#A1

37 Cards

Approved for Release by NSA on 12-19-2013 pursuant to E.O. 13526
My subject -- The historical background of COMSEC in the Armed Forces -- is a very broad one because it should include the background of the development of each of the components of COMSEC: cryptosecurity, transmission security, and physical security. But since time is limited and I think you would be more interested in the phases pertaining to cryptosecurity, I will omit references to the history of the other two components. And even in limiting the talk to cryptosecurity, I will have opportunity only to give some of the highlights of the development of the items that comprise what we call our cryptomaterials, leaving out comments on the history of the development and
improvement of procedures and practices -- all of which are extremely important.

Coming now the history of our cryptomaterials, I suppose there is no need to tell you of the profound effect of the 19th and 20th centuries on electrical communications -- directly upon military communications and indirectly on military cryptography. Hand operated ciphers and codes became almost obsolete with the need for greater and greater speed of crypto-operations. That meant that cryptomachines would have to be developed.
Begin 2nd part with brief history of development of cipher machines - with growth of radio and communications - effect on military communications profound - necessity for speed
YAMAMOTO
Accident -- literally, a befalling.

a. An event that takes place without one's foresight or expectation; an undesigned, sudden, and unexpected event.
b. Hence, often, an undesigned and unforeseen occurrence of an afflictive or unfortunate character; a mishap resulting in injury to a person or damage to a thing; a casualty; as to die by an accident.
c. Chance; contingency.
 "Thou cam' st not to that place by accident; It is the very place God meant for thee."
One more contrasting example of poor and good COMSEC. Volume of communications necessary in preparing for large-scale operations on hostile shores is tremendous. The figures staggering, both as to number and length of messages. Take the case of Japan "No. 10 Maneuvers" in early 1944, large expedition involving redeployment of troops for Dutch East Indies. Their shipment met with many "accidents" because inadequate Japanese COMSEC disclosed all their plans. Entire move delayed 3 months and enemy suffered heavy losses in material and personnel. But take case of TORCH— not only made in great secrecy (took Germans entirely by surprise) but also their troops (100-200,000) "just happened" to be in the wrong place at the right time.
But this did not "just happen" and was no accident -- it was brought about.
The earliest picture of a cipher disk, from Alberti
Trattati in cifra, Rome, c. 1470.

"Oldest tract on cryptography the world now possesses"
One of the cipher disks in Porta, 1563

And apparently nobody thought up anything much better for a long, long time. In fact, not only could they not think up anything better, but those who did any thinking at all on the subject merely "invented" or reinvented Alberti's disk -- and that happened time and again.

[Have Porta Book with me]
The Myer cipher disk, patented 14 Nov 1865

"I know it takes a long time to get a patent through the patent office, but Alberti's device was finally patented in 1865, the inventor happening to be the then Chief Signal Officer of the Army, Major Albert J. Myer."
The cipher disk as again patented in 1924 -- Huntington Patent

Shows that the Patent Office does not have general information on cryptography because of the secrecy involved.
The Decius Wadsworth cipher device (invented and built in 1817 when Colonel Decius Wadsworth was Chief of Ordnance.)
The Bazerie cryptographe cylindrique (1901) as shown in his book "Les chiffres secrets devoiles"

...But he may have described this in his article "Cryptograph a 20 rondelles-alphabets" Comptes rendus, Marselles, 1891.
Hitt's earliest model of strip cipher device
Show M-94

If time tell of failure to solve and why
Second page of Jefferson's description of "The Wheel Cipher"
U.S. Army cipher device M-136

[Begin experimentation with changeable alphabets]
U. S. Army cipher device, Type M-138-A (with Russian legends)

Story of Russian legends and how they came to be there.
The Kryha cipher machine
Swedish machine connected to electric typewriter.
The keyboard electrically-operated B-211 Swedish machine.

[Self-contained, instead of separate typewriter.]
The first Hebern machine.

Manufactured for use by the Ku Klux Klan.
The 5-rotor Hebern machine

[Story of solution]
W.F.F.'s "work-sheet" solution of Navy challenge messages.
One of Hebern’s developments for the Navy, after his release.

This is the one that wouldn’t work – but Hebern said the contract didn’t specifically state that it had to work. He insisted on being paid -- and was

(One Navy file insisted that Navy had an admiral in Navy District HQ in S.F. just to keep Hebern out of jail so he could finish Navy contract!)
My theory re external key and development of M134 Ti (1932)
U. S. Army Converter M-134, t1

Basic principle - external keying element
U.S. Army Converter M-134-T2 (1936)
The SIGABA/ECM
(Converter M-134-C)

With growth of teletype communications the need for and practicability of automatic encipherment became obvious.

--- The first attempt --- the machine developed by the AT&T Co. (1918) in collaboration with the Signal Corps.
The IT&T Co. teletype cipher attachment

Autumn 1931. With the growth of teletype communications, cipher teletype attachments were invented.
The IT&T Co. Teletype cipher attachment

(Internal mechanism exposed)

Solution story

Effects of lack of contact with work

Lesson re flying pay
In 1942 the need for automatic teletype encipherment was met on the basis of expediency: The old AT&T Co. double-tape system was adopted and installed on a "crash" program at the few signal centers, while a large program for the production and procurement of Converter M-228 (SIGCUM) was being executed.
M-161: Signal Corps model made at Fort Monmouth

(Efforts to develop field machine)
Converter M-209
Converter M-209 with keying mechanism exposed.
Example of American resourcefulness and skill under difficulties. Two GI's in Italy mechanize the M-209.

(The cartoon, showing a couple of GI's with a home-made "still," and the legend: "Yes, but will it work?")