REF ID:A4146445
 whf's home

MILITARY CRYPTANALYSIS

PART II

by

WILLIAM F. FRIEDMAN

Principal Cryptanalyst

Prepared under the direction of the Chief Signal officer.

This document is re-graded "UOPI UP of DOD Directive 5200.1 dated 8 July 1957, and by authority of the Director, National Security Agency.

Paul S. Willard
Colonel, AGC
Adjutant General

8
MILITARY CRYPTANALYSIS. PART II
Simpler Varieties of Polyalphabetic Substitution Systems
Section Paragraphs Page
I. Introductory Remarks $1-4$ 1
II. Cipher Alphakets for poiyalphabetic substitution. 5-7 5
III. Theory of solution of repeating-key systems. $8-12$ 7
IV. Repeating-key systems with standard cipher alphabets $13-15$ 16
V. Repeating-key systems with mixed cipher
alphabets, I. $16-26$ 24
VI. Repeating-key systems with mixed cipher alphabets, II 27-30 55
VII. Theory of indirect symmetry of position in secondary alphabets 31 58
VIII. Application of principles of indirect symmetry of position $32-36$ 66
IX. Repeating-key systeins with mixed cipher alphabets, III. $37-40$ 87
X. Repenting-key systems with mixed cipher alphabets, IV. 41-46 94

REF ID:A4146445

ERRATA

LESSON SHEETS

\%. Lesson Problem Line Group Page Now Reads Correction
2
2
1
$\begin{array}{ll}5 & 2 \\ 4 & 3\end{array}$
2
$\begin{array}{lllll}W & D & B & X & N \\ Y & B & K & A & O\end{array}$
$W D B$
$Y B$
Y

REF ID:A4146445

SECTION I
 INTRODUCTORY PMMAPKS

0
Paragraph

1. The essential difference between monoalphabetic and polyalphabetic substitution. - a. In the substitution methods thus far discussed it has been pointed out that thier basic feature is that of monoal phabeticity. From the cryptanalytic standpoint, neither the nature of the cipher symbols, nor their method of production is an essential feature, although these may be differentiating characteristics from the cryptographic standpoint. It is true that in those cases designated as monoalphabetic substitution with variants or multiple equivelents, there is a departure, more or less considerable, from strict monoalphabeticity. In some of those cases, indeed, there may be available two or more wholly indepondont sots of equivalonts, which, moreovor, may oven be arranged in tho form of completoly scparato alphabets. Thus, whilo a loose torminology might pormit one to dosignate such systoms as polyalphabotic, it is bettor to rosorvo this nomonclature for thoso casos whorein polyalphabeticity is tho essonce of the mothod, spocifically introducod with tho purpose of imparting a positional variation in the substitutive oquivalonts for plain-toxt lottors, in accordanco with some rulo diroctly or indiroctly connoctod with tho absoluto positions tho plain-toxt lottors occupy in tho mossago. This point calls for amplification.
b. In monoalphabotic substitution with variants the objoct of having difforont or multiplo oquivalonts is to suppross, so far as possiblo by simplo mothods, the charactoristic froquoncios of tho lottors occurring in plain toxt. As has boon notod, it is by moans of thoso charactoristic froquoncios that tho ciphor oquivalonts can usually bo idontified. In thoso systoms tho varying oquivalonts for plain-toxt lottors aro subjoct to tho froo choico and caprico of tho onciphoring clork: if ho is caroful and consciontious in tho work, ho will roally mako uso of all tho difforont oquivalonts affordod by tho systom; but if ho is slip-shod and hurriod in his work, ho will uso tho samo oquivalonts ropoatody rathor then tako - pains and timo to refor to tho charts, tablos, or diagrams to find tho variants. Moroovor, and this is a crucial point, ovon if tho individual onciphoring clorks aro oxtromoly caroful, whon many of thom onploy the somo systom it is ontiroly impossiblo to insuro a comploto divorsity in the onciphorments producod by two or moro clorks working et difforont mossago contors. Tho rosult is inovitably to produco plonty of ropotitions in tho toxts omanating from sovoral stations, and whon toxts such as thoso aro all availablo for study thoy aro open to solution, by a comparison of thoir similaritios nd difforoncos.

