

EO 3.3(h)(2)
PL 86-36/50 USC 3605
Being a personal account of a cryptanalytic challenge which involved a system very similar to \square and which was successfully met before the daun of the machine age.

By
William F. Friedman

21. July 1948

FOREWORD

In one respect, the classification of this FORMAORD and of the accompanying papers is racher remarkable anomity and one that may be of interest. I shall begin the story by noting that when correctiy used, the currentiy employed \square is, cryptographically, almost anyexact replica of a system developed over 30 years ago by the Arartcan Telephone and Telegraph Conmay, for the 0. S. Army in World Wetr I. A rather detalled descriptson of the systera and its apparati was disclosed by the American felephone and Telegraph Company in a technical paper which wes written by the principal inventire, an A. \& T. Co. enginear named. Vernex, and which he presentad before the midwinter convention of the American Institute of Electrical Figineers at Mev York City in February 1926. The Vermam paper was later printed in the proceedings of the Institute, 1 It seems almost a certainty that the cryptographic principles on which \square is based stem directly frow that paper.

Our records show that the A. T. \& T. Co. development ws inftiated in 1916, but wes perfected too late to heve been exployed ertensively for 7. S. Army traffic in World War I. A set of Pour intercomanicatinge stations vas estabilished in the autumn of 1918, prixarily for test purposes in the United States, 2 and a limited amont of actual iraffic ums handed in this system as a preliminary to possible wider usage by the U. S. Army' both in the United Stetes and in Furope in 1918. In the spring of 1919, upon the close of World Var I and for number of reasons, one of which will soon be made clear, the system wes abandoned. Some 22 years later, in the pace of areal need for secure teletypeuriter commancations and while avaiting the completion of new equipment specially designed for the purpose, I suggested that the old double-tepe system be resuscitated by the, Signal Corps as an emergency mesns of teletypewriter crypto-coswanication. The A. T. \&T. Co. wes yery helprul In this and the emergency system was successfully used from the middle of 1942 until early in 1943; when it zas repleced by better ones using more , modern equipment.

\%	*	간	4	*	-

It was the contention of all concerned in the originel A. T. \& T. Co. development in World Wer I-w.the engineers of the compsny and those of the Signal Corps, as well as the cryptanalysts in the Military Intelligence Division, General Staff, in Weshington-that the systex and apparatus developed and proposed for use was "absolutely indecipherable without the keys." Indeed, the Director of the Military. Intelligence Division went on record opiscielly to that effect and a copy of the letter, which was actually prepared by Fardley (author of "The Americsn Black Chamber"), is still avail2ble in our files.

[^0]Of possible interest to the reader are the circumstances under which the apparatus and the systern were oxplained to me in Nev York, in the early part of lay 1918, as I was about to embark for yer service in the Code and Cipher Solution Section of G-2, Gre-Ars, in France. Frow the swaner of 1915 until Nay 1918, I had been a mesber of the sibafi of an institution known as the Riverbenk Laboratorles at Geneva, Illinois, a private pesearch organization operated by a somethat gccentric but wealthy Chicagoan named Colonel George Fabyan. I One of the fields in which research was conducted at the Riverbank Leboretories by a sall staff was that of cryptography, \& subject in thich I took an interest as an avocation. But soon it became my vocation, when in the latter part of 1916 Colonel. Fabyan mede me Director of the Depsriment of Ciphers in eddition to certain other duties. From then until about the middle of 1918, in a quasiofficial relationship with, and no noxpense whatever to, the Governent (Colonel Fabyen, as a paiotic citizen, footed all the bills), the Depsriment of Ciphers conducted cryptanelytic work for the State, War, Hawy, and Justice Departments. None of these large organizations bad any cryptanalytic units whatever until the Army established a unit (under Yardley) in the latter part of 1917.2 It wes on the basis of this earliex quasi-official relationship thet a disclosure of the details of the A. T. \& T. cipher machine and its oparation was made to Colonel Fabyan and to me in May 1918, as noted. (Security considerations were just in their infancy!)

As explained to us by the officials of the A. T. \& T. Co., the cryptographic systom they proposed wes besed upon the use of two Baudot rendom-key tapes , one aractly 1000 , the other, exactly 999 cnarecrers in lengtia; both vere to be changed deily. Single tapes were never to be used-walwas both tapes were to be employed simultaneously, in combination, to generate by their interaction a single very long key of 999,000 charscters.

I heard notining more about this machine until April 1919, when I was demobilized and rejoined the staff at the-Riverbank Laboretories, to resume my position as head of the Depsirwent of Ciphers-with no other duties. The A. T. \& T. eipher was then being carefully scrutinized by my staff.

Having had a good opportunity to study the system, the contention of invulnerability to decipherment vithout the koy the word cryptanalysis bad not as yet been coined) was deemed to be unvarpanted by the cryptanalytic staff at Riverbank. After noting the results of their theoreticel studies and elaboreting the results further, I became the principal contestant of the sileged invulnerebility of the system. For this and for other ressons, I was directed by Colonel Fabyan to put the results of our studies on paper and thereupon'wrote a bries brochure entitled "Methods for the Solution of the A. T. \& S. Cipher Machine." The paper was prepared in March 1919 but no copy was sent to Washingtor at that

[^1]tirie. Instead, Colonel Febyen began uriting letters to certain people and made yhat appeared to them to be some rether broad claims.

In August 1919, after a considerable amount of correspondence thich was beconing rether acrimonious (lergely beceuse Colonel Fabsen, purposely or insdvertentlys wrapped a vell of obscurity around that he thought we wexe able to do), the then Director of Military Intelligence, Brigadier General Pialborough Churchill, sent lasor Yardley to Riverbank to look into the claims which Fabyen was yaking as to the vulnerability of the system. The principles we had elaborated to solve this cipher were explained to Yardley, tho returned a feu days later, accompanied by Lieut. Colonel Mauborgne, the Signal Corps cryptographic ezpert who hed been dipectiy in charge of the development and who, 20 years later, wes to become Chief Signel Officer. The proposed solution zes explained to both officers, but Colonel Reuborgne contended that Riverbank really did not know the Signel Corps method of use. Although it wes true that permanently firsed lengths of key tapes (1000 and 999) had been contemplated in the original rethod as proposed by the A. T. \& T. Co., Colonel Mauborgne stated that the Signal Corps had different ideas: the two key tapes, he seld, could be variable in their leagths, prime numbers, being prefereble; and there vere other ney procedures in their usage which would invalidate the solution proposed by the Riverbank investigetors: The record contains the following: "Colonel Mauborgne left with us a rough pencil sketch of the manner in which the machine is now used, reiterating his opinion thet es nos used, the cipher is invulnereble. ... Colonel Maborgne said further that if we could break the cipher when used in accordance with these rules he would then ecknowledge thet we had broken the cipher as used by the Signel Corps."

A day or two after the departure of these officers, two copies of ay paper of March 1919 were sent to Hashington, one for the Signal Corps, the other for G-2. The conference also resulted in an agreement thent Riverbank would accept the gauntlet thrown down by the Government and would try to prove its contention of yulnerability of the cryptographic system by solving a set of "challenge messages.

The Riverbank cipher stapl studied the new situation presented by the change in procedures adopted by the Signal Corps and found it unnecessary to change its original position regarding the vuinerability of the system. Again I was asked to put the results of our studies down on paper, and wrote an addendum to the original paper (Addendum No. 1), which is dated 19 August 1919. The Riverbank staff then avaited with confidence (not unmixed, however, with some trepidation) the recelpt of a promised set of 150 cipher tapes representing the "challenge messages.". These were to consist of messages sent in one day's traific among four simulated stations forming a simulated net.

Jnfortundely, when the cipher tapes arrived, on 27 September 1919, there vere found among the "challenge" cipher tapes four piein-text tapes, the latter having been inadvertentiy included. Rather than accept this "bust" and becloud the issue further, ve imediately notified the authorities in Washington of the error and, on 8 October 1919 received a nev batch of cipher tapes. 1 This time

[^2]no plain-text tapes sere among the challenge messages and the Fiverbank staff began lits work. The labor was somewhet arduous and after some six weeks ${ }^{\text {a }}$ steady work, often 12 hours a day, my collaboraticrs had all deserted me, when all our efforts seemed fruitless and the problem a hopeless one. However, with what appears to me today as rather dogged determination (how I yearn for those days of youth!), I stuck to the task all alone. Finelly, on 8 December, exactly two months after receipt of the "good" challenge, messages, I, too, came to that seemed the end of the trail--mentally "doun but not out."

Revieving the situation quietly, with my feet on top of my desk and pulling at my pipe (yes, I smoked one in those days:), I came to two conclusions: first, the principles of solution were correct and had to yield the results we were seeking; second, somebody had made an error somewhere in the work and the error had to be found before further progress could be made. What we had received from Washingtion vere perforated tapes and these had to be transcribed into characters on sheets of paper. Could it be that one of my assistants or I had made an error in this first step? There were three crucial messages involved--they had been the ray material for endless experiment-and I decided to check the trenscription from the tapes myself. No sooner thought of than I proceeded to the task.

My ruminations sere quickly rewarded then I discovered that one character had indeed been omitted accidentally in transcribing one of the three tapes--but that character was at a very crucial polat: Making the necessary correction, I called my staff together, explained the situation, and asked for volunteers to tackle the problem once more. There was 100\% response (all six of them!), although I could easily detect that my staff remained cynical but had decided to humor me in my fatal delusion. However, it was no delusion, and I, myself, wss the lucky one to dispel it. For within ten minutes and with mounting internal excitement (some of my readers will recognize the symptoms) I had obtained, as a resultant of the trial of two hypothetical addresses, the letters EQU. Not much, to be sure--甘e had of ten before obtained excellent trigraphs, tetragraphs, and even pentagraphs that turned out to be discouraging accidents. But I continued, thinking to myself: "If the next letter turns out to be a vowel, preferably an I or an A, maybe I really have something here!" The letter that turned up yes the letter I--EQUI! Hardly able to repress my excitement, I went on: "In the name of all, the patron saints of the Kingdom of Cipher iet the next letter be the letter $P, I I$ prayed. And a P. it was! I Ive got it!" I shouted, "I really have, this time." It was a bit difficult to convince my collaborators and echoes of disbelief reverberated. But soon, gathered about in a tight huddle, a convincing demonstration, consisting of sdding a few "good" Ietters immediately before and after EQUIP, left nothing more to be desired-except the reconstruction of the key tapes. The challenge had been successfully met, but it had taken much longer than had been anticipated. ${ }^{1}$

The two unknown key tapes were reconstructed coincidentally with the solution of a few of the challenge messages and then, to prove beyond shadow of doubt that the system had been solved, we enciphered three messages of our own, addressed to certain officiais in Washington, using the reconstructed keys. Our messages vere enciphered "by hand, " for we did not have any of the machines. The Telephone Company in Chicago kindly gave me access to a keyboard perforator, by means of which, very laboriously (by the "hunt and peck ${ }^{\prime \prime}$ method), I punched out the cipher tapes. The latter were then sent by mail to Colonel Mauborgne in Washington, where, promptly on

[^3]receipt, they were deciphered by mechine with bis own key tapes. Colonel Maborgne immediately thereupon and without reservations acknowledged, as promised, that the walidity of the Riverbank contention had thus been fuliy proved. ${ }^{1}$ Soon Colonel llauborgne and Major Yardley yisited us once more, to learn the details. The successiful outcome of this experiment neturally called for another eddendum to the originsl paper, and this became Addendum No. 2.

By this time the cryptanslytic staff of the military Intelifgence Division, finding itself in wither mbressing position and insisting that the initial point of departure in the Riverbank solution wes a knowleage of the starting points of the two key tapes for each message (hou true:), proposed that these initial points be disguised by means of a specially prepmred small code and then enciphering the code groups by three independent ined alphabets. The proposed method (but not the code or the special alphabets) was submitted to the Riverbsnk staif for comment, and I wrote \& third, addendur to wy original paper (Addendum No. 3), proving the inadequacy of the proposed method of disguising the indicators. Two coples of Addende Nos. 1, 2, and 3 were now sent to kashington. By tins time the war was peceding into the dim past, the Army authorities were tired or somewhet groggy over the whole business, and thought it best to cell a halt to it. As a consequence, further York on the A. T. \& T. Co. Cipher Machine vas stopped and the machines put in storege. Soon thereafter I left Riverbenk to accept the position which was established for me in the office of the Chief Signal Officer in Washington, as the chief (and only) cryptenalyst. I did a little rescapen, when time permitted, on improvements in the printing telegreph cipher and proposed one which was soon made public by the issue of a patent. (How naive we were in those days: God Sorbid that the improvement disclosed in this patent be adopted and incorporeted in \qquad !)

In viev of the present situation in regard to the \square system, it occurped to we that the Riverbenk techinicsi papers on the A. T. \& T. Cipher Mimine, even though they were written many years ago, gight still be of some value or would, at least, be of historical interest. A search through the old files at Arington Hall yielded a copy of the basic paper, Addendum 1, and Addendum 3, but alas: very thorough search of all files in Washiagton failed to turn up a copy of Addendum 2. A letter to the Riverbank Laboretories brought nothing. Colonel Pabyan had long ago depsrited to the next world, as'had bis secretary. The Deaprtment of Ciphers had ceased functioning soon after my departure and all its ifles had been destroyed. So there wes no Addendum 2 to be had, which wes unfortunste, beceuse it fas perhaps the most interesting one of them a11: it was the one vhich dealt in detail vith the solution of the chellenge messages. The only material I could pind anong my old and very dusty personal papers was a bedly marked up first draft of Addendum No. 2, yith many diagrams missing but uith considerable number of miscéllaneous sheets of notes, queer "doodings, "tc.
$\overline{1}_{\text {Following }}$ is quoted Irom a letter dated 29 Dec. 1919 from Colonel Rauborgne to Colonel. Fabyan: "You have done a great work and your contention of last March is sustained - that the method of using the printing telegraph cipher as used last year by the Signal Corps was decipherable. This is, perhaps, the toughest individual cipher you have ever had to tackle. To the victor belong the spoils: ${ }^{n}$

do not know whether it was worth the effort, but I have done my best to reconsiruct Addendum 2, within the limited time at my disposal. It is not adequate, and I am sure thet the final Addendum 2, when-it left Riverbenk, was a very much better paper. However, It is my hope that some of our workers and collaboretors on may find in these papers some tiny fragments of interest. For me, they are an echo of interesting events of a distant age; but the thrill of a successful meeting of a serious challenge is still vivid in memory. 1

I have made no changes whatever in the texts of the basic paper, or in Addendum No. I and Addendum No. 3. Because of the unfortunate failure to find Addendum No. 2, I have had to use, as noted above, the first draft. This, too, I have faithfully reproduced uithout changes of a material nature. The papers should therefore be read, not in the light of the present state of cryptanalytic science, but in the light of the art as it was in 1919a long time ago, when considered in terms of the progress that has been made since then.

In the light of these resuscitated papers of long ago, one fact takes on a special signiffcance: the present usege of a system over 30 years old points to a lack of sophisticetion or imagination in cryptographic invention. This lack receives confirration then we take into consideration other things that we know, and I feel that we should not be too pessimistic about the future. Currently, the \square problem is, in certain respects, much more difficult than the one which confronted the Riverbank staff in 1919. than vere those involved in the Riverbank solution; but more important by far is this difference: there are
because in the
latter neither key tape was ever used by itself, only in combination, and
it is frequently the case that the
it is frequently the cas ; this is something which would have greatly assisted in the Riverbank solution-in fact, it would have eliminated most of the problem.

Finslly, there is one more aspect well vorth noting and of current interest.

The Riverbank staff solved whet was for those days, I think, a very complex problem, and it accomplished the task under circumstances which, considered in the light of what can be done cryptanalytically today; were rather difficult.

In the first place; the stafi was very small in numbers and, with one exception, its members had relatively little training in theory and very 'little practical experience in "operstions" as

[^4]conducted in these days. In the second place, its procedures and tools were relatively weak and undeveloped, for moderaz methods and techniques were just in their infancy. In the third place, it had only one set of messages on which its contention of vulnerability had to stand or fall. And if it had failed on that single set, it would have completely fallen down on the job it had undertakenfor no other set of messages, I feel sure, would have been wide available to permit another trial to be reade. In the fourth place, and possibly of greatest import, the Riverbank staff solved the problem without the ald of meninery of any kind whatever.

OP course, we were always on the lookout for "short cuts" and "hand" aids to speed up the cryptanalytic testing. I do not think we suffered from lack of imagination, but the machine age in cryptanalysis bad not yet dawned. Tabulating machinery was just in its infancy; its use as an aid in cryptanalysis bes not even conceived.

But the Riverbank staff, small as it was, without adequate training and experience, lacking special machinery, using what may today seam rudimentary methods, and having only a single, relatively swan sample to begin with, nevertheless successfully yet the challenge offered by the Signal Corps and G-2. Today, with the aid of high-speed electrical and electronic devices, with much advanced cryptanalytic theory, methods, and techniques, with an adequate staff of enthusiastic, competent researchers, and a plurality of sources from which examples to be worked upon can be selected, it seems to me that \qquad should not be a hopeless problem. While the odds against our present workers may be greater than they were against the Riverbank workers, the tools and methods of the propmen are very much better than those of the latter; and over and beyond these considerations there is this one: the urgency, importance, sin possible fruits of a successful meeting of the 1946 challenge are so much greater than those of the 1919 challenge that no comprison whatever can be made in these respects. Just as the Riverbank workers met the challenge presented to them in 1919, with far less at stake, so I feel sure our \square workers will successfully meat the far more difilcult but much rare important challenge oritered them in 1948.

$$
\text { ED } 3.3(\mathrm{~h})(2)
$$

PL 86-36/50 USC 3605
21. July 1948

WILLIAM POERIRDMAN

COMTETS.

1. OPERATIOR OF CIPRER BYACIITME. Actyantages, spect and easo of oprations aceurecy and possibilities in the way of difficulty of decipherment.

Weaknesses, danger of overlapping portions of messages: necessity for curcain characters which oparate tho machine and are neo ossapily a pari of the cipher messegsi reciprocity in cipher square makes easy reconstruction.
2. Solution of single hey messages which overlap; detecting overlaping places.
3. Solution of double running key messages which ovarlap; rew construction of loy from eolvod or captured messages.
4. Deeiphorment by suparimosition of cycles mith nothing given orcept that wich is inhoreat in the machine itsal. Decipherment of subs saquant mosaxges vith recovered keys.
5. lagngth of cyace detarmined by solution, depanding upon key indicators.
6. Cipher square or chast.
(a) Hom it is constructed primary form.
(b) Changed from primary into secondary square for corso
venience.
(e) Reciprocal relations however used. 留akes reconstruction of square easy.

FRINCIFLES USED IN THE SOLUTION OF THE A。T。\& S. TACHIRE CIPETEAT

 Sor mettors of tuporitance.
 part of any inderidual entruated enth the actual noris of ancipheping will lay all. the meseages anciphered by mans of the geme keys open to easy sols. ntion. Sinco caroleemess an the part of tho persomal to be entrusted with
 ow ay proeution nocessary in cipher work are to be oriocted, the existence
 to shom, eraniting not ondy an absolvioly infallible oparation of the machine by the psrsonnal, but also the theoratical absolute inderipherability of a messaise anciphered by means of a random-mixed, single, nonorepeating, running key, that the mechanics of the machines and certain features of the systom, are such that an attack is not only practicable, but easy under normal cone ditions.

It will be unnecessary to finto details of the oparation of the imehine, inasmuch as this report is addressed only to those who submitted it for examination.

We shall discuss the solution of taro cases:
(1) nere nossiges have bean encipwored incorrectly, two or more being in the same keys.
(2) Where messages have been anciphered correctily. non boing in the saus hoys.

1．SOIATION OF A CASE THERE THO MESSAGES MAVE BEEN EACCIPAFRED BR THE SARE REXS

 has ban anciphered by the keys indreated and thato through an oversight of carrelosenses，the sceond message wes then aciphored by the same begys beganming af aractly the sana porbit ia each key．Tha result of such an orroy is that both messages have bees enciphered by tho seme oingle koy． and may dispegard for the present the met that a double key was used． We pive the dstails of the solution of such a case ${ }_{0}$ not because there is angthing original or seamingly imposaible contained tharein，but because certain phases of the principles alucidated will bo used later in the dis－ cussion of a more complicated cess．

1．ETTPPQPSMIQ\＆RMDMXMMOX6MDP
 qYGIH JBPS5 DFJ5BKMMAXCGX30 ELHEDPY』刃又 otcoetc．CEL2WC3SKC

2。EYTPYQPAMTQPRRESJE7HPM4P3 MNOAUFVGCM SXECIX3I7PK3GJI TDWITSE7E2 KZ2P6SHI25 PLHY3 UQHAMTLDRTGESGCDVRJTXLQetco etc。etc。 4 HZUF CR 3 IX JP63Q UQ

We may disregard the first seven letters in both messages， since they deal with the key indicators．The nest four letters，$J_{s} M_{9} Y_{9} Q_{9}$ being common to both messages，probably represent 4425，（functions of machine：carriage return，line feed，letters）．We may begin working， therefore，from that point on，as shown belorg，putting the messages di－ rectis beneath each other．

 Hess.2 \Rightarrow ? P KGSITDVINSE7E2R22P6SHI25FLWY3

 Hess.1- "C3SKC
 踇ess.2-ECR3Ly IP63QUQ

How in all massages wey maxect to find beth a sertes of 3^{13} (spaces) and 4,2 (carriago potwn and line feen) y repeated irregularly at intervais throughout the messages. If we can locate in on of the messages a series of $3^{0} 3$ or the conbination 442, or any ot hese plain terts, then may find what the plain tear of the corresponding portion of the other message is. The corplete symnstry of the cipher square, giving rise to reciprocal relaw tions between the three elemento, seys, plain text and ciphsw, in a manner to be explained balcirg maks it poscible to recoyer the single keyo given the cipher ard the plain texto This is the first meakness in the apher systamo In this oxamplo, we nay atart of 1 br assuming that the plain text of one of the messages consists of nothing but a series of $3^{18} s_{y}$ and then Pind out what the plain tort of the other mesaage vold be on this assumpe tion, by reiexing to the cipher squase; that is, by finding the single fey letters concemed for the tentatively deciphered portions and anylying then to the corresponding portions in the other message. For erample, the first cipher lecters in the two messages as arranged for deciphersent are 4 and P_{0} If assum that the plain text equivalent of 4 is 3, then the key letter would be H_{g} in which case the plain text equivalent of P would be $G_{0} I_{9}$ on the other hend, we assume that the plain text equivalent of P is 3 , then the hey letter nould be I_{s} in which case the plain text equivalent of \& would be G also. But the result of assuming the key letter to ie 3, applying it to Lo which gives \mathbb{N}_{8} and then appiying $\$$ to P_{p} is also G_{g} and the result of aso suming the key lettor to be 3 s applying it to P_{g} which gives $L_{\text {, }}$ and then ap=
 cause of the complete reciprocity of the cipher square. It is ciear there Loref that wean omity for the present, the intermediate step of detemining
the ksy lettacgs and find aimply the plein text of the other message directly irom the sçuares，by considering only the three elements：assumed plain tert，cepher of messag l_{y} and wificr of massage 2．This can be done In one oparation by proceeding down the colums headed，for axample by 4 and P_{f} in the cipher square，until we come to 3 in one of the colunns，whereco upon it mill be found that G is in the other colum on the same line as 3， or we can proceed down the colums headed by 4 and 3 to P in one of the cole unns，whereupon G will be found to be opposite P in the other colum on the same line．Any three letters may be chosen to find the fourth in like manm
 will be noted that the lotters $4, P_{s} 3$ and G appeas at the four corners of a rectangle in the cipher square，and that there ase six tiwes 32 or 192 such rectangles in this squares，at the corners of which the letters $48 P_{8} 3$ and G ตill ajpearo Soe Fig．1。

FIG。1．CXPHER SNUARE

[^5]Applying this process of assuming one of the messages to consist
 on the Iina labeled "Equivalents of 3."

> FIG。2。

Message 1- MAXCGX3UELHYUPYJNXLX\& NTOESCR Message 2- 125 FLGY 30 QHAMWIDMTGE5GCDVMJT

fessage I- XIE Etco etc. Message 2
Equivalente of $3-\frac{X I Q}{3 T L}$ etco otc.

Wote the underlined portions of what is appexemily excelle nt plain toxto The firet one mpells out 30F which ouggests 30F3. pwentyotro letters
 that, we insed orFicg which suggests 30FFICE3, of 30FFICER(S)3, or 30FFICIAL3. Thess plain tart portions may or may not belong to the same messages since wheanot toll yet to wich message any tentatively deciphered portion balongs.

