
Title: Elemental Monte Carlo Methods in Computer Science

Brief Overview:

This unit will introduce computer science students to the use of Monte Carlo methods
to evaluate mathematical problems and models. Statistical simulations will be used to
determine the value of p, to integrate a continuous function, and to determine
probabilities. C++ will be the programming language referred to throughout this unit,
but it could be adapted to use other programming languages or spreadsheets.
Alternative solutions using a spreadsheet are provided for two of the labs.

Links to NCTM Standards:

• Mathematics as Problem Solving
Students will apply mathematical modeling to real-world situations.

• Mathematics as Communication
Students will use mathematical terms to effectively communicate their results.

• Mathematical Connections
Students will recognize equivalent representations of a problem.

• Statistics
Students will design a statistical experiment to study a problem, conduct the
experiment via a C++ program, and interpret and communicate the outcomes.

• Probability
Students will use simulations to estimate the probability of an event occurring.

Grade/Level:

Grades 10-12

Duration/Length:

This activity will require five regular class periods or two and one-half block periods.

Prerequisite Knowledge:

Students should have working knowledge of the following skills:

• Determination of percentages
• Calculation of area of simple geometric shapes
• Construction of C++ loop structures
• The use of apvectors or arrays

Objectives:

Students will:

•	 learn to use the random function.
•	 use random numbers to statistically determine the area within a circle and under a

curve.
•	 determine the probability of two people in a group having the same birthday.
•	 gain an understanding of Monte Carlo techniques and their use in real-world

situations.

Materials/Resources/Printed Materials:

•	 Computer with C++ compiler
•	 Accompanying Lab and Assignment Sheets

Development/Procedures:

•	 Using Teacher Note 1, the teacher will introduce students to basic Monte Carlo
techniques for determining the area under a curve by using random numbers. The
basic concept employed is to randomly cover a rectangle enclosing the function (or
figure) with points and determining the ratio of points on or below the function (or
points on or within the figure) to the total number of points.

•	 Using Lab 1, students will verify the hypothesized method of determining area
working first with simple rectangle, then a circle, and, finally, a more complex
function.

•	 Assign project as a follow-on activity. Project results may be used to support
enrichment lab exercise.

•	 Using Lab 2, students will use the Monte Carlo method learned in Lab 1 to determine
how high an experimental rocket will be at shut down with specified factors.

•	 Using Teacher Note 2, the teacher will introduce students to other uses of Monte
Carlo techniques, e.g., the determination of probabilities.

•	 Using Lab 3, the students will develop an algorithm and program to determine the
probability of two people in groups of 20, 30, or 40 having the same birthday.

Evaluation:

This section will be performance-based (a performance assessment task), in
accordance with the move to performance-based assessment. See assessment rubric.

Extension/Follow Up:

•	 Have the students choose an application problem from their project report for which
they could write an algorithm and program using Monte Carlo methods.

Authors:

Tracy A. Birell

Mount Vernon High School

Alexandria, VA

Charles W. Brewer
Lake Braddock Secondary School
Burke, VA

Elemental Monte Carlo Methods in Computer Science

Teacher Note 1

Using Overhead 1, introduce Monte Carlo methods using the following sequence:

•	 Have students determine the area of the large rectangle. (6 square units)

•	 Have the students determine the area of the shaded rectangle. (4 units)

4
•	 Have the students determine the ratio between the two rectangles. ()

6

•	 Pose the following question:

“If you toss 100 darts at the large rectangle and the darts are equally likely to
land on any spot in the rectangle, how many would you expect to land in the
shaded rectangular area?” (approximately 67, i.e., two-thirds of 100)

Prepare students for first lab exercise by:

•	 Asking students how the darts might be simulated in a computer program.
(Alternatively, a spreadsheet can be used instead of a C++ program. See Lab
1A.)

•	 Introducing students to the random number generator and randomize functions.
Discuss the randomize function, randomization of integers, and randomization of
doubles.

•	 Having students complete Lab 1 using Shell 1. Overhead 2 can be used to
discuss the second part of Lab 1.

Assign research project (Project Sheet) to increase student understanding of use of
Monte Carlo techniques and as preparation for possible enrichment lab activity

•	 Indicate to students that they should use both Internet and library resources in
their research.

•	 Recommend students be given one week to complete this assignment.

Prepare students for Lab 2 by:

•	 Having students read lab sheet, answer questions, and develop algorithm for
computer model as homework

•	 In class, review algorithms before having students develop computer program (or
spreadsheet) to solve the problem.

Elemental Monte Carlo Methods in Computer Science

Teacher Note 2

In the first part of this unit, random numbers were used to estimate the area under a
curve. In this part, random numbers will be used to determine the probability of an
event occurring. The question to be considered and programmed is one that is often
discussed in math classes when discussing probabilities, specifically, “in a group of
a given size, what is the likelihood of two people having the same birthday?”

