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Solving x_a :::: ·b (mod c) for x and Undecimati~g Recursions 

1:-- __ m ___ m _________ U 
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(U) There are many times when the ability to undo the effects of decimation on ·a·liMtir 
recursive sequence would be of great vaiue to ·the analyst. This· is ·a tliorough look at the 
problem of undecimating, with historical notes and several examples of important 
calculational techniques. While undecimatirig can now be doM with software, thia rather 
complete tutorial offers a worthwhile historical perspectiue of the process. 

INTRODUCTION 

(U) The ring of integers modulo c has long been a most lucrative area for 
mathematical recreations. On occasion, these mathematical diversions can actually be 
useful in cryptanalysis and signals analysis, like the solution of xa = b (mod el described 
here. The approach will be to first describe the general problem of solving x:a = b (mod c) 
for x. Then this will be extended to the special case where b = 1 and c = zn - l for some 
integer n (that is, c is the cycle length 'of a primitive recursion of- degree n}, making the 
process very near t.o undoing a dtcimatfon of a primitive linear recursive sequence. 

- I 
\ . .1..-...-11 

I 
·-· I \ .L. 

'ffierOnce upon a time, the degrees 9f polynomials used in communications·equipment 
were of such low degree· .that. ·decimating -~nd .undecimating the polynomials were 
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easily done with a glance ad lPe~~~~n's) :ble (1,2]. However, inodern equipment 
rarely uses degree 4 and 5 recursions, with the degree of even randomizers often in the 20s. 

I 

SOLVINGXA = B<MODC)FORX 

I (bl (1) 
(b) (3) -18 USC 798 
(b) (3)-P.L. 86-36 

(U) At the risk of presenting this algorithm less than optimally, I will build it from 
scratch ... that is, from the point where one first scratches one's head and ponders it.· The 
first question to ask is, "Does it even have a solution?" And a good question it is, too, for 
one is not always guaranteed an x that will solve xa = b (mod c). For example, it is easily 
seen that x•2 = 3 (mod 4) cannot be solved. Begging the reader's pardon, I will expand 
this simplistic example to show fully that there is no possible x that works. In fact, the 
integers modulo 4 contain only four possible replacements for x. These are 0, 1, 2, and 3. 
Now, 

0•2 = 0 (mod 4), 

1•2 = 2(mod4), 

2•2 = 4 = O(mod4), 

and 3•2 = 6 = 2 (mod 4). 

(U) Of course, the classical result is that a solution to the equation xa = b (mod cl is 
guaranteed as long as (a,c) divides (b,c), where(,) is the standard notation for the greatest 
common divisor function. That is, if (a,c) = 1, an x that solves xa = b (mod c) is 
guaranteed. If (a,c) > 1, a solution will exist only when this factor can·bil divided out of all 
three terms a, b, and c; thus the solution is the guaranteed x' that solves x'•a' = b' (mod c'). 

(U) The first method one comes to is what I call the hard way. That is, exhaustively 
test all positive integers 1, 2, ...• c-1 until getting one that works. That is essentially 
what took place in the earlier example where all four integers mod 4 were checked to show 
there was no x that solved x•2 = 3 (mod 4). Seriously, though, zero need never be checked, 
so the worst case for the exhaustive method is c-1 multiplications to perform. This is fine 
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for c= 4, but I wouldn't care to try this method for x•ll = 19 (mod 281) or (worse) x•70l = 
44 (mod 1993). So there inustbe a better way, and there is. 

(U) The second method is a clever way of approaching this exhaustion problem. It 
really isn't worthwhile to check every possible integer as x. Only certain ones have a 
chancl', and one way to write the form of those tliat might work is k[c/a] + n where [ I 
denotes the greatest integer function, k = l, 2, ... , a-1 and n=[b/a]+ 1 initially with some 
modification necessary as k increases. This modification to n will become clear in the 
example· and the next method, but the importance of this method is. that it reduces an 
exhaustion over c-1 integers to an exhaustion over a-1 integers. I still wouldn't be happy 
with this for solving x•70l = 44 (mod 1993), but it is worthwhile doing an ex~mple for, 
say, x•ll = 19 (mod 281). 

