INTRODUCTION TO CRYPTOLOGY VI

Confidential
INTRODUCTION TO CRYPTOLOGY - VI.

by WILLIAM F. FRIEDMAN

This lecture, the sixth and last in this series, deals with cryptology in the period from the end of World War I to the end of World War II (Unclassified material only). The emphasis in this lecture is upon communications security (CONSEC) not only because in the five preceding lectures the emphasis was placed very largely upon communications intelligence (COMINT) but also because, although not as spectacular as COMINT, CONSEC in the final analysis is really more vital to National Security than COMINT.

You will perhaps recall that in the very first lecture in this series, I referred to the role that COMINT (or "Magic") played not only in the events preceding the Japanese attack on Pearl Harbor but also in the military, naval, and air operations which followed that attack. This is not the place nor is there time to go into the complex problems involved in an attempt to ascertain the names of the persons who knew the secret, the basis for being caught by surprise. Millions of words have been published on this subject and I do not propose to add to that voluminous literature whatever thoughts I may have on this subject.

However, there is one small but extremely important piece of information disclosed in the investigation to which I have referred, and I will say a few words about it. You will recall that in the first lecture I called to your attention an article which appeared in a magazine based upon a letter the late General George C. Marshall, then Chief of Staff of the Army, wrote to Governor Thomas E. Dewey, Republican candidate for President in the 1944 election campaign. In that letter, which was written on 27 Sept. 1944, General Marshall practically begged Governor Dewey to say nothing during the campaign about a certain piece of very vital information which General Marshall had reason to believe
This, the sixth and final lecture in this series on the history of

cryptology, will be devoted to a presentation of events and developments of

significance or importance in that history from the end of World War I to the

end of World War II.

It would be entirely too ambitious a project even to attempt to compress

within a lecture of only 50 minutes all that should or could be told in that

segment of our history of cryptology. In a nutshell, however, it can be said that the

most significant and important events and developments during that quarter of

a century were directly concerned or connected with the advances made in the

production of more complex mechanical, electrical, and electronic cryptographic

in order to increase or to facilitate greater crypto security of our own communic-

apparatus and with the concomitant advances in the production of more

cryptanalytic in order to speed up

sophisticated mechanical, electrical, and electronic apparatus for

or to make possible the solution of even communications

activities of the messages produced by their increasingly complex cryptographic

machines. These two phases are inter-related because, to use a sort of simple

analogy, cryptography and cryptanalysis represent the two faces of a single

coin, and it

would be nice if I could go into detail in regard to these

increasingly complex matters but security considerations prevent my doing so

because the classification of these lectures, viz., CONFIDENTIAL, is the lowest

possible. As to the advances in the development and use of more complex or more

sophisticated cryptographic apparatus I will only note at this point a comment

which General Omar Bradley makes in his quiet but very interesting book entitled

A Soldier's Story:

Signal Corps officers like to remind us that "although Congress can make a general, it takes communications to make him a commander."

It is tempting for me to try to amend General Bradley's remark but this is how I wish he had worded it:

Signal Corps officers like to remind us that "although Congress can make a general, it takes rapid and secure communications to make him a good commander."

This will in fact be the keynote of this lecture. In other words, communications security, or COMSEC, will be its main theme and the one I wish to emphasize.

But before coming to that part of our history perhaps a bit more attention must be devoted to events and developments of cryptanalytic significance or importance during the period 1918 to 1946. By far the most spectacular and interesting of these are the ones which were so fully and disastrously disclosed by the various investigations conducted by the Army and Navy very secretly while World War II was still in progress, and both secretly and openly after the close of hostilities. The investigations were intended to ascertain why our Army and Navy forces in Hawaii were caught by surprise by the sneak attack on Pearl Harbor by the Japanese on the morning of 7 December 1941. They were also intended to ascertain and pin the blame on whoever was responsible for the debacle.

I don't think I should even attempt to give you my personal opinion on these complex questions, which were studied by seven different boards within the Services and finally by the Joint Congressional Committee on the Investigation of the Pearl Harbor Attack. I mentioned the latter investigation in my first lecture and now I must add to what I then said. The committee published its findings, conclusions, and recommendations in 1946. It began its work in September 1945 with secret hearings but on 70 days subsequent to 15 November 1945 up to and including 31 May 1945 open hearings were conducted, in the course of which some
15,000 pages of testimony were taken and a total of 183 exhibits received.

In July 1946, the Committee sent to incident to an examination of 133 witnesses. The Committee put out a final report. The Government Printing Office to print reports totaling 360 pages, setting forth its findings, conclusions, and recommendations. The Report was accompanied by a set of 30 volumes of testimony and exhibits.

The Report there was one by the Majority (signed by six Democratic and two Republican members), and one by the Minority (signed by two Republican members).

The Minority Report was not nearly as long as that of the Majority but it brought into focus certain troublesome points which still form the subject of unanimous discussions and writings who believe the attack was "engineered" by President Roosevelt, and that certain authorities in Washington were as culpable as were certain commanders in the Army and in the Navy in Hawaii.

For this reason an interesting fact is that both the Majority and Minority Reports contain glowing tributes to the role played by Signal before and during our participation in World War II. In my first lecture I presented a brief extract in this regard taken from the Majority Report, but here is what the Minority Report says on the subject:

6. Through the Army and Navy intelligence services extensive information was secured respecting Japanese war plans and design, by intercepted and decoded Japanese secret messages, which indicated the growing danger of war and increasingly after November 26 the insidious of a Japanese attack.

With extraordinary skill, zeal, and watchfulness the intelligence services of the Army Signal Corps and Navy Office of Naval Communications broke Japanese codes and intercepted messages between the Japanese Government and its spies and agents and ambassadors in all parts of the world and supplied the high authorities in Washington reliable secret information respecting Japanese designs, decisions, and operations at home, in the United States, and in other countries. Although there were delays in the translations of many intercepts, the intelligence services had furnished to those high authorities a large number of Japanese messages which clearly indicated the growing resolve of the Japanese Government on war before December 7, 1941.

3 ibid. p. 54.
The Majority Report made five main recommendations, of which the second is of special interest:

That there be a complete integration of Army and Navy intelligence agencies in order to avoid the pitfalls of divided responsibility which experience has made so abundantly apparent; that upon affecting a unified intelligence, officers be selected for intelligence work who possess the background, penchant, and capacity for such work for an extended period of time in order that they may become steeped in the refinements and refinements of their field and employ this reservoir of knowledge in evaluating material received. The assignment of an officer having an aptitude for such work should not impede his progress nor affect his promotions. Efficient intelligence services are just as essential in time of peace as in war, and this branch of our armed services must always be accorded the important role which it deserves.