•	 To introduce the problem, the teacher may pose the question: “Do you think
two people in the class have the same birthday?” And then follow-up with a
check on birthdays. (For a class of thirty, the probability is approximately 70
percent.)

•	 Ask students how they might determine an estimate of this probability using the
tools that have been explored in the previous labs.

•	 One technique is to use a loop within a loop and the random function. First,
create an apvector (or array) of counters of length 365. Within the inner
loop, use the random function to determine the index of the apvector and
then increment that element. After the desired number of loop iterations
(the number of people in the group), search the apvector for any element
that is greater than 1. Increment a counter for each occurrence. Repeat the
outer loop multiple times to estimate the probability. The probability is the
total occurrences divided by the number of tries.

•	 A second method is similar to the first except that the apvector would
represent people and the random function would be used to generate a
birthday for each person (element). The search function would then have to
compare elements to find any matches and increment a counter for each
match. (This method will require more code as a loop within a loop will be
required for this search.) As in the first method, repeat multiple times to
determine the probability.

 Elemental Monte Carlo Methods in Computer Science - OVERHEADS

Overhead 1

0, 0 4, 0

0, 2

0, 3

-1, -1 1, -1

-1, 1 1, 1

R = 1

Overhead 2

Elemental Monte Carlo Methods Name___________________
In Computer Science
Project Date____________________

Prologue: In many fields, e.g. medical research, insurance, physics, etc., Monte
Carlo techniques are used to determine solutions to problems that are resistive
to more conventional mathematical analysis.

Directions: Using the Internet and library resources, research Monte Carlo
techniques. Find five examples of where Monte Carlo techniques are used in
business, research, or other areas. Briefly describe (in three to five sentences
each) how Monte Carlo techniques are used in each example.

Elemental Monte Carlo Methods
Name___________________

In Computer Science
Lab 1

Date____________________

1.	 Given the following rectangles, modify the program, Shell 1, to simulate the
throwing of n darts at the large rectangle. Each dart is equally likely to hit
any spot within the large rectangular region.

0, 0 4, 0

0, 2

0, 3

2. Run your program with different values of n, the number of darts thrown.
Complete the following table.

Number of
Darts
(n)

Number of
Darts in the

Shaded Region

Ratio Estimated
Area

1,000
5,000
10,000
15,000
20,000

3. Given the following unit circle, modify the program, Shell 1, to simulate
throwing n darts at the square area. Each dart is equally likely to hit any
spot within the square.

-1, -1 1, -1

-1, 1 1, 1

R = 1

4. Run your program with different values of n, the number of darts thrown, to
complete the following table.

Number of
Darts
(n)

Number of
Darts in the

Shaded Region

Ratio Estimated
Area

1,000
5,000
10,000
15,000
20,000

What does the area represent? _____________________________________

//Shell 1 - For use with Lab1 - Replace ????? with appropriate code

#include <iostream.h>

#include <stdlib.h>

void randomXY(double &x, double &y);

//Pre: x and y are declared

//Post: Random values between 0 and 1 are returned

// for x and y coordinates.

double ratio(double x1, double y1, double x2, double y2, int n);

//Pre: x1, y1 are the lower-right coordinates and x2, y2 are

// the upper-left coordinates of an rectangle enclosing region

// of interest for the function. n is number of random points used.

//Post: Ratio of random points on or below the function

// to total random points in rectangle is returned.

int main()

{

double Ratio, Area, RatioTotal = 0, AreaTotal = 0;

double x1 = ??, y1 =?? ; // lower-left coordinates of rectangle

double x2 = ??, y2 =??; // upper-right coordinates of rectangle

int n = ??; // Number of tries

randomize();

for (int j= 0; j<n; j++) // Loop for multiple tests

{ // of same conditions

Ratio = ratio (x1, y1, x2, y2, 30000);

RatioTotal +=Ratio; // Sum of ratios

Area = ????????; // Area under the curve

AreaTotal ??????????; // Sum of areas

cout <<"Ratio of areas is: "<< ?????? <<endl

 <<" The area within the curve is "<<??????<<endl;

}

Ratio = ????????????; // average of ratios

Area = ???????????; // average of areas

cout <<endl<<"For "<<n<<" tries, the average ratio was "<<Ratio

 <<" and the Area was "<<Area<<endl;

return 0;

}

void randomXY(double &x, double &y)

{

 x = ??????????;

 y = ??????????;

}

double ratio(double x1, double y1, double x2, double y2, int n)

{double x, y, count=0;

for (int i = 0; i< n; i++)

 { randomXY(x,y);

 x = x*(x2 - x1) + x1; // Expand random coordinates to width and length

 y = ????????????; // of rectangle and zero on lower-left

coordinate

???????????????: // Enter appropriate test here. May be

 } // multiple lines.