REF ID:A4146445

- 2 -
c. In true polyalphabetic systems, on the other hand, there is established a rather definite procedure which automatically determines the shifts or changes in equivalents or in the manner in which they are introduced, so that these changes are beyond the momentary Whim or choice of the enciphering clerk. When the method of shifting or changing the equivalents is scientifically sound and suffi-: ciently complex the research necessary to establish the values of the cipher characters is much more prolonged and difficult than is the case even in complicated nonoalphabetic substitution with variants, as will later be seen. These are the objects of true polyalphabetic substitution systers. The number of such systems is quite large, and it will be possible to describe in detail the cryptanalysis of only a few of the more common or typical examples of methods encountered in practical military cryptanalysis.
d. The three methods, (1) mono-equivalent: monoaliphabetic substitution, (2) monoalphabetic substitution with variants, and (3) true polyalphabetic substitution show the following relationships as regards the equivalency between plain-text and cipher..text units:
A. In method (1), there is a set of 26 symbols; a plaintext letter is always represented by one and only one of these syabols; conversely, a symbol always represents the same plaintext letter. The equivalence between the plain-text and the cipher letters is constant in both encipherment and decipherment.
B. In method (2), there is a set of $26+\underline{n}$ symbols, where \underline{n} may be any number; a plain-text letter may be represented by 1 , 2, 3, ... different symbols; conversely, a symbol always represents the same plain-text letter, the same as is the case in method (1). The equivalence between the plain-text and the cipher

REF ID:A4146445

letters is variable in encipherment but constant in decipher-ment. $\frac{1}{2}$
C. In method (3), there is, as in the first method a set of 26 symbols; a plain-text letter may be represented by 1,2 , 3\%.\%. 26 different symbols; conversely, a symbol may represent ㄱ, $2,3, \ldots 26$ different plain text letters, depending upon the system and the specific key. The equivalence between the plain-text and the cipher letters is variable in both encipherment and decipherment.
2. Primary classification of polyalphabetic systems. - a. A pri.mary classification of polyalphabetic systems into two rather distinct typestmay be made: (1) periodic systems and (2) aperiodic systems. When the enciphering process involves a cryptographic treatment which is repetitive in character, and which results in the production of cyclic phenomena in the cryptographic text, the system is termed periodic. Then the enciphering process is not of the type described in the foregoing general terms, the system is termed aperiodic. The substitution in both cases involves the use of two or more cipher alphabets.
b. The cyclic phenomena inherent in a periodic system may be exhibited externally, in which case they are said to be patent, or they may not be exhibited externally, and must be uncovered by a prelininary step in the analysis, in which case they are said to be latent. The

1 There is a monoalphabetic method in which the inverse result obtains, the correspondence being constant in encipherment but variable in decipherments this is a nethod not found in the usual books on cryptography but in an essay on that subject by Jdgar Allan Poe, entitled, in some editions of his works, "A few words on secret writing" and, in other editions, "Cryptography". The method is to draw up an enciphering alphabet such as the following (using Yoe's example):

$$
\begin{aligned}
& \text { Plain - A.BCDEFGHIJKLENOMRSTUVWXYZ } \\
& \text { Cipher - SUAVITBRINEODOFORTITRRINRE }
\end{aligned}
$$

In such an alphabet, because of repetitions in the cipher component; the plain-text equivalents are subject to a considerable degree of variability, as will be seen in the deciphering alphabet:

This type of variability gives rise to ambiguities in decipherment. A cipher group such as TI would yield such plain-text sequences as REG, FIG, TEU, REU, etc., which could be read only by context. No system of such a character vould be practical for serious usage.

