of equivalents, which, moreover, may even be arranged in the form of completely separate alphabets Thus, while a loose terminology might permit one to designate such systems as polyalphabetic, it is better to reserve this nomencleture for those cases wherem polyalphabeticity is the essence of the method, specifically introduced with the purpose of imparting a positional variation in the substitutive equivalents for plan-text letters, in accordance with some rule directly or indirectly connected with the absolute positions the plam-text letters occupy in the message This point calls for amplfication
b In monoalphinbetic substitution with variants the object of having different or multiple cquivalents is to suppress, so far as possible by smple methods, the characteristic frequencies of the letters occurring in plain text As has been noted, it is by means of these characteristic frequencies that the clpher equivalents can usually be identified In these systems the varying equvalents for plan-text letters are subject to the free choice and caprice of the enciphering clerk, if he is careful end conscientious in the work, he wall really make use of all the different equivalents afforded by the cystem, but of he ic shp-shod and hurried in his work, he will use the same equivalents repeatedly rather than take pains and time to refer to the charts, tables, or diagrams to find the variants Moreover, and this is a crucial point, even of the individual enciphering clerks are extremely careful, when many of them employ the same system it is entirely impossible to insure a complete diversity in the encipherments produced by two or more clerks workirg at dufferent message centers The result is mevitably to produce plenty of repetitions in the texts emanating from several stations, and when texts such as these are all avalable for study they are open to solution, by a companson of their sumlarities and dufferences
c In true polyalphabetic ssstems, on the other hand, there is established a rather definite procedure which automatically determines the shifts or changes in equivalents or in the manner in which they are introduced, so that these changes are beyond the momentary whim or choice of the enciphening clerk When the method of shufting or changing the equivalents is scientifically sound and sufficiently complex, the research necessary to establish the values of the cupher characters is much more prolonged and difficult than is the case even in complicated monoalphabetic substitution with variants, as will later be seen These are the objects of true polyalphabetic substitution systems The number of such systems is quite large, and it will be possible to
describe in detal the cryptanalysis of only a few of the more common or typical examples of methods encountered in practical military communicaticns
d The three methods, (1) single-equivalent monoalphabetic substitution, (2) monoalphabetic substitution with variants, and (3) true polyalphabetic substitution, shew the following A In method (1), there is a set of between plan-text and cupher-text units
A symbols a plan-text letter in
A In method (1), there is a set of 26 symbols, a plan-text letter is always represented by one and only one of these symbols, conversely, a symbol always represents the same plain-text pherment and decipherment

B In method (2), there is a set of n symbols, where n may be any number greater than 26 and often is a multiple of that number, a plain-text letter may be represented by $1,2,3$, is the case in method (1) The symbol always represenis the same plain-text letter, the same as variable in encipherment but The equivalence between the plam-text and the cipher letters is

C In method (3) there is, as in the first method, a set of 26 symbols, a plein-text letter may be repiesented by $1,2,3, \quad 26$ dufferent symbols, conversely, a symbol may repiesent $1,2,3$, $\quad 26$ different plain text letters, depending upon the system and the specific key The equivalence between the plan-text and the cipher letters is variable in both encipherment and decioherment

2 Pımary classification of polyalphabetic systems $-a \quad \Lambda$ prımaly classification of polyalphabetic svstems into two rather distinct types may be made (1) periodic systems and (2) aperiodic systems When the enciphering process involves a cryptographic treatment which is repetitive in character, and which results in the production of cyclic phenomena in the cryptographe text, the system is termed periodic When the enciphering plocess is not of the type described in the foregoing general terms, the avstem is termed aperiodu The substitution in
both cases involves the use of two both cases involves the use of two or more cipher alphabeis
b The cyclic phenomena mherent in a periodic system may be evhibited externally, in which case they are said to be patent, or they may not be exhibited externally, and must be un-
covered by a pieluminary step in the analysis, in which ease they covered by a preliminary step in the analysis, in which case they are sadd to be latent The
periodicity may be quite definite in nature, and therefore determable periodicity may be quite definite in nature, and therefore determunable with mathematical instances the periodicity is more or less fleable in character and even though it may be deter-
${ }^{1}$ There 18 a monoalphabetic method in ahich the inverse result obtains, the correspondence being constant in encupherme it but variable in decipherment, this is a method not found in the usual boohs on cryptography but in an essay on that subject by Edgar Allan Poe, entitled, in some editions of his worhs, A few words on secret
writing and, in other editions, Cryptography The mothod is to draw up an enciphering alphabet such as the following (using Poe's example)

In such an alphabet, because of repetitions in the cipher component, the plain-text equivalents are subject to a

This type of variabuity gives rise to ambiguities in decipherment A cipner group such as TIE , would yield character-text sequences as REG, FIG, TEU, REU, ete, which could be read only by contect No system of such a Fredman, Willham F, Edgar Allan Poe, Cryptographer, Signal Corps Bulletins Nos 97 and $98,1937-38$
minable mathematically, allowance must be made for a degree of varrabllty subject to limits minable mathematically, allowance must be made for a degree of varrability subject to limits
controlled by the specific system under investigation The periodicity is in this case said to be fexible, or varaable wuthun lumets

3 Prımary classification of periodıc systems - a Periodic polyalphabetic substitution systems may primarly be classified into two kinds
(1) Those in which only a few of a whole set of cipher alphabets are used in enciphering individual messages, these alphabets being employed repeatedly in a fixed sequence throughout each message Because it is usual to employ a secret word, phrase, or number as a key to determune the number, identity, and sequence with which the cipher alphabets are employed, and this key is used over and over again in encipherment, this method is often called the repeating-key system, or the repeating-alphabet system it is also sometimes referred to as the multiple-alphabet system because if the keying of the entre message be considered as a whole it is composed of multiples of a short key used repetitively ${ }^{2}$ In this text the designation "repeating-key system" will be used
(2) Those in which all the c1pher alphabets comprising the complete set for the system are employed one after the other successively in the encipherment of a message, and when the last alphabet of the series has been used, the encipherer begins over agam with the first alphabet This is commonly referred to as a progressive-alphabet system because the cipher alphabets are used in progression

4 Sequence of study of polyalphabetic systems - a In the studies to be followed in connection with polyalphabetic systems, the order in which the work will proceed conforms very closely to the classafications made in paragraphs 2 and 3 Periodic polyalphabetic substitution clphers will come first, because they are, as a rule, the smpler and because a thorough underslandme But in the final arelys the solution of examples of both types rests upon systems are solved But in the final analysis the solution of examples of if ypes is possible the conversion or reduction of polyalphabeticity into monoalphabeticity in minal monoalphabetic distributions to permit of solution by recourse to the ordinary principles of frequency
b Frrst in the order of study of periodic systems will come the analysis of repeating-key systems Some of the more sumple varieties will be discussed in detal, with examples Subsequently, ciphers of the progressive type will be discussed There will then follow a more or less detailed treatment of aperiodic systems
${ }^{2}$ French terminology calls this the "double-key method", but there is no logic in such nomenclature
(2) The plan component is a mixed sequence, the cipher component is normal (The secondary alphabets are muxed alphabets) (Par 26)

Section II

CIPHER ALPHABETS FOR POLYALPHABETIC SUBSTITUTION

Classification of cupher alphabets upon the basis of therr dervation Primary components and secondary alphabets
mmary componenents, cipher disks, and square tables
5 Classification of cipher alphabets upon the bass of the de-n tion processes in polyalphabetic methods involve the use of a plurality of cipher alphabets The latter may be derived by vanous schemes, the exact nature of which determines the phabets characternstics of the cipher alphabets and plays a very important role in the preparation and solution of polyalphabetic cryptograms For these reasons it is advisable, before proceeding to a discussion of the principles and methods of analysis, to point out these various types of cipher alphabets, show how they are produced, and how the method of ther production or derivation may be made to yeld important clues and short-cuts in analysis
b A primary classification of cipher alphabets for polyalphabetic substitution may be made into the two followng types
(1) Independent or unrelated cipher alphabets
(2) Derved or interrelated cupher alphabets
c Independent clpher alphabets may be disposed of in a very few words They are merely separate and distinct alphabets showing no relationship to one another in any way They may be compled by the vanous methods discussed in Section IX of Elementary Mulhtary Cryptography Teason of the absence of any wrelten by means of such alphabets is rendered more difficult br reason of the absence of any relationship between the equivalonts of one cipher alphabet and view of practicability in their production and then handling in cryptographing and decryptographing, alphabets of the second type
d Derved or interrelated alphabets, as their name indicates, are most commonly produced by the interaction of two primary components, which when juxtaposed at the various pounts of comcidence can be made to yield secondary alphabets

6 Primary components and secondary alphabets - Two basic, slidable sequences or components of n characters each will yield n secondary alphabets The components may be classified according to various schemes For cryptanalytic puiposes the following classfication wall be found

Case A The primary components are both normal sequences
(1) The sequences proceed in the same direction (The secondary alphabets are direct
(2) The sequences proceed in opposite durections (The secondary alphabets are reversed standard alphabets, they are also rectprocal cupher alphabets) (Par 132,14g)

Case B The primary components are not both normal sequences
(1) The plan component is normal, the cupher component is a mixed sequence (The secondary alphabets are maxed alphabets) (Par 16-25)
${ }^{1}$ See Sec, VIII and IX, Elementary Military Cryptography
c The letter A in this case may be termed the index letter, symbolized $A_{1} \quad$ The index lette constitutes the fourth element involved in the two equations applicable to the finding of equivalents by sliding components The four elements are therefore these

> (1) The key letter, θ_{k} (2) The index letter, θ_{1} (3) The plan-text letter, θ_{p} (4) The clpher letter, θ_{G}

The modex letter is commonly the mitial letter of the component, but this, too, is only a convention It maght be any letter of the sequence constituting the component as agreed upon by he correspondents However, in the subsequent discussion at will be assumed that the index letter us the initial letter of the component in which it is located, unless otherwise stated
d In the foregoing case the enciphering equations are as follows

$$
\text { (I) } K_{k}=A_{1}, P_{p}=Z_{c}
$$

But there is nothng about the use of shding components which excludes other methods of finding equivalents than that shown above For instance, despite the labeling of the two component ashown above, there is nothing to prevent one from seeking the plan-text letter in the com ponent labeled (2), that is, the cupher component, and taking as its cipher equivalent the lette Cipher

Thus
(1) ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ
(2)

FBPYRCQZIGSEHTDJUMKVALWNOX
Thus
Plan Kev
c Sunce cquations (I) and (II) (II) $K_{k}=A_{1}, P_{p}=K_{c}$ and plan-text letters, it is obvious that an accurate formula to, even with the same index, key, equations must ind and accurate formula to cover a specific parr of encipherng equations is located Thus, equations in what component each of the four letters comprising the (I) K^{2} ocated Thus, equations (I) and (II) should read
(II) K_{k} in component (2) $=\mathrm{A}_{1}$ in component (1), P_{p} in component (1) $=\mathrm{Z}_{\mathrm{c}}$ in component (2)

For the sake of brevity, the following notation u ill be used

$$
\text { (1) } \mathrm{K}_{\mathrm{t} 10}=\mathrm{A}_{1}, P_{n}=Z_{0}
$$

(1) $K_{\mathbf{\Sigma} / 2}=A_{t / 1}, P_{D / 2}=Z_{c / 2}$
(2) $\mathrm{K}_{\mathrm{k} / 2}=\mathrm{A}_{1 / 1}, \mathrm{P}_{\mathrm{D} / 2}=\mathrm{K}_{\mathrm{c} / 1}$

Employing two slidung com equation, there are, in all, twelve different resultents possiblers entering into an enciphering and the same set of four basic elements These twelve differencer the same set of components of twelve different enciphering conditions, as set forth below (the notation alo from a set paragraph e is used)
(1) $\theta_{\mathrm{k} / 2}=\theta_{1 / 1}, \theta_{\mathrm{D} / \Lambda}=\theta_{c / 2}$
(2) $\theta_{K / 2}=\theta_{1 / 1}, \theta_{D / 2}=\theta_{0 / 1}$
(3) $\theta_{\mathrm{K} / 1}=\theta_{1 / 2}, \theta_{\mathrm{D} / 1}=\theta_{\mathrm{c} / 2}$
(4) $\theta_{\mathrm{x} / 1}=\theta_{1 / 2}, \theta_{\mathrm{g} / 2}=\theta_{\mathrm{c} / 1}$
(5) $\theta_{k / 2}=\theta_{p / 1}, \theta_{1 / 1}=\theta_{0 / 2}$
(6) $\theta_{k / 2}=\theta_{0 / 1}, \theta_{i / n}=\theta_{D / 2}$
(7) $\theta_{\mathrm{K} / 2}=\theta_{\mathrm{D} / 1}, \theta_{1 / 2}=\theta_{\mathrm{c} / 1}$
(8) $\theta_{k / 2}=\theta_{c / 1}, \theta_{1 / 2}=\theta_{\mathrm{D} / 1}$
(9) $\theta_{\mathrm{K} / \Lambda}=\theta_{\mathrm{D} / 2}, \theta_{1 / \Lambda}=\theta_{\mathrm{c} / 2}$
(10) $\theta_{\mathbf{k} / \Lambda}=\theta_{\mathrm{o} / 2}, \theta_{1 / 1}=\theta_{\mathrm{D} / 2}$
(11) $\theta_{\mathbf{k} / /}=\theta_{p / 2} ; \theta_{1 / 2}=\theta_{\mathbf{o} / 1}$
(12) $\theta_{\Sigma / 1}=\theta_{0 / 2}, \theta_{1 / 2}=\theta_{D / 4}$
g The twelve resultants obtanable from juxtaposing shding components as indicated under the preceding subparagraph may also be obtamed etther from one square table, in which case welve difierent methous of finding equivalents must be apphed, or from twelve differcnt square tables, in which case one standard method of finding equivalents will serve all purposes
h If but one table such as that shown below as Table $1-\Lambda$ is employed, the various methods of finding equivalents are difficult to keep in mind

Table I-A

$$
\begin{aligned}
& \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ }
\end{aligned}
$$

$\bar{B} \mathrm{P}$
Q
I G S E
G
S E F T D J U M K V A
E H T $\overline{\mathrm{D}} \mathrm{J}$ J U M
$\bar{D} \frac{J}{J} \mathcal{U}$
U M K V A

V	A	L	W	N	O	X	F	B	P	Y	R	C	Q	Z	I	G	S	E	H	T	D	J	U	M

A L W
\bar{N} O

For example
(1) For enciphering equations $\theta_{\mathbb{k} / 2}=\theta_{1 / 1}, \theta_{\mathbb{D} / 1}=\theta_{0 / 2}$

Locate $\theta_{\mathfrak{p}}$ in top sequence, locate θ_{k} in first column,
θ_{c} is letter within the square at intersection of the two lines thus determined Thus.

$$
\mathrm{K}_{\mathrm{k} / 2}=\mathrm{A}_{1 / 1}, \mathrm{P}_{\mathrm{p} / 1}=\mathrm{Z}_{\mathrm{o} / 2}
$$

(3) For enciphering equations $\theta_{\mathrm{K} / 1}=\theta_{1 / 2}, \theta_{\mathrm{D} / 1}=\theta_{\mathrm{c} / 2}$

Locate θ_{k} in top sequence and proceed down column to θ_{1}
Locate θ_{s} in top sequence, θ_{e} is letter at other corner of rectangle thus formed Thus $\quad \mathrm{K}_{\mathrm{k} 11}=\mathrm{A}_{1 / 2}, \mathrm{P}_{\mathrm{D} / 1}=\mathrm{X}_{\mathrm{c}}$

Only three different methods have been shown and the student no doubt already has encountered difficulty in keeping them segregated in his mind It would obviously be very confusing to try to remember all twelve methods But if one standard or fixed method of findmg equivalents is follow ed with several different tables, then this difficulty disappears Suppose that the following method is adopted Arrange the square so that the plan-text letter may be sought in a separate sequence, arranged alphabetically, above the square and so that the key letter may be sought text letter in the top row arranged alphabetically, to the left of the square, look for the plainng within the square at the intersection let in the ist column to the left, find the letter standThen tuelve squares, equivalent to the twelve vertical and horizontal lines thus determined readily be constructed. They are all shown in and ${ }_{2}$ When these square tables are evamined Appendix 1, pp 96-107
In the first place, the tables may be pared so that one of a par a ay interesting points are noted other of the pan mav serve for deciphering, or rice versa For example tol enciphering and the reciprocal relationship to each other, III and IV, V and VI, VII and VIII, IX and X, XI and XII In the second place, the internal dispositions of the leliers, althourh the IX and X, XI and from the same pair of components, are quite diverse For example, in table I-B the horizontal sequences are identical, but are merely displaced to the right and to the left different interval according to the successive key letters Hence this square shows what may be termed a hor zontally-displaced, direct symmetry of the cipher component Vertically, it shows no symmetry, or if there is symmetry, it is not visible ${ }^{2}$ But when Tible I-B is more carefully examined, an If one tahe or indirect, vertical symmetry may be discerned where at first glance it is not apparent any ars in rous par of letters in the column is the same as the interval between the members of the homoloexample, consider the 2 d and 15 thumn, y the distance $2 s$ measured on the cipher component For and G in the $2 d$ column, and J and W in the 15 thed by L and I, respectively), take the letters P cipher component is 7 intervals, the distance 7 intervals This phenomenon imples a kond of hdd \mathcal{J} an on the same component is also the cipher square In fact, it may be stated that every table which sets forth in systemetry within the various secondary alphabets derivable by sliding two prmary sequences through all pait concidence to find cipher equivalents must show some kind of cymmetry both horizontally and
${ }^{2}$ It is truc that the first column within the table chows the plan-component sequence, but this $1 s$ merelv because the method of finding the equivalents in this case is such that this sequcnce is bound to appear in that he plann component in this case The same is true of Tables V and XI, it is also applicable to the first row of Tables IX and X
vertically The symmetry may be termed vissble or durect, if the sequences of letters in the rows (or columns) are the same throughout and are identical with that of one of the primary components, it may be termed hudden or indurect if the sequences of letters in the rows or columns are different, apparently not related to ether of the components, but are in reality decimations Whe
appendix 1 are examned in the light of the foregoing remarks, the type of symmetry found in each may be summarized in the following manner

Table	Horrzontal				Vertical			
	Visble or dreet		Invidble or unduect		Visible or direct		Invsible or indreat	
	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|l\|l\|l\|} \substack{\text { Follusuent }} \\ \text { compunt } \end{array}$	$\begin{gathered} \text { Follows } \\ \text { elpher } \\ \text { component } \end{gathered}$	$\begin{gathered} \text { F ollows } \\ \text { playn } \\ \text { component } \end{gathered}$		$\begin{gathered} \text { Follows } \\ \text { colifun } \\ \text { compent } \end{gathered}$	$\begin{gathered} \text { Follows } \\ \text { colliphen } \end{gathered}$	$\begin{aligned} & \text { Follows } \\ & \text { plinn } \\ & \text { component } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Follows } \\ \text { collsher } \\ \text { coupponent } \end{gathered}\right.$
I-		x						x
II,			x				x	
IIV		x				x		
$\begin{aligned} & \text { IV.- } \\ & \mathrm{V} . . \end{aligned}$		x	x		x			
VI.			x				x	
VII	x						x	
VIX	8						x	
X				${ }^{2}$				x
XI					x			
XII.		x				x		

Of these twelve types of cipher squares, corresponding to the twelve dufferent ways of using a par of slidug primary components to derive secondary alphabets, the ones best known and most often encountered in cryptographe studies are Tables I-B and II, referred to as beng of the Vigenère type, Tables V and $V I$, referred to as being of the Beaufort type, and Tables IX and X, referred to as beng of the Delastelle type It win be noted that the tables of the Delastelle type show no direct or visible symmetry, etther horizontally or vertically and because of this are supposed to yield more securrty than do any of the other types of tables But it will presently be shown that the supposed increase in security is more illusory than real
k The foregong facts concerning the various types of quadricular tables generated by diverse methods of using slding primary components or their equivalent rotating cipher disks will be employed to good advantage, when the studes presently to be undertaken will bring the student t ore pare has princeples, one and only one standard method fondung equralents by means of sliding components wall be selected from among the twelve avalable, as set forth in the preceding subparagraphs Unless otherwise stated, this method will be the one denoted by the first of the formulae listed in subpar $f, v z \quad \theta_{k / 2}=\theta_{1 / 1}, \theta_{D / 1}=\theta_{c}$
Calling the plain component " 1 " and the cipher component " 2 ", this will mean that the keyletter on the clpher component will be set opposite the mindex, which will be the first letter of the plan component, the plan-text letter to be enciphered will then be sought on the plan component and its equivalent will be the letter opposite it on the cipher component

Section III
THEORY OF SOLUTION OF REPEATING-KEY SYSTEMS
The three steps in the analysis of repeating-key systems
First stcp findung the length
General remarks on factorng---- the period---------- --
hird step solving the monoalphabetic distributionsonent monoalphabets. \qquad
\qquad Paragraph
----8
betic distributions.

8 The three steps in the analysis of repeating-key systems - a The method of enciphering according to the primeiple of the repeating key, or repeating alphabets is adequately explanned in Section XI of Elementary Milatary Cryptography, and no further reference need be made at this ame The analysis of a cryptogram of this type, regardless of the kind of cipher alphabets employed, or therr method of production, resolves itself into three distinct and successive steps of the exact number of alphabets involved in the cryptogram, is the same as the determinatio (2) Allocation of alphabets involved in the cryptogram
ex text into the respective cipher alpha bets to which they belong This is the step which reduces the polyalphabetic text to monoalphabetic terms,

Analysis of the individual monoalphabetic distributions to determme plan-text values of cipher letters in each distribution or alphabet
The foregong steps will be treated in the order in which mentioned The first step may be described briefly as that of determining the period The second step may be described brefly copher-text values

9 First step
the length step. finding the length of the period - a The determination of the period, that by the repeatur the key or the number of cipher alphabets involved in a cryptogram enciphered by the repeating-key method is, as a rule, a relatively simple matter The cryptogram itself usually manifests externally certain phenomena which are the direct result of the use of a repeatlig key The principles involved are, however, so fundamental in cryptanalysis that then short example of encipherment shown in Fig 1 This will be done in connection with
Message

THE ARTILLERY BATTALION MARCHING IN THE REAR OF THE ADVANCE GUARD KEEPS ITS COMBAT TRAIN WITH IT INSOFAR AS PRACTICABLE
(10)

11
[Key BLUE, using dreet standard alphabets] Cipher Alphabets

b Regardless of what system is used, identical plan-text letters enciphered by the same apher alphabet ${ }^{1}$ must yield identical cipher letters Referring to Fig 1, such a condition is brough about every time that identical plain-text letters happen to be enciphered with the same key-letter, or every time identical plam-text letters fall into the same column in the encipherment Now since the number of columns or positions with respect to the key is very luitable (except in the case of very long key words), and since the repetition of letters is an inevitable condition in plain text, it follows that there will be in a message of fair length many cases wy the identual plam-text letters must fall into the same column They will thus be enciphered by the same ciphel alphabet, resulting, therefore, in t_{1} pioduction of many identical letters in the cipher text and these will represent identical letters in the plan text When identical plain-text
polygraphs fall into identical columns the result is the formation of identical cipher-text polypolygraphs fall into identical columns the result is the formation of identical cipher-text polygraphs, that is, repetitions of groups of $2,3,4$, letters are exhibited in the cryptogram
Repetitions of this type will hereafter be called causal repettions, because they are produced by Repetitions of this type will hereafter be called causal repetitions, because they are produced by a definite, traceable cause, vzz, the encipherment of identical letters by the same cipher alphabets
c It will also happen, however, that different plain-text letters falling in different columns will, by mere accident, produce identical cipher letters Note, for example, in Fig 1 that in Column $1, R_{p}$ hecomes S_{c} and thatin Column $2, H_{p}$ also becomes S_{c}. The production of anndentical and encephered by different alphabets) is merely fortuitous It is, in every day language"
 mere comcilence accudental repetitions
$d \Lambda$ consideration of the phenomenon pointed out in c makes it obvious that in polyalphabetic ciphers it is important that the cryptanalyst be able to tell whether the repetitions he finds in a specific case are causal or accidental in their orgin, that is, whether they represent actual in a specific case are causal or accidental in their orgin, that is, whether they represent actual
encipherments of identical plain-text letters by identical keying elements, or mere coincidences encrpherments of identical plan-
e Now accidental repetitions will, of course, happen farrly frequently with individual letters, but less frequently with digraphs, because in this case the same kind of an "accident" must take place twice in succession Inturtively one feels that the chances that such a purely fortuitous comerdence will happen two tumes in succession must be much less than that it will happen every once in a while in the case of single letters Similarly, intuition makes one feel that the chances of such accidents happening in the case of three or more consecutive letters are still less than in the case of digraphs, decreasing very rapidly as the repetition increases in length
f The phenomena of cryptographic repetition may, fortunately, be dealt with statistically, thus taling the matter outside the realm of intuition and putting it on a firm mathematical or objective basis Moreover, often the statistical analysis will tell the cryptanalyst when he has arranged on cearranged his text properly, that is, when he is approaching or has reached monoalphabeticity in his efforts to reduce polyalphabetic text to its simplest terms However, in order to preserve contmuity of thought it is deemed madvisable to inject these statistical considerations at this place in the text proper, they have been mcorporated in Appendix 2 hereof The student is advised to study the Appendux very carefully after he has finshed readng this section of the text
g At this point it will merely be mdicated that if a cryptanalyst were to have at hand only $g \mathrm{At}$ this point it will merely be indicated that if a cryptanalyst were to have at hand only
the cryptogram of F_{1}. 1, with the repetitions underlmed as below, a statistical study of the
\qquad
1 It is to be understood, of course, that cipher alphabets with single equivalents are meant in this case
2 The frequency with which this condition may be expected to occur can be definitely calculated cussion of this point falls beyond the scond of the present text
number and length of the repetitions within the message (Par 5 of Appendix 2) would tell him that whule some of the diglaphic repetitions may be accuental, the chances that they all ar accidental are small In the case of the tetragraphic repetition he would realize that the chances of its beng accidental are very small indeed

h A consideration of the facts therefore leads to but one conclusion, $v_{2} z$, that the repetitions exhibited by the cryptogram under investigition are not acculental but are causal in their origin, and the cause is in this case not difficult to find repctitions in the plain text were actually enUSYE fol cample foll both times in eractly the same rela, Vote for example, that UYSE in Fir 1 repicsents in both cases the plan-text polygraph THEA The first time it occurred it fell in positions 1-2-3-4 with respent to the key, the second time it occurred it happened to fall in the very same relative positions, although it might just as well
 key, $v z z, 2-3-4-1,3-4-1-2$, or 4-1-2 3
\imath Lest the student be n.sled, however, a few more words are necessary on thas subject In the precedung subparagraph the word "happened" was used, this word correctly expresses the idea in mind, because the inserion or deletion of a smgle plan-text letter between the two occurrences would have thrown the second occurrence one letter forward or backward, respec tively, and thus caused the polygiaph to be enciphered by a sequence of alphabets such as can no longer produce the cupher polygraph USYE from the plan-text polygraph THEA On the other hand, the insertion or deletion of this one letter might bring the letters of some other polygraph into simular columns so that some other repetition would be exhibited in case the USYE repetition had thus been suppiessed
${ }^{3}$ The encipherment of simular letters by simular cipher alphabets is therefore the cause of the production of repetitions in the cipher text in the case of repeating-key ciphers What principles can be derived from thus fact, and how can they be employed in the solution of cryptograms of this type?
k If a count is made of the number of letters from and including the first USYE to, but not ancluding, the second occurrence of USYE, a total of 40 letters is found to intervene between the two occurrences This number, 40, nust, of course, be an exact multiple of the length of the key Having the plain-text before one, il is easiy seen that it is the 10th multuple, that is, the 4-letter ey has repeated sel 0 mes between he frst and the second occurence of er e, the the of the fors of the number 40 would be equal to the length of the hey The word "sofely" is used in the preceding sentence to mean that the interval 40 apples to a repetiten of 4 letters and at has been shown that the to mean that the interval 40 apphes to a rcpetition of 4 letters and $1 t$ has been shown that the chances that this repetition is accidental are small The factors of 40 are $2,4,5,8,10$, and 20
So far as this single repetition of USYE is concerned, if the length of the key were not known, all that could be said about the latter would be that it is equal to one of these factors The repetition by itself gives no further indications How can the exact factor be selected from among a list of several possible factors?
l Let the intervals between all the repetitions in the cryptogram be listed They are as follows