 return count/n;

}

Elemental Monte Carlo Methods
Name___________________

In Computer Science
Lab 2

Date____________________

Prologue: Have you ever stood on a tenth floor balcony and looked down? Or,
have you ever stood on a bridge and looked down only to see miles of water?
Did you have the urge to drop a penny and watch it fall until it hit the ground or
water? Did you wonder how long it would take the penny to hit the ground or
water? Or, how fast do you think the penny was traveling? What if you
dropped a golf ball and a tennis ball simultaneously, which one would hit the
ground or water first? Believe it or not, these everyday questions have simple
answers. You have had the knowledge and skills to answer these questions for a
very long time. Do you try to answer these questions while you are watching the
penny fall? Well, if not, maybe it is time to start!

Did you know that you have something in common with scientists, astronauts,
mathematicians, engineers, pilots, truck drivers, track coaches, and …? They all
are concerned with how fast something or someone can travel, the rate of
acceleration, distanced traveled, or how long it may take to go from point A to
point B. Pilots are concerned with how quickly they can get you from one city to
the next, safely of course. Engineers are concerned with how quickly they can
get the astronauts to the moon. You and your friends are concerned with how
fast you must run the break the school record for the mile or how long it will
take you to get to your favorite amusement park.

Well, what do you think we can conclude from these examples? Of course, math
and science is way of life and we use them everyday!

Problem: Today we are going to examine the flight pattern of an experimental
rocket. The rocket will generate 600,000 pounds of thrust. Its initial weight is
500,000 pounds of which 400,000 pounds is fuel. It will consume fuel at a rate
of 120,000 pounds per minute.

 The following equation represents the velocity of the rocket:

thrust
Velocity = (- 1) * gravity * time

weight - fuelflow * time

The graphical representation of the rocket’s velocity would look like this:

Time

• Complete:

1.	 How long into the flight before the engine will shut down?

2. How high will the rocket be at shut down? 	Write an algorithm and
program to estimate this.

Elemental Monte Carlo Methods Name___________________

In Computer Science

Lab 3 Date____________________

1.	 Using a Monte Carlo simulation, estimate the probability that at least two
people in a random group of people have birthdays on the same day. For
simplicity, disregard leap years.

Suggestions:

•	 Use an apvector of integers to record whether a birthday occurs on a given
date.

•	 Use the random function to determine the apvector index and increment the
apvector element to indicate a birthday. Repeat for the number of
members in the group.

•	 Determine the number of days for which more than one person has a
birthday.

•	 Repeat procedure multiple times to obtain the probability.

(Note. You might chose to use the apvector to represent the group and the
random function to generate the birthday for each element. Then you would
check for members (elements) having the same birthday.)

2. Run your program several times to complete the table below.

Members Probability
in of

Group same Birthday

20

30

40

_______________________ ____________________ __________

ELEMENTAL MONTE CARLO METHODS

IN COMPUTER SCIENCE

Assessment Rubric

* Rectangle
Program

Circle
Program

Rocket
Program

Birthday
Program

Extension
Program

Neatness &
Style

points
Comments

points
Correctness

of
Algorithm

points
Correct Use

of the
Random
Number
Function

points
Overall

Uniqueness
& Creativity
of Program

points
TOTAL
POINTS

* 	Teachers should fill in the points required according to their individual
 grading criteria.

Name	 Date Period

Lab Solutions

//Lab 1 - Part 1 - Find Area of Shaded Rectangle

#include <iostream.h>

#include <stdlib.h>

void randomXY(double &x, double &y);

//Pre: x and y are declared
//Post: Random values between 0 and 1 are returned
// for x and y coordinates.

double ratio(double x1, double y1, double x2, double y2, int n);

//Pre: x1, y1 are the lower-right coordinates and x2, y2 are

// the upper-left coordinates of an rectangle enclosing region

// of interest for the function. n is number of random points used.

//Post: Ratio of random points on or below the function

// to total random points in rectangle is returned.

int main()

{

double Ratio, Area, RatioTotal = 0, AreaTotal = 0;

double x1 = 0, y1 = 0; // lower-left coordinates of rectangle

double x2 = 3, y2 = 4; // upper-right coordinates of rectangle

int n = 10; // Number of tries

randomize();

for (int j= 0; j<n; j++) // Loop for multiple tests

{ // of same conditions

Ratio = ratio (x1, y1, x2, y2, 10000);

RatioTotal +=Ratio;

Area = Ratio * (x2 - x1) * (y2 - y1);

AreaTotal +=Area;

cout <<" Ratio of areas is: "<< Ratio <<endl

 <<"The area under the curve is "<< Area<<endl;

}

Ratio = RatioTotal/n;