Lat us nom tym a saries of $44^{\circ} \mathrm{s}$ in glace of a series of $3^{\circ} \mathrm{s}$. In other vorde, we may assumo that one message consists exclusively of a series of $442^{\circ} s_{9}$ and see what the plain text would be for the other message. We may start by assuming 442 to occus at the beginning of one nessage, and see mhat it gives for the corresponding place in message 2 , thus:

> Message $1-4 \mathrm{R} M$
> Messgge $2-\mathrm{P} R \mathrm{R}$
> Assumed plain text $-4 \frac{4}{4}$
> Equivalents of $442-\mathrm{P} 4 \mathrm{H}$

Since PLH does not constitute any part of a plain text word, we try the sequance 442 one space to the right. Thus:

Assumed plain text Equivalents of 442 -	

This comination, 4VS, is likemise no part of a piain text
 the right, taking noto of all the good combinations which result in the othar message. Ryopg a ahort cut to this process is to fill out on one line the equivalents of $4 ;$ on a line belong the equivalents of 2 ; then the first two menbers of any sat of the three equivalonts of 4.42 mill be found by taking two sequent letters on the first of the iwo lines of equivalents, and the third membes of the set of three oquivalents will be found directly to the right of thess two letters on the lower line. Thus:

		$\mathrm{P}_{4} \mathrm{H}$
Messare 2-PRRSSJ	Equivalents of 442	(4.V S
Equivalents of 4-P4VK ZV	in succession:	(7×6
Equival ents of 20 HS 6 H		(82 H

Applying this process throughour both mossages, te have what is shomin Fig. 3, winich inciedos tho equivalents of 3 s since we may 38 well combins the results of both esperiments into on liguse to see il me can necs together such portions of the tentative deciphrment msy be given.

FIG. 3.

 Equivalonts of $3=67 L A X L B 04 H A 77 P E 30 F C Q G 332 J \Psi X Q$

翟essafe2-IX3X7PK 3GJITDWIVSE7E2KZ2P6SK

Hessage 1-MAXCGX3UELHYUPYJNXLKKMUOYSCR
 Equivalents of $3-\mathbb{V} S T$ INR 32 E 3 L 5 EAIHDNRHFFYKXEV Equivalents of $4-1$ D'RJ7IBJCF4VifKROSTIOEEBA?FI

Message $2-X$ Q Q etc.
Equivalents of 3-3TL
Equivalent 3 of $4-4 M V$ Equivalents of 2-2PH

Immeniataly praceding sor jarm (the rosult of a sories of seven
 can be joined to the ERA and then to the 3OF 3 ARM, we have the following:

Plain teris of one nessage -0RPS44233333333An Plain tast of other message a 3 GENERAI $30 F 3 A R M$ I 4

Tumediately following the place where ARP occurs; we have the following:

Plain tent of one nes suge \rightarrow NY 30 FFIC
Plain text of other inessage -44233333
We can join these two portions, and assuning that ORPS is a part
of the jame 35 IGMAI 3 CORPS, we have:
plain text of one messege - 3 SIGNAI 3 GORPS442333
Plain tert of other message = 3 ADJUTANT 3GENERAL 30
 Flain text of other massage oF 3 ARMF44233333

With this amount of intelligible text to build upon, it is not a dif 保cuit matter for the cyypographer to complete the deeipherment of these two messeges, applying the principles alucidated above, with this modifices tion: that continuation of tere in one messase results in continuation of text in the other without a recourse to the assumption of a series of $3^{1} s$ or $442^{\circ} \mathrm{s}$.

To recover the key we have but to take the plain text of either nessape, and one of the cipher mossages and refer to the cipher square. Were the tyo ressages exactly the same in Iength, it would be impossible to tell Whether the cipher message labeled 12 above applies to the plain text message beginning TO ALL OFFICERS, or to the other message. In this case, however, the messages are not the same length. The adings are as follows:

```
1.o.。○CEL2NC3SNC
2,.o..4HZUFCR3LXJP63QUQ
```


Ionger overlap is as follows:

It is evident that the second measage ends ．aco．VOCATE 3 GENERAL3，and we can norv attach each cipher to the proper plain text． Cipher message 1 begins TO AL工 OFFICERS：cipher measage 2p COL J B MMERSON。

The conpleted work appears as shown in Fig．4o The solution of such a case present no great difficulties to the decipherers although the process may be rather slow．

FIG。 40

2. SOIDTITV OF A CASE GIVEN FIVE MIFSAGES CORREGTIX

ENCIPHERED. NONE BEING IN THE SABE REXS.
It is clear that if ons koy is 1,000 Jettors in leagth and the other 999. the resultant single key could not begin to repeat itself until 999,000 Ietters have besn anciphereni. This iect obviously preciudes the possibility of an attack upon the sane pijnciples as explained in the preo caing sectiong since crexlappirg massagas would pory rarely, if evero occur axcept as the result of errors. Phile it is true that the resultant single koy is a monorepeating, rancom-mixed key, get the fact that this eingle key results from two keys which remain constant, though ohirining with pegularitys parmit's an attack to be made upon the systam.

It is eloar that if a message begingmith the koge 000 001, aftore 18000 latters have been anciphered, the longer bey mill have made one com plete revolution, and the ehorter key will have mede one complete revolution plus one lottar. Fosulting in buinging back tha Longer kay to 001 and the shorter key to 002. These tworolutions constitute what we shall tarma
 $2_{0} 000$ letterss, the longer lay vill have mede arachly two complete revolutionss the shorter one mill have made two lettere more than two complete revolutions, resultisg in beinging the longer kay back to 001. and the shorter key to 003. This mould be the end of the socond cycle. These relations existing betwen the two keys and the cycles are illustrated graphically in Figo 5, in enich sequent cycles are superimposed.

$$
\text { FIG. } 50
$$


```
    Shorter key = NVACXQ5RTSBQetc.o.RK&
Cycle 2. Longer weyg - B Q ZT 3PNV 6ORK ctco.。VX H
```



```
Cycle 3. Longer key - BQZV 3PNV 6OREetc. . - VXM
```



```
Cycle 40 Longer kay - BQZV 3PNV60R& etc. o VXM
    Shorter key = CXQ S & TSBQ etc.。OR&VNAC
```

 atco etc. etc. etc.
 \(-8\)
 We shall take as the messure of a complete cycle the longor key. Bote that we may regard the longer key as stationary, and merely shift the shorter key one letter to the left after each cycle has beon completed.

The basis of the attack on this case consists'in (1) determining and superimposing sequent cycies: (2) assuming the presence of such characters as 442 and 33333 , which cannot be eliminated and still have the machine funco tion properly: and (3) Pecopering the keys step by step simultaneously with decipherment.

In order to simplify the explanation of this case we shall show first how the double keys are recovered and tested as to correctness, using a cartain amount of cipher text with its corrasponding plain text, disregarding for the present the chestion of how the latter is obtained. He shall ase sume that the porcions of text given below balong to the same section of three asquent cy cles, and that wo have the plain tert for the flrst two cycles.

FIG: 6.

Now the successive gteps in the recovery of the double key are Illustrated graphically in Fig . 7 , and the subsequent discussion rill Fefes to the various sections of this figure. Ma do not know what the combination of letters in the longer and the shorter key is which produces cipher letter G From plain text 4 as the first cipher letter in cycie $I_{\text {s }}$ and cipher 2 from plain text 6 as the Pirst eipher letter in cycle 2. But we may assums in cycle 1 that the first letter in the longer key is A, in which case the cose responding letter on the shorter key must be Z, as shown in (1) of Figo 7: in cycle 2, remembering that the longer ley remains stationary, and that the shorter one shifts one space to the left after each cycle, if the first lottar in the longer key is A, then the corresponding letter in the shorter key, to produce cipher 2 from plain text 6, must bo G_{3} as show in (2) of Fig. ?

Now since the shorter koy has shifted one letter to the laft in cycle 2，the letter G can bo placed next to Z on the shorter key in cycle 1．See（3）of Fig．7．If the letter in the second position on the shorter key in cycle 1 is G ，in order to produce cipher \mathbb{N} fron plain text 4 ，the corresponding letter in the same cycle on the longer key must be ∇ ．See（4） of Fig．7．Whay now place 7 next to A on the longer key in cycle 2 ．See （5）of Fig．7．

In order to produce cipher letter S from plain text $1 /$ in conjunction with V as the letter in the longer key，the second letter on the shorter key in cycle 2 must be U_{0} See（6）of Pig。 7．The may now place U next to G on the shorter key in gycle 1，as shown in（7）of Fig．7，and find the corresponding letter on the longer key．It is 2。 See（8）of Pig．7。

The process set forth is continued，resulting finally in the reo construction of a double key wich will produce from the cipher lettars given in both cycles the correct corresponding plain text．Thus：

Cycle 1.

Cycle 2.

We may test the correctress of these keys by applying then to cycle 3．Thus：

	Ionger key $-\mathrm{A} \nabla 2 \mathrm{X} 7 \mathrm{M} \mathrm{V}$
	Shorter key a U D GX
Cycle 3	Cipher－－SE4YKI
	Plain text－ERALIE

Wh see here the ending of a word like GENERALII and we may feel
sure of our keys．
Now in the reconstruction of our keys above，we began arbitrarily with A as the first letter in the longer key．We might have begun fi ith ang other one of the 32 possible letters of which the cipher square is composed； and thus build up anothee pair of keys which，though in extemal appearance allhogethe different from the pair recovered abowes would serve just as well as the latter．In short，it is possible to derive 32 different pairs of keys，
any pair of wich might ba tha oxiginal pair, but since all pairs give equivelent results, it will be unnecessary to find out which pair was really the original.

In the praceding example, the deciphermant of superimposed portions of cycles 1 and 2 wes given, it havirg been stated that we should disregard for the moment the nuestion of how this decipherment was procured. We shall now proceed to the next step, which is to deeipher and reconstruct the keys simultaneouslyg given no deripherment whatever to start with. For this we shall show the steps in the actual solution of a problem phere only five messages have been intercepted. Since the principles to be elucio dated require but a small part of a larger body of teart, it will not be neco essary to give the whole of each of these five messages. le shall show first merely the key indicators and the length of each message. KEY TNDICATOFG AND LERGTH OF MTSSAGES.

1. 060-050. Length, 610 1etters. 2. 670-660. Length 555 Iatters. 3. 225-216. Jengthg 482 lettsrs. 4. 707-698. Length, 884 lotters. 5.591-583. Length. 572 letters.

Assuning keys of 1,000 and 999 letters, we may indicate graphically the relative positions in which these messages will fall by a diagram such as that shown in Fig. So In this diagram show exactly where each message begins and ends, what the key indicators are, etc. We can take for experiment any verical section of these suparimposed cycles. Let us toke the section consisting of 25 letters in each of messages $1,2,4$ and 5 as indicated by the serrated lines in Figo 8. This diagram shows that letters 1 to 25 of message 1,391 to 416 of message 2,354 to 379 of message 4 and 470 to 495 of message 5 fall within this section. 陷 therefore take those letters from our messayes. Thay are as follows:

Kossage 1. Letters 1-25.
$5 \Psi 27 C$ 3RNK 6 R72QA J4UX6 CIOAJ

Hessage 2．Lottere 391－416。
5 JBOB G3IT7 DTSVZ BTVIR 50BRG
Message 4o Letters 354－379．
XCHIS JQJUH WA5C3 WRME STWI
Message 5．Ietters 470－495。
CXURTH R37，2I P7ON2．GVRNP 26NTR
Let us place these four portions directly beneath one another a Thus：

FIG。9。

	3 RNa 6	R	J 4 N 6	C
Cycle $2-5 \mathrm{JBOB}$	G3D77	17SV2	BTVI	50 B
Cycle $3-\mathrm{XCHLT}$	JQJ JH	\％ H ¢ 3	WW W B ${ }^{\text {E }}$	ST7U
Cycle 4－CXUR W	4322X	F70\％7	$G V R \mathbb{N}$	26 N

财O if we can find the plain text for the series of letters which sall directly beneath one enother in cycles 1 and 2 we can begin to reconstruct the keys．It becomes a question therefore of assuming the plain text for the first fem lotters of cyles 1 and 2，recovering the keys upon the basis of such tentative decipherment and then testing Ehom upon cycles 3 and 4o If the tentative decipherment is correct，the application of the double kay to cycles 3 and 4 must resuit in the proo duction of intelligible tert．If such a result is not attained then it maans that the tentative decipherment upon which the recovered double key is based is not correct，and we proceed to tay a different tentative deco cipherment for cycles 1 and 2．The incorrect assunption can involve ei－ thereor both of the series of tentatively deciphered letters．Obviously， if we can be certain of the decipherment of one of the sexies we will be on surer ground and will have to modify our assumption only for the other of the series when our trials of recovered keys prove the tentative deo cipherment to be incorrect．Now the beginning of nearly every message can be assumed to be 4425 ，in order to insure a proper adjustment of the receiving machins．let us begin therefore by assuming that our message 1 starts with 4425，and since the portion of this message mich fells within the section to be analyzed contains letters 1 to 2．5，we may insert tentatively the decipherment of the slrst four letters of message 1 as 4425．Then let us assume for the moment that the porition directiy beneath
in message 2 consists of a sorios of $3^{i} \mathrm{~s}$, reconstruct the keys for these two portions (as illustrated in Fig. 7) and test them on cycles 3 and 4o The result of these steps is shown in Fig. 10 .

FIG. 20

These results prove that the assumption of a series of $3{ }^{\circ} \mathrm{s}$ for the beginning of cycle 2 is incorrect, since the letters given for cycles 3 and 4 form unintelligible text. We therefore try out another probable combination for message 2 , such as $\mathrm{Fe} 3_{0}$, retaining as our deciphernent of the corresponding portion of message 1 the combination 4425, and see what pasult this gives. A list of the polygraphs which would recurs most free quentiys and wich would be tested in conjunction with 4425 for message 1_{s} is given in the following table:

33333	30838	In39	3 MIT
3THE 3	ATI	MA-S.R	D3TH
3AND 3	hat 3	VER	53018
Inc3	EST3	ITS-3, H	534 H
ERE3	HE(3)S	T3TH	TER (3)
3THA	TION3	3ARE3	FP (3) A
EmT3	E371	N3TH	$6{ }^{1} 53$
HE(3)R(3)	HIS3	3 ALL 3	6853
	3083		

The successive trials take very little time, since the correcto ness of any trial is speadily proved or disproved by applying the resultant keys to cyclea 3 and 40 In this case, the trial of the polygraph 30N3 peo
sults in sxcollont combinations in cyclos 3 and 40 Thus：
FIG。11。
Ionger key－ASPy
Shores key HOPA
 As sumed plain teact－ 4 is 25

Longer kay－AS P
Shorter key＝OPA 7
Cycle 2．Cipher－ 5 JBOBG 3 Lete。
Assmed plain tart－ 30 is 3
Ionger key \propto AS P 踣
 Resultant plain text -442

Longer key－A S P
Shorkese key o A？
Gycle 4o Gipher CXU品壮 3 Z etco Resultant plain text－C O

It is ©yident that in cycle 3 सa have struck a＂carriage peturn and ling leed；${ }^{n}$ in cyele 4，We probaly have a word beginning with CO_{8} and （ can try to duild upon this digraph such worde as suggest themselves，as the following：

CODE	Craman	COMTPACP	
COLUTM	COESANT	Convor	
COLLECS	CONDITICAT	COPY	
COHE	CONNECT	CORRECTI	
Conitirg	CONS IDET	$\cos T$	atcoetco

It may take considerable time to test out all of the nords Which suggest themselves，but it is only the start which is leboxious， for after this the messages almost solve themselwes．Let us see what
 F．This enables us to place F beneath M in the lower key in cycle 3 ，and保 gives A as the piain texto letter．Given（？in cycle 4 ，the blank letter is R o

Filish the additionel lever key letters in place throuphout
our daci hernent we have the folloving：

FIG。12

Cyazo I.

Cyala 2.

> Eoneer koy - AS P
> Shortor key - HOPATFR
> Ciphere - 5E27C3RTotc.
> Assumad plein text - 4 \& 25

> Shartere key - OPA P P I
> Ciphers - 5 JBOBC 3 \& vico Assumed platn teart 30 KH 3

Ronger bey - AS P MA^{2}
Shortar luey - PA T F R
Cipher $=\mathbb{X H L T}$ SQ 8 etc.
Resultant glain text - 442 A
Longer key - AS PM
Shorter key - A 7 FR

Resuitant plats text $-\mathrm{CO} O \mathrm{H}$ IA $A \mathrm{~N}$
We are now ready to derermine the next letter in the longer key. In the colum headed by the loiter to be sought, in cycle 1 we heve (? 7 ; in

It is ovident that we want such a letter in the upper key as will produce the best pain taxt letrers from the given cipher lettors to add to the already daciphered taxt. We could try out all the lettors of the alphabet in turn, beginning with A_{2} thus:

 etc. etc. etc.
A short cut to the finding of these successive equivalents is accomplished by the use of the alphabats of the cipher square cut apart and mounted upon strips. It will be noticed that the successive equivalents for the combination 7 in cycle 1 are $F, Q, 7, \ldots \ldots$ for the combination ${ }_{B}^{F}$ in cycle $2, Q, F, G, \ldots \ldots$ for the combination ${\underset{T}{T}}_{R}^{l}$ in cycle $3, B, A_{9}, H_{3} \ldots \ldots$.

Bow note the alphabats in the cipher squars headed by the intersec= tion lettors of the combinations ${ }_{C}^{7}{ }_{9}^{F}{ }_{\mathrm{B}}^{\mathrm{F}}$ and $\mathrm{T}_{\mathrm{R}}^{\mathrm{R}}$, viz, $\mathrm{C}_{8} \mathrm{H}$, and G , pespectively。 In the C alphabet the sequence begins $F, Q_{0} 7, \ldots . \therefore$ It is evident that this alphabet will give the complete sequence of letters resulting from the application
of the successive letters of the alphabet to the combination C. The H alphabet mil likewise give the complete sequence of letters resulting from the application of the successive letters of the alphabot to the condination B : R and tio Galphebet will give those applyine to T o Therefore, if we take the alphabets of the cipher square, cut them apart, mount them on strips, select those headed by the letters $G_{\rho} H_{8}$ and G_{g} and set them so that the letters of all thre coincide throughout their length, wo have the complete series of letters resulting from the application of the successive letters of the alphabet to these combinations. The successive letters or equivalents of this operation will all be found on the same horisontal lines. By setting the 7 alphabet opposite our strips, tho letter in the longer key necessary to produce the equivas Ients which fall on the same line will be indicated on the 7 alphabet at the same time, as shown in Fig. 13.

FIG. 13. If the high Prequency letters appeas in rea on the se strips

7 CHG	we can begin by selecting that herizontal line wich contains all
AFQB	
BQFA	red letters. In this case, with V as the lettax in the longer key
C76H	
D 8 X 7	For the column under discussion, the threo high frequency letters,
E846	
FABQ	Tg R_{9} and 3 are given. These ${ }_{\text {g }}$ added to our partial decipherment,
G H C 7	
HG7C	give the following:

 ter in the shorter key，as ohown aiready in Fig． 1_{4} ．We may try out in cycle 2 the latter E after R ．This mould give Z as the letter in the longer key for that column．Applying z to all the comionations in this column，we have the following：

	FIG。 15
Cycle 1.	Longer key－AS PMVZ Shorter key－HOPATFRC Cípher－ 5 Y 27 C 3 RN otc。 Plain text－ 4425 T0
Cyele 2.	Lenger key－AS PMVZ Shorter hey－OPATFRC Cipher－ 5 JBOBG3Letc． Plain text－ 3 ON 3 RE
Cycle 3．	$\begin{aligned} & \text { Ionger key - ASPRVZ } \\ & \text { Shorter key - PATFRC } \\ & \text { Cipher -XCHETSQJ etc. } \\ & \text { Plain text }-442 A 3 H \end{aligned}$
Cycle de	

The first messaç begins vith $T O$ ，and we mey place a 3 after it．
This gives the lettor in the longer which applies to that colum，vizos 3； and this．in turng gives the plain text letter C following E in cycle 2 ，making it probable that the word is RECEIPT or RECEIVING or RECORD etc．Thus：

	PIG． 16.
Cycle 1.	Ionger key－AS PMV 3
	Shorter key－H OPA P PR C
	Cipher－5I27C3RNetc．
	Plain text－4425 T0 3
Cycle 2.	Longer key－A S P y V Z 3
	Shorter key－O P A 7 R C
	$\begin{aligned} \text { Cipher } & =5 \mathrm{JBOBG3} \mathrm{~L} \text { etco } \\ \text { Plain text } & =30 \mathrm{~N} 3 \mathrm{REC} \end{aligned}$
Cycie 3．	Ionger hey－ASPMVZ3
	Shorter key $=\frac{\text { PA 7FRC }}{\text { CHe }}$
Cycle 40	Ionger hey－AS P P V Z 3
	Shorter key－A 7 FR C
	Cipher－$\overline{\mathrm{CXURW}} \mathrm{K} 3 \mathrm{Z}$ etc。 Plain text - C OMMAND
	－180

Peom the combination (? in cycle 40 is given as the lettar in the short or koy, which, in turn, in cycile 3, in (L, gives the plain text lettar E, (? suggesting the word HEAVY, Te can test out the words which sugges't then selves in cycles 2 and 3, and see what we get in cycles 1 and 4; or wo can test out the words which suggest themselves in one cycle by applying the resultant key letters to any other cycle at the propar point.

Enough of the procedure has been shom to prove that the method is perfectly reacticeble. If hu25 tried out at the beginning of the message does not yield good results, there are many ot her places to try out the same combination further along; for this combination, 442, must appear at inter vals of appoximately 55 to 70 letters. Or, this failing, the ands of mescem ges can be tested for 6R5, i. Oo, "period." Should the decipherer be fortunate enough to ind two messages wich begin mithin one or two letters of one another in sequent cycles, then it nill bo unnecessary to assume any plais text other than has5. a_{0} if ho should find that the beginning of one message falls within the sane gection as the ond of enotherg the plain text will be 4425 and 645. Than a piace is reached whore the proper continuation of the messages is difficult by resson of the failure of the preceding taxt to sugo gest the succoading text, recourse is had again to the alphabet strips.

It is to be noted furthor that the se alphabet strips may be usod to find the letters in the shorter key as well as those in the lomger key. The arrangement of the messages into sequent cycles is such that the letters of the shorter key are similar on diagonal lines. Given the letters of the longer key and the cipher on a diagonal line, cae procseds to set the strips, applying the same principles as before, remembering only to add the high frequency combinations found diagonally on the strips in the messages as arranged for decipherment. The Ietter opposite the high frequency combination on the 7 alphabet, will be the diagonally constant lettar of the shoriter kay.

The complote decipherment together with the double key for these partial masagos is shown in Figo 17.

FIG。17。

ager Key - ASPMV7.3EK7OdNALIRBGU3 HNF	
Cipher	
lain t	-4425TO3ALI 3RESERVE30FFI
Shorter Xe	OPA PFRCLDPEXRTUMPA
ipher	
Lain t	
Longer Key - S P P! P3EK7OJNALIRBGU3HTFD	
Cipher	
Plain	2 CH
Longer key - ASPMVZ 3 EK 7 OJNALIRBGU3HTFD	
orters Key	7 FRCLDPR
Cipher	

We have seen that the knowledge of the length of the key sas necessary in order to arrenge the massages in the preceding case for dos ciphorment. Granting that the lengths of the tapes bearing the loys would ba changed from day to day, and that "breaks" between messages mould be mede. It would nevertheless be an easy matter for the oneny to suparimpose cycles correctiy, without a lmowledge of these lengths or these "breaks"s since the key indicators which musi accompany each message afford ample data for the placement of messages. For instance in the preceding case we can determine the cycles to which each message belongs relative to the first message, nerely by finding the difference between the koy indicacors for the several messages, though we may not know how much of a message is to be found in one cycle ard how mach in the next cycle. Thus, the indicators for messege 1 are 060 and 050 , the dirfarence being 10. Those fax mesgege 2 are 670 and 660 , the difforence also being 10. Therefore, the beginning of the second message is in the same cycle as the whole of message 10 The Indicators for message 3 are 225 and 216 , the difference being 9. This showe that message 3 , with respect to message 1 g is in cycle 2 ; since in the first massage the two kay tapes are 10 letters apart as regards their points of origing and in the third messege only nine letters aparto Fow the difierence
between 225 and 060 is 165 . So that we may place the firot letter of message 3 , which belongs to cycle 2, under the 165 th lotter of message 1. We can now fit in the portion of message 2 which belongs in the second cycle, since we note that the placement of message 3 allows rocm for 225 letters af aiessage 2 in cycle 2_{9} leaving 330 letters, vich mill be exactly enough to fill up 1,000 letters in the first cycle. However, wo do not need to os even this much, for we can mork with beginnings of messages. Thus, given the following series of key indicators for as many messages they can be arranged as shom in Fig. 18.