I assume that due note of this recommendation has been by the services but how far it has been possible and practicable to insure that the recommendations has been carried out or will be I do not know. In this connection I think it may be of interest to cite what the distinguished commander whom I have already mentioned, General Omar Bradley, has to say on this point:

In their intelligence activities at Allied Forces Headquarters, the British easily outstripped their American colleagues. The tedious years of proverb studies the British had devoted to areas throughout the world gave them a vast advantage which we never overcame. The American Army's long neglect of intelligence training was soon reflected by the inexperience of our initial undertakings. For too many years in the preparation of officers for command assignments, we had overlooked the need for specialization in such activities as intelligence. It is unrealistic to assume that every officer has the capacity and the inclination for field command. Many are uniquely qualified for staff intelligence duties and indeed would prefer to denote their careers to those tasks. Yet instead of grooming qualified officers for intelligence assignments, we rotated them through conventional duty tours, making correspondingly little use of their special talents. Misfits frequently found themselves assigned to intelligence duties. And in some stations G-2 became a dumping ground for officers ill suited to line command. I recall how scrupulously I avoided the breeding that came with an intelligence assignment in my own career. Had it not been for the uniquely qualified reservists who so capably filled so many of our intelligence jobs throughout the war, the army would have found itself badly pressed for competent intelligence personnel.

Have some of you pondered over the reason why an officer who reaches the highest level of command in an army, ours as well as in foreign armies, is called a "general officer" or "General"? It is because he is supposed to have

learned something about everything connected with military operations—but I am not a specialist in all the often-used military terms and abbreviations. As a staff officer, the general staff could conduct the operation. Cryptology, in COMINT and COMSEC for military purposes, is very important. There are areas of the military services and operations where, if you are an expert, your service can be of utmost assistance to the general staff. A good cryptologist is invaluable in such areas as navigational, communications, guided missiles, where you can assist in the planning and implementation of operations. That is where you come into the picture—as assistant to the cryptologist, even if you are not a first-rate cryptologist yourself. That is the picture of the cryptologist as a responsible and qualified professional, a cryptologist who has learned the business of ordinary military intelligence operations. It is the picture of a specialist in the quite complex operations of warfare, the complicated business of cryptology as applied in modern military operations.

But let us leave those speculations, interesting as they may be, and continue with our history. Let us first dispose of certain comments in the COMINT area of that history, and specifically to the role that COMINT (or "Magic") played, not only in the events preceding the attack on Pearl Harbor but also in the military naval, and our operations which ensued, not only in the Pacific but also in Europe.
had become known to Governor Dewey, it having been "leaked" to him by persons not
authorised to disclose it. The information dealt with the fact that the U. S. had
been reading Japanese codes and ciphers even before the attack on Pearl Harbor. The
vital point which General Marshall wanted to convey to Governor Dewey was that not
only was the information which had surreptitiously been given to Governor Dewey true
but more important were the facts that (1) the war was still in progress; (2) the
Japanese were still using certain of the pre-Pearl Harbor cryptosystems; and (3)
the U. S. was still reading the secret communications in these systems as well as
certain other enemy communications. Therefore, it was vital that Governor Dewey
not use the information which had come into his possession as to our reading Jap-

anese secret communications prior to the attack on Pearl Harbor. I said in that
first lecture that I might later give further extracts from TIME's account and, to
continue the extracts printed on pages 3, 4, and 5 of the first book, here they are:

General Marshall had a long series of bad moments after U. S.
flyers, showing a suspicious amount of foresight, shot down Admiral
Yamamoto's plane at Bougainville in 1943. Gossip rustled through the
Pacific and into Washington cocktail parties; General Marshall got to
the point of asking the FBI to find an officer who could be made an
example of. (The FBI, fearful of looking like a Gestapo, refused).

Once a decoder was caught in Boston trying to sell the secret.
Once, well-meaning agents of the Office of Strategic Services ransacked
the Japanese Embassy in Lisbon, whereupon the Japs adopted a new code
for military attaches. This code remained unbroken more than a year
later. The worst case of all came during the 1944 presidential campaign,
when George Marshall heard that Thomas E. Dewey knew the secret and
might refer to it in speeches.

Yet for all these fears, the Japs never discovered that the U. S.
was decoding their messages. Even after the surrender, the Army still
used Magic as a guide to occupation moves; though it had once been planned
to send a whole army into Korea, Magic showed that a single regiment
would be enough.

SECRET KEPT

The letter, on stationery of the Chief of Staff's Office, bore a bold
heading: TOP SECRET, FOR MR. D EWY'S EYES ONLY. Candidate Thomas E. Dewey,
his curiosity piqued, read rapidly through the first two paragraphs:

If I ever heard about the incident, I have forgotten all about it. But
I shall never forget about the Lisbon episode. — W. F. F.
I am writing you without the knowledge of any other person except Admiral King (who concurs) because we are approaching a grave dilemma in the political reactions of Congress regarding Pearl Harbor.

What I have to tell you below is of such a highly secret nature that I feel compelled to ask you either to accept it on the basis of your not communicating its contents to any other person and returning this letter or not reading any further and returning the letter to the bearer.

Tom Dewey looked up from the typewritten page. As he did the word cryptograph, a few paragraphs below, flashed into his vision like a red traffic light. He made his decision quickly. Folded the letter, handed it back. Colonel Carter W. Clarke (in suit), who had flown from Washington to Tulsa to catch up with Tom Dewey's campaign, went back, his mission uncompleted. Here's a picture of Colonel Clarke (Photograph Fig. 2).

"YOU HAVE MY WORD." It was September 1941. The campaign train rolled up through the Midwest, returned to Albany. A few days later Tom Dewey received another visit from Colonel Clarke.

The Colonel, again in civilian clothes handed over another letter from General Marshall. The General had changed his mind somewhat:

Tom Dewey looked the letter in his files, went back to his electioneering. Though he had known before that the U. S. had cracked the Jap code, had suspected that this information cast grave doubts on Franklin Roosevelt's role before Pearl Harbor, he held his tongue. The War Department's most valuable secret was kept out of the campaign.

MEETING AT A FUNERAL. Recounting this story at the Pearl Harbor hearing last week, General Marshall recalled that he and Tom Dewey never discussed the matter in person until they met at Franklin Roosevelt's funeral last April: "I asked Mr. Dewey to come with me to the War Department and I showed him current Magic showing Japanese movements. His attitude was friendly and gracious."

"Bad Marshall ever told Franklin Roosevelt of the letters to Dewey?"

Said Marshall: "The President died without knowledge of it."

SECRET LOST

The Pearl Harbor Committee blithely tossed away one still-secret U. S. communications weapon. George Marshall's letters to Governor Dewey (reported mentioned that the U. S., with the help of the British, had decoded German as well as Japanese messages. George Marshall begged the Committee to cut out these references. The Committee refused.

Publication of the letters thus gave the Germans their first knowledge that their code had been broken. It was also a breach of diplomatic confidence with the British, who had let the U. S. in on the secret on the understanding that it would be kept.

