EO 3.3(h)(2)

PL 86-36/50 USC 3605

THE COMTINP eFFORT ON LITERAL TEXTS

I COITITI COLLECTION ACTIVITIES
As Functional Categorise of Intercept Problems

have the highest potential intelligence value. \quad are also of value to the CCINNi organization in maintaining emtinuity。
is on high power, high frequency radio.) High speed morse and radioprinter (both single chanel and multiplex) are used on the main Inks although there is givill some manual morse. In general, good \square signals awe available at present intercept sites. The problem is largely one of efficient operation and handling of the extremely large quantities of traffic which must be screened for desired messages.
2. National Commercial Radio (NCR)

National Commercial Radio is the name chosen, for the pr pose of this papers. for internal natroriks, surf as the Brazilin
 of the type generally carried in the U. So by Wester Hinton.
 (is an high porer, hen frequency

Tе

1
EO 3.3(h)(2)
PL 86-36/50 USC 3605

4. Millitasy Tectical

[flitary Tacticel traffic (scmetimes raferred to as low leval) is tusually intercepted and, to oome oxtent, processed by IIFilitaxy "ciose Support" COMINI organizations, which produse "tactical" Intelligence-pminamily nonder of Battle ${ }^{\text {n }}$ - of direct valua to the Sorm of meports and, latery of the raw intercept itself, are fomparded to NSA. However, the initial user lis in the field and control af mClose Support" activities and, to the meximm practicahle extent, processing functions are delegeted to the cogrizant gervice orgenization. Military Tacticel traifie, since it is generalify being seat by or received by subordingta units. is usually low powsered and is transmitted by melathroly simple eomanieation systerns. In the

Military Strategie reforr to high lerel military canamications, including those eomecting Corps and Azwy Headquarters with Har lifinistry (and for eomesponding and echelons of the parallel serride branehes). Noznally, high traffic densities and very secure cryptographic systems are used at this Ievel. In the $U_{0} S_{0}$ Arined Foreos heavy use is made of radiegrinter syrgtems wicheh include the radioprinter nulitipilexea. In

6. Support Cormunications

Suppert Coumunications is the nome chosen, for the purposes of this papers, for those communications required, aither on a brwadeast or a point-otompoint basis to support vaxious types of operations, Weather nets and broadeasts, navigational systems and sezvices are examples of support ecmernications. support commuications (Iiteral) include hand speed borse and single channel zadionninter.

B. Hajor Technical Intercept Problems

1. \square
plex ca three or four. All three of these have posed serdous intercept problems which heve required research and development.
were Insdequately quilified for recelving exyptographif redifoprinter, and because technical consideration such as extremely wide and ineonsistent frequency keying shitise arose. Magnetic tape reconding of the demodulated signal. with Later central processing to hard (page) copy in NSA preserved vital. signal int onnation, and made it possible to carny out the caitical processes of printing, under controiled laboratory conditions and prevented the ixratrievable loss of information in the field. A tuming aid was derised, and this has cam abled operatiors to make substantially better recordings than was previously possible. Central Prosessings in the Special Intercept Techniques Division, Office of Collection, PROD using syachronized freemuming teleprinterrs provieles page copies for the cxyptanalysts, showing the time relntionship of characters sent by each operator by the coordinates on the page copies. The cyyptographic device

EO 3.3(h)(2)
PL 86-36/50 USC 3605

 EO $3.3(\mathrm{~h})(\mathrm{z})$
 PL 86-36/50 USC 3605

\square
Demands for improvement of intercept of this signal have led to conkiderable efforts on the part of PROD; the signal is now mametiaally renoxdoin end centrally processed similariy to the \qquad described above. Gireuit disyo cinline and marration standards are excellent, and ralatively are believed to be used, the signal is generaifiy tranemieted on one side of a Dorble Frequency Shift trensmissicn. Keying rates and stendardization of shifts ars such that interception and demodulation may efficiently be aecomplished with standand equipwent, including the AFPSAV D35 Double Frequency Shift Demodulator.

- Flextole Raltatex
sequently, severe tuntug zind stebinity requirenents are placed on intercopt equifpmeati. To date, these special needs have been mot by an intexin high precision intorcept systen still undergoing development and fraproverant, incorporating hiehly stable zerwiving and recording equipments and a special tuming indieator. The Flexible pulitiplex always appears in a circuit, i.e.eg with troo way transaission and reeoption botween two pointas, and both linics are simaltaneousiy recorded on the same magretie tape. The recordings axe thon processed in NSA mader comititions designed to give both the best possible transcription and an eveluation of the probable degree of garble. Research and Development on this problemg including the Central. Processing Aspects, are continuing.