Reretition	Inter a 1	Factors
1 1st USYE to 2 d USYE.	40	2, 4, 5, 8, 10, 20
1st BC to 2d BC--- - . --	16	2, 4, 8
1 1st CX to 2d CX--	25	5
1st EC to 2d EC --	88	2, 4, 11, 22, 44
1st LE to 2 ddE Le	16	2, 4, 8
2d LE to 3d LE		2,4
1st LE to 3d LE	20	2, 4, 5, 10
1st JY to 2d JY	8	2,4 4
1st PL to 2d PL - -	24	2 3, 4, 6, 8 10, 12
1 st SC to 2 d SC (1st SY to 2 d SY, already meluded in USYE)	52	2, 4, 1b, 2 b
(1st US to 2d US, already included in USYE) 2d US to 3d US.		
(1st US to 3d US, already included in USYE) (1st YE to 2 d YE, alrcady included in USYE)	36	2, 3, 4, 6, 9, 18

m Are all these repetitions causal repetitions? It can be shown (Appendis 2, par 4c) that the odds aganst a theory that the UYSE iepetition is a cidental are about 99 to 1 (since the probability for its occur rence is 01) It can also be chown that the odds aganst a theory that the 10 digraphs which occur two or more times are accidental repetitions ane over 4 to 1 (Appendix
2 , par 5c), the odds against a theory that the two digraphs which 2, par $5 c$), the odds aganst a theory that the two digraphs which occur 3 times are accidental
repetitions are quite large (Probability is calculated to be about 06) The great, therefore, that all or nearly all these repetitions are causal Certamly the chances against the two occurrences of the tetragraph UYSE and the three occurrences of the two different digams (LE and US) being accidental are quite high, and it is therefore not astomshing that the intervals between all the various repetitions, except in one case, contan the factors 2 and 4
n This means that if the cipher is written out in either 2 columns or 4 columns, all these repetitions (except the CX repetition) would fall into the same columns From this it follows that the length of the key is either 2 or 4 , the latter, on practical grounds, being more probable than the former Doubts concerning the matter of choosing between a 2 -letter and a 4 -letter key will be dissolved when the cupher text is distributed into its component uniliteral frequency distributions
o The repeated dygraph CX in the foregoing message is an accidental repetition, as will be appaient by roferring to Fig 1 Had the message been longer there would have been more such accidcutal repetitions, but, on the other hand, there would be a proportionately greater number of causal repetitions This is because the phenomenon of repetition in plain text is o all-per vading
p Sometimes it happens that the cryptanalyst quickly notes a repetition of a polygraph of four or moie letters, the interval between the first and second occurrences of which has only two factors, of which one is a relatively small number, the other a relatively high incommensurable number He may therefore assume at once that the length of the key is equal to the
smaller factor without searching for additional recurences smaller factor without searching for additional recurrences upon which to corroborate his the first and second occurrences of a polyeraph of five letters cryptogram the interval between 203, the factors of which are 7 and 29 Evidently the number of alphabets may at once be
assumed to be 7 , unless one is dealing with messages exchanged among correspondents known to use long keys In the latter case one could assume the number of alphabets to be 29
q The foregoing method of determining the period in a polyalphabetic cipher is commonly eferred to the hiterature as "factoring the intervals between repetitions", or more often it is simply called "factonng" Because the latter is an apt term and is breef, it will be employed hereafter in this text to designate the process

10 General remarks on factoring - a The statement made in Par 2 with respect to the cyclic phenomena sad to be exhibited in cryptograms of the periodic type now becomes clear The use of a short repeating key produces a periodicity of recurrences or repetitions collectively termed "cyclic phenomena", an analysis of which leads to a determunation of the length of the period or cycle, and this gives the length of the key Only in the case of relatively short cryptograms enciphered by a relatively long key of the number of cipher alphabets in a repeathg-key cipher, and or course, hee fion and test of 1 ts periode noture It also follows that if the cryptogram is not a repeating-key cipher, then factorng will sow ind conversely the fact that it does not yield definite results at once indicates that the cry ptogram is not a periodic, repeating-key cipher
b There are two cases in which factorng leads to no definite results One is in the case of monoalphabetic substitution cuphers Here recurrences are very plentiful as a rule, and the monoalphals separating these recurrences may be factored, but the factors will show no constancy, there will be several factors common to many or most of the recurrences This in itself is an indication of a monoalphabetic substitution cipher, if tae very fact of the presence of many recurrences fails to impress itself upon the inexperienced cryptanalyst The other case in which the process of factoring is nonsignificant involves certan types of nonperiodic, polyalphabetic ciphers In certan of these cuphers recurrences of digiaphs, tugraphs, and even polygraphs may be plentiful in a long message, but the intervals between such recurrences bear no definite multiple relation to the length of the key, such as in the case of the true periodic, repeating-key cipher, in which the alphabets change with successive letters and repeat themselves over and over agam
c Factoring is not the only method of determinng the length of the period of a periodic, polyalphabetic substitution cepher, although it is by far the most common and easily applied At this point it will merely be stated that when the message under study is relatively short in comparison with the length of the key, so that there are only a few cycles of cipher text and no long repetitions affording a basis for factorng, there are several inng those other methods Hows, the will be explaned subsequently it desirable at this juncture merely to at thisate that methods other than factorme do exist and are used in practical work
d Fundamentally, the factoring process is merely a more or less simple mathematical method of studying the phenomena of periodicity in cryptograms It will usually enable the cryptanalyst to asceitan definitely whether or not a given cryptogram is periodic in nature, and if so, the length of the period, stated in terms of the cryptographe unit moolved By the latter so, the length of the period, stated an the pacess may be appled not only in analyzing the periodicity manifested by cryptograms in which the plan-tevt unts subjected to cryptographic treatment are monographic in nature (1 e are single letters) but also in studyng the periodicity exhbited by those occasioral ciyptogiams wheren the plan-text units are digraphe, trigraphic, of n-graphic in character The student should bear this point in mind when he comes to the study of substitution systems of the latter sort However, the present text will deal solely with cases of the former type, whenem the plan-text units subjected to ciyptographe treatment are single letters

11 Second step distributing the cipher text into the component monoalphabets -a After the number of cipher alphabets involved in the cryptogram has bcen ascel tanned, the next step is to rewrite the message in groups corresponding to the length of the key, or in columnar fashon, whichever is more convement, and this antomaticaly divies up the text so that the columnar method is used, fall in the same colunill The letters are thus allocated or distributed to the respectre cipher alphabets to which they belong This reduces the polyalphabetic ext to monoalphabetic terms ext to monoalphabetic terms
b Then separate uniliteral frequency distıbitions for the thus isolated individual alphabets alphabets are involved, and having rewritten the cipher on page 13, naving determined that fou tion is made of the letters in Column 1, anothor is made of the letters in Column 2, and so on for the rest of the columns Lach of the resulting distinbutions as therefore a monoalphabetic frequency distribution If these distributions do not give the characteristic arregular crest and trough appearance of monoalphabetic frequency distributions, then the anaysis whin led to the hypothesis as regards the number of alphabets hivolved is fallacious in fact, the appearance of these individual distributions may be considered to be an inder of the correctness of the factoring process, for theoretically, and practically, the individual distibutions constructed upon the correct hypothess will tend to conform more closely to the rrregular crest and trough appearacn of a monoalphabetic fiequency distribution than will the graphic tables constructed upon an 12. Third step,
12. Third step. solving the monoalphabetic distributions - The difficulty experienced in analyzing the mdividual or isolated fiequency distributions depends nostly upon the type of cipher alpnabets that is used It is apparent that mixed alphabets may be used just as easily as tandard alphabets, and, of course, the cipher letters themselves give no indication as to which a umhteral frequency distribution gives clear indicaticns as to whether the cupher alphabet is a standard or a mixed alphabet, by the relative positions and extencions of the crests and troughs in the table, so it is found that in the case of repeating-key ciphers, umiliteral frequency distribu tions for the isolated or individual alphabets will also give clear indications as to whether these alphabets are standard alphabets or mised alphabets Only one or two such frequency distribu tons aie necessary for this determination, if they appear to be standard alphabets, simular distr butions can be made for the rest of the alphabets, but if they appear to be mixed alphabets, then it is best to compile triliteral frequency distributions for all the alphabets The analysis of the values of the cipher letters in each table proceeds along the sane lines as in the case of monoalpha etic ciphers The analysis is more difficult only because of the reduced size of the tables, but ff the message be very long, then each frequency distribution will contan a sufficient number of lements to enable a speedy solution to be acheved

Sectron IV
REPEATING-KEY SYSTEMS WITH STANDARD CIPHER ALPHABETS
olution by applying principles of frequency Solution by applying principles of frequency--
Solution by completing the plan--component sequence
Spution $---\quad 13$
\qquad
\qquad .----. $-\quad-14$

13 Solution by applying principles of frequency $-a$ In the light of the foregoing principles, let the following cryptogram be studied

			Message		
	$A \underline{U} K H$	J A MKI	$\mathrm{Z} Y \mathrm{M} \mathrm{M}$ W	J M I G X	N F M L X
B	ETIMI	Z HBH	A YM ZM	I LVME	JK UTG
C	D PVXK	Q UKH	L H V R M	JA Z NG	GZVX E
D	NLUEM	PZJNV	CHUAS	HKQ GK	I PLW P
E	A J XXI	GUMTV	D PTEJ	ECMy	QYBAV
F	A LAHY	POEX ${ }^{\text {P }}$	PVNYE	EYXEE	U D P X
G	BVZVI	ZIIVO	SPTEG	KUBBR	Q L L X P
H	WF QGK	NLLL	P TIKW	D	G 010
J	ZLAMV	K FMW	NPLZ I	0 VVV	Z K T X G
	NLMDF	A AEX	J LUFM	PZJN	C A I G I
	UAWPR	NVIW	JKZ AS	Z LA FM	H S

a search for repetitions discloses the following short list with the intervals and factors A searchited (for previous experience may lead to the conclusion that it is unlkely that the above 10 omitted inves more than 10 alphabets, showing the number of recurrences which it does)

Repertiton	Location	Interval	Factors
LUFMPZJNVC	D1, K 3	160	2, 4, 5, 8, 10
JXXIG	E1, H4	90	2, 3, 5, 6, 9, 10
EJK	B4, L2	215	
PTE	E3, G3	50	2, 5, 10
gGk	D4, H1	85	
UKH	A1, C2	55	5
ZLA	J1, L4	65	3, 5, 7,
AS	D3, L3	175	${ }_{5}^{3,5,7,}$
EJ	B4, L2	115	
FM	A5, D1	57	3
FM	A5, J2	185	
FM	J2, ${ }^{\text {J4, }}$		$2,3,4,6$
${ }_{\text {FM }}$	J4, K3	20 30	$2,3,5,6,10$
$\underset{\text { FM }}{\text { J }}$	K3, A2, C4	60	$\begin{aligned} & 2,3,4,5,6,10 \end{aligned}$
LA	F1, J1	75	3,5
LA	J1, L4	${ }^{65}$	
L	G5, H2	10	
NL	D1, H2, K1		$3,5,7$ $3,5,9$
NL	H2, C1, C5	45 20	a, $2,4,5,10$
$\begin{aligned} & \text { YX } \\ & \text { YM } \end{aligned}$	${ }_{\text {A3, }}$ B3	${ }_{25}$	5

b The factor 5 appears in all but two cases, each of which melves only a digraph It seems almost certan that the number of alfhabets is five Since the text alicady appears in groups of
five letters, it is unnecessary to rewnite the mesare five letters, it is unnecessary to rewnite the messare The next step is to make a unilteral frequency distribution for Alphabet 1 to see if it can be detemmed whether or not standard alpha-
bets are involved bets are involved It is as follows

Alphabef 1
A B C
c Although the indications are not very cluas cut, yet if one takes into consideration the small amount of data the assumption of a direct standard alphabet mith $W_{c}=A_{p}$, is worth further test Accordingly a simlai distribution is made for Alphabet 2

Alphabft 2

d There is every indication of direct stand rod alphat et, with $H_{c}=A_{p}$ Let similar distributions be made for the last three alphebets They are as follows

Miphabfit 3

Alphabet 4

Alphabet 5

 e After but little experiment it is found that the distributions can best be made to fit the normal when the following values are assumed

AIrhabet 1. Alphabet 2 Alphabet 3 Alphabet 4 Alphabet 5

Alphabet $5 \quad \begin{aligned} & A_{\nu}=E_{c}\end{aligned}$
the correctness of the analysis is, of course, to the equivalents of A_{p}. WHITE The real proof of cryptogram The five complete cipher alphabets are as fallues of the solved alphabets on the Plam.-.-------- - ABCDEFGHT K
 WXYZABCDEFGHI-JKLQRNOTUVWXYZ HIJKLMNOPQRSTUVWXYZAQRCDUV I JKLMNOPQRSTUVWXYZABCDEEFGH
TUVWXYZABCDEFGHI EFGHIJKLMNOPQRSTUVWXYZAQRD flgure 2
g Applying these values to the first few groups of our message, the following is found
Cipher
Plain \qquad $\begin{array}{llllllllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 3 \\ A & U & K & H & Y & J & A & M & K & I & Z & Y & M & W & M & J & M & I & G & X & N & F & M & L & X\end{array}$ Plan.----- ENCOUNTEE DREDINFANT RYEST
h Intelliginle text at once results, and the solution can now be completed very quickly The complete message is as follows

ENCOUNTERED RED INFANTRY ESTIMATED AT ONE REGIMENT AND MACHINE GUN COMPANY IN TRUCKS NEAR EMMITSBURG AM HOLDING MIDDLE CREEK NEAR HILL 543 SOUTHWEST OF FAIRPLAY WHEN FORCED BACK WILL MONLE CREEK NEAR HILL CREEK HAVE DESTROYED BRIDGES ON MIDDLE CREEK BETWEEN EMMITSBURG-TANEYTOWN ROAD AND RHODES MILL
\imath In the foregoing example (which is typical of the system erroneously attributed, in cryptographic literature, to the French cryptogiapher Vigenère, although to do hum justice, he made no claim of having "invented" it), direct standad alphabets were used, but it is obvious that reversed standard alphabets may be used and the solution accomplished in the same manner In fact, the now obsolete cipher disk used by the United States Army for a number of years yrelds exa tly this type of cipher, which is also known in the literature as the Beaufort Cipher, and by other names In fitting the isolated frequenc y d

14 Solution by completing the plan-component sequence -a There is another method solving the type of cipher, which is worthwhle explaning because the underlying principles will be found useful in many cases It is a modification of the method of solution by completing the plan-component sequence, alıeady explaned in Mihtary Cryptanalysss, Part I
b After all, the individual alphabets of a cipher such as the one just solved are merely rect standard alphabets It has been seen that monoalphabenic ciphers in which standard direct standard alphabets It has been seen that monoalphabetic ciphers in which standard
cipher alphabets are employed may be solved almost mechanically by completing the plaincipher alphabets are employed may be solved almost mechanically by completing the plan-
component sequence The plan text reappears on only one generatrix and this generatrix is the same for the whole message It is easy to prck this generatrix out of all the other generatrices because it is the only one which yields inteHigible text Is it not apparent that if the same process is applied to the cipher letters of the indvovdual alphabets of the cipher just sol ved that the plaintext equivalents of these letters must all reappear on one and the same generatrix? But how will the generatrix which actually contans the plan-text letters be distingushable from the other generatrices, since these plan-text letters are not consecutive letters in the plam text but only letters separated from one another by a constant interval The answer is simple The plaintext generatrix should be distingushable from the others because of will show more and a better assortment of hagh-frequency letters, and can thus be selected by the eye from the whole set of generatrices If this is done with all the alphabets in the cryptogram, it will merely be necessary to assemble the letters of the thus selected generatrices in proper order, and the result sould be onsecutive letters forming intelligible text
c An example will serve to make the process clear Let the same message be used as before Factoring showed that it involves five alphabets Let the first ten cipher letters in each alphabet be set down in a horizontal line and let the normal alphabet sequences be completed Thus
\qquad figorf 3
$\begin{array}{ll}\text { ILWGLMHZMT } & \text { YJMXXIRMEG } \\ \text { ILXHMNIANU } & \text { ZJNYYJSNFH }\end{array}$ $\begin{array}{ll}\text { ILXHMNIANU } & \text { ZJNYYYSNFH } \\ \text { JMYINOJBOV } & \text { AKCZZKTOGI }\end{array}$ KNZJOPKCPW AKCZZKTOGI LOAKPQLDQX CMQBBMVOIK MPBLQRMERY DNRCCNWRJL NQCMRSNFSZ EOSDDOXSKM ORDNSTOGTA FPTEEPYTLN PSEOTUPFUB GQUFFQZUMO QTFPUVQIVC HRVGGRAVNP RUGQVWRJWD ISWHHSBWOQ SUHRWXSKXE ISWHHSBX TWISXYTLYF JTXIITCXPR UXJTYZUMZG KUYJJUDYQS UXJTYZUMZG LVZKKVEZRT VYKUZAVNAH MWALLWFASU WZLVABWOBI NXBMMXGBTV
XAWWBCXPCJ YBNXCDYQDK OYCNNYHCUW ZCOYDEZREL PZDOOZIDVX ADPZEFASFM QAEPPAJEWY BEQAFGBTGN RBFQQBKFXZ CFRCGHCUHO TDHRRCLGYA DGSCHIDJIP UEITSTENTAC EHTDIJEWJQ FIUEJKFXKR WGKUVGPKCE GJVFKLGYLS XHLWWHQLDF
d If the high-frequency generatrices underlined in Figure 3 are selected and their letters are juxtaposed $\imath n$ columns the consecutive letters of intelligible plain text immediately present
themselves Thus

For Alphabet 1, generatux 5.... For Alphabet 2, generatrix 20 For Alphabet 3, generatinx 19 \qquad For Alphabet 4, generatrix 8 \qquad For Alphabet 5, generatrix 23	
Columnar juxtaposition of letters from selected generatrices.	1 2 3 4 5 E N C 0 U N T E R E D R E D I N F A N T
	RYEST
	IMATE
	DATON
	EREGI
	MENTA
	(NDMAC

21

Plam text EnCOUNTERED RED INFANTRY ESTIMATED AT ONE REGIMENT AND MAC

e Solution by this method can thus be acheved without the complation of any frequency tables whatever and is very quickly attained The inexperienced cryptanalyst may have diffitables whatever and is very quickiy a.ttaned The inexperienced cryptanalyst may have difi
culty at first im selecting the generatrices which contan the most and the best assortment of culty at first in selecting the generatrices which contan the most and the best assortment of
high-frequency letters, but with mereased practice, a high degree of prof ciency is attaned After all it is only a matter of experment, trial, and error to selcet and assemble the proper generatrices so as to produce intelligible text
f If the letters on the shding strips were accompanied by numbers representing ther relative frequencies in plain text, and these numbers were added across each generatix, then that gen eratrix with the highest total frequency world theoretcally always be the plan-text generatrix Practically it will be among the generatrices which show the first three or four greatest totals Thus, an entrrely mathematical solution for this type of capher may be applied
g If the cupher alphabets are reversed standard alphabets, it is only necessary to convert the cupher letters of each isolated alphabet into therr normal, plam-component equivalents and then proceed as in the case of dirct standard alphabets
h It has been seen how the key nord may be discovered in this type of cryptogram Usually the key is made up of those letters in the successive alphabets whose equivalents are A_{p} but othe conventions are of course possible Sometimes a key number is used, such as $8-4-7-1-12$, which means merely that A_{p} is represented by the eighth letter from A (in the normal alphabet) in the first cipher alphabet, by the fourth letter from A in the second cipher alphabet, and so on This modification is known in the literature as the Gronsfeld copher However, the method of solution as illustrated above, being independent of the nature of the key, is the same as before

15 Solution by the "probable-word method "- a The common use of key words in crypwhere the more detaled method of analysis using fiequency distributions or by completing the plan-component sequence is of no aval In the case of a very short message which may show o recurrences and give no indication as to the number of alphabets myolved, this modufied method will be found most useful
b Brefly, the method consists in assuming the presence of a probable word in the messare, and referring to the alphabets to find the key letters applicable when this hypothetical word is and referring to the alphabets to find the key letters apphcable when this hypothetical word is
assumed to be present in various positions in the cipher text If the assumed word happens to assumed to be present in various positions in the cipher text if the assumed word happens to
be correct, and is placed in the correct position in the message, the key letters produced by referring to the alphabets will yield the key word In the following example it is assumed that reversed standard alphabets are known to be used by the enemy

Message

MDSTJ LQCXC KZASA NYYKO LP
c Extraneous circumstances lead to the assumption of the presence of the word AMMUNITION One may assume that this word begins the message Using slidng normal components, one reversed, the other direct, the key letters are ascertained by noting what the successive equivalents of A_{p} are Thus

forward and another trial is made
Cipher DSTJLQCXCK C K
Plan tex "Key"-DEFDYYVFQX

This also yelds no intelligible key word One contmues to shift the assumed word forward one space at a time until the following point is reached
Clpher.
LQCXCKZASA
"Key".-
LCORPSSIGN

The key now becomes evident It is a cyclic permutation of SIGNAL CORPS It should be clear that sunce the key word or key phrase repeats itself during the encipherment of such a message, the plain-text word upon whose assi med presence in the message this test is being tion if it is longer than the key When this is the case it and contmue over nto its next repetition if it is longer than the key When this is the case it is merelv necessary to shift the latter part of the sequence of key letters to the first part, is in case noted LCORPSSIGN is transd It will be seen in the foregoing method of solus
d It will be seen in the foregoing method of solution that the length of the key is of no tion of the length and elements of the key comes after the solution rather than before it In this case the length of the period is seen to be cleven, corresponding to the length of the hey (SIGNAL CORPS)
e The foregoing method is one of the other methods of determing the length of the key (besides factoring), referred to in Par $10 c$
f If the assumption of reversed standad alphabets yields no good results, then direct standard alphabets are assumed and the test made exactly in the same manner As will be shown subsequently, the method can also be used as a last resort when muxed alphabets are employed
g When the assumed word is longer than the key, the sequence of recovered key letters will show a periodicity equal to the length of the key, that is, after a certain number of letters the sequence of key letters will repeat This phenomenon would be most useful in the case of key that are not intelligible words but are composed of random letters or figures Of course, if such a key is longer than the assumed word, this method is of no aval
h This method of solution by searching for a word is contingent upon the following circumstances
(1) That the word whose presence is assumed actually occurs in the message, is properly spelled, and correctly encuphered
(2) That the sliding components (or equivalent cipher disks or squares) employed in the search for the assumed word are actually the ones which weie employed in the encipherment are such as to give identical results as the ones which were actually used
(3) That the par of encipheing equations used in the test is actually the pair which was employed in the encipherment, or if a cipher square is used in the test, the method of finding (See par 9)

23
\imath The foregoing appears to be quite an array of contingencies and the student may think that on this account the method will often fall But examining these contingencies one by one, it will be seen that successful application of the method may not be at all rare-after the solution fovored by the enemy From the foregoing remark it is to be methodsed of employing them are method has its greatest usefulness not in an intial solution of a system, but only after successful study of enemy communications by more difficult processes of analysis has told its story to the alert cryptanalyst Although it is commonly attributed to Bazeries, the French cryptanalyst alert cryptanalyst Although it is commonly attributed to Bazeries, the French cryptanalyst
of 1900, the probable-word method is very old in cryptanalysis and goes back several centuries Its usefulness in practical work may best be indicated by quoting from a competent observer ${ }^{1}$ There is another [method] which is to this first method what the geometric method is to analysis in certain
sciences, and, according to the whims of indviviuals, certain cryptanalysts prefer one to the other Certain others, sciences, and, according to the whims of individuals, certann cryptanalysts prefer one to the other Certain others,
nncapabe o getting the answer wwth one of the methods in the solution of a difficult problem, conquer it by means of the other, with a disconcerting masterly stroke This other method 18 that of the piobable word We may have more or less definite opinons concerning the subject of the cryptogram We may know something about 1 ts date, and the correspondents, who may have been indiscreet in the subject they have treated On this basis, the mpltary or daplomatic telegrams, banking and mining affars, ete, it is not impossible to make very mportant military or diplomatic teegrams, banking and mining affarrs, ete, it 18 not impossible to make very important
assumptions about the presence of certann words in the text Atter a cryptanalyst has worked for a long time with the writings of certain correspondents, he gets used to their expressions He gets a whole load of words to try out, then the changes of hey, and sometmes of system, no longer throw into his nav the difficulties of an absolutely new study, which might requre the analvtical method
${ }^{1}$ Givierge, M , Cours de Cryptographe, Paris, 1925, p 30

Stction V

REPEATING-KEY SYSTEMS WITH MIXED CIPHER ALPHABETS, I

Abstract

Princolples of dred alphabets Principles of drect symmetry of position nitial steps in the solution of a typical erample Application of pruciples of drect symmetry of position.- Subsequent steps in solution -- Completing the solution. Solution of subsequent mes ----.----------- ummation of relative frequencoes as an and to the cipher component Solution by the probable-word method when plan component is mixed, the cupher component, the normal

16. Reason for the use of mixed alphabet - It ha thus far that the use of several alphabets in the same message does ne the examples considered analysis of such a cryptogram There are three reasons why this is no greatly comphcate the few alphabets u ere employed, secondly, these alphabets were cmployed in a periodin or reatively manner, givng rise to cychic phenomena in the cryptociam, by means of which the number alphabets could be determined, and, thirdiv, the cipher sulphabets were known alphabets by which is meant merely that the sequences of letters in toth components of the cupher alphabets were known sequences
b In the case of monoalphabetic ciphers it $"$ as found that the use of a mixed alphabet delayed the solution to a consideralle degice, and it will now be seen that the use of muxed alphabets in polyalphabetic ciphers renders the analysis much more dufficult than the use of standard alphabets, but the solution is still farrly easy to achieve

17 Interrelated muxed alphabets - a It was stated in Par 5 that the method of producing in the analysis of tha a poly alphabetic cupher often affords clues which aie of great assistance are interrelated secondary alphabets This is 40 , of counse, only when the cipher alphabets are interrelated secondary alphabets produced by sliding components or their equivalents Reference is now made to the classification set forth in Par 6, in connection with the types of only Cases A (1) and (2) have been treated Case B (1) will now be discussed
b Here one of the components, the plan component is the normal
cipher component is a mised sequence, the various juxtopositions of the two componce, while the muxed alphabets The muxed component may be a systematically-muxed or a random-mured sequence If the 25 successive displacements of the mixed component are recorded in separato lmes, a symmer in form with the square table shown on p 7, labeled Table I-A
(1) Plain
(2) Plain LEAVNWORTHBCDFGIJKMPQSUXYZ AVNWORTHBCDFGIJKMPQSUXYZIE VNWORTHBCDFGIJKMPQSUXYZLEA NWORTHBCDFGIJKKMPQSUXYZLEA WORTHBCDFGIJKMMPQSUXYZLEAVN ORTHBCDFGIJKMPQSUXYZLEAVN RTHBCDFGIJKMPQSUXYZLEAVNWO THBCDFGIJKMPQSUXYZLEAVNWOR HBCDFGIJKMPQSUXYZLEAVNWORT BCDFGIJKMPQSUXYZLEAVNWORTH CDFGIJKMPQSUXYZLEAVNWORTHB DFGIJKMPQSUXYZLEAVNWORTHBC FGIJKMPQSUXYZLEAVNWORTHBCD GIJKMPQSUXYZLEAVNWORTHBCDF IJKMPQSUXYZLEAVNWORTHBCDFG KMPQSUXYZLEAVNWORTHBCDFGIJ MPQSUXYZLEAVNWORTHBCDFGTJK PQSUXYZLEAVNWORTHBCDFGIJKM QSUXYZLEAVNWORTHBCDFGIJKM SUXYZLEAVNWORTHBCDFGIJKMPQ UXYZLEAVNWORTHBCDFGIJKMPQS XYZLEAVNWORTHBCDFGIJKMPQSU
 ${ }^{\text {figure } 5}$
c Such a clpher square may be used in cxactly the same manner as the Vigenère square With the key word BLUE and conforming to the normal enciphering equations ($\theta_{\Sigma / 2}=\theta_{1 / 1}, \theta_{D / 2}=$ $\theta_{\mathrm{c} / 2}$), the following lines of the square would be used

ABCDEFGHIJKLMNOPQRSTUVWXYZ BCDFGIJKMPQSUXYZLEAVNWORTH LEAYN NXAR NHBCDFGISKMPQSUXYZ EAVNWORTHBCDFGI JKMPQSUXYZL Fruezal $a \mathrm{a}$
These lines would, of course, yyeld the following cipher alphabets
\qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ
\qquad CDFGIJKMPQSUXYZLEAVNWORTH

Cipher
(3) Plain_- \qquad EAVEFGHIJKLMNOPQRSTUVWXYZ
\qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ
\qquad
(4) Clpher. ABCDEFGHIJKLMNOPQRSTUVWXYZ EAVNWORTHBCDFGIJKMPQSUXYZL