"A few days later..." But not until the First letter is dated 15 September. It is possible that Colonel Clarke was unable to deliver the letter immediately but my people... in that he did deliver it at the right time... With..."
The Marshall-Dewey correspondence is so important in cryptologic history that
I feel that the whole of it should be included even in this brief history. When
the letter was written it was, of course, TOP SECRET, and it was only under great
pressure of certain members of the Joint Congressional Committee on the Investiga-
tion of the Attack on Pearl Harbor that General Marshall revealed the contents of
the letter. Thus the letters came into the public domain not only on the very day
that General Marshall was to place it in evidence - a letter caused a great sen-
sation in the newspapers - but also when the 40 volumes of the Hearings of that
Committee were published by authority of the Committee and put on sale by the Super-
intendent of Documents of the Government Printing Office. The disclosure of the
contents of the Marshall-Dewey correspondence was indeed such a sensation that
LIFE magazine printed the whole of it in its issue of 17 December, 1945, with the
following introduction:

"MARSHALL-DEWEY LETTERS"
GENERAL TOLD CANDIDATE WE HAD BROKEN JAP CODE

During the 1944 election campaign General George C. Marshall wrote two letters to Republican Candidate Thomas E. Dewey, telling
him that Army cryptographers had broken the Japanese "Ultra" code. This fact was first revealed in a story by LIFE Editor, John Chamber-
lain, which appeared in LIFE, Sept. 24. Marshall's purpose, Chamber-
lain wrote, was to forestall Dewey's revelation of that fact in a pos-
sible attack on the Roosevelt administration's Japanese policy before
Pearl Harbor. The actual text of the letters remained secret until
last week, when General Marshall appeared before the Congressional
Committee investigating Pearl Harbor and made the letters public.
They appear below:

When he had finished reading the first two paragraphs of the
first letter, Governor Dewey stopped because, as the Chamberlain
article reported, "the letter might possibly contain material which
had already come from other sources, and that anyway, a candidate
for President was in no position to make blind promises." General
Marshall sent the letter back again with an introduction which re-
1) Cited by W. F. F.

So far as I am aware it has neither been ascertained nor disclosed, if known, who
gave Governor Dewey the information. But it is a fact that as a patriotic citizen,
he acceded to General Marshall's request - he made no use whatever of the vital secret
information during the campaign or after it. TIME's account specifically states that
Dewey "held his tongue. The War Department's most valuable secret was kept out of the
campaign." — W. F. F.
My Dear Governor:

I am writing you without the knowledge of any other person except Admiral King (who concurs) because we are approaching a grave dilemma in the political reactions of Congress regarding Pearl Harbor.

What I have to tell you below is of such a highly secret nature that I feel compelled to ask you either to accept it on the basis of your not communicating its contents to any other person and returning the letter or not reading any further and returning the letter to the bearer.

I should have preferred to talk to you in person but I could not devise a method that would not be subject to press and radio reactions as to why the Chief of Staff of the Army would be seeking an interview with you at this particular moment. Therefore, I have turned to the method of this letter, to be delivered by hand to you by Colonel Carter Clarke who has charge of the most secret documents of the War and Navy Departments.

In brief, the military dilemma resulting from Congressional political battles of the political campaign is this:

The most vital evidence in the Pearl Harbor matter consists of our intercepts of the Japanese diplomatic communications. Over a period of years our cryptograph people analysed the character of the machine the Japanese are using for encoding their diplomatic messages. Based on this, a corresponding machine was built by us which deciphers their messages.

Therefore, we possessed a wealth of information regarding their moves in the Pacific which in turn was furnished the State Department—rather than, as is popularly supposed, the State Department providing us with information—but which unfortunately made no reference whatever to intentions toward Hawaii until the last message before Dec. 7, which did not reach our hands until the following day, Dec. 8.

Now the point to the present dilemma is that we have gone ahead with this business of deciphering their codes until we possess other codes, German as well as Japanese, but our main basis of information regarding Hitler's intentions in Europe is obtained from Baron Oshima's messages from Berlin reporting his interviews with Hitler and other officials to the Japanese Government. These are still in the codes involved in the Pearl Harbor events.

To explain further the critical nature of this set-up which would be wiped out almost in an instant if the least suspicion were aroused regarding it, the Battle of the Coral Sea was based on deciphered messages and therefore our few ships were in the right place at the right time. Further, we were able to concentrate on our limited forces to meet their advances on Midway when otherwise we almost certainly would have been some 3,000 miles out of place.

We had full information of the strength of their forces in that advance and also of the smaller force directed against the Aleutians which finally landed troops on Attu and Kiska.

Operations in the Pacific are largely guided by the information we obtain of Japanese deployments. We know their strength in various garrisons, the rations and other stores continuing available to them and what is of vast importance, we check their fleet movements and the movements of their convoys.

The heavy losses reported from time to time which they sustain by reason of our submarine action largely results from the fact that
Dear Governor:

Japanese shipping in Manila Bay and elsewhere were largely based in timing on the known movements of Japanese convoys, two of which were caught, as anticipated, in his destructive attacks.

You will understand from the foregoing the utter tragic consequences if the present political debates regarding Pearl Harbor disclose to the enemy, German or Japanese, any suspicion of the vital sources of information we now possess.

The Roberts' report on Pearl Harbor had to have withdrawn from it all reference to this highly secret matter, therefore in portions it necessarily appeared incomplete. The same reason which dictated that course is even more important today because our sources have been greatly elaborated.

As a further example of the delicacy of the situation, some of Donovan's people (the OSS), without telling us, instituted a secret search of the Japanese Embassy offices in Portugal. As a result the entire military attacks Japanese code all over the world was changed, and though this occurred over a year ago, we have not yet been able to break the new code and have thus lost this invaluable information source, particularly regarding the European situation.

A recent speech in Congress by Representative Hanness would clearly suggest to the Japanese that we have been reading their codes, though Mr. Hanness and the American public would probably not draw any such conclusion.

The recent action of Congress in requiring Army and Navy investigations for action before certain dates has compelled me to bring back the corps commander, General Gerow, whose troops are fighting at Trier, to testify here while the Germans are counterattacking his forces there. This, however, is a very minor matter compared to the loss of our code information.

I am presenting this matter to you, for your secret information, in the hope that you will see your way clear to avoid the tragic results with which we are now threatened in the present political campaign. I might add that the recent action of Congress in requiring the conduct of current operations and in looking toward the early termination of the war.

Please return this letter by bearer, I will hold it in my secret file subject to your reference should you so desire.

Faithfully yours,
G. C. Marshall

SECOND LETTER

(TOP-SECRET)

(FOR MR. DEWEY'S EYES ONLY)

27 September, 1944

Mr. Governor:

Colonel Clark, my messenger to you of yesterday, Sept. 26, has reported the result of his delivery of my letter dated Sept. 25. As I understand him you (A) were unwilling to commit yourself to any agreement regarding "not communicating its contents to any other person" in view of the fact that you felt you already knew certain of the things.
probably already referred to in the letter, as suggested to you by seeing the word "cryptograph," and (2) you could not feel that such a letter as this to a Presidential candidate could have been addressed to you by an officer in my position without the knowledge of the President.

As to (A) above I am quite willing to have you read what comes hereafter with the understanding that you are bound not to communicate to any other person any portions which you do not now have or later receive factual knowledge from some other source than myself. As to (B) above you have my word that neither the Secretary of War nor the President has any intention whatsoever that such a letter has been addressed to you or that the preparation or sending of such a communication was being considered.

I assure you that the only persons who saw or know of the existence of either this letter of my letter to you dated Sept. 25 are Admiral King, seven key officers responsible for security of military communications, and my secretary who typed these letters.

I am trying my best to make plain to you that this letter is being addressed to you solely on my initiative, Admiral King having been consulted only after the letter was drafted, and I am persisting in the matter because the military hazards involved are so serious that I feel some action is necessary to protect the interests of our armed forces.

(The second letter then repeated substantially the text of the first letter except for the first two paragraphs).