时ESAGES

$\begin{aligned} & \text { Hesse } \\ & \text { age } \end{aligned}$	Indicators	Difico erence	Cycde	Hess age	Indicators	Difyo erence	Cycle
1	420-385 ${ }^{\circ}$	35	2	14	212-189	23	23
2	430-399	37	5	15	5170483	34	2
3	320-291	29	7	1.6	476-456	20	26
4	755-729	26	30	17	706-687	19	17
5	830-802	28	8	18	468-450	18	18
6	103-079	24	12	19	316-299	27	19
7	465-433	32	4	20	$011-994$	16	20
8	001-978	21	25	21	050-035	15	21
9	$670=643$	27	9	22	200-186	$1{ }_{3}$	22
10	210-177	33	3	23	286-273	13	23
11	035-010	25	11	24	095~083	12	24
12	2120190	22	14	25	001.989	11	25
13	516-486	30	6				

There are several points whore an attack may be maries when the messages are arranged as shown in Figa 18. Boin keys may be pecovered com= pletely or nearly so. No matter how the kay indicators may be used given a sufficient amount of intercespted trafic, anough toxt can be obtained to make it possible to arrange the eycles with peference to one another so that a solution may be achioved. The cryptographer is guided by the key indicators in his arrangement of messages preparatory to decipherment and not by the order in which thoy happened to have been sent.

ADDENDUR I．
OPINION JLASED UPON THE STCNAL CORPS ${ }^{\circ}$ RODIFIED IETHOD OF USING
THE A．T．G T．MACFINE CIPHER．
The purpose of this memoranums is to get forth our opinion，wirit the reasons， that the A．To a Pomehine ciphor as now used by the Signal Corps is decipherable by the same principles as already established and as already aditited to be effeco tive by the representatives of the 良． $\mathrm{I}_{0} \mathrm{D}_{0}$ and the Signal Corps．

The following is a transcrif of the fules for the operation of the machine for cipher purposes，as seif forth in a pencil memorandum by It．Col．J．O．哖auborgne． Order of Punching Tape。

```
10 In e feedo
6 letters represent ins armexis of tape attetage as PPETHI（000525）
```

During Capt．
Powlers tim
enciphering bogan hore．
Letter ∞ or letters designating cipher offics，as＂xp＂，＂Npe＂etc．
Pleure shift（6）
Ciphar bureau serial number of masage
Space（3）
Figures（6）
Chack or word count in summels
letters 1 ino 1oco（5m2）
Place Ryon
Date
知的 100
Carsiage raturn hiss lecd．
Baxdy 1919
Enciphering
bagins
RTame address body of message－signature
Enciphering ends．
One line feed 15 carriage returns．
Note - Tapes A and B vary in length depending unon munber of letters to be sent in one day．For example，wo might use 700 on the A tape and 699 on the B ，or 650 on the A tape and 365 on the B_{2} etc．

The differences betmen the original method and the modified method of using the machine can be summarized as follows：

GIGINAL BGHHOD
ROODTFIED METHOD

TAPES

1．Che trone is one letter longer than the other tapa．

2．The muber of lattars in each tape is constant from day to day．

1．One tape may be any number of lettors longer than the other tape．

2．The tapas yary from day to day．

SHIFTTIG THE TAPES

3. The tapes are either not shifted at all between messages or are shifted together the same number of letters.
4. The tapes are shifted an unequal number of letters after ach message. For example, the A tape may be shifted 10 spaces, the B tape 140

BETINAIING OF ENCIPHERTD METSSACE

4. Each message begins with the functions represented by $4 l_{6} 25$.
5. The enciphered portion of message begins at once with the name and address of the person to whom the message is sent.

USE OF FUNCT IONS AND PUNCTUATIOA

5. All functions and purictuation are used as in ordinary typorritten matter.
6. Sonte functions and punctuation may or may not be used, io eos there may be spaces (3) between words, commas (6N5), paragraphs (4.4233333) etcog with the axception of (4, 2) uhich is absolutely necessary for the functioning of the machine.

Wo shall now show that those differences as set forth above do not change the nature of the cipher in a manner so as to prevent an attack by exactiy the same principles as elucidated before, first, because it is unnecessary to know either the lengths of the tapes, or by how much they differ, secondly, because the shifting of the two tapes an unequal number of letters has no bearing upon the case at all, third, that evan should the encipherment begin with some unknown text and not with the functions 4425 that there is a sufficient number of possibilities to try out in other places; and fourth, that the presence or absence of certain functions and of punctuation may make the problem a littie nore difficult but by no means unsolvahle。

1. THE TAFES.

In order to aliminate all ambiguity we shall define the vord "cycle" and the phrase "sequent cycles" as follows:
(a) CYCLE. That relation which exists between the two key tapes after one tape has made one complete revolution. Gycles may be measured by either the longer trape om the shortat tapey ant in our werk we hay wed the longer tape as the masure of a cycle.
(b) SEQUENT CYCEES. Two cycles are sequent when the longer tape occupies the sama absolute position in both cycles and the shorter tape is displaced one and only one iettor in one cycle as compered with the other. In all the drawinge and figures this displacment is to the left. Whan the key indicators for ons
neseag differ by $2 n$ anount, X, and those for another message differ by $X \neq 10 \mathrm{X}-I_{\text {g }}$ then wo haic a case of sequent cycles. Then the lengths of the koy tapes are unknown this differsnce must be oxpressed in terms of aither a positive or a negative quantityo Example: Rey indicators 075 -

In the original method the knomiedge that the two tapes differed by but one letter in length enabled us to say that sequent cycles represented a dism piscement of the shorter tape of but one letter each time. inisg in turn means. that sequent revolutions of the longer tape coincide with sequent eycles. In other words, a progression from say the end of the second revalution to the end of the third rerolution means a progression of one complete cycle and represents a displacement of me letter of the shorter tape.

If the tapes difier in length by more than one letter, for exemple, if the tro tapas difier by 50 latters, then the displacement of the shorter tape will be 50 latters per revalution of the longer tapes in which case it is clear that segant revolutions of the longor tape rill not coincide with sequent cyclos.

Plg. 18 and the discussion ayplying to it shows clearly that these messages were suparimposed by reierancs to the key indicators onlyo The crucial point is this, that in the solution of a sinple long messege a knowledge of the lengths of the key tapss is absolutoly essential; vithout this knowledge the length of a eyele and the displacement in sequent cycles never can be dotermined, which in turn means an inability to supsrimpose cycles so that the principles of solution can be applied. But in the solution of a series of messages a knomiedge of the lengths of the key tapes is entirely unnecessary, since sequent cycles are determined not from such a knowledge but solely from the key indicators for the respective messages. The displacement in seguent revolutions may be any number of letters, a matter of no concern to us, but the displacement in seruent cycles (according to cur definition of the phrase) is almeys one letter, and there can bo no doubt that that messages in sequent cycles can be found, as will ba illustrated below. To sum up, therefore, a knowledge of the lengths of the two taper is entir aly unnecossaxy for the suparimposition of cycles, preparatory to deciphement of a series of maseagea.

2. DATIY VARIATTOY IN LERGTHS OF TAPES.

The Pact that there is a daily variation in the lengths of the tapes in the modified method as compared with a constant length in the original method has no bearing upon the case because as stated in the preceding eections a knomledge of the lengths of the tapes is unnecessary for the solution of a series of messages, and secondly, because the fact of constancy in the lengths (as was the case in the original nethod) is ger se of no importance in such a solution.

3. SHTFTITG THE TAPES.

The shifting of the tapes, together or singly, equal or unequal distances in all instances has no bearing upon the case, beceuse such shifing does not preclude the possibility of the occurrence of sequent cycles. As a matter of Pact, the unequal ghifting of the tapes. after each message, is a highly danger ous procedure because it makes possible the a ccident al enciphernent of two meso. 38ges by an idontical resultant sirgnte key, io eos such proceeding introduces many possibilities of "ovorlaps." Every case in which the difference between the key indicators is the sam represents a case of an "overlap".
4. FUNCTIONS EDTMMATED AT BEGINNTING.

The fact that in the original method messages began to be enciphered with the functions 4425 only eliminated tho necessity of assuning plain text for the beginning of a message, $i_{0} 0_{0}$ if we know that each message begins with 4 li25, the trial. of the most frequently recurring polygraphs in the corresponding position in the next sequent cycle is all that is necessary to get a startio H owever, in the modified method the re remain many other points of attack, for the enciphere ment begins with a neme and an address. This must contain, in military messages, titles, initials, punctuation and functions such as figure and letter shifts, period, spaces. All of these afford easy openings for attacks especially in view of the fact that the sending and the receiving stations can be determined with a fair degree of probability.

5. EL.IMTMATING PUNGTUATION Etc.

The elimination of all punctuation, and such functions as space and paragraph would not complicate the solution any more than their absence in ordinary cipher messages does. Howevars the functions 442 (cermage return and line feed) are
absciutoly necessazy for the proper oporation of the machine and therofore their alinination is iagossibla. The length of lines is not highly variable in ature, and 14 is reasonobly certain that in the body of the message the functions 442 nast recup at intarveis approsimating 60 lottorw.

The indicators and longths of the following series of 17 nessages inlusw trate the foregoing points. This sepies of hypothetical messages was dremen up according to the rules as laid down in the memorandur submitted by the Signal Corpa, and represont what happens in the traffic of only one station of possibly four. This station has been essigned one fourth of the length of one tapes in aceordance with the plan set forth. The tapes for the day are 700 and 670 lotters in length. Station 1 has been assigned the region from 001 to 160 on the shorter taps. At no time mast the difference between the key indicators exceed 160_{2} othere wise Station 1 mill be encrosching upon the region assigned to another station,
 hypprhstical messages are es Pollows:

TAPES

```
700-670
```


- 10

Hessage 1. $\begin{aligned} & 076-055(\mathrm{a})=21(\mathrm{~b}) \\ & \frac{361-361}{437-4.16(\mathrm{c})}(\mathrm{d})\end{aligned}$
2. $442-427$ (a) $=25(\mathrm{~b})$
$\frac{206-206}{448-623}(\mathrm{c})$
3. $418-362(\mathrm{a})=56(\mathrm{~b})$
$\frac{368-368}{786-730}(c$
786-730
$\frac{700-670}{086-060}(\mathrm{~d})$
4. $\quad 090-068(\mathrm{a})=22(\mathrm{~b})$
$\frac{585-585}{675}-653(\mathrm{c})$
$675-653$ (d)
5. $362-262(\mathrm{a})=100(\mathrm{~b})$
$\frac{287-287}{69-549}(\mathrm{c})$
$649-549$ (d)
6. $655-550$ (a) $=105$ (b)
$688-688(\mathrm{c})$
$1343-1238$
700-670 (a)
$643=568$ (d)
7. $649-597(\mathrm{a})=52(\mathrm{~b})$
$\frac{305-305}{954}$ (c)
954-902
$\frac{700-670(\mathrm{e})}{254-232}$ (d)
8. $259=232(\mathrm{a})=27$ (b)
$\frac{323-323}{52-555}$ (c)
$9 \quad 195-076(\mathrm{a})=119(\mathrm{~b})$ $\frac{447-447}{42-523}$ (c)
（解

SURMARY

In this Addendum we shall show:
\&. hoz the test messages submitted by the Signal Corps vere deciphered.
b. that the present system, which employs key tapes differing in length by more than one letter, is much more unsafe then the former method in which key tapes differing in length by one and only one letter were used.
C. how the irisls for possible plein tert are reduced to simple terms, ensbling a great number of trisis to be mede within eshort tiad.
d. methods of solving cases not involving sequent cycles.

1. PRIHCIPLES USED IN THE SOLUTION OF THE TEST MESSAGES

It may be said at the outset that the principles which were involyed in the solution were basically those set forth in the original manuscript and its Addendum 1 . The steps vere as Pollows:
a. Fipst, the plain text preamble for each message fas read. This geve the key indicators, the serial number of the message, the number of words, the place of origin and date. For example, the first message sent by the station at Hoboken geve the following preamble:

EWWPPQA6Q53656QR52HQ3P3OF3E3HOBOKEN3NJ3SEPT36WW36TRP55P442

"rranslated," this would reed es follows:

$322: 001$ (Series)A (No.) 14 (words) HQ P(ort) of E(mberkation) Hoboken NJ Sept 22 5:40 P(in)

Then the total number of characters in the message was determined by count, beginning with the charecter imuediately following the 442 and extending to the beginning of the series of $2^{\circ} s$ or $4^{i} s$ at the and of the message.

By ciassifying the tapes in accordance vith their points of origin, and then in accordance vith their serisl numbers, the following inst resuited:

List of Messages

Messege Noo	$\frac{\text { Indicetors }}{1}$
2	$126 * 001$ 2
$406 * 281$	
4	$324 * 304$
5	$539 * 562$
6	$771 * 155$
7	$261 * 432$

WASHINGTON SERIES

Length	$\begin{aligned} & \text { Message } \\ & \text { No. } \end{aligned}$	Indicators	Length
278	8	687 *228	491
321	9	393 - 082	182
380	10	577*266	438
213	11	230: 067	252
230	12	484 * 321	304
276	13	002*626	331
423	14	$335=320$	484

$\begin{gathered} \text { Message } \\ \text { Ho. } \end{gathered}$	Indicetors	Length	$\begin{gathered} \text { ID : A414 } \\ \text { Message } \\ \text { No. } \\ \hline \end{gathered}$	48 Indicators	Length
15	034*167	314	46	$474 * 123$	421
16	$350 * 483$	341	47	110*546	319
17	693 " 187	237	48	431*228	359
18	$145 * 426$	264	49	005*589	400
19	887 * 053	333	50	407*352	326
20	746*388	281	52	$532 * 625$	273
22	426 * 216	326	53	020 * 261	309
23	754 - 544	270	54	$331 * 572$	150
24	239 - 177	629	55	483*085	403
25	083. 169	1959	56	101 506	403
26	470 * 213	228	57	$506 * 256$	378
27	$700=443$	304	58	097: 143	492
29	658:549	308	60	$591 * 004$	221
30	181*220	481	61	027*221	381
31	664 - 064	214	62	408 -602	237
32	093 * 280	410	63	647 - 202	327
33	$505 * 053$	254	64	189 . 531	295
34	698*309	236	65	486 \# 189	300
35	$212 * 547$	244	67	198*049	424
37	735-431	362	68	624 - 475	411
38	312:156	323	69	250 259	318
39	637*481	491	70	570 - 579 .	262
40	$350=335$	142	71	047 *204	161
41	487 * 479	318	72	210 * 367	208
42	020 * 160	275	73	420 577	202
43	297 \# 437	374	74		149
44	673*984	206	75	775*293	133
45	$094 * 382$	378			
	HOBOKEN SERIES				
Message NO.	Indicstors	Length	$\begin{gathered} \text { Message } \\ \text { No. } \end{gathered}$	Indicators	Length
1	322 * 527	191	19	$772 * 605$	294
2	515 \# 194	532	20	$186 * 971$	215
3	971*089	195	21	403 \# 479	456
4	$460 \div 287$	203	22	$733 * 298$	370
5	665 - 492	253	23	446 \# 031	314
6	$133 * 108$	229	24	762 * 578	407
7	364*339	429	25	479*117	165
8	008* 3981	3388	27	121 \# 002	366
10	770 \# 254	213	28	489*370	751
11	198*469	177	29	455*484	1089
12	377*009	245	30	759*297	396
13	624*256	235	31	370 * 056	1200
14	$733 * 493$	358		785*619	562
15	434*214	275 345	33 34	$942 * 544$ $300 * 430$	523
16	711*491	345 178	34 35	027:305	495
18	$451-379$	224			

NEH YORK SERIES

$\begin{gathered} \begin{array}{c} \text { Hessage } \\ \text { Mo } \end{array} \\ \hline \end{gathered}$	Indicators	Length	$\begin{gathered} \text { Message } \\ \mathrm{No} \\ \hline \end{gathered}$	Indicators	Length
1	724*001	157	13	576*002	236
2	$086 \div 160$	307	14	$714 * 240$	272
3	$395 * 469$	235	15	$201 * 514$	302
4	891 - 067	761	16	$505 * 179$	235
	$618 * 191$	205	17	$742 * 416$	231
6	$038=398$	365	18	188*010	276
7	$405: 126$	329	19	418:288	284
8	$736-457$	577	20	$752 * 574$	134
9	$528 * 397$	316	21	$101 * 071$	128
10	059*076	585	22	$231 * 201$	133
11	646 *024	359	23	$366: 336$	143
12	220 * 385	253	24	$511 * 481$	91

NORFOLK SERIES

Message \qquad	Indicators	Length
$\frac{7}{1}$	$518 * 001$	514
2	$247 * 517$	320
3	569*200	271
4	$055 * 473$	274
5	$331 * 110$	279
6	612 *391	388
7	$215 * 142$	163
8	380*307	139
19	521*448	446 677
11	074*297	407
12	483 -067	227
13	712 - 296	273
14	200*571	279
15	$481 * 213$	195
16	$678 * 410$	990

B. Next, the lengths of the two keys were determined from a majhemitical analysis of the foregoing lists. Consider, for example, the first few messages emanating from Washington, paying particular attention to the key indicators, and the length of each message. For exmmple, Washington 1 begins at 126 * 001 and contains 278 letters. It is evident that at the end of the mes: sage the keys would be at points, hereafter designeted as "loci," 278 letters beyond the original loci. Thus:

The key indicators for Washington 2 are $406 * 281$, two in advance, respectively, of the loci where Hashington 1 left off. It is evident that before beginning on the next message Washington 2, which hes 322 letters, the encipherer "slipped" both key tepes two letters. Adding the number of letters here again to the key indicators, we have the following:

Washington 3 begins at 729 * 604, in other words, after a "slip" of 1 letter in each key.

Now Washington 3 has 380 letters. Let us add 380 to the key indicators. Thus:

The result should corresponde approxiwately with the key indicators for the next wessage, but Washington 4 gives as indica. tors 324 * 347. It is evident, therefore, that both key tapes have completed one revolution and are 323 and 346 letters, respectively, beyond their initial loci, viz, 001 . Is now we find the difference between the theoretical pair of indicators, $1109 * 984$, and the actual pair, $324 \% 347$, we shall begin to approximate the lengths of the keys. Thus:

$$
\underset{4}{\text { Washington }} \begin{aligned}
& \text { (theoretical initial locii } \\
& \text { actual }
\end{aligned} \frac{1109 * 984}{324 * 347} \begin{aligned}
& 785 * 637
\end{aligned}
$$

We begin to suspect that the longer key is about 785 letters in length, the shorter, about 637. We must, therefore, determine not their approximate lengths, but their exact lengths. If there were no slip between Washington 3 and Washington 4, then the numbers 785 and 637 would coincide with the exact lengths of the keys. We do not know whether there has been a silp between these two messages, or, if there has been, whether the slip was the same for both keys. But we do not have to determine that

[^6]immediately. Let us turn our attention to a case in thich only one of the key tapes completes a revolution uithin a message. For example, consider Washington 5, with key indicators 539\% 562, leagth 230 Letters; and Washington 6 , with key indicators $771 \geqslant 155$. length 276 letters. Let us calculate as before.

Washingtion 5	$\ldots .5$	$539 * 562$
Length	\ldots.	$\frac{230}{769 * 792}$

If there has been a slip of two letters on both key tapes, then Washington 6 should begin ot 771 *794. But in reality, the sey indicators for this message are 771 155. Still assuming an equal slip of two letters, then locus $792+2=794$, which coincides with locus 155 . Taking the difference, $794-155=639$, which would be the exact length of the short key. Above, ye had detemmined the approximate length as 637.

Applying the same process to determine the exact length of the long key, teking Washington 6 and 7 for calculation, we find the following:

$$
\begin{array}{llll}
\text { Washington } 6 & \ldots .771 * 155 \\
\text { Length } & \ldots .276 & 2047 & 276 \\
\hline 134
\end{array}
$$

Kashington 7 begins at 261 432. Since the indicetors as regards the short key differ only by 1 , we assume an equal slip of 1 for both keys. Therefore locus $1047+1=1048$, which coincides tith locus 261. Then, likewise, 1048-261 = 787, the exact length of the long key. Our approximate length wes 785, as determined above.

It now remains to test these determinations on all messages, their correctness being besed upon the consistency with Which the theoretical key indicators for each message agree with the actual, taking into account the assumption that the two key tapes were slipped an equal distance in every case. There may be a veriation in the amount of slip between successive messages, but so long as in each case both tapes are slipped through the same distance, the result would be exactly the same as though each message zere $1,2,3 \ldots$ letters longer then is actually the cese, with no slip thatever involved. A careful study of the calculations which follow will show that there could not possibly be any doubt about the correctness of the two determinations, 787 and 639. There are several discrepancies, it is true, but they were due to errors, or carelessness on the part of the encipherer, as will be discussed later.

Before giving the complete calculations for the series of messages, we shall introduce into the discussion a feature Hhich concerns that ve have termed latent cycles. (For definition of the ordinary cycle see page 2 of Addendum 1.)

Consider Washington 3, for example; it begins at $729 * 604$, or in the 125 th cycle and ends at 322 \# 345 , or in the minus 23 rd cycle. The message involves, therefore, at least two cycles. But there is in resilty an additional cycle involved. For, after the message hes proceeded for 36 letters, the short key is at locus 640, which coincides with locus 001 , since the key is 639 letters in length. But thile the short key is at locus 001, the

REF ID:A4148948

long key is at locus 729 36, or 765. Arter the 36th letter, therepore, the message proceeds in eycle $765-001$, or cycle 764. This te term the hidden or letent cyele, in contrealstinction with the oper op pitent cycles (uhich are shown by the key indicators themselves), beceuse the existence of the latent cycle is disclosed only by the calculations made as result of the determine. tion of the exact lengths of the iwo key tapes. These relations cen be demonstrated very sixply, thus:

Hashingtom 3 (1ength 380 letters)	$\begin{array}{r} 729 * 604 \\ 36: 36 \\ \hline 765 * 640 \end{array}$	Cycle 125
	or	
	765*001	Cycle 764

But this message is 380 letters in lemgth and continues to be onciphered after the 36th letter. Proceeding for 23 letters more, the long key reaches the locus 788 , which is in reality locus 001 , since the loag key is 787 letters in length. The short tey, efter 23 letters, is at locus 024. The difference betveen the two 1001001 and 024 is therefore -23, and the messege is now procesding in the latent -23rd cycle. It contimues to do so until the end of the message. These relations are sumerized mathematically in standsrd form as follows:

$\begin{aligned} & \text { Message } \\ & \text { Ho. } \end{aligned}$	Indicatops		$\frac{1}{10 t a l}$	Cycle
Washington 3	729*604	36		125
	$\frac{36}{765}-36$			
	765×001	23		764
	23 23			
	788 -024			
	$\begin{array}{r}0013 \\ 321 \quad 321 \\ \hline\end{array}$	321	380	-23
End of Wash.	322*345			

The calculations which apply to the entire series of messages ere as follows:

WASHIMGTOIF SERIES

Message HO.	Indicators	Part	$\frac{\mathrm{h}}{\mathrm{~T} \text { ota }}$	Cycle
1	126*001	278	278	225
	$278 \quad 278$			
	404 279			
	$(2-2)$			
2	406 * 281	322	322	
	322322			
	728 ${ }^{\text {\# }} 603$,
	720 $\frac{1}{104}$			
3	$36 \quad 36$	36		
	765 604			

Message $\xrightarrow{\mathrm{HO}{ }^{-}}$	Indicators		员otal	Cxcle
20	746*388	42		
	$42 \quad 42$			
	788-430			
	001 * 430	210		-429
	$210 \quad 210$			
	211*640			
	$\begin{array}{r} 2117001 \\ 29 \\ \hline \end{array}$	29	281	210
	240 2030			
	1 2			
21	242032	182	182	
	182182			
	. 424×214			
	(2 2)			
22	426:216	326	326	
	$326-326$			
	752-542			
23	$\left.\frac{(2}{754} 5544\right)$			
	$34 \quad 34$	34		
	788\%578			
	001 578	62		-577
	063-640			
	063 * 001			62
	$174-174$	174	270	
	$\begin{array}{r} 237 \\ (275 \\ 2 \end{array}$			
24	239:177	463		
	$463 \quad 463$			
	702-640			
	$702 * 001$	86		701
	-86-86			
	788 \% 087			
	$001 * 087$ 80	80	629	-86
	081 \% 167			
	(2 2)			
25	083* 169	471		
	471471			
	554 -640			
	$554 * 001$			553
	234-234	234		
	788 - 235			
	001 * 235	405		-234
	405405			
	406 \% 640			
	$406=001$	382		405
	382382			
	788*383			
	$001 * 383$			-382
	$\frac{257-257}{}$	257		
	$258 \cdot 640$			
	$258 \geqslant 001$			257
	211-211	211	1960	
	469 212			
	$(1-1)$			
26 470*213				