REF ID:A4146445

periodicity may be quite definite in nature, and therefore determinable with mathematical exactitude allowing for no variability, in which case the periodicity is said to be fixed. In other instances the periodicity is more or less flexible in character and even though it may be determinable mathematically, allowance must be inade for a degree of variability subject to linits controlled by the specific system under investigation. The periodicity is in this case said to be flexible, or variable within linibs.
3. Primary classification of periode systens arabic polyalphabetic substitution systems may primarily"beclassified into two kinds:
(1) Those in which only a few of a whole set of cipher alphabets are used in enciphering individual messages, these alnhabets being employed repeatedly in afixed sequence throughout each message. Because it is usual to employ a secret word phrase, or number as a key to determine the number, identity, and sequence with which the cipher alphabets are enployed, and this key is used over and over again in enciphement, othis method is often called the repeating-alphabet systen. It is also sometimes referred to as the multiplemalphabet system because if the keying of the entire message be considered as a whole it is composed of multiples of a short key usederepetitively。 1 In this text the designation "repeating-key system" will be used.
(2) Those in which all the cipher alphabets comprising the complete set for the system are employed one after the other progressively in the encipherment of a message, and then the last alphabet of the series has been used, "the encipherer begins over again with the first alphabet: This is comanly feferred to as a progressive-alphabet systom because the eipher alphabets are used in progression.
4. Sequence of study of polyalphabetic systems. - a. In the studies to be followed in connection with polyalphabetic.systems, the order in which the work will proceed conforms very closely to the classifications made in paragraphs 2 and 3 . Periodic polyalphabetic substitution ciphers will come first, because they are, as a rule, the simpler and because a thorough understanding of the principles of their analysis is prerequisite to" comprehension of how aperiodic systems are solved. But in the final analysis the solution of examples of both types rests upon the conversion or reduction of polyalphabeticity into monoalphabeticity. If this is possibleg solution can always be achieved, granted there are sufficient data in

1
French terainology calls this the "double-key method", but there is no logic in such nomenclature.
the final monoal phabetic distributions to permit of solution by recourse to the ordinary principles of frequency.
b. First in the order of study of periodic systems will cone the analysis of repeating-key systens. Some of the more simple varieties vill be discussed in detail, with examples. Subsequently, ciphers of the progressive type will be discussed. There will then follow a more or less detailed treatment of aperiodic systems.

SBCTION II

CIHER ALABABGTS FOR FOLYLAGABEIC SUBSTITUTION
Paragraph

5. Classification of cipher alphabets upon the basis of their derivation. - ${ }^{2}$. The substitution processes in polyalphabetic methods involve the use of a plurality of cipher alphabets. The latter may be derived by various schemes, the exact nature of which determines the principal characteristics of the cipher alphabets and plays a very important role in the preparation and solution of polyalphabetic cryptograns. For these reasons it is advisable, before proceeding to a discussion of the principles and methods of analysis, to point out these various types of cipher alphabets, show how they are produced, and hov the method of their production or derivation may be made to yield important clues and short-cuts in analysis.
b. A primary classification of cipher alphabets for polyalphabetic substitution may be inade into the two following types:
(1) Independent or unrelated cipher alphabets.
(2) Derived or interrelated cipher alphabets.
c. Independent cipher alphabets may be disposed of in a very few words. They are merely separate and distinct alphabets showing no relationship to one another in any way. They may be compiled by the various methods discussed in lars, 44-43, inclusive, Section IX of Special Text No. 165, Elementary Military Cryptography. The solution of cryptozrams written by means of such alphabets is rendered more difficult by reason of the absence of any relationship between the equivalents of one cipher alphabet and those of any of the other alphabets of the same cryptogram. On the other hand, fron the point

REF ID:A4146445

-

of view of practicability in their production and their handing in cryptographing and decryptographing, they present some difficulties which make them less favored by cryptographers than cipher alphabets of the second type.
d. Derived or interrelated alphabets; as their name indiçates, are most, comonly produced by the interaction of two priany components, ${ }^{1}$ which when juxtaposed at the varicus points of coincidence can be made to yield secondary alphabets.
6. Frimary components and secondary alphabets. - Two basic, slidable sequences or components of \underline{n} characters each will yield \underline{n} secondary alphabets. The components may be clessified according to various schemes. For cryptanalytic purposes the following classification will be found useful:

CASEA. The primary components are both normal sequences.
(1) The sequences proceed in the same direction. (The secondary alphabets are direct standard alphabetso)
(2) The sequences proceed in opposite directions. (The secondary alphabets are reversed standard alphabets and are reciprocal.)

CASE B. The primary components are not both norial sequences.
(1) The plain component is normal, the cipher component is a mixed sequence. (The secondary alphabets are mixed alphabets.)
(2) The plain component is a mixed seruence, the cipher component is normal. (The secondary alphabets are mixed alphabets.)