18 Principles of direct symmetry of position - a It was stated directly above that Fig 5 is a symmetical cipher square, by which is meant that the letters in its successive horizontal lines show a symmetry of position with respect to one another They constitute, in reality, one and only one sequence or series of letters, the sequences beng merely displaced surcessively 1 2, 3, intervals The symmetry exhibited is obvious and is said to be visible, or direct This fact can be used to good advantage, as has ahcady been alluded to in par 73
b Consider, for example, the pair of letters G_{a} and V_{0} in cupher alphabet (1) of $F_{1 g} 6 b$ The letter V_{o} is the 15 th letter to the right of G_{o} In cipher alphabet (2), $V_{0} 1 s$ also the 15 th letter to the right of G_{o}, as is the case in each of the four cipher alphabets in $\mathrm{F}^{\prime} \mathrm{g}$ 6b, since the relative positions they occupy are the same in each horizontal line in Fig 6a, that is, in each of the successive recordngs of the capher component as the 1 tter is sld to the right aganst the plain or normal component If, therefore, the relative positions occupied by two letters, θ_{1} and θ_{2}, in such a cipher alphabet, C_{1}, are known, and if the position of θ_{1} in another cipher alphabet, C_{2}
 the following values in four cupher alphabets have been tentatively detemined
mined
ollowing values in four cipher alphabets have been tentatively determined

c The cupher components of these four secondary alphabets may, for convenience, be assembled into a cellular structure, hereinafter called a sequence reconstruction skeleton, as shown in Fig $7 b$ Regarding the top line of the reconstruction skeleton in Fig $7 b$ as being common to all four secondary apher alphabets histed in Fig 7a, the successivelines of the reconstruction skeleton may now be termed cupher alphabets, and may be referred to by the numbers at the lef

d The letter G is common to Alphabs 1 and 2 I 1 bhet 2 tis the 10th position to the left of G, and the letter P occupies the 5 th position to the N occupes the 10th position to the left of G, and the letter P occupies the 5th position to the right of G being placed 10 letters before G, and the letier $P, 5$ letters after G Thus

Thus, the values of two new letters in Alphabet 1, viz, $\mathrm{P}_{\mathrm{o}}=\mathrm{J}_{\mathrm{p}}$, and $\mathrm{N}_{\mathrm{o}}=\mathrm{U}_{\mathrm{p}}$ have beecu automatically determined, these values were obtained without any andlyss based upon the frequency of P_{c} and $N_{0} \quad$ Lukewise, in Alphabet 2, the letters Y and V may be inserted in these positions Plann
 Plain

This gives the new values $V_{c}=D_{D}$ and $Y_{o}=Y_{D}$ in Alphabet 2 Alphabets 3 and 4 have a common etter I, which permits of the placement of Q and W in Alphabet 3, and of B and L in Alphabet 4
e The new values thus found are of couse immednately inserted thoughout the ciyptogram, thus leading to the assumption of further values in of reconstruction of the primary components, by the applucation of the prisiples hastens colution of position to the cells of the reconstruction skeleton, thus facilitates and hestens solntion
f It must be clealy understood that before the pinciples of direct sinmetry of position can be apphed in cases such as the foregong, at is necessary inat ine plan so long as the sequence is sequence Whether it is the normal sequence or not is immatenal, so long as the sequence is by the cryptanalyst because he has no base upon which to try out has assumptions fol symmetry In other words, durect symmetry of position is manifested in the illustrative example because the plan component is a known sequence, and not because it is the normal alphabet The significance of this point will become apparent later on in connection with the problem discussed in Par 266
19 Intial steps in the solution of a typical example - $-a$ In the light of the foregong principles let a typical message now be studied

			Mrssage		
A	QWBRI	VWY C A	I S P J L	R B Z E Y	QWYEU
B	W M G W	I C	MTZEI	M I B K N	QWBRI
C	VWY I G	B W N B Q	Q C G Q H	IW J K A	GEGXN
D	IDMRU	VEZYG	QIGVN	C TGY	B
E	VCGXG	B K ZZG	IV PCU	NTZA	BWFE
F	QLFCO	MTYZT	C C B Y Q	0	G D G I G
G	V PWMR	QIIEW	I C C X G	B L G Q Q	VBGR
H	MYJ JY	Q VFWY	R W	G X N F	M C J K X
J	IDDRU	OPJQQ	2	V	R D G D G
K	BXDBN	PXFPU	Y X N_F G	MPJEL	SANCD
L	SEZZG	I BEYU	K D H C A	M	K L L C J
M	MFDZT	C TJRD	M I Y ZQ	ACJR	S B G Z N
N	QYAHQ	VEDCQ	LXNCL	LVVCS	QWBI
P	IVJRN	W N B	V PJEL	TAGDN	G
Q	ATYEW	C BYZT	EVGQU	V P Y H	Z N Q
R	A	IKW J Q	RD ZYF	Z L	G W F J Q
	Q	I B W R X			

b The principal repetitions of three or more letters have been underined in the message and the factors (up to 20 only) of the intervals between them are as follows

QWBRIVWY

CGXGB	$60=2,3,4,5,6,10,12,15,20$
PJEL	$95=5,19$
ZZGI	$145=5$
BRIV.-	$285=3,5,15,19$
BRI .-	$45=3,5,9,15$
KAG_-	$75=3,5,15$
QRD	$165=3,5,15$
QWB	$45=3,5,9,15$
QWB	$275=5,11$
WIC.	$130=2,5,10,13$
XNF.	$45=3,5,9,15$
YZT	$225=3,5,15$
ZTC. .	$145=3,5$

The factor 5 is common to all of these repetitions, and there seems to be evely indication that five alphabets are involved Since the message already appears in groups of five letters, it is unnecessary in this case to rewrite it in groups corresponding to the length of the key The unditeral frequency distribution for Alphabet 1 is as follows
c Attempts to fit this distribution to the normal on the basis of a duect or reversed standard alphabet do not give positive results, and it is assumed that mixed alphabets are standard Individual trinteral frequency distributions are then compled and are shown in Fig 9 These tables are similar to those made for single mixed alphabet ciphers, and are made in the same way except that instead of taking the letters one after the other, the letters which belong to the serarate alphabets now must be assembled in scparate tables For example, in Alphabet 1 , the tigraph QAC means that A occurs in Alphabet 1, Q, its prefix, occurs in Alphabet 5, and C, its suffix, occurs in Alphabet 2 All confusion may be avoided by placing numbers indicating the alphabets in which they belong above the letters, thus QAC

alpabbet

Alpeabet 2

Alphabet 3

A B	D E	F	G H I	I	K L	1 N	0	P		s	T	U	W	x	Y	
YH WR	PB BY	WE	CQ RC IE	CC	IC WG	G WB		SJ				vc	PM		WC	BE
IX	PK	LC	EX DC	wK		R wF							kJ			TE
WR	DR	VW	IV	yJ		XF							BR			EY
cy	WY	XP	TY	cK		XF										KZ
WI	XB	wz	CX	PQ		AC										TA
NR	FZ	WJ	DI	PE		xC										EZ
	EC		CX	BJ		IB										
			LQ	TR												
			BR	CR												
			DD	vR												
			BZ	PE												
			${ }^{\text {ad }}$	WY												
			$\stackrel{\text { RQ }}{\text { vo }}$													

Aiphabet 4

30
Alpasbet 5

Condensed table of repetition
$1-2-3-4-5-1-2-3$
QWBRIV F Y-2
$2-3-4-5-1$
$C G X G B$
$\stackrel{2-3-4-1}{P}$
$3-4-5-1$
$B-R-I-V$
$\mathrm{B}-\mathrm{R}-\mathrm{I}-\mathrm{V}$
$\mathrm{Z}-\mathrm{Z}-\mathrm{G}-\mathrm{I}-2$

Frace 9
d One now proceeds to analyze each alphabet distribution, in an endeavor to establish dentufications of cipher equivalents First, of cousse, attempts should be made to separate the vowels from the consonants in each alphabet, using the same test as in the case of a sing the vowels from the consonants in each the le no doubt about the equivalent of E_{p} in each alphabet

$$
\mathrm{E}=\stackrel{1}{\mathrm{I}_{\mathrm{c}}}, \stackrel{2}{\mathrm{~W}_{\mathrm{c}}}, \stackrel{3}{\mathrm{G}_{0}}, \stackrel{4}{\mathrm{C}_{\mathrm{c}}}, \stackrel{5}{\mathrm{Q}_{\mathrm{e}}}
$$

e The letters of greatest frequency in Alphabet 1 are $I, M, Q, V, B, G, L, R, S$, and $C \quad I_{0}$ has already been assumed to be E_{p} If $\stackrel{2}{W_{c}}$ and $\stackrel{5}{Q_{c}}=E_{p}$, then one should be able to distinguish the vowels from the consonuts among the letters M, Q, V, B, G, L, R, S, and C by exammeng the prefixes of $\stackrel{2}{W}_{0}$, and the suffixes of $\stackrel{5}{Q}^{\text {c }}$. The prefixes and suffixes of these letters, as shown by the triliteral frequency distributions, are these

$$
\begin{array}{lc}
\text { Prefixes of } \stackrel{2}{W}_{0}\left(=\stackrel{2}{=}_{p}\right) & \text { Suffixes of } \stackrel{5}{Q_{0}}\left(=\stackrel{5}{E_{p}}\right) \\
Q G K \vee R B I L & \overline{\bar{Q}} \overline{\bar{R}} \overline{\mathrm{X}} \overline{\mathrm{~L}} \overline{\mathrm{~V}} \overline{\mathrm{~A}} \overline{\mathrm{Z}} \overline{0}
\end{array}
$$

f Consider now the letter $\stackrel{1}{M_{e}}$, it docs not occur either as a prefix of $\stackrel{2}{W_{0}}$, or as a suffix of $\stackrel{5}{Q_{0}}$ Hence it is most probably a vowel, and on account of ats high frequency it may be assumed to be $O_{D} \quad O_{5}$ the other hand, note that Q_{c} occurs five times as a prefix of W_{c} and three times as a suffix of Q_{b} It is therefore a consonant, most probably R_{D}, for it would give the dygraph $\mathrm{ER}\left(=Q Q_{\mathrm{c}}\right)$ as occurring three times and $\operatorname{RE}\left(=Q W_{\mathrm{c}}\right)$ as occurring five times
g The letter $\stackrel{1}{V}_{0}$ occurs three times as a prefix of $\stackrel{2}{W}_{0}$ and twice as a suffix of $\stackrel{s}{q}_{0}$ It is therefore a consonant, and on account of its frequency, let it be assumed to be T_{D} The letter B_{a}^{1} occurs twice as a prefix of W_{s} but not as a suffix of Q_{0}. Its frequency is only medium, and it is probably a consonant In fuct, the twice repeated digiaph $B W_{0}$ is once a part of the trigraph ${ }_{G B W}{ }^{12}$, and \dot{G}_{c}, the letter of second highest frequency in Alphabet 5, looks excellent for T_{D} Mught not the trigraph GBW be THE? It will be well to keep this possibility in mind
 be a vowel, but one can not be sure The letter $\frac{1}{L_{0}}$ occurs once as a prefix of ${\underset{W}{W}}^{2}$ and once as a suffix of Q^{5} 。 It may be considered to be a consonant $\quad \stackrel{1}{R_{e}}$ occurs once as a prefix of ${ }_{W}^{2}$, and twice
 prefix of $\stackrel{2}{W}_{c}$ or as a suffic of $\dot{b}_{\text {e }}^{b}$, both would seem to be vowels, but a study of the prefixes and suffixes of these letters lends more weight to the assumption that ${ }^{\frac{1}{C}}{ }_{c}$ is a vowel than that ${ }^{\frac{1}{S}} \mathbf{~} 15$ a vowel For all the prefixes of $C, v 1 z, \frac{5}{N}, \stackrel{5}{T}$, and $\stackrel{5}{W}$, ane in subsequent analysis of Alphabet 5 classified as consonants, as are likewise its suffives, viz, T, C, and B in Alphabet 2 On the other hand,

more often associated with consonants than with other vowels, it would seem that ${ }_{\mathbf{C}}^{\mathbf{C}}{ }_{\mathrm{c}}$ is more
 unclassified
e Goong through the same steps with the remaining alphabets, the followng results are
obtained

Alphabet	Consonnts	Vowels
1	Q. V, b, L, R, GP	I, M, C
2	B, C, D, T	W, P, I
3	J, N, D, Y, F	G, z
5		

20 Application of principles of direct symmetry of position - a The next step is to try to determine a few values in each alphabet In Alphabet 1, from the foregoing analysis, the following data are on hand

Let the values of E_{D} already assumed in the remaining alphabets, be set down in a reconstruction skeleton, as follows
Plain.|c|

b It is seen that by good fortune the letter Q is common to Alphabets 1 and 5 , and the letter Cis common to Alphabets 1 and 4 . If it is assumed that one is dealing with a case in which a mixed component is slding aganst the normal component, one can apply the principles of durect symmetry of position to these alphabets, as outlined in Par 18 For example, one may insert the followng values in Alphabet 5

c The process at once gives three definite values $\stackrel{5}{M}_{0}=B_{p}, \stackrel{5}{V}_{c}=G_{p}, \stackrel{5}{I}_{0}=R_{p} \quad$ Let these deduced values be substantiated by referring to the frequency distribution Sunce B and G are normally low or medium frequency letters in plan text, one should find that M_{c} and V_{o}, their hypothetical equivalents in Alphabet 5, should have low frequencies As a matter of fact, they do not appear in this alphabet, which thus far corroborates the assumption On the other hand since $\stackrel{5}{I}_{a}=R_{p}$, if the values derived from symmetry of position are correct, ${ }^{5} I_{c}$ should be of high frequency, and reference to the distribution shows that I_{0} is of high frequency The position of C_{5} is doubtful, it belongs either under N_{p} or V_{p} If the former is correct, then the frequency of C_{0} should be high, for $1 t$ would equal N_{p}, if the latter is correct, then its frequency should be low, for it would equal V_{0} As a matter of fact, C_{c} does not occur, and $1 t$ must be concluded that it belongs under V_{D} This in turn settles the value of $\stackrel{1}{\mathrm{C}}_{\mathrm{c}}$, for it must now be placed defintely under I_{p} and removed from beneath A_{p}
d The definite placement of C now permits the insertion of new values in Alphabet 4, and one now has the followng
Plain_-

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	\mathbf{S}	\mathbf{T}	\mathbf{U}	V	\mathbf{W}	\mathbf{X}	\mathbf{Y}

Figure 12
21 Subsequent steps in solution - a It is high time that the thus far deduced values, as recorded in the reconstruction skeleton, be inserted in the ciphei text, for by this time it must seem that the analysis has certanly gone too far upon unproved hypotheses The followng results are obtamed

			Message		
A	$\begin{aligned} & \text { QWBRI } \\ & \text { RE B R } \quad \text { R } \\ & \hline \end{aligned}$	$\begin{aligned} & V W^{2} Y C A \\ & T E \\ & \hline \end{aligned}$	${ }_{\mathrm{E}} \mathrm{~S}^{\mathrm{P}} \mathrm{~J} \mathrm{~L}$	R B Z E Y	$\begin{aligned} & Q W{ }^{5} \mathrm{Y} E \mathrm{U} \\ & R E \end{aligned}$
B	$\mathrm{L} \underset{\mathrm{E}}{\mathrm{W}} \mathrm{M}$ G W	$\begin{aligned} & \text { I CJ C I } \\ & \mathrm{E} \\ & \mathrm{E} R \end{aligned}$	$\begin{array}{cc} \text { M T Z E I } \\ 0 & \text { R } \end{array}$	$\begin{aligned} & \text { M I B K N } \\ & 0 \end{aligned}$	$\begin{array}{r} \text { QW BRI } \\ \text { RE } \quad \text { R } \\ \hline \end{array}$
C	$\begin{aligned} & \text { V WY I G } \\ & \text { TE E A } \end{aligned}$	$\begin{array}{cc} B \underset{E}{W} N B \\ E \end{array}$	$\begin{aligned} & \text { QCGQ Q } \\ & R \quad E N \end{aligned}$	$\begin{aligned} & \text { I W J K A } \\ & \text { E E } \end{aligned}$	$\operatorname{GEE}_{\mathrm{E}}^{\mathrm{G} X N}$

34

D	$\begin{aligned} & \text { I DMRU } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { VE Z Y G } \\ & \text { T } \end{aligned}$	$\begin{aligned} & \text { Q I G V N } \\ & \text { R EP } \end{aligned}$	$\underset{\mathrm{I}}{\mathrm{C}} \underset{\mathrm{E}}{\mathrm{G}} \mathrm{Y} \mathbf{0}$	B P D B L
E	$\begin{aligned} & \text { V C GXG } \\ & T \quad \underset{E}{ } \end{aligned}$	B K Z Z G	$\underset{E}{\text { I V X X }} \underset{\mathrm{E}}{\mathrm{C}}$	NTEAO	$\begin{gathered} \text { B W F F } \\ \mathrm{E} \\ \mathrm{Q} \\ \mathrm{E} \end{gathered}$
F	$\begin{aligned} & \text { Q L F C } \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \text { M T Y Z T } \\ & 0 \end{aligned}$	$\begin{array}{llll} \text { C C B Y } \\ \text { I } & & \text { E } \end{array}$	0 P D K A	$\text { G D } \underset{\mathrm{E}}{\mathrm{G}} \mathrm{I} \mathrm{G}$
G		$\begin{aligned} & \text { Q I I E W } \\ & R \end{aligned}$	$\underset{E}{\text { I C G X G }}$	$\begin{array}{r} B L G Q Q \\ E N E \end{array}$	$\begin{aligned} & \text { V B GR S } \\ & \text { T } \quad \text { E } \end{aligned}$
H	$\begin{aligned} & \text { M Y J J Y } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Q V F W Y } \\ & \text { R } \end{aligned}$	$\underset{\mathrm{E}}{\mathrm{R}} \underset{\mathrm{~N}}{\mathrm{~N}} \mathrm{~F} \mathrm{~L}$	G X N F W	$\underset{0}{M} \mathrm{C} \text { J K X }$
J	I D DRU	$\begin{array}{r} \text { OP J Q Q } \\ \\ \mathrm{N} E \end{array}$	$\underset{\text { E R }}{\text { Z }}$	$\begin{aligned} & \text { V W D Y Q } \\ & \text { TE E } \end{aligned}$	$\underset{E}{R D G}$
K	B X D B N	P X F P U	Y X N F G	$\begin{aligned} & \text { M P J E L } \\ & 0 \end{aligned}$	$\text { SAN } \underset{E}{C}$
L	S E Z Z G	$\underset{\text { E B E Y U }}{ }$	$\text { K D H } \underset{\text { E }}{\text { C A }}$	$\underset{0}{\mathrm{M} B} \mathbf{~ J ~ J ~ F ~}$	$\text { K I L } \underset{E}{C}$
M	$\underset{0}{\text { M F D Z T }}$	$\underset{\mathrm{I}}{\mathrm{C}} \mathrm{~T} \text { JRD }$	$\begin{array}{cc} M & I Y \\ 0 & \\ 0 & \text { Q } \end{array}$	A C J R R	$\underset{\mathrm{E}}{\mathrm{~S} B \mathrm{G}}$
N	$\begin{array}{ll} \text { Q Y A } H \\ R & \text { Q } \end{array}$	$\begin{array}{cc} V E & \text { C Q } \\ \text { T } & \text { E E } \end{array}$	$\underset{\mathrm{E}}{\mathrm{~L} X \mathrm{X}} \mathrm{C}$	$\text { LVV } \underset{E}{C}$	$\begin{aligned} & \text { Q W B I I } \\ & \text { RE AR } \\ & \hline \end{aligned}$
P	$\begin{aligned} & \text { I V J R N } \\ & \underline{E} \end{aligned}$	WNBRI	$\begin{aligned} & \text { V P J E L } \\ & T \end{aligned}$	$\underset{E}{T A G N}$	$\begin{aligned} & \text { IRGQ P } \\ & \text { E E N } \end{aligned}$
Q	ATYEW	$\underset{\mathrm{I}}{\mathrm{C}} \mathrm{BYYZ}$		$\begin{aligned} & \text { V P Y H L } \\ & \text { T } \end{aligned}$	LRZN $\underset{\mathrm{E}}{\mathrm{L}}$
R	X I N B A	$\begin{gathered} \text { I K W J Q } \\ \text { E } \\ \text { E } \end{gathered}$	R D Y Y F	$\underset{E}{\text { K }} \underset{\mathrm{F}}{\mathrm{~F}} \mathrm{Z} \mathrm{~L}$	$\underset{E}{G W} \underset{E}{\text { F }}$
S	$\begin{array}{cc} \text { Q W J Y Q } \\ \text { REE } & \text { E } \end{array}$	I B W R X			

b The combinations given are excellent throughout and no meonsistencies appear Note the trigraph QNB^{123}, which is repeated in the following polygraphs (underined in the foregoing text)

$$
\begin{aligned}
& \begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 1 \\
Q & W & B & R & I & V \\
R & E & & & R & T
\end{array}
\end{aligned}
$$

c The letter ${ }_{B_{0}}$ is common to both polygraphs, and a little magination will lead to the assumption of the value ${ }^{3}{ }_{0}=P_{p}$, yielding the following

$$
\begin{array}{lllllllllllll}
1 & 2 & 2 & 4 & 5 & 1 & & b & 1 & 2 & 3 & 4 & 5 \\
Q & W & B & R & I & V & S & Q & W & B & I & I & I \\
R & E & P & 0 & R & T & P & R & E & P & A & R & E
\end{array}
$$

 frequency distributions are consulted to see whether the frequencies given for $\stackrel{5}{G}_{6}$ and ${ }_{P}^{2}$ are hugh enough for T_{p} and A_{p}, respectively, and also whether the frequency of ${ }_{W_{0}}{ }^{3}$ is good enough for C_{p}, it is noted that they are excellent Moreover, the digraph ${ }^{51} \mathrm{~GB}_{0}$, which occurs four times, looks like TH, thus making $B_{0}=H_{p}$ Does the insertion of these four new values in our diagram of alphabets bring forth any inconsistencies? The insertion of the value ${ }^{2}{ }_{\mathrm{P}}^{\mathrm{c}}=\mathrm{A}_{\mathrm{p}}$ and ${ }^{1} \mathrm{~B}_{\mathrm{o}}=\mathrm{H}_{\mathrm{p}}$ gives no indrcations either way, sunce nether letter has yet been located in any of the other alphabets The insertion of the value ${ }_{G}^{5}=T_{p}$ gives a value common to Alphabets 3 and 5 , for the value $\mathrm{G}_{\mathrm{o}}=\mathrm{E}_{\mathrm{p}}$ was assumed long ago Unfortunately an inconsistency is found here The letter I has been placed two letters to the left of G in the muxed component, and has given good results in Alphabets 1 and 5 , if the value ${ }^{\frac{3}{W}}=C_{p}$ (obtained above from the assumption of the word TTACK) is correct, then W, and not I, should be the second letter to the left of G Which shal be retained? There has been so far nothing to establish the value of $\mathrm{G}_{\mathrm{c}}=E_{\mathrm{p}}$, this value was assumed from frequency considerations solely Perhaps it is wrong It certanly behaves lik vowel, and one may see what happens when one changes 1 ts cements in the reconstruction skeleton result from values have been added as a result of the clues affiorded by the deductions

Plaın		A	B	C	D	E	F	G	G	H	I	J	K	L	M	N		0	P	Q	R	S	T		U			X		
				S		I			G	B	C							M		P	Q	Q	v		W					
		P	Q	R	V	W									S			I		G	B	B								
Capher		R	V	W									S		I			G	B	C							M			Q
		I		G	B	C							M		P		Q	R	V	W										
			M		P	Q	R		v	W									S		I		G		B					

e Many new values are produced, and these are inserted throughout the message, yielding the following

22 Completing the solution - a Completion of solution is now a very easy matter The muxed component is finally found to be the followng sequence, based upon the word EXHAUSTING
EXHAUSTINGBCDFJKLMOPQRVWYZ
and the completely reconstructed skeleton of the cipher square is shown in Fig 13b
\qquad
\square (1-... Cupher

	P	Q	R	V	W	Y Y		Z	E	X	H	A	U	S	T	I	N	N	G	B	C	D	F	J	K	L		,	0
	R	V	W	Y	Z	2 E	E	x	H	A	U	S	T	I	N	G	B	B	c	D	F	J	K	L	M	0		P	Q
4	I	N	G	B	C	D		F	J	K	L	M	0	P	Q	R	V	V	下	Y	Z	E	X		A			S	I
	L	M	0	P				V	W	Y	Z	E	x	H	A				T	I	N	G	B	C	D			J	K

b Note that the successive equivalents of A_{p} spell the word APRIL, which is the key for the nessage The plan-text message is as follow s

REPORTED ENEMY HAS RETIRED TO NEWCHESTER ONE TROOP IS REPORTED AT HENDERSON MEETING HOUSE TWO OTHER TROOPS IN ORCHARD AT SOUTHWEST EDGE OF NEW-
CHESTER 2 DD SQ TS PREPARING TO ATTACK FROM THE SOUTH ONE TROOP OF 3 D SQ IS CHESTER 2D SQ IS PREPARING TO ATTACK FROM THE SOUTH ONE TROOP OF 3D SQ IS NEWCHESTER FROM THE NORTH MOVE YOUR SQ INTO WOODS EAST OF CROSSROAD 539 AND E PREPARED TO SUPPORT ATTACK OF 2D AND 3D SQ DO NOT ADVANCE BEYOND NEWCHESTER MESSAGES HERE
c The preceding case is a good example of the value of the principles of drect symmetry of position when apphed properly to a cryptogram enciphered by the slidng of a muxed component aganst the normal The cryptanalyst starts off with only a very limited number of assumptions and builds up many new values as a result of the placement of the few orignal values in the reconstruction skeleton

23 Solution of subsequent messages enciphered by the same cupher component -a Preliminary remarks -Let it be supposed that the correspondents are using the same basic or promary component but with dfferent key words for other messages Can the knowledge of the sequence of letters in the reconstructed primary component be used to solve the subsequent alphabet was used, the process of completing the plain component could be appled to solve ubsequent messages in which the same apher component was used, oven though the aphe omponent was get at a dufferent key letter A modification of the procedure used in that cas an be used in this case, whare a plurality of caphor a component is used.

