MEMO ROUTING

Remarks
Sent a capt of your report to D. Kullbacte, who has been studying this gadget. His first Appacuiad was pretty low but details. This teviele seems to present. pretty good secuinty for th size. Nave you an suggestions for further study as to ats possibilities for Comr own usage?

Declassified and approved for release by NSA on 10-20-2014 pursuant to E.O. 13526

For a law-echitow mackEFID thill 46536 dervecurued be very difficult to changeKeyboard operation including a printer. for impermemente, disregarding the mechanical difficietieis, several things can he dace.

1. Lengthen the stepping eyck. This can be done to f using larger wheels, or steel tupeew with punch or no-punch, or link chains with two kindles of lines
2. Use two complete alphatete, one for the upper and one for the laver prition. The slide would then step 522 pricitionic instead of 26 but exch alphabet would he independent and letterer caused represent themulver.
3. A means of disrupting the regular stepping of the wheck (or trues, or chains) so that active and inactive pins would he more difficult to set.
In rather dawafful that it woven the suitable for authentication'

TOP SHAME

28 December 1949

MEMORANDUM FOR: Mr. Frieảman
Subject: Theoretical Security of the "Schlüsselkasten".

1. The security of the Schlussenkasten appears to be fairly high, but I believe that when used in low echelon with a moderate amount of traffic the system will not offer the security required at that level. There follows a brief analysis of the system.
2. The Germans believed that the theoretical security of the Schlussenkasten was equivalent to or greater than the Enigma. Some of the weaknesses, however, which appear to negate the opinion of the Germans are made use of in the analysis.
3. Recovery of the two alphabets presents the most trouble. Cribs and direct depths as well as isomorph will De the data required. Cribs can be placed since a letter cannot represent itself. As reconstruction progresses additional limitations can be used to place cribs.
a. The reconstruction of the machine can be accomplished, I think, in three steps: (1) Determining the limitations present in each of the two alphabets, i.e., like and unlike substitution values in the upper and lower alphabet p; (2) Recovery of the alphabets; and (3) Recovery of the pin wheel patterns.
c. Once the separation is determined the portions of matched plain and cipher text can be divided into three categories - (1) upper alphabet; (2) lower alphabet; and (3) ambiguous. Direct deoths and isomorphic depths should help and recovery will be along the usual lines.
d. When the two alphabets are recovered the interval the slide has moved between letters is readily determined from the matched plain and cipher. Since the wheels move regularly, placement of active and inactivepins is relatively simple. As long a crib as possible is desirable, otherwise short cribs may not produce enough pin patterns to permit joining the stepping cycle in relative order. With alphabets recovered, however, and knowing the average interval is about 4, cribs probably can be extended.
e. Isomorphic depths can be helpful in separating the two alphabets and in recovery. The isomorphisms are not as easily recognized as in normal cases since the relation exists as two interlaced isomorphs, each behaving as in the normal case. With sufficient material it seems probable that the isomorphic feature alone might well lead to a complete solution.