HQPREFMDPMAG087

EO 3.3(h)(2)
mop sporint Papyt
PL 86-36/50 USC 3605
3. Noise Commmicetiong

A commanisation technique, attractive to communicators both beeause of certain concealnsut and antinjamaing features. is lmown as "noise consaunicationg" and is currentiy undergoing extensive experimentation by U_{0} S. groups. (Nolse eongmulfe cations, genarally using some form of wifite, or apparently white, noise as the carrier to be modulated by the intelligence). follow directly from modern information theory studies and the various correlation time dcmain filtering techniques wich are now advancing rapidly.
4. Gxyptogrephice Radiation

EO 3.3(h)(2)
PL 86-36/50 USC 3605

Vamious electricel and clectromemanical devices, suth as teletype machines may radiate signals which can be read on power Lines and through the air, as well as on the sigmal Iine itselfos

EO 3.3(h)(2)
PL 86-36/50 USC 3605
has been developed in studies designed to maintain the security of cur om cryptographic devices. These teehniques are, however, availeble for offensive use. Although most operations of this type would be covert, the possibility exists

II TRAFFIC OPERATIONS ITJDFRTDEIT OF SYSTEH

A. Preliminary Procassing

1. Logring and Editink

After traffic has been microfilmed and time-stamped it is brought into the analytic sections where it is separated into identifiable systems. A record of all taraffic ior which a seetion is responsible is maintained in the form of a logo Messages are hand sonted in an order determined by the format of the \log and then recorded in the \log by hand. Duplicate messages are noted at this point and messages are given worksheot numbers. Originals and dupliwates are filled together. If toxtual material is to be hoypmehed into cards or tape the traftic is edited by the loggerg this oditing in cludes delation of uninformative material, reordering of informationg disorimination between textual and non-textual groups, correetion of group length and rum-together groupgg etc. often the same messages are logged in two or more diffarent weys by the same or different sections. Propenly speaking, logging and editing are not readily separable. One set of logging information could be enough for logs for all neads if a means for seady resorting were available。 Currentily experimonts are being made to deternine techniques needed For machine edituing. Thme in prepaming logs must be lept at a minimum for the older the log is the less valuable it betomes. Two prototype editing machines are under conso struption. han editing is performed logging informition can and should be extracted. Logging currently requires about 2% of PHOD man hours. As this is oftan routine and duplicated hand work there is a need for mechanization.

TQP Rsituraquar FROTH

2. Data Conversion

Traffic arrives at IJSA in as many as four different forms; hard copy, perforated paper tape, mngnatic tape, and occasionally punched cexdis. In cases in which hard copy does net exist it is usually mede. In addition edited versions of this data are required variously in puached cards, perso forated papar tape, and magnetic tape as inputs to the raxious analytie machines. The same data may be required in more than one of these forms. Gurrently there is considerable duplication of payching in slightly varying forma.

3. Data Storage and Recorreray

Currently all hard copy traffic is microfilmed and mombered in oxcier of axpivel. This mumber is needed to ree fer back to the microfilus ordinaxy photographie techniques mast be used to obtain a print which can be used by the anialyst, A problem of vast magnitude exists in the storage of collatoral information used by the intelligence analysts ${ }_{c}$ These files are of such a nature as to require eontinuel addition both of new subjects and nem informetion under old subjects. Ifuch of the reproduction of this information is done by standard photogxaphic tochniques. The rocording, reprodustion, and cataloging of this material are all in negd of mechanized aid. There is currentiy a stiudy project on this topis.

Bo Non-Iextual Analysis

Traffic analysis can be thought of as all COMIHI obtained frem sources other than textual. of primary importance is the resonatiruction of communication nets amployed by the enemy. Nets axe reconstructed by the analysis of Call signs, frequencies, ohatter, numbers, page and pad numbers, addressess and coilateral informatiok. Continuities in one or more of the above mentioned catogories may establish nots. Standard IBti sorting and indexing processes aid the, treftio anelyst.g by speeding up and making more aecurate his routine oparakiongs These aorts are basicaily logs axiranged according to traxious characteriaties. Slnce most T / A operates en a reasonably currant basis one of the principal problome is to shorten the tine to get IBPI rums mada, This lag is both a fumetion of IEM speieds. koypronch operator shortage, zand the slowness of administrative proceduraso Machine aids for these listefngs are neoded to parritt use of persomel for anolytfie oporations rather then clerical. (Scms eall sign oxyptonalytic problems axist which ene suitable for solution by computer programs).