6 The message - Let it be supposed that the following message passing between the same b The message -Let it be supposed that the following message
two correspondents as in the preceding message has been intercepted

Message

SFDZR	YRRKX	MIWLL	AQRLU	RQFRT	IJQKF	XUWBS	MDJZK
MICQC	UDPTV	TYRNH	TRORV	BQLTI	QBNPR	RTUHD	PTIVE
RMGQN	LRATQ	PLUKR	KGRZF	JCMGP	IHSMR	GQRFX	BCABA

OEMTL PCXJM RGQSZ VB

c Factoring and conversion into plain component equivalents-The presence of a repetition of a four-letter polygraph whose interval is 21 letters suggests a key word of seven letters There are very few other repetitions, and this is to be expected in a short message with a key of such length

RKXMIWL		V PBRHXQ
LAQRLUR		QDUVQEV
QFRTIJQ		UNVGHOU
KFXUWBS		P ${ }^{\text {b E EXK }}$ F
MDJZKMI	d Transcription into periods - Let the message	RMOZPRH
CQCUDPT	be written in groups of seven letters, in columnar	LULEMTG
VTYRNHT	fashion, as shown in Fig 14 The letters in each	WGYVICG
RORVBQL	column belong to a single alphabet Let the letters	VSVWKUQ
T I Q B P P	in each column be converted into their plan-com-	GHUKITV
RTUHDPT	ponent equivalents by setting the reconstructed	VGECMTG
IVERMGQ	clpher component against the normal alphabet at any	HWAVRJU
NLRATQP	arbitrarily selected point, for example, that shown	IQVDGUT
L UKRKGR	below	QEPVPJV
ZFJCMGP		ZNOLRJT
IHSMRGQ		HCFRVJU
RFXBCAB		V NBKLDK
AOEMTLP		DSARGQT
CX JMRGQ		L BORVJU
S Z V B		F Z W K
Fravar 14		Ftuove 15
Plam.	ABCDEFGHIJKLMNOPQRSTU	W X Y Z
Cipher-----	EXHAUSTINGBCDFJKLMOPQ	V W Y Z

The columns of equivalents are now as shown in Fig 15

e Examınation and selection of generatrices - It has been shown that in the case of a monoalphabetic cipher it was merely necessary to complete the normal alphabet sequence beneath the plan-component equivalents and the plan text all reappeared on one generatrix It was text equivalents of each al a multiple-alphabet cipher mvolving standard alphabets, the plainto combine the proper generatrices in case at hand both processes are combined the normal alphabet sequence is continued beneath the letters of each column and then the generatrices are combined to produce the plain text The completely developed generatrix dagrams for the first two columns are as follows (Fig 16) 1 GWRVQSMXWHWIJRAIWEMG 2 HXSWRTNYXIXJKSBJXFNH 3 IYTXSUOZYJYKLTCKYGOI 4 JZUYTVPAZKZLMUDLZHPJ 5 KAVZUWQBALAMNVEMAIQK 5 KAVZUWQBALAMNVEMAIQK
6 LBWAVXRCBMBNOWFNBJRL
7 MCXBWYSDCNCOPXGOCKSM 7 MCXBWYSDCNCOPXGOCKSN 8 NDYCXZTEDODPQYHPDLTN 10 PFAEZBVGFQFRSAJRFNVP 11 QGBFACWHGRGSTBKSGOWQ 12 RHCGBDXIHSHTUCLTHPXR 13 SIDHCEYJITIUVDMUIQYS 14 TJEIDFZKJUJVWENVJRZT 15 UKFJEGALKVKWXFOWKSAU 16 VLGKFHBMLWLXYGPXLTBV 17 WMHLGICNMXMYZHQYMUCW 18 XNIMHJDONYNZAIRZNVDX 19 YOJNIKEPOZOABJSAOWEY 20 ZPKOJLFQPAPBCKTBPXFZ 21 AQLPKMGRQBQCDLUCQYGA 22 BRMQLNHSRCRDEMVDRZHB 23 CSNRMOITSDSEFNWESAIC 24 DTOSNPJUTETFGOXFTBJD
25 EUPTOQKVUFUGHPYGUCKE
comone 2
NPDNNMUGSHGWQENCNSBZ 1 OQEOONVHTIHXRFODOTCA 2 PRFPPOWIUJIYSGPEPUDB 3 QSGQQPXJVKJZTHQFQVEC 4 RTHRRQYKWLKAUIRGRWFD 6 TVJTTSAMYNMCWKTITYHF 7 UWKUUTBNZONDXLUJUZIG 8 VXLVVUCOAPOEYMVKVAJH 9 WYMWWVDPBQPFZNWLWBKI 10 XZNXXWEQCRQGAOXMXCLJ 11 YAOYYXFRDSRHBPYNYDMK 12 ZBPZZYGSETSICQZOZENL 13 ACQAAZHTFUTJDRAPAFOM 14 BDRBBAIUGVUKESBQBGPN 15 CESCCBJVHWVLFTCRCHQO 16 DFTDDCKWIXWMGUDSDIRP 17 EGUEEDLXJYXNHVETEJSQ 18 FHVFFEMYKZYOIWFUFKTR 19 GIWGGFNZLAZPJXGVGLUS 20 HJXHHGOAMBAQKYHWHMVI 21 IKYIIHPBNCBRLZIXINWU 22 JLZJJIIQCODCSMAJYJOXV 23 KMAKKJRDPEDTNBKZKPY 24 LNBLLKSEQFEUOCLALQZ 25 MOCMMLTFRGFVPDMBMRA
 menting with these generatrices the 23d generatrix of Column 1 and C C F I R S T the 1st of Column 2, which yield the dygraphs shown in Fig 17a, are combined The generatrices of the subsequent columns are selected in order to build up the plan text The results are shown se 17 irg The proces is a very valuable ard in the solution of messages after the primory component has been recovered as a result of the longer and more detaled analysis of the frequency distributions of the first message intercepted Very often a short message can be solved in no other way than the one shown, if the primary component is completely known
g Recovery of the key -It may be of interest to find the key ord for the message Assuming that enciphering method number 1 (see Par 7f, page 6) were known to be employed, all that is necessary is to set the mixed component of the cipher alphabet underneath the plan component so as to pioduce the clpher letter indicated as the equivalent of any given plain-text letter in each of the alphabets For example, in the first alphabet it is noted that $C_{p}=S_{c}$ Adjust the two components under each other so as to bing S of the clpher component beneath C of the plain component,

Clamer--ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ EXHAUSTINGBCDFJKLMOPQRVWYZ

It is noted that $A_{p}=A_{c}$ Hence, the first letter of the key word to the message is A The 2d, 3d, 4th, $\quad 7$ th key letters are found in exactly the same manner, and the following is obtaned

When C OFIRST equals
SFDZRYR then A_{p} successively equals
SFDZRYR
AZIMUTH
24 Summation of relative frequencies as an and to the selection of the correct generatrices a In the foregoing example, under subparagraph f, there occurs this phrase "After some experimenting with these generatrices "By t By this was meant, of course, that the selection of the correct intinl pair of generatrices of plain-text equwalents is in this process a matter of trial and error The test of "correctness" is whether, when juxtaposed, the two generatrices so selected yield "good" dggraphs, that is, high-frequency digraphs such as occur in normal plain text In his early efforts the student may have some dufficulty in selecting, merely by ocular exammathon, the most likely generatrices to try There may be in each dagram several genanalin ombinations of generatrices m b Suppose, in Flg 16, th
ts relative frequency 16, that each letter were accompanied by a number which correspond each horizontal hne, the totals thenghsh telegraphic text Then, by addung the numbers along requency valucs of the respective generatrices will serve as relative numerical measures of the value will be the correct generatrix because its total will represent the sum of the indivdual values of the actual plaintext letters In actual practice, of course, the generatrix with the greatest value may not be the correct one, but the correct one will certamly be among the thre or four generatrices with the largest values Thus, the number of trials may be greatly reduced, in the attempt to put together the correct generatrices
c Using the preceding message as an example, note the respective generatrix values in $\mathrm{Frg}_{\mathrm{g}}$ 18 The frequency values of the respective letters shown in the figure are based upon the norma distribution for War Department telegraphic text (see Table 3, Appendux 1, Multary Cryptanalysis, Part I)

Column 1

$$
\begin{aligned}
& \text { FVQUPRLWVGVHIQZHVDLF }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccccccccccccccccccc}
2 & 2 & 8 & 2 & 0 & 6 & 2 & 0 & 2 & 3 & 2 & 7 & 0 & 8 & 7 & 7 & 2 & 13 & 2 \\
H
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { J Z U Y TVPPAZKZLMUDLZHP J }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LBWAVXRCBMBNOWFNBJRL }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MCXBWYSDCNCOPXGOCKSM }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q G BFACNWHGRGSTBKSSGOWQ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RHCGBDXIHSHTUCLTHPXR }
\end{aligned}
$$

Columa 2
${ }^{0}$ (eneratrix N PNNMUGSHGWQENCNSBZ
 $\begin{array}{lllllllllllllllllll}0 & Q & E & O & O & N & V & H & T & I & H & X & R & F & O & D & O & T & C\end{array}$

 QSGQQPXJVKJZTHQFQVEC

 $\begin{array}{lllllllllllllllllllll}8 & 9 & 3 & 8 & 8 & 0 & 2 & 0 & 2 & 4 & 0 & 7 & 3 & 7 & 8 & 2 & 8 & 2 & 8 & 4 \\ S & U & I & S & S & R & Z & L & X & M & L & B & V & J & S & H & S & X & G & E\end{array}$

 UWKUUTBNZONDXLUJUZI G
 $\begin{array}{llllllllllllllllllll}\mathrm{V} & \mathrm{XX} & \mathrm{V} & \mathrm{V} & \mathrm{U} & \mathrm{C} & 0 & A & P & 0 & \mathrm{E} & \mathrm{Y} & \mathrm{M} & \mathrm{V} & \mathrm{K} & \mathrm{V} & \mathrm{A} & \mathrm{J} & \mathrm{H} \\ 2 & 0 & 4 & 2 & 2 & 8 & 3 & 8 & 7 & \mathrm{a} & 8 & 13 & 2 & 2 & 2 & 0 & 2 & 7 & 0 & 8\end{array}$ WYMWWVDPBQPFZNWLWBKI

 $\begin{array}{lllllllllllllllllllll}0 & 0 & 8 & 0 & 0 & 2 & 13 & 0 & 3 & 8 & 0 & 2 & 7 & 8 & 0 & 2 & 0 & 8 & 4 & 0 \\ \mathrm{Y} & \mathrm{A} & \mathrm{O} & \mathrm{Y} & \mathrm{Y} & \mathrm{X} & \mathrm{F} & \mathrm{R} & \mathrm{D} & \mathrm{S} & \mathrm{R} & \mathrm{H} & \mathrm{B} & \mathrm{P} & \mathrm{Y} & \mathrm{N} & \mathrm{Y} & \mathrm{D} & \mathrm{M} & \mathrm{K}\end{array}$

 ACQAAZHTFUTJDRAPAFOM B D R B B A I UGVVUKES B Q B GP CESCCBJVHWYLFTCRCHa8
 DFTDDCKWIXWMGUDSDIRP

 GIWGGFNZLAZPJXGVGLUS
 HJXHHGOAMBAQKYHWHMVT $\begin{array}{lllllllllllllllllll}8 & 0 & 0 & 8 & 8 & 2 & 8 & 7 & 2 & 7 & 0 & 0 & 2 & 3 & 2 & 3 & 2 & 2 \\ I & K & \mathrm{Y} & \mathrm{I} & \mathrm{I} & \mathrm{H} & \mathrm{P} & \mathrm{B} & \mathrm{N} & \mathrm{C} & \mathrm{B} & \mathrm{R} & \mathrm{L} & \mathrm{Z} & \mathrm{I} & \mathrm{X} & \mathrm{I} & \mathrm{N} & \mathrm{W} \\ \mathrm{U}\end{array}$
 $\begin{array}{llllllllllllllllllll}J & L & Z & J & J & I & Q & C & O & D & C & S & M & A & J & Y & J & O & X & V \\ 0 & 4 & 0 & 0 & 0 & 7 & 0 & 3 & 8 & 4 & 3 & \text { B } & 2 & 7 & 0 & 2 & 0 & 8 & 0 & 2\end{array}$ KMAKKJRDPEDTNBKZKPYW

d It wll be noted that the frequency value of the 23 d generatrix for the first column of cupher letters is the greatest, that of the first generatrix for the second column is the greatest In both cases these are the correct generatrices Thus the selection of the correct generatrices in such cases has been reduced to a purely mathematical basis which is at times of much assistance in effecting a quick solution Moreover, an understanding of the principles involved will be of considerable value in subsequent work

25 Solution by the probable-word method.-a Occasionally one may encounter a cryptogram which is so short that it contains no recurrences even of digraphs, and thus gives no indiIf the slding muxed component is known, one panst the text and the slding components to establish a key, if the correspondents are using aganst th key words
b For example, suppose that the presence of the word ENEMY is assumed in the message in Par 236 above One proceeds to check it against an unknown key word, slding the already reconstructed muxed component against the normal and starting with the first letter of the cryptogram, in this manner

When ENEMY equals
SFDZR then A_{p} successively equals
XENFW
The sequence XENFW spells no intelligible word Therefore, the location of the assumed word ENEMY is shfted one letter forward in the cipher text, and the test is made again, Just as was explained in Par 15 When the group AQRLU is tried, the key letters ZIMUT are obtained, which, taken as a part of a word, suggests the word AZIMUTH The method must yield solution when the correct assumptions are made
c The danger to cryptographic security resulting from the melusion of cryptographed addresses and signatures in cryptographic messages becomes qute obvious in the light of in Pars 19-22 It will be noted in Par $22 b$ that the reference is made to the message employed in Pars 19-22 It will be noted in Par $22 b$ that the message carried a signature (1reer, chat every message could be assumed to conclude with a cryptographed signature The signature every message could be assumed to conclude with a cryptographed signature The signature sages emanating from the same headquarters as did the first message, because presumably thrs same signature would appear in other messages It is for this reason that addresses and signatures must not be cryptographed, if they must be included they should be cryptographed in a totally dufferent system or by a wholly different method, perhaps by means of a special address and signature code It would be best, however, to omit all addresses and signatures, and to let the call signs of the headquarters concerned also convey these parts of the message, leaving the delivery to the addressee a matter for local action

26 Solution when the plain component is a maxed sequence, the cipher component, the normal - a This falls under Case B (2) outloned in Par 6 It is not the usual method of employng a single muxed component, but may be encountered occasionally in cipher devices
b The prelimunary steps, as regards factoing to determine the length of the period, are the same as usual The message is then transcribed into its periods Frequency distributions are then made, as usual, and these are attacked by the principles of frequency and recurrence, An attempt is made to apply the principles of direct symmetry of position, but this attempt will be futile, for the reason that the plain component is in this case an unknown muxed sequence
(See Par 18d) Any attempt to find symmetry in the secondary alphabets based upon the normal sequence can therefore disclose no symmetry because the symmetry which exists is based upon a wholly different sequence
\boldsymbol{c} However, if the principles of direct symmetry of position are of no avail in this case, there are ceitan other principles of symmetry which may be employed to great advantage To explan them an actual example will be used Let it be assumed that it is known to the cryptanalyst that the enemy is using the general system under discussion, tra, a mixed sequence, variable from day to day, is used as plan component, the normal sequence is used as cipher component, and a repeating key, variable fic in message to message, is used in the ordinary manner

The following message has been intercepted

	Q EOVK	L R M L Z	JVGTG	N DLVK	EVNTY	ERMU
B	VREM0	YAAMP	DKEIJ	S FMYO	YHMME	GQAMB
C	UQAXR	HUFBU	K Q Y M U	NELVT	KQILE	K Z
D	U L I BK	NDAXB	X U DGL	LADVK	POAY	D K
E	LADHY	BVNFV	UEEME	FFMTE	G V W B Y	T V
F	S PBHB	XVAZC	UDYUE	L K M M A	EUDD	N
G	HSAHY	TMGUJ	HQXPP	DKOUE	XUQ V	F V
H	NXALB	TCDLM	IVAAA	NS Z I L	0 VWV	Y A
J	SHMME	GQDHO	Y H I V P	N CRR	XKDQZ	G K
K	N Q G U Y	J I WYY	TMAHW	X R L B	OADLG	NQ
L	JUUGB	J HRVX	ERFLE	G W G U	XEDTP	DKEIZ
M	VXNWA	FAANE	M K G H B	S SNLO	K J C B Z	TGGL0
N	PKM B X	HGERY	TMWL C	NQCYy	TMWIP	DKATE
	FLNUJ	NDTVX	JRZTL	0 PaHC	D F ZYY	DEYCL
Q	G	TECXB	HQEBR	K V WM	NINGJ	IQ D L
R	JKATE	GUWBR	HUQWM	VRQBW	Y R F B F	KMWM
S	L	LAAHY	J G D K K	LKRRE	X K NA 0	N D S B
	XCGEA	H D G T L	V K M B W	ISAUE	F D NW P	N L Z
	SRQ Z L	AVNHL	G V WV K	FIGHP	GEC Z U	K Q A P

d A study of the recurrences and factoring ther intervals discloses that five alphabets are involved Uniliteral frequency distributions are made and are shown in Fig 19a

$$
\begin{aligned}
& \text { Alpiabet } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ }
\end{aligned}
$$

Alphabet 3

Sunce the cipher component in this case is the normal alphabet, at follows that the five frequency distributions are based upon a sequence which is known, and therefore, the five frequenc distributrons should manvfest a direct symmetry of distribution of crests and troughs By virtue o this symmetry and by shifting the five distributions relative to one another to proper supermpositions, the several distributions may be combined into a single unditeral distribution Note how this shafting has been done in the case of the five illustrative distributions

f The superimposition of the respective distributions enables one to convert the cipher letters of the five alphabets into one alphabet Suppose it is decided to convert Alphabets 2, 3, 4, and 5 into Alphabet 1 It is merely necessary to substitute for the respective letters in the four alphabets those which stand above them in Alphabet 1 For example, in Fig 19b, Xo in Alphabet 2 is durectly under A_{c} in Alphabet 1, hence, if the supermposition is correct then ${ }_{X_{0}}^{2}=A_{A_{0}}^{1} \quad$ Therefore, in the cryptogram it is merely necessary to replace every X_{0} in the second position by A_{e} Agan T_{0} in Alphabet $3=A_{c}$ in Alphabet 1, therefore, in the cryptogram one position by A_{c} Again T_{o} in Alphabet $3=A_{c}$ in Alphabet 1, therefore, in the cryptogram one
replaces every T_{c} in the third position by A_{c} The enture process, heremafter designated as conversion anto monoalphabetcc terms, gives the following converted message

A	Q HVHT	LUTXI	J Y N FP	N G S H T	EYUFH	E T G
B	V U G Y X	Y D HYY	D NLUS	SITKX	YK TY	G
C	UTHJA	H X M	KTFYD	NHSH	K T P X	K
D	UOPNT	N G H	XXKS	L DKHT	PR	
E	L DKTH	BYURE	U HLYN	T F	GYDN	T
F	S S ITK	X Y HLL	G	L T Y J	EXKP	N F
G	HVHTH	T P N	H TEBY	DNVGN	XXXHK	F
H.	NAHXK	T F	I Y H M J	NVGUU	OYDHY	Y
J.	SKTYN	GTK T	YKPHY	NFYDN	X NKCI	GNU
K	NTNGH	J L D K H	TPHTF	XUSNU	0	NT
L	J X B S K	JKYHG	EUMXN	G Z N G X	x	D
M.	VAUIJ	FDHZN	M N NTK	SVUXX	K M J N	
N	PNTNG	H J L D H	TPDXI	N T J K H	TPDUY	D
P.	FOUGS	NGAHG	JUGFU	0 SHTL	D I GK H	D
Q	GSNFH	THJJK	H T L NA	KY D Y D	NLUSS	I
R	JNHFN	GXDNA	HXXIV	V UXNF	YUMN0	K
S	T PBXI	LDHTH	J J K H T	L N Y D N	XNUMX	N G
T	X FNL J	HGNFU	VNTNF	IVHGN	FGUI	N 0
V	S UXLU	AYUTU	GYDHT	FLNTY	G H	K T

The unditeral frequency distribution for this converted text follows Note that the frequency of each letter is the sum of the five frequencies in the corresponding columns of Fig 19b

The problem having been reduced to monoalphabetic terms, a triliteral frequency distribution can now be made and solution readily attened by smple principles It zelds the followng

JAPAN CONSULTED GERMANY TODAY ON REPORTS THAT THE COMMUNIST INTERNATIONAL WAS BEHIND THE AMAZING SEIZURE OF GENERALISSIMO CHIANG KAI SHEK IN CHINA TOKYO ACTED UNDER THE ANTICOMMUNIST ACCORD RECENTLY SIGNED BY JAPAN AND GERMANY THE PRESS SAID THERE WAS INDISPUTABLE PROOF THAT THE COMINTERN INSTI GATED THE SEIZURE OF GENERAL CHIANG AND SOME OF HIS GENERALS MILITARY OB SERVERS SAID THE COUP WOULD HAVE BEEN IMPOSSIBLE UNLESS GENERAL CHANG HSUEN LIANG HOTHEADED FORMER WAR LORD OF MANCHURIA HAD FORMED AN ALLIANCE WITH THE COMMUNIST LEADERS HE WAS SUPPOSED TO BE FIGHTING SUCH AN ALLIANCE THES OBSERVERS DECLARED OPENED UP A RED ROUTE FROM MOSCOW TO NORTH AND CENTRAL CHINA
h The reconstruction of the plain component is now a very sumple matter It is found to be as follows

HYDRAULICBEFGJKMNOPQSTVWXZ
Note also, in Fig 19b, the keyword for the message, (HEAVY), the letters being in the columns headed by the letter H

The solution of subsequent messages with different keys can now be reached directly, by a simple modification of the principles explaned in Par 18 This modfication consists in using for the completion sequence the mixed plain component (now known) instead of the normal alphabet, after the cupher letters have been converted into their plam-component equivalents Let the student confirm this by experiment
${ }^{3}$ The probable-word method of solution discussed under Paragraph 20 is also applicable here, in case of very short cryptograms This method presupposes of course, possession of the mixed component and the procedue is essentially the same as that in Par 20 In the example discussed in the present paragraph, the letter A on the plann component was successively set aganst the key letters HEAVY, but this is not the only possible procedure
k The student should go over carefully the principle of "conversion into monoalphabetic terms" explaned in subparagraph f above untal he thoroughly understands it Later on he will encounter cases in which this principle is of very great assistance in the cryptanalysis of more complex problems (Another example will be found under Par 45)
l The principle illustrated in subparagraph e, that is, slufting two or more monoalphabetic frequency distributions relatively so as to bring them into proper alignment for amalgamation into a single monoalphabetic distribution, is called matching It is a very important crypt analytic principle Note that its practical application consists in slding one monoalphabetio distribution against the other so as to obtain the best comcidence between the entire sequence distribution troughs of one distribution and the entire sequence of crests and troughs of the othe amalgamated and theoretically the single resultant distrbution will also be monoalphabetic in character The successful application of the principle of matching depends upon several factors First, the cryptographec situation must be such that matching is a cortect cryptographic step For example, the distributions in higure $10 b$ are properly subject to matching because the cipher component in the basic sequences concerned in this problem is the normal sequence, while the plain component is a mixed sequence But it would be futile to tiy to match the distinbutions in figure 9 , for in that case the cipher component is a muxed sequence, the plan component is the normal sequence Hence, no amount of shiftung or matching can bring the distributions of
figure 9 into proper supermposition for correct amalgamation (If the occurrences in the various distributions in figure 9 had been distributed according to the sequence of letters in the muxed component, then matching would be possible, but in order to be able to distribute these occurrences according to the mixed component, the latter has to be known-and that is just what unknown until the problem has been solved) A second factor involved in successful matching is the number of elements in the two distributions forming the subject of the test If both of them have very few talles, there is hardly sufficient information to permit of matching with any degree of assurance that the work is not in van If one of them has many tallies, the other only a few, the chances for success are better than before, because the positions of the blanks in the two distributions can be used as a guide for ther proper superimposition
m There are certan mathematical and statistical procedures which can be brought to bear pon the matter of cryptanalytic matching These will be prosented in a later text However, butions, he will have to rely upon mere ocular examination as a guide to proper superimposition Obviously the more data he has in each distribution, the easier is the correct supermposition ascertauned by any method

Section VI
REPEATING-KEY SYSTEMS WITH MIXED CIPHER ALPHABETS, II

Abstract

Further cases to be considered Paragrapb $--\quad 27$ $-\quad 28$

 rinaples of solution ph 6 have been then as follows

CAse B (3) Both components are mixed sequences
(a) Components are identical mixed sequences
(1) Sequences proceed in the same direction (The secondary alphabet are mived alphabets)
(2) Sequences proceed in opposite drections (The secondary alphabets are reciprocal muxed alphabets)
(b) Components are different mixed sequences (The secondary alphabets are mixed alphabets)
b The first of the foregoing subcases will now be examined
28 Identical primary mixed components proceeding in the same direction - a It is often the case that the mixed components are derived from an ensily remembered word or phrase o that they can be reproduced at any time from memory Thus, for example, given the key word QUESTIONABLY, the following mixed sequence is derived
QUESTIONABLYCDFGHJKMPRVWXZ
b By using this sequence as both plan and cipher component, that is, by sliding this sequence aganst itself, a series of 26 secondary muxed alphabets may be produced In encupherung a message, sliding strips may be employed with a key word to designate the particular and successive positions in which the strips are to be set, the same as was the case in previous examples of the use of sliding components The method of designating the positions, however, requires a word or two of comment at this point In the examples thus far shown, the key letter, as located on the cipher component, was always set opposite A, as located on the plann component possibly an erroneous impression has been created, 22 , that this is invariably the rule This is decidedly not true, as has already been explaned in paragraph $7 c$ If it has seemed to be the case that $\theta_{\mathbf{k}}$ always equals A_{p}, it is only because the text has dealt thus far principally with cases in thes the por for juxtaposing cipher components, is A It must be emphaszed, however thes he mor empar the θ_{1}, will be the mitial letter of the mixed sequence, in this case, Q Furthermore, to prevent the θ_{1}, will be the initial letter of the mixed sequence, in this case, Q Furthermore, to prevent the possibility of ambaguity it will be stated again that the pair of encipherng equations
in the ensumg discussion will be the first of the 12 set forth under Par $7 f, v z, \theta_{k} / 2=\theta_{2} / \theta_{1}, \theta_{p}=\theta_{\mathrm{o}} / 2$ In this case the subscript " 1 " means the plain component, the subscript " 2 ", the crpher component, so that the enciphering equation is the following $\quad \theta_{k} / /_{0}=\theta_{/} / \mathrm{p}, \theta_{\mathrm{D}} / \mathrm{p}=\theta_{\alpha} / \mathrm{c}$
c By setting the two sliding components against each other in the two positions shown below, the cipher alphabets labeled (1) and (2) given by two key letters, A and B, are seen to be different
$\mathrm{K}_{\mathrm{Ey}} \mathrm{Letfer}=\mathrm{A}$
θ_{1}
Plann component. \qquad QUESTIONABLYCDFGHJKMPRVWXZQUESTIONABLYCDFGHJKMPRVWXZ Cipher component QUESTIONABLYCDFGHJKMPRVWXZ

Secondary alphabet (1)
Plain_----------A BCDEGHIJKLMNOPQRSTUVWXYZ Key Letter=B H PRLVWXDZQKUGFEASYCBTIOMN

Key Letter=B
${ }_{\downarrow}{ }_{1}$
Plain component \qquad Cipher component QUESTIONABLYCDFGHJKMPRVWXZ QUESTIONABLYCDFGHJKMPRVWXZ
$\stackrel{\uparrow}{\theta}_{\theta_{k}}$
Secondary alphabet (2)
Plain.
\qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ
J KRVYWXZFQUMEHGSBTCDLIONPA
Very frequently a quadricular or square table is employed by the correspondents, instead of siding strips, but the results are the same The cipher square based upon the word QUESTIONABLY is shown in Fig 21 It will be noted that it does nothing more than set forth the successive positions of the two primary sliding components, the top line of the square is the plan component, the successive horizontal lines below it, the cipher component in its various juxtapositions The usual method of employing such a square (1 e , corresponding to the enciphering equations $\left.\theta_{\mathbf{x} / \mathrm{c}}=\theta_{1 / \mathrm{p}}, \theta_{\mathrm{D} / \mathrm{p}}=\theta_{\mathrm{c} / \mathrm{C}}\right)$ is to take as the cipher equivalent of a plam-text letter that letter which lies at the intersection of the vertical column headed by the plam-text letter and the horizontal row begun by the key letter For example, the cipher equivalent of $E_{\mathcal{D}}$ with keyletter T is the letter 0_{c}, or $\mathrm{E}_{\mathrm{p}}\left(\mathrm{T}_{\mathrm{k}}\right)=0_{\mathrm{e}}$. The method given in paragraph b, for determining the cipher equivalents by means of the two slding strips yields the same results as does the cipher square

QUESTIONABLYCDFGHJKMPRVWXZ UESTIONABLYCDFGHJKMPRVWXZQ ESTIONABLYCDFGHJKMPRVWXZQU STIONABLYCDFGHJKMPRVWXZQUE TIONABLYCDFGHJKMPRVWXZQUES I ONABLYCDFGHJKMPRVWXZQUEST ONABLYCDFGHJKMPRVWXZQUESTI NABLYCDFGHJKMPRVWXZQUESTIO ALYCDFGHJKMPRVWXZQUESTIONA IYCDFGHJKMPRVWXZQUESTIONAB LYCDFGHJKMPRVWXZQUESTIONAB
Y CDFGHJKMPRVWXZQUESTIONABL YCDFGHJKMPRVWXZQUESTIONABL
CDFGHJKMPRVWXZQUESTIONABLY CDFGHJKMPRVWXZQUESTIONABLY
DFGHJKMPRVWXZQUESTIONABLYC DFGHJKMPRVWXZQUESTIONABLYC
FGHJKMPRVWXZQUESTIONABLYCD FGHJKMPRVWXZQUESTIONABLYCD
GHJKMPRVWXZQUESTIONABLYCDF GHJKMPRVWXZQUESTI
HJKMPRVWXZQUESTIONABLYCDFG
JKM
 KMPRVWXZQUESTIONABLYCDFGHJ MPRVWXZQUESTIONABLYCDFGHJK PRVWXZQUESTIONABLYCDFGHJKM RVWXZQUESTIONABLYCDFGHJKMP VWXZQUESTIONABLYCDFGHJKMPR WXZQUESTIONABLYCDFGHJKMPRV XZQUESTIONABLYCDFGHJKMPRVW ZQUESTIONABLYCDFGHJKMPRVWX Flagrix 21
29. Cryptographing and decryptographing by identical primary mixed components - There is nothing of special interest to be noted in connection with the use either of identical mixed components or of an equivalent quadricular table such as that shown in Fig 21, in enciphering or deciphering a message The basic principles are the same as in the case of the slidng of one mixed component against the normal, the displacements of the two components being controlled by changeable key words of varying lengths The components may be changed at will and so on All this has been demonstrated adequately enough in Elementary Miltary Cryptography, and Advanced Mulutary Cryptography
30. Principles of solution.-a Basically the principles of solution in the case of a cryptogram enciphered by two identical mixed sliding components are the same as in the preceding case Primary recourse is had to the punciples of frequency and repetition of single letters, digraphs, trigraphs, and polygraphs Once an entering wedge has been forced into the problem, the subsequent steps map up the solution bit by bit
b Doubtless the question has already arisen in the student's mind as to whether any principles of symmetery of position can be used to assist in the solution and in the reconstruction of the cupher alphabets in cases of the kind under consideration This phase of the subject will be taken up in the next section and will be treated in a somewhat detailed manner, because the theory and principles involved are of very wide application in cryptanalytics.