LIFE failed to note that the last two sentences in the penultimate paragraph of the "First Letter" were omitted from that paragraph in the "Second Letter," but there is no explanation for the omission. Perhaps it was simply for the sake of brevity, but this seems improbable.

In my first lecture I called attention to the fact that the account given in the TIME article gives credit to Army cryptanalysts for providing the secret communications intelligence "which enabled our Navy to win such spectacular battles as those of the Coral Sea and Midway, and to waylay Japanese convoys," whereas the credit for the communications intelligence which enabled our Navy to win these battles was produced by Navy cryptanalysts. One cannot blame the editors of TIME for making such a bad error because the source of the error can be traced directly to Marshall's letter itself. Several years ago I asked by friend Colonel Clark, who had carried General Marshall's letter to Governor Dewey and who was at the time a high-level officer
in G-2, how such an error had crept into General Marshall's letter, and was told that the letter which had been prepared for General Marshall's signature did not meet with the General's whole-hearted approval and that the General himself had modified it. Perhaps that is how the error to which I have referred crept into it.

One could hardly expect General Marshall to be entirely familiar with the technical cryptanalytic details involved in what he wanted to tell Governor Dewey, nor should one criticize him for not being able, in his very busy days and under very heavy pressure of events, to bear in mind or even to know about the differences between the enemy systems worked upon by the respective and separate Army and Navy cryptanalytic organizations. It is of course possible, indeed, in fact, probably, that certain COMINT, regarding the Battle of the Coral Sea and of Midway, that in the case of certain valuable COMINT, as well as various important naval operations, came from messages read by Army cryptanalysts, and this is what confused General Marshall. That all the credit to them cryptanalysts because of their solution of the Japanese highest-level diplomatic cryptograms, the one that made the so-called "Purple Code," which was a code, led to investigation were made, disclosures which were disastrous so far as concerns the important accomplishments of the two services before and after the Pearl Harbor attack in the field of communications intelligence, and is now in the public domain regarding those accomplishments, but fortunately no technical details of significance have been disclosed. Hints here and there are in abundance in the many books and articles that have been published by U. S. officers and writers since the end of World War II; but more than hints of the great part played by COMINT in U. S. military and naval successes are to be found in books and articles published by American officers as well as by officers of the beaten Japanese, German, and Italian armed forces. Time does not permit citing in this lecture many
of these hints or definite statements, but the following two are of particular interest because they concern the Battle of Midway, which is considered the one which turned the war in the Pacific from a possible Japanese victory to one of ignominious defeat:

If Admiral Yamamoto and his staff were vaguely disturbed by the persistent bad weather and by lack of information concerning the doings of the enemy, they would have been truly dismayed had they known the actual enemy situation. Post-war American accounts make it clear that the United States Pacific Fleet knew of the Japanese plan to invade Midway even before our forces had sortied from home waters. As a result of some amazing achievements by American intelligence, the enemy had succeeded in breaking the principal code then in use by the Japanese Navy. In this way the enemy was able to learn of our intentions almost as quickly as we had determined them ourselves.

The distinguished American Naval historian, Professor Samuel E. Morison, characterizes the victory of United States forces at Midway as "a victory of intelligence." In this judgment the author fully concurs, for it is beyond the slightest possibility of doubt that the advance discovery of the Japanese plan to attack was the foremost single and immediate cause of Japan's defeat. Viewed from the Japanese side, this success of the enemy's intelligence translates itself into a failure on our part - a failure to take adequate precautions for guarding the secrecy of our plans. Had the secret of our intent to invade Midway been concealed with the same thoroughness as the plan to attack Pearl Harbor, the outcome of this battle might well have been different. But it was a victory of American intelligence in a much broader sense than just this. Equally as important as the positive advancements of the enemy's intelligence on this occasion was the negatively bad and ineffective functioning of Japanese intelligence.

It is the second extract above which is of special interest to us at the moment, and, in particular, the portion which refers to "the negatively bad and ineffective functioning of Japanese intelligence." The author is a bit too severe on the Japanese intelligence organization. I say this because their cryptanalysts were dreamt of up against much more sophisticated cryptosystems than they were or were qualified to solve. In fact, even if they had been extremely adept in cryptanalysis it would have been of no avail - U. S. high-level communications were protected by cryptosystems of very great security.

This brings us to a phase of cryptology which is of highest importance - the phase which deals with communications security, or CONSEC, and I shall confine myself largely to its historical background in the Armed Forces. The background is a very broad one because it should include the background of the developments of each of the three components of CONSEC: cryptographic security, transmission security, and physical security of cryptomaterials. But since time is limited and because I think you would be more interested in the phases pertaining to cryptographic security, I will omit references to the history of the developments of the other two components. And even in limiting the data to cryptographic security, I will have opportunity only to give some of the highlights of the development of the items that comprise our cryptomaterials, omitting comments on the history of the development and improvement of our techniques, procedures and practices, all of which are extremely important.

I shall begin the story with a definition which you will find in any good English dictionary, a definition of the word "accident." You will get the point of what may seem to you right now to be merely another of my frequent digressions from the main theme, but if it be a digression I think you will nevertheless find it of interest. The word "accident" in Webster's Unabridged Dictionary is defined as follows:

1. Literally, a befalling.
 a. An event that takes place without one's foresight or expectation; an undesigned, sudden, and unexpected event.
 b. Hence, often, an undesigned and unforeseen occurrence of an afflictive or unfortunate character; a mishap resulting in injury to a person or damage to a thing; a casualty; as, to die by an accident.

There are further definitions of the word but what I've given is sufficient for our purposes. But why define the word? What has it to do with CONSEC?

During our participation in World War II the President of the United States accom-
promised by many of his highest-level assistants, journeyed several times halfway around the world. He "journeyed in safety—hence met with no accident." On the other hand, in April 1943, Admiral Isoroku Yamamoto, Commander in Chief of the Combined Fleet of the Japanese Navy started out on what was just an ordinary inspection trip—him. Here's a good picture of the Admiral (Fig. 1), but it turned out to be a one-way trip for the Admiral. His death was announced in a who was the architect of the attack on Pearl Harbor. The death was announced in an official Japanese Navy communiqué stating that the Admiral had met a glorious end while directing operations in a naval engagement against superior enemy forces.

But we know that this was simply not true; Admiral Yamamoto "met with an accident.

But some bright person, it was the late Jimmy Walker, when Mayor of New York City—Jimmy Walker's comment was true in this case at least; Admiral Yamamoto did not die primarily by accident; he died because our Navy knew the very schedule of his trip down to the last detail so that it was possible to set up an ambush with high degree of success. Here is the story as told in an interesting manner by Fleet Admiral William F. Halsey, U.S.N., in his book entitled Admiral Halsey's Story:

I returned to Nouméa in time to sit in on an operation that was smaller but extremely gratifying. The Navy's code experts had hit a jack pot; they had discovered that Admiral Isoroku Yamamoto, the Commander in Chief of the Imperial Japanese Navy, was about to visit the Solomons. In fact, he was due to arrive at Ballale Island, just south of Bougainville, precisely at 0945 on April 18. Yamamoto, who had conceived and proposed the Pearl Harbor attack, had also been widely quoted as saying that he was "looking forward to dictating peace in the White House at Washington." I believe that this statement was subsequently proved a canard, but we accepted its authenticity then, and it was an additional reason for his being No. 3 on my private list of public enemies, closely trailing Hirohito and Tojo.