TOP SEGRET FROTH

C. Textual Anelysis

1. P3ain Taxt Feessages

Large volumes of plain text messages are received by USA. Huch of this is of a commorial nature and is of interest (dapending uocn the subject matter, firms, or comtries involved) as proviaing reluable collateral inPormation. Stuce the valume is so great as to preclude cetrailed amamination of all messages, a preliminary scemning is performed upon incoming messages to ses if they contain hey words, addrasses, ste. This is a human operation invoiving evanaing orerprinted perforator tapes axtracting messages of intorest, and printing on tape operated typoe writers. Whem messages are solected for printing they axe alao categorized as to subject sentent according to the key woyds noted. Gurremily deviees are under development both for autcmatice format controlled printing and for catogoxization together with format sontrolled ppinting. Possibilitiles for language translaticm have been considered briafly but no woxk is going on at the present time in IJSA.
2. Gemmazial Code Hessages

This probiem is grany similar to the plain text problem. A1though jitite roric is being done ma suah systemss it might be desired at some time to place moxe emphasis on them. Equipnagt similas to that required for plain toxt scanning could be used. The problem is stmpiliflac by the fact that cole groups have a mifiom leagth, and complieated by the faet that many codes might be used over one commaications Link. Equipment for printing code group meaning currentily exiats.

III DIAGNOSTIC OPERAITONS

A. Search for and Statistieal Evaluation of Phonomena

In many cases traffic appears whith is not plain text but has been encrypted by some umknon prokess. It is neeessary, in the absence of any partinent information thatsoewers to attempte to make some sort of diagnosia of the exyptromysten involved in order that an inteiligent attack may be eampied out. This dilagnesjs may be made upen the texts themselves (Identity) or upon scaus derivative teat (Iatent).

To

1. Identity

Among the characteristies which nay be searched for are givan monographile, digraphic or cther poiygraphic Ire. queneias or roughness. Sets of messages having the same characteristiles may be grouped together and differentiated Ircm other groups of messages. Stabistical phenoment occuring whth certain periodicities may be sought fore. All of these characterdstics axe aearched for and avaluated by means of computers, cormbers, IEM equipment and in someases deak aids, In aditition to these counteble phenomena of individual messages there are between-message phonomena such as high coincidance rrates. Machines of the comparator alass are used for thil problem, Mexhine atd is usually that of pointing out where phencmons exist and af apolying som statistiect test of significance to them. Examination af the usefvinerss of the phencmone requires the weric of a eryptansilyst. In prexforming these operations one of the laxgest problems is volume of work. For arample, if 1000 messages are received per day in a cerrain system and they are to be corapareat with ogeh other at all possible juxiapositions a total af about 500×10^{6} coincidenee searehes must be made. This type of operation is being done currentlyo The problem at doing this for a monthis or a yearis triffic is orese burdeming at; present equipment speads.
2. Latent

Other axpleitrable phencmana mey not be obsenvable frcm the taxt of the massage itsolx, but rather ircm a domivative text such as might be formed by weplecing each letters by the differente betwaen itself and the proceeding letters op repleging each jetter by the distanee to the next repetitition of that Iettur. Then these derivative texts have been formeri they nayy be oxmonned as diseussed in the preceding paragraph. In general, these latant properties axe dus to partial, but not complete duplieation of variables in the enciphosing processe In some cases data contremsion axd preparation equipment are able to forin the deskivative text uhile prepaxing the data sor machine procesaing, Computers, comparators, coumbers, and IBM equipment are also used.

B. Tests at Specifit Hypotheses

There may be cases in wisich thexe is acme meason to sugpect that a particular encyypting process is used. When this is so move ponerfirl tests may be used to detexnine the validity of the hypothesis.

1. Machine Systems

Cortain meshine systems produce noticeable eharacteristics, for example, the Enigna tipe maching has the charactertistic that a letter cannot enaiphar finto itaelf.' When a frequency count is made of the text letters which occus froquently in plaintext ocour with below average irequency in cipher text. A single test of this nature may serve to prove or disprove a given hypothesis. Other machine systems heve their individual charecteristies which may be used to give more powerful tests. Ccmputers, qermiterss, and IBM equipment may be used to perform these diagnosis.
2. Hend Systems

In ocme cases it may be belleved that a nows manoiphered. code is in use. If a vaxiety of traffic is being handlad over the link in question, messages must be compared against themselves for withirimessage group coincidences. If eodes become known or partially knotim mesaages may be compared with a recognitition bank of known code groups and scored statistically. In many cases codes will be aneiphered with What are supposed to be ono-timempads. Rowases of this kgy may cocur on a different link after an extended period. If key has been recorverad from one use, other messages may be matohed with the lesy, faspecting the mesults for either known or mincomn eodes. Because of the volumes of toxts that might be invoived all possibilities eannot be tasted with present equipment. There must be a reasonable hypow thasis that the situation oxists betore tasts can be made。 Comitersp, computers, test and recognition devices, ani ITM equifuent are all used for these problems.