REF ID:A4148948

Message No.	Indicators	Length		Cryco
$\begin{gathered} 52 \\ \operatorname{cont}^{8} \mathrm{~d} \end{gathered}$	788 - 242			
	001 -242			-242
	23 13	13	269	
	$\begin{gathered} 014 \times 255 \\ (6 \\ 6 \end{gathered}$			
53:	020 \% 261			
	306306	306	306	
	326 567			
	(5 5)			
54	331 572			
	68.68	68		
	399 640			
	399 80 8008	80	148	398
	4796081			
	(4)4)			
55	483: 085			
	305305	305		
	788 \#390			
	001 * 390			-389
	94 94.	94	399	
	095484			
56	$\frac{(6-6)}{101} 490$			
	150150	150		
	251*640			
	251. 001			250
	249 500	249	399	
	$\begin{gathered} 500 \\ \binom{250}{6} \end{gathered}$			
57	506325			
	$282-282$	282		
	788			
	001*538	92	374	-537
	093 630			
	(6) 6)			
58	$098 \quad 636$	4		
	103 640			
	103*001			102
	639639	639		
	742.640			
	$742 * 001$			741
	46 768	46		
	788×047			
	001 - 047			-46
	$86 \quad 86$	86	775	
	$\begin{array}{r} 087133 \\ 10 \quad 10 \\ \hline \end{array}$			
59	097×143			
	487-487	487	487	
	$\begin{gathered} 584 \\ 17 \\ \hline \end{gathered}$			
60	$591 * 637$			

Message NO.	REF ID:A4148948			*
	Indicators		$\frac{\mathrm{Q}}{\mathrm{Total}}$	
68 $\operatorname{cons}{ }^{\circ} d^{2}$	002 * 640			
	$002 * 008$			1
	$\frac{242}{244} 242$	242	407	
	$\begin{array}{cc} 2444 & 243 \\ (6 & 16) \end{array}$			
69	$\frac{(6}{250}-\frac{26)}{259}$			
	315315	315	315	
	565*574			
	(5 5)			
70	$\begin{array}{r} 570 \quad 579 \\ 62 \quad 62 \end{array}$	61		
	631-640			
	631*001			630
	$257 \quad 157$	157		
	788 - 158			
	$\begin{array}{r} 001 \quad 158 \\ 42 \end{array}$	42	259	-157
	$043=200$			
71	047 \% 204			
	159159	159	159	
	$\begin{gathered} 206-363 \\ (4) \end{gathered}$			
72	210:367			
	206 206	206	206	
	$\begin{aligned} & 416 " 573 \\ & (4 \end{aligned}$			
73	420*577			
	6363	63		
	483 . 640			
	$483 * 001$			482
	$137-137$	137	200	
	$\begin{gathered} 620 \\ (438 \\ 4 \end{gathered}$			
74	624×142			
	$147 \quad 147$	147	247	
	$774 \geqslant 289$			
75	775 - 293			
	13 13	13		
	788-316			
	$001 * 316$			-315
	$\frac{120}{121}-\frac{120}{436}$	120	133	

HOBOREAS SERTES

$\begin{gathered} \text { Message } \\ \text { Ho. } \end{gathered}$	Indicatops	Length		Cycle			
10	$770 * 254$	18		-271			
	18-18						
	788						
	001 * 272						
	295195	195	213				
	196*467						
	$(2) 2)$						
11	198*469	177	177	368			
	$177-177$						
	375 -646						
	$\left.\begin{array}{r} 375 * 007 \\ (2 \end{array}\right)$						
12	377-009		245				
	$245 \quad 245$	245					
	622*254						
	2 2)						
13	624 "256		164		-419		
	$164 \quad 264$						
	788 - 420						
	001 * 420						
	71.71	72	235				
	$\begin{array}{r} 072 \\ (2951 \\ \hline 2 \end{array}$						
14	074 -493	147		220			
	147147						
	221 640						
	221*001						
	211-211	211	358				
	432×212						
	$\frac{(2}{434 \div 214}$	275	275				
15	275275						
	709=489						
	(2, 2)						
16	711*491	77		-567			
	77.77						
	788 568						
	001*568	72					
	$\frac{72}{073} 72$						
	073*001			72			
	196196	196	345				
	$\begin{array}{r} 1 \\ (2) \\ \hline \end{array}$						
17	271 * 199	178	1.78				
	$\frac{178}{449}-\frac{178}{377}$						
	$\begin{array}{r} 449: 377 \\ 12 \\ \hline \end{array}$						
18	451 379	224	224				
	224 224						
	675:603						
	(2 2)						
19	677 -605	3576					
	$\begin{array}{r} 35 \\ 712 \end{array} 340$						
	712*001						
	$\frac{76.76}{788.077}$	76					
	788.077						
	001 * 077			-76			
	$183 \quad 183$	183	294				
	184 ${ }^{\text {\# }} 260$						

Message No.	Indicators	Lerenfth		Cycle
$\begin{gathered} 19 \\ \text { comit } d_{0} \\ 20 \end{gathered}$	$\begin{array}{r} 184 * 260 \\ (2 \\ \hline \end{array}$			
	186 262			
	$215 \quad 215$	215	215	
	401 477			
21	$\frac{(203 * 479}{403}$			
	161161	161		
	564:640			
	$564 * 001$			563
	$224 \quad 224$	224		
	788 -225			
	$001 * 225$			-224
	71 71	71	456	
	$\left.\begin{array}{l} 0723296 \\ (2 \end{array} 2\right)$			
22	074 298			
	$342 \quad 342$	342		
	416.640			
	$416 \% 001$			415
	28 28	28	370	
	4448029			
	(24 - 2)			
23	$\begin{array}{lll} 446 & 031 \\ 314 \quad 314 \\ \hline \end{array}$	314	314	
	760 $=345$			
	(2 2)			
24	762*347			
	26 26	26		
	788*373			
	001*373	267		-372
	$\frac{61}{268} 640$			
	$268 \% 001$			267
	214 -114	114	407	
	$\begin{array}{r} 382 * 115 \\ (2 \quad 2) \\ \hline \end{array}$			
25	$384 * 117$			
	$165-165$	165	165	
	$549 \% 282$			
26	$552 \div 285$			
	236236	236		
	788*521			
	001 * 521			-520
	118118	118	354	
	$\begin{array}{r} 119639 \\ (2) \end{array}$			
27	121 641			
	121*002			119
	366366	366	366	
	487 $\quad 368$			
28	$\frac{(289-370}{489}$			
	$270 \quad 270$	270		
	759 - 640			
	759*001			758
	29-29	29		

Message No.	Indicators	Length		Cycle
$\stackrel{28}{\operatorname{cont}^{0} \mathrm{~d} .}$	788:030			
	001* 030			-29
	452452	452	751	
	453-482			
29	$\left(2{ }^{(25} 2\right)$			
	455*484			
	156-156	156		
	$611: 640$			
	611 * 001			610
	$177 \quad 177$	177		
	788* 178			
	001* 178			-177
	$\frac{462 \cdot 462}{463}=640$	462		
	$463 * 001$			462
	294 294	294	1089	
	$\begin{array}{r} 757 \\ 295 \\ 2 \end{array}$			
30	759:297			
	29 29	29		
	788* 326			
	001 * 326			-325
	$\frac{314}{315}$	314		
	$315 * 001$			314
	$53 \quad 53$	53	396	
	$\begin{aligned} & 368 \% 054 \\ & (2 \end{aligned}$			
31	370 \% 056			
	$418 \quad 418$	418		
	788 - 474			
	$001 * 474$			-473
	$166 \quad 166$	166		
	167*640			
	167*001			
	604 604	604	1188	
	$\begin{aligned} & 771 \\ & (14 \\ & 1405 \\ & 14 \end{aligned}$			
32	785*619			
	788 3	3		
	788 622			
	$001 * 622$	18		
	$\frac{18}{019}$ - 1840	18		
	019*001			18
	535.535	535	556	
	$\begin{gathered} 554 \\ 58 \\ 8 \end{gathered}$			
	$562 * 544$			
33	9696	96		
	658 \# 640			
	658 * 001			657
	$130 \quad 130$	130		
	788*131			
	001* 131			-130
	292 292	292	578	
	293*423			
	$(7) 71$			
34	300*430			

限essage №.	Indicators	Part	otal	Cxcle
34	$300 \% 430$	210		
	210 210			
	$510 \% 640$			
	510 \# 001			509
	$278 \quad 278$	278		
	$788 \% 279$			
	001 * 279			-278
	19 19	12	507	
	020\%298			
	$(7 \quad 7)$			
35	027*305	335		
	$335-335$			
	. $362=640$			
	$160 \cdot 160$	160	495	361
	$\stackrel{T}{7}$		49	

NEU YORK SERIES

$\begin{gathered} \text { Messege } \\ \text { Mo. } \end{gathered}$	Indicators	$\mathrm{Parta}^{\frac{3}{3}}$	otal	Cycle	
1	[714*001]	74		713	
	$74 \quad 74$				
	788*075				
	$\begin{array}{r} 002=\begin{array}{c} 075 \\ 83 \end{array} \end{array}$	83	157	-74	
	084 158				
	(2 12)				
2	086*160	307	307		
	$307 \quad 307$				
	393 -467				
	$\frac{2}{395} 469$				
3	171.171	171			
	566:640				
	566*001			565	
	64-64	64	235		
	$\begin{gathered} 630 \\ \left(\begin{array}{c} 065 \\ 2 \end{array}\right. \\ \hline \end{gathered}$				
4	632.067	156			
	$\underline{156} 156$				
	788 - 223			-222	
	$417 \quad 417$	417			
	$418: 640$				
	418 \# 001			417	
	188×188	188	761		
	606*189				

$\begin{gathered} \text { 58ssage } \\ \hline 190 . \end{gathered}$	Imdiostors		Iotal	Cycle
${ }_{5}^{6}{ }_{5}^{6}$	$\begin{array}{r} 606 * 189 \\ (12 \times 12) \end{array}$			
	6 ¢8\% 198			
	$370 \quad 170$	170		
	1788-3615			
	$001 \sim 361$			-360
	35-35	35	205	
	O36 390			
	$\frac{(2}{038}-308$			
6	242242	242		
	2807640			
	280*001			279
	123 123	123	365	
	403 -124			
	(2, 2)			
7	405*126			
	329 329	329	329	
	(734 20.45			
8	$736 \div 457$			
	$52 \quad 52$	52		
	788*509			
	001*509			-508
	$131-131$	131		
	132.640			
	132 \# 001			131
	394-394	394	577	
	426 * 395			
	(2) 2)			
9	243343	243		
	$\frac{243}{671}-\frac{243}{640}$	243		
	671*001			670
	$17 \quad 17$	27		
	688 -028			
	001* 018			-17
	$56 \quad 56$	56	316	
	057*074			
	(2 2)			
10	059 * 076			
	$\frac{564}{623} \cdot 564$	564		
	623*001			622
	2121	21	585	
	644 प 022			
	(2)			
11	046×024			
	142142	142		
	788* 166			
	001 * 166			-165
	$217 \quad 217$	217	359	
	218*383			
	(2 2)			
12	220*385			

REF ID:A4148948

Message No.	Indicators	Part ${ }_{\text {Length }}^{\text {la }}$ Total		Cycle
21	101*071	128	128	
	$128 \quad 128$			
	229 199			
22	$\frac{(2}{231}-\frac{2)}{201}$	133		
	233 133		133	
	364:334			

NORFOLK SERIES

Message No.	Indicators	$\text { Part } \frac{\text { Leng }}{1 a 1}$	$\frac{\mathrm{n}}{\mathrm{~T} \text { otal }}$	Cycle
15	481*213			
	$195 \quad 195$	195	195	
	$676=408$			
16	$678 \div 410$			
	$110 \quad 110$	110		
	788:520			
	001 * 520			-519
	120120	120		
	121 640			
	121*001			120
	$\frac{639}{760} 639$	639		
	760* 640			
	$760 * 001$ 28	28		759
	788*029			
	001* 029			-28
	93-93	23	990	
	094*122			

Remerks on Calculations

It is to be noted that these calculations exhibit a remarkable consistency, and corroborate the calculated lengths of the two keys, 787 and 639, respectively. By the consistency of the calculations we mean that it would be utterly impossible to have the calculated silp between messages equal for both keys in every case as a result of coincidence; for, unless the assumed lengths of the two keys be correct, the slip would be unequal and inconsistent in many places. The fact that they are equal means that the encipherer was consistent in slipping both tapes an equal distance every time. The idea behind an equal slip is not clear, for it entirely defeats its own purpose, which is to prevent the enemy from determining the lengths of the keys. Had the encipherer slipped them unequal distances in every case, being careful, of course, to slip the short tape further than the long, no such consistency would have been possible to uncover. But, in this case, the pos. sibility of overlapping messages, would be greatly increased, as will be shown subsequently.

As mentioned above, there are several discrepancies, due to errors on the part of the encipherer. That they are errors, and not intentional operations intended to deceive the enemy is shown by their nature. For example, the slip between Washington 68 and 69 is 2*12. Evidently the encipherer meant to have Washington 69 begin at loci incervels eway from where Weshington 68 ended, and probably misread the number 249 on the short tape, making it 259. This becomes the same as though he had slipped the long tape 2 letters and the short one 12. In the New York messages another error of 10 is involved between messages 4 and 5 . Had this error not occurred there would have been afforded about twice as many possible polnts of attack as were actually the cese, as H111 be shown leter.

Exeellent corroboration for the determined lengtias of keys is afforded by firading the total numbers of letters in all messages emansting from each stetion, adding the total amourit of slip and then calculating as if only one message were concerned. The final result should coincide with the result obtained from calculations for the individual messages. Thus:

(1) Weshington Series

(2) Hoboken Serles

Initial loci	322	001
Total number of letters enc	13503	13503
Total slip	76	76
Sum	01	13580
Minus 17 revs. of long key	79	-13419
Final loci	522	161

(3) New York Series

(4) Morfolk Series

Inftial ioci	518	001
Total number of letters enc	584.1	5841
Total silp	31	31
Sum	490	8873
Minus 8 revs. Of long key ${ }_{\text {a }}$	-6296	-5751
Find 9 loci	094	122

REF ID:A4148948

In each case it will be noted that the final loci coincide With those given by the individual calculations, in perfect accord with the requipements based upon keys. 787 and 639 letters in length.

The purpose of all these calculations was to find such cycles as rould form the basis of an attack. A table was made, therefore, showing all the eycles, both plus and minus, involved in the series of messages (see Table 1).

The most favorable relation of cycles for an attack being three sequent cycles (for definition see page 2 of Addendum 1), an examination of this table was made with a view to finding three sequent cycles. These were found, showing first in teble in cycles 415,416, and 417, messages Hoboken 22, Norfolk 11, and New York $4, ~ r e s p e c t i v e l y$.

By referming to the calculations on pages 6-25, it will be seen thst the three sequent cycles begin in reality vith Hoboken 19. latent cycle 711; Norfolk 9, latent cycle 712; and New York 1, latent cycle 713. They end with Hoboken 24, latent cycle 415; Norfolk'13, latent cycle 416 ; and New York 4 , latent cycle 417. The extent of the three sequent cycles is indiceted in the calculations for these messages by the breckets.

Had no errors been made in encipherment, these three sets of messages would have proceeded along in three sequent cycles to the following points: Hoboken 29, latent cycle -29; Norfolk 16, to its completion in latent cycle -28; New York 10, latent cycle (theoreticel or what it should have been) -27. The error referred to on page 25 made between New York 4 and 5 therefore cuts the number of possible points of attack in half.
c. The messages involved were immediately transcribed in the usual manner in the form of three sequent cycles. There were two excellent points of attack in'these messages when arranged in this form. They were excellent because two messages began in one case at exactly the sawe point; in the other case, very near the same point. One of these cases 2 s shown below. The initial points of all messages shown hereinafter will be designated by a vertical double bar surmounted by an asterisk.)

Upper key loci	282186	
Loter key loci	256260	
NTEW YORK 2	\ldots... 6XTSQWQZKWCMCPVIDY3GD3A6JM	Cycle -74
Upper key loci	1182186	
Lower key loci	257261	
NORFOLK 10	- SXH7GNERHP3QSNI 3 MCZVCTRVOU	Cycle -75
Upper key loci	\#186	
Lover key loci	262	
HOBOKEN 20	1 3CYFJIKXIK3F4PKESILYEQ ...	Cycle -76

TABLE 1

Discribution of Cyclos

Plus
$(101-200)$

2	(Washington 58)
109	(Washington 27)
119	(Hoboken 27)
120	(NorPolk 26
131	(Mew York 8)
249	(Washington 66)
156	(Washington 37)
163	(Washington 10)
173	(Hoboken 2)

PIus $(201-300)$

203	(Washington 47)
210	(Washington 20$)$
220	(Washington 14)
221	(Norsolk 4)
250	(Washington 56)
257	(Washington 25
267	(Hoboken 24)
268	(Norfolk 14)
279	(New York 6
297	(Washiagton 64)

Minus
 $(0-100)$

-17 (Vew York 9)
-23 Washington 3)
-28 Norfolk 16)
-29 Hoboken 28)
-39 Washington 29)
-46 Washington 58)
$\left\{\begin{array}{c}-74 \\ 75\end{array}\right.$ Hew York I)
$\{-75$ (Horfolk 9)
(Hoboken 19)
(Washingion 24)
-93 Weshington 51

Minus
(201-200)
-123 (Hoboken 7)

- 130 (Hoboken 33)
-133 Washington 14)
- 140 (Weshington 41)
-157 (Washington 70)
-165 (New York 11)
- 171 (Weshington 6)
-177 (Hoboken 29)
-178 New York 17)
-187 (Washington 31)
-194 (Washington 60)

Minus (201-300)

-222 (New York 4)
-224 (Hoboken 21)
-234 (Washington 25)
-241 (Washington 52)
-270 (Norfolk 1)
-271 (Hoboken 10)
-278 (Hoboken 34)
-281 (Hashington 17)
-288 (Washington 44)

REF ID:A4148948
Plus
$(301-400)$
304

321

314
321
326 351

361
368
369 398

	$\begin{gathered} \text { Plus } \\ (401-500) \\ \hline \end{gathered}$
40	(Washington 25)
[415	(Hoboken 22)
$\{416$	(Norfolk 11)
417	(New York 4)
445	(Washington 62)
452	(Washington 32
462	(Weshington 29)
468	(Washington 7)
482	(Washington 73)
499	(Weshington 43

Plus (501-600)
506

509

51.6

546

$$
553
$$

564

593

(Washington 16)
(Hoboken 34)
Hoboken 9)
(Norfolk 1)
(Washington 52)
(Washington 25)
(Hoboken 21)
(Norfolk 10)
(Washington 60)

Plus
(601-700)
610
616
622
630
647
657
664
670
694
(Washington 35)
Hoboken 30)
Hoboken 1)
New York 15)
(Washington 45)
(Hashington 18)
Hoboken 35)
Hoboken 17)
Morfoik 2)
Washington 54)

Plus
(401-500)

Minus
(501-600)

-508	(New York 8)
-519	(Morfolk 16)
-520	(Hoboken 26)
-530	(Washington 27)
-537	(Washington 57)
¢-565	(New York 3)
$\{-566$	(Norfolk 6)
-567	(Hoboken 16)
-577	(Washington 23)
-584	(Washington 49)

Minus (601-700)
-609 (New York 20)
-614
-624 (Washington 5)
-631 (Washington 12)
-638 (Washington $39($
-654 (Washington 68)

Plus
 (701-800)

701 (Hashington 24)
712 Norfolk 9)
713 New York 1)
741 Washington 58)
748 Washington 29
758 Hoboken 28)
759 Norfolk 16)
764 Washington 3)

Minus (701-800)

REF ID:A4148948

d. Since the messages begin with an address, it was only necessary to try out all the addresses that would be likely to occur in such messages. The modus operandi of these trials is given in Section 3 of this Addendum. Suffice it here to sey that the assumption of TRANSPORTATION3SERVICE, as the beginning of Hoboken 20, and ADJOTAMP3GENERAL, as the beginning of Norfolk 10 , y1elded LEYZEQUIPRENT for New York 2. There was no doubt now that the messages were broken. Subsequent work meant merely the continuetion of plain text in three cycles and ihe simultaneous reconstruction of the keys. As an aid in this process, one of labor and petience, it was found necessary to decipher perts of many other messages in cycles as close as possible to these invee. For example, the closest cycle to cycle -76 was cyole -86 , represented by Washington 25. As soon as the first fifteen letters of the short key had been reconstructed, viz, 260 to 275, these in conjunction with longer key letters in loci 186 to 201 were applied to Washington 25 at locus 286 in the longer key. They yielded as plain text 3EACH3DAY3AS3THE. By applying the same ateps to other messages, ylaces in cycles -93, -123, -130, -133, -141, and also in $-46,-39,-29,-28,-17$, and -9 were deciphered, all with a view to expediting the work of rebuilding the keys, which was all that was necessary to complete solution since we had no interest In the messages, per se. The work vas divided between two sections of operetors, one section working forward from locus 186 of the long key, the other working backward until the work joined. Even with this number of eycles to work upon, the work went slowly because of errors in the enclpherment. It was completed, however, In a comparatively short time, and the resultant keys were tested upon Isolated fragments of new messages and found to be correct.

It is ncessery to add that the messages were broken within ten minutes after one of those very slight but ever-present errors in transcribing the letters of the original three sequent cycles had been uncovered. This emox intolvod the inadyertent omission, by one of our clerical staff, of a single letter from Morfolk 9 at a loclis in advance of 186, and resulted in baffling all efforts to solution for every hour subsequent to the finding and the transaription of the three sequent cycles.
2. WHY KEY TAPES DIFPERING IN LENGTH BY MORE THAN ONE IETTER ARE CRXPTOGRAPHICALIY UNSAFE

In the preliminary summery of this addendum it was stated that the present system of using this machine employing key tapes which differ in length by more than one letter is much more unsaf'e then the original method employing key tapes which differ in length by only one letter. The reason for this is that the present system not only makes the production of overiaps very possible, but also makes their production, under certaln circumstances, a legitimate function of the machine. In fact, the messages pre sented for test made a hairbreadth escape from such a fate? The point is well worth detailed explanation.

The question which first arises in this connection is: Given the initial indicators for each of four stations, can the cycles through which sil messages will pass be determined beforehand? The answer is in the affirmative. In fect, the cycles through which each serfes of measages will pass themselves go through definite cycles. Let us refer to the calculations for the Hoboken series and set down in the form of a list the successive plus cycles involved:

HOBOKEN SERIES OF CYCLES

321
173
25
664
516
368
220
72
711
563
415
267
119
758
610
462
314
166
18
657
509
361

The numbers in this list bear definite relations to one another, relations which are absolutely determined by the displacement, or difference in the lengths of the two key tapes. In this case the difference between the lengths of the two key tapes is 787-639 148. This means that if we make our calculations upon the basis of a stationary long key tape, the displacement of the short key tape will be 148 letters per revolution of the long key tape. This in turn means that the progression of cycles for each series of messages, as determined by the difference between the key indicators, will differ by the constant factor 148. Let us see if this is exemplified in the series of cycle numbers given above for the Hoboken messages.

Series as calculated Series as observed

Initial cycle	321		321
2nd cycle of series	$\frac{148}{173}$		173
3 ad cycle of series	$\frac{148}{25}$	\cdots	
			25

If we continue to subtract 148 , we would begin to introduce minus eycles, end since it is more advantageous to deal only with plus cycles, let us convert cycle 25 to the next higher multiple of this cycie number, by adding the length of the longer key tape to it. 1 Then:

[^7]That is cycle 25 is exactiy the same as cycle 812. Now let us deduct 148, as before:

812
748
664
This agrees with the cycle number given by our list. We could have combined the two steps of adding 787 and then deducting 148 in one step, by edding 639, the length of the short key, to 25. This yould give the next cycle number. Thus,

635
664
Let us continue
Series as calculated Series as observed

Thus, it is apparent that every cycle through which each series of messages will pass can be predetermined, provided alwaxs that no errors are made in the encipherment. For, if the relative positions of the two key tapes be changed in the slightest degree at any time in the enciphering process, the natural or predetermined series of cycles will be modified. Such modifications actually occurred in the four series of test messages, entirely as a result of errors on the part of the encipherer.

We give in the two lists uhich follow the series of cycles Which actually resulted from the encipherment, together uith the series which theoretically should have resulted. Each series hes been arranged with reference to the others in a manner designed to show the production of sequent cycles.