Eighteen P-38's of the Army's 339th Fighter Squadron, based at Henderson Field, were assigned to make the interception over Rabi, 35 miles short of Ballale. Yamamoto's plane, a Betty, accompanied by another Betty and covered by six Zeke's, was in sight exactly on schedule, and Lt. Col. Thomas G. Lapham, Jr., dove on it and shot it down in flames. The other Betty also shot down for good measure, plus one of the Zokes. . . . We bottled up the story, of course. One obvious reason was that we didn't want the Japs to know that we
had broken their code. . . . Unfortunately, somebody took the story to Australia, whence it leaked into the papers, and no doubt eventually into Japan But the Japs evidently did not realize the implication any more than did the tattletale; we continued to break their codes.

Admiral Halsey's Story contains a good many more instances of cryptologic significance and interest to us. Other authors, both American and Japanese, cite similar instances. One Japanese author states in categorical language that Japan was defeated because of poor CODEX on the part of the Japanese Navy and good CODEX on the part of the American Navy.

But lest you get the impression that enemy intelligence agencies had no success at all with secret communications of U. S. Armed Forces, let me tell you that they did have some success and in certain instances, very significant success.

There is not time to go into this somewhat disappointing or disillusionsing statement but I can say that as a general rule the successes were attributable not to technical weaknesses in U. S. cryptosystems but to their improper use of certain low-level ones, by unskilled, improperly or insufficiently trained cryptographic clerks. I may as well tell you right now that this has been true for a great many years, for centuries as a matter of fact, because as long ago as the year 1605 Francis Bacon, who wrote the first treatise in English on the subject of cryptology,

made the following statement:

This Arte of Cyphering, hath for Relative, an Art of Discyphering; by supposition unprofitable; but, as things are, of great use. For suppose that Cyphers were well managed, there bee Multitudes of them which exclude the Discypher. But in regards of the rawnessse and unskilfulness of those hands, through which they passe, the greatest Matters, are many times carryed in the weakest Cyphers.

When electrical and particularly radio transmission entered into the picture, additional hazards to communications security had to be taken into account, but many commanders have failed to realize how much intelligence can be gained merely
from a study of the procedures used in transmission, the direction and flow of communications, the call signs of the transmitting and receiving stations, etc.,

all without solving the communications even if they were in cryptic form. Following paragraphs extracted are a couple of excerpts from a document entitled German Operational Intelligence, published in April 1946 by the German Military Document Section, a Combined British, Canadian, and U.S. Staff:

"Signal intelligence was a chief source of information in the German Army. In the eastern theater, where there was offensive warfare primarily, the signal intelligence service was well-organized with well-defined purposes, efficient personnel, and adequate equipment. In the course of the campaign, it was reorganized to exploit to the fullest the success already experienced, and, by 1943, there existed a complete and smoothly functioning machine sufficient to meet all demands." (p.9)

Most of their signal intercept success came from low echelon traffic. Armored and artillery radio nets passing operational traffic were followed closely and were one of the chief sources of signal intelligence. Artillery radio nets were given first coverage priority. Apart from messages intercepted in code or in clear, signal procedure, peculiarities of transmitting, and characteristics of Allied radio operators provided enormous assistance in helping to evaluate signal information. The Germans noticed that call signs were often the same for a unit over long periods and that even frequencies remained unchanged for weeks at a time. (p.9)

Much tactically important information was drawn from the enemy Air Force liaison net. It was assumed that an independent net served all Air Force liaison officers attached to the various headquarters and once one of these stations had been picked up and identified, it could be used to trace all other stations over a considerable area. Air Force traffic dealing with bombing targets was intercepted by Air Force units, and was sent through liaison channels by Western Theater Command. From here, over a network going down to divisions, the information would be flashed to all Army Command headquarters. Receiving sets at all levels, including division, were tuned in continually to this broadcast frequency." (p.9)

Importance of Signal Intelligence During the Normandy Invasion: (p.13)

During the invasion, the G-2s in the West drew about 60 per cent of the operationally important information from signal intelligence. The remaining 40 percent was derived from all other fields of intelligence. The amount of information decreased during the months of mobile warfare. During the retreat, although the possibilities of obtaining information became less frequent, the amount of information from signal intelligence remained high. Most of the information was deduced from the organization of enemy radio traffic networks, from decoded messages, and from the radio nets of the enemy Air Force liaison officers who were attached to ground troops. Based upon this information the evaluation center of signal intelligence often came to conclusions which, at first, sounded hypothetical to the operational command and were therefore doubted. In 90 percent of all these cases the events verified the signal intelligence information so that eventually more credence was given to its conclusions." (p.13)
A great many examples of intercepted messages of tactical content are cited in the aforementioned document, which is replete with information of deep interest, although the document was originally issued with the lowest security classification then in use (U. S. "Restricted"; British-Canadian "For official use only"). I wish there were time to quote at greater length from this useful brochure.

Coming directly now to the history of the development of our cryptomaterials themselves, I hardly need reiterate what was pointed out in previous lectures as to the profound effect of the advances in the science and art of electrical communications in the 20th Century. Those advances had a direct effect upon military communications and an indirect effect upon military cryptology. Hand-operated ciphers because and greater and, of course, codebooks became almost obsolete with the need for greater speed of cryptographic operations to match as much as possible the very great increase in the speed of communications brought about by inventions and improvements in electric wire and radio. The need for cryptographic apparatus and machines became quite obvious, but it took quite some time to satisfy that need in a manner that could be considered adequate. Security for military communications is long and interesting. Let us begin with a resume of the earliest items of importance in that history.
Until the advent of electronic cipher machines most cryptographic apparatus such as wheels, cipher disks, etc. The earliest of these was developed by an Italian cryptologist named Alberti whose Trattato in Cifra was written in Rome about 1470. It is the oldest tract on cryptography the world now possesses. Here's a photo of Alberti's disk (Fig. 6), but I won't take the time to explain it except to say that the digits 1, 2, 3, 4 were used to encipher code groups and that the letters of the cipher or revolving alphabet were in mixed order. In Porta's book, first published in 1563 in Naples, there appear several cipher disks; and in the copy which was still given me as a gift by Colonel Fabian they are in working condition. Here is a picture of one of them (Fig. 7). In this version the device used symbols as cipher characters. And apparently nobody thought up anything much better for a long, long time. It seems, in fact, that not only did nobody think of anything new or even some improvements on the original Alberti or Porta disks but those who did any thinking at all on the subject merely "invented" or "re-invented" the same thing again, and that happened repeatedly in successive generations. For instance, in Lecture No. 4 of this series you were shown a picture of the cipher disk "invented" by Major Albert Myer, the first Chief Signal Officer of the U. S. Army, who obtained a patent on his invention in 1865. Here's a picture of the patented disk (Fig. 8) and the explanation of it (Fig. 9). And you might remember that signalmen of the Confederate Signal Corps mechanized the old Vigenère Square and put it out in the form of a cylinder (see Figs. 13, 14 and 15 of Lecture No. IV). The cipher disk used by the Signal Corps of the U. S. Army during the decade our participation as a belligerent in 1910 to 1920, that is, during the period including World War I, was nothing but
white celluloid variation of the original Alberti disk of the vintage of 1470

(except that it was even simpler than its progenitor, because in the latter the cipher alphabets produced were mixed alphabets whereas, in the Signal Corps disk, the cipher alphabets are simple reversed standard sequences. We all know that it generally takes a pretty long time to get a patent through the complex workshops of the U. S. Patent Office, but in 1924 the ancient device was patented in 1924 by S. H. Huntington (Fig. 11). Here you can see a great improvement over the Signal Corps version—a blank is added to both sequences so that the space between words could be enciphered. This, as you have learned, is a fatal weakness if seen in the cipher text; in the Huntington device the spaces between words would be enciphered but the cipher text would have space signs, although they would not correspond to the actual spaces between words in the plain text. In the Huntington device the space signs in the cipher text would be a bit misleading, but not to the intelligence analyst, who would soon realize that they do not actually represent "word space" in the plain text.