[c/al = [2811111 = 25 

[b/a]+l = [19/11]+1=l+f=2 

correct interval: (11-21) 

k=l,n=2: k[c/a]+n= 25+2= 27,27•11= 297= 16(mod281) 

k=2,n=2: k[c/a]+n= 50+2= 52,52*11= 572= 10(mod281) 

n = 3: adjust n to 3 53, 53• 11 = 583 = 21 (mod 281) 

k=3,n=3: k[c/a)+n= 75+3= 78, 78*11= 858·= 15(mod28l) 

k=4,n=3: k[c/a]+n=l00+3=103, 103•11=1133= 9(mod281) 

n=4: adjustnto4 104,104•11=1144= 20(mod281) 

k=5, n=4: k[cla]+n= 125+4= 129, 129*11=1419= 14(mod 281) 

k=6, n=4: k{c/a] +n= 150+4= 154, 154•11".'1694= 8(mod 281) 

n=5: acljustnto5 155,155*11=1705= 19(mod281) 

so x= 155 

and 155•11 = 1705 = 19 + (6•281) = 19 (mod 281) 

(U) This example shows the real reason for the form of the numbers to be tried. With 
the greatest integer of c/a, one picks up the number of full multiples of '.'a" needed to get to 
"c." The•+ 1" term of n mo_ves past c and the [b/a] moves the appropriate nuinber of full 
multiples of "a" beyond this to get. to the correct interval to have a chance. The 
ad,iustments to n must be inade whenever. the tested number dri.l\s out of this correct. 
interval. 

(U) The third method is related to the second method, but is an eve·n more clever way 
of doing it. Instead of exhausting the possible x's .of the form k[c/a] + n, only the first two. 
need to be done and the difference will point to the correct ·solution through (mod a) 

arithmetic. Say 
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((c/al+ n)•a = d1 + c 

and (2•[cla] + n)•a = d2 + 2c, 

then d = d2 - il1 is the differeri:ce (note: b_ecause of the greatest integer functiort, -a <d <0). 
The set of number~ (mod a) generated by d1 + ·kd, with n incremented and a added each 
time the sum goes negative, is checkCd until one of these numbers is di. = b (mod a). The 
even more clever part of the algorithm "is that it has turned the multiplicative prol;>lem 
(mod c) into an additive problem (mod a). ·It also has the possibility of being apjilied 
recursively (e.g., in d1 + kd = di; (mod a) the right k is the x' that solves the equation x'•(­
d) = (d1-db) (mod all. It is not worthwhile to pursue this recursive definition.at present 
because there are still better ·ways, but the same example. x .. 11 = 19 __ (mod 281) is 
beneficial. 

(c/al = (2811111 = 25 

[b/a]+l = [19111]+1=1+1=2 

k= 1, n=2: k[cla]+n= 25 +2= 27, 27•11 = 297= 16 + 281. 

k=2,n=2:k(cla]+n= 50+2= 52;52•1'1= 572'= 10+(2*281) 

[db=l9=8(mod 11)] d= 10-16=-6 

d1 = 16 = 5 (mod 11) k,;, l,·;,-=2 

d1 + d = -1=IO(mod11) k=2,n=3 

d1 + 2d = 4(mod II)· k=3, n=3 

d1 + 3d = -2=9(mod11) k=4, n=4 .. 

di+ 4d = 3(modl!) k=5, n=4 

d1 + 5d = -3 = 8(mcid Il)* k=6, n·=S * 
for k=6, n=5, x= k[c/a]+n=(6*25)+5= 155 

and 155*11=1705 = 19 + (6*281) = 19(mcid28l) 

(U) The third method is well on the way to becoming the · classical solution, the 
Euclidean Algorithm. Through the hinted recursi;ve possibility, the repetitive. divisions in 
the Euclidean Algorithm are simulated .. Given two numbers (a and c -in this case), the 
Euclidean Algorithm finds integers sand t such that sa .+ .tc =· l. Thus; bs (mod cl is a 
solution to xa = b (mod c). 