TABLE 2

THEORETICAL SERIES
ACTUAL SERIES
 125
764 616
$\binom{468}{459}^{7}$
311
163
654
654
506
358
210
62
$\stackrel{7}{5} 53$
405
257
109 758 452 304 156 647
499 351 203 55
694
546 546
398 250 32 173 25
664

321		
173		
25		
664		
516	517	
368	369	
220	221	
72	73	
711	712	713
563	564	565
415	416	$(417)^{3}$
267	268	427
119	120	279
758	759	131
610		770
462		622
314		474
166		326
18		178
657		30
509		

${ }^{1}$ Error made in slipping the two key tapes between Weshington 7 and 8.
${ }^{2}$ Brror made in slipping the two key tapes between Washington 68 and 69.
${ }^{\text {Error made }}$ in slipping the two key tepes between Net York 4 and 5.

A careful study of Table 2 discloses some very important facts.
In the first place, the possibility of the production of overlaps is demonstrated very readily. Washington 1 began with the key indicators $126 \% 001$, and Hoboken 1 began with the key indicators 322 * 001. Had Hoboken 1 begun with the long key at 321 instead of 322, the Hoboken series would have begun immediately to overlap the Washington series from the latter ${ }^{\text {B }}$ s cycle 320 on to the end of the Hoboken messages. Again, Norfolk 1 began with the key indicators 518 *001. Had Norfolk 1 begun with the long key at 517 instead of 518, or had Hoboken 1 begun with the long key at 323 instead of 322, the Hoboken and Norfolk series would have overlapped for the whole length of the Norfolk series. Again, New York began with key indicators 714 * 001, and Norfolk 1 began with key indicators $518 * 001$. Had New York 1 begun with the long key at 713 instesd of 714 , or had Norfolk 1 begun with the long key at 519 instead of 518, the Norfolk and New York series would have overlapped.

The beginning points for each series were undoubtediy determined by dividing the length of the long key by four lin order to divide the long tape into four neerly equel parts) and adding this number to the long key starting point for each series, consecutively. Thus, $787+4=196$. Given the long key starting point for Washington las 2.26 , the long key starting point for Hoboken 1 was $126+196=322$; that for Norfolk 1 was $322+196=518$; that for New York 1 was $518+196=714$.

It is impossible, of course, to divide a prime number into four equal integral parts. In the case under study the length of the long tape is 787. The number 196 is the nearest integral fourth part of 787 , It is true, but the division of the long tape into four parts is meant to be only approximate. The intentions as understood by us, is to allot to each station a length of the long key proportionate to its requirements as regards its day"s activity. With certain key lengths, the sllotment on the basis of equal activity of four stations vill resulti in the production of overlaps. Ifkewise, with other key lengths, the allotment on the basis of unequal activity will result in the production of overlaps. Examples will be given.

Returning to this case, had the number 195 been taken as the amount to be added consecutively, instead of 196, here are the starting points that would have resulted for the four series:

	Hoboken	Horfolk	New yo
(126 :	(321*	(516*001)	(711*001

Had this been the case a four-fold overlap would have been produced. Note the sequences of cycle numbers.

TABLE 3

Washington (126~001) 125	Hoboken $(321: 001)$	$\begin{gathered} \text { Norfolk } \\ (526 \geqslant 001) \end{gathered}$	$\begin{gathered} \text { New York } \\ (711 * 001) \end{gathered}$
764			
616			
468		-	
320	320		
172	172		
24	24		
663	663		
515	515	515	
367	367	367	
219	219	219	
71	71	71	
710	710	710	710
562	562	562	562
etc.	etc.	etc.	etc.

The cycle numbers would have coincided for the four series from cycle 710 onwards, and the four series of messages would have orerlapped one another.

That this is not stretching the possibilities of the situation, consider the results of the adoption of 787 and 669 as the two lengths. These numbers do not possess a common factor and are not multiples of one snother, so thet their choice as key lengths is legitimate and likely. The displacement 1s.787-669 118. The Q llotment we will sssume to be equal; the starting point for Washington 1, as 126\%001. The starting points for the other series and the cycles are as follows:

TABLE 4

$\frac{\text { Hashington } 1}{\left.(126)^{20} 001\right)}$	Hoboken 1 $(322 \div 001)$	$\frac{\text { Norfolk } 1}{(318(001)}$	$\frac{\text { New York I }}{(714}$
Cycles	Cycles	Cycles	Cycles
1125	1321	1517	1713
27	2203	2399	2595
3676	385	3281	3477
4558	4. 754	4163	4359
5440	5636	545	5241
6322	6518	6714	6123
7204	7.400	7596	75
886	8282	8478	8674
9755	9164	9360	9556
10637	1046	10242	10438
11519	11715	11124	11320
12401	12597	126	12202
13283	13479	13675	1384
14165	14361	14557	14753
1547	15243	15439	15635
16716	1.6125	16321	16517

Note aow that a four-fold overlap would. te the legitimate result of the choice of these lengths. This case is interesting also because it would produce four sequent cycles in addition to the overlaps. In other vords, had the length of the short key in the series of test messages been 30 letters more then it was, not only would there bave been produced four sequent cycles but also a four-fold overlap!

It may bo desirable to give further instances. Let us assume two key lengths 811 and 753, two legitimate lengths. On the basis of equal activity, theraliotient would be 811 * $4=202$ letters of the long tape per station. Suppose we start with the indicators 125 年 001 for the first message of the Washington series. The inftial points for the other series will be as shown below:

Weshington 1	Hoboken 1	Morfolk 1	Nev York 1
(125 \% 001)	(328*002)	(530*001)	(732 3001)

Now let us calculate the various cycles and tabulate them. The displacement is 812-753=58.

TABIE 5

Moite thet 8 ovo overlaps would be produced; the first cycle of the Norlollz series yould overiap the 2and eycle of the Washingcon sories; tae first eycle of the New Yort saries yould overlap the 2and cyele of the Hobokem series.

Lat us mow tate a case of differential allotment, assuming sat the relative ectivitios or fous isterions are in the proportion of 4:2:2:1. These proporitions apporimsie the actual proportions Ia tios serice of test messages. We will adopt as key lengths 751 and 651. The dispiacemert is 100 per revolution or the long tape. Allotment of the basis of the ratios $4: 2: 1: 1$ gives as the initial polints for fbe four stations the following ladicators:

Table 6

$\begin{aligned} & \text { Wasbingtom } 1 \\ & (200 \Leftrightarrow 001)^{1} \end{aligned}$	$\begin{gathered} \text { Hobokge } \\ (472 \Leftrightarrow 001) \end{gathered}$	$\begin{aligned} & \text { Norfolk } \\ & (658 * 008) \end{aligned}$	$\begin{aligned} & \text { Her York I } \\ & 751 \% 001) \end{aligned}$
Cycles	Cycles	Cycles	Cycles
99	1471	1657	$\rightarrow 1750$
$\rightarrow 2750$	2371	2557	2.650
3650	3271	3550	$3 \cdot 550$
4550	4171	4450	4450
5450	571	5350	5350
6350	6.722	6250	6250

The New Yorly series of messages overiap the Washington series immediately after the latter has entered its second revolution of the long tape.

Here is another instance. Let the allotment be in the proportion 12:1:1:, and let the keys be 769 and 598. The initial points would be as follous:

TABIE 7

Here the Hoboken series would make a single overlap with the Washington series beginning with cycle 354; a three-fold overlap would be produced with the Mosifolk serles when cycle 524 would be reached; and when cycle 694 would be reached the New York sertes would join and make a four-fold overlap.

Another case where overlaps would be produced legitimately in an equal allotment is as follows: Let us assume two keys 917 and 723. Equal allotments of the long tape would give the following initial points:

TABLE 8

Here we would have a three-fold overlap; the Hoboken and Washington series would first overlap, then the Norfolk series would join in.

Take the case of the lengths of tapes involved in these test messages. Let us assume an allotment on the besis of 3:1:1:. The beginning points and the cycles for the four stations are as follows:

TABLE 9

The Norfolk series would overlap, the Washington series when the latter enter's eycle 649.

Such cases are not at all merely theoretical instances, but would be bound to happen. The solution of a case involving a single overiap, even for a short distance is very easy. To demonstrete, lot us'assume that the New York series of messages had begun $k i t h$ the key indicators 713 . OOL instead of 723 * 001 in Morfolk 9. A brief trial of possible beginnings for New York 1 would have resulted in ylelding the excellent plain text shown below, when the address TRANSPORTATION3SERVICE hed been assumed.

REF ID:A4148948

Long key loci	713	723	$73 z$
Short key loci	001	010	020

New York
TTE TDRMUC IZOTHGM4
HESDREUCIZGUH6M4YNFP5
TRANSPORTATIONZSERVICE

Norfolk 9 Cipher

Resultant plain Text

As has already been stated the occurrence of such overlaps is not due to cerelessness or errors, but is e legitimate function of the method, viz, the introduction of a difference of more than 1 between successive revolutions. The mathematical conditions under which these legitimste overlape will be produced may be stated as follows:

When, during the enciphering process in two series of messages, the displecement becomes equal to the initial difference between the cycle numbers of the starting points, the two series of messages will begin to overlap. For example, given two series of messages, A and B, with the starting points $375 * 001$ and $765 * 001$, respectively, (keys 787 and 639 in length), after 5112 letters have been enciphered in Series A, an overlap will be produced with series B. Thus:

Series A	Series B
$373 * 001$	$765 * 001$
51125112	
54875113 7255112 $65 \% 001$ $765 * 001$.	

This result could have been predicted from the rule given above. The calculetions which would show the same result theoretically are as follows:

Cycle difference of initisi points $\quad 764-374=390$
Displacement after 8 revolutions of
the short tape and 6 revolutions
of the long tape, that is,
$(639 \times 8)-(787 \times 6) \quad . \quad 5112-4722=390$
The calculations for the case in which the two key lengths were 787 and 669 are as. follows:

Hoboken 1	$322 * 001$	Cycle 321	$787 \times 13=10231$			
Wesh. 1	$126 * 001$			\quad	$669 \times 15=10035$	
---:	:---					

In other words, given the starting points of the Hoboken and Washington series as 322 * 001 and $126 * 001$, respectively, after 15 revolutions of the short tape ifand 13 of the long at the same time), the Hoboken series would begin to overlap the Washington series.

Another important fact disclosed by a study of Table 2, giving the series of cycles produced in the test messages, is that the
cycles produced as the two key tapes progress go through definite cycles themselves. It is clear that from any given starting points, if the encipherment proceeds without interruption or error until the total possible number of different pairs of key letters has been exhausted, the two key tapes would go through every one of the possible cycles, in this case 787. It would be possible in such a case to select any number of sequent cycles for anslysis, since ouery cycle yould be included in the series of cycles used by the station. But since the method of using the texpes by allotiment is intended to keep each station within certain limits as regerds the number of cycles at its disposal, it follows that this normal relation does not hold, and the series of cycles used by one of four stations may or may not include two or more sequent cycles. Since the members of the chain of cycles differ by a constant interval (governed by the aisplacement), it is possible to select messages the cycles for which are separated by the "smallest possi-ble interval." For example, note the Washington list in Table 2. In this series of messages the smallest possible interval between any two cycles is 7; that is, the nearest cycla to cycle 125 is cycie 118; the nearest cycle to 764 is 757 , or 7 removed, etc. The smallest possible interval is a function of two factors: (1) the displacoment and (2) the allotment. The smallest possible interval is really determined by the least possible displacement within the limits set by the allotment as the encipherment continues. This, ve may explain as follows:

Given 001 * 001 as the staring point, after 787 letters have been enciphered, the long key is at 001 , the short key at $\angle(001+787)-6397=149$. The displacement of the short key is therefore $149-001=148$. After 787 more letters have been enciphered, the long tape is again at 001 , the short tape at $\langle(149+787)-6397=297$. The displacement of the short tape is therefore $297-001=296$. Continuing this calculation, let us find the relative positions of the two tapes at the end of a few more revolutions.

Disolacements

Relative positions at end of 2nd rev. of long tape $001 * 297.296$

n	n	ท	17	\cdots	3 ra	n	\cdots	"	"	001		445	444
"	n	n	\#	"	$4 t h$	n	n	n	1	001		593	592
"	"	11	"	n	5th	"	"	"	"	001		7\% ${ }^{4}$	64

Since the short key is only 639 letters in length, then locus 741 is the same as locus 102. Therefore the displscement after the 5th revolution of the long tape is 101 letters. Now the successive displacements as determined above my be found by adding 148 successively and making proper deduction for the length of the short key. Let us see what the displacement is after a fey more revolutions.

Revolutions of Long Key	Displacement
1	148
2	296
3	444
4	592
5	101
6	249
7	397
8	545
9	54
10	202
11	350
12	498
13	7

As a check on this calculation, note the following:

787	639
13	1361
2361	
10231	
	10394
10224	

$$
\text { Displacement }=10231-10224
$$

That is, after 13 revolutions of the long key tape, during which the short tape has made 16 revolutions, the displacement of the short tape is 7. We may sey, therefore, that with the two key lengths given, viz, 787 and 639, after approximately 10250 letters have been enciphered, the cycle in which the message will be proceeding at the time will be 7 removed from the initial cycle. If the amount of traffic for any station reaches or exceeds this number of letters, it becomes possible to select messages, all emanating from the same station, the cycles for which are only 7 intervals apart. This is actually the case in the series of test messages. If only one station were concerned, when the long tape would have made 639 complete revolutions, the short tape would have made 787 complete revolutions, the displacement would be 0 , and every possible cycle would have been represented.

It is clear, therefore, that by alloting a definite number of cycles to each station, the smallest possible interval between any of its cycles is a function of the leest possible displacement and the number of cycles which has been allotted to the station. With certain lengins the least possible displacement may become unity Within the limits of the allotment of a station, and thus sequent cycles for messages from the same station become possible as a legitimate function of the system. For example, the two key lengths 811 and 753 yield the list of cycles given in Table 5. The list of the Washington series shows that the smallest possible interval is 1; for example, we have cycle 125 at the start, and cycle 124 as the fifteenth cycle in the serfes. The following list gives the series of displacements for these two key lenths.

Revolutions of Long Mape	Displacoment
1	58
2	116
3	174
4	232
5	290
6	348
7	406
8	524
9	580
10	638
11	696
12	754

That is after 13 revolutions of the long tape the net displacement would be 1, and the oycle upon which the message would then be about to enter would be airectiy sequent with the initial cycle. After 26 revolutions of the long tape, there vould be tiaree sequent cycles, and the series of messeges would then run along in three sequent cycles.

It would be very easy to find a great many cases where the least possible displacement within the allotment limits is 2, 3, 4, or 5 intervels. Jn another section of this Addendum, we shall show how the possession of three sequent cycies is no longer absolutely essential before a solution can be achieved. Cases where the cycles are separated by the same interval greater than 1 or by different intervals (within certain limits) are susceptible of solution.
3. RETHODS FOR EAPEDITTMG THE TRTALS NECESSARY TO RAEE TEE INITIAI BREAK IN THE DECIPGERMBNT

It is quite true that there are difficulties in malcing the first break, but these are by no means so great as would seam.

It is necessary, before the decipherer can make the first break, that he find the correct plain text at the correct loci for two cycles. He may heve the correct plain text for both cycles, but unless he applies it at the, correct loci, all his efforts are of no aveil.

Now in the original explanation it was shown how the correctness of the assumptions of plain text for two cycles, hereafter to be designated as the "Experimental Cycles," was tested on the third, hereafter to be designated as the "Confirmative Cycle." This step necessitstes the reconstruction of the long and short keys for the points where the plain tert is assumed in the tro experimental cycles and testing the reconstructed keys upon the third or confirmative cycle, at the proper loci. This process is very laborious and time-consuming, and where a great number of trials must be made, the recovery of the individual key letters by the process illustrated in Plate 1, Fig. 7 of the original paper is out of the question, unless a very large force of operators is at hand.

However, it is possible to reduce the process to such simple terms that a single operator can make as many as two thousand trials in three to pour hours.

The easiest way to explain the process is to discuss the actual example afforded by the following three sequent cycles, With messages beginning at the points indicated by the stars and bars, as was the case with Morfolk 10 and Hoboken 20.

In this case it is necessary to assume beginnings for Norfolk 10 and Hoboken 20, the experimental cycles, then test the assumptions upon New York 2, the conflrmative cycle.

This testing may be done through the agency of reconstructed keys, but it is patent that the keys so reconstructed are of value not in themselves, but only insofar as they do or do not yield good plain text for Hew York 2. We may, therefore, omit the step of reconstructing the keys, if we can test whatever assumptions are made with respect to the experimental cycles directiv on the conilrmative cycle without their intermedjacys and thus save a great deal of time and labor.

In order to understand the method, it will be necessary to consider the relations existing between certain sets of letters in the long and short keys in three sequent cycles. In the subsequent discussion, for the sake of clearness, the long and the short keys will be designated as the upper and the lower keys, respectively.
cycle 1

CycLe 2

CYCLE 3

Upper key
Lower key
Plain text
Gipher

Upper key Lower key Plain text Cipher

Note that in Cycle 1 the plain text letter G is enciphered by the conjunction of the pair of key letters Q and T; in Cycle 3, the plain tert letter D enciphered by the conjunction of the pair of key letters R and P. How these two pairs of letters, viz, Q_{s} T, and $R_{0} P$ form a single set of letters which encipher two adjacent letters of the plain text in Cycle 2, in criss-cross fashion. That 1s, in the second cycle, Q of the upper key in the first cycle unites with P of the lower key in third cycle; while $\$$ of the lower key in the first cycle unites with R or the upper key in the chird cycle. Now the nature of the enciphering square, being completely symmetrical, is that no matter in what manner the letters of a set are united, the final or resultant letter is the same. For
example, taking the Pour letters $Q_{s} T_{s} R_{\text {g }}$ and P, no matter how these letters come into juxtaposition or in what order they are taken, the result of the summation of the four of them will be " 6 ". The result of these relations is that the second or middle eycle in any three sequent cycles represents a series of sets of letters which form a symetrical or balanced system with certain sets of letters in the upper and lower cycles. It is analogous to the menner in thaich the two extremes in a proportion bslance the two means. Such a set of letters will be designated hereafter as a "Belanced Set." This balanced relation holds true not only for the key letters; it holds siso for the correct plain text letters with thelp respective cipher letters, because in every case the plain text witin its cipher letter is balanced or is symmetrical vith the cuo key letters involved. For example, the resultant of Q and $T, ~ v i z, ~ U$, coincides with the resultant of G and $X, v i z, U$. Therefore, the balanced or symmetrical pelation existing between the key letters in the three sequent cycles, as pointed out above, exists also between the plain text and respective cipher letters involved.

Just as in the case of proportion (in mathemetics) one can determine the unknown meen or the unknown extreme from the given relations between the three known quantities, so one can determine from these relations, without the intermediacy of the key letters. the unknown plein-text letter in the fourth set, cssuming the correct piain-text letters in the proper loci in the other three sets. When the correct essumptions are made for the experimentel cycles, therafore, the correct plain text must result in the confirmative cycle; the key letters can be reconstructed aftervards.

Let us apply the obvious steps to the example above, giving only the cipher letters first:
cycus 1
ConfirintivemCycle
Cycles 2
Experimental Cycle
CyCLE 3
Experimental Cycle

In the following explanation we shall indicate by the Greek letter Siges (5) that the summetion of the serles of letters is to be taken. Thus:
Base - $\frac{2}{B}$

$\sum\left\{\begin{array}{l}\frac{X}{X} \\ \frac{X}{2} \\ \frac{X}{Q}\end{array}\right.$

$<\left\{\begin{array}{l}P \\ \left\{\begin{array}{l}P \\ \frac{2}{5}\end{array}\right.\end{array}\right.$

The resultant sertes of letters B Q K $4 \ldots$,... which we have termed the BASE, forms the framework upon which the assumptions are made and the results noted. Let us assume that the message in one of the experimental cycles, viz, cycle 2 begins COMMANDING, and then let us try all other possible beginnings for the other axperimental cycle, viz cycle 3, in conjunction with it. First, it is necessery to "add the letters of COMMANDING to the base, in the nner shown below, which gives the resultant of the first assumption, or, as we shail term it merely, the FIRST RESULTANT.

We are ready now to try in conjunction with the first resultant all possible beginnings for the other experimental cysie (Cycle 3). Let us assume that this message also begins with COMFANDING and find the second resultant. If the plain text assumed for both experimentel cycles is correct, and in the correct loci, then the second resultant must yield intelligible plain text.

FIRST RESULTANT	K		K
Assumed plain text for other experimental cycle 3		0	M
SECOND RESULTANT			W

This gives E J W J as the second resultant, or the plain text of the confirmative cycle (Cycle 2), and we realize at once that one or both of our assumptions for the experimental cycles are incorrect. Let us retain COMMANDING as the beginning of Cycle 2, and assume THE3 as the plain-text beginning of Cycle 3 , instead of COMMANDING. The results are as follows:

FIRST RESULTANT	K	W	K	Q	
Assumed plain text for other experimental cycle	$\left\{\begin{array}{llll}T & H & E & 3 \\ \text { SECOND RESULTANT }\end{array}\right.$	5	U	C	W

This, too, is clearly incorrect. Thus we proceed until the trial of ADJOTANT:

FIRST RESULTANT	K	W	K	Q
Assumed plain text for other experimental cycle	$\begin{cases}\text { A } & \text { D } \\ \hline \text { SECOND RESULTANT } & J \\ \hline\end{cases}$	N	G	3

Here is a good possibility, and we proceed at once to add to it.
Now all these trials can be made very rapidly by the use of certain sliding alphabets. These are prepared by cutting apart the columns of the cipher square, accompanying each alphabet by the straight alphabet including the "functions," and arranging the letters as shown below, where only the first five and last five pairs of the A, B, and C alphabets are given, (Fig. 20).

Taking the sliding alphabets indicated by the first resultant, viz, K, W, K, end Q alphabets, we slide them in such a manner as to align the letters of the assumed plain text, using the upper (normal sequence) member of each pair of letters for this, whereupon the resultant plain text for Gycle 1 (the second resultant, or the text of the confirmative cycle) appears on a line made up of the other (mixed sequence) member of each set of letters composing the pairs. Thus, the trial of the first four letters, ADJJ, of the assumed plain-test beginning for the one message, would place the sliding alphabets in the position shown in Fig. 21, wherein the four letters of the resultant plain text for the other message is immedistely apparent: NG 3 r. Thus, by sliding the alphabets, all the possible beginnings for Cycle 3 are tested vith the assumed beginning, COMMANDING; for Cycle 2. If no good results are obtained, then one assumes some other beginning for Cycle 2 and goes through the same steps again. If no errors have been made in calculations, when the correct beginnings bave been assumed in the correct loci of the experimental cycles, the correct plain text must appear in the confirmative cycle.

While it may not be apparent, it is nevertheless true that this process yiewed in its proper light reduces the three sequent cycles to the terms of an overlap. When an overlap occurs, it is necessary to assume the correct plain text in the correct locus for one message, whereupon the correct plain text for the other message appears. In this method, it is necessary to assume the correct plain text in two loci.

Let us go through the solution of the test messages, as it actually was achieved. The three messages involved are New York 2, Norfolk 10, and Hoboken 20, of which the last two mentioned are the experimental cycles; the first, the confirmative cycle. This is one of the two excellent points of atteck referred to on page 27. The steps are sumarized below:

Since in Norfolk 10 the first letter which enters into the balanced relations discussed above is G, we must place the letters of whatever we assume for that message in their proper loci, viz. the 5 th letter of the assumed beginning must go under its cipher letter G; the 6th, under M; etc. Assuming ADJJTANTBGENERAL for the beginning of Norfolk 10, we must add the proper letters as shown below:

FIG。 21

Base		z	3	R	M	G	G		E	
Assumed piain text for Norfoik 10 esperimental cycle)	T	A	N	T	3	G	E		E	-
Base	2	3	R	1	G	G	I		-	
$\begin{aligned} & \text { Assumed plain text } \\ & \text { Oor Morfolk } 10 \end{aligned}$	A	$\begin{aligned} & A \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbf{T} \\ & \hline \end{aligned}$	$\frac{1}{3}$	3 0	\underline{E}	${ }_{\text {E }}^{\text {E }}$		。	
lat resultant	2	J	P	4	3	E	5			

Let us now set up the sliding alphebets $2, J, P_{0} 4,3, E_{0}$ 5, and H , and then try out the various possibie beginnings for Hoboken 20, the other experimental cycle. When TRANSEORTATION is tried, the results are as shown in Fig. 22.

From the sequence LE Y 3 E Q the word EQUIPMEMT soon made itself apparent. A few more letters (PPAENT3) were triad out to make sure, and very soon, since these yielded good plain text in the other two cycles, it was clear that the cipher system had indeed been solved and the challenge successfully met.

The keys were then reconstructed, additional messages being utilized to erpedite the process; they were then tested on new messages and found to be correct.