It is interesting to note that in Austria in 1936, during the days when the German National Socialists were banned as an organization, the Nazis used this variation of the old disk—it had the 10 digits on both the outer and the inner sequences for enciphering digits (Fig. 12).

The first significant improvement on the old cipher disk was that made by

Sir Charles Wheatstone, who invented some time before 1879 a cipher device which he called a cryptograph. He described it in a volume entitled The Scientific Papers of Sir Charles Wheatstone, published by the Physical Society of London.

Here is a picture of Wheatstone's device, which is in my private collection (Fig. 13).
What Sir Charles did was to make the outer circle of letters (for the plain text) comprise the 26 letters of the alphabet, plus one additional character to represent "space." The inner circle, for cipher equivalents, contains only the 26 letters of the alphabet and these must be disarranged in a mixed sequence. The two hands, like the hour and minute hands of a clock, were provided, under control of a differential gear mechanism, so that as the long or "minute" hand is advanced to make a complete circuit of the letters on the outer circle of letters on the face of the cryptograph, the short or "hour" hand advances one space or segment on the inner circle of letters on the face of the cryptograph. In Fig. 13, for example, the plain text letter G is represented by the cipher letter A if the long hand is now advanced in a clockwise direction for one revolution, Gp will be represented no longer by A but by C. In encipherment the long hand is always moved in the same direction (clockwise, for example) and is placed over letters on the outer circle according to the successive letters of the plain-text message, the cipher equivalents being recorded by hand to correspond with the letters to which the short hand points at each encipherment. In this way, identical letters of the plain text will be represented by different and varying letters in the cipher text, depending upon how many revolutions of the long hand intervene between the first and subsequent Thus, with the alphabet shown in Fig. 13, and with the initial setting Gp = A, the word appears in the same plain-text letter. Correspondents must naturally agree upon the mixed alphabet used in the inner circle and the initial positions of the two hands at the beginning of the encipherment of a message. In decipherment, the operator moves the long hand counterclockwise, seeking the cipher letters in the same order, which is seen through the aperture at the end of the inner circle, and making the plain-text letters to which the long hand points. Thus, in the case of this example given above, the cipher letters as mentioned above, the cipher text will be found to correspond with the plain text.

During World War I, some time in 1917, the British Army resuscitated
Wheatstone's cryptograph and improved it both mechanically and cryptographically.

Here's a picture of the device (Fig. 14), in which it will be seen that there are now no longer the "minute" and "hour" hands but a single hand with an opening or window that simultaneously discloses both the plain text and cipher letters, when the single hand is turned. The inner circle of segments is just placed in an ascendant manner against the outer circle of segments which are made of a substance upon which letters may be written in pencil or in ink. In this improvement on the original Wheatstone device both sequences of letters are now mixed sequences. Making the outer circle also a mixed sequence added a considerable degree of security to the cipher.

When it was proposed that all the Allied armies use this device for field cryptographic communications and its security had been approved by British, French, and American cryptologists (both at GHQ-ARMY and at Washington) an opportunity to agree or disagree with the assessment of these cryptologists was given me while I was still at the Riverbank Laboratory. I was able to show that the modified Wheatstone cryptograph was still insufficiently secure for military purposes and the devices, thousands of which had been manufactured and issued, were withdrawn. If you are interested in the method of solution I used you will find it in Riverbank Publication No. 20, entitled Several Machines Ciphers and Methods for their Solution. A better method of solution was devised by me, and

Some years later, and almost by sheer good fortune, I learned that a cipher machine was in the museum of a small town in Connecticut named Haddam. I was interested and wrote to the curator of the museum, requesting that he lend the device for a short period to me as principal cryptanalyst of the War Department. Imagine my astonishment and pleasure when I unpacked the box sent me, and found a device, beautifully made and encased in a fine mahogany
case, with its inventor's name, Decius Wadsworth, and the date, 1817, engraved on
the face of the machine, which was nothing but another version of the Wheatstone
Cryptograph. Here's a picture of it (Fig. 15). I believe the model was made
by Eli Whitney. Mechanically it was similar to the British modification, except
that the outer sequence had 33 characters, the inner 26, so that the differential
gear instead of operating on the ratio 27 to 26 was now on the ratio 33 to 26.

Colonel

Thus, Decius Wadsworth, an American Army Colonel, our first Chief of Ordinance, and
an associate of Eli Whitney, had anticipated Sir Charles Wheatstone by over 60
years in this invention. He also anticipated the British by a whole century
in their modification of Wheatstone's original, because in the Wadsworth device, too,
there was only one hand and both alphabets could be made mixed sequences. This
is very clearly shown in Fig. 16 as regards to the outer sequence, and I believe
the picture does not clearly show this to be the case, so that the inner one could also be disarranged but I am now not sure as to this point.

I returned the device a good many years ago and it is now on display in the

The next device I bring to your attention is shown in Fig. 17, a device
invented by a French Army reservist, Commandant Bazeries, who for some 10 years

but unsuccessfully
tried to get the French Army to adopt it. He was not successful and included
"Cryptographe Cylindrique," on a description of his device, which he called his "cryptographic cylindrique,

in a book published in 1901 in Paris. He had, however, described his device
in an article entitled "Cryptographe a 20 rondelles—alphabets (25 letters per alphabet)," published in 1893. In this device there is a central shaft on which

15 Les chiffres secrets dévoilés.
can be mounted 20 marked disks on the peripheries of which are differently mixed
alphabets of 35 letters each. The disks are assembled on the shaft in such a way that when
the device is turned, the disks are pushed into position on the shaft by pushing on the locking disks at the bottom left,
prearranged or key sequence. The first 20 letters of the plain text of a message
are aligned, as seen in Fig. 17 (JE SUIS INDECIPHERABLE = "I am indecipherable"). The disks
are then turned into position so that the whole assembly could be resolved,
and as cipher text one may select any one of the other 24 disks of letters
which are recorded. Then the next set of 20 plain-text letters are aligned, etc.

To decipher a message, one takes the first 20 cipher letters, aligns them
on the device, the disks having been assembled on the shaft in accordance with
the prearranged or key sequence, and then one turns the whole cylinder, searching
for a row of letters which form intelligible text. There will be only one such
row, and the plain-text letters are recorded. Then the next 20 letters of cipher
are aligned, etc.