Area = AreaTotal/n;

cout <<endl<<"For "<<n<<" tries, the average ratio was "<<Ratio

 <<" and the Area was "<<Area<<endl;

return 0;

}

void randomXY(double &x, double &y)

{

x = random(32767)/32767.0;

y = random(32767)/32767.0;

}

double ratio(double x1, double y1, double x2, double y2, int n)

{

double x=0, y=0, count=0;

for (int i = 0; i< n; i++)

 {
 randomXY(x,y);
 x = x*(x2 - x1) + x1; // Expand random coordinates to width and

length
 y = y*(y2 - y1) + y1; // of rectangle and zero on lower-left

coordinate.
 if (y <= 3) // Test for shaded rectangular area

 count++;
 }
return count/n;
}

/* Output

 Ratio of areas is: 0.7458

The area under the curve is 8.9496

 Ratio of areas is: 0.7507

The area under the curve is 9.0084

 Ratio of areas is: 0.751

The area under the curve is 9.012

 Ratio of areas is: 0.7542

The area under the curve is 9.0504

 Ratio of areas is: 0.7534

The area under the curve is 9.0408

 Ratio of areas is: 0.7526

The area under the curve is 9.0312

 Ratio of areas is: 0.7466

The area under the curve is 8.9592

 Ratio of areas is: 0.7485

The area under the curve is 8.982

 Ratio of areas is: 0.7574

The area under the curve is 9.0888

 Ratio of areas is: 0.7466

The area under the curve is 8.9592

For 10 tries, the average ratio was 0.75068 and the Area was 9.00816

*/

Lab Solutions

//Lab1 - Part 2 - Find the Area of the Unit Circle

#include <iostream.h>

#include <stdlib.h>

void randomXY(double &x, double &y);

//Pre: x and y are declared
//Post: Random values between 0 and 1 are returned
// for x and y coordinates.

double ratio(double x1, double y1, double x2, double y2, int n);

//Pre: x1, y1 are the lower-right coordinates and x2, y2 are

// the upper-left coordinates of an rectangle enclosing region

// of interest for the function. n is number of random points used.

//Post: Ratio of random points on or below the function

// to total random points in rectangle is returned.

int main()

{

double Ratio, Area, RatioTotal = 0, AreaTotal = 0;

double x1 = -1, y1 = -1; // lower-left coordinates of rectangle

double x2 = 1, y2 = 1; // upper-right coordinates of rectangle

int n = 10; // Number of tries

randomize();

for (int j= 0; j<n; j++) // Loop for multiple tests

{ // of same conditions

Ratio = ratio (x1, y1, x2, y2, 30000);

RatioTotal +=Ratio;

Area = Ratio * (x2 - x1) * (y2 - y1);

AreaTotal +=Area;

cout <<" Ratio of areas is: "<< Ratio <<endl

 <<"The area within the curve is "<< Area<<endl;

}

Ratio = RatioTotal/n;

Area = AreaTotal/n;

cout <<endl<<"For "<<n<<" tries, the average ratio was "<<Ratio

 <<" and the Area was "<<Area<<endl;

return 0;

}

void randomXY(double &x, double &y)

{

x = random(32767)/32767.0;

y = random(32767)/32767.0;

}

double ratio(double x1, double y1, double x2, double y2, int n)

{

double x=0, y=0, count=0;

for (int i = 0; i< n; i++)

 {
 randomXY(x,y);
 x = x*(x2 - x1) + x1; // Expand random coordinates to width and

length
 y = y*(y2 - y1) + y1; // of rectangle and zero on lower-left

coordinate.
 if (y * y + x * x -1 <= 0) // Test for shaded circular area

 count++;

 }

return count/n;

}

/* Output

 Ratio of areas is: 0.786367

The area within the curve is 3.14547

 Ratio of areas is: 0.786433

The area within the curve is 3.14573

 Ratio of areas is: 0.783167

The area within the curve is 3.13267

 Ratio of areas is: 0.783433

The area within the curve is 3.13373

 Ratio of areas is: 0.7842

The area within the curve is 3.1368

 Ratio of areas is: 0.7878

The area within the curve is 3.1512

 Ratio of areas is: 0.7839

The area within the curve is 3.1356

 Ratio of areas is: 0.7836

The area within the curve is 3.1344

 Ratio of areas is: 0.783067

The area within the curve is 3.13227

 Ratio of areas is: 0.781267

The area within the curve is 3.12507

For 10 tries, the average ratio was 0.784323 and the Area was 3.13729

*/

Lab Solutions

//Lab 2 Solution - Rocket Problem

/* Given the equation for velocity of a rocket as

 velocity = thrust/(weight - fuelflow * time) * time - gravity * time.

 For this problem thrust = 8,000,000 lbs, weight = 500,000 lbs, and

 fuelflow is 120,000 lbs/min or 2,000 lbs/sec and there is 400,000 lbs

 of fuel available.