- (3) Both components are mixed sequences.
(a) Components are identical mixed secuences.
I. Sequences proceed in the sane direction. (The secondary alphabets are mixed alphabets.) (Far. 23)

[^0]
REF ID:A4146445

- 7 -

a
II. Sequences proceed in opposite directions. (The secondary alpabets are. reciprocal mixed alrhabets.) (rai。30)
(b) Components are difterent mixed seguences. (The secondary alphabets are mixed alphabets.; (1ar. 39)
7. Cipher disks and cipher squares. - a. Reference is nov made to lars. 60-62, Section XII, Special Text Ho. 165, wherein was shown the equivalency that subsists between the results moduced by sliding primary components and cipher disks and square tables of the Vigenere type. In all. cases the results produced by the successive juxtapositions of two sliding components may be duplicated by usins a cipher square; the converse relationship is true only when the columns or rows of the cipher square shov symmetry; that is, the sequences in the columns or rows are identical but merely dis-. blaced $1,2,3, \ldots$ intervals successively。
b. In cryptanalytic studies it is usually more convenient and useful, wherever possible, to consider the problem from the point of view of sliding components rather than cipher scuares.

SECTION III

THEORY OF SOLUTION OF REYEATING-KZY SYSTMAS

Paragraph

The three steps in the analysis of repeating-key systems. . 8
First step. finding the length of the period. 9
General remarks on factoring 10
Second step: distributing the cipher text into the
component monealphabets................ 11
Third step: solving the monoalphabetic distributions.. . 12
8. The three steps in the analysis of repeating-key systems. -
$\therefore \quad$ a. The method of enciphering according to the principle of the re-peating-key, or repeating alphabets is adequately explained in Pars. 57 ard 58 of Special Text No. 165, Elementary inilitary Cryptography, and no further reference need be made at this time. The analysis of a cryptogram of this type, regardless of the kind of cipher alphabets employed, or their mothod of production, resolves itsolf into three distinct and successive steps.
(1) Determination of the length of the repeating key, which is the same as the determination of the oxact number of alphabets involved in tho cryptogram:

REF ID:A4146445

- 8 -
a
(2) Allocation or distribution of the letters of the cipher text into the respective cipher:alphabets to which they belong, which reduces the polyalphabetic text to monoalphabetic terms;
(3) Analysis of the individual monoalphabetic distributions to determine plain-text values of the cipher letters in each distribution or alphabet.
b. The foregoing steps aill be treated in the order in which mentioned. The first step may be described briefly assthat of determining the period. The second step may be described briefly as that of refuction to monoalphabetic terns The third st ep may be desicnated as identification of cioher-text values.

9. First step: finding the length of the period. - a. The determination of the period, that is; the lergth of the key or the number of cipher alnhabets involved in a cryptograra enciphered by the repeating-key method is, as a rule, a relatively simple matter. The cryptogram itself usually manifests externally certain phenonena which are the direct result of the use of a repeating key The principles involved are, however, so fundamental in cryptanalysis that thoir elucidation warrants a sonowhat detailed treatment. This will be done in connection with' a short example of encipherment, shown below ja Pig. 1.
b. Regardiess of what system is used, identical plain-text letters enciphered by the same cipher alphabet ${ }^{1}$ nust yield identical cipher letters. Referring to Fig. l, such a condition is brought about every time that identical plain..text letters happen to be enciphered with the same key-letter, or every tiae identical plain-text letters fall into the same colum in the enciphernent. ${ }^{2}$ Now since the number of colums or positions with respect to the key is very limited (except in the case of very long key words), and since the repetition of letters is an inevitable condition in plain text, it follows that there will be in a message of fair length nany cases Where identical plain-text letters must fall into the same column. They will thus be enciphered by the same eipher alphabet, resulting, therefore, in the production of many identical letters"in the cipher text. When identical plain-text polygraphs fall into identical
[^1]2
The frequency with which this condition may be expected to occur can be definitely calculated. A discussion of this point falls beyond the scope of the present text.

REF ID:A4146445

THA AFTLLLERY BATTALION MARCHING IN THE REAK OF THE ADVANCE GUARD KEEPS ITS GOMABT TRAIN WIMH IT INSOFAF AS PTACPICABLE.
(Key: BLut, uising direct standard alphabets)
OIPHER ALPHABETS

$\frac{B L U E}{T H E A} \quad \frac{B L U E}{A R D K}$
$R I I I, \quad E E P S$

LERY ITSC
$B A T T \quad O M B A$
$A L I O: T T A A$

NMAR INWI

CHINT THIT
$G I N T \quad I N G O$
$\mathrm{HERE} \quad \mathrm{FARA}$
AROF. FPRAA

THEA C CIC

DVAN ABLE
$C E G U$
a
$\frac{B}{T} \frac{U Q}{E A} \quad \because \frac{B L U E}{A R D K}$
$U S Y X$