(U) Sirice thesis the only imp0rtant integer to be found for thiS application (Working 
mod c), the following slight modification of the Extended Euclidean Algorithm can· be used 
here. .The motivation for this particular._form is :that it is tailored to the case of 

· undecimating recursions, so it is used here despite the slightly nonstandard form. This 
form of the Euclideim Algorithm specifically gives the multiplicative inverse fo< a, mod c. 
In the equation xa = b (mod c), a will always be less than c, so let Ro = c al)d R1 = a (the 
general condition is that Ro> Rt> 1). So= 0 and S1 = I. For i = I, 2, 3, ... (as needed) 
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Q;+1 = [R;.1~1. the greatest integer in this quotient, 

R;+ 1 = R;.1-(Q;+ i•R;)~ the remainder of the quotient, 

5;+1 = S;.1-(Q;+1•S;). 

;gp &&€RE'f l:IMBltA 

I{R; + 1 = 0, Ro and R1 !'re. not relati~ely .prime (no inverse e!'ioits and R;. i
0

s the greatest 
common divisor), . . . . - . -

.. 
If R; + 1 := 1, Uien S;·+ 1 is the multiplicative-inverse ofR1. 

[note: ifS;+I < 0, S;+1 +Ro also works) · 

- , 

IfR; +I >, 1, another step is needed. . 

[comment: at any step, S;~ 1 •R1 = R;+ i (mod Roll 

Examples: 

x•u = .19 (mod 281) 

Q R s 
i=O 281 0 

i= l 11 1 

i=2 25 6 -25 

i=3 1 5 26 

i=4 1 1 -51 

+281 

230 

check: 

230•11=2530=1 +(9•281): 

19•2ao =4370= 155 +05•281) 

sox=155 
. . 

a.nd 155*11=1705= 19+.(6~281) 

. • ' I 

x•70l = 44 (mod 1993)-

Q R s 
1993 0 

701 1 

2 591 .-2 

1 . 110 3 

5 41 . -17 

i=5 2 28 37 

i=6· 1 13 .54 

i=7 2 2 145 

i=8 6 l .924 

+1993 

check: 1069 

1069*701=749369=1 +(376~1993) 

44•1069=47036= 1197 +(23•1993) 

so x= 1197 

·and 1197•701 =839097=44+(421 •1993). 

(U) With this algorithm, solving ~a = · b (~od c) is fairly straightforward. it is time to 
move' on to the sp.;cial case_-wher~ b = 1 and c ; 2n..1 for some integer n_. 
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UNDOING DECIMATIONS 

(UJ A decimated primitive linear recursive sequence can be undecimated by further 
decimating by the multiplicative inverse (mod the cycle length) of the initial decimation. 
That is, the effect of the two decimations is.a decimation by 1 (the.end deci_mation is a 
product of the multiplicative inverses). This requires that the initial dedmation· has a 
multiplicative inverse, or the decimation cannot be_ undone uniquely. When 2n-1 is not a 
prime, the integers mOdulo 2n-1 is not a field, only a ring - which ·means there are 
elements that do not have multiplicative inverses. Notably, these are the elements that 
are not relatively prime to 2"-1. In terms of decimations, decimating by one of these 
amounts shortens the cycle length, and this can not be uniquely backed up. For example, 

. the seventh decimation of a bit stream satisfying (0,1,6) with ~ycle length 63 =7*9 is a 9-
long cycle satisfying (0,3,6), an imprimitive irreducible. However, starting with a_ bit 
stream satisfying (0,3,6) and decimating by 7 also gives a 9-long cycle satisfying (0,3,6). So 
the decimation by 7 in this case cannot be uniquely undone. Additionally, there is no way 
to generate al\ 63 bits of the primitive's cycle from the 9 bits remaining in the decimated 
stream if the former is the case. 

(UJ Furthermore, iI the 7th decimatic>n of something yields (0,1,6) with cycle length 
63, then the something must have a cycle length of at least 63*7 = 441 if it is recursive. In 
fact, (0,7,42) is a factor of a recursive something whose 7th decimation is (0,1,6) (but 
(0,7,42) may not be irreducible, so factoring programs may not show it this obviously) .. 
Again, there is no unique answer for undoing the the decimation. In particular, the 
something is not a primitive degree 6 recursion, since the 7th decimation of one of those no 
longer has cycle length 63. These examples illustrate the difficulties in undeciniating by 
"a" only when "a" and 2"-1 are not relatively prime. 