 The time of burnout will be 200 seconds. The corresponding velocity

 is 16,000 ft/sec. For convenience, an upper right coordinate of

 200, 20000 will be used. (Any value 16,000 or greater could be

 used for the y-coordinate.

 */

#include <iostream.h>

#include <stdlib.h>

void randomXY(double &x, double &y);

//Pre: x and y are declared
//Post: Random values between 0 and 1 are returned
// for x and y coordinates.
double ratio(double x1, double y1, double x2, double y2, int n);

//Pre: x1, y1 are the lower-right coordinates and x2, y2 are

// the upper-left coordinates of an rectangle enclosing region

// of interest for the function. n is number of random points used.

//Post: Ratio of random points on or below the function

// to total random points in rectangle is returned.

int main()

{

double Ratio, Height, RatioTotal = 0, HeightTotal = 0;

double x1 = 0, y1 = 0; // Starting coordinates

double x2 = 200, y2 = 20000; // Coordinates at burnout

int n = 10; // Number of tries

randomize();

for (int j= 0; j<n; j++) // Loop for multiple tests

 { // of same conditions

 Ratio = ratio (x1, y1, x2, y2, 30000);

 RatioTotal +=Ratio;

 Height = Ratio*(x2 - x1)*(y2 - y1)/5280; // Calculate area under curve

 // and convert to miles

 HeightTotal +=Height;

 cout <<" Ratio of areas is: "<< Ratio <<endl

 <<"The height at burnout is "<< Height<<endl;

}

Ratio = RatioTotal/n;

Height = HeightTotal/n;

cout <<endl<<"For "<<n<<" tries, the average ratio was "<<Ratio

 <<" and the height was "<<Height<<endl;

return 0;

}

void randomXY(double &x, double &y)

{

x = random(32767)/32767.0; //Convert integer output to double

y = random(32767)/32767.0;

}

double ratio(double x1, double y1, double x2, double y2, int n)

{

double x=0, y=0, count=0;

for (int i = 0; i< n; i++)

 {

 randomXY(x,y);

 x = x*(x2 - x1) + x1; // Expand random coordinates to width and

length

 y = y*(y2 - y1) + y1; // of rectangle and zero on lower-left

coordinate.

 if (x * 16* (600000/(500000-2000*x) -1) - y >= 0) //Velocity equation

 count ++;

 }

return count/n;

}

/* Output

 Ratio of areas is: 0.1613

The height at burnout is 122.197

 Ratio of areas is: 0.1655

The height at burnout is 125.379

 Ratio of areas is: 0.159167

The height at burnout is 120.581

 Ratio of areas is: 0.159067

The height at burnout is 120.505

 Ratio of areas is: 0.1638

The height at burnout is 124.091

 Ratio of areas is: 0.163033

The height at burnout is 123.51

 Ratio of areas is: 0.167333

The height at burnout is 126.768

 Ratio of areas is: 0.163167

The height at burnout is 123.611

 Ratio of areas is: 0.1657

The height at burnout is 125.53

 Ratio of areas is: 0.1631

The height at burnout is 123.561

For 10 tries, the average ratio was 0.163117 and the height was 123.573

*/

Lab Solutions

/* Lab 3 - Probability of Same Birthday

 This lab finds the probability of two people in a group having the

 same birthday.

*/

#include <iostream.h>

#include <stdlib.h>

#include <apvector.h>

void addBirthdays (apvector <int> &year, int num);

//Pre: year is declared with 365 elements. num is defined as the

// number of people in the group.

//Post: elements of year will be randomly incremented to simulate

// a birthday of a given date.

int searchDates (const apvector <int> &year);

//Pre: year is defined with elements indicating how many birthdays

// occurs on a given date.

//Post: Function returns 1 if a birthday occurs more than once.

int main ()

{

 int number; // size of group

 randomize(); // Generate random seed for random

function

 while(1) // Big loop for multiple runs

 {

 double totalMatches = 0; // number of birthday matches

 cout << " \n\nWhat is the size of the group (-1 to quit): ";

 cin >> number;

 if (number == -1)

break;

 for (int n = 0; n < 1000; n++)

 {

apvector <int> dates(365, 0); // date declared and initialized

at 0

addBirthdays (dates, number);

totalMatches += searchDates (dates);

 }

 cout << "The probability of matching birthdays is: "

 << (totalMatches)/1000<<endl;

 }

 return 0;

}

void addBirthdays (apvector <int> &year, int num)

{

 for(int i = 0; i < num; i++)

 year[random(365)]++;

}

int searchDates (const apvector <int> &year)

{

 for (int i = 0; i < 365; i++)

if (year[i] > 1)

 return 1;

 return 0;

}

/* Output

What is the size of the group (-1 to quit): 20

The probability of matching birthdays is: 0.429

What is the size of the group (-1 to quit): 30

The probability of matching birthdays is: 0.701

What is the size of the group (-1 to quit): 40

The probability of matching birthdays is: 0.897

What is the size of the group (-1 to quit): -1

*/

Elemental Monte Carlo Method – Lab 1A Using a Spreadsheet

PROBLEM: To find the area of the shaded rectangle.