Section VII
THEORY OF INDIRECT SYMMETRY OF POSITION IN SECONDARY ALPHABETS
Reconstruction of primary components from secondary alphabets.
31 Reconstruction of primary components from secondary alphabets - a Note the two secondary alphabets (1) and (2) given in paragraph $28 c$ Externally they show no resemblance or symmetry despite the fact that they were produced from the same primary components Nevertheless, when the matter is studied with care, a symmetry of position is discoverable Because it is a hidden or latent phenomenon, it may be termed latent symmetry of position However, in previous texts the phenomenon has been designated as an indirect symmetry of position and this terminology has grown into usage, so that a change is perhaps now madvisable Indirect symmetry of position is a very interesting and exceedingly useful phenomenon in cryptanalytics
b Consid
b Consider the following secondary alphabet (the one labeled (2) in paragraph 28c)

c Assuming it to be known that this is a secondary alphabet produced by two primary identical muxed components, it is desired to reconstruct the latter Construct a chain of alternating plain-text and cipher-text equivalents, beginnong at any point and continung until the chain has been completed Thus, for example, beginning with $A_{p}=J_{o}, J_{D}=Q_{c}, Q_{D}=B_{o}$, and dropping out the letters common to successive parrs, there results the sequence $A J Q B$ completing the chain the following sequence of letters is established

> A JQBKULMEYPSCRTDVIFWOGXNHZ
d Thas sequence consists of 26 letters When sld against ttself ut urll produce exactly the same secondary alphabets as do the primary components based upon the word QUESTIONABLY To demonstrate that this is the case, compare the secondary alphabets given by the two settungs of the externally different components shown below
Plain component_----- QUESTIONABLYCDFGHJKMPRVWXZQUESTIONABLYCDFGHJKMPRVWXZ Cipher component QUESTIONABLYCDFGHJKMPRVWXZ
Secondary alphabet (1)
Plam _et (1)

Cipher --ABCDEFGHIJKLMNOPQRSTUVWXYZ

Plann component.---.- AJQBKULMEYPSCRTDVIFWOGXNHZAJQBKULMEYPSCRTDVIFWOGXNHZ Cipher component....-
Secondary alphabet (2)
Plann_------- A BCDEGHIJKLMNOPQRSTUVWXYZ
Cipher_--_JKRVYWXZFQUMEHGSBTCDLIONPA (52)
e Since the sequence A J Q B K alphabets as the sequence Q U E ST givexactly the same equivalents in the secondary reason the A J Q B K is cryptographically equivalent to the latter sequence For this reason sequence is termed an equivalent primary component ${ }^{1}$ If the real or original primary component is a key-word mixed sequence, it is hidden or latent within the equivalent primary sequence, but it can be made patent by decimation of the equivalont primary component The procedure is as follows Find three letters in the equivalent primary component such as are hkely to have formed an unbroken sequence in the orignal primary component, and see if the interval between the first and second is the same as that between the second and third Such a case is presented by the letters W, X, and Z in the equivalent prmary component above Note he sequence WOGXNHZ the distance or interval between the letters W, X, and Z is two letters Continumg the chain by adding letters two intervals removed, the latent original primary component is made patent Thus

f It is possible to perform the steps given in c and e in a combined single operation when the original primary component is a key-word muxed sequence Starting with any par of letters (in the cipher component of the secondary alphabet) likely to be sequent in the key-nord muxed equence, such as JK_{c} in the secondary alphabet labeled (2), the following chain of digraphs may be set up Thus, J, K, in the plain component stand over Q, U, respectively, in the cipher component, Q, U, in the plain component stand over B, L, respectively, in the cipher component, and so on Connecting the pars in a series, the following results are obtained

$$
\mathrm{JK} \rightarrow \mathrm{QU} \rightarrow \mathrm{BL} \rightarrow \mathrm{KM} \rightarrow \mathrm{UE} \rightarrow \mathrm{LY} \rightarrow \mathrm{MP} \rightarrow \mathrm{ES} \rightarrow \mathrm{YC} \rightarrow \mathrm{PR} \rightarrow \mathrm{ST} \rightarrow \mathrm{CD} \rightarrow \mathrm{RV} \rightarrow
$$

$\mathrm{TI} \rightarrow \mathrm{DF} \rightarrow \mathrm{VW} \rightarrow \mathrm{IO} \rightarrow \mathrm{FG} \rightarrow \mathrm{WX} \rightarrow \mathrm{ON} \rightarrow \mathrm{GH} \rightarrow \mathrm{XZ} \rightarrow \mathrm{NA} \rightarrow \mathrm{HJ} \rightarrow \mathrm{ZQ} \rightarrow \mathrm{AB} \rightarrow \mathrm{JK}$
These may now be unted by means of ther common letters
$\mathrm{JK} \rightarrow \mathrm{KM} \rightarrow \mathrm{MP} \rightarrow \mathrm{PR} \rightarrow \mathrm{RV} \rightarrow \operatorname{etc}=\mathrm{J} K \mathrm{MPRVWXZQUESTIONABLYCDFGH}$
The original primary component is thus completely reconstructed
g Not all of the 26 secondary alphabets of the series yelded by two shding primary components may be used to develop a complete equivalent primary component If examination be made, components when the method of reconstruction shown in subparagraph c above is followed For example the following secondary alphabet, which is also derived, from the primary component based upon the word QUESTIONABLY will not yeld a complete chain of 26 plan text-cipher plain text equivalents

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Chpher_---. CDHJOKMPBRVFWYLXTZNAIQUEGS
${ }^{1}$ Such an equivalent component is merely a sequence which has been or can be developed or derived from the original sequence or basic prrmary component by applying a decimation process to the latter, conversely,
the original or basic component can be derived from an equivalent component by applying the same sort of process to the equivalent component By decimation 18 meant the selection of elements from a sequence according to some fixed interval For example, the sequence AEIM ${ }^{18}$ derived, by decimation, from the normal alphabet by selecting every fourth letter

Equivalent primary component

h It is seen that only 13 letters of the chain have been established before the sequence begins to repeat itself It is evident that exactly one-half of the chain has been established The other half may be established by beginning with a letter not in the first half Thus

(The B D J sequence begins agan)
2 It is now necessary to distribute the letters of each half-sequence withn 26 spaces, to correspond with therr placements in a complete alphabet This can only be done by allowing a constant odd number of spaces between the lotters of one of the half-sequences Distributions are therefore made upon the basis of $3,5,7,9$, spaces Select that distribution which most nearly coincides with the distribution to be expected in a key-word component Thus, for example, with the first half-sequence the distribution selected is the one made by leaving three spaces between the letters It is as follows

3 Now interpolate, by the same constant interval (three in this case), the letters of the other half-sequence Noting that the group F-H appears in the foregoing distribution, it is apparent that G of the second half-sequence should be inserted between F and H. The letter which inso G in the second half-sequence $n z, M$ is next inserted in the the right of G, and so on, until the interpolation has been completed This yrelds the original primary component, which is as follows

k Another method of handling cases such as the foregoing is indicated in subparagraph f By extending the principles set forth in that subparagaph, one may reconstruct the following chain of 13 parrs from the secondary alphabet given in subparagraph g

Now find, in the foregoing chom, two pars likely to be sequent, for example $H J$ and $K M$ and count the interval between them in the chain It is 7 (counting by pairs) If this decimation interval is now appled to the chain of pars, the following is established

l The reason why a complete chann of 26 letters cannot be constructed from the secondary alphabet given under subparagraph g is that it represents a case in which two primary components of 26 letters were shd an even number of intervals apart (This will be explanned in urther detal in subparagraph r below) There are in all 12 such cascs, none of which will admit of the construction of a complete chain of 26 letters In addition, there is one case wherein, despite the fact that the primary components are an odd number of intervals apart, the secondary alphabet cannot be made to yeld a complete chan of 26 letters for an equivalen primary component This is the case in which the displacement is 13 intervals Note the secondary alphabet based upon the prmary components below (which are the same as those hown in subparagraph d)

Pbimary Components

Q UESTIONABLYCDFGHJKMPRVWXZ

 DFGHJKMPRVWXZQUESTIONABLYC
Secondary Alphabet

Plann------- ABCDEFGIJKLMNOPQRSTUVWXYZ

\qquad RVZQGUESKTIWOPMNDAHJFBLYXC
m If an attempt is made to construct a chan of letters from this secondary alphabet alone, no progress can be made because the alphabet is completely reciprocal However, the cryptanalyst need not at all be baffled by this case The attack will follow along the lines shown below m subparagraphs n and o
n If the original primary component is a key-word mixed sequence, the cryptanalyst may reconstruct it by attempting to "dovetal" the 13 reciprocal pars (AR, BV, CZ, DQ, EG, FU, HS, $I K, \mathrm{JT}, \mathrm{LW}, \mathrm{MO}, \mathrm{NP}$, and XY) into one sequence The members of these pairs are all 13 intervals apart Thus

Write out the serres of numbers from 1 to 26 and unsert as many parrs into position as possible being guided by considerations of prohable partial sequences in the key-word muxed sequence, Thus

$$
\begin{aligned}
& \begin{array}{lllll}
0 & 1 & 2 & 3 \\
A & B & C & D
\end{array}
\end{aligned}
$$

It begins to look as though the key-word commences with the letter Q, in which case it should be followed by U This means that the next parr to be inserted is FU Thu

$$
\begin{array}{lllllllllllllllll}
0 & 1 & 2 & 3 & 4 & 6 & 6 & 7 & 8 & 0 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
A & 16 & 17 \\
\mathrm{~A} & \mathrm{C} & \mathrm{D} & \mathrm{~F} & & & & & & & & & \\
\hline
\end{array}
$$

The sequence ABCDF means that Eis in the key Perhaps the sequence is ABCDFGH Upon trial, using the parrs EG and HS, the following placements are obtained

This suggests the word QUEST or QUESTION The pair JT is added

The sequence GHJ suggests GH J K, which places an I after T Enough of the process has been shown to make the steps clear
o Another method of crrcumventing the difficulties introduced by the 14th secondary alphabet (displacement interval, 13) is to use it in conjunction with another secondary alphabet which is produced by an even-interval displacement For example, suppose the following two secondary alphabets are available ${ }^{1}$

> | ABCDEFGHIJKLMNOPQRSTUVWXYZ |
| :--- |
| RVZQGUESKTIWOPMNDAHJFBLYXC |
| $-X Z E S K T I O R N A Q B W V L H Y M P J C D F U G$ | ${ }^{\text {Fioure }} 23$

The first of these secondaries is the 13 -interval secondary, the second is one of the eveninterval secondaries, from which only half-chain sequences can be constructed But if the construction be based upon the two sequences, 1 and 2 in the foregoing dagram, the following is obtamed
RXUTNLDHMVZEIAYFJPWQSOBCGK

This is a complete equivalent primary component The orginal key-word muxed component can be recovered from it by decimation based upon the 9th interval
RVWXZQUESTIONABLYCDFGHJKMP
p (1) When the primary components are identical muxed sequences proceeding in opposite directions, all the secondary alphabets will be reciprocal alphabets Reconstruction of the prmary component can be accomplished by the procedure indicated under subparagraph o above Note the following three reciprocal secondary alphabets

$$
\begin{aligned}
& \text { 1--- PMHGQFDCWYLKBRVAENZXUOITJS } \\
& \text { 2...WVMKSJHGQFDRCXZYILEUTBANPO } \\
& \text { 3.-.. TSSZLXWVNRPEMIOKCJBAYHGFUD }
\end{aligned}
$$

Figure 24

(2) Using lines 1 and 2, the following chain can be constructed (equialent primary component)
PWQSOBCGKRXUTNLDHMVZEIATFJ
${ }^{1}$ The method of writing down the secondaries shown in figure 23 will hereafter be followed in all cases when alphabet reconstruction skeletons are necessary The top line will be understood to be the plann component, it 18 common to all the secondary alphabets, and is set off from the cipher components by the heavy black line This top line of letters will be designated by the dgit \emptyset, and will be referred to as "the zero hine" in the dagram The successive lines of letters, which occupy the space below the zero line and which contain the various capher
components of the several secondary alphabets, wall be numbered serialy These numbers may then be wed reference numbers for deygnating the horivontal lines in the diagram The numbers standing above the letters may be used as reforence numbers for the vertical columng in the daagram Hence, any letter in the reconstruction skeleton may be designated by coordinates, giving the horizontal or \mathbf{X} coordinate first Thus, D(2-11) means the letter D standing in line 2, Column 11

Or, using lines 2 and 3

WTYKZODPUAGVSLJXICMQNFREBH
The orignal key-word mixed primary component (based on the word QUESTIONABLY) can be recovered from either of the two foregoing equivalent primary components But if lines 1 and 3 are used, only half-chams can be constructed
PTFXAKECVOHQL and MSDWNJUYRIGZB

This is because 1 and 3 are both odd-interval secondary alphabets, whereas 2 is an even interval secondary It may be added that odd-interval secondaries are characterized by having two cases in which a plain-text letter is enciphered by itself, that is, θ_{D} is identical with θ_{c} two cases in which a plain-text letter is enciphered by itself, that is, θ_{p} is identical with θ_{o}
This phrase "identical with" will be represented by the symbol \equiv, the phrase "not identical with" will be represented by the symbol \equiv (Note that in secondary alphabet number 1 above, $F_{p} \equiv F_{0}$ and $U_{p} \equiv U_{d}$, in secondary alphabet number 3 above, $M_{p} \equiv M_{s}$ and $O_{p} \equiv O_{d}$) This characteristic will enable the cryptanalyst to select at once the proper two secondaries to work with in case several are avalable, one should show two cases where $\theta_{p} \equiv \theta_{0}$, the other should show none
q (1) When the primary components are dfferent muxed sequences, their reconstruction from secondary clpher alphabets follows along the same lines as set forth above, under 6 to j, inclusive, with the exception that the selection of letters for building up the chain of equivalent for the primary cipher component is restricted to those below the zero line in the reconstruction skeleton Having reconstructed the primary cipher component, the plain component can be readily reconstructed This will become clear if the student will study the followng example

- ABCDEFGHIJKLMNOPQRSTUVWXYZ

frevar 25

(2) Using only lines 1 and 2 , the following chain is constructed
T ZPGLIQRHYOUVJCNEWKDASXMFB

This is an equivalent primary cipher component By finding the values of the successive letters of this chan in terms of the plan component of secondary alphabet number 1 (the zero line), the following is obtamed

$$
\begin{aligned}
& \text { TZPGLIQRHYOUVJCNEWKDASXMFB } \\
& \text { ASPTFGHUVJZEBWKNRLXOCMIYQ }
\end{aligned}
$$

The sequence ASPT is an equivalent primary plan component The orignal keyword muxed components may be recovered from each of the equivalent primary components That for the primary plam componen the primary clpher component is based upon the key QUESTIIONABLY
(3) Another method of accomplislung the process indicated above can be illustrated graphcally by the following two chains, based upon the two secondary alphabets set forth in subparagraph q (1)
$\begin{aligned} & 1 \ldots \text { TVABULIQXYCWSNDPFEZGRHJKMO } \\ & \text { 2-- }-\ldots \text { USTVIQRMONKXEAGBWPLHYCDFU }\end{aligned}$
4) By joming the letters in Column 1, the followng cham is obtamed ADQY I M, etc ff this be examined, it will be found to be an equivalent primary of the sequence based upon PUBLISHERS MAGAZINE By joming the letters in Column 2, the following chain is obtained TBFMXS This is an equivalent pumary of the sequence based upon QUESTIONABLY
r A final word concerning the reconstruction of primary components in general may be added It has been seen that in the case of a 26 -element component sliding agaunst itself (both components proceeding in the same direction), it is only the secondary alphabets resulting from odd-interval displacements of the primary components which permit of reconstructing a single 26-letter chain of equivalents This is true except for the 13th interval displacement, which chain of equivalents can be established from the secondary alphabet This exception complete clue to the basic reason for this phenomenon it is that the number 26 has two factors, 2 and 13 , which enter into the picture W_{1} th the exception of displacement-wterval 1 any displacement interval which is a sub-multuple of, ol has a factor in common wuth the number of letters on the promary interval which is a sub-multrple of, ol has a factor in common wrth the number of letters in the prmary sequence wull yield a secondary alphabet from which no complete chain of 26 equivalents can be
derved for the construction of a complete equivalent prumary component This general rule is derved for the consiruction of a complete equvvalent prumary component This general rule is apphcable only to components which progress in the same direction, if they progress in opposite
directions, all the secondary alphabets are reciprocal alphabets and they behave exactly like the reciprocal secondaries resulting from the 13-interval displacement of two 26 -letter identical components progressing in the same drection
s The foregoing remarks give rise to the followng observations based upon the general rule pointed out above Whether or not a complete equivalent primary component is derivable by decimation from an orginal primary component (and if not, the lengths and numbers of chains of letters, or incomplete components, that can be constructed in attempts to derive such equivalent components) will depend upon the number of letters in the orgmal promary component and the specific decimation interval selected For example, in a 26 -letter orgmal primary component, decumation interval 5 will yield a complete equivalent primary component of 26 letters, whereas decimation intervals 4 or 8 will yield 2 chains of 13 letters each In a 24-letter component, decimation interval 5 will also yield a complete equivalent primary component (of 24 letters), but decimation interval 4 will yeld 6 chains of 4 letters each, and decimation interval 8 will
yeld 3 chams of 8 letters each It also follows that in the case of an original primary component in which the total number of characters is a prime number, all decimation intervals will yreld complete equivalent primary components The following table has been drawn up in the light of these observations, for orginal primary sequences from 16 to 32 elements (An primevarous decimation mome and The the line the the 32 down to 16 (The student should bear in mind that sequences contaiming characters in addition to the letters of the alphabet may be oncountered, he can add to this table when he is tion to the letters of the alphabet may be oncountered, he can add to this table when he 18 for each combination of decmation interval and length of, onginal sequence, the lengths of the for each combination of decimation interval and length or, onginal sequence, the lengths of the
chams of characters that can be constructed
(The student may note the symmetry in each column) The bottom lone shows the total number of complete equivalent primary components which can be derived for each dufferent length of original component

Number of claracters m origtnal primary component											
32	30	28	27	26	25	24	22	21	20	18	16
16	15	14	27	13	25	12	11	21	10	9	8
32	10	28	9	26	25	8	22	7	20	6	16
8	15	7	27	13	25	6	11	21	5	9	4
32	6	28	27	26	5	24	22	21	4	18	16
16	5	14	9	13	25	4	11	7	10	3	8
32	30	4	27	26	25	24	22	3	20	18	16
4	15	7	27	13	25	6	11	21	5	9	2
32	10	28	9	26	25	8	22	7	20	2	16
16	3	14	27	13	5	12	11	21	2	9	8
32	30	28	27	26	25	24	2	21	20	18	16
8	5	7	9	13	25	2	11	7	5	3	4
32	30	28	27	2	25	24	22	21	20	18	16
16	15	2	27	13	25	12	11	3	10	9	8
32	2	28	9	26	5	8	22	7	4	6	
2	15	7	27	13	25	6	11	21	5	9	
32	30	28	27	26	25	24	22	21	20		
16	5	14	9	13	25	4	11	7	10		
32	30	28	27	26	25	24	22	21			
8	3	7	27	13	5	6	11				
32	10	4	9	26	25	8					
16	15	14	27	13	25	12					
32	30	28	27	26	25						
4	5	7	9	13							
32	6	28	27								
16	15	14									
32	10										
8	15										
32											
16											
14	6	10	16	10			8		6	4	

Section VIII

APPLICATION OF PRINCIPLES OF INDIRECT SYMMETRY OF POSITION

Applying the principles to a specific example The aryptogram employed in the exposition
Fundamental theory
Application of princuples
General remarks...-
32 Applyng the principles to a specific example - a The preceding section, with the many detalls covered, now forms a sufficient base for proceedung with an exposition of how the many details covered, now forms a sufision can be appled very early in the solution of a polyprinciples of indirect symmetry of position can be applyed the secondary cipher alphabets for the enciphering of the cryptogram
b The case described below will serve not only to explain the method of applying these principles but will at the same time show how their application greatly faclitates the solution of a single, rather difficult, polyalphabetic substitution cipher It is realized, of course, that the cryptogram could be solved by the usual methods of frequency and long, patient expermmentation However, the method to be described was actually applied and very material amount of time and labor that would otherwise have been required for solution

33 The cryptogram employed in the exposition - a The problem that will be used a ciphe exposition involves an actual cryptogram surh the same random muxed alphabet appears, both device having two concentric disks upen which This was obtauned from a study of the descriptive alphabets progressing in the same darection the usual process of factorng, it was determined that the cryptogram involved 10 alphabets The message as arranged according to 1ts period hat the cryptogram invoived 10 alphabits
b The triliteral frequency distributions are given in Figure 28 It will be seen that on ccount of the brevity of the message, considering the number of alphabets involved, the frequency distributions do not yield many clues By a very careful study of the repetitions, tentative individual determinations of values of cipher letters, as illustrated in Fownes there 31, and 32, were made These are given in sequence and in detali in order to sho nothing artaficial or arbitrary in the preliminary (60)

62
Triliteral Frequency Distribttiona

III

IV

 VIII

IX

64
Initial Values From Assumptions
${ }^{1}{ }_{\mathrm{G}}=\mathrm{E}_{\mathrm{p}}, \stackrel{2}{K_{\mathrm{c}}}=\mathrm{E}_{\mathrm{p}}, \stackrel{3}{\mathrm{X}}_{\mathrm{c}}=\mathrm{E}_{\mathrm{p}}$, and $\stackrel{5}{\mathrm{D}_{\mathrm{p}}}=\mathrm{E}_{\mathrm{p}}$, from frequency considerations.

| 1 | 2 | 8 | 4 | 5 | 6 | 7 | 8 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| W | F | 10 | | | | | | |

$\frac{T}{T} \frac{P}{T}$
B GBZDPFBOUO
c
C $\underset{\mathrm{E}}{\mathrm{G}}$
D
D KZUGDYFTRW
E $\underset{E}{G} \mathrm{~J}_{\mathrm{E}} \mathrm{XNW} \underline{\underline{Y} \underline{O} \mathrm{U} X}$
E
FIKWEPQZ0KZ
G PR X $\frac{\mathrm{X}}{\mathrm{E}} \mathrm{WLZ} \mathrm{I}$ CW
H GKQHOLODVM E E
I G 0 X SNZHASE E E
J B B JIPQFJHD
K Q CBZEXQTXZ
LJCQRQFVMLH
M SRQEWMLNAE
N $\frac{\underline{G} S}{E} \frac{X E R O}{E} \mathrm{Z} \frac{\mathrm{SE}}{\mathrm{T} H}$
$0 \underset{\mathrm{E}}{\mathrm{G}} \mathrm{V}$ QWE $\underset{\mathrm{E}}{\mathrm{J} M K G H}$

1	2	3	4	8	6	7	8	8	10
R	C	V	0	P	N	B			

P RCVOPNBLEW
Q LQZAAAMDCH
R B Z ZCKQOIKF
S CFBSCVXCHQ
T ZTZSDMXWCM
U RKUHEQEDGX ET
V FKVHPJJKJY E E
W YQDPCJXLLL
$X \underset{E}{G H E E R O Q P} \frac{S E}{T H}$
Y GKBWTLFDUZ E E
Z OCDHWMZTUZ
AA $K L B \frac{P C J}{T H E} O X E$
BB HSPOPNMDLM
CC $\underset{E}{G} C K W D V E L \frac{S E}{T H}$ DD $\frac{G S}{E} \frac{U G D P}{T H E} O T H X$

EE $\quad \begin{gathered}1 \\ B^{2} K \\ E\end{gathered}$
FF LEUYDTZVHQ GG $\quad \underline{Z} G W N K X U R N$

HH Y T X C DPMVLW
II BGEWWOQRGN
JJ HHVLAQQVAV
KK JQWOOTTNVQ

MM $\underline{Y} U X \underline{O} P$ PYOXZ
NN HOZOWMXGQ
$00 \mathrm{JJ} \frac{\mathrm{U} G \mathrm{DW}}{\mathrm{THE}} \mathrm{QR} \mathrm{VM}$
PP $\quad \frac{K W}{E} \underset{T}{\text { P EFXENE }}$
QQ CCUGDWPEUH
THE
RR YBWEWVMDYJ
SS R Z X

Additional Values from Assumptions (I) Refer to line DD in Figure 29, $\stackrel{2}{S_{0}}$ assumed to be N_{0} Refer to line M in figure $29, \stackrel{9}{A}_{c}$ assumed to be W_{D}

Additional Values from Assumptions (II)

- - T TH--- -
$\begin{array}{ccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \mathrm{~A} & \mathrm{~F} & \mathrm{U} & \mathrm{P} & \mathrm{C} & \mathrm{F} & \mathrm{O} & \mathrm{C} & \mathrm{J} & \mathrm{Y}\end{array}$
BUTTHOUGOH
B GBZDPFBOUO
E 0
C $\underset{E}{G R F T Z M Q M} \frac{A V}{W I}$
D KZUGDYFTRW
THTHE
E GJXNLWYOUX
E E
F I K WE PQ Z OK Z
G PR XDWLZI C W
H GKQHOLODVM
I GOXSNZHASE
E E
J BBJIPOFJHD
K QCBZEXQTXZ
L JCQRQFVMLH
MSRQEWMLNAE

> O G VQWEJMKGH
> $\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \mathrm{R} & \mathrm{C} & \mathrm{V} & \mathrm{O} & \mathrm{P} & \mathrm{N} & \mathrm{B} & \mathrm{L} & \mathrm{C} & \mathrm{W}\end{array}$
> Q LQZAAAMDCH
> R BZZCKQOIKF
> S C F B S CVXCHQ
> $\mathrm{U} \quad \mathrm{H} \quad \mathrm{G}$
> T ZTZSDMXWCM
> U RKUHEQEDGX ET
> FKVHPJJK JY
> $\mathrm{E} \quad \mathrm{E} \quad \mathrm{H}$
> W YQD $\frac{P C J X L L L}{T H E}$
> X GHXEROQPSE
> E EAC $\bar{H} \frac{\mathrm{TH}}{\mathrm{T}}$
> Y GKBWTLFDUZ
> Z OCDHWMZTUZ
> AA K L B PCJOTXE
> BB HSPOPNMDLM
> CC G CKWDVBL SE
> DD $\frac{G}{E} \underset{N}{S} \frac{U G D P P}{T H E} \frac{O T}{U} H X$
> EE $\quad \begin{aligned} & 1 \\ & B\end{aligned}$
> FF L F UY TRYH
> FF L $\frac{\mathrm{F} U}{\mathrm{U} T} \mathrm{Y} \underset{\mathrm{E}}{\mathrm{D}}$
> GG $\underline{Z} G W N K X J T R N$
> HH $\underset{E}{\mathrm{Y}} \mathrm{X} \underset{\mathrm{E}}{\mathrm{C}} \underset{\mathrm{D}}{\mathrm{D}} \mathrm{MVLW}$
> II BGEWW OQRGN H
> JJ HHVLAQQV AV
> KK JQWOOTTNVQ
> LL $\frac{B K}{E} \frac{X D}{E} S \frac{O Z R S N}{H}$
> MM YUXOPPYOXZ
> NN $\mathrm{HOOZOW} \underset{\mathrm{G}}{\mathrm{X}} \mathrm{C}$ G
> 00 JJ UGDWQRVM THE
> PP U K W P EFXENF
> QQ $\subseteq \subset \frac{U G D W P E U H}{T H E}$
> THE
> RR YBWEWVMDYJ

Additional Values From Assumptions (III)
${ }^{45}{ }^{5} \mathrm{E}$ —assume ING from repetition and frequency
${ }_{\mathrm{H}}^{\mathrm{H}} \mathrm{OZ}$-assume ING from repetition and frequency

| W | \mathbf{F} | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | BUTTMOUGY

Broug
$\mathrm{GB} \mathrm{B} D \mathrm{P} F$
E
N
N
C GRFTZMQMAV E WI
D KZUGDYFTRW THTHE
E G JXNLWYOUX E E
F IKWEPQZOKZ $\frac{\mathrm{K}}{\mathrm{E}} \frac{\mathrm{A}}{\mathrm{A}}$
G PRXDWLZICW
H GKQHOLODVN EEU

J BBJI $\underset{N}{P Q J H D}$
K QCBZEXQTXZ
L JCORQFVMLH

N $\frac{G S}{E N} \frac{X E R O}{E A C H} \frac{S E}{T H}$ CC $\underset{E}{G C K W D V B L} \frac{S E}{T H}$
$0 \underset{\mathrm{E}}{\mathrm{G} V Q W E J M K G H}$
$\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ R & C & V & O & P & N & B & L & C & W\end{array}$
$\frac{\mathrm{ING}}{\mathrm{N}}$
Q LQZAAAMDCH
R B Z Z ZCKQ OIK $\underset{\mathrm{H}}{\mathrm{E}}$
S CFBSCVXCHO
$-\mathrm{U} \quad \mathrm{H} \quad \mathrm{G} \frac{\mathrm{IN}}{\mathrm{IN}}$
T ZTZSDMXWCM
U RKUHEQEDGX
ET