In 1893 another French cryptologist, the Marquis de Viaris, showed how
messages prepared by means of the Bazeries cylindrical cipher could be solved.17

Maybe that is why Bazeries wasn't too successful in his attempts to get the
French Army to adopt his device. But in the U.S. there were apparently none
who encountered either what Bazeries or de Viaris wrote on the subject. Capt. Parker
Hitt, U.S. Army, whom I have mentioned in a previous lecture, in 1915 invented
a device based upon the Bazeries principle but not in the form of disks mounted
upon a central shaft. Instead of disks, Hitt's device used sliding strips and here
is a picture of his very first model which he presented to me, some time in 1923
or 1924.18] But I learned about his device some time in 1917 while still
at Riverbank, and solved one challenge message put up by Mrs. Hitt, a Riverbank
resident who successfully solved a box of challenge
guest for a day. I didn't use anything like what I could or might have learned

from de Viaris, in accomplishing the solution (which brought a box of chocolates to Mrs. Frieden) because at that time I hadn't yet come across the de Viaris book. I solved the message by guessing the key Mrs. Hitt employed to arrange her strip alphabets. She wasn't wise to the quirks of inexperienced cryptographic clerks; she used RIVERBANK LABORATORIES as the key, just as I suspected she would. The device she brought with her was an improved model: the alphabets were on paper strips glued to strips of wood, as seen in Fig. 19.

Capt. Hitt brought his device to the attention of the then Major Mauborgne, whom I have also mentioned in a previous lecture and who was then on duty in the Office of the Chief Signal Officer in Washington. There is some question as to whether it was Hitt who brought his device to Mauborgne's attention; Mauborgne later told me that he had independently conceived the invention and, moreover, had made a model using disks instead of strips. I have that model, a present from General Mauborgne many years later. It is made of brass, very heavy, on the peripheries of which he had engraved the letters of his own specially-devised alphabets. In 1919, after my return to Riverbank from my service in the ARF, Mauborgne sent Riverbank the first 25 letters of a set of some 25 messages enciphered by his device and alphabets. He also sent the same data to Major Yardley, in G-2. Nobody even solved the messages, even after a good deal of work and even after Mauborgne told us that two consecutive words in one of the challenge messages were the words "are you." Many years later I found the reason for our complete lack of success, when I came across the plain texts of those messages in a dusty old file in the Office of Chief Signal Officer. Here is a picture of the beginning of the first six messages (Fig. 20). Mauborgne, when I chided him on the unfairness of his challenge messages, told me that he had not prepared them himself—he had an underling. (Major Fowler was his name, I still
remember it!) prepare them. In our struggles to solve the challenge messages we had assumed that they would contain the usual sorts of words found as the initial words of military messages. It was the complete failure by Riverbank and C-2 to solve the challenge messages that induced Mauborgne to go ahead with the development of his device. It culminated in what became known as Cipher Device, Type M-94. Here is a picture of it (Fig. 21). That device was standardized and used for at least 10 years in the Army and Navy,海岸警备队, Coast Guard, Truman, and others.

In 1922, a war-time colleague, the late Capt. John M. Manly (Prof. and Head of the Department of English at the University of Chicago) brought to my attention a photostat of a holographic manuscript in the collection of Jefferson Papers in the Library of Congress. It consisted of two pages entitled "The Wheel Cypher" and here is a picture of the second page (Fig. 22) showing Jefferson's basis for calculating the number of permutations afforded by the set of 36 wheels of his device. He didn't attempt to make the multiplication; he didn't have an electronic digital computer--for the total number is astronomical in size.

Jefferson anticipated Bazeries by over a century, and...
after I had given up in my attempts to find a firm which would or could make
such a grooved device in quantity, Mrs. Friedman suggested—on behalf of her own
group in the U. S. Coast Guard. The aluminum Strip Cipher Device Type M-135-A was

used from 1935 to 1942 by the Army, the Navy, the Coast Guard, and the
State Department. It was used as a back-up system even after the two services

as well as the Department of State began employing electrical cipher machines

of high speed and security.

Thus far we have been dealing with cipher devices of the so-called "hand-
operated" type. None of them can really be considered as being "machines," that

is apparatus employing mechanically-driven members upon which alphabetic sequences

sequences can be mounted so that a constantly-changing series of cipher alphabets are

produced. We come now to a type of apparatus which can be called a machine and one

such as the one shown in Fig. 24. It is called the Kryha, the name of its

German inventor, who unfortunately committed suicide a few years ago, perhaps

because he failed to make a success of his invention. The Kryha has a fixed

semi-circle of letters against which is juxtaposed a rotatable circle of letters.

Both sequences of letters can be made mixed alphabets (the segments are removable

and interchangeable on each sequence). The handle at the right serves to wind a
clock

rather powerful coiled steel spring which drives the rotating member on which
the letters of the inner circle are mounted. In Fig. 25 can be seen something

of the inner mechanism. The large wheel at the right has segments which are open

or closed, depending upon the "setting" or key. This wheel controls the

angular displacement or "stepping" of the circular rotating platform upon which
the letters of the cipher sequence are mounted. The initial juxtaposition of the
of the inner or moveable alphabet against the outer or fixed one as well as the
composition of these alphabets is governed by some key or other prearrangement.

The cipher equivalents must be recorded by hand. After each encipherment, the
button you saw in the center of the panel in the preceding Fig. 24 is pushed down,
the inner wheel advanced 1, 2, 3, 4 ... \begin{math} \texttt{and \textquotedblright\texttt{9}} \end{math}, depending on the key,
and the next letter is enciphered, etc. The pictures I've shown you apply to the
latest model of the Kryha; as regards the first model, which came on the market
sometime in the 1920's, a German mathematician produced an impressive brochure
showing how many different permutations and combinations the machine afforded.

Here's a picture of a couple of pages of his dissertation (Fig. 26) but even
in those days professional cryptanalysts were not too impressed by calculations
of this sort. With modern electronic computers such calculations have become
of even less significance.

Let us now proceed with some more complex and more secure machines. In
this next slide (Fig. 27) you see a machine which represents a rather marked
improvement by a Swedish cryptographic firm upon the ones shown thus far. It
is mechanico-electrical machine designated as cryptographs B-211. Here for
the first time you see a cryptographic machine provided with a keyboard similar
to that on an ordinary typewriter. Depressing a key on this keyboard causes
a lamp to light under one of the letters on the indicating bank above the keyboard.

At the top of this machine can be seen four wheels in front of two rear wheels.
The four front wheels are the rotating elements which drive the two rear wheels;
the latter are electrical commutators that serve as connection-changers to change
the circuits between the keys of the keyboard and the lamps of the indicating
board. There isn't time to show you the internal works which control the rotating
elements and ciphering wheels (you will see them later) but I must show you
the next step in the improvement of such cryptographic machines, which made it
possible to eliminate the tedious job of recording, but hand on paper, the
results of encipherment or decipherment. This was done by means of a printing
mechanism which was associated with the cryptographic machine. Here is a slide
(Fig. 28) which shows the assembly—the B-211 connected to a Remington typewriter,
modified to be actuated by impulses from the cryptographic machine. Of course,
it was natural that the next step would be to make the recording mechanism
an integral part of the cryptographic machine. This you can see in the next slide
(Fig. 30), in which the four rotating members referred to in connection with
Fig. 27 and which control the two commutators also mentioned in connection
with Fig. 28 are clearly seen. The slide-bar mechanism at the right controls
the displacements of the printing wheel in front of the slide-bar mechanism and
causes the proper letter to be printed upon the moving paper tape seen at the
front of the machine.