TECHNIQUE: Generate Random numbers within a rectangle counting the
 points that fall within the shaded region. The ratio of points
 within total points should equal the respective areas.

Method: The formula used for generating the random x-coordinates is =Rand()*4
 and the random y-coordinate is =Rand()*3. The output will be tested against
 the equation of a rectangle to determine if on or within the shaded rectangle.
 If true, a one will be returned. These are summed and divided by the number
 of iterations to get the ratio of the areas. The area of the shaded region was
 the calculated by multiplying the area of the larger region by the ratio.

Number of
Iterations

Random
'x'

Random
'y'

Test
0 = No
1 = Yes

Total Points
with YES (1)

Ratio Area of the
Shaded
Region

1 2.342086 2.512774 0 0 .0000 .0000

2 .831967 .589835 1 1 .5000 6.0000

3 3.591924 .402731 1 2 .6667 8.0000

6 1.133593 1.857807 1 3 .5000 6.0000

5 1.896600 .157458 1 4 .8000 9.6000

6 1.859915 2.032566 0 4 .6667 8.0000

7 3.069154 .467588 1 5 .7143 8.5714

Number
of

Iterations

Random
'x'

Random
'y'

Test
0 = No
1 = Yes

Total
Points with

YES (1)

Ratio Area of the
Shaded
Region

1 =RAND()*4 =RAND()*3 =IF(C19<=2,1,0) =D19 =E19/A19 =12*F19

2 =RAND()*4 =RAND()*3 =IF(C20<=2,1,0) =E19+D20 =E20/A20 =12*F20

Elemental Monte Carlo method – Lab 1B Using a Spreadsheet

Problem to find the area in a unit circle using Monte Carlo methods

Technique is to generate random numbers within a square enclosing
the unit circle and to count those falling within the circle. The ratio
of points within to total points should equal the ratio of the respective
areas.

The formula used for generating the random coordinates is
 =RAND()*2 -1. The output will be tested against the equation of a
circle to determine if on or within the circle. If so, a one will be returned.
These are summed and divided by number of iterations to get the ratio of areas.

iterations random x random y test points ratio of Area of
within points circle
circle

1 0.118813 -0.719368 1 1 1.000000 4.0000
2 -0.493962 -0.774098 1 2 1.000000 4.0000
3 0.007375 0.849107 1 3 1.000000 4.0000
4 -0.493227 -0.707415 1 4 1.000000 4.0000
5 0.444345 0.332874 1 5 1.000000 4.0000
6 -0.421598 -0.091118 1 6 1.000000 4.0000
7 -0.448168 0.961725 0 6 0.857143 3.4286
8 -0.480206 0.321219 1 7 0.875000 3.5000
9 -0.885788 -0.906082 0 7 0.777778 3.1111
10 -0.212889 -0.364623 1 8 0.800000 3.2000
11 -0.544367 0.194043 1 9 0.818182 3.2727
12 0.120948 0.254623 1 10 0.833333 3.3333
13 -0.928332 -0.728447 0 10 0.769231 3.0769
14 0.342411 -0.757340 1 11 0.785714 3.1429
15 0.587820 -0.596833 1 12 0.800000 3.2000
16 0.929915 -0.885199 0 12 0.750000 3.0000
17 0.886786 -0.447817 1 13 0.764706 3.0588
18 0.412987 0.368748 1 14 0.777778 3.1111
19 -0.104506 0.071658 1 15 0.789474 3.1579

iterations random x random y test points ratio of area of
within points circle
circle

1 =RAND()*2 -1 =RAND()*2 -1 =IF(B15*B15+C15*C15-1<=0,1,0) =D15 =E15/A15 =4*F15

2 =RAND()*2 -1 =RAND()*2 -1 =IF(B16*B16+C16*C16-1<=0,1,0) =E15+D16 =E16/A16 =4*F16

3 =RAND()*2 -1 =RAND()*2 -1 =IF(B17*B17+C17*C17-1<=0,1,0) =E16+D17 =E17/A17 =4*F17

2

Problem to find the area in a unit circle using Monte Carlo methods:

Technique is to generate random numbers within a square enclosing
the unit circle and to count those falling within the circle. The ratio
of points within to total points should equal the ratio of the respective
areas.

The formula used for generating the random coordinates is -1, -1 1, -1

-1, 1 1, 1

R = 1

Overhead
=RAND()*2 -1. The output will be tested against the equation of a
circle to determine if on or within the circle. If so, a one will be returned.
These are summed and divided by number of iterations to get the ratio of areas.