(U) An answer is guaranteed only when the recursion is primitive and the width (or 
decimation) does not have a common factor with the cycle length (2d•gn>•-1). It is still 
possible to undo decimations frequently for polynomials that are not primitives by 
treating the recursion as a product of irreducibles. This will be discussed further after the 
primitives case, so in the following discussion, all recursions are .assumed _to be primitive 
and (a,2degr••-l) = 1. 

~ The hard way described earlier still works, but is not worth considering, 
especially since cycle lengths of primitive polynomials get large very quickly as the degree 
increases. It doesn't take too large.a degree before even the best computers are stifled by 
the hard way. The equivalent of a clever way and an even more clever way were the quick 
and.easy methods offered in successive iterations of a short course on polynomials [3] that I 
taught a few years ago For ease of 
programming· and speed (additions are quicker than the divisions of the Eqclidean 
Algorithm), this was still the method I chose for the software to undo decimations. For the 
case of undecimating recursions, b= 1 and the starting n= 1 always. •The following 
examples are worthwhile in showing this method: 
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(0,2,3,7,11) is found · 

on width 5 (is the 5th 

decimation of something) 

solve: x*5 = 1(mod2047) 

[c/a)=[2047/51 =409 

n=l 

410*5=2050=3+2047 

819*5=4095= 1 +2*2047 

Sox';'819 

Decimate (0,2,3,7,11) by -

-819 to find the base 

recursion whose 5th 

decimation is (0,2;3,7,11) 

this is: (0,2,U) . 

(0,7,10) isfqunddown 

columns on width 40. 

solve: x*40. = 1(mod1023) 

[c/aJ=(l023/40] = 25 

26*40= 1040= 17+1023 

51 *40=2040=-6+2*1023 

d=-23 

k=l,n=l 17 

k=2, n= 117-23=-6';'34 (mod 40) 

k=3,n=234-23=11 

· k=4, n=211-23=-12=28 

·· k=5,n=328-23=5 . 

k".'6, n=3 5-23=-18=22. 

k=·7, n=4 22-23=-1 (=39) 

a "trick": since k=7, n=4 gives (7*25H·4= 179 
I . , , , , 

. and 179_*40 = -1(mod102;1) 

(-179)*40 must be 1(mod1023) 

(-179) = 844 (mod 1023) 

check: 844*40=33760·=1 + (33*1023) 

So decimatirig (0,7,10) by 844 gives th~ base 

. recursion whose 40th decimation is (0,7., lO). · 

. this is: (0,3,7,9,10) 

(U) The classical solution, the Euclidean Algorithm put forward in [ 4), co~ld also be 
used to solve these problems. However, in practical appli~ations the "a~ is going to be 
small enough that perhaps the Euclidean Algorithm isn't any better. ·Especially when one 
considers 1\5ing necklaces (residue .classes formed by powers of 2) to get the smallest 
related entry, the even more clever way is often the quickest, most efficient method. For 
the second example above, the width40 could have been replaced by 5 (5, 10, 20, 40, ... are 
always on the same, nJ!(:klacel. and a maximum_ of 5 additions is hard to beat. That 
example is rewo~ked. here with the even inore clever way using a= 5 and the Euclidean. 
Algorithm for comparison. 
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solve: x•5 = 1 (m·od 1023) x•40 = 1(mod1023) · 

[clal =(1023151 =204 

n=l 

205•5= 1025=2+ 1023 

409·5= 2045= -1+2•1023 

trick: (-409) 0 5 = l (mod'l023) 

and (-409) = 614 (mod 1023) 

check: 

614•5=3070=1 +(3•1023) 

Q 

25 

1 

1 

2 

1 

R s 
1023 0 

40 1 

23 -25. 

