
Securing The X Window System

With SELinux

Doug Kilpatrick
NAI Labs

dkilpatr@nai.com

Wayne Salamon
NAI Labs

wsalamon@nai.com

Chris Vance
NAI Labs

cvance@nai.com

This work supported by NSA contract MDA904-01-C-0926 (SELinux)

Initial: January 2003, Last revised: March 2003

NAI Labs Report #03-006

Table of Contents
1. Introduction..2

2. Overview of the X Architecture..3

3. Threats and Security Concerns ..4

3.1. Confidentiality...4

3.2. Integrity ...5

3.3. Availability ..5

3.4. Assurance ..5

3.5. Covert Channels ..5

4. Requirements ...6

4.1. Required Functionality..6

4.2. Requirements for Securing X..6

4.2.1. Labeling..7

4.2.2. Trusted Path ..7

4.2.3. Window Data Snooping..8

4.2.4. Cut-and-Paste ...8

1

Securing The X Window System With SELinux

4.2.5. Application Compatibility ..9

4.2.6. Scope of Changes ...9

4.2.7. Placement of Trust..9

5. Security Architecture for the X Protocol...9

5.1. Design ...10

5.1.1. Object Classes ..10

5.1.2. Permissions...11

5.1.2.1. Client Permissions ...11

5.1.2.2. Drawable Permissions..11

5.1.2.3. Window Permissions..11

5.1.2.4. Font Permissions..13

5.1.2.5. Color and Colormap Permissions ..13

5.1.2.6. Cursor Permissions ..14

5.1.2.7. Input and Server Permissions...15

5.2. Control Requirements ...15

5.2.1. Control Requirements for Drawables ...16

5.2.2. Control Requirements for Windows...16

5.2.3. Control Requirements for Input..19

5.2.4. Control Requirements for Colors and Colormaps ..20

5.2.5. Control Requirements for Fonts and Text ..21

5.2.6. Control Requirements for Pixmaps ..21

5.2.7. Control Requirements for the Cursor object ..22

5.2.8. Control Requirements for the Server object ...22

5.2.9. Extensions...23

5.3. Events ..23

5.3.1. Client Communication Events..24

5.3.2. Input Events..25

5.3.3. Draw Events ...25

5.3.4. Window Change Events..26

5.3.5. Window Change Request Events..26

5.3.6. Server State Change Events..26

5.3.7. Event Control Requirements ..27

6. Implementation ..27

6.1. Enforcing Permissions on Requests ..28

6.2. Enforcing Permissions on Events..28

6.3. Extensions ...28

6.4. Interactions with Flask ..28

6.5. Handling Errors...29

7. Security-Aware Applications ..30

7.1. The Window Manager...31

7.2. Large Integrated Applications...31

7.3. Other Applications ..31

8. Conclusions...31

References...32

2

Securing The X Window System With SELinux

1. Introduction

The X Window System, or ‘X11’, has become the standard graphical engine for the Unix and Linux
operating systems. Its network-based design and platform independent support for a wide range of
operating systems and hardware has contributed greatly to its acceptance. [XOrgIntro]

The X protocol was designed with compatibility and performance in mind, not security. However, since
the X protocol is a constrained channel of communication, it enables the enforcement of a security policy
While there has been quite a bit of research done in the past to secure X11, many solutions are specific to
the government’s Multi-Level Security (MLS) model, and are not in widespread use.

NSA Security-Enhanced Linux (SELinux) [SELinux]. is an implementation of Flask, a flexible and
fine-grained mandatory access control (MAC) architecture [FlaskArch]. SELinux can enforce an
administratively defined security policy over all processes and objects in the system, basing decisions on
labels containing a variety of security-relevant information. The architecture provides flexibility by
cleanly separating the policy decision-making logic from the policy enforcement logic. The policy
decision-making logic is encapsulated within a single component, known as the security server, with a
general security interface. A wide range of security models can be implemented as security servers
without requiring any changes to any other component of the system. The design and implementation of
the SELinux prototype is described in [LoscoccoFreenix2001] and [LoscoccoNSATR2001], both of
which can be found at the NSA SELinux web site (http://www.nsa.gov/selinux).

On a current SELinux system, applications can use the X server as an additional communications vector,
unregulated by the system policy. In addition, applications can manipulate the X server to attack other
client applications, or to mislead the user. By running the X Server on an SELinux system, and by
extending the FLASK architecture to allow the X Server to act as a trusted application, the security of the
user operating environment should be enhanced.

This paper assumes familiarity with the Flask architecture and its Linux implementation. The paper starts
with an overview of the X11 architecture and desirable security functionality. Section 5 lists the object
classes that will need to be labeled, the permissions those object classes support, and the control
requirements for each of the X11 protocol operations. The security features for error and event
processing are then described in Section 6.5 and Section 5.3. Finally, Section 7 discusses security-aware
applications.