IV OPERATIOIS BASED ON KIONLEDEE OF THE GHIERAL SYSIIM

A. Machine Systems

1. Depth Seareh and Reading

If it has been determined that depths are 1ikoly to exist in a system, an effort is made to search for them. These may be observable from characteristics which appear in a log such as indicators, fros high coincidence rates between messages or other observable phencmena. When depths have been found and if the underiying languages are at least partially lenow, assistane may be given to the

Abstract

cryptanalyst. This may be done by furnishing a list of pairs of words whose simaltensous oecurrence is compateble with the texts involved and which have a good probability of occurrence in the langurge involved. Searching is done with IBM equipment, computers, comparators, and test and recognition devices while depth reading is asually done with test and recognition devices.

2. Machine Recoyexy gnd Serting

In most cipher machine systems there are two problems; machine recorrexy and setting. Machine macovery means recovery of the prinary variables of the machine aystem While setting recovery normality refers to the recovery of the messagemise variables which ave most often positions in the cipher machine cycle or cycles. Some machine rocovery processes are largely statistical in nature. These may be pexformed on computers or TBI equipment. Others may require methods of attack combining logical. steps with axhaustive trial techniques.

These require the assumption of a correct portion of plain text for a given ciphar text together with assumption of cartain of" the periodic variables of the syatem. Exshaustive triel techniquss applied to the remainine variables during the orreration of an enalogre to the cipher machine together mith logical tests at each trial. serve to Identify the remaining variables when the correct plain text asmumoticn has bean made. Setting and parbial machine recovery as mill as ecmputers aw used for this.

An example is that of a riredmrotor system in which the periodicaliny changing parameters are identity of rotors, a wheel motion controlling element, and the arrangemant of a set of manually inserted wixes while the messagemise varymo ing parametar is initial roter settings. (The effect of the wires is to apply a self-inverge simple substitution to the plain text before it ontexs the rotor maze, and to apply the same simple eubstitution to the text energing from the maze to Iom thec:final clphar texto)

The wiring of the rotor maze, together with a plaind cipher pair produced with that wiring carries with it a set sis of restrictions on the substritution, of the form "A is the substitute of B if and only if C is the substitute of $\mathrm{DH}^{\prime \prime}$. Given a sequence of piain/cipher pairs and the wiring zazzes producing them, the restrietiens implied may be suffieiext to determine uniqualy the substitution. (For esmapleg the

АQ

two restrictions, "A is the substitution of B if and only if C is the substitution of $D^{\beta t}$ and H_{A} is the substitution of B if and only if C is the sabstitution of E^{n} togather imply that A is pot the substitation of Bg C is not the substititution of oither D or If A sufficient muber of restrictions may yield "A is not the substitution of any letter except' $\mathrm{FH}^{\prime \prime}$, which is equivalent to tiA is the substitute of F^{n}) Moreovezs if the logical process of deterraining tho substitution is carried out using a sequence of wiringe other than that actuaily used in the encipherment, if may be that no subu stitution will satiefy the implied restrictions - that is, the restrictin ons may be mutuaily contradictory.

Since, with a limited set of rotors, there is a limited set of mazes possible, and, in this system, rotor motion is strongly limited, it is possible to try for a given matehsi plain and cipher sequence, all possible maze wiring sequences, eliminating those which yield contradicticas, in the effort to determine the substitution triring.

In some machine systems, the indicators are sueh that even when all the periodic variables have been determined, the message-wise variables cannot be determined by an easy methoda In the absence of any knowiledge of the plain text (other then statiatical) of a paricicular message, it may be necessary to do the equivaient of deciphering it ior possible values ot the message-ilise variable and examine the results statistiealiy to determine wich actually is plain.

If there i.s a high probability that a certain word, or one of a list of words, occurs in the plain, it may be nore economical to detarmine those values, if any, of the messagern wise variabies, wifich permit the simultaneous occurrence of the eipher text being exsmined, and one of the woxis of the 1ist. Sotting recovery and computers are used for this.

3. Dacyuption

At times, the cryptanalytie process yields complete ins formation concerning a exyptographic period. A period is an homogeneous set of cipher text which has been encrypted with a single cipher machine setup. Any messagtowise vaniaticns in the machine setrup are obtainable from the cipher texts.) It is then necessaxy to perform the doexyption of all available text in accordance with the rules of the syatem and print the resulting plain. Analogs and decryption devices often using punched card or tape input are used for this.

Bg Hand Systems

1. Additive Encipherment

Successful mecovery of additively enciphered massages depends on predictability of the key, Key becomes predictable then (a) it is genezated in a nommandom manner or (b) then it is reused. Exploitable generated key is aither jroduced by a detineble proceas, in which case the pzoblems of additive recovery become almost identicel to those of reading mechine encipherments, or produced by a unknown prow cess which results in an explotitable charactexistis (an ersmule in monographic roughness). Reuse of hoy parmits discoresy of the reuse and recovery of the text based on the reconstruction of the key.