It should be clear that this method of using sliding alphanbets can be applied to a cose where the beginning points of two messages are mot close together. In such a case, given one of the experimental cycles as involving a begimaing of a messege, possible beginnings are assumed for it and then the sliding alphabets are brought into play by assuming high frequency polygraphs for the interior of the other easperimental cycle and testing the results on the third confirmative or third cycle.

In the preceding method it was necessary to assume plain text for two cycles and test the essumptions on the third. We shall now show how plain text may be assumed for only one cycle and the correctness of the sasumption tested on the other two cycles simultaneousiy. Ne shall use for examples New York 2, Norfolk 9, and Hoboken 19.

The base is as follows:

Base

Let us assume for the plain text of Norfolk 9 the likely ending, $30 \mathrm{FFF} \mathrm{ICER}_{\text {, }}$ and find the first resultant. In order to apply the assumed text to the base in this case, it uill be necessary to find what we have termed the REAN VALOES of the assumed text. These are simply the sums of the successive letters of the plain text taken in pairs. They have been termed mean values because they constitute the means in our balanced sets or proportions.

For example, the mean values of the word 3OFFICER are as follous:

Plain tert
Mean values

The mean values are now applied to the base, yielding the first resultant as follows:

Base	430 CSNR
Mean values	MY7 J 4 KJ
First resultant	H Z 0 S

The silding alphebets are now brought into play, and an attempt is made to produce intelligible text on two lines made up of a pair of letters on each alphabet. Note the following set up in Fig. 23 and the plain text given by the lines indicated.

This method of making an initial break into three sequent cycles makes it very practicable to work with the case where the beginning points of two messages are not close together. Given one of the experimental cycles as involving the beginning of a message, assumptions of probsble addresses are made, and then the sliding alphabets are brought into play by assuming for the interior of the other experimental cycle high frequeney polygraphs such as $44233333,6 \mathrm{M} 533,6 N 53,3 \mathrm{THE} 3,30 \mathrm{~F} 3 \mathrm{HE} 3$, etc. The results of the assumptions are tested on the confirmative cycle.

The relations existing between the experimental and the confirmative cycles may assume three general cases:

1. the two experimental cycles may be the first and second of three sequent cycles, whereupon the confirmative cycle is the third of the series;
2. the two experimentel cycles may be the second and third of three sequent cycles, whereupon the confirmetive cycle is the first of the series;
3. the two experimental cycles may be the first and third of three sequent cycles, whereupon the confirmative cycle is the second or middle one of the series.

To continue the analogy with the relations in a proportion, in the first case, the upper experimental cycle constitutes one of the extremes; the second experimental cycle constitutes the two means; and the confirmative cycle constitutes the other extreme. The second case is the same as the first. In the third case the experimental cycles constitute the extremes, the confirmative, the two means. The third case is therefore considerably different from the first two in that in the first two cases we have given (or rather assumed) one extreme and both means, leaving only one unknown, viz, the other extreme, to be determined; whereas in this case we have given for rather assumed) both extremes and still have two unknowns, viz, both means, to be determined. Were it the case that one and only one isolated balanced set were concerned in Case 3, there would be no way of finding both means; but the fact is that a series of balanced sets is involved, and that fact coupled with the fact that the two unknown means of each belanced set combine with the adjacent pair of unknown means to form intelligible text enables us to select from thirty otwo pairs of unknowns for each balanced set the pair which, when united with one of thirty-two pairs for its neighboring balanced set forms intelligible text; and this process continued results in the production of plain text for the confirmative cycle. Exactly what is meant will become clearer in an example. We shall give the correct plain text for all three cycles first, and then take up the cipher letters alone.

-54-

MESSAGES

CYCLE 1

CYCLE 2

CYCLE 3

Upper key	SQ TPNVR
Lower key	OBNTOKABD
Plain text	ZONE3FI
Cipher	NPTUTM

Upper key	S
Lower key	BNTOKAB
Plain tert	RTMENT3
Cipher	J

Upper key
Lower key Plain text Cipher

Cycle 1 （Experimental）：
\｜NPTUTMK
cycle 2 Confirmative）：P JMIKKFQ
Cycle 3 （Experimental）：JIFDIC

Base：
Assumed plain text for Cycle 3： First resultant：

U	T	M	K	\circ	\circ
K	K	F	Q	\circ	\circ
M	K	K	F	\circ	\circ
I	F	D	I	\circ	\circ

To the first pesultant let us add ZONE $3 F I N A N C E$ ，the assumed plain text of the other experimental cycle，yiz，Cycle 1 ．The first letter which enters into the relations is the E of ZONE．

First．resultant：MD I
Assumed plain text for Cycle 1：E 3 FI。。． Second resultant：X F M ．．。

Let us consider now the first three belanced sets in our rela－ tions：

CYCLE 1 Cipher \quad T T P Plain text E 3 F

CYCLE 2 Cipher $\mathrm{N}_{\mathrm{N}} \mathrm{K} X \mathrm{FQ}$ CONPIRMATIVE CYCLE Plain text $\quad P_{1} P_{2} P_{3} P_{4} P_{5}$ XFM F

CYCLE 3 Cipher \quad I FPD EXPERIMENTAL CYCLE
The letters of the second resultant are shown in their proper places in Cycle 2．The first letter of the series，viz，X is the sum of two plein teat letters represented by P_{1} and P_{2} ；the second letter of the series， Viz, F, is the sum of two plain text letters represented by P_{2} and P_{3} ．If，therefore，we assume P_{1} to have any value，say A ，we can derive，successively，the values of P_{2}, P_{3}, P_{40} $P_{5} \ldots$ ．Thus：

IS $P_{2}=A_{0}$ ther $P_{2}=$ \&
Opon this essumptros the plasu cess of the confirmetive cycio

 Terious osswad laitiel palues of $P_{\text {I }}$ totiag the latters of the (lphabit In succession. Lot us soe whet wo geit vien se assume $P_{q}=$ 明。

Wo wiy ollminete all the trials necessary to find the value of P_{1} of the uso of sllding alphabess. Assuming P_{1} to have the Valus of 7 , the value of $\mathrm{P}_{2}, \mathrm{P}_{3} \ldots$... is found in the following
 on page 55:

Socoad prosultant
Taird resurtant

or

Socting up the letters indicatod in the third resultant on the ordinary sliding elphabets of the cipher square, we have what is shorra in Fig. 24.

Here the correct generstris becomes visible almosit instantly by giving intelligible toxt.

The choice of 7 as the basic or assumed value of P means nothing in itself, for any other of the thirty-two lerters of the alphabet might be used as base, with the same results. For example, supposing, as before, we start with a as a base, we get the inird resultant shown below:

Second resultant Third pesultant

Setting these alphabets up, we find that the genersitices are easctiy the same as those produced above, but they ere in a different order, as shown in Fig. 25.

The mechanics of the process should be clear. Each of the letters of the second resultant, X, F, M, H, \ldots represents the union of a pair of means in the proportions mentioned on page 52. The pair of means of adjacent proportions have one member in common. This reot, together uith the fact that the succession of means must form
intelligible text, makes the process capable of yielding the desired results.

$\frac{A}{7} \frac{V}{T} \frac{W}{T} \frac{6}{N}$
G OR P2
FTXEX
RQGI
25 LC
C WV 2
B 3 DYE
QR U 6 K
S 0 Y D
$4 Y 03$
N 2 明 7 H
Z NE K D
52 KWU
K L 5.A Q
6 I J Q A
Y 4 SBF
H D 30 H
DHBSZ
I 6 PR V
W. CA 5 J
3 BH 4 M
\% 7 F C
T F 7 M
VACL
P J I G
LI2 VR
E HCFB
UGQ J
JP6 U
W $1+\mathrm{T}$
0 S 4 H

FIG。 25

SLIDING OF ASSUMED PLAIN TEXT
TO FIND ITS CORRECT LOCUS
It has been stated above thet not only must the correct plain texts be sssumed in two different cycles but also these texts must, of course, be assumed in the correct loci in those cycles.

Proceeding upon the theory thet messages emenating from Norfolk, New York, and Hoboken are more likely to go to Washington than to other points, it seemed feasible to assume as the plain text of the beginaings of certain messeges WAR3DEPARTMENT2WASHINGTON 30C3, the problem then being to find the correct loci of the phrase in each of two cycles. An example uill serve to make the process clear. Note the three sequent cycles belou, in which WAR3DEPART BLENT2WASHINGTON3DC3 is assumed to occur in experimentel cycies 2 and 3 near the beginning of the messages.

Opper key loci	292	202	212
Lower key loci	266	276	286

N.Y. 2 (Cẏcle -74) ...6XTSQWQZEWCNCPWIDYYGD3AGJMJZEGEKTD4FZRLR... CON.

Upper key Yoci Lower key loci HOB. 20 (0ycie -76) $\begin{array}{rrr}192 & 202 & 212 \\ 2688 & 278 & 288\end{array}$ 3CTFJI RXLIK3F4PERSLDVEQUGEEFGVOL34VVV . . . Exp.

It is possible, of course, to begin by placing WAR3DEPARTMENT? WASMIMGTOH at ong of the likely loci of Cycles -75 and -76 , reconstruct the keys and try them on Cycle -74: Ir no good text results, the phrase would be moved one space to the left or right in one of the cyeles, say the second, and the keys reconstructed again. This process would be continued unt11 the phrase had been shifted to sil possible loci in Cycle -76 (within the section under examination), keeping the locus of the phrese stitionary in Cycle -75. If no good results were obtained, then the phrese in Cycle -75 yould be shifted one space to the right or left and the whole process of shifting the same phrese in Cycle -76 would be gone through again. In a section of 25 letters in length with a phrese 25 letters in length also, 50×50 or 2500 trials tould be necessary to exheust every possibility. The lebor and time of making such a test being very great, a short cut was devised, which reduces the work enormously. Sliding alphabets or a special kind are used. They consist of simple rearrangement of the horizontal lines of the efpher square, according to the order of the letters of the phrase to be tested. If the phrase be WAR3DEPARTHENT2 WASHINGTOM, then the W Pow of the cipher square is uritten first, followed by the A. row, then by the R row, etc., until all the rows have been arrenged accordingly: The modified cipher square then hes the following form:

WAR 3 DBPARTHENTEWASHINGTON

REF ID:A4148948

The columns are then cut apart, and mounted on strips in the form of sliding alphebets, ready for use. The method of use, employing the principle of balanced sets, will be illustrated in the case of the three cycles forming the besis of the preceding analysis. We shall start by assuming that the phrase WAR3DEPARTMENT2TASAIMGTON is in locus 192 of experimental cycle -75 , as the beginning phrase 267
of Boxfolk 20. The base and the first resultant are derived in the usual manner, and are as shown below:

Bese
Assumed plain
text for NOR. 10
First resultant

The silding alphabets indicated in this first resultant are then set up in a "staggered" manner, as shown below in Fig. 27. If the hypothetical phrase in Cycle -75 is really in the locus assumed, and if it also is contained anywhere within the section included in Cycle -76, then intelligible text must appear on some generatrix of the set-up.

Should it happen thet the locus of the first letter of the phrese in both cases falls within the same column, that is under the same "long key" letter, the uncovered plain text for Cycle - 74 will occupy the longest generatrix; that is it will begin with the second letter on the first strip f the letter immediately below the letter designating the alphabet) and will continue all along the generatris, provided no breaks occur in the phrase WAR3DEPART HENT $2 W A S H I N G T O N, ~ a s ~ a s s u m e d . ~ I f ~ a ~ b r e a k ~ s h o u l d ~ o c c u r, ~ f o r ~ e x a m p l e, ~$ should the phrase be WAR3DEPARTMENT6N53WASHINGTON, then the uncovered plain text for Cycle -74 will appear on two generatrices, separated by four letters giving unintelilgible text.

Should the phrase in Cycle -76 begin one letter to the right of there it begins in Cycle -75, the plain text will appear on the generatrix which begins with the second letter on the second strip, and so on upwards until, if the phrase in Cycle -76 should begin under the next to the last letter of the phrase in Cycle -75, only one letter of the plain text for cycle -74 will be given by the set-up, viz, the second letter on the lest strip. Should the

FIG。27
phrase in Cẏcle -76 begin one letter to the left of where it begins in Cycle-75, the plein text will appear on the generatris which begins with the third letter of the first strip and so on downuards, the reverse of what was set forth above. In other words, by keeping WAR SDEPARTMENTEWASHINGTON in the locus shown in Gycle - 75 in the textual diagram above, this one set-up of the speciel sliding alphabets is equivalent to having slid the same phrase in Cycle -75

REF ID:A4148948

fifty times. Examining Fig. 27 in the light of the foregoing discussion, no good plain text is discovered on any generatrix, nor do we find even a iragment of intelligible text sufficient to justify Purther experiment with this set-up. We proceed thereupon to move the phrase one space to the right in Cycle -75 .

Going through the same steps as shoun on page 59, reser with the same assumed phrase in Cycle -75 (WAR3DEPARTMENT2WASHINGTON) but beginning under the letter Q instead of 3 , we have the following:

Upper key loci 192

Lower key loci
HOBOEAN 20, Cycle -76

192 268
XXIK3F4PKQ5LDYEQUGEPWGVOL34VVV EXPERIMENTAL

If the second generatrix, omitting the pirst letter, of the preceding set-up of alphabets (Fig. 27) be united with the phrase WAR3DEPARTMENTTWASHIMGTON, we get the same base as is indicated. here when the phrase is moved one letter to the right in Cycle -75 . Thus:

This means that once a set-up such as that of Fig. 27 is made, new or additional write-outs of cycles as the assumed phrase is slid, need not be made: the proper bases can pe derived as shown by the foregoing example from a single write-out of cycles and bssumed plain text.

The sliding alphabets indicated by the foregoing derived bese (it. is really a nfirst resultant") are then set up as berore, and the various generatrices are examined uith a view to finding plain text. The set-up given in Fig. 28 shows a generatrix containing intelligible text consisting of a sequence of eight letters, NG 3 T 03 S 6 . Note the generatrix which is underscored. It means that we have struck the correct loci of at least a part of our hypothetical phrase in Cycle -75 and Cycle -76. We can ascertain what parts are involved from the position of the plain text in Fig. 28. For the fact that the plain text, $\forall i 2$, स $G 3 T 03 S 6$, begins immediately after the "letter" 2 , designating the generatrix. means that the hypothetical phrase in Cycle -76 begins with WARTDE ... etc. The fact that this generatrix is the 16 th of the set-up means that in Cycle -75 the hypothetical phrase begins with the i6th letter, which is the W of HASHINGTON. In other words, the loci of the hypothetical phrase are as shown herewth:

REF ID:A4148948

[^8]A variation of the foregoing method makes use of special sliding alphabets based upon the hypothetical phrase, the presonce of which is suspected in both experimental cycles. These sliding alphabets are built exactiy like those based upon the phrase WAR3DEPARTMENT2 WASHIMGTON, except that instead of using the sequent letters of this phrase in constructing the alphabets, the mean values of the letters of the assumed plain text are used. The mean values of the phrase under discussion are as follous:

Sliding alphabets are now made by first constructing the square shown in Fig. 29 and then cutting the colums apart.

FIG. 29

Then by setting up the alphabets indicated by the letters of the bese in staggered fesinion as before, the successive first resultants uill be found in successive generatrices. Note that the two generetrices used in the preceding discussion sppear in the set-up in Fig. 30 .

In the preceding example the assumptions for the plain text involyed the hypothetical presence of the same phrase in both experimental cycles. We shall now proceed to a consideration of the case where the assumed plain text is not the same for both experimental cycles. The procedure is besically the same as in the preceding case. The messages to be used for the demonstration are three actual messages of the series. The base has been derived in the usual menner, and to it is applied the assumed beginning, TRANSPORTATIONBSERVICE, for Cycle -76 , one of the experimentel cycles, yieldiag the first resultant shown below:

Opper key loci
Lover key loci
HOB. 21 (Cycle -76)
Assumed p.t.

403
479 X A Q X NN UFRT:。
\mathbf{G} T
$T R A N S P O R T A T I O M$

Z	T	D	M	7	J	X	U	P	K	K
D	4	G	7	Q	Y	M	K	7	H	7
4	G	7	Q	Y	M	X	7	H	7	F
G	T	X	A	Q	X	N	N	U	F	R
R	C	C	4	Y	5	2	3	S	P	4
T	R	A	N	S	P	O	R	T	A	T

Since New York begins somethat in advance of the locus there Hoboken 21 begins, and since it is probable that the former message is going to Washington, we assume that the phrase WAR3DEPARTMENT? WASHINGTON3DC3 occurs somethere in the vicinity of loci 395 to 425 of the upper key.

The special alphabets based upon the phrase WAR3 etc. are set up in the menner shown below in Fig. 31. Of course, no plain text can be visible as yet because the confirmative cycle in this case is the middie cycle, and we must apply the principles elucidated on peges 53-56.

The steps are the same for every generatrix of the set-up, and we will take only the correct generatrix for the demonstration of the method. The correct generatrix is, of course, found only by trial. The method in brief is as follows:

Taking the correct generatrix, which is as follows:

OJCE3KPHSFH

and going through the usual steps, to determine the series of unknoun means, we have:

Setting up this series of lettors in the orainary alphabets we have the Pollowingi FIG. 32l:

FIG。 31
FIG. 32

The piain text BER3SECOND3T stands out very prominentiy. Counting down the first slphabet of the set-up shown in Fig. 31, We Inind thet it is the 16th letter of our phrase WAR3DEPARTREIVT2 WASHINGTON, which begins the hypotheticel phrase in Cycie -74, i.e., the word WASHINGTON occurs in New York 3, beginning with locus 405. With the section BER3SECOND3T as a start. it is not dififcult to add to the plain texts of all three cycies. The keys can be reconstructed simultaneously vith the building of the plain texts. The proper placements of the initisl texts are shown herewith:

Upon proper occesion it mey be desipable to slide two dipforent phrases egainst one another. For exemple, HASHINGTOM against NEH 3 YORE. The methods discussed in the two preceding cesses heve been elucidated sufficiently, it is believed to show that such a process would be perfactly practicable. Special silding alphebets yould be prepared and kept on file for use when the occesion arose.

By mesns of this process, it is possible to test 211 sorts of phreses, such $2 s$ newes of persons or places likely to occur in addresses or signatures. Given a sufficient number of messages favorable to the application of such a test, the process becomes a very faluable edjunct to other methods of attack.
4. SOLOTION OF CASES NOT INVOLVIIG THREE SEQUEMT CYCLES

The possession of three cycles in unbroven sequence is no longer absolutely essentsal to solution. We shall discuss the rollowing four cases likely to arise in practice.
A. The two experimental cycles sequent, the confirietive cycle at a short distance pemoved from either of the experimental cycles.
B. The experimental and confirmative eycles equidistant.
C. The distance betreen the confirmative cycle and the nearer experimentel cycle is a multiple of the distance betreen the tyo experimental cycles.
D. Cycles at irregular intervals from one another.

The four cases sill be studied in succession.
A. (Case 1)--The two experimental cyeles sequent, the conrirmative cycle at a short distance removed from either of the experimental eycles.

The solution of this case is dependent upon two factors; first, how far removed the compirmetive cycle is from the two experimental cycles; and second, the length of the assumed text. Let us study three actual messagen.

Messages

In this case we have Norfolk 10 beginning in Cycle -75; Hoboken 20, beginning in Cycie -76; and Vashington 25, in Cycle -86, or ten cycles removed from Hoboken 20; that is, the confirmetive cycle is ten cycles removed from the nearer experimental cycle, instead of being directiy sequent, as has been the case in all the examples discussed heretofore. It was desirable to obtain a method by means of which possible beginnings for Norfolk 10 and Hoboken 20 could be tested very rapidiy on Weshington 25, and the folloking method vas devised.

[^9]For example, starting vith 7 as the upper key letter of locus 186 in Cycle -76 , the resultant of 7 and 3 is 3 , which becomes the lower key letter of locus 262. This then becomes the lower key letier above M in Cycle -75. The resultant of 3 and M is 0 , upper key latter 187, which is now placed above C, the second lettor in Cycle-76, etc. The process is exactly the same as that in reconstructing normal keys, except that no plain text is used as yet. geys produced in this manner, we have termed IRPTRFFECT REYS, because they are not completed, or made symetrical by the plain text letters thich apply, and will therefore not produce plain text then shifted. Mormal keys, or keys which will produce plain text ye have termed PERFECT EEYS.

Since Washington 25 is ten cycles removed from Hoboken 20, then the lower imperfect keys of the latter beginaing with RA Q K Z (after the bar in the diagram) must be united vith the upper imperfect keys of the beginning point of Hoboken 20, and these must be applied as shown below, to the cipher in Washington 25, beginning.
gith E_{L} G 7 The sexies of letters thich are produced we tera, as before, the BASE:

	Upper bey 1001	186
Weshing ton 25	Lower koy loci	272
(Cycle -86)	Opper imperfect keys	70 EFHD
	Lower imperfect koys	
	Cipher	[CF7 ${ }^{\text {P }}$

Bese a.............. S ¥ F 2 y 6
Now it is patent that if we had included the assumed pisin text for Norfolk 10 and Hoboken 20 in constructing the keys, the base would hsye bocome the plain text for Washington 25; and had the assurned plain text been the corpect plain text for those two cycles, then the base would hay to be latelligibie plein text. However, whether ue include such assumed plain text in the first steps, working with perrect keys, or apply it aftar impariect keys have yie?ded the bese, the rinel result, will be the seme, providing ve 80 through the correct steps.

It is also patent thet although the assumed plain text consists of two distinct parte, one apylying to Morfoik 10 , the other to Hoboken 20, it is perfectiy correct to test the ofiect of these two parts separately. Thet is. we may msume one plapse as the beginning of Hoboken 20 and try it in combingtion with all possible beginnings for NorPoik 10, exectly as wes done in Section 3.

Now as ray as the firat fow loci of Wamington 25 are concermed, the assumption of plain text for Hoboken 20 will have two ofrects: first, upon loci $186 \& 187 \ldots$ of the upper keys, and secondly, upon loci $272 \& 273 \ldots$ of the loweip keys. let us malyze these effects in detail, sserving Eoboion 20 to begin uith TRANSPORTATIOMSSERVICE.

Locus 186 of the upper key is unchamged, since we stinl petain 7 as the base for reconstruction of the keys. Locus 262 of the lover key is affected by the fixst letter of the assumed beginaing, wiz, T. It would result in producing a letter different than the one shown (3) for locus 262 of the lower key and this in turn vould give difeerent letter in locus 187 of the upper key. Locus 263 of the lover key would be afficted agein by the second letter of the assumed plain taxt beginning for Hoboken 20, and this 'in turn vould affect locus 188 of the upper key. In showt, the effect is progsessive and cumulative. This series of effects vill be produced by the follouing series of letters:

Such a serles of sumnations has been termed the PROGRESSIVE Value of a phrese, and the integral sign placed before a series of lettors uill indicate that the progressive value of the series is to be taken. Thus, S TRANSPORTATION means thet the progressive values, letter by letter, are to be taken.

This progreanive value must be appited to the base, and since the fixst locus of the upper wey to be affected by the platn text assuised is 167, we epply the progressive yalue as shom below:

We have so rar found the efrect of the assumption of pisin tert, in Hoboken 20 only upon the upper key loci 186 to 190 . Now wa mato find the arfect upon the lower key loci irom 272 to 276 , for they, too, are favolved in the process of finding the plein text, for Weshington 25.

The fitwst lozer key locus affected is 262, by the letter F of MRAMSPORTATION. The next is locus 263 , by the letter R, and so on. The effect is lifewise progressive and cumulative. It will be as follows, in detal2:

Since the fires lower ley locus involved tw thenington 25 is 272, we begin with the lettere of the progressive value, and appis the serfes to the baso already corrected as regards upper keys. Taus:

Wpper key loci
Lover key loci
Bese, corrected for
Comection ror inm
perfect lower key
Fixsi mesulrsnt

Enver key loci SS Q67J...

This series of letters', corrected for upper and lower key lettere 2: frected by the plain text essuned for Hoboken 20, we term, as berore, the FIRsy resulsamy.

The steps illustrated above are summarized below in standerd form:

Upper key loci
Lower key loci
Base
Correction for im-
perfect upper key
Correction for im-
perfect lower key
First resultant

186	187	188	189			
272	273	274	275	276	277	
S	Y	F	2	\mathbf{Y}	6	
	T	G	B	Y	T	
Q	2	D	8	E	3	
L	H	V	V	E		

We are now ready to assume beginnings for Norfolk 10. We may omit the incorrect trials and proceed at once with the correct phrase, ADJUTANT3GENERALSARMY. The steps are practically the same as above. The progressive values are sought, beginning with the second A of ADJURANT, since it falls under upper key locus 187, and is therefore the ifrst letter which enters into calculation.

Upper key loci,
Lover key loci
Second resultant
Correction for im-
perfect upper key
Correction for fma
perfect lower key
Plain text

Having found intelligible plain text for Washington 25, perfect keys are constructed in the normel manner and the decipherment continued.