> W Y Q D P C J XLLL THE
> X GHXEROQP SE E EACH TH
> Y GKBWTLFDUZ EE
> Z OCDH WMZTUZ
> AA $\underset{T}{K L B} \frac{P C J}{T H E X} \underset{H}{E}$

FF L $\underset{U T}{F T} Y \underset{E}{T} Z V \frac{H Q}{I N}$ GG $\underset{G}{Z} G W N K X J T R N$
HH YTXCDPMVLW $-\mathrm{E} \frac{\mathrm{E}}{\mathrm{E}}$
II BGBWW OQRGN
JJ HHVLAQQV $\frac{A V}{W I}$
KK JQWOOTTNVQ
LL $\frac{B K}{E} \frac{X D}{E} \underset{H}{O Z R S}$
MM $\underline{Y} U X \frac{0}{T P} P \underline{Y} \underline{X Z}$
NN $\mathrm{HOZO} \underset{\mathrm{I}}{\mathrm{WMXC}} \mathrm{G} \mathrm{N}$
$00 \mathrm{~J} J \frac{U G D W}{T H E} Q R Y$
PP U K W P P F FXENF
QQ C C UGDWPEUH
THE
$\operatorname{RR} \quad \mathrm{YB} \underline{\underline{W} W V M D Y J}$
SS R Z X
c From the inital and subsequent tentative identifications shown in Figures 29, 30, 31, and 32 , the values obtaned weie arranged in the form of the secondary alphabets in a reconstruc-
tion skeleton, shown in Figure 33

\emptyset	A	B	C		E	E	F	G	H	I	J	K	K	LM	N	0	P	Q	Q	R	S	T	U	V	W	x	Y	Z
1		W			G	G		Z														K						
2	G				K	K			z						5								F					
3					x	x																U						
4	E				T	T			G	0												P						
5			R		D	D			c						P													
6	V				J	J			0							F												
7																							0					
8								c																				
9									J	H												S			A			
10			5						E	V					Q	Q												1 k

10082 3
34 Fundamental theory - a In paragraph 31, methods of reconstructing primary components from secondary alphabets were given in detall It is necessary that those methods be fully understood before the following steps be studied It was there shown that the primary component can be one of a series of equivalent primary sequences, all of which will give exactly sumular results so far as the secondary alphabets and the cryptographic text are concerned It is not necessary that the identical or onginal primary component employed in the cryptographing be reconstructed, any equivalent primary sequence will serve The whole question is one of establishing a sequence of letters the interval between which is elther identical with that in the origmal primary component or else is an exact constant multiple of the interval separating the letters in the onginal primary component For example, suppose K PXNQ forms a sequence in the onginal primary component Here the interval between K and P, and P and X, X and N, N and Q is one, in an equvalent primary component, say the sequence $K \quad P$ N. Q, the interval between K and P is three, that between P and X also three, and so o and the two sequences will yield the same secondary alphabets So long as the interval between K and P, P and X, X and N, N and Q, is a constant one, the sequence will be cryptographically those of the orignal primary sequence However, in the case of a 26 -letter component, it is necessary that thus interval be an odd number other than 13, as these are the only cases which will yeld one unbroken sequence of 26 letters Suppose a secondary alphabet to be as follows
t can be sadd that the primary component contans the following sequences

$$
\mathrm{XN} \quad \mathrm{KP} \quad \mathrm{NQ} \quad \mathrm{PX}
$$

These, when united by means of their common letters, yield K P X N Q Suppose also the following secondary alphabet is at hand

$$
\text { (2) }\left\{\begin{array}{l}
\text { Plain.-.--------- } \\
\text { Cupher----- }
\end{array}\right.
$$ ABCDEFGHIJKLMNOP

Here the sequences $P N, X Q, K X$, and $N Z$ can be obtaned, which when united yleld the two sequences $K X Q$ and $P N Z$
By a comparison of the sequences K P X N Q, K X Q, and PNZ, one can establish the following

$$
\begin{aligned}
& K P \quad X N Q \\
& K \quad X \quad Q \\
& P \quad . N \quad Z
\end{aligned}
$$

It follows that one can now add the letter Z to the sequence, making it $\mathrm{K} P \mathrm{X} \mathrm{NQ} \mathrm{Z}$
b The renstruc can now add the letter Z to the sequen of the secondary alphabets by the ass an a This is at hand parter a been completely solved one could employ This is at hand only after a cryptogram has been completeltaltaneously with the analysis of the rytoram, one could then possibly buld up a primary component from fewer data and thus solve the cryptogram much more rapidly than would otherwise be possible
c Suppose only the cipher components of the two secondary alphabets (1) and (2) given above be placed into juxtaposition Thus

The sequences PX, XN, and KP are given by juxtaposition These, when united, yield KPXN spart of the primary sequence It follows, therefore, that one can employ the cipher components of secondary alphabets as sources of independent data to assist in bulding up the primary sequences The usefulness of this point will become clearer subsequently

35 Application of principles - a Refer now to the reconstruction skeleton shown in Figure 33 Hereafter, in order to avoid all ambiguity and for ease in ieference, the position of letter in Figure 33 will be indicated as stated in footnote 1, page 56 Thus, $N(6-7)$ refers to the letter N in line 6 and in column 7 of Figure 33
b (1) Now, consider the following pars of letters

$$
\left.\begin{array}{ll}
E(\emptyset-5) & J(6-5) \\
G(\emptyset-7) & N(6-7) \\
\left\{\left.\begin{array}{l}
\text { H }
\end{array} \right\rvert\,\right. \\
0(\emptyset-8) & 0(6-15) \\
0 & F(6-15)
\end{array}\right\} \mathrm{HO}, \mathrm{OF}=\mathrm{HOF}
$$

(One is able to use the line marked zero in Figure 33 since this is a muxed sequence shding aganst utself)
(2) The immediate results of thes set of values will now be given Having HOF as a sequence with EJ as belonging to the same displacement interval, suppose HOF and EJ are placed into juxtaposition as portions of sliding components Thus

$$
\begin{array}{ll}
\text { Plain_ - }-- & \text { H O } \\
\text { Cinher } & \text { E.J }
\end{array}
$$

When $H_{p}=E_{0}$, then $O_{p}=J_{c}$
(3) Refer now to alphabet 10, Figure 33, where it is seen that $H_{p}=E_{c}$ The derved value $J_{p}=J_{e}$, can immedrately be inserted in the same alphabet and substituted in the cryptogram
(4) The student may possibly get a clearer idea of the principles involved if he will regard the matter as though he were dealing with arithmetical proportion For instance, given any three terms in the proportion $28=416$, the 4th term can easily be found Furthermore, given he parr of values on the left-hand side of the equation, one may find numerous pars of解 oll now be
 is clag that J mas be inged as the 3 d tem in the mportant new value, ${ }^{10} 0_{p}=J_{e}$, which is exactly what was obtaned drectly above, by means of the partial sliding components As an example of the second principle, note the following pairs

$$
\begin{array}{ll}
\mathrm{E}(0-5) & \mathrm{H}(0-8) \\
\mathrm{K}(2-5) & \mathrm{Z}(2-8) \\
\mathrm{D}(5-5) & \mathrm{C}(5-8) \\
J(6-5) & 0(6-8) \\
& \\
\mathrm{K}(1-20) & \mathrm{Z}(1-7)
\end{array}
$$

$$
T(\eta-20) \quad G(a-7)
$$

Therefore, $E H=K Z=D C=J \quad 0=T \quad G$, and T may be inserted in position (4-5)
c (1) Again, GN belongs to the same set of displacement-interval values as do EJ and HOF Hence, by superimposition

$$
\begin{array}{ll}
\text { Plann. .-- } & \text { H O F } \\
\text { Conher }
\end{array}
$$

(2) Referring to alphabet 4, when $\mathrm{H}_{\mathrm{p}}=\mathrm{G}_{\mathrm{c}}$, then $\mathrm{O}_{\mathrm{p}}=\mathrm{N}_{\mathrm{c}}$. Therefore, the letter N can be inserted m position (4-15) in Figure 33, and the value $\mathrm{N}_{0}=\mathrm{O}_{\mathrm{p}}$ can be substituted in the cryptogram
(3) Furthermore, note the corroboiation found from this particular supermposition:

$$
\begin{array}{cc}
H(0-8) & \text { G (} 0-7) \\
0(6-8) & N(6-7)
\end{array}
$$

This checks up the value in alphabet $6, G_{p}=N$
d (1) Agan superimpose HOF and GN
(2) Note this corroboration

$$
\begin{aligned}
& \text { • HOF } \\
& F(6-15) \quad N(4-15)
\end{aligned}
$$

e (1) Again using HOF and EJ, but in a different superimposition

H
 E J

(2) Refer now to $H(9-9), \mathrm{J}(9-8) \quad$ Directly under these letters is found $V(10-9), E(10-8)$

Therefore, the V can be added immediately before H 0 F , making the sequence V H 0 F
f (1) Now take V H OF and juxtapose it with E J, thus

E J

(2) Refer now to Fugure 33, and find the following

$$
\begin{array}{ll}
\text { V (10-9) } & \text { E (10-8) } \\
\text { H (9-9) } & \text { J (9-8) } \\
0(4-9) & \text { G (4-8) } \\
\text { I (}(0-9) & \text { H }(0-8)
\end{array}
$$

(3) From the value 0 Git follows that G can be set next to J in E J Thus

VHOF

E J G
(4) But $G N$ already is known to belong to the same set of droplacement-interval values as E J

Therefore, it is now possible to combine E J, J G, and G N into one sequence, E J G N yrelding

$$
\begin{aligned}
& \text { V H O F } \\
& \text { E J G N }
\end{aligned}
$$

g (1) Refer now to Figure 33

	G
(2-22)	K
(3-22)	X
(5-22)	D
(6-22)	

(2) The only values which can be inserted are

$$
\begin{array}{ll}
0(1-22) & G(1-5) \\
H(6-22) & J \\
\hline(6-5)
\end{array}
$$

(3) This means that $V_{D}=O_{0}$ in alphabet 1 and that $V_{p}=H_{c}$ in alphabet 6 There is one O_{0} in the frequency distribution for alphabet 1 , and no H_{c} in that for alphabet 6 The frequency distribution is, therefore, corroborative insofar as these values are concerned
(h) (1) Further, taking E J G N and V H O F, supermpose them thu

$$
\begin{aligned}
& \text { EJGI } \\
& \text { HOFF }
\end{aligned}
$$

(2) Refer now to Figure 33

$$
\begin{array}{ll}
E(0-5) & H(b-8) \\
G(1-5) & ?(1-8)
\end{array}
$$

which has just been inserted in Figure 33, as stated above
(3) From the diagram of superimposition the value G (1-5) F (1-8) can be inserted, which gives $H_{p}=F_{0}$ in alphabet

2 (1) Agam, V H OF and E J G N are juxtaposed
(2) Refer to Figure 33 and find the following

$$
\begin{array}{ll}
\text { H (}(0-8) & \text { G (4-8) } \\
\text { A (}(0-1) & E(4-1)
\end{array}
$$

This means that it is possible to add A, thus
AVHOF
EJGN
(3) In the set there are also

$$
\mathrm{E}(\emptyset-5) \quad \mathrm{G}(1-5
$$

Then in the supermposition

$$
G(9-7) \quad Z(1-7)
$$

$$
\begin{gathered}
\text { E J G } \\
\mathrm{J} \mathrm{~N}
\end{gathered}
$$

It is possible to add Z under G, making the sequence $E J G N Z$ (4) Then takıng
and referring to Figure 33

$$
\begin{aligned}
& \text { AVHOF } \\
& \text { JGNZ }
\end{aligned}
$$

$$
\begin{array}{ccc}
H & (0-8) & \mathrm{N} \\
\hline(0-14) \\
0 & (6-8) & \circ \\
\hline
\end{array}(6-14)
$$

It will be seen that $0=Z$ from superimposition, and hence in alphabet $6 \mathrm{~N}_{\mathrm{p}}=\mathrm{Z}_{\mathrm{c}}$, an important new value, but occurring only once in the cryptogram Has an error been made? The work so far seems too corroborative in interlocking detalls to think so
far seems too corroborative in interlocking details to think so
j (1) The possibilities of the superimposition and shding of the AVHOF and the EJGNZ sequences have by no means been exhausted as yet, but a little different trall this time may be advisable
(2) Then

$$
\begin{array}{ll}
E(\emptyset-5) & T(p-20) \\
G(1-5) & K(1-20) \\
K(3-5) & U(3-20) \\
& \\
: & E \text { J G N Z } \\
: & T \\
\text { K }
\end{array}
$$

(3) Now refer to the following

E (ø-5) K (2-5)
N ($0-14) \quad S(2-14)$
whereupon the value S can be inserted

$$
\ldots \mathrm{T} \mathrm{~K}_{\mathrm{K}}^{\mathrm{J} G \mathrm{G} Z}
$$

k (1) Consider all the values based upon the displacement interval corresponding to JG

$$
\begin{aligned}
& J(6-5) \quad G(1-5) \rightarrow J(9-8) \quad G(4-8) \\
& N \text { (6-7) } \mathrm{Z}(1-7) \rightarrow \mathcal{(9 - 8)} G(4-8) \\
& S(9-20) \quad P(4-20) \rightarrow \mid S(2-14) \quad P(5-14) \\
& \begin{array}{lll}
\mathrm{Z}(2-8) & \mathrm{C} & (5-8) \\
\mathrm{K}(2-5) & \mathrm{D} & (5-5)
\end{array}
\end{aligned}
$$

(2) Since J and G are sequent in the $E J G N Z$ sequence, it can be said that all the letter of the foregoing pars are also sequent Hence $Z \mathrm{C}, \mathrm{S} P$, and $K \mathrm{D}$ are avalable as new data These give E J G N Z C and T K D S P
(3) Now consider

$$
\begin{array}{ll}
\mathrm{T}(\square-20) & \mathrm{P}(4-20) \\
\mathrm{A}(\square-1) & \mathrm{E}(4-1) \\
\mathrm{H}(\square-8) & \mathrm{G}(4-8) \\
\mathrm{I}(\square-9) & 0(4-9)
\end{array}
$$

Now in the $T K D \quad S P$ sequence the interval between T and P is $T{ }^{1} 23: 50$ Hence the interval between A and E is 6 also It follows therefore that the sequences AVHOF and E J G N Z C should be unted, thus
(4) Corroboration is found in the interval between H and G , which is also six The letter I can be placed into position, from the relation I ($\varnothing-9$) $0(4-9)$, thus

l (1) From Figure 33

$$
\begin{array}{ll}
\mathrm{H}(\emptyset-8) & \mathrm{Z}(2-8) \\
\mathrm{E}(\emptyset-5) & \mathrm{K}(2-5) \\
\mathrm{N}(\emptyset-14) & \mathrm{S}(2-14) \\
\mathrm{U}(\emptyset-21) & \mathrm{F}(2-21)
\end{array}
$$

(2) Since in the I AVHOF EJGNZC sequence the letters H and Z are separated by 8 intervals one can write

(3) Hence one can make the sequence

m (1) Subsequent derivations can be undicated very briefly as follows

$$
\begin{array}{ll}
\mathrm{E}(5-5) \\
\mathrm{D}(5-5) & \mathrm{C}(5-3)
\end{array}
$$

 one can write
and

making the sequence

(2) Another derivation

$$
\begin{array}{ll}
U(3-20) & T(0-20) \\
X(3-5) & E(0-5)
\end{array}
$$

 one can write

U I
and
E
T
x
makng the sequence

(3) Another derivation

$$
\begin{array}{cc}
\text { E (}(\emptyset-5) & \text { G(1-5) } \\
\text { B (} \emptyset-2) & W(1-2) \\
\text { E J G G } & . \\
E \quad G &
\end{array}
$$

From
one can write
and then
There is only one place where B W can fit, viz, at the end
n Only four letters remain to be placed into the sequence, $n z, \mathrm{~L}, \mathrm{M}, \mathrm{Q}$, and Y Therr positions are easily found by application of the primary component to the message The complete sequence is as follows

Haning the primary component fully constructed, decipherment of the cryptogram can be completed with speed and precision The text is as follows
WFUPCFOCJY RCVOPNBLCW BKDZFMTGQJ BUTTHOUGHW POSINGTHES SELFWILLGO GBZDPFBOUO LQZAAAMDCH ECANNOTASY GRFTZMQMAV ETREVIEWWI KZUGDYFTR THTHEMINDS GJXNLWYOUX YYEOURPAST ITWEPQZOKZ WECANTOANE PRXCWLZICW XTENTFORES GKQHOLODVM EEOURFUTUR GOXSNZHASE EWECANWITH BBJIPQFJHD SCIENTIFIC CBZEXQTXZ CONFIDENCE JCQRQFVMLH OOKFORNAR SRQEWMLNAE DTOATIMEWH GSXEROZJSE ENEACHOFTH GVQEJMKGH BODIESCOM

OLARSYSTEM BZZCKQOIKF SHALLTURNA CFBSCVXCHQ NUNCHANGIN ZTZSDMXWCM EINPER RKUHEQEDGX PETUTYTOT FKVHPJJKJY HESUNEACHW Y Q DPCJXLLL ILLTHENHAV GHXEROQPSE EREACHEDTH GKBWTLFDUZ EENDOFITSE OCDHWMZTUZ OOLUTIONSE KLBPCJOTXE TINTHEUNCH SPOPNMDLM ANGINGSTAR CKWDVBLSE EOFDEATHTH GSUGDPOTHX NTHESUNIT

havere 34

LFUYDTZVHQ OUTBECOMIN ZGWNKXJTRN GACOLDANDL YTXCDPMVLW IfeLessmas BGBWWOQRGN SANDTHESOL HHVLAQQVAV ARSYSTEMWI JQWOOTTNVQ
LLCIRCLEUN BKXDSOZRSN SEENGHOSTL YUXOPPYOXZ IKEINSPACE HOZOWMXCGQ AWAITINGON JJUGJWQRVM LYTHERESUR UKWPEFXENF RECTIONOFA CCUGDWPEUH NOTHERCOSM YBWEWVMDYJ ICCATASTRO R Z X
P HE
o The primary component appears to be a random-mixed sequence, no key word is to be ound, at least none reappears on experimentation with vanous hypotheses as to enciphering equations Nevertheless, the random construction of the pumary component did not complcate or retard the solution

Sletion IX

REPEATING-KEY SYSTEMS WITH MIXED CIPHER ALPHABETS, III Solution of messages enciphered by known primary components | $--\quad 37$ |
| :--- |
| $--\quad 38$ | Solution of repeating-key ciphers in which the identical mived components proceed in opposite direction Solution of repeating-hey ciphers in which the primarv components are different mised sequences

lution of subsequent messages after the primary components have been recovered
37 Solution of subsequent messages enciphered by the same primary components -a the discussion of the methods of solving repeating-key ciphers using secondary alphabets derived from the slding of a mixed component against the normal component (Section V), it was shown how subsequent messages encıphered by the same parr of primary components but with dffferent keys could be solved by apphication of principles involving the completion of the plain-component equence (paragraphs 23, 24) The present paragraph deals with the application of these sam principles to the case where the primary components are identical muxed sequences
b Suppose that the following primary component has been reconstructed from the analysis of a lengthy cryptogram
QUESTIONABLYCDFGHJKMPRVWXZ

A new message exchanged between the same correspondents is intercepted and is suspected of having been encrpheied by the same primary components but with a different key The message is as follows

$$
\begin{array}{lllll}
\text { NFWWP NOMKI WPIDS CAAET QVZSE } \\
\text { YOJSC AAAFG RVNHD WDSCA } & \text { EGNFP } \\
\text { FOEMT HXLJW PNOMK IQDBJ IVNHL }
\end{array}
$$

TFNCS BGCRP
c Factoring discloses that the period is 7 letters The text is transeribed accordingly, and is as follows
d The letters belonging to the same alphabet are then employed as the initial letters of completion sequences, in the manner shown in paragraph $23 e$, using the already reconstructed primary component The completion dagrams for the first five letters of the first three alphabets are as follows

alpabitr 1	Alprabit 2
N M S V S	F K C Z C
APTWT	GMDQD
BRIXI	HPFUF
LVOZ0	J R G E G
Y W N Q N	K V H S H
CXAUA	M W J T J
D ZBEB	P X K I K
FQLSL	R Z M OM
G U Y T Y	VQPNP
* H E C I C	WURAR
J S D D	X EVBV
K T F N F	Z S W L W
MIGAG	Q TXYX
P OHBH	U C C Z
R N J L J	EOQDQ
V AKYK	SNUFU
W B M C M	TAEGE
X L P D P	I B S H S
ZYRFR	0 LTJT
Q CVGV	NYIK I
U DWHW	*A C OMO
EFXJX	B D N P N
S G Z K Z	LFARA
THQMQ	Y G B V B
I J U P U	C H L W L
OKERE	D J Y X Y

$$
\begin{aligned}
& \text { alprabit } 3 \\
& \begin{array}{l}
\mathrm{WIASA} \\
\mathrm{XOB} \text { O }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Z } \mathrm{NLYI} \\
& \text { Q BCNC } \\
& \text { ELDAD } \\
& \text { YFBF } \\
& \text { TCGLG } \\
& \text { IDHYH } \\
& \text { OFJC } \\
& \text { NGKDK } \\
& \text { AHMFM } \\
& \text { BJPGP } \\
& \begin{array}{l}
\text { B JPGP } \\
\text { LKRHR } \\
\text { Y }
\end{array} \\
& \text { YMVSV } \\
& \text { CPWKW } \\
& \text { DRXMX } \\
& \text { FVZPZ } \\
& \begin{aligned}
G W Q R Q \\
\mathrm{XUV}
\end{aligned} \\
& \text { J ZEWE } \\
& \begin{array}{ll}
\mathrm{K} \\
\mathrm{O} & \mathrm{SXX} \\
\hline
\end{array} \\
& \text { MUTZT } \\
& \text { PEIQI }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \text { RTSOUO } \\
& * \\
& * \text { V NEN }
\end{aligned}
\end{aligned}
$$

e Examining the successive generatives to select the ones showing the best assortment of high-frequency letters, those marked in Figure 38 by asterisks are chosen These are then assembled in columnar fashion and yreld the following plain text

123 $H A$
 ET
 C 0 N
 I ME

0 N
f The corresponding key-letters are sought, using enciphering equations $\theta_{\Sigma / 0}=\theta_{1 / / 2}, \theta_{D / D}=$ $\theta_{\text {c/ere }}$, and are found to be JOU, which suggests the keyword JOURNEY Testung the key-letters RNEY for alphabets 4, 5, 6, and 7, the followng results are obtained

$$
\begin{aligned}
& \text { HAVEDIR } \\
& \text { SCAAETQ } \\
& \text { CTEDS } \\
& \text { Frours } 40
\end{aligned}
$$

The message may now be completed with ease It is as follows

J OURNEY	JOURNEY
HAVEDIR	SAINCEI
NFWWPNO	PFOEMTH
ECTEDSE	NTHEDIR
MKIWPID	XLJWPNO
C ONDREG	ECTIONO
SCAAETQ	MKIQDBJ
IMENTTO	FHORSES
V ZSEYOJ	IVNHLTF
CONDUCT	HOEFALL
SCAAAFG	NCSBGCR
THORORE	S
RVNHDWD	P
CONNAIS	
SCAEGNF	

38 Solution of repeating-key ciphers in which the identical mixed components proceed in opposite directions.-The secondary alphabets in this case (paragraph 6, Case B (3) (a) (II) are reciprocal The steps in solution are essentially the same as in the preceding case (paragraph 28), the principles of indirect symmetry of position can also be apphed with the necessary modifications introduced by virtue of the reciprocity existing within the respective secondary alphabets (paragraph 31p)

39 Solution of repeating-key ciphers in which the primary components are dufferent mixed sequences.-This is Case B (3) (b) of paragraph 6 The steps in solution are essentially the same as in paragraphs 28 and 31 , except that in applying the principles of indirect symmetry of position it is necessary to take cognzance of the fact that the primary components are dufferent muxed sequences (paragraph 31q)

40 Solution of subsequent messages after the primary components have been recovered.a In the case in which the primary components are identical mixed sequences proceedng in opposite drections, as well as in that in which the primary components are different muxed

81

equences, the solution of subsequent messages ${ }^{1}$ is a relatively easy matter In both cases, howver, the student must remember that before the method illustrated in paragraph 37 can be pphed it is necessary to convert the cipher letters into their plan-component equivalent bere completing the plam-component sequence From there on, the process of selecting and assembling the proper generatrices is the same as usual
b Perhaps an example may be adnisable Suppose the enemy has been found to be using prmary components based upon the keyword QUESTIONABLY, the plam component running rom left to right, the cipher component in the reverse drection The following new message has arrived from the intercept station

2848
VXOX
1

ZIYZNL
W Z HOXI
EOOOEP
ZFXSRX
E JBSHB
ONAURA
PZINRA
VXOXA
I JYXWF
KNDON
LVBZAQ
UWJWXY
IDGRKD
Q B DRMQ
ECYVQW

${ }^{1}$ That is, messages intercepted after the primary components have been reconstructed and enciphered by seys dufferent
d The key letters are sought, and found to be NUM, which suggests NUMBER The entire

Columnar assemblung of selected generatrices gives what is shown in Fig 45

	FI R
	A V A
	L E S
	IRD
	A $\mathrm{D} R$
	I L L
	U P Y
	DEF
	FIR
	ELA

UFBMUHJPUF

 EGLPEJKREG SHYRSKMVSH TJCVTMPWTJ IKDWIPRXIK MOENVWON NPGZNVWQNP ARHQAWXUAR BVJUBXZEBV L WKEELZQSLW YXMSYQUTYX CZPTCUEICZDQRTDES
OR
 GEWNGTTNFGE GSXAHIOBHS JTZBJONLJT KIQLKNAYKI
 M
PNEMPBLDPN *RASDRLYFRA VBTFVYCGVB WLIGWCDHWL XYODFJXY QDAKQGHNQD
message may now be read with ease It is as follows

N UMBER	N U M B ER
FIRSTC	ELAYIN
M V X O $\mathrm{B}^{\text {c }}$	I J Y X W F
AVALRy	GPOSIT
Z I Y Z N	KNDOW J
LESSTH	I ONAND
W Z H OXI	ERCURA
IRDSQU	W I L L PR
EOOOEP	LVBZAQ
ADRONW	OTECTL
Z FXSRX	UW J W X Y
ILLOCC	EFTFLA
E J B S H B	I D GRKD
UPYAND	NKOFBR
ONAURA	Q B DRMQ
DEFEND	IGADEX
P Z INRA	E C Y V Q W
FIRSTD	
M V X OXA	

e If the primary components are different mixed sequences, the procedure is identical with that just indicated The important point to note is that one must not fail to convert the letter into their plan-component equivalents before the completion-sequence method is apphed

Section X
REPEATING-KEY SYSTEMS WITH MIXED CIPHER ALPHABETS, IV

perving the secondary alphabets, the primary components, and the key, given a cryptogram with its
 more cryptograms in different keys and suspected to contain identical plain text The case of repeating-key systems.
The case of identical
the general principles -The preceding three sections have been devoted to an elucidation of the general principles and procedure in the solution of typical cases of repeating-key ciphers This section will be devoted to a consideration of the variations in cryptanalytic procedure arising from special carcumstances It may be well to add that by the designation "special carcum stances" it is not meant to imply that the latter are necessarily unusual curcumstances The student should always be on the alert to selze upon any opportunities that may appear in whech he may apply the methods to be described In practical work such opportunities are by no means rare and are seldom overlooked by competent cryptanalysts

42 Derving the secondary alphabets, the primary components, and the key, given a cryptogram with its plain text - a It may happen that a cryptogram and its equivalent plain text are at hand, as the result of capture, plferage, compiomise, etc This, as a general rule, affords a very easy attack upon the whole system
b Takng first the case where the plain component is the normal alphabet, the cipher component a mixed sequence, the first thing to do is to write out the cipher text with its letter-forletter decipherment From this, by a slight modification of the principles of "factoring", one discovers the length of the key It is obvious that when a word of three or four letters is enciphered by the same cupher text, the interval between the two occurrences is almost certainly a multiple of the length of the key By noting a few recurrences of plain text and cipher letters, one can quickly determine the length of the key (assuming of course that the message is long enough to
afford sufficient data) Having determined the length of the key, the message is rewntten according to its periods, with the plain text likewise in periods under the cipher letters from this arrangement one can now reconstruct complete or partial secondary alphabets If the secondary alphabets are complete, they will show drect symmetry of position, if they are but fragmentory phabets are shabets, then the n several alphabets, then the prmary component can be reconstructed by the application of the ciples of direct symmetry of position
c If the plain component is a mixed sequence, and the cupher component the normal (durect or reversed sequence), the secondary alphabets will show no direct symmetry unless they are ar ranged in the form of deciphering alphabets (that is, $\mathrm{A}_{0} \quad \mathrm{Z}_{\mathrm{o}}$ above the zero line, with their quivalents below) The student should be on the lookout for such cases
d (1) If the plan and cipher promary components are identical muxed sequences proceeding in the same drection, the secondary alphabets will show indirect symmetry of position, and they can be used for the speedy reconstruction of the primary components (Paragraph 31a to o)
(2) If the plain and the cipher primary components are identical mixed sequences proceeding in opposite directions, the secondary alphabets will be completely reciprocal secondary alphabets and the primary component may be reconstructed by applying the principles outlined in paragraph 31 p
(3) If the plann and the cupher primary components are dufferent muxed sequences, the condary alphabets will show indurect symmetry of position and the primary components may be reconstructed by applying the principles outhned in paragraph 31 d
e In all the foregoing cases, after the primary components have been reconstructed, the keys can be readly recovered
43. Deriving the secondary alphabets, the primary components, and the keywords for messages, given two or more cryptograms in dufferent keys and suspected to contain identical plann text - a The simplest case of this kind is that involving two monoalphabetic substitution ciphers with muxed alphabets derived from the same parr of sliding components An understanding of this case is necessary to that of the case involving repeating-key clphers
b (1) A message is transmitted from station A to station $B \quad B$ then sends A some operating signals which indicate that B cannot decipher the message, and soon thereafter A sends a second message, identical in length with the first This leads to the suspicion that the plain text of both messages is the same The intercepted messages are supermposed Thus
 2 EMM HJ FGVUB PRJNG JKWHM RAPJM KMPRW ZTAXG JJMCD HBPKY PVKIV QOJPR BMUSH
(2) Intiating a chain of cipher-text equivalents from message 1 to message 2 , the following complete sequence is obtained

(3) Expermentation along already-mdicated lines soon discloses the fact that the foregomg component is an equivalent primary component of the origunal primary based upon the keyword QUESTIONABLY, decimated on the 21st interval Let the student decipher the cryptogram
(4) The foregoing example is somewhat artificial in that the plan text was consciously selected with a view to making it contain every letter of the alphabet The purpose in dong this was to permit the construction of a complete choin of equivalents from only two short messages, in order to give a simple illustration of the principles involved If the plain-text message does not contain every letter of the alphabet, then only partial chains of equivalents can be constructed These may be united, if circumstances will permit, by recourse to the various princaples elucidated in paragraph 31
(5) The student should carefully study the foregoing example in order to obtain a thorough comprehension of the reason why it was possible to reconstruct the primary component from the two crpher messages without having any plann text to begin with at all Since the plain text of both messages is the same, the relative displacement of the primary components in the case of message 1 differs from the relative dsplacement of the same primary components in the case of message 2 by a fixed interval Therefore, the distance between N and E (the first letters of the two messages), on the prmary component, regardless of what plan-text letter these two apher letters represent, is the same as the distance between E and W (the 18 th letters), of letters separated by constant intervals and this chain becomes an equivalent primary component.