There are four facets to the wedges into additive enm dipherments: (a) Systen Diserimination, or the minimimatica of the muber of variables that must be considored in reading a new systam, is almost always performad by hand or cha computer because of the vawiahility of the stops requireds (b) Indicator Reacvexy, the utilimation of the deciphezment information, supplied to the intended reatipient by the sender, has boon carried ca aimost entirely ca IBM processes (particulariy sorting) but, to a limited axtent, has been done on computsrs and, recognition devices; (c) Hapth Search, the discovery of massages having the ames leyy, and isolog saarch, the discovexy of masmages having the same under-lying piain text and dif forent (but exploitable) key, is of such importarse that it has bem attempted on most of the arailable equipments (ecmparators, computers, counters, IBM equipment and recogniticn equipmants) as well as by hands itmally (d) Exploitation, the actual code or plain-text recovesy on the besis of the infomaticn geined in one or more of the preceding steps, is of such a varied nature that virtually every analytic equipment; computers, comparators, comtere, ImP and recognition equipment as mail as decryption devices and hami methol are in use.

These procedures ape nommally perfomed by computars although IBly equipments vith many intervening manual steps have been used.

3. Additional Complax Proceduras

There are many complieated procedures, more logical than statistical in nature which are used. An exampls is the solution of a simple columar transposition, with underlying text ardinary language, but unknom subject matter. Here one will juxtapose each pair of sequences of text from the massage which might be successive colums from the original form, and for each pair make an estinate of the relative probability of their arising causally. To the better scoring pairs, trial third columas are added, and new probability eatimates and further eliminations are made a_{a} maili a seare is obtained which is unlikely to have been obtained by random in the number of trials attempted.

A second axempie is the case in which it is lnown that additive key has been derived by a spectifie complex manual process (with at least one variable of the system unknown) but such that the detailed nature of the underlying plain is unknown. Here it is necessery to follow the steps of the eipher clerk for each possible velue of the missing parew meter to generate trikai additives, to strip each trial. additive from the cipher texti, and exemine each resulting pserudo plain for language-like properties Computers are best suited to this work.

SUPPORT FUTCTIOTS
These functions embrace a nuber of different activities which may eanploy mechanized aicis. These activities are sumethat general to all cryptanalytic work and are not based on any particular traffic or system.

A. Linguistie and Statiatical Aids

A number of special dictionaries and statistical studies based upon various languages of interest are required as aids to cryptanalysts. The dictionaries and statistics may be based upon particular traffic decryptions or upon gemeral samples of the language. Dicticnaries arranged in special ordering (such as backrards) may be desired. Frequent revision of dictionaries and statistical studiss are required. Most studies of this nature have been made using IBMI equipment. Seme desired studies have not been made because too graat a volume of IBll woxk would have been required. Besides linguistid-studies large mmbers of special mathematical and statistical tables have been prepared. These include special Poisson, binomial and multinomial tables and others. This work has been done both on IBti equipment and on computers.

B, Generation of Crypto-system data
It is sometimes desired to provide the analyst with listings of data pertaining to a particular cipher machine system. For example, tables which enable computation of cycle distance between specifis machine settings and lists of suecessive settings of a cipher machine. In certain hand systems in wifich the combining of texts is done in several steps, tables showing the end results of the several steps for various vamiablet may be desired. These problems are nosmally done by Intly equipment or computers.
C. Desk Aids

There are a number of smell devices which may be provided for the indivicifal cxyptanslyst to use directly aleng with his work. These include commercial adding rachines and desk coloulators, individual cipher machines, anologs of portions of various eympto processes, tallyIng counters and the like. Such devices may be very useful, providing that they are actuallyarailable to the persca while working. There is a need for more guch equipmonts to aid in reproving clexieal burdeng frem the enalyst. Something which is crastage more exwelte then a desk caleulator iy world be of use.

D. Gryptanalytis reseazeh

There are times, in the course of current-exyptanalysisg, which during elaments appear which are not subject to regular pariodic change, but are suah that a change in them would obviate current mothods of

> TӨP SEČRET FROTH

attack. Again there are times when information as to new cipher machines or systems not inuse, but offered for saleg becomes available. In this sort of situation a substantial effort to prepare to solve a problem which may never exist is justified.

INTRODUCTION

In the following pages a brief description of computers and more special purpose devices is made. These descriptions are followed by a listing of the principal machine aids currently available for use, (or shortiy to be in use). A short description of the principal functions of each are given. For the listing under computers, an attempt has been made to "define" the categories into which NSA computer programs fall. Some explanation is made as to why certain problems should be assigned to computers and others to special purpose devices in order that the reader may obtain a general notion of the areas in which computers and special purpose devices are best suited.