The process described above has been carried out in full detall to demonstrete its mechanics. It may be sumarized below:

Upper key loci	186	
Lover key loci	272	
Base	, SYF 2 Y	
Correction for assumed $\}$	\% GBYT) TRANSPORTATION3S.
plain text of Cycle -76)	QzDSE3	TGBYTIVH3UQZDSE3.
First resultant ...	LHVVER	
Correction for assumed ${ }^{\text {a }}$	A 566 E	(ADJUT) ANT3GENERAL3ARMY)
plain text of cycle -75)	3 PL 26 U	(AE56ETNFU3PLZ6UL)
plain text for	PEATED	

This process takes longer to describe then to perform，raturally， and compered vith the time it would tak to try out all possible combinations of beginnings by constructing＇peresect keys in each cese， it is several hundred times more repid．The progressive values for all possible beginnings，once having been deterained，can be kept on pile so that vith all the deta at hand the process is extremely rapid．

B．（Case 2）－oxperimental and confirmative cycles equidistant．
Given three cycles which are equidistant with two of them beginning near the same locus，solution is possible，provided that the assumed taxt conteins three or four more lettors than the dis－ tance between the cyeles．

Exampie

Hessage 1－Key indicaiors 300^{-}＊ 309 （Cycle－9）
XBCPRAQ4OKP6NOXVZAKDNXZ。。。

Message 2－Key indicstors $303 * 316$（Cycla－13）
WLIO2AKDYRJ2WSPOU4HJOQ。。。。
Pessage 3 －Key indicators 100 ＊ 117 （Cycie－17）
The section beginning with $303 * 320$ is as follows： －。GDACITSUUUPITY5KC6．．．

These messages are arranged as follous：

300	303		
309	312		313
:---			
322			

 $\begin{array}{ll} & 303 \\ 316\end{array} \begin{aligned} & 313 \\ & 326\end{aligned}$
Message 2 （Cycle－13）WLLO AKDYRJ2WSPOU4HJ。。

We must first prepare these cipher letters properly so es to be able to make trials quickly．The reconsiruction of the two lm－ perfect keys is first carried out．Inssmuch as the steps are some－ what different from the ordinary ones in constructing keys from sequent cycles，we will show them somewhet in detail．

Cycle－9	$\because \quad 303 .$
	303 316
Cycle－13	WLLO2AKDYRJ2WSPOU4HJ。
	$\begin{aligned} & 303 \\ & 320 \end{aligned}$
Cycle－17	$\ldots \mathrm{CACIWSUUUP2TX5KC660}$.

These cycles are four apart. Let us divide up the three lines into sections of four letters, beginning with the letters falling beneeth upper key 303. Thus:

Since these cycles are four apart, then the construction of the two keys from Cycles -9 and -13 must be carried out in intervals or periods of four. That is; if we assume the upper key for the first of Cycle -13 to be 7, then the lower key yould be W. This letter W , the 3l6th letter of the lower key must then be placed above the letter 4 in Cycle -9, that is in the locus designated as 307) in Cycle -9. The resultant of W and 4 , viz, 6, is then 307 th 316)
upper key letter. Applying 6 to locus $\left\{\begin{array}{l}307 \\ 320\end{array}\right.$ in Cycle -13 , we get B for the 320th letter in the lower key. 'This letter applied to the locus: 311 in Cycle -9 gives 2 as the 311 th upper key letter, etc. 320
The result is as follows:

We have been dealing so far with the first position letters in these sections of four letters, or as we shall term them the first elements of the periods. Let us now take up the second, third, and fourth elements of the periods, beginning, as before, with 7 as a base, that is, as the upper key letter in loci\{304, 305 , $317^{\circ} \div 318$
and 306 in Cycle -13. Each set or series of letters is entirely 319
independent of any other set; and that is why it' is absolutely immaterial vith what letter as a bese each series is begun:, the ultimete result, viz, the interaction of certain letters in Cycle -17 will be the same regardless of the initial letter in each set of elements. The four reconstructed, and independent, series are as shown below, and the manner in which they interact in the third mesgege is also indicated. The result of applying the keys to the ci.pher letters is marked BASE. Of course, no'plain text appears as yet.

We are ready now to try out various beginnings. As before, we will assume one beginning, keeping it constant, and trying all other beginnings with it. Let us assume Cycle -13 begins with ADJUTANT3 GENERAL, and proceed to apply corrections for imperfect keys for Cycle -13 first. The upper keys for the first period of Cycle -17 are unaffected by the plain text assumed. The lower keys are affected by the letters ADJUTANT. In the preceding section we corrected the keys by adding the progressive value of the plain text, and this value was determined by adding the letters of the plain text in their direct sequence. But in this case, since the four elements of the periods are independent, te cannot apply merely the progreasive value but must apply what shell be termed the PERIODIC PROGRESSIVE VALJE, pound by adding in progressive manner every nth letter of the assumed plain text, n being the period. Or, put in the form of an expression, the sign $\tilde{j} / 4$ is understood to indicete the the progressive value of every fourth letter of the serfes is to be taken: For the first period of Cycle -17 the correction for imperfect lower keys will therefore be the following:

This correction applied to the first period of the base gives the following:

Bese	$\begin{aligned} & \text { list period } \\ & A_{7} \underset{D}{ } \end{aligned}$	$\begin{aligned} & \text { 2nd period } \\ & \mathrm{R}_{\mathrm{B}} \mathrm{Z}_{2} \end{aligned}$	$\begin{aligned} & 3 \text { rd period } \\ & 5 \text { B } 4 \text {. } \end{aligned}$
Correction for ime perfect upper key	- - -		
$\left.\begin{array}{l} \text { Correction for im- } \\ \text { perfect lower key } \end{array}\right\}$	HRUQ		
First resultant	TR P V		

The corrections for imperfect upper and lower keys for the second and third periods are as follous:
Upper $\frac{\text { 2nd }}{\text { key }}$ period Lover key

Upper $\frac{3 \mathrm{rad} \text { period }}{\text { Enower key }}$

These corrections are applied to the respective periods as follows:

,	1st period	2nd period	3 rd period
Base	A 72 D	$\boldsymbol{R} \boldsymbol{P} \mathrm{BZ}$	5 B 4 Q
Correction for 1 mperfect upper key		A'D J U	$W \mathrm{R}$ U Q
Correction for imperfect lower keyd	$W \boldsymbol{R} \boldsymbol{O}$	Q T I 6	PGS ${ }^{\text {G }}$
First resultant	$T \mathrm{P} \mathrm{P}$	$V \mathrm{~K} \mathrm{H}$	$G D R D$

Having determined the first resultant we are now ready to test all possible beginnings for Cycle -9. Let us proceed at once to the correct one, viz, COMMANDINGZGENERAL. The periodic progressive corrections are found as before, beginning with the letter I of COMMANDING since it is .the first one to enter into the calculations; that is $\int / 4$ ING3GENERAL is to be taken.

1st period 2nd period 3rd period Upper key Lower key Upper Key Lower key Upper key Lowér key No correc- ING3 tion neces. sery

$$
I N G 3 \text { ING3 }
$$

These corrections are applied to the second resultant and yield intelligible piain text. Thus:

	1st period	2nd period	3 ra period
First resultant	TR P V	V K H F	$G D R D$
Correction for imperfect upper key		ING3	M F P S
Correction for imperfect lower key	ING3	MFP S	PC 3 V
plain text	- PING	3 CO	$T \mathrm{R}$

All these steps may be simplified and summarized as shown below. It was necessary to go through all the steps above in order to show the mechanics of the process in detail. But if these steps be analyzed carefully, it wili become apparent that certain repetitions of plain text periods cancel out, being duplicates, so that the final result is achieved just as weli by going through only the following steps:
1st poriod 2nd period 3 rd period

Base	A 72 D	R P B 2	5 B 4 Q
Correction for plain)	A DJJ	TA N T	3 GEN
text of Cycle -13	TANT	3 GEN	ERA I
First resultant	TR PV	V KHF	GDRD
Correction for plain test of Cycle -9	ING.3	GENE	RA L 6
$\begin{aligned} & \text { Plain text for } \\ & \text { Cycle -17 } \end{aligned}$	P I N G	3 CON	T R O L

Mo further comment is necessary in regard to the rapidity of the process. Once intelligible text is found, new keys are constructed employing the deciphered plain test and taking into account the fact that the periods consist of four independent elements. The reconstructed keys will not be perfect keys, but they will operate in every case there the cycle involved is four or a multiple of four intervals auay irom any of the cycles which entered into theis reconstruction.
C. (Case 3)-oThe distance between the confipmative cycle and the nearer experimental cycle is a multiple of the distance between the two experimental cycles.

In the case just discussed, the cycies were equidistant. The process can be applied likevise to those coses in which the distance between the confirmative and the nearer experimental cycle is a multiple of that between the two experimental cycles. The practical application of the method is dependent upon the same two factors as before, 012 , the distance between the cycles, and the length of the plain text assumed. An example taken from the series of test messages will serve our purposes. The raessages have been arrenged for decipherment:

Messages

Upper key loci
Lower key loci
N.Y. 20 (Cycle -609)
...VQVY4 $3 V G 36 . .$. Conirmative
Upper key loci
Lower key loci HOB. 32 (Cycle -621)

Upper key loci
Lower key loci
WASH. 13 (Cycle -624)

002	014
623	635

014
635
NT4SJOVVCK73RSOFEY2HIOTVPB... Experimental

Hoboken 32, and Weshington 13, the experimental cycles, are three cyc ies apert; while New York 20, the confirmative cycle, and Hoboken 32, the nearer experimental cycle, are twelye cycles apart; in other words, the distance betueen the first and second cycies is the fourth multiple of that between the second and third.

Let us reconstruct imperfect keys employing the principles of periodicity just elucidated. The period, being the distance between the experimental cycles, is three. The keys, using X, Y, and Z as bases, are as follows:

Base

Correction for inf perfect upper key
Correction for in－ perfect lower key）
First resultant

New York 20

3rd period

Upper key．Lower key

3 GE！No cor－ NER．reaction $\begin{array}{lll}\text { AL } \\ \text { N } & 6 \\ 5\end{array}$ necessary 3

014	020
623	629

FM 6 6 PDARS ••• PIKA $650 \mathrm{~K} Q$ 。。。 YQVY43VG3 SIR FSLS5P
Let us assume for the plain test of Hoboken 32，SURGEON3GENERAL6 N52WASHIPGTON：and determine the first resultant．We must begin with the E of SURGEON，since that is the first letter which enters into relations．
lIst period
Upper Key Lover key
Let us now try as the assumed plain text of Washington 13 the correct beginning，DEPARTMENT3AIR3SERVICE．

New York 20

1st period
Upper Key Lower key

2nd period
Upper key Lower key

3 rd period Upper key Lower key

First resultant Correction for im-l perfect upper key Correction for $1 \mathrm{~m}-2$ perfect lower key
plain text

No correc.

D E P

1st period	'2nd period	3 rd period
A 4 H	B T 5	R C 5
I C D	$73^{1 / 5}$	S S U
$\underline{-}$	DEP	R J I
S I X	T Y 3	SEV

The appearance of the words SIXTY3SEV ... gives the beginning of excellent plain text. The keys are reconstructed and the decipherment continued.

The short-cut, eliminating all details, for this process is summarized below. The plain text letters are the sumations of the letters in the columns.

New York 20

1st period	2nd period	3 rd period
5 I R	FS L	S 5 P
E 0 N	3 GE	N E R
3 GE	NER	A L 6
TVER	A 46	${ }^{11} 52$
A $L 6$	N 52	W A 5
N 52	W A 5	55 S
DEP	AR T	ME N
A R T	MEN	T 3 A
ME N	T 3 A	IR 3
T 3 A	IR 3	SER
S I X	TY 3	SEV

D. (Case 4)-The three cycles at irregular intervals.

We have been leading up, step by step, to the solution of the most important case of all's viz, that in which no sequent cycles, or cycles at any regular distances apart are available. This case'is, of course, the most valuable from the practical standpoint, and warrants restatement. It means thet given tuo messages separated by $2,3,4, \ldots$ up to say 15 cycles, plain text may be assumed and tested upon any other cycle that may be availeble, providing only thet the keys applying to this third cycle fall within the sections of assumed plain text.

Let us study an actual example taken from the serles of test messages. We shall choose as the experimental cycles Hoboken 32 and Washington 13 , which are three cycles apart. For the confirmative
cycle we shall take Washington 39. In the diegram below the messages have been arranged for decipherment; inparfect keys have been constructed and applied to Washington 39.

Before we can proceed, it will be necessary to introduce into the discussion a feature thich presents itself, here for the first time.

The distance between the two experimentel cycies determines the period and the periodic leagth is simply the sum of the number of its constituent elements. As regards the upper key, the periods, and therefore all their constituent elements, for all cycles, coincide, since all of cur anslysis is based upon the fiction of a stetionary longer ($=$ upper) key. But as regards the lower key, which in our analysis is regarded as the moving key, any period in one experimental cycle has a homologous perfod in the other experimental cycle, both periods being composed neturally of the same elements and in the same order. In other words, the first, second, third...e elements of a given period of one experimental cycle coincide with the first, second, third...elements of o homologous period of the other experimental cycle. The case is somewhat anslogous to that in wave motion, when two weves of similer period resch their maximum magnitude simultaneously, the two waves being in a condition termed as "in phese."

Now, in the case of three equidistant cycles, the lower key periods of the confirmative cycle are in phese uith those of the experimental cycles. The same is true of the case where the distance between the confirmative cycle and the neaper experimental cycle is a multiple of the distance between the two experimental cycles. But in the case thich conforms to neither of these cases, that is, where the distance between the confirmative cycle and the nearer experimentel cycle is neither equal to nor a multiple of the distance between the two experimental cycles, the lower key periods of the confirmative cycle are not in phase with those of the.
experimental cycles. The condition, to continue the analogy with wave motion, exhibits a "difference in phase"; and in this case, with a period of three, the difference is either $1 / 3$ or $2 / 3$ of a period. That is, the periods of the confirmative cycle are efther advanced or retarded $1 / 3$ or $2 / 3$ of a period. When this is the case, the application of imperfect keys derived from the two experimental cycies will not result in the production of intelifgible text in the confirmative cycle unless a correction for the difference in phese is applied. The reason for this phenomenon is obvious when one considers the origin of imperfect keys as contrested with thet of perfect keys. In reconstructed perfect keys, adjacent letters of both the upper and the lower key bear a definite relation to one another--they are the individual successive links of a continuous single chain which has been mede, link by link, from the plain testa cipher text relations. But imperfect keys that have been constructed from experimental cycles not directly sequent consist of severel independent chains which "dovetail"' In such a manner as to produce intelligible text only where the periods of the confirmative cycle are in phase with those of the experimental cycle. These chains are independent because they are generated by independent, unrelated base, letters.

The difference between keys of these two types is comparable to that between a single phase and a polyphase alternating current of electricity, and we have termed a key of the first type a MONOPHASE KEY, and one of the second type a POLYPHASE KEY. The difference between them may be shoun diagrammetically in the follouing sketch:

Monophsse
Polyphese

Difference in phase in a polyphase key may be shown likevise in diagramatic manner:

If, after a polyphase key has been constructed, we can establish a relationship between the letters or elements of its period $(=$ the phases of the period), then the independent chains of the polyphase key mey be merged and converted into one continuous chain which will then constitute a perfect monophase key.

Let us proceed now to decipher the messages. For the beginning of Hoboken 32, one experimental cycle, we will assume SURGEONS GENERAL6N52WASHINGTON: The corrections to be applied are shoun
below. The upper keys being constant, its periods are in phase throughout all cycles. The lower key periods of Washington 39 are out of phese vith those of the experimental cycles, being retarded 1/3 of period. The elements of the periods of faghington 39 are In the order 2-3-1, instead of 1-2-3 because the first elerents of the periods of Washington 39 are the second elements of those of the sxperimental cycies. For this reason the correction to be applied to Washington 39 takes the followiag form:

Weshington 39

1st period		2nd period		3 rd period	
Upper key	Lover' key	Upper key	Lower key	Upper key	Lower Key
No correc-	2-3-1	1-2-3	2-3-1	1-2-3	2-3-1
tion neces-	- 3	3 GE	- 3	3 GE	- 3
sary	G E N		$\dot{G} \mathrm{E}$ IV	NER	$\dot{G} \mathbf{B}$ N
	ERA		ERA	46 J	ERA
	6 JJ		L 6 18		$1{ }^{1} \mathrm{~N}$
			DT0		52 W

4 th period	
Upper key	Lozer key
1-2-3	2-3-1
3 GE	-. 3
HER	G \% ${ }^{\text {IV }}$
A 1.6	ERA
JDT	L 6 N
	52 W
	A 5
	W F

5th perolod
Upper Kex Lower key

1	-2	-3
3	G	E
H	E	R
A	L	6
1	5	2
	F	1

1st Per. 2nd Per. 2rd Per. 4 th Per. 5th Per.
Bese
Correction for
imp. upper key
Correction for
imp. lower key
lst resultant

2 I K	K W T	E U H	M D 6	㩆 F Q
	$3 G E$	46 J	J D T	U P L
6 JJ	DT y	PLH	YFJ	R 45
B P 3	2 BP	5 CJ	2 F	Z W G

Let us assume for the beginaing of Washington 13 the phresse DEPARTMENT3AIR $3 S E R V I C E$. The corrections are as follows:

Let us now apply these corrections to the first resultant:

	1st Per.	2nd Per.	3rd Per.	4 th Per.	Per
lst resultant	B P 3	2 BP	$\frac{50 \mathrm{~J}}{}$	2 F 7	Z W
Correction for imp. upper key	- - -	D E P	R J I	P. R R ${ }^{\prime}$	IC D
Correction for imp. lower key'	RRI	C D 7	3 FS	SU 6	$A D G$
2nd resultant	W. 限 2	S'z 7	244	Z 7 Z	H H D

We are ready now to apply the correction for difference in phase. Our imperfect polyphase keys consist of three independent chains, generated by the initial letters X, Y, and Z. Let us designate by the letters k_{1}, k_{2}, vand k_{3} those letters in perfect monophase keys which occupy the positions of, X, Y, and Z of our imperfect polyphase keys. Now k_{2} and k_{1} are related insofar as k_{2} is derived from k_{1} by means of the plain text-cipher relations which intervene; and k_{3} is related to k_{2} in the same manner. If we could convert X into K_{1}, Y into k_{2} and Z into k_{3}, our imperfect polyphase keys could be converted into perfect monophese leys. Now, X plus an unknown letter c_{1} would equal k_{1}; Y plus an unknown letter c_{2}, would equal k_{2}; and Z plus an unknown letter c_{3}, would equal k_{3}. These three unknown letteris c_{j}, c_{2}, and c_{3}, which would constitute the corrections for phese difference, would repeat themselves periodically throughout the imperfect keys. We can transfer these relations directly to the second resultant.

Second resultant - WM 2 S 27.244 , 77 Z H H D
W plus the unknown letter c_{1} would give the correct plain text for thet locus; M• plus c_{2} would give the correct plain text letter for the second locus; and 2 plus c_{3} would give the correct plain text letter for the third locus. The cycle would repeat itself throughout the second resultant.

The correction being constant for the three elements of the periods, ve may set up the respective elements of these periods on the ordinary sliding alphabets, whereupon the correct plain text for each set of elements will appear on one generatrix thich can be selected from all others by inspection, since it will be the one which contains the best assortment of high-frequency letters.

The correct generatrix $y 1 l l$ be different for each set of elements, of course, but by selecting the most likely generatrices, the corrected olements yill now form intelligible plain text. Thus:

GEN.	WSZ Z H	M 247 H	274 ZD
A.	TILIQ	5 LJAQ	EAJTK
B	R 陦44F	S 4 ZBF	6 Bz 4 T
C	X J $55^{\text {G }}$	L 5 I CG	NC I 5 U
D	G $\mathrm{N}^{\text {O }} 0$	YOED X	J DE O
E	L 3 T T	XTDEY	A E D T 4
F	$\checkmark 4 \mathrm{M}$ M C	Z MSFB	K F S M 3
G	D 5 J JC	I J L G C	OGLJ W
H	U.Z S S 7	4 S 明 H	P H M $\mathrm{H}_{\text {S }}$
I	Y A Q Q L	GQC.I I	3 ICQK
J	OCGG5	Q GAJ 5	DJAG2
K	MR V V 6	WV UK 6	FKUVI
L	EQAAI	C A G L I	T.LGA 6
M	K B F F 4	7 FH H 4	$V \mathrm{MHFY}$
N	5 DXX 0	TX 30	C H 3 X
0	JX D D M	3 DTON	GOTDZ
P	SWU U ${ }^{\text {- }}$	R OV P 2	H P V U 5
Q	3 LIIA	J I 5 Q A	Y Q 5 IV
R	B K 66 V	P 62 RV	4 R 26 A
S	P 7 HHZ	BHFS.Z	US FHN
T	AYEE3	NEOT 3	LTOEB
U	H $2 . \mathrm{P}$ P W	6 PK U W	S UKPC
V	F6KKR	2 KPV R	M V P W $\mathrm{C}^{\text {a }}$
W	7 P 22 J	K 26 Wu	Z W 62 G
X	C O.N N D	, E M Y X ${ }^{-}$	5 XY Y H
Y	IT33E	D 3 XYE	Q Y X 3 M
2	2 H 77 S	F 7 BZS	W 2 B 70
2	$20 W W P$	VWR 2 P	72 R W J
3	QEYYT	0 Y N 3 T	I 3 NY F
4	6 FBB M	H B 74 M	R 47 BE
5	NGCC J	A CQ 5 J	X 5 Q C P
6	4 VRR	URW6 K	B 6 WR L
7	WS Z ZH	M 247 H	2742 D

Note that in the set-up of the first elements the Y generatrix is composed entirely of high-frequency letters, IT 33 E . In the set-up of the second elements the T generatrix is composed of higifrequancy letters, NE $O T 3$. Uniting the first and second elements in the third resultant we have the following:

	1	2	3	4	5
	123	123	123	123	23
Third resultant:	W ${ }_{\text {H }}$	S 27	244	272	H H D
Plain text:	IN	TE	30	3 \%	E 3

In the set-up of the third elements the 3 generatris is composed entirely of high-frequency letters, but they do not combine well with the plain text found thus far. This generatriz uhen comcined with the other two gives:

1	2	3	4	5
1. 23	123	123	1.23	123
W M 2	S 27	244	272	H H
I JV I	[E 3	30 M	3 TY	E 3

The corpect generatrix is the $\$$ generatrix. It gives the following:

1	2	3	4	5
123	1. 23	123	123	12
W M 2	S 27	$2 \cdot 4.4$	272	H H D
I 8 U	T E S	30%	3 TH	\% 3

In all subsequent cycles the correction for the difference in phase is the period indicated by the generatrices determined above, yiz, YTS. In other words $c_{1}=Y ; c_{2}=T ; C_{3}=S$.

For example, in Washington 68 the steps without going through the explanation above give the base shown below:

Hoboken 32 Cycle - 621 Exp. Upper key Ioci Lower key loci Imp. upper key Imp. lower key Cipher

Weshington 13
Cycle - 624 Exp .
Upper key loci
Lower key loci
Imp. upper key
Inp. lower key
Clipher
Hashington, 68
Cycle -638 Conf.
Upper key loci
Lower key loci
Irap. upper key
Irap. lower key
Cipher
Base

Assuming for the beginnings of Hoboken 32 and Washington 13 the same addresses as before, viz, SURGEON3GENERAL6N52WA555SHINGTON and DEPARTMENT 3 AIR 3 SERVICE, respectively, we apply the proper corrections to the base derived above.

Since the first period of the lowex key of Washington 68 is affected by the assumed plain text for the 2nd, $3 \mathrm{rd}, 4 \mathrm{th}, 5 \mathrm{th}$, and 6 th periods of Hoboken 32, and also by thet for the ist, 2nd, 3 ra , 4 th , and 5th periods of Washington 13 , we must be guided accordingly in making the corrections for imperfect keys. Again, since the first element of the lst period of Washington 68 is the third element of the 5 th period of Washington 13, then the pelative order of the elements of the periods of Washington 68 1s 3-1-2, as compered with their order, 1-2-3, in Washington 13 and Hoboken 32, the experimental cycles. The order of the elements of the upper key is the same for all cycles. The corrections for the first three periods of Washington 68 take the following form:

Correction for assumed plain text for Hoboken 32, SURGEON //3 GENERAL6H52WA555SHINGTON =

For Upper Key

Period

For Lover Key

Correction for essumed plain text for Washington 13, //3DRPART MRIVT3AIR 3SERVICK =
For Upper Hey
Period

For Lower Key

Period

	Period -		
First resultant	If V P	Q W	C ${ }^{\text {N W }}$
Correction for perfect upper key	I	R J
Correction for imperfect lower key	FS 5	U 6A	D
Second resultant.	764		

We are ready now to apply the correction for the difference in phase. We have found that $c_{1}=Y ; c_{2}=T$; and $c_{3}=S$. Since in this case the third elsment of a period of the experimental cycle becomes the first element of that of the confirmative cycle, then the correction to be applied becomes $S \mathbb{Y}$ to correspond vith the order 3-1-2 of the letters of the confirmative cycle periods.