Iterations Random x Random y
1 0.119824 -0.783839
2 0.336329 -0.487052
3 -0.910826 -0.800526
4 0.455120 0.637132
5 0.157420 0.446419
6 0.701780 0.608744
7 0.901156 0.674781
8 -0.549261 0.126575
9 -0.486138 0.057378
10 -0.068013 0.468676
11 -0.709646 0.993599
12 0.556955 0.275696
13 0.036719 -0.963359
14 -0.721910 0.539851
15 0.300079 -0.505139
16 -0.543143 0.214887
17 0.824751 0.301706
18 -0.523303 -0.938587
19 0.554960 0.681223
20 0.718037 0.268579
21 0.134894 -0.781490
22 -0.592339 -0.943375
23 -0.466726 0.711284
24 -0.057093 -0.284109
25 0.185993 -0.936294
26 -0.921430 -0.940360
27 -0.855011 -0.638633
28 0.411294 -0.262082
29 0.520029 -0.368176
30 0.564855 -0.134339
31 -0.923989 -0.068810
32 0.640371 -0.494969
33 -0.668327 0.788060
34 -0.042826 -0.175656
35 -0.692494 -0.557965

Points
within Ratio of Area of

Test Circle Points Circle
1 1 1.000000 4.0000
1 2 1.000000 4.0000
0 2 0.666667 2.6667
1 3 0.750000 3.0000
1 4 0.800000 3.2000
1 5 0.833333 3.3333
0 5 0.714286 2.8571
1 6 0.750000 3.0000
1 7 0.777778 3.1111
1 8 0.800000 3.2000
0 8 0.727273 2.9091
1 9 0.750000 3.0000
1 10 0.769231 3.0769
1 11 0.785714 3.1429
1 12 0.800000 3.2000
1 13 0.812500 3.2500
1 14 0.823529 3.2941
0 14 0.777778 3.1111
1 15 0.789474 3.1579
1 16 0.800000 3.2000
1 17 0.809524 3.2381
0 17 0.772727 3.0909
1 18 0.782609 3.1304
1 19 0.791667 3.1667
1 20 0.800000 3.2000
0 20 0.769231 3.0769
0 20 0.740741 2.9630
1 21 0.750000 3.0000
1 22 0.758621 3.0345
1 23 0.766667 3.0667
1 24 0.774194 3.0968
1 25 0.781250 3.1250
0 25 0.757576 3.0303
1 26 0.764706 3.0588
1 27 0.771429 3.0857

36 0.649952 -0.399398 1 28 0.777778 3.1111
37 -0.061788 -0.398773 1 29 0.783784 3.1351
38 0.075072 -0.294290 1 30 0.789474 3.1579
39 0.203913 -0.947486 1 31 0.794872 3.1795
40 -0.840426 0.596969 0 31 0.775000 3.1000
41 -0.745744 0.471524 1 32 0.780488 3.1220
42 -0.735760 0.520099 1 33 0.785714 3.1429
43 0.313275 -0.899309 1 34 0.790698 3.1628
44 0.308000 -0.713041 1 35 0.795455 3.1818
45 -0.350724 -0.038741 1 36 0.800000 3.2000
46 -0.047814 0.837515 1 37 0.804348 3.2174
47 -0.343005 -0.225889 1 38 0.808511 3.2340
48 -0.037605 -0.894163 1 39 0.812500 3.2500
49 0.851008 0.173639 1 40 0.816327 3.2653
50 -0.269980 0.945028 1 41 0.820000 3.2800
51 -0.453619 -0.564914 1 42 0.823529 3.2941
52 0.399570 0.596346 1 43 0.826923 3.3077
53 -0.858962 0.560507 0 43 0.811321 3.2453
54 -0.841887 0.247014 1 44 0.814815 3.2593
55 0.350078 0.540786 1 45 0.818182 3.2727
56 -0.520649 -0.873468 0 45 0.803571 3.2143
57 0.090408 0.315851 1 46 0.807018 3.2281
58 0.390743 -0.095243 1 47 0.810345 3.2414
59 -0.954918 0.171231 1 48 0.813559 3.2542
60 0.082762 -0.775320 1 49 0.816667 3.2667
61 0.009124 0.029930 1 50 0.819672 3.2787
62 0.361483 0.546451 1 51 0.822581 3.2903
63 -0.877635 -0.827667 0 51 0.809524 3.2381
64 -0.097082 0.979767 1 52 0.812500 3.2500
65 0.716546 -0.378679 1 53 0.815385 3.2615
66 -0.588548 0.288752 1 54 0.818182 3.2727
67 0.251806 -0.594990 1 55 0.820896 3.2836
68 -0.971240 -0.123046 1 56 0.823529 3.2941
69 -0.009221 -0.138467 1 57 0.826087 3.3043
70 0.537813 0.288406 1 58 0.828571 3.3143
71 0.855141 0.759530 0 58 0.816901 3.2676
72 -0.233482 -0.601515 1 59 0.819444 3.2778
73 0.942629 -0.018242 1 60 0.821918 3.2877
74 -0.732521 0.330265 1 61 0.824324 3.2973
75 -0.041220 -0.395561 1 62 0.826667 3.3067
76 -0.386048 -0.954698 0 62 0.815789 3.2632
77 0.338314 -0.991221 0 62 0.805195 3.2208
78 -0.360683 0.158748 1 63 0.807692 3.2308
79 -0.509925 0.446784 1 64 0.810127 3.2405
80 0.292731 -0.665566 1 65 0.812500 3.2500
81 -0.105638 0.948130 1 66 0.814815 3.2593
82 0.004792 -0.519003 1 67 0.817073 3.2683
83 -0.707901 0.131157 1 68 0.819277 3.2771
84 0.511064 -0.416483 1 69 0.821429 3.2857
85 0.145569 0.053116 1 70 0.823529 3.2941
86 0.073969 0.870706 1 71 0.825581 3.3023
87 -0.377713 0.900416 1 72 0.827586 3.3103