COMPUTERS

Besides large scale data handing problems, the Agency is faced with analytic problems which may be classified under two general headings: the "work horse" problems which require almost continuous enfort to effect almost daily solutions, and problems which require machine effort on a much smaller scale and on a more sporadic time basis. Under the second type, one would include problems requiring only a few machine runs to effect a solution after which no inmediate need for machine time is required. These problems are definitely handled by means of a general purpose computer or IBM equipment.

Under the "work horse" machine problems we have the following tuo classes:

Class 1. Problems which involve many and varied types of computational and logical operations and require a reasonable amount of machine time.

Class 2. Problems which involve a few operations but may require considerably more machine time.

It is felt that problems in Class 1 are best handled by general purpose digital computers, and that problems in Class 2, in most eases, are best handled by special purpose devices.

Problems in Class 1 might be handled quite well by special purpose devices. However, due to the variety of operations required to effect a solution, the equipment would well approach the design of a seneral purpose computer. For this reason it is deemed advisable to develop general purpose equipment with the idea that the added cost, if not excessive, is justified in having a device which has general utility even after the problem or problems which motivated the device nc longer exists.

IOP SECRET CO IROL NUMBER 301259

$$
\text { APPENDIX I CIPY } 11 \text { OF } 16 \text { COPIES }
$$

- Problens in Class 2 are usually given every consideration as tomputer problems and are handled as such unless by virtue of size, importance, time consumption and monetary savings, it is decided that they warrant special purpose equipment.

SOAPARATORS
In searches for causal characteristics (such as reuse of key, -meipherment with most variables identical, etc.) it is often desired \therefore io make comparisons between texts in an effort to find if and where "nese circumstances exist. Among the "symptoms" being sought may be such items as high coincidence rates, similar repetition patterns, and characteristic frequency distributions.

Tasks of this nature are often performed on comparator equipments. These equipments have in general the ability to examine texts at many juxtapositions, to generate certain periodic texts, to make rarious combinations and comparisons using logical circuitry, and to count and compare results against a criterion in order to test for significant results. General purpose comparators, with great flexibility in problem capability, and limited purpose comparators are in use.

SETTING RECOVERERS

In a number of machine cipher systems all periodic variables are orten recoverable leaving only a particular message variable, that of the position in the machine cycle, to be recovered. It is desired, inerefore, to provide a means for recovering the position or setting or the machine at the start of the encipherment.

Setting recoverers are in general of two varieties: crib placeusent and statistical placement. In crib placement procedure, a probable plain text word (or crib) is assumed to underlie some posiilon of the message and possible machine settings are tried on an -xhaustive trial basis or by a series of logical tests to see if the cssumption can be verified or proven false. In statistical placement wrocedure, a message is decrypted at all possible settings and the .ofsultant possible plain text is examined for statistical plain text eharacteristics. Since certain languages have a very strong odd jetter-even letter unbalance some procedures consider cipher, key ind plain text streams solely on a modulo 2 basis for statistical placement.

STHTING AND PARTIAL MACHINE RECOVERERS

In some machine cipher systems not oaly the message setting but also some of the periodic machine variables are unknown. Procedures inve been developed to solve both unknowns.simultaneously. These ; oceoures generally involve exhaustive trial setting runs while : Lopiying logical procedures to test assumptions of the other variables. ror these tests long cribs may be required, or very long cipher texts ard statistical plain text characteristics may be used.

TEST AND RECOGNITION OR CRTTERION DEVICES

In situations where key can be predicted or is used more then once, it is desirable to make tests for its occurrence in a particular position and recognize according to plain text (or plain code) chaxscteristics. In the case of codes these may be known or unknown. When the code is unknown or cannot be predicted, recognition of plain sode ns opposed to random text must be performed by observing group repears. pherwise recognition of known code groups, knom plain text groups or single letters, and plain text roughness are variously used. Provision must be made for the combining of streams of textual material acroiding t. 0 the method of the cryptoo system involved and selecting the streams is the desired order.

ARALOGS, TEST ARD DECRYPTION DEVICES

In the simulation of various cryptosystems a variety of devices \therefore found useful to replace hand operations. A device may simulate all os part of the actions of either a machine system or a hand enciphered system and may have a manual, tape, or card input together with a tape, ofrd, or printed output. Their principal utility is as a labor saving末id. They are aften used in the vicinity of the operating analytic aection.

DATA CONVERSION, PREPARATION AND RECORDING

Since data may arrive at the Agency in a variety of foms includ. fing hard copy, perforated paper tape, punched cards, and magnetio tape ind as it is utilized by both analytic machines and personnel in yaplous of these forms devices are necessary to permit the conversion of data from one such form to another. at this time minor changes sazy be made in the data such as recoding in a different baud Poritat, Geletion of certain characters, insertion of indicative information ind spaces, etc. Auxiliary input and output to analytic equipments sre required. The variety of such equipments in use is very great.