Now we come to the next and a very important development, one first
conceived by a European inventor and was followed soon thereafter by
independently by an American inventor. In this advance the circuits between the
circuit changers,

keys of the keyboard and the lamps of the indicating board are varied by electrical

called "rotors", which rotate between fixed

rotating members called "stators". In Europe the first of such machines put upon

the market for purchase by anyone desiring one is shown in the next slide (Fig. 31).

The machine was appropriately named the ENIGMA—for solution of messages enciphered
by its means was believed to be impossible, or nearly so.
In Fig. 1 at the left (labeled I) is seen the machine with the top cover plate closed. At the front is the keyboard; above it the indicator board, consisting of lamps underneath glass disks upon which letters have been inscribed. Above the indicator board and to the left are seen the peripheries of four metal notched wheels, at the left a switch button which can be set to "encipher", "decipher" or "neutral" positions. At the right in Fig. 1 (labeled II), the top cover plate has been removed, exposing the internal ciphering mechanism. Three rotors or connection changers "in cascade" can be seen attached to notched rings. The rotors are rotatable and serve to change the circuits between the keys of the keyboard to the lamps of the indicator board.

In such a rotor there is a circle of 26 equally-spaced contacts on the left face and a similar circle of contacts on the right face; wires passing through to rotor connect the contacts on the two faces, two by two, and these connections are arbitrarily made. The rotors have engraved or painted on their peripheries the 26 letters of the alphabet which letters can be seen through small windows in the cover plate, so that the rotors can be aligned to the initial key setting. At the left of the first rotor is a rotor, on the periphery of which are also 26 letters of the alphabet. This rotor also has a circle of 26 equally-spaced contacts, but these are only on its right face and the contacts are connected by wires to 26 double-pole, double-throw switches operated by and associated with the 26 keys of the keyboard. The connections between the 26 contacts on the rotor and the 26 switches of the keyboard are fixed. But the rotor is rotatable and its position at any time can also be seen through a window, labeled 3 in Fig. 1 (I), so that the initial setting of the rotor and the three rotors can be seen through the four windows. The initial settings of these four elements constitute the key for the starting point in ciphering operations.

I used the expression "in cascade" a moment ago, in referring to the rotors, which...
There is a field in this model of the PSIM. Depending on the type of the component, the signature of a component can be moved only by hand the reactor to the right.

Electrolyte from which a reaction of this can be moved the reactor to the right. Of course, it's impossible move this three roses and of the three reactors. This means possible a reaction of the or the component tension.

In the reactor there are more so that they can be inserted in another a ''reactor-dams'' position. In other cases of many

permutation arrangements of these roses in the maximum possible place in the component position. Three roses in the component position.

In the reactor there are more so that they can be inserted in another a ''reactor-dams'' position. In other cases of many

Permutation arrangements of these roses in the maximum possible place in the component position.

In the reactor there are more so that they can be inserted in another a ''reactor-dams'' position. In other cases of many

Permutation arrangements of these roses in the maximum possible place in the component position.
circuit from the left-hand stator, thence through the rotors to the reflector, thence
back through the rotors to the left-hand stator thus causing a second depression
of the same key to produce a different equivalent. I won't take the time to tell
you about how the rotors are caused to advance so that over-37-thousand-letters can
be enciphered before the window settings of stator and rotors return to their initial
alignment. [The total number is not in this case 26^3 or 17576 but 16,900 (26x25x26)
for technical reasons which there isn't time to explain.] Power for the electrical
circuits is provided by small dry cells in the box at the upper right in Fig. 31 (II).

The original ENIGMA enjoyed a fair degree of success in sales but it was by no
means spectacular. When Hitler came into power, further sales were prohibited.

Suffice it to say that it became the basis for machines used by the German Armed
Forces in World War II.

In the U. S., a California inventor named Hebern independently conceived a machine
which he called an "electric code." It was similar to the ENIGMA but with some important
differences: the cipher alphabets produced by it were not reciprocal and, moreover, a
plain-text letter could represent itself in the cipher text. Hebern managed to avoid these
two weaknesses by incorporating a switch plate which could be set one way for
enciphering and deciphering another way. On the other hand, not as is the case of the
ENIGMA, the electrical currents made only one traverse through the rotors rather than
circulate in a closed circuit. As in the case in the ENIGMA, in the Hebern, in the
encipherment the current went in one direction through the rotors and in
decipherment in the reverse direction. Here is a slide (Fig. 33) which shows Hebern's
very first model, which he constructed for communications of the Ku Klux Klan. You
will note that this model has but one rotor; also, the cipher machine is connected to
an electric typewriter so that hand recording of results was no longer necessary. One
additional virtue of the Hebern machine was that the wirings in the rotor were variable,
a feature not incorporated in the ENIGMA rotors. Hebern interested our Navy in his
large machine requiring considerable amounts of electric power and hence unsuited for use by small units in field operations. In the late 1930's the Army became interested in a small mechanical machine invented by a Swedish engineer named Hagelin.

Modifications desired by Army were incorporated in the machine, which was called Converter M-209 and over 100,000 of them were manufactured in the years 1942-1944 by the Smith-Corona Typewriter Co. at Greton, New York. Here's a slide (Fig. 36) showing Converted M-209, which was used by all our Armed Forces in World War II, and here is another (Fig. 37). When properly used it gave a high degree of security; when improperly used, as was often the case, its security was rather illusory. This machine operates on what is termed the key-generator principle and when two or more messages are eniphered by the same key stream or portions thereof, solution is relatively a simple matter but I cannot go into that now.

With the widespread adoption of automatic printing telegraph or teleprinter machines for electrical communications the need became pressing for a reliable and practical cryptographic mechanism to be associated or integrated with the teleprinters. The first apparatus of this sort in the U. S., shown in this slide (Fig. 38), was that developed by the American and Telephone Co., in 1918, as a more or less simple but ingenious modification of its ordinary printing telegraph. The basic principle of the modern teleprinter may be useful. It is based upon what is called the "Baudot Code", that is a system of two different elements taken in groups of five are employed in which these two elements of two different kinds to represent characters of the alphabet. These two elements may be positive and negative currents of electricity, or they may be one or two holes being often referred to as "marking" and "spacing" elements respectively. Here is a slide (Fig. 39) which depicts the Baudot or 5-unit code in the form of a paper tape in which there are holes in certain positions transversely to the length of the tape. The holes are produced by a perforating mechanism; the small holes running the length of the tape are "feed-holes" by means of which the tape is advanced step by step. You will note that there are
five levels on which the holes-and-spaces-or-blanks appear. The letter A, for example, is represented by no-holes on the 1st and 2nd levels; the 3rd, 4th, and 5th levels remaining unperforated is represented by one hole or blank on the other three levels; the letter I by holes in positions 2 and 3, etc. Toward the right-hand end of the tape are two permutations labeled "letters" and "figures", respectively.

These are equivalent to the "shift" and "unshift" keys on a typewriter keyboard, for "lower" and "upper" case. When the "letters" key is depressed, the characters are used to represent the so-called "stunt characters," which I will now explain. The 3rd and 4th characters from the right-hand