17 ·2s 

6 -51 

5 128 

1 -179 

(-179)·=844 (mod 1023) 

Decimate (0,7,10) by either 614 or 844 ·(ooth work the same) to get the recursion whose 
40thdecimationis(0,7,10.J. · \bl 13)-P.L. 86-36 

. this is: (0,3,7,9,10) 

(U) Another possibility for undecimating small degree polynoll'-ials is I . I 
(Peterson's) table. This method wasn't available for the xa=b (mod c) c.ase because it is 
unique to polynomials. These· tables list (as minimally as. possible) all irreducible 
polynomials and a root of that polynomial. This is getting into some more advanced' 
mathematics, but for the present purposes I will describe only what is needed to 
understand the undecimating process. . 

(U) Since. the .. powers of the roots of degree n irreducible polynomials fall into the 
residue classes mentioned above, and these are equivalent to decimations, the first entries 
of the table for degree 11 

l 4005E 3 4445E 54215E 7 4055E 960150 

show that 0,2,3,7,11 (4215) is the 5th decimation of 0,2,11 (4005). A diversion to describe · 
the elements of the table and how to use them is beneficial before going on to the second 
example, The letter in the entry tells a·number of things about the roots of the polynomial, 
the most important being that E, F, G, or H mean the polynomial is primitive. For further 
description of these letters, I refer the interested reader to Appendix C of [2]. The 
polynomials are entered in octal characters: ' 

0=000 1=001 2=010 3=011 4=100 . 5=101 . 6=1.10 7=111. 

Substituting these 3-bit values for the octal characters'gives the bitmap of the polynomial 
taps; for example, 4005 becomes 100000000101 in bits and the ls appear in positions o; 2, 
11 when counting from 0-up, right to left. It doesn't actually make much. difference which 
direction one counts, since each entry in the table represents both a polynomial and its· 
reverse (the polynomial with bitmap read the other direction). The integer in front of the 
polynomial tells a root .or the polynomial based on wt being a root of the base r~ursiori 
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4005. Thus w3 is a i:oot of 4445 or equivalently 4445 is the 3rd decimation of 4005, w6 is a 
root of 4215 or 4215 is the 5th decimation of 4005, and so on. Once one root (or decimation) 
is known, they all are because of the necklaces describ_ed earlier_. For"example, 

wl w2 w4 w8 w16 w32 w64 w128 w256 w512 and w1024 
• I J r I I . I J J I J 

are the eleven roots of 4005. This is written in shorthand by only recording the power, and 
can easily be recognized as the fact that deCimatlng a primitive lrs by a p0w~r of 2 gives 
the.same polynomial. It is also ·noteworthy that w2048 is also a root, but 2048 = 1 (mod 211. 
IJ11nd it was already listed (the 2048th decimation of a 2047-long cycle· is 'a decimation by 
!). Some necklaces are 

1 4005: 1,.2, 4, 8, 16, 32, 64, 128, 256,512, 1024 

3 4445: 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072= 1025 

s 4215: 5, 10, 20, 4o, so, 160: 320, 641i, ·12so, 2550:513,'1026". 

The necklace ~f the ~everse polynomial·cort~istsof complements (mod 2047,: in this ease) to 
the entries on the necklace for the polyno~ial.. He~c~ . .. . . . • '. 

lR s·oo1: 2046, 2045: 2043, 2039; 2031, 2015, 1983,)919, 1891, 1535, 1023 

3R 5UL 2044, 2041, 2035-, 2023, 1~99, 1951, 1855, 1663, 1279, 511;1022 .. 

(U) This method is painless when the desired undecimation is actually .the first listed 
.polynomial.in the table: a~d it is possible otherwise. The.eqµation x•a = '1 (mod 2degr•.•-l) 
must· be solved when the first polynomial in the table i.s not involve!!. The widt.h: 40 
example (above) illustrates this.. . . , 

Find the polynomial whose 40.th. _decimation. is (0, 7 ;10) 

(0;7,10) is the reverseOferitrY 1 in the degree 10 

. portio_n _of P~terson's table: 1 201.1 E 

si> si>lve: x•4o = l (mod 1023)· 

this has been done in the previous examples, 

x = -179 (reverse has~ = l79). 

so .. ifthere is a 179 entry in Petersoil's:table· 

(and there. is), it is the base recursion 

·.179 3211G . .. · 

So the 40th decimation of(0,3,7,9,lOJ gives (0,7,10). 