88 -0.594176 -0.982067 0 72 0.818182 3.2727
89 -0.459154 -0.927781 0 72 0.808989 3.2360
90 0.688398 -0.817474 0 72 0.800000 3.2000
91 0.011324 -0.359627 1 73 0.802198 3.2088
92 0.523419 0.918952 0 73 0.793478 3.1739
93 -0.553402 -0.535333 1 74 0.795699 3.1828
94 0.920525 0.897028 0 74 0.787234 3.1489
95 0.130588 0.930926 1 75 0.789474 3.1579
96 -0.955661 0.874629 0 75 0.781250 3.1250
97 0.150047 0.035230 1 76 0.783505 3.1340
98 0.421241 -0.565682 1 77 0.785714 3.1429
99 0.862935 -0.687921 0 77 0.777778 3.1111
100 0.353702 0.132316 1 78 0.780000 3.1200
101 0.860308 -0.490612 1 79 0.782178 3.1287
102 -0.105964 -0.247403 1 80 0.784314 3.1373
103 0.674443 0.128252 1 81 0.786408 3.1456
104 -0.014942 -0.324433 1 82 0.788462 3.1538
105 0.167429 0.741283 1 83 0.790476 3.1619
106 0.566468 -0.296821 1 84 0.792453 3.1698
107 -0.658894 -0.575231 1 85 0.794393 3.1776
108 -0.920876 0.503219 0 85 0.787037 3.1481
109 0.541111 0.675696 1 86 0.788991 3.1560
110 0.433890 -0.348372 1 87 0.790909 3.1636
111 -0.937011 0.038423 1 88 0.792793 3.1712
112 -0.220557 0.329006 1 89 0.794643 3.1786
113 -0.408442 -0.890674 1 90 0.796460 3.1858
114 -0.885128 -0.419235 1 91 0.798246 3.1930
115 -0.883607 0.522134 0 91 0.791304 3.1652
116 0.301879 -0.821710 1 92 0.793103 3.1724
117 0.408591 -0.805590 1 93 0.794872 3.1795
118 0.722174 0.890036 0 93 0.788136 3.1525
119 -0.530240 0.931617 0 93 0.781513 3.1261
120 -0.161942 -0.005646 1 94 0.783333 3.1333
121 0.973909 -0.816765 0 94 0.776860 3.1074
122 0.974209 0.126736 1 95 0.778689 3.1148
123 -0.901133 0.394453 1 96 0.780488 3.1220
124 0.350097 0.723227 1 97 0.782258 3.1290
125 -0.761724 -0.466153 1 98 0.784000 3.1360
126 0.334884 -0.686348 1 99 0.785714 3.1429
127 -0.196280 0.758737 1 100 0.787402 3.1496
128 -0.018803 -0.240882 1 101 0.789063 3.1563
129 0.715900 -0.721033 0 101 0.782946 3.1318
130 -0.846936 0.665466 0 101 0.776923 3.1077
131 -0.034213 0.416973 1 102 0.778626 3.1145
132 -0.483660 0.393762 1 103 0.780303 3.1212
133 -0.440671 0.590257 1 104 0.781955 3.1278
134 -0.662515 -0.137985 1 105 0.783582 3.1343
135 -0.732724 0.340566 1 106 0.785185 3.1407
136 -0.880840 -0.308861 1 107 0.786765 3.1471
137 -0.896449 0.395386 1 108 0.788321 3.1533
138 -0.487167 -0.041766 1 109 0.789855 3.1594
139 0.241807 -0.787262 1 110 0.791367 3.1655