$\begin{array}{ll}B A T T & O M B A \\ C E N X & P X V E\end{array}$

$\begin{array}{ll}N M A R \\ O X U V & I \\ O W Q M\end{array}$
$\begin{array}{lllllll}C & H & I & N & T & H & T \\ D & S & C & T\end{array} \quad$ U $\mathrm{S} C \mathrm{X}$

$\begin{array}{llllllll}H & E & E & E \\ J & \mathrm{D} & \mathrm{L} & \mathrm{I} & \mathrm{F} & A & R & A \\ \mathrm{G} & \mathrm{L} & \mathrm{L} & \mathrm{E}\end{array}$

$\begin{array}{lll}D & A N & A B L E \\ E G U R & B M F I\end{array}$
$\mathrm{C} G \mathrm{G}$
$D \mathrm{P} A$
b \quad b

GEYPGOGRAM

LEDEC GBMTI
Figure 1.

REF ID:A4146445

-- 10 -
columns the result is the formation of identical cipher-text polygraphs, that is, repetitions of groups of $2,3,4$, . . letters are exhibited in the cryptogram, "Repetitione of this type will hereafter be called causal repetitions, because they are produced by a definite, traceable cause, viz, the encipherment of identical letters by the same cipher alphabets.
c. It will also happen, howeven that afferent plain tert letters falling in different columns will, by mere accident, produce identical. cipher letters, Note, for example, in Fig, 1 that in Cojumn 1 , becomes S_{c} and that in Colunn $2, \mathrm{H}_{\mathrm{p}}$ also becomes S_{c}. The production of af identical cipher-text letter in these two cases (that js, a repetition where the plaintext letters are different andenciphered by diffement alphebets) is meyely fortuitous. It is, in every day language, "a nere coincidence", or "an accident." For this reason repetitions of this type will hereafter be called accidental renetitions. Such repetitions will, of dourse, happen fairly frequently with indivicual letters, but lese frequently with digraphs, because in this case the same kind of an "ecoident" must take place twice in succession. Intuitively one feels that the chances that such a purely fortuitous coincidence will heppen two times in succession must be much less than that it will happen every once in a while in the case of single letters. Similarly, intuition nakes one feel that the chences of such eccidents happening in the case of three or more consecutive letters are still less than in the case of djgraphs, decreasing vory rapidly as the repetition increases in length. This; phenomenon nay, however, be dealt with statistically, thus taking the metter outside the reelr or intuition.
d. (1) Imagine a box containing an infinite number of the 26 letters of the alphabet, all in equal proportions, so that there are exactly the same numbers of $A^{\prime} s, B^{\prime} s, C^{\prime} \mathrm{s},$. . Z's. The boz ie tioroughly shaken so that the letters are thoroughly mixed and a single letter is now drawn at random. What are the chances that it is an A ? Obviously the chonces are 1 in 26 . The chances that the letter is B, C, D, . . Z are also the same. In mathematical language, the probebility ${ }^{1}$ of drawing any speciffed letter is 1 . Suppose an A has been drawn.
(2) Now zuppose that this letter is replaced in the box, the latter again shaken, and second drawing is made. What are the chances that the second drawing will also be an A? Another way of asking the same question, which will perheps meke it clearer is this: suppose two letters are drawn simultaneously from the box, what is the probebility of drawing two A's? Since the probebility of occurrence of two events which ore independent is the product of the pobability of their separate occurrence, the probability of drawing two A 's is $\frac{1}{26} \times \frac{1}{26}$, or $\frac{1}{676}$: This is also the probability

1

The definition of probability implies philosophical questions which are beyond this discussion. However, for the purposes of this text, the following definition of a priori probebility will be found sufficient. The probability that en event will occur is the ratio of the number of favorable cases to the: number of total possible caser, ail cenes being equally likely to. occur, where by a favorable case is meant one which will produce the event in question.