... : .· 
.c 

. ' . ; 

. " 

! . 

(U) This was too easy, mostly because (0,1:10) is the first entry and all numbers were 
in Peterson's table without having to go through' necklaces. · A"tougher· example is 
beneficial. In fact, this example will have an imprimitive whose cycle is shortened by the 
proper amount from the decimation (hence·there will be two possible answers): 

' ,. ·'· . . .. " 
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The polynomial (O,l,2,3,5,6,7,8,11) is foundl 

nu/ 

(1) 
(3)-18 USC 798 
(3)-P.L. 86-36 

. (U) One significant note on the neckla~ is that only U~e smallest entry from a 
necklace or its complement is listed. Unfortunately, the examples here never required 
using the complementary nec~lace, but the smallest element on· the c~mplementary 
necklace is easily found by (2degree.t) minus the largest entry on the necklace 

(U) 

Peterson's table seems to be much more widely ava1 a e an it is; · 
ex ausllve to egree 16 with selected polynomials listed up to degree 34. This limitatio~ 
(based mostly on the space required to list all the .irreducible polynomials as degree rise$) 
makes this a hand calculation method only. It is not general enough to be much more th.~n 
a fun exercise for mathematicians. 

(U) ·is that it can undo the decimations .that 
shorten cycles length (like the more difficult example above), although it gives a primitive 
and an imprimitive possibility to this problem that has no unique solution. In praFtical 

1

.applieations, a primitive polynomial is the most likely Cimdidate fo~ the base recursi~n. So I 

WHEN THE POLYNOMIAL IS NOT PRIMITIVE 

. '. ; / 

(U) The pr-evious ar-~ments work for pdmitives and some impr~mitive i1ireduc'ibles, 
but the methods can·be extended to reducible polynomials naturally. F~r rec;focibles, the 
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polynomial must be broken into its irreducible factors. Each of the factors must be 
undecimated, and the product of these undecimations is the base polynomial whose given 
decimation is the· original reducible polynomial. As a !inal example, 'what is the 
polynomial whose lOOth decimation is (0,2,19)? 

First, factor (0,2, 19): 

,(0,2,19) = (0,1,2). (0,1,2,4,5,!l,7). (0,6,7,8,10) 

Then undecimate each· factor by 100 .... 

or better, by 25 

[regardless of degree, 25, 50 and 100 are on the same necklace;. in fact, 25 is already bigger 
than the cycle length of(0,1,2)) 

the 25th d~cimation of(0,1,2) is (0,1,2) 

the 25th decimation of(0,6,7) is (0,1,2,4,5,6,7) 

the 25th decimation of(0,2,3,5,7,9,10) is (0,6,7,8,10) 

(0,1,13,14,15,18,19) = (0,1,2). (0,6,7). (0,2,3,5,7,9,10) 

So the 25th decimation of (0,1,13,14,15,18,19) is (0,2,19). This method of undec\mating 
redudbles gives a unique solution only when all factors have a unique solution. 

CONCLUSION 

(U) Many polynomials, primitive, irnprimfove or reducible, can be undecimat~d. For 
primitives, any of the ·methods discussed works, and these cannot be undecimated only 
when the decimation a and the cycle iength 2degre•-l have a common factor. For 
imprimitives, if(a, 2degr<•-ll = l anything still works, if(a,cycle length) =la method like 
the Peterso.n's table examples (perhaps ha.ving to extend it for degree) is required and two 
solutions are possible. Again there is no undecimation if (a,cycle length) > I. For 
reducibles, the polynomial must be broke.n i.nto. its irreducible factors. Each of the factors 
must be undecimated, and the producf of these undecimations is the base ~lynomial 
whose given decimation is the original reducible polynomial. Each time an irreducible 
factor has two solutions, both· generate possible .solutions. /tny time a factor cannot be 
uniquely undecimated [(a,cycle length) > I), the product cannot be uniquely backed up. 

(U) There are always additional solutions or much higher degree (just interleave 
several· different recursions), but the basic assumption here is that a simple recursion was 
decimated. And that very practical problem in both cryptanalysis and signals analysis is 
easily solved with the methods described here. Thankfully, there is software available 
that does most of the calculations presented here. 
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