Washington 68
1st Period 2nd Period 3rd Period
Second resultant
Correction for phesse
difference plain text

$-S Y T$	$S Y T$	$S Y T$

It is desirable, of course, to construct perfect monophase keys. in order to eliminete the corrections for differences in phase in subsequent vork. The nethod is as follows:

Take the first three letters upon which the reconstruction of the imperfect keys was besed. In this cass they ere X Y Z.

Take any pair of equivalents for Y, the first letter of the corrective period, such as U L. Place these two equivalents beneath $\mathbb{K} Z$ and find the resultant. Thus:

Basic 1	X Y Z
Equivalents of X	U L
Resultant	GU

Take the resultant of L (the second member of the pair of equivalents of Y) and T (the second letter of the corrective period), which is 2; edd this letter to Z, the third basic letter. Thus:

$$
\begin{aligned}
& \begin{array}{lll}
X & Y & 2 \\
0 & 2 & 2
\end{array} \\
& \text { GU.W }
\end{aligned}
$$

These three letters used as a base in connection with the correct plain text for the two experimental cycles will give two perfect monophase keys such as uill apply to any cycles produced through their interaction, without the intervention of a correction for phase differences. The steps diagramatically for the conversion of polyphase keys to monophase are as follous:

Corrective period	Y T S
Base for polyphase keys	U $~$
Base for monophase keys	$\frac{X}{}$ Y
	GUW

Beginning with these letters as a base for the construction of perfect keys from the two experimental cycles we have the follouing:

Comparison of these keys with those given on pages shows that they are identical with the monophase keys and will therefore apply to any message enciphered by their means. ${ }^{1}$

[^10]
RÉSUME

In the original brochure the basic principles for the analysis of this cipher were set forth. The analysis was based upon a careful study of the method of encipherment in which two key tapes differing in length by but one letter were used. In this method sequent revolutions of the key tapes produce what we have termed sequent cycles, the analysis of any three of which is sufficient for a complete solution to be achieved. It was also shown, first, how the slightest carelessness in the operation of the machine would produce messages enciphered by means of the same single key letters, and second, how such messages, termed overlaps, are particularly easy to solve.

In Addendum 1 it was shown hou the same principles of solution apply to the system when the two key tapes differ in length by more. than one letter. The dangers of using two keys those lengths possess a factor in common yere also demonstrated therein.

In Addendum 2 the correctness of the principles set forth, and the truth of the statements and claims made vere demonstrated by the actual solution of the series of test messages submitted. The method of defermining the lengths of the key tapes was elucidated. The mathematical relations existing between various lengths of key tapes and the resultant cycles vere demonstrated, and the untrustvorthiness of the adopted method of allotment of the key tapes indicated. The various types of solution were given, and their feasibility discussed. It was then shown how solution was no longer dependent upon the finding of three sequent cycles, a discovery which completed the demonstration of the vulnersbility of the system.

William F. Friedman

ADDEMDUM 3.
One of the prersquisites to the solution of this cipher being the knome Jodge of the key indicators for the variows messages there was submitted for ove consideration a method of sncoding and encipheaing the indicators.

The result of investigation shous that (1) the method as subaitted does not, to an appreciable degree, acs to the safety of the sysemg (2) the possession of the code book is not essential to solution.

A list of encoded and enciphered key indicators for 80 messages was dram up by ore set of operators and anboitted to another. Within ten mimutes after cartain tables had besn made, the eract length of the tro keys mere determined; and within three hours the key indicators in the form of numers for any message could be reed at will. Tnis list follows:

\%essage	Length	Indicators	Hessage.	Length	Indicators
1	278	IDH $\mathrm{ESJJ}^{\text {E }}$	41	392	AGJ - CAG
2	690	$J E E=A I D$	42	156	HEC \sim B ${ }^{\text {c }}$
3	81	TGC - IEJ	43	723	FGI - GAD
4	201	$\mathrm{AFP}-\mathrm{CBC}$	44	890	JHI = IFC
5	949	JCG - Ex ${ }^{\text {F }}$	45	312	$E A A-C F C$
6	152	$\mathrm{BOH}=\mathrm{IDE}$	46	260	DEE - HBJ
7	275	JDJ \sim AJH	47	89	CHH - JAB
8	501	JDG - ABJ	48	121	$A A E-D C S$
9	370	GR3 - DEF	49	363	$\mathrm{FJA}=\mathrm{HFL}$
10	1308	PHE - JID	50	405	DJF - DEI
37	473	CTG ea EAB	51	560	$A I A=B D D$
12	198	CIJ momed	52	703	GGG - JJC
13	312	JEI - CII	53	1009	DDJ - BHA
4	297	FAD - Cin	54	804	AAJ - EDJ
15	452	CJE $-6.01 H^{\circ}$	55	462	BIA $=$ GIA
16	902	CFF - ECJ	56	791	FIC - HEC
17	79	JCE - Hed	57	920	GGd - ICD
18	210	CDE - JPJ	58	201	GCI - CJG
19	50%	CGC - BFC	59	527	DCE - FDC
20	787	DRB - CAA	60	386	$\mathrm{EJF}-\mathrm{FPC}$
22	380	EJJ - DAS	61	747	FCE - IIA
22	170	CZB - DJE	62	920	CIR - GFA
23	542	DID \sim CTP	63	1780	JHB - JJJ
24	1083	$C E I=G P A$	64	309	DHA - HJH
25	167	CEB - CHJ	65	187	$\mathrm{HHH}=\mathrm{GFC}$
26	392	$G \mathrm{GE}=\mathrm{HDI}$	66	99	DFB - DHF
27	468	Ser - IGI	67	209	$\mathrm{ADG}=\mathrm{BIG}$
28	554	DHC - EGH	68	867	FED - JBE
29	920	$\mathrm{FFC}=$ IHF	69	729	EFI - CGJ
30	387	FEE - DBG	70	372	$\mathrm{CDC}-\mathbb{E T H}$
31	542	$\mathrm{HJH}=\mathrm{GBB}$	7	223	$\mathrm{FDF}=\mathrm{HAF}$
32	659	$\mathrm{CJB}-\mathrm{DFF}$	72	183	FCD - CAG
33	365	FDA - EBE	73	149	$J E E \cdot B D B$
34	1162	BBH - AIC	74	540	IAA - JAD
35	293	AED - ${ }^{\text {a }}$	75	274	JED - AEA
36	180	$B A A=E B E$	76	963	JEI - LAJ
37	297	ACB - JCF	77	582	$J G G-B A E$
38	326	BEA - CDI	78	92	SHH $=$ GSC
39	860	BJH - JLJ	79	355	HAG - ACE
40	47	$\mathrm{GGI} \sim \mathrm{Gra}$	co	79	CFD - JIA

REF ID：A4148948

Tha maded of anelyzing the oncodod and eneiphered indicators was as follows：
The syston of encoding and enciphering tha indicatora is such that any key Indicetor rihich is repeated will hava the same final forma Por erample，suppose one message has the key indicators 050 281．The plain code group for 050 is GJJ．政列 inascuch as only 3 enciphering alphabats are used，ane for each lettere of the three coda lerters，whatever be the cipher equivalents for $\mathrm{G}^{1}, \mathrm{~J}^{2}$ ，and J^{3} ，both msessges will show as the long key indicator the same combinat ions of letters， for exmple，using the tables given in the code book，FEC．

That has been said as regards the long key indicatops applies liketise to the short key indicators．

Two sets of tables were therefore dram up in the form of indexes of the letiner indicators，one set applying to the long key indicators，the other set， to the short key indicators．

Hom note that in a sexies of only 80 mages thare are several insinances in rinich the lettor indicatore are identical as regards both the long key and the short ley indexss．For example，the long irey indicator for messages 12 and 15 axe identical．CIS．
foy there is only one circumstance under wich two messages in the same saries，thet is，from the some station，can have the same long or the same shore key indicator，and that is when the number of letters intervening between the two messeges is equel to or is an exact mulitiple of the length of the long key or the short key respectively！

Refer to the series of tert messages submitted and note the key indicators for Thashington 42 and 法shington 53．They are $020 * 160$ and $20 * 261$ respectively． flow the totel number of letters from the beginning of liashington 42 to the begins ning of lieshington 53 is as falloris：

 slip is consiséntly 2 , wo mat add 11 x 2 or 22 letters to the total phis gives 3925 as the grand total. The factors of this numer are 5×787. The length of the long key is clearly 787 . The coarectness of this number can be corroborated from several more instances. In the saum manner, taking the distance batwean messages 12 and in in this series we hawe the following:

$$
\text { Hessage } \begin{aligned}
12 & =191 \\
13 & =312 \\
14 & =\frac{297}{} \\
\text { Total } & =800
\end{aligned}
$$

Mow it is clear that the length of the long key is at least 800 letters. We have yet to take into account the slip betuean messages. If we asaume the slip to be 1_{0} then the length of the long key would be 803; if 2 it mould be 806 ; if
 Hisap that betwes messeges 42 and 81, indicator EOC. The total number of lettors interyening is as follows:

Total no. of mes sefe $=39$.
Sinoe the long key is at least 800 letters in length, the number of rewolutions it has made bstween messages 42 and 81 is 24 (19332-800) Trial of a slip of $1,2,3,4$ letters is then made. If the silip be 1 , then we must add 39 x 1 to 19332 and see if the total is exactly divisible by 803. If the silip be 2, then menst add 39×2 or 78 to 19332 and see if the total is exactiy divisible by 806 , gic. When wo try a slip of 4 y and adi $39 \times 4=156$ to 19332 we have 19488. A slip Of 4 mould mon a toy of 612 Iettars and calculation shovs that 812 is the 24 th maltiple of $196 \xi^{3}$, and indicates 24 complete revolutions between messages 42 and 81 .

The length of the short foy mas accertiained by exactly the same principles, excopt that the amount to be added for alip nes not known The length of the short koy hes found to be 693. Thus, mossages 41 and 72 shomad pepetitions of the short key indicators, CAG。 Tha calculations are as follows:

Ptessage	41-392	$51-580$	61-747
	42-156	52-703	62-920
	$43-721$	53-2009	$63-1780$
	$44-890$	$54-805$	64-309
	45-312	55-462	65-187
	46-260	56-791	66-99
	47-89	$57-920$	67-209
	48-121	58-201	68.cos67
	49-363	59-529	69-725
	$50-4,05$	$60-386$	70-372
			$71-221$
		Tota	$\therefore 16506$
1 no. of messages 31.		SIip - - 124	

$$
16632 \div 24=693=\text { length of short key. }
$$

As far as the solution of the mosgages is concerned me need have nothing more to do with the encoded and enciphered indicators, for we can proceed to find the indicators for the geries of messages, assuming as the beginning points any pair of indicators wo please, because solution is based upon the relative positions of cycles, not theip absolute number. For example, the cycle number of any two cycios may bo 72 and 75, or 133 and 136 , os 2 and 5: the distance batween the two cycles is the sames vizog 3. Another way of pointing out the relativity of the calculations is this: the tiro key tapes are contimuous endless chains. It is therefore of no importance whother we call a given locus on one of the tapes 001 or 201, so long as me are consistent throughout in designating the other loci。 Thus, the locus immediately following 001 would be called 002. If ve designate locus 001 as 201 , then the next one is 202 , etc. We may start in therefore, to find the relative key indicators for our series of messages by basing the calculations upon the indicators $001 * 101$ for message lo These calculetions are as follows:

$$
-40=
$$

Solution Hay now be achievcd by exactly the same principles as those given in the preceding brochures．It 18 apparant，therefore，from a consideration of the preceding paragraphs that the possassion of the code book is not essential to salution．

Rowever，if we desire we can detemine the asolute key indicators．The method is simple and is as follows：

From the relative calculations ebove，tables ape made of the long key indicac tress and the short key indicators similar to those made at the beginning of the problers，wit？the lettor indicators．This index is as Pollos：

Whe look in these tablea Ior an unbroken sequence of indicatore in which the int ervala betwen sucespire key indicator mubere are small．In the inder for the short key indicatorg wo have a sequence $488.00491,4920.0506$ ，applying to messegea 9， $15,55,36$ ，lot us 50 dow the shoxt ley latter indicators for tin ese nessages， and their relative positions．Thess：

\％6ssege	$\begin{aligned} & 9-\text { DESP }-488 \\ & * * * * \# * \end{aligned}$
	15－GIT－ 491
	55－GIA $=492$
	＊＊＊＊＊＊＊
	$36-$ ELE -505

The ondy reperitions of letters in the letter indicators ape the paip of letters G and I ．This means that in the code list of equivalents for indicator numers there are two sequent gunbers the rirst tro letters of wose code equivelents are the sams．There are many such cases in the code books so mast find some further points of contact to onable us to pick out the correct pair． For example，fe find that the short key indicator for message il is EAE，value 588． Let us add this to the table．Thus：

$$
\begin{aligned}
& \text { Mes sage } 9=\text { IFF }-488
\end{aligned}
$$

$$
\begin{aligned}
& 15-\mathrm{GII}-491 \\
& 55-\text { GLA - } 432 \\
& \text { * * * 方れた } \\
& 36=\operatorname{mag}=506 \\
& 11-\mathrm{EAE}-588
\end{aligned}
$$

We have now two more points of contact. The absolute oquivalents of the relative pasitions 506 and 588 muct agree in the flrst and third letters, and they must be 82 intarvale apast; since $588-506=82$ 。

Search is made throughout the code book to find all the cases. Examine the Salloving:

Enc. Code	Relative position	Plain Code	Absolute Position
	them		
Hessage 9 15x	488	Gra	388
- 25 GTH	491	AGD	391
55 GIA	498	ACB	392
36 Emi	506	COH	406
11 EAE	588	$\overline{\mathrm{CBH}}$	488

The agreement is good. By rafering to other mumbers as given by the index, if the letters of the encoded and encifhered indicators fit in with the set already Crawn up, may assume that we hav struck the correct absolute positions of tho indicators. For erampla, if according to the nowe $C_{p}^{1}=E_{c}^{1} F_{p}^{2}=E_{c}^{2}$ and $J_{\mathrm{p}}^{3}=\mathrm{F}_{\mathrm{C}^{3}}^{3}$ then in message 5, short koy indicator EEFF$=$ CRy plain code $=574$ absoluts position. The interyal betwea 488 and 574 , absolute mast be the same as that betwaen the ralative equivalents. lim find thet 488 absolute 558 prative and that the short key indicator for message 5 as calculated relatively is 674o The proof is complete.

Once a short section like the abore is detemined, the rest folloris very oasily.

To illugtrate hor caroful tho officar in charge must bo, note the relative positions of the kos tapos at the and of message 2 grizoy $648-623$. His nert mosbage contains approsimately 70 nords, he notes, and he figures that 350 letters will bo excipiored, or, including functions, approrimatoly 400 charactors will be necessary for the message. Ha then finds that the addition of 400 characters to the point where message 2 left off will throw him "out of bounds." thus:
$648-623(a)$
$400-400$ (c)
$2048-1023$
$700-670$
$-346=353$ Difference equais -5.

In other vyords, he will be encroaching upan a region reserved for Station \%o He mast therefore shift his key tapes back a lone distance, and he moves them into the position 418 - 362, or a difference of 56 , and then proceeds to encipher. He has had to do this several tines during the course of the day, and the greater the dirererence in length betwean the koy tapes, the more often will such shifing back be necessary.

Row note that in this series of only 17 messages we have five sequent cycles. Using message 2 as a basw, bseause it shows the greatest differance in the series of 5 messagee in the sequant cyclas, tho arranganent is as follows:

> Cycle 1 - Hessage 2 Rey Indicators $42=447$, Difference 25
> Cycle $2-$ Message 12 Koy Indicators $260-236$, Difference 24
> Cycle 3 - Message 17 Rey Indicators 225 - 202, Difference 23
> Cycle 4 - Hessage 4 Key Indicators 090 $=068$, Difference 22
> Cycle $5-$ Message 1 Key Indicators $076=055$, Difference 21

These messages have been arranged graphically in F ig. 19 , and are now ready to be attacked in the manner described before, using the beginnings and taking advantage of the fact that encipherment begins with nane and address. The fact that massafes cerry in plain text the piace from which the message emanates, limits the mabor of possibilities for assumpion of a signature, granting that the enemy has a good intolligence system and a close lieison exists between the cipher office and the intelligence bureau. Unless all messages passing over the Iina are anciphered, addressee and signatures in plain text in ordinary messages mould form a valuable body of information for the basis of assumptions of plein text.

Cnce e start is made toward decipherment, the rest folloss quicky be cause the key indicators for other meszages mill onable the decipherer to shif the keys already partially reconstructed into other positions and kif building up sesifions of the key tapes the sections can be united in the proper manner and thas the complete keys result. Pos arample, note the key indicators for message 3. viza' 418 - 362. Geanting that wave reconstructed the longes key from 418 to sey 450_{2} and the shorter key from 362 to say 395, in one of these five cycles, it is only necessary to bring together the so series of longer and shorter tay lotters from 418 to 450 on the one, and from 362 to 395 on the other to produce the decipherment of the beginning of messace 3. By continuing such procedure, the entire keys may be pieced to gether and completely reconstructed.

It should be noted that an excessive difference in length between the two key tapes is likely to cause greet difficulties, for the greater this difference the soonar does one stafion become "out of bouske, n for the range of the key tapes becomes mose limited as the difierence betwan them increases. For example, we have given tro tapes, 700 and 600 lettars, a difference of 100 letterso The diaplacsment is therefors 100 letters per rerolution of the longer taps. This means that aftar only seven refolutions of the longer tapa one has returned to the starting point, and further enciphormant without resetting the tapes mould mean an overlap. Compare this with the case where the tapes diffex by only one letterg Par example, tapes of 700 and 699 letters, Here, only arter the longer tape has made 700 revolutions does one get back to the starting point. In other words, one can encipher 700 \& 699 or 489, 300 letters before an orerlap would be produced.

It is clear, therefor θ_{2} that the modified method of using the machine affords no better protection against decipherment than the original met od, and it is also patent that the principles for the solution of this cipher as first laid down according to our original understanding of the method of using the machine apply with equal validity to the modified method as submitted.

It may be thought that the occurrence of sequent cycles can be ayoided by strict superviaion. There are some things to be said on that point.

Supprvigion could umoubtedy be oxercised in each of the of fices involyad in a qued, but it mould of nscessity have to be supervision of the nost careful nature by officors spacially qualified. Granting this, there night be mo methods of elimineting the possibility of the occurrence of seo que解 cycles. One would be to have an absolutely random chaice of key indiceo gors (within the limits of the ragion assigned for the station) but with the restriction that no two messages are to be in sequent cycles. The other method would be to devise some system whereby 2,3 or nore eycles ape skipped pegularly in all trafic.

After considering these alt ernatives, we may say that the solution of cases in vinich one or two intervening cycles are missing can be achieved with no great difficulty. The solution of caseb in mich say five intervening cycles are misging may be more difficult to achieve, but the necessity of skipping any muaber of sycies above ifve in the case of random choice of indicators, and say Sive regularly in a systamstic choice of indicators is so involvod with practical difficultios that the anifre systen muld beam. For, if at least pive cycles
 then the greatest munos of egcles actually arailable would bs 40 , as in the case of a longer tape of 700 letters in length, a limit oi 28,000 letters would be imposed upon the day's activity for that station. In the case of a station that must transact a leage volums of basiness overy day this would never be sufo ficient and the tapes would reve to be increased very greatly in length. All of this is aside from the danger of a misunderstanding of the rulas and of carelesso ness in operation.

Furthermore, in the cass of a single very long message, unless the message be broken up into parts, the encipherment of such a message is bound to entand into trio or more sequant cycles. of course, without a knowledge of the lengths of the tapes this would afford no clues to the decipherer. But the decipherer can tall approxinately the lengths of the tapes by studying the indicators for no messages pass beyond 695 for the longer tapo and 690 for the shorter, he can

Isel reas onaing eertain that the tapse are in the neighborhood of 700 letters is lengtho lef would take considerable expeximentation to dstermine their exace length, butt itt could be done within a practicable length of tima by a corps of deaipherers is the results to be expected would marrant the expenditure of the tima and labers.

August 19, 1919.

[^0]: lyernam, G. S., Cipher Printing Telegreph Systems for Secret Wire and Radio Telegraphic Comunications, Trans. A.I. $3 . \mathrm{F}_{\mathrm{B}}$., Vol. 45, pp. 109-15, 1926. (Yernam is the man whose name gave'rise to the rule vhich wo now call "Vernam addition.")
 $2_{\text {f }}$ document dated 23 Sept. 1918 entitled "Regulations for the Test of the Printing Telegraph Cipher" is still extant.

[^1]: ${ }^{1}$ Courtesy title (an honorary colonel on the staff of the Governor or Illinois). He died in 1935.

 2The Department of Justice had one roving agent, on the Southern border, who from tine to tine solved some simple Mexican ciphers, mostly monoalphabetic in nature.

[^2]: I must admit, however, that we nevertheless derived considereble benefit from the "bust," for it told us much about the construc.tion of the messeges-othe neture of the addresses, signatures, etc. It will be seen later hos useful this knovledge became in solution. I do not think we could heve met the challenge successfully bed it not been for this error!

[^3]: ${ }^{1}$ Because of the transcribing error mentioned above. But not all the time lo'st on that account was sheer waste, for it was during the period of fruitless struggle that all the short cuts were developed which'greatly hastened solution once the error had been found.

[^4]: $1_{\text {As }}$ of possible interest to my readers who may care to look into it, there is on file a paper entitled: "Extracts from correspondence relating to solution of A. T. \& T. Printing Telegraph Cipher," together with certain letters which explain why the Extracts were prepared. They give further details of the story and its background.

[^5]: ABCDESGHIJKIKNOPQRSTUVTNXTZ234567

 FCHA3N7QBJI252EI6GU4XR7ViONRDSLPE

 了山工S2RTZ5F73BOUYXMECGNXOPVGDKAKTJ

 O6EPTBT2NVTVR3H7CKLX45IJSFDGMTUAO PIK05 O 6N2TXB 3 RGC7EMVIZ4SJA日HLVDFP QHCBVPGFAZMOSJ6KE7XLUTD3R2工思54N2 RDサ3AJUTVNESOPILHX7KGFHB2564C2Y2R SIMJN3452ACR？BDXIIRYZ26POTHUEFGVS TVDVBZXR3P652NM41UG\％7QCAFSELHOKJT
 VXUTV5W3RO思ZN2LI4DH6CB7EAJRMGPESV VTRXGLVDUYOBE\＆5JS3RPAKF7CI2ZC6』4W XV 3 WHMTUDGPIKEZSJRQOFGAC74N5BY2TX IPM6WHOKENVGUDBFA25TSLJX4730ZXRCX ZI450THJSOGVAFXDUI6HEPE2解37TYBCRZ 2E6 J JAKOP 3 DFTVCGHY4ULSMZ5QT7IRXB2
 4 JZIEDSI ACAUGH3TV52FOKP6是XBRN7QM4

 7ABCDEFGHIJXLMNOPQRSEUVWXXZ234567

[^6]: The shall use the word "letters" to include all the characters and "Punctions" of the machine, as they eppear on the cipher tapes.

[^7]: This is legitimate since all the calculations are based upon the revolutions of the long key tape.

[^8]: With this as a start, the keys can be reconstructed and the decipherment continued.

[^9]: Reconstruct the two keys without reierence to any plain text whatever, using the series of cipher letters only in Cycles -75 and -76 for the first 15 letters, beginning uith 7 as a base in loci 186 \#262, Cycle -76. Thus:
 Opper key loci
 Lo甘er key loci
 Upper key (hypothetical)
 Lower key
 Norfolk 10 (Cycle -75)

 Experimental
 Opper key loci
 Lower key loci
 Upper key (hypothetical)
 Lo甘er key
 Hoboken 20 (Cycle -76)
 $\begin{array}{ll}186 & 196 \\ 262 & 292\end{array}$
 $\times 70$ QFHDJEBUCCC5BVI
 3PU75EPMJ4RAQRZO
 \because 3CTFJIMKLEMF4PKQ... Experimental
 $186 \quad 196$
 $272 \quad 282$
 ...KCFTTRQJU3NRMO2J...

[^10]: ${ }^{1}$ I wes unable to find, in my manuscript, where these monophase keys had been reconstructed. Evidently some page or pages must be missing and we till have to take it for granted that the statement made is correct.-W.F.F. (148)