of drawing two $B^{\prime} s$, , an A and a B, or an two specified letters in a speci fled order: that is, the probability of drawing any specified digraph is $\frac{1}{26^{2}}$: Similarly, the probability of drawing a specified trigraph is $\frac{1}{26^{3}}$ a specified tetragraphi) $\frac{1}{26^{+}}$, and so on. In general, for any specified polygraph the probability is' $\frac{1}{26^{n}}$ where n is the number of letters in the the phenom-
polygraph.
(3) However, in studymit ting phenomena res repetition, the student is concerned not the probability of occurrence of a specified single letter, digraph, trigraph, on polygraph, with the probability of the repatitan (recurrence) of these elements. ${ }^{(}$The problem is now different.
e. Consider the cryptogram in subparagraph b, which contains exactly 100 letters, and assume that these letters constitute a perfectly random assortment; that is, assume that the cryptographic system which produced the cryptogram is of such a netwe that the text may be considered to be the same as though one had made ibo drawings, with replacements, of the letters from the box of letters referred to above. "What is the probability that a specified single letter will not be repeated in the cryptogram? What is the probability that a specified single letter will be repeated exactly (that is, no more and no less than) $1,2,3$, . . . times? What is the probability that a specified single letter will apoc at least once; that is, including all cases in which that letter will appear 1, 2, 3, 4, . . . times? What is the probability the a specified ingle ster will appear at least. 2 times, at least 3 times, and so on? what ar he mower to the same questions as regards digraphs, trieraphs, and longer polygrapher? Another, and possibly more concrete, way of putting these questions is the: In the $100-1$ letter cryptogram being studied, assuming it were perfectly random text, how many letters should not occur at all? How many should occur exactly 1, 2, 3, \therefore times? How many should occur at least $1,2,3, \cdots$ et lean

f. It may be stated at once that the answers to the tatter questions A ba id are by no means easy to find, and a complete discussion would fall quite outside the scope of this teat. ficwever, it will be sufficient for the pourpose if the mathematics involved are converted into a form that will be of practical use to the student. With this in view Chart 1 has been prepared and its use will now be explained. ${ }^{1}$

This chart was constructed from calculations base? upon Poisson's exponential expansion, or the: "law of small probabilities." Students without a thorough grounding in the mathematical theory of probability and statistics "will have to tale the chart on faith." Those interested in its derivation are referred to the following texts:

Fisher, R. A., Statistical Methods fox Research Workers, London, 1937.
Fry, T. C., Probability and its Engineering Uses, New, York, 1928.

g. (1) Suppose a cryptograin of 100 letters is being studied. λ Assuming that the 100 letters had been drawn cut or the box, so thiat they constitute a perfectly random assortment of letters, what is the probability that a specified single letter will not appear at all in this assortment? It has been seen that in a perfectiy random assortment, the probability for selecting a-specified-single letter is $\frac{1}{26}$, or, in mathematical language, $P_{1}=.0385$.

There being 100 letters in the cryptogram in question, P_{7} is to be multiplied by 100, giving 3.85. Referring now to Chart l, find the point corresponding to the value 3.85 on the x axis of the chart, that is, the horizontal scale at the bottom; select the curve marked zero; find the point where this curve intersects the vertical ordinate corresponding to the value 3.95 on the horizontal scale; follow this point straight over to the left and read the value on the y axis of the chart, that is the vertical scale. It is approximately . O21. Thjes means that the probability that a single specified letter will not appear at oll in the cryptogram, if it were a perfectly random, essortment of letters, is .D2l. That is,' according to the theory of probability, in 1000cases of random text messages of 100: letters each there should be $2 /$ messages in which a Eingle specified letter will not appear at all. This, of course, is merely a theoretical expectancy; it indicates only what probably will happen in the long run.
(2) What is the probability that a $\sqrt{\text { single }}$ specified letter will appear exactly once, no more and no less? To onswer this question, find the point of intersection of the vertical ordinate corresponding to 3.85 with the curve marked "J.". Its value on the vertical scale is 0.08 , that is, in 1000 cases of random text nessages of 100 letters each the theoretical expectancy is that there will be gRmesseges in which a single specified] letter will appear exactly once, no more and no less.
(3) In exactly the same way, the probability that a single specified letter will appear exactly twice, is round to be 0.158. That is, the probability that a single speejifieddletter will be repeated exactly once (two occurrences) is . 158; the probability thet it will be repeated exactly twice (three occurrences) is found to bs . 20 and so on. The following table gives the probabilities for exact numbers of occurrences from 0 to 10, inclusive:

100 jetters of randon text

Frequency	Probability that a specified single letter will occur exactly . . . times.
0	0.021
1	. 082
2	. 1.558
3	. 20 \%
4	.195
5	. 150.
6	. 096.
7	. 053
8	.0256
1.0	.011