2. Overview of the X Architecture

The X Window System is a windowing system for bitmapped graphics displays. It is based on a
client-server architecture. The server controls the display and associated input devices, the clients are the
graphical programs that access those services.

Clients connect to the server via Unix domain sockets (if local) or TCP/IP (if remote). (Other transport
mechanisms can be supported, but are less common) Clients pass requests to the X server and receive
events from the server by a clearly defined protocol [OReilly90], the XProtocol. All communication
between the X server and the clients, with the exception of some image sharing extensions, happens over
this connection.

The clients can only communicate with the X server through this connection, and can not directly
communicate with other clients over this connection. However, the actions a client takes will frequently
be visible to other clients. Some desktop environments (e.g. GNOME) expect applications to

3

Securing The X Window System With SELinux

communicate with each other via other forms of IPC. These communication vectors are outside the scope
of this paper.

Figure 1. X client communication

X proto Xlib Xlib

X Server X Client X Client

Unix domain socket Console

Figure 1 shows two clients connected to a local X server. The client code usually uses the Xlib library to
handle marshaling requests with the X protocol, but this is not required.

The X server also maintains certain data structures as resources that can be shared between clients.
Clients refer to these resources by resource IDs passed over the communication link. Client applications
frequently use these resources to communicate with other client applications, effectively using the X
server as a communications channel.

3. Threats and Security Concerns

In order to design a set of protections needed within the X server, the set of vulnerabilities that are
present in the current X server were investigated. The threats can be broadly classified into the traditional
security property categories of confidentiality, integrity, and availability. The protections presented in this
paper are designed to prevent compromises of these properties by X clients. We also discuss other
relevant properties of secure systems, such as covert channels and the assurance of the system.

The X server does not exist as the only secured element on an otherwise untrusted system. Rather, we
assume the X server is running on a secured SELinux system. The kernel enforcement layers will prevent
unauthorized clients from connecting to the server or otherwise affecting the kernel structures of the
server. Our design only considers clients that successfully connect using the base X Protocol.

We did not investigate attacks directly on the X Server. For example, a buffer overflow may be
discovered which allows a client application to control the X server. Such attacks are outside the scope of
this work. This analysis is only concerned with syntactically valid series of X11 requests.

3.1. Confidentiality

There are many ways applications could use a standard X server to bypass a confidentiality policy. As
screenshot applications demonstrate, standard X servers offer no protection for an application’s output.
Clipboard managers can grab content from an application automatically, without any malicious intent.

4

Securing The X Window System With SELinux

Malicious applications can currently probe the entire state of the X server. By manipulating the input to a
client process, a malicious application could cause the victim process to violate a confidentiality policy.
The protections presented in this paper will make it possible for a policy to protect the confidentiality of
data presented by X clients.

3.2. Integrity

The current X server offers little protection for the integrity of client program data. The X server does not
interact directly with the data of the client. Clients can draw directly into another client’s window and
can send input, or any other type of event, directly to a client. A malicious client can cause another client
to present false information to the user. Or an attacker could insert malicious commands into the input
stream of a terminal emulator. These types of attacks can cause an application to violate the system’s
integrity policy, and the protections presented in this paper are designed to protect the integrity of X
clients.

3.3. Availability

The standard X server offers little protection for the availability of the server. Clients can close the
windows of other clients, manipulate the font lists, and manipulate the host access lists. The design
presented here provides minor improvements for the availability of the X server. While a client will still
be able to cause the X server to use excessive CPU via various denial-of-service attacks, the protections
presented in this paper will allow a policy to protect the X server against other availability attacks.

3.4. Assurance

The focus of this work is to develop a security framework for the X server which can support strong,
flexible security policies. While system assurance is an important element for a secure system, assurance
is beyond the scope of this paper. This is commensurate with the assurance effort associated with the
underlying system, SELinux, that “has not been on system assurance or other security features such as
security auditing, although these elements are also important for a secure system. ” [SELinux] The
primary goal is to develop a MAC framework for the X server. We expect that formal means of verifying
the design should be used.

The X server is a large system component, with a large code base that is hard to evaluate for correctness.
Other mechanisms for providing separation between security domains (e.g., various poly-instantiation
techniques) would provide increased assurance, but would not be as adaptable to the large number of
domains in an SELinux system.

The X server is extensible and still under development. Addressing the common extensions in use and
those being developed is beyond the scope of this paper. However, in order to provide complete coverage
for the X server, the common extensions will also need to be evaluated from an enforcement perspective.

3.5. Covert Channels

The SELinux project has not, in general, addressed covert channels. “Even with covert channels, an
operating system with basic mandatory controls improves security by increasing the required
sophistication of the adversary. Once systems with basic mandatory controls become mainstream, covert

5