44 The case of repeating-key systems - a With the foregoing basic principles in mind 44 The case of repeating-key systems - a With the foregoing basic principles in mind
the student is ready to note the procedure in the case of two repeating-key ciphers having identical plain texts First, the case in which both messages have keywords of identical length but dufferent compositions will be caudied
b (1) Given the following two cryptograms suspected to contain the same plain text
Message 1

Y HYEX	UBUKA	P V L L T	A B U V V	D Y SAB
PCQTU	NGKFA	ZEFIZ	B D J Z	ALVID
TROQS	U HAFK			
		Message 2		
C G S L	Q U BMN	C T Y B V	HL Q FT	F L R H L
MTAIQ	ZWMDQ	NS DWN	L C BLQ	NETOC
V SNZR	BJNOQ			

(2) The first step is to try to determine the length of the period The usual method of factoring cannot be employed because there are no long repetitions and not enough repetitions even of digraphs to give any convincing indications However, a subterfuge will be employed, based upon the theory of factoring
c (1) Let the two messages be superimposed

$$
\begin{aligned}
& 2 \text { CGSLZQUBMNCTYBVHLQFT }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \text { FLRHLMTAIQZWMDQNSDWN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LCBLQNETOCVSNZRBJNOQ }
\end{aligned}
$$

(2) Now let a search be made of cases of identical superimposition For example, L and L	6	
U	18	
U	U	

are separated by 40 letters, Q, Q, and Q are separated by 12 letters Let these intervals between dentical superimpositions be factored, just as though they were ordinary repetitions Tha factor which is the most frequent should correspond with the length of the period for the following reason If the period is the same and the plain text is the same in both messages, then the condition of identity of superimposition can only be the result of identity of encipherments by dentical cipher alphabets This is only another way of saying that the same relative position in the keying cycle has been reached in both cases of adentity Therefore, the distance between identical superimpositions must be etther equal to or else a multiple of the length of the period Hence, factoring the intervals must yield the length of the period The complete hist of interval
and factors apphcable to cases of identical superimposed pairs is as follows (factors above 12 are omitted)

Repetition	Interval	Factors	stion	Interval	Factors
1st EL to 2d EL. --	40	2, 4, 5, 8, 10	1st TV to 2d TV.	36	2, 3, 4, 6, 9, 12
1st UQ to 2d UQ	12	2, 3, 4, 6, 12	1st AH to 2d AH ----	8	2, 4, 8
2 d UQ to 3d UQ	12	2, 3, 4, 6, 12	1st BL to 2d BL	8	2, 4, 8
1st UB to 2d UB	48	2, 3, 4, 6, 8, 12	$2 \mathrm{~d} \mathrm{BL} \mathrm{to} \mathrm{3d} \mathrm{BL}$	16	2, 4, 8
1st KM to 2d KM -	24	2, 3, 4, 6, 8,12	1st SR to 2d SR	32	2, 4, 8
1st $\mathrm{AN}^{\text {do }} \mathbf{2 d} \mathrm{AN}$.	36	2, 3, 4, 6, 9, 12	1st FD to 2d FD. .-	4	2,4
2 d AN to 3d AN	12	2, 3, 4, 6, 12	1st ZN to 2d ZN	4	
1st VT to 2d VT		2, 4, 8	1st DC to 2d DC..	8	2, 4, 8
2d VT to 3d VT. -	28	2, 4, 7			

(3) The factor 4 is the only one common to every
d Let the messages now be superimposed according to their periods

1 HAFK
2 JNOQ
e (1) Now distribute the superimposed letters into a reconstruction skeleton of "secondary alphabets " Thus

9	A	B	c		F	G	H	I	J	K	L	M	N	0	P	Q			T				x	Y	z
1		L			S		J	0		M	Y			N					I					C	Q
2	N			c	D		G				B				M	Z				Q				L	
3	Q	U	T		0			W	B		E		z		C				V		F			S	
4	H				L	W				Q						A				B	T				N

(2) By the usual methods, construct the primary or an equivalent primary componen Taking lines \emptyset and 1 , the following sequences are noted
$\mathrm{BL}, \mathrm{DF}, \mathrm{ES}, \mathrm{HJ}, \mathrm{IO}, \mathrm{KM}, \mathrm{LY}, \mathrm{ON}, \mathrm{TI}, \mathrm{XZ}, \mathrm{YC}, \mathrm{ZQ}$,
which, when united by means of common letters and study of other sequences, yeld the complete orignal primary component based upon the keyword QUESTIONABLY
2UESTIONABLYCDFGHJKMPRVWXZ
(3) The fact that the parr of lunes with which the process was commenced yield the orignal primary sequence is purely accidental, it might have just as well yrelded an equivalent primary sequence.
f (1) Having the primary component, the solution of the messages is now a relatively ample matter An application of the method elucidated in paragraph 37 is made, involving the comple tion of the plaun-component sequence for each alphabet and selecting those generatices which contain the best assortments of high-frequency letters Thus, using Message 1

mast Alprabist	smoond Alprabix	thrid alpabiry	Fodith Alpabizi
Y X K L B	HUALU	YBPTV	EUVAV
C ZMYL	J EBYE	C LRIW	SEWBW
D Q P C Y	K S L C S	DYVOX	T S X L X
FURDC	MTYDT	FCWNZ	I T Z Y Z
GEVFD	PICFI	G DXAQ	OIQCQ
HSW GF	RODGO	HFZBU	NOUDU
J TXHG	V NFHN	J GQLE	*ANEFE
K I Z J H	WAGJA	K H U Y S	bas GS
MOQKJ	X $\mathrm{BHK}^{\text {H }}$	MJECT	L B THT
P N UMK	ZLJML	PKSDI	Y L J I
RAEPM	Q Y K P Y	RMTFO	CYOKO
VBSRP	UCMRC	VPIGN	DCNMN
W L T V R	EDPVD	WROHA	FDAPA
XYIWV	SFRWF	X V ${ }^{\text {d }} \mathrm{B}$	GFBRB
ZCOXW	T G V X G	Z W A K L	HGLVL
Q DNZX	IHWZ H	Q XBMY	J HYWY
UFAQZ	0 JXQJ	U Z L P C	K J C X ${ }^{\text {c }}$
EGBUQ	NKZUK	EQYRD	MKDZD
SHLEU	AMQEM	SUCVF	PMFQF
T J Y S E	B PUSP	TEDWG	R PGUG
IKCTS	*L R E TR	ISFXH	VRHEH
OMDIT	YVSIV	0 T G Z J	WV J S J
NPFOI	CWTOW	N I H Q K	X WK TK
*ARGNO	D X INX	AOJUM	Z X M I M
BVHAN	FZOAZ	B NKEP	Q $\mathrm{ZPOP}^{\text {P }}$
LW J B A	GQNBQ	*L A M S R	UQRNR

(2) The selected generatrices (those marked by asterisks in Fig 48) are assembled in columnar manner

A LLA
 RRAN
 GEME
 NTSE
 Haveri 49

89
(3) The key letters are sought and give the keyword SOUP The plain text for the second message is now known, and by reference to the cupher text and the primary components, the keyword for this message is found to be TIME The complete texts are as follows

45 The case of identical messages enciphered by keywords of different lengths - a In the foregoing case the keywords for the two messages, although dufferent, were identical in length When this is not true and the keywords are of different lengths, the procedure need be only slughtly modified
b Given the following two cryptogrems suspected of contaning the same plan－text en－ ciphered by the same primary components but with dufferent keywords of different lengths，solve the messages

Mesbage No 1

M Y Z G	EAUNT	PKFAy	J I Z M B	UMYK B	V FIVV
SEOAF	SKXKR	YWCAC	ZORDO	ZRDEF	BLK FE
S M K S	AFEKV	Q URCM	Y Z V 0 X	VABta	y y 0 A
T DKF	ENW NT	D B Q K U	L A J L Z	IOUMA	BOAFS
XQPU	Y M J P W	Q T D $\mathrm{T}^{\text {c }}$	OSIYS	MIYKU	ROGMW
T M Z Z	V M V A J	Message			
Z G AM W	I OMOA	C ODHA	C L R L P	MOQOJ	EMOQU
HXBY	UQMGA	UVGLQ	D BSPU	OABIR	P W X Y M
G G F T	M R H V F	GWKNI	VAUPF	ABRVI	LAQEM
Z D J XY	MEDDY	B OSVM	PNLGX	X DYDO	PXBYU
Q M NKY	FLUYY	GVPVR	DNCZE	K J Q OR	W J XRV

c The messages are long enough to show a few short repetitions which permit factoring The latter discloses that Message 1 has a period of 4 and Message 2，a period of 6 letters The messages are superimposed，with numbers marking the position of each letter in the corresponding perrod，as shown below
No2RMJXRYGDKDSXCEEC
d A reconstruction skeleton of＂secondary alphabets＂is now made by distributing the ltters in respective lines corresponding to the 12 different superimposed pairs of numbers For example，all pars corresponding to the superimposition of position 1 of Message 1 with position 1 of Message 2 are distributed in lines \emptyset and 1 of the skeleton Thus，the very first superimposed pair is $\left\{\begin{array}{l}\frac{1}{V} \\ \underset{1}{1}\end{array}\right.$ ，the letter Z is inserted in line 1 under the letter V The next $\left\{\begin{array}{l}1 \\ 1\end{array}\right.$ imposition，with $\left\{\begin{array}{l}F \\ \mathrm{D}\end{array}\right.$ ，the letter D is inserted in line 1 under the letter F ，and so on The skeleton is then as follows

	\emptyset	A	B	C	D	E	F	G	H		I	J	K	L	－	M	N	0	P		Q R	S	S	T	U	V	W	X	Y	Z
	1－1	I	J		P		D						Q	G	－	C	E					0	－		R	Z				
	2－2	H	V	N												G		U								E	D	M	L	X
	3－3	E					M				X		G			I	D	J			N			R					A	0
営	4－4							X	x		0	C						D	K			F	F	Y	Q				V	M
遒	1－5				B		T	W			L					R		E					N		\underline{Y}	Q			U	A
	2－6	M	0			I					C					D										U	V		F	R
	3－1	0		G			R									L		P		S	5		D						Z	
	4－2	L	P			H						U	V										E	D	M			F		
	1－3			Q	J								V	W	W	K	0	X	Y						M	A				
	2－4	B									J		X	P	P	0								A		F	Y			D
	3－5	N	R				Y											B	C	G	G								Q	S
	4－6					M						L	0									10	J	V	W	x				

Figune 51
e There are more than sufficient data here to permit of the reconstruction of a complete quivalent primary component，for example，the following

f The subsequent steps in the actual decipherment of the text of eather of the two messages are of considerable intelest Thus far the cryptanalyst has only the clpher component of the primary slding components The plain component may be identical with the clpher com－ ponent and may progress in the same direction，or in the reverse drection，or，the two com－ ponents may be different If different，the plam compon f hase various possablitieq is true ect or reversed lests must be made the normal direct
g（1）It wll frst be assumed that the priary the the messar with the shorter
 Message No 1解 normal drect sequence A normal reversed sequence is then assumed for the plam component and the proper procedure apphed Again the attempt is found useless Next，it is assumed that the plann component is identical with the cipher component，and the procedure outlined in Par 37 is tried This also is unsuccessful Another attempt，assuming the plain component runs in the reverse direction，is likewise unsuccessful There remains one last hypothesis，viz， that the two primary components are different mixed sequences
(2) Here is Message No 1 transcribed in periods of four letters Unilteral frequency distributions for the four secondary alphabets are shown below in Fig 52, labeled 1a, 2a, 3a, and $4 a$ These distributions are based upon the normal sequence A to $Z \quad$ But since the recon structed capher component is at hand these distributions can be rearranged according to the sequence of the cipher component, as shown in distributions labeled $1 b, 2 b, 3 b$, and $4 b$ in Fig 52 The latter dustrbbutions may be combined by shufting drstributions $26, \$ b$, and $4 b$ to proper super impositions wrth respect to 16 so as to yneld a single monoalphabetrc dretribution for the enture message In other words, the polyalphabetic message can be converted into monoalphabetic terms, thus very considerably simplyyung the solution

Mmseage No 1

GEAU AYYU

FAYJ DKFE

BVFIULAJ
VVSELZIO

OAFS UMAB
KXKROAFS
YWCAKXQP
CZOR UYMJ
DOZR PWQT
DEFBDBTO
LKFESIYS
SMKSMIYK
FAFEUROG
KVQUMWCT
RCMYMZZV
ZVOXMVAJ
 havars
(3) Note in Fig 53 how the four distributions are shufted for superimposition and how the combined distrinution presents the charactersitics of a typical monoalphabetic distribution

$1 b$	
$2 b$	
$3 b$	
$4 b$	
$\begin{gathered} 16-4 b \\ \text { combined } \end{gathered}$	

(4) The letters belonging to alphabets 2, 3, and 4 of Fig 52 may now be transcribed in terms of alphabet 1 That is, the two E's of alphabet 2 become I's, the L of alphabet 2 becomes a K the C becomes a P , and so on Lukewise, the two K's of alphabet 3 become I's, the N becomes a T, and so on The entire message is then a monoalphabet and can readily be solved It is as follows

VDVTG ENEMY	$\begin{array}{llll} \text { I S W N S } \\ \text { HASS C A } \end{array}$	$\begin{array}{llll} K & 0 & F \\ P & \text { F } & M & V \\ \hline \end{array}$		$\begin{array}{lllll} U & D & V & B \\ O & N & E & T & W \end{array}$	$\begin{array}{llll} U \\ U & D & D & U \\ O & N & E \end{array}$
$\begin{array}{lllll} \mathrm{F} & \mathrm{M} & 0 & \mathrm{M} & \mathrm{U} \\ \mathrm{U} & \mathrm{R} & \mathrm{~T} & \mathrm{R} & 0 \end{array}$	UKWIS OPSHA			$\begin{aligned} & \mathrm{N} S \mathrm{~S} \text { I I U } \\ & \mathrm{C} A \mathrm{~A} \end{aligned}$	$\begin{array}{lllll} \mathrm{Z} & \mathrm{~L} & \mathrm{~J} & \mathrm{U} & \mathrm{M} \\ \mathrm{~L} & \mathrm{D} & \mathrm{~F} & 0 & R \end{array}$
$\begin{array}{llllll}\text { S D I } \\ \text { A } & \text { U } & \text { F } \\ \text { O }\end{array}$	$\begin{array}{llllll}M & U & M & K & U \\ R & 0 & R & P & 0\end{array}$	$\begin{array}{cccccc}W & W & R & P & Z \\ S & S & I & B & L\end{array}$		$\begin{aligned} & V M M Y A \\ & E R R E Q \end{aligned}$	$\begin{array}{llll} \text { F V W O } \\ \text { U E } & \text { M } \\ \hline \end{array}$
$\begin{aligned} & V V D J U G \\ & E T N F \end{aligned}$		$\begin{array}{ccccc}\text { D } & \text { W } & \text { O } \\ \mathrm{N} & \mathrm{T} & \mathrm{S} & \mathrm{T} & 0\end{array}$	$\begin{array}{llll} \mathrm{K} & \mathrm{~S} & \mathrm{~L} & \mathrm{~L} \\ \mathrm{P} \\ \mathrm{P} & \mathrm{~A} & \mathrm{D} & \mathrm{D} \\ \hline \end{array}$	$\begin{array}{lllll} O R & \text { U } \\ \text { T I } & \text { O } \\ \hline \end{array}$	$\begin{array}{lllll} Z & 0 & M & U & U \\ L & T & R & O & 0 \end{array}$
$\begin{array}{lllll} K & W & I & U \\ P & S & S & H & 0 \end{array}$	$\begin{array}{lllll} F & Z & L & P & V \\ U & L & D & B & E \end{array}$		$\begin{array}{lllll} R & S & C & V & U \\ I & A & G & E & 0 \end{array}$	$\begin{array}{lllll} M & C & V & O & U \\ R & G & E & T & 0 \end{array}$	$\begin{array}{lllll} B & D & J \\ W & M & M \\ \hline \end{array}$
$\begin{array}{llll} \mathrm{L} & \mathrm{~V} & \mathrm{M} & \mathrm{R} \\ \mathrm{D} & \mathrm{E} \\ \hline \end{array}$	$\begin{aligned} & X M U S S L \\ & K R O O A D \end{aligned}$				

(5) Having the plain text, the derivation of the cipher component (an equivalent) is an easy matter It is merely necessary to base the reconstruction upon any of the secondary alphaeasy matter It 1 m merely necessary to base the reconstruction upon any of the secondary alpha-
beta, since the plain text-cipher relationship is now known directly, and the prmary cipher component is at hand The primary plann component is found to be as follows
(6) The keywords for both messages can now be found, if desirable, by finding the equivalent of A_{p} in each of the secondary alphabets of the original polyalphabetic messages The keyword of A_{p} in each of the secondary alphabets of
for No 1 is STAR, that for No 2 is OCEANS

152018-38-
(7) The student may, if he wishes, try to find out whether the primary components reconstructed above are the original components or are equivalent components, by examing all the structed above are the ongmal components or are equivalent components, by examinin
possible decimations of the two components for evidences of derivation from keywords
passible decimations of the two components for endences of derivation from keywords
h As already stated in Par 26l, there are certain statistical and mathematical tests that can be employed in the process of "matching" distributions to ascertain proper superimpositions for monoalphabeticity In the case just considered there were sufficient data in the distributions to permit the process to be appled successfully by eye, whthout necessitating statistical tests permit the process to be applied successfully by eye, without necessitating statistical tests
i This case is an excellent illustration of the apphcation of the process of converting a i This case is an excellent illustration of the application of the process of converting a
polyalphabetic copher into monoalphabetc terms Because it is a very valuable and important polyalphabetnc oupher into monoalphabetzc terms Because it is a very valuable and important
cryptanalytic "trick," the student should study it most carefully in order to gain a good undercryptanalytic "trick," the student should study it most carefully in order to gain a good understanding of the principle upon which it is based and its significance in cryptanalysis The conversion in the case under discussion was possible because the sequence of letters forming the
cipher component had been reconstructed and was known, and therefore the uniliteral discipher component had been reconstructed and was known, and therefore the unilteral dis-
tributions for the respective secondary cpher alphabets could theoretically be shafted to correct superimpositions for monoalphabeticity It also happened that there were sufficient data in the distributions to give proper indications for their relative displacements Therefore, the theoretical possibility in this case became an actuality Without these two necessary conditions the superimposition and conversion cannot be accomplished The student should always be on the lookout for situations in which this is possible

46 Concluding remarks - a The observant student will have noted that a large part of thas text is devoted to the elucidation and application of a very few basic principles These principles are, however, extremely important and ther proper usage in the hands of a skilled cryptanalyst makes them practically indispensable tools of his art The student should therefore drill humself in the application of these tools by having someone make up problem after problem for him to practice upon, until he acquires facility in their use and feels competent to apply them in practice whenever the least opportunity presents itself This will save him nuch time and effort in the solution of bona fide messages
b Contmuing the analytical key introduced in Mulitary Cryptanalysis Part I, the outhne for the studies covered by Part II follows herewith

APPENDIX 1

The 12 Types of Cipher Squares
(See Paragraph 7)
Table I-B ${ }^{1}$
Components
(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (2) FBPYRCQZIGSEHTDJUMKVALWNOX Enciphering equations $\theta_{k / 2}=\theta_{1 / 1}, \theta_{p / 1}=\theta_{c / 2}\left(\theta_{1 / 1}\right.$ is A$)$

> PLAIN TEXT

ABCDEFGHIJKLMNOPQRSTUVWXYZ
 A C C C Z I G S E B D \bar{D} E E H T D J U

 S

 W

$\mathbf{Z} \mathbf{Z}$ I
${ }^{1}$ This table is labeled "Table 1-B" because it is the same as Table 1-A on page 7 , except that the honzontal equence

Table II
(1)
(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ

Encipheing equations $\theta_{\mathrm{K} / 2}=\theta_{1 / 2}, \theta_{\mathrm{D} / 2}=\theta_{\mathrm{o} / 1}\left(\theta_{1 / 1}\right.$ is A$)$

PLAIN TEXT
ABCDEFGHIJKLMNOPQRSTUVWXYz
 B T A E E
 D $\frac{G}{G} \frac{1}{N} \frac{A}{R}$ A $\frac{X}{X}$ M

 J F F M K $\quad \mathbf{C}$ J

 0 W $\frac{D}{W} \frac{H}{D} \frac{Q}{N} \frac{N}{J} \frac{C}{V}$
 Q $\frac{0}{0} \frac{V}{V} \frac{Z}{Z} \frac{F}{F}$ U

Components
(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (2) FBPYRCQZIGSEHTDJUMKVALWNOX Enciphering equations $\theta_{\mathbf{x} / 2}=\theta_{1 / 2}, \theta_{p / 2}=\theta_{r / 2}\left(\theta_{1 / 2}\right.$ is $\left.F\right)$
plain text
ABCDEFGHIJKLMNOPQRSTUVWXYZ

 D
 \mathbf{F} L
 H \mathbf{V} A I
 K

 \mathbf{X} Y

Components
(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (2) FBPYRCQZIGSEHTDJUMKVALWNOX Eucphering equations $\theta_{k / 1}=\theta_{1 / 2}, \theta_{D / 2}=\theta_{0 / 1}\left(\theta_{1 / 2}\right.$ is $\left.F\right)$

> PLAIN TEXT

ABCDEFGHIJKLMNOPQRSTUVWXYZ

 D \bar{X} E E $\frac{X}{Y} \frac{E}{F}$ $\underset{F}{\mathrm{~F}} \mathrm{Z}$

 $T \frac{B}{C} \frac{I}{J} \frac{M}{N} \frac{V}{W} \frac{S}{T} \frac{B}{I} \frac{Q}{R}$

 K K

 0 I \bar{I}
 ${ }^{P}$ Q

 S $T-\frac{N}{U} \frac{U}{V} \frac{H}{Z} \frac{E}{F} \frac{T}{U}$ U O

Components

(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ
(2) FBPYRCQZIGSEHTDJUMKVALWNOX

Enciphering equations $\theta_{k / 2}=\theta_{p / 2}, \theta_{1 / 2}=\theta_{\sigma / 2}\left(\theta_{1 / 1}\right.$ is $\left.A\right)$
plain text
ABCDEFGHIJKLMNOPQRSTUVWXYZ

 E E $\mathrm{E} \cdot \frac{\mathrm{S}}{\mathrm{S}} \mathrm{G}$
 G G I H H E

 $0 \cdot \frac{N}{N}$ N $P \mathbf{P} \mathbf{P}$ B

Components
Componemergith MNOPQRSTUVWXYZ (2) FBPYRCQZIGSEHTDJUMKVALWNOX Enciphering equations $\theta_{k / 2}=\theta_{\mathrm{o} / 1}, \theta_{\mathrm{t} / 1}=\theta_{\mathrm{p} / 2}\left(\theta_{1 / 1}\right.$ is A$)$
plain text
ABCDEFGHIJKLMNOPQRSTUVWXYZ

 B C | L |
| :--- | E A D $\frac{U}{U}$ N

 $\underset{F}{E} \frac{R}{G} \frac{K}{Z} \frac{G}{V} \frac{X}{M} \frac{A}{P} \frac{L}{A}-\frac{C}{R}$

苗M
 0 E P ${ }^{P}{ }^{P}$ Q

 V Z S W C V \mathbf{X}

Components
IJKLMNOPQRSTUVWXY
(1)-ABCDEFGHIJKLMNOPQRSTUVWXYZ
(2)-FBPYRCQZIGSEHTDJUMKVALWNOX

Enc iphering equations $\theta_{\mathrm{k} / 2}=\theta_{\mathrm{D} / 1}, \theta_{1 / 2}=o_{\mathrm{c} / 1}\left(\theta_{1 / 2}\right.$ is $\left.F\right)$
plain text
ABCDEFGHIJKLMNOPQRSTUVWXYZ

 F A B C C D G $-\underset{R}{S}$ S T

 $\mathfrak{L} \mathrm{L}$ F G
 $\mathcal{N} \mathrm{D}$ E F G $\overline{\mathrm{H}} \mathrm{I}$

 Q $\frac{\mathrm{U}}{\mathrm{U}} \mathrm{V}$

 V H I W E F F G H I I

Componets

(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ

 (1) ABCDEFGHIJKLMNOPQRSTUVWXYZEncıphering equations $\theta_{\mathrm{k} / 2}=0_{\mathrm{c} / \mathrm{h}}, \theta_{1 / 2}=\theta_{\mathrm{p} / 1}\left(\theta_{1 / 2}\right.$ IS $\left.F\right)$
plain text
ABCDEFGHIJKLMNOPQRSTUVWXYZ
 B B C
 D $\begin{aligned} & \mathrm{O} \\ & \mathrm{P} \\ & \mathrm{Q} \\ & \mathrm{Q} \\ & \mathrm{R} \\ & \mathrm{S} \\ & \mathrm{S} \\ & \mathrm{T}\end{aligned} \mathrm{U}$ E L L $\mathrm{M} \mid \hat{N}$
 G (J J H M I I I J K

 BL L V W鼠 M N

 R E F

 W \mathbf{X}

Components
(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (1) ABCDEFGHIJKLMNOPQRSTUVWXYZ
(2) FBPYRCQZIGSEHTDJUMKVALWNOX Encipherng equations $\theta_{\mathrm{K} / 1}=\theta_{\mathrm{D} / 2}, \theta_{1 / 2}=0_{6 / 2}\left(\theta_{1 / 3}\right.$ is A$)$

plain text

BCDEFGHIJKLMNOPQRSTUVWXYZ
 B $\begin{aligned} & \mathrm{V} \\ & \mathrm{F} \\ & \mathrm{R}\end{aligned} \mathbf{T}$ C K
 E \bar{U} N

in L L U A

 Q
 S T B I I H L

 W

 \mathbf{Z} L
${ }^{2}{ }^{1} \mathrm{n}$ interesting fact about this care is that if the plam component is made identioal with the eppher component (both being the sequence FBPY), and if the enciphering equations are the same as for Table 1-B,
then the resultant cepher square is identical with Table IX, except that the key letters at the left are in the then the resultant cipher square is identical with Table IX, except that the key letterb at the left are in the
order of the re ersed mixed component, FXON
In other words, the secondary cipher alphabets produced by the interaction of two Identical mixed components are the same as those given by the interaction of a muxed component and the normal component

Components

(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (1) ABCDEFGHIJKLMNOPQRSVALWNOX

Encıphering equations $\theta_{\mathbf{x} / n}=\theta_{c / 2}, \theta_{1 / 2}=\theta_{p / 2}\left(\theta_{1 / 1}\right.$ is A$)$

PLAIN TEXT

ABCDEFGHIJKLMNOPQRSTUVWXYZ | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V |
| :--- |

 G

盆 M

 Q $\frac{\mathrm{M}}{\mathrm{L}} \mathrm{B}$

 \mathcal{U} U
 W
 $\mathrm{Y} \mathbf{K} \mathbf{X} \mathbf{X} \mathbf{Y}$

 follow the order of the direct mived component

Components

(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ
(2) FBPYRCQZIGSEHTDJUMKVALWNOX

Enciphering equations $\theta_{k / 1}=\theta_{D / 2}, \theta_{1 / 2}=\theta_{\sigma / 1}\left(\theta_{1 / 2} \curvearrowright F\right)$
plain feyt
ABCDEFGHIJKLMNOPQRSTUVWXYZ

 F \mathcal{L} L $\frac{E}{A}$ A G M F B B S V G
 I O
 K K \bar{Q}

 P V O

Table XI

Components
(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (2) FBPYRCQZIGSEHTDJUMKVALWNOX

Enciphering equations $\theta_{k / n}=\theta_{c / 2}, \theta_{1 / 2}=0_{p n}\left(\theta_{1 / 2}\right.$ is F$)$
plain 1Ex
ABCDEFGHIJKLMNOPQRSTUVWXYZ

 G Q \mathbb{Q} C $\mathrm{H} \underset{\mathrm{Z}}{\mathrm{Z}} \mathrm{Q} \underset{\mathrm{C}}{\mathrm{C}} \mathrm{R}$ I

 L E
思N G F S G I

 P U
 R

 V L A V W $\mathbb{L} \frac{L}{L}-\frac{A}{V}$

 Y O N W L A V K

APPENDIX 2^{1}

Elemf ntary Statistical Theory Applicable to the Phenomena of Repetition in Cryptanalysi
1 Introductory -a In Par 9c it was stated that the phenomena of repetition in cryptanalytics may be removed from the roalm of intuition and dealt with statistically The discussion of the matter will here be confined to relatively ample phases of the theory of probability a definition of which implies philosophical questions of no prachical minterest to the student of ciyptanalysis For his purposes, the following definition of a priorl probability will be sufficient The probability that an event will occur is the ratio of the number of "fav-
orable cases" to the numbor of total possible cases, all cases being equally
likely to occur By a "favorable case" 19 meant one which will produce the event in question
b In what follows, 1 eference will be made to random assortments of letters and espectally to random text by the latter will be meant merely that the text under consideration has been assumed to have been enclphered by come more or less complex cryptographic system so that for all practical puposes the sequence of letters constituting this text is a random assortment, that 19, the sequence is just about what would have been obtained if the letters had been drawn at random out of a box containing a large number of the 26 letters of the alphabet, all in equal proportions, so that there aie exactly the same numbers of A's, B's, C's, Z's It is assumed that each time in making a drawing fiom such a box, the latter is thoroughly shaken so that the letters are thoroughly mixed and then a single letter is selected at random, recorded, an A underal requer dot
e, lacl ing crests and troughs e e, lach ing crests and troughs
d For purposes of statistical analysis, the text of a monoalphabetic substitution cipher 15 equivalent to plan text As a corollary, when a polyalphabetic substitution cipher has been cipher text have been allocated into their proper uniliteral distributions, the letters falling into the respective distributions are statistically equivalent to plamn tert

2 Data pertaining to single letters - a (1) A single letter will be drawn at random from the box What is the probability that it wall be an A? According to the foregoing definition of probability, sance the total number of possible cases is 26 and the number of favorable cases is here only 1 , the probability is $126=\frac{1}{26}=0385$ This is the probabilty of drawing an A fiom the box The probability that the letter drawn will bea $\mathrm{B}, \mathrm{a} C, \mathrm{a} D, \quad, \mathrm{a} Z \mathrm{is}$ the same as for A In othei words, the probability of drawing any specified single letter $15 p=0385$
(2) The value $p=0385$, as she the reciprocal of the total number of dutlerent chasacters which may be employed in writing the text in question
 Capt H G Miller, Signal Corps, Mr F B Rowlett, D1 S Kullhack, and DI A Sinhov, Assistant Cryptanalysts,
O C Sig O Certann paits of Dl the hassis of the discussion
(3) Another way of interpreting the notation $p=0385$ is to say that in a large volume of random text, for example in 100,000 letters, any letter that one may choose to specify may be expected to occur about 3,850 times, in 10,000 letters it may be expected to occur about 385 tames, in 1,000 letters, about 385 times, and so on In every-day langunge it would be sald that "in the long run" or "on the average" in 1,000 letters of random text there will be about 385 occurrences of each of the 26 letters of the alphabet
(4) But unfortunately, in cryptenalysis it is not often the case that one has such a large number of letters available for study in any single cipher alphabet More often the cryptanalyst has a relatively small number of letters and these must be distributed over several cipher alphabets Hence it is necessary to be able to deal with smaller numbers of letters Consider a specific plece of random text of only 100 letters it has been seen that "in the long run" the 26 letters will hive on average fiequency of 385 But in jeaching this ayerage of 385 occurrences in 100 letters, it is obus that some letter or letters moy not apper at all, some may appear once, some twice, and so on How many will not appear at all, how many will appear 1, 2, 3, tımes? In other words, how will the dufferent categones of letters (differappear 1, 2, 3 , tymes? In other words, how will the dirferent categones of letters (dafferent in respect to frequency of occurrence) be distributed, or what will the dzstribution be like?
Will it follow any kind of law or pattern? The cryptanalyst also wants to know the answer Will it follow any kind of law or pattern?
to questions such as these What is the probability that a specified letter will not appear at to questions such as these
all in a given piece of text? That it will appear eractly $1,2,3$, times? That it will appear at least $1,2,3$, times? The same sort of questions may be asked with respect to digraphs, trigraphs, and so on
b (1) It may be stated at once that questions of this nature are not easily answered, and a complete discussion falls quite outside the scope of this text However, it will be sufficient for the present purposes if the student is provided with a more or less simple and practical means of finding the answers With this in view certain cuives have been prepared from data based upon Poisson's exponential expansion, or the "law of small probabilities' and their use will now be explaned Students without a knowledge of the mathematical theory of probability and statistics will have to take the curves "on faith" Those interested in their derivation are referred to the following texts

Fusher, R A, Statrstical Methods for Research Workers, London, 1937
Fry, T C , Probabulity and Its Engineering Uses, New York, 1928
(2) By means of these probability curves, it is possible to find, in a relatively easy manner, the probability for $0,1,2,11$ occurrences of an event in n cases, if the mean (expected, average, probable) number of occurrences in these n rases is known For example, given a cryptogram equivalent to 100 letters of iandom text, whit is the probability that any specified sugle of a specfied single letter is $\frac{1}{26}=0385$, and there are 100 letters in the cryptogram, the average or expected or mean number of occurrences of an A, 凤 B, a C, , is $0385 \times 100=385$ Refer now to that probability curve which is marked " f_{0} ", meaning "frequency zero", or "zero occurrences" On the horlzontal or x axis of that curve find the point corresponding to the value 38 and follow the vertical coordinate determined by this value up to the point of intersection with the curve itself, then follow the hori, onts coordinate determined by this intersechon point over to the left and read the value on the vertical axis of the curve it is appronmately 021 This means that the probability that a spec ified single letter (an A, a B, a C,) will not appear at all in the cryptogram, if it really were a perfectly random assortment of 100 letters, is 021.

That is, according to the theory of probability, in 1,000 cases of random-text messages of 100 letters each, one may expect to find about 21 messages in which a specified single letter will not appear at all Another way of saying the same thing is If 1000 sets of 100 letters of random text are examined, in about 21 out of the 1,000 such sets any letter that one may choose to name will be absent Ihis, of course, is merely a theoretical expectancy, it indicates only what probably will happen in the long run
(3) What is the probability that a specificd single letter will appear exactly once in 100 letters of random text? To answer this question, find on the curie marked f_{1}, the point of mtersection of the vertical coordinate corresponding to the mean or average value 38 ; with the curve, follow the horizental coordmate thus determmed over to the verical scale at the left, read the value on this scale It is 082 , which means that in 1,000 cases of random-text messages of 100 letters each, one may expect to find about 82 messages in which any letter one chooses to specify will occur exactly once, no more and no less
(4) In the same way, the probability that a specified single letter will appear exactly twice is found to be 158 , exactly 3 times, 202 , and so on, as shown in the table below

100 letters of random text

$\begin{gathered} \text { Frequency } \\ (x) \end{gathered}$	Probability that a specified single letter will occua exactis x imes
0	0021
1	082
2	158
3	202
4	195
5	150
6	096
7	053
8	026
9	011
10	004
11	001

(5) To find the probability that a specified suggle letter will occur at least 1, 2, 3, times in a series of letters constituting random text, one reasons as follows Since the concept "at least 1 " mphes that the number specified is to be considered only as the mimmum, with no limat mdicated as to maximum, occurrences of $2,3,4$, are also "favorable" cases, the probabilities for exactly $1,2,3,4$, occurrences should therefore be added and this ull give the probability for "at least 1 " Thus, in the case of 100 letters, the sum of the probabilities for exactly 1 to 11 occurrences, as set forth in the table drectly above, is 978 , and the latter value approxamates the probability for at least 1 occurrence
(6) A more accurate result will be obtaned by the following reasoning The probability for zero occurrences is 021 Snce it is certan that a specified letter will occur either zero times or $1,2,3$, times, to find the probability for at least one ume it is merely necessary to subtract the probablity for zero occurrences from unity That 1 s, $1-021=979$, which is 001 greater than the result obtamed by the other method The reason it is greater is that the value 979 includes occurrences beyond 11, which were excluded from the previous calculation of course, the probabilities for these occurrences beyond 11 are very small, but taken all together they

Curves showing probability for $4,5,6$, and 7 occurrences of an event in n cases, given the mean number of occurrences

add up to 001, the difference between the results obtaned by the two methods The probalility for at lenst 2 occurrences is the dufference between unity and the sum of the probability for zero and exactly 1 occurrences, that $1 \mathrm{~s}, 1-\left(P_{0}+P_{1}\right)=1-(021+082)=1-103=897$ The respective probabilities for various numbers of occurrences of a specified single letter (from 0 to 11) are given in the following table

$\underset{(x)}{\text { Frequency }}$	Probabillty that a specified single letter will occur exactly x times	Probability that a specifled suagle letter will occur at least x times
0	0021	1000
1	082	979
2	158	897
3	202	739
, 4	195	537
5	130	342
6	096	192
7	053	096
8	026	043
8	011	017
10	004	006
11	001	002

(7) The foregoing calculations refer to random text composed of 100 letters For other numbers of letters, it is meiely necessary to find the mean (multiply the probability for drawing a specified single letter out of the box, which $1 \frac{1}{26}$ or 0385 , by the number of letters in the assortment) and refer to the various curves, as before For example, for a random assortment of 200 letters, the mean is 200×0385, or 77 , and this is the value of the point to be sought along the horizontal or x axes of the curves, the intersections of the respective vertical hnes corresponding to this mean with the various curves fur $0,1,2,3, \quad$ occurrences give the probabilities for these occurrences, the reading being taken on the vertical or y axes of the curves
(8) The descussion thus far has dealt with the probabilities for $0,1,2,3$, occurrences of specified sungle letters It may be of more practical advantage to the student if he could be shown how to find the answer to these questions Given a random assortment of 100 letters how many letters may be expected to occur exactly $0,1,2,3$, tumes? How many may be expected to occur at least $1,2,3$, times? The curves may here again be used to answer these questions, by a very simple calculation multuply the probability value as obtained above for a specified single letter by the number of dffierent elements being considered For example, the probability that a specified single letter will occur exactly twice in a perfectly random assortment of 100 letters is 158 , since the number of different letters is 26 , the absolute number of single letters that may be expected to occur exactly 2 times in this assortment is $158 \times 26=4108$ That is, in 100 letters of randm text there should be about four letters which occur exactly 2 times The following table gives the data for various numbers of occurrences

100 letters of random lext

${ }_{\text {Frequency }}^{(x)}$	tumes	atimes		Probable number of letters appear ag at least x times
0	0021	1000	0546	26000
1	082	979	2132	25454
2	158	897	4. 108	23322
3	202	739	5252	19214
4	195	537	5070	13962
5	150	342	3900	8892
6	096	192	2496	4992
7	053	096	1378	2496
8	026	043	676	1118
9	011	017	286	442
10	004	006	104	156
11	001	002	026	052

(9) Referring agam to the curves, and speaficallv to the tabulated results set forth durectly above, it will be seen that the probablity that there will be exactly two occurrences of a specfied single letter in 100 letters of random text (158), is less than the probablity that there will be exactly three occurrences (202), in other words, the chances that a specified single letter will occur exactly three times are better, by about 25 percent, than that it will occur only two times Furthermore, there will be about five letters which will occur exactly 3 times, and about five which will occur exactly 4 times, whereas there will be only about two letters which will occur exactly 1 time Other facts of a similar import may be deduced from the foregoing table
c The discussion thus far has dealt with random assortments of letters What about other types of texts, for example, normal plan text ${ }_{2}$. 3 , that is the probability that E will occur 0,1 ,
, 50 letters of normal Enghish? The relative frequency value or probability that a letter selected at random from a large volume of normal English text will be E is 12604 (In 100,000 letters E occurred 12,604 times) For 50 letters this value must be multuphed by 50 ging 63 as the mean or point to be found along the x axes of the curves The probabilties for $0,1,2,3$, occuriences are tabulated below

${ }_{\text {Froquency }}^{(x)}$	Probabilut that draw wain bety drawn drawn exact x times	Probabilty that on E will be drawn at least x tumes
0	0002	1000
1	011	998
2	036	987
3	076	951
4	120	875
5	151	755
6	159	604
7	143	445
8	113	302
9	079	223
10	050	173
11	029	123

d (1) It has been seen that the probability of occurrence of a specified single letter in random text employing a 26 -letter alphabet is $p=\frac{1}{26}=0385$ If a considerable volume of such text is written on a large sheet of paper and a pencil is directed at random toward this text, the probabilthy that the pencl point will hit the letter A, or any other letter whach may be specified in advance, 1ty that the pencl point will hit the letter A, or any other letter which may be specrfied on advance,
1s 0385 Now suppose two pencls are durected sumultaneously toward the sheet of paper The probability that both pencil points will hit two A's is $\frac{1}{26} \times \frac{1}{26}=\frac{1}{26^{2}}=00148$, sunce in thus case one is dealng with the probability of the simultaneous occurrence of two events which are independent The probability of hittung two B's, two C's, , two Z's is likewise $\frac{1}{26^{2}}$ Hence, if no particular letter is specified, and merely this question is asked "What is the probabilty that both pencl points will hit the same letter?" the answer must be the sum of the separat probabilities for simultaneously hitting two A's, two B's, and so on, for the whole alphabet, which is $26 \times \frac{1}{26^{2}}=\frac{1}{26}=0385$ This, then, is the probability that any two letters selected at random in random text of a 26 -letter alphabet will be identical or will coincrde Snce this value remans the same so long as the number of alphabetic elements remans fixed, it may be said that the probablhty of monographzc corncidence in random text of a 26 -element alphabet ro 0385 The forek_{r} (read "kappa sub-r") "

(2) Now if one asks "Given a random assortment of 10 letters, what are the respective probabilities of occurrence of $0,1,2$, \quad sugle-letter concidences ${ }^{9}$ " one proceeds as follows
As before, it is first necessary to find the mean or expected number of coincidences and the As before, it is first necessary to ind the mean or expected number of coincidences and then
refer to the various probablity curves To find the mean, one reasons as follows Given a sequence of 10 letters, one may begin with the 1st letter and compare 1 t with the $2 \mathrm{~d}, 3 \mathrm{~d}$, Given a letter to see if any two letters comcide, 9 such comparisons may be made, or in other words there are, beginning with the 1st Ietter, 9 opportunties for the occurrence of a concidence But one may also start with the 2nd letter and compare it with the 3d, 4th 10th letter, thus yreiding 8 more opportunities for the occurrence of a coincidence, and so on This process may continue until one reaches the gin letter and compares it with the 10th, ylelding but one oppor tunity for the occurrence in question The total number of compansons that can be made therefore the sum of the series of numbers $9,8,7, \quad 1$, which is 45 comparisons ${ }^{3}$ Since in the 10 letters there are 45 opportunitios for comcidence of single letters, and since the probability
${ }^{2}$ The expression itself may be termed a parameter, which in mathematics is often used to designate a constant that charactenzes by each of its particular values some particular member of a system of values, functions, ete alphabet, $k_{r}=0400$, for a 27 -element alphabet, $k_{r}=0370$, etc
${ }^{3}$ The number of comparisons may readily be found by the formula $\frac{n(n-1)}{2}$, where n is the total number of letters involved This formula is merely a special case under the general formula for ascertamng the number of combinations that may be made of n different things taken r at a time, which ${ }_{18}{ }_{n} C_{r}=\frac{n^{\prime}}{r^{\prime}(n-r) \prime}$ In the present case, since only two letters are compared at a time, r 1s always 2 , and hence the expression $\frac{n n^{\prime}}{r(n-r)!}$ Which is the same as $\frac{n(n-1)(n-2)!}{2(n-2))^{\prime}}$, becomes by cancellation of the term ($\left.n-2\right)$) reduced to $\frac{n(n-1)}{2}$
for monographic conncidence in random text 180385 the expected number of concidences is $.0385 \times 45=17325$ With $m=17$ one consults the various probablity curves and an approximate distribution for exactly and for at least $0,1,2$, comcidences may readly be ascertained ${ }^{4}$ e (1) Now consider the matter of monographic comcidence in Enghsh plain text ${ }^{5}$ Following the same reasoning outhned in subpar d (1), the probability of coincidence of two A's in plann text is the square of the probability of occurrence of the single letter A in such text The probability of comcidence of two B 's is the square of the probability of occurrence of the single letter B, and so on The sum of these squares for all the letters of the alphabet, as shown in the following table, is found to be 0667

This then is the probability that any two letters selected at random in a large volume of normal Enghsh telegraphic plain text will concide Since this value remains the same so long as the character of the language does not change radically, it may be sald that the probabality of monographuc conncudence in Englush telegraphuc plain text is 0667 , or $\kappa_{p}=0667$

- The approximation given by the Poisson distribution in the case of single letters is not as good as that
 s The theory of monographe councidcuce in plan text was origually developed and appled by the author
in a technical paper written in 1925 dealng with his solution of messages eneiphered by a cryptograph known
as the "Hebern Electric Super-Code " The paper was printed in 1934
(2) Given 10 letters of Englsh plain text, what is the probability that there will be 0, 1 2, single-letter comcidences? expected number of concidences is $0667 \times 45=300$, or $m=3$ The distribution for exactly and for at least $0,1,2$, comeidences may readlly be found by reference to the various probability curves (See footnote 4)
f The fact that κ_{p} (for Enghsh) is almost twice as great as κ_{r} is of considerable mportance f The fact that κ_{p} (for English) is almost twice as great as κ_{r} is of considerable importance
in cryptanalysis It will be dealt with in detail in a subsequent text \quad At this point it will merely be said that κ_{p} and k_{r} for other languages and alphabets have been calculated and show considerable variation, as will be noted in the table shown in paragraph $3 d$

3 Data pertaining to dygraphs.-a (1) The foregoing discussion has been iestricted to questions concerning single letters, but by slight modfication it can be applied to questions concerning digraphs, trigraphs, and longer polygraphs
(2) In the preceding cases it was necessary, before referring to the vanous probability curves, to find the mean or expected number of oecurrences of the event in question in the total number of cases or trinals beang considered Gaven a prece of rendom text totalling 100 etters, tor example, what is the mean (average, probable, expected) number of occurrences of digraphs in this text? Since there are 676 different dagraphs, the probability of occurrence of any specified digraph is $\frac{1}{676}=00148$, since in 100 letters there are 99 diguaphs (if the letters are taken consecutivelv in pairs) the mean or average number of occurrences in this case is $00148 \times 99=147$ Having the mean number of occurrences of the event under consideration, one may now find the answers to these questions What is the probability that any specified digraph, say XY, wll not occur? What is the probability that it wll occur exactly 1,2 , 3, tumes? At least $1,2,3$,
times?
(3) Again the probablity curves may be used as before, for the type of distribution is the same The following values are obtainable by reference to the various curves, using the mean value $00148 \times 99=147$

100 letters of random text

${ }^{\text {Froquency }}$ (${ }^{\text {a }}$		$\begin{gathered} \text { Probabulity that } \\ \text { a specifed digtaph } \\ \text { will occur st lasst } \\ x \text { times } \end{gathered}$		Probable number of digraphs ap- pearing at least x times
0	086	100	58136	67600
1	13	14	8788	94.64
2	01	01	676	676
3	00	00	000	000

(4) Thus it is seen that in 100 letters of random text the probablity that a specified digraph will occur exactly once, for example, is 13 , at least once, 14 , at least twice, 01 The probability that a specified digraph will occur at least 3 times is negligible (By calculation, it is found to to be 0005)
b (1) The probabilty of digraphic comerdence in random text based upon a 26 -element alphabet is of course quite simply obtained since there are 26^{2} different digraphs, the probability of selecting any specified digraph in random text $1 \mathrm{is} \frac{1}{26^{2}}$ The probability of selecting two identreal digraphs in such text, when the digraphs are specified, is $\frac{1}{26^{2}} \times \frac{1}{26^{2}}=\frac{1}{26^{4}}$ Since there are 26^{2} different digraphs, the probability of digraphic coincidence in random text, κ_{r}^{2}, is $26^{2} \times \frac{1}{26^{4}}=\frac{1}{26^{2}}=$ 00148
(2) Given a random assortment of 100 letters, what is the probability of occurrence of $0,1,2$, dgraphic coincidences? Following the line of reasoning in paragraph 2d (2), in 100 letters the total number of comparisons that may be made to see if two digraphs coincide is 4,851 This number is obtamed as follows Consider the 1st and 2d letters in the series of 100 letters, they may be combined to from a digraph to be compared with the digraphs formed by combining the 2 d and 3d, the 3d and 4th, the 4th and 5th letters, and so on, giving a total of 98 comparisons Consider the digraph formed by combining the 2 d and 3 d letters, it may be compared with the digraphs formed by combining the 3d and 4th, 4th and 5th letters, and so on, giving a total of 97 comparisons This process may be contrnued down to the digraph formed y comparison, since it may be compared only with the digraph resulting from combining the 99th and 100th letters The is $4,851^{\circ}$ (3)
(3) Since in the 100 letters there are 4,851 opportunities for the occurrence of a digraphic conncidence, and since $K_{T}{ }^{2}=00148$, the expected number of coincidences is $00148 \times 4851=$ $717948=72$ The various probability curves may now be referred to and the following results are obtained

Prequency (x)	${ }_{\text {Probabilty for foxactly } x}^{\text {digraphe coincidences }}$	Probablity for at least z
0	0001	1000
1	005	999
2	019	994
3	046	975
4	083	929
5	120	846
6	144	726
7	148	582
8	134	434
$\stackrel{9}{9}$	107	300
10	077 050	193 116

c In this table it will be noted that it is almost certan that in 100 letters of random text there will be at least one digraphic comerdence, despite the fact that there are 676 possible digraphs and only 99 of them have appeared in 100 letters When one thinks of a total of 676 digraphs and only 99 of them have appeared in 100 letters When one thinks of a total of 676
different digraphs from which the 99 digraphs may be selected it may appear rather meredible that the chances are better than even (582) that one will find at least 7 digraphic concidences in 100 letters of random text, yet that is what the statistical analysis of the problem shows to be the case These are, of course, purely accudental repetztions It is important that the student should fully realize that more concidences or accidental repetitions than he feels inturtively should occur in random text will actually occur in the cryptograms he will study He must therefore be on guard against putting too much relance upon the surface appearances of the phenomena of repetition, he must calculate what may be expected from pure chance, to make sure that the number and length of the repetitions he does see in a cryptogram are really better than what may be expected in random text In studying cryptograms composed of figures this

- The formula for finding the number of comparisons that can be made is as follows, where $n=$ the total number of letters in the sequence and t is the length of the polygraph No. of comparisons $=\frac{(n-t)(n-t+1)}{2}$
s very umportant, for as the number of dufferent symbols decreases the probabulhty for purely ance councidences increases
, and of the reciprocals of the following values of the reciprocals of various numbers from 20 to
6, and of the reciprocals of the squares, cubes, and 4th powers of these numbers are listed:

F	1/s	1/x	1/as	1/x
20	00500	0002500	0000125	000000625
21	0476	002269	000108	00000514
22	0455	002070	000094	00000429
23	0435	001892	000082	00000358
24	0417	001739	000073	00000302
25	0400	001600	000064	00000256
26	0385	001482	000057	00000220
27	0370	001369	000051	00000187
28	0357	001274	000046	00000162
29	0345	001190	000041	00000142
30	0333	001109	000037	00000123
31	0323	001043	000034	00000109
32	0813	000980	000031	00000096
33	0803	000918	000028	00000084
34	0294	000864	000025	00000075
35	0286	000818	000023	00000067
36	0278	000773	000021	00000060

(2) The followng table gives the probabilities for monographic and digraphec coincidence for plain-text in several languages

I angaage	$*_{p}$	$\mathrm{K}_{2}{ }^{2}$
Enghsh...	00667	00069
French	0778	0093
German.	0762	0112
Italan.	0738	0081
Spanish.	0775	0093

4 Data pertanning to trigraphs, ete - a Enough has been shown to make clear to the student how to calculate probability data concerning trigraphs, tetragraphs, and longer polygraphs
b (1) For example, in 100 letters of random text the value of m (the mean) for trigraph is $00005689 \times 100=005689$ With so small a value, the probablity curves are hardly usable but at any rate they show that the probabllity of occurrence of a specified trigraph in so small a volume of text is so small as to be practically neglgible The probability of a specified trigraph occurrng twice in that text is an even smaller quantity
(2) The calculation for finding the probability of at least one trigraphic comendence in 100 letters of random text is as follows

$$
m=\left(\frac{97 \times 98}{2}\right)\left(\frac{1}{26^{3}}\right)=4,753 \times 0000568912=2704=27
$$

Referring to curve f_{0}, with $m=27$ the probability of finding no trigraphic coincidence is 76. The probability of finding at least one trigraphic coincidence is therefore $1-76=24$

The calculation for a tetragraphic conncidence is as follows

$$
m=\left(\frac{96 \times 97}{2}\right)\left(\frac{1}{26^{4}}\right)=4,656 \times 0000021888=0101=01
$$

Referring to curve f_{0}, with $m=01$ the probablity of findung no tetragraphac coancidence so so high as to amount almost to certainty Consequently, the probability of finding at least
one tetragraphic coincidence is practically nl (It is calculated to be 0094=approximately 01 This means that in a hundred cases of 100-letter random-text cryptograms, one might expect to find but one cryptogram in which a 4 -letter repetition is brought about purely by chance, it is, in common parlance, a "hundred to one shot") Consequently, if a tetragraphic repetition is found in a cryptogram of 100 letters, the probability that it is an accidental repetition is an example - a The message of Par $9 a$ of the text proper will be employed First, let
5 An the repetitions be sought and underlined, then the repetitions are listed for convenience

Group	Number of occurrences
BC	2
CX	2
EC	2
LE	3
JY	2
PL	2
SC	2
SY	2
US	3
YE	2
SYE	2
USY	2
USYE	2

b Referring to the table in Par $3 a$ (3) above, it wll be seen that in 100 letters of random text one mught expect to find about 7 dagraphs appearing at least twice and no dugaph appearng text one might expect to find about 7 dagraphs appearngg at least twice and no digi aph ap
3 times The list of repetitions shows 8 digraphs occurring twice and 2 occurrng 3 times c Agam, the hist of repetitions shows 10 digraphs each repeated at least twice, the table in Par $3 b$ (3) above shows that in 100 letters of random text the probability of finding at least that many digraphec concidences is only 193 That is, the chances of this being an accident are but 176 in a thousand, or another way of expressing the same thang is to say that the odds against this phenomenon being an accident are as 807 is to 193 or roughly 4 to 1
d The probabilty of finding at least one trigraphic coincidence in 100 letters of random text is very small, as noted in Par 4b, the probability of finding at least one tetragraphic comcidence is still smaller (Par 4c) Yet this cipher message of but 100 letters contains a repetition of this length
e A consideration of the foregong leads to the conclusion that the number and length of the repetitions manifested by the cryptogram are not accidental, such as mght be expected to occur in random text of the same lengti, hence they must be causal in thor orgin The cause in this case is not dufficult to find repeated isolated letters and repeated sequences of letters (digraphs, trigraphs) in the plan text were actually enciphered by identical alphabets, resulting in producing
repeated letters and sequences in the cipher text

INDEX