COOMTERS
In the course of exploratory and cryptanalytic operations a large amount of information is often obtained from making counts of various toxtual characteristics. A number of specialized counting devices erist for the purpose of making these counts. The devices are often located in the vicinity of the using section.

SBLECTION DEVICES

Large quantities of plain text material are received in perforated tape forra. These messages require printing in an acceptable message format, and because of the volume involved, deletion of messages a Ifttie interest will be needed. By use of a list of key words pertaining to subjects of interest, this deletion function can be per.. roxmed in a step prior to printing. Format is controlled by identiilcation of heading indications, etc. Similar devices could hancle comercial code material but are not curpently being planned.

TOP SEGRET FROTH

EDITING DEVICES

The possibilities of mechanised editing are currently beginning to be explored. The problems involve peordering of message information, deletion of superfluous material, adding auxiliary indicative information, collation of several versions of a message to produce a best copy, provision of output for logging, regrouping of information and many others. A first editing device, a limited purpose, character handiing computer, is under construction.

IBM EQUIPMENT
This category includes standard IBM equipment plus modifications made to these equipments which enable problems peculiar to the Agency effort to be solved with more facility. The aggregate of ordinary and special IBM equipment is capable of performing tasks of any description (just as is a digital computer) but with certain drawbacks for very large operations including the requirement for manual handing of cards between steps of various operations, and the limitations on speed imposed by mechanical card handiing.

DESK AIDS

In addition to all the machine aids previousiy listed, there is a final category of equipments which are used by the individual cryptanalysts at or on the desk. These include desk calculators, actual cipher machines, and special purpose devices used to simulate portions of a cryptosystem process. These devices are required in general to be small, simply operated and quiet.

TӨP SEGREP FROTH

DRAFT

1. COMPUTER PROGRAMS

A. Cipher Machine Analog and Simulation:

A program which simulates the opergtion of a cipher machine in order to study its cryptographic characteristics.
B. Machine Setting:

A program wherein partial knowledge of the machine is known and some subsidiary information (cribs, etc.) is employed to recover the initial setting of the machine.
C. Decrypting:

A program wherein the usualiy non-machine system is assumed and messages decrypted by means of system inalog.
D. Key Stuady:

A program wherein key is analyzed with view to determine its charicteristics and method of generation.
E. Computational:

A program wherein specizl counts and tables, etc. are made on sets of datz.
F. Rough Key Exploitation:

A program wherein key characteristics rather than zotual key vilues are exploited to obtain underlying "plain text".
G. Logiczl:

A program wherein the basic operation is one of comparing and ordering.
H. Statistical Research:

4 program wherein the machine obtains information concerning a population by random sampling.

DRTTT
I. Mathematics Research:

4 program wherein mathematical and statistical theory is tested for computational, statistical and cryptanalytic feasibility.
J. Engineering Research:

A program wherein designs or projected designs are analyzed for feasibility and optimal properties.
K. Intercept Studies:

These are prograns involving intercept control and direction finding.

TGPicgaticer

2. COMPARATORS
A. AFS 4 P DIA
B. Copperhead
C. 70 MM

D DELLA
E. ROBIIT
F. IDA
G. HYPO (See 3F)

General Purpose High Speed Comparator (Performted Paper Tape)

Group Repezt Search between messages (Polystyrene tape)

Counts 1, 2, 3 and 4 chapreter repezts (70 m paper tape)

Limited Purpose High Speed Comparitor (1-64 character repeats) (Magnetic Tape)

Coincidence Counter with Threshold (Perforated Paper Tape)

Coincidence Counter between bands (Perforated Paper Tape)

Colncidence Counter with Threshold (35 mm Pilm)
4. HECATR
B. WARLOCK I
C. WARLOCK II
D. VIVIAN
E. HAGELIN MESSAGE SETTER
F. HYPO (See 2G)
G. FIRECRACKER
H. GRENADE

Hagelin Message Setter (Crib)
Hagelin Message Setter (Statistical)
Wired Wheel Hagelin Message Setter (Statistical)

Hagelin Message Setter (5 Wheel Parity)
Hagelin Message Setter (3 Wheel Parity)
Enigna Hagelin Message Setter (3 wheel Hagelin max.)

Purple Machine Message Setter (Crib)
Enigma Setting

EO 3.3(h)(2)
DRATR
PL 86-36/50 USC 3605
4. SENTING AND PARTIAL MACHINE RECOVERY
A. BOSME
B. FROG
C. BRIDE

Enigma Wheel Order and Stecker Recovery
\square
Recovery
General Wired Theel Stecker, Order, Setting Recovery
5. TEST AND RECOGNITION OR CRITERION
4. DEMON II
B. SK4TE II
C. DEMON TII
D. SLED I
E. DUCHESS
F. MISTRESS
G. GEEWHIZZER

Depth of 2 reading/key Stripping (Base 32: 5 characters; Base 10: up to 15 characters)

Wired wheel decipherment/Depth search/ Key finder/Coincidence counts/group I.C. counts/chaining

Group I.C. counts of differences $\left(\Sigma \frac{f(f-1)}{2}\right)$
Placode finding (repeat search)
Digraph weighting of cipher text/Fourier weighting of cipher digraphs

EO 3.3(h)(2)
PL 86-36/50 USC 3605

DRAPT
6. analogs, test and decryprton deviges
A. B-211
B. C-38 (N4G)
C. SATYR
D. STURGEON Analog
E. EMBRYO OEHIS
F. BABY OPHIS
G. ROE
H. HELECAT
I. MPSAF D6 \varnothing
J. MAIBIE
K. PEELER

工. 門 4 HTHEN
M. Chinese Typewriter
N. CALE 35
O. HOYLE
P. M-8
Q. PADDLE
\square 3-21I Analog
Hagelin C-38 Analog
Hageinn C-38 Analog
Model C, D and E in one package
Q.P. wired wheel
G.P. Wired wheel

Deciphers Sturgeon traffic using
externaliy prepared key tapes
PoIyalphabetic (26) decipherer
\square "N" square decipherer \quad EO 3.3(h)(2) \quad PL 86-36/50 USC 3605
Code lookup and printer
Adaitive Stripper and Tester
Strips key from cipher using externally prepared key tapes

Draws a stylized (straight line) characters from special coding in that card

Call sign deciphement
Playfair decipherment
Enigna Analog and/or "Key" generation
Decipherment of two letter enciphered code

DRAFM
7. DATA CONVERSION, PREPARATION ARD RECORDING
A. 門ILLIE.
B. MATHEW
C. JOHN
D. AS4F 25
E. BUNAY
F. CEHSSOR
G. AYE AYE
H. PRIMATE
I. PAYBE
J. CXCO
K. CAPPY
L. TIZZY
M. AFSAF 44
N. Hi Speed

TIT Reader
0. Hi Speed

TT Punch
P. Ferranti Reader

Perforated Paper Tape to magnetic tape ("regen" or patternized)

2-to-1 conversion of periorated paper tape
Mononome Dinome Decipherment
High speed perforated paper tape reader (Potter) used in tape checking

High speed perforated paper tape pluggable regen and pattemizer
Checker for coded paper tapes (Atlas,
Demon)
Perforated paper tape patternizer
Computer Program Tape Pinch
Computer Magnetic Tape Preparation Device
Perforated Tape Readers, Typewriters and Punches

Card to Tape Gonverter
Tape to Card Converter
High speed digital and/or literal recorder

High speed mechanical perforated tape reader

High speed perforated tape punch
High speed photoelectric perforated tape reader
9. COUNPERS
4. C4DILLAC
B. BABY ALCATHAZ
C. DELTA COUNTEER
D. DELTA-DOT COUNTER
E. DIFFERENCE COUNTER
F. DINOME COUNTER

Monographic Counter/I. C. computation/ baud level totals

36 category monographic frequency counter (differencing optional)

Counts baud-no baud changes in 5 levels plus character totals

Counts runs of bauds and no bauds in 5 levels of tape

Counts differences between two tapes (digital)

Counts dinomes supplied as one digit from each of two tapes

DRA男
10. SELECTION DEVICES

A. PATRICIA	Message Categorization Onit
B. BUDDY	Message ending reoognition - Fornat Gontrolied Printing
C. PADDY	Message Categorization - ending Recog- nition - Format Controi Printing

TGPrgiceres FROTH

DRATT

11. EDITING DEVICES
A. BOGART

Limited puppose character handiing computer

DR日T
12. IBM EQUIPMENI
A. Standard IBM
B. Special IBM
C. Guxiliary Devices
D. 604

Punches, Verifiers, Sorters, Collators, Reproducers, Tabuiators

Coordinating Reproducer, Brute Force Device, Card-to-Tape, Tape-to-Card

Relay Gates
Suall General Purpose Calculator

EO 3.3(h)(2)
DRAFT
PL 86-36/50 USC 3605
13. DESK ATDS
A. Calculators
B. NCR
C. B-2II Handtestex
D. Electric Hagelin
E. WW Kandtester
F. PICCOLO
G. ROSE

Computational Work
Additive testing
B-211 testing
Keyboard C-38
General Wired Wheel testing
\square Crib Tester and Decipherer
Sturgeon Crib Tester and Decipherer