The chart enebles one to find the probability for occurrences up to 16 and recurrences up to 15 , both inclusive, for various numbers of letters in random assortments.
(4) To find the probability that a specified single letter will occur at least $1,2,3$, . . times in a sexies of letters constituting random text, one reasons as follows: Since the concept:"at least l" implies that the number specified is to be considered only as the minimum, with no limit indicated as to maximum, occurrences of $2, / 3,4$, . . are also "favorable" cases; the probabilities for exectly $1,2,3,4, \ldots$. occurrences should therefore be added and this will give the mobability for "at lea'st 1." Thus, in the case of 100 letters, the sum of the probabilities for exectly 1 to 10 occurrences, as set forth in the teble directly above, is . 977 , and the later value approximates the probability for at least 1 occurrence.
(5) A more accurate cesult will be ontained by the following reasoning. The probability for zero occurrences is . 02t. Since it is certain that a apecified letter will cocur either zer times or 1, 2, 3, . . . times, to find the probability for at lesst one time it is merely necescary to subtract the probebility for zero occurrences from 1 . That is, $1-.021=$.9舞, which is somewhat greater then the result cbtained by the other method. The reason it is greater is that the value. 9 includes doccurrences beyond 10, which were excluded from the previous calculation, ${ }^{\text {fof }}$ of course, the probebilities for these occurrences beyond 10 are very small, but takea all together they add up to .002 the difference between the residts. tained by the two methods. The probability for ot leest 2 occurcences. 1 s the difference between unity and the surn of the probability for zern and exactly 1 occurcences; thet is, $1-\left(P_{0}+P_{1}\right)=1-(.01+.75 g)=1-.179$
$=.0820 .082=1-.103$ $=.824$
(6) The foregoing calculations refer to randon text containing 100 letters. For other numbers of letters, it is merely necessary to multiply the probability for drawing a single specified letter out of the box, which is $\frac{1}{26}$ of 0385 , by the number of letters in the assortment, and refer to the chart. For exemple, fon a randon asortment of 200 lettere, the product of 200 x .0385 or 7.7 gives the value of the point to be sought along the horizontal or xaxis of the chert; the intersections of the vertical line corresponding to this point with the verious curves for $0,1,2$, 3, . . . occurrences give the probabilities for these ocourrences, the reading being taken on the vertica or z xis of the chart.
(7) The discussion thus far has dealt with rendon assortments of letters. What about other types of texts, for example, normal plein text? What is the probability thet E will occur io, 1, 2, 3, . . . times in 50 letters of normal English? The relative fequency value or probability that a letter eelected at random from a large volume of normal English text will be E is . 12604 . For 50 letters this volue mast be multiplied by 50 , giving 6.3 as the point olong the x axis of the chart. The probabilities for $0,1,2,3, .$. occurences are tabulated below:

REF ID :A4146445

- 14 -

h. (1). The discussion thus far has dealt with the probabilities for $0,1,2,3, .$. occurrences. It may be of more practical advantage to the student if he could be shown how to find the answer to these questins: Given a random assortment of 100 letters how many letters may be expected to" occur exactly 0, 1, 2, 3,". . times? How many may be expetted to occur at least 1, 2, 3,. . . times? Chart 1 may also be used to answer these questions, by a very simple calculation: multiply the probability value as obtained above for specified single letter by the number of different elements being considered. For example, the probability the a specified single letter will occur exactly twice in a perfectly random assortment of 100 letters is $.155^{\prime}$; since the number of different letters is 26 , the absolute number of single letters the may be expected to occur exactly 2 times in this assortment, is . $58 \times 26=503$. That is, in 100 letters of random text there should bel out four letters which occur exactly 2 times. The following tole gives the data for various numbers of occurrences:

(2) Thus far the discussion has been restricted to single letters, but the chart may also be used for calculations referring to digraphs, taigraphs, and longer polygraphs. The method of using the chart is exactly the same as before, but the points selected on the x axis are now determined by the value of the probability of selecting a. specified pair of letters ow a set of 3 or more letters from the box def letters referred to above.
(3). Taking up the case of digraphs, and assuring the bow. fin w to contain an unlimited number of all 676 digraphs in equal proportions, the probability of selecting a specified digrtpi from the box is $\frac{1}{676}=.00148$. Given a random assortment of 100 , the value lone the x axis is now $100 \mathrm{x} .00148=.148$. The following venues ate obtained from the chart:

(4) The student may have some good practice by making thencal-
 676

REF ID :A4146445

(5) Referring again to Chart l, and specifically to the tabulated results set forth under subparagraph $\mathrm{g}(4)$ above it. will be seen that the probability that there will be exactly ore repetition of a specified single letter in 100 letters of random text is less than the probability that there will be exactly two repetitions; in other words, the chances that a letter will be repeated exactly twice are better by about, 25% than that it will be repeated only once. If this sounds absurd to the student, let him cogitate upon the implications of the word "exactly" in the foregoing statements and the reasoning on which the whole argument is based. He will find assistance from studying the shape of the various curves in Chart 1 , especially those for 1,2 , and 3 occurrences, wherein the curves approximate the shape of the bell-shaped normal probability curve.
i. (1) The message in subparagraph a is now to be studied from the viewpoint of the number of repetitions it contains as compared with the number theoretically to be expected. First, the repetitions of two or more letters are underscored.

(2) Here are the repetitions, Listed for convenience:

i. Referring to the table set acth under subparagraph $h(3)$, it will be seen that in 100 webersm-rentemment the expectancy is that 7 digraphs will appear 2 times, and it will appears 3 tines. The message being studied λ hate digraphs occurring 2 times, and 2 digraphs occurring 3 times. In other words, the numbers of digraphs that occur 2 and 3 times in the message are greater then expected if the message were fandom text.
k. moreover, The message contains to trap fang text. (USY) ${ }_{3}$. 1 . 1 shows that the probability of 2 occurrences of specified \&etpagraph in 100 Letters is approximately .005; that is this met be expected to happen only about 5 times in a thousand ${ }^{\text {Yet }}$ it has happened here\%

1. A consideration of the fects set forth in the subparagraphs $i-k$ leads to but one conclusion, viz, that the repetitions exhibited by the cryptogrem under investigetion are not accidental but are causal in their origin; and the cause is in this case not difficult to find: repeated letters in the plain text were actually enciphered by identical alphabets. In order for this to ocur, it was necessery that the tetragraph USYE, for example, fall both times in exactly the same relative position with respect to the key. Note, for example, that USYE in Fig. 1 represents in both cases the plain-text polygraph lHEA. The first time it occurred it fell in positions $1-2-3-2$ wi.th respect to the key; the second tine it occurred it happened to fall in the very sane relative positions, al though it might just as well have happened to fall in ony of the other three possible relative positions with respect to the key, viz, $2-3-2-1,3-4-1-2$, or $4-1-$ 2-3.
m. Lest the student be misled, however, few more words are necessary on this subject. In the meceding subpragrap tho word "happened" was used; this word correctiy exprespes the idee in mind, because the insertion or deletion of a single plain-text lotter bebween the two occurrences would have thrown the second occurrence one letter forward or backward, respectively, and thus caused the polygraph to be enciphered by a sequence of alphobts such as can ro lonet produce the cipher polygraph USYE from the plain-text polygraph THEA. On the other hand, the insertion or deletion of this one letter might bring the letters of some other polygraph into sinilar columns so thet some other repetition would be exhibted in case the USYE repetition hed thus been suppressed.
n. The encipherment of similer lettere by similar cipher alphobets is therefore the cause of the production of repetitions in the cipher text in the case of repeating-key ciphers. What principles can be derived from this fact, and how can they be employed in the solution of cryptograms of this type?
Q. If a count is made of the number of letters from and including the first USYE to, but not includirg, the second occurrence of USYE, a total of 40 letters is found to intervene between the two occurrences. This num. ber, 40 , must, of course, be an exect multiple of the length of the key. Having the plain-text, before one, it is easily seen that it is the loth multiple; that is, the k-letter key has repeated itself 10 times between the first, and the second occurrence of UCYE. It follows, therefore, that if the length of the key wera not known, the number 40 could safely be taken to be an exact multiple of the length of the key; in cther words, one of the factors of the rumber 40 would be equal to the length of the key. The word "safely" is used in the preceding sentence to mean that the interval 40 applies to a repetition of. L Letters and it hes been shown that the chances that this repetition is accidentsl are smell. The fectors of 40 are $2,4,5,8,10$, and 20. So hax as this single repetition of USYE is concerned, if the length of the key mere not known, all that could be said about the latter wold be that it is equel to one of these factors. The repetition by itself gives no furthex indiections. Bow can the exact factor be selected from among a list, of several possibie froctors?
p. Let the intervals between all the eepetitions in the cryptogram be listed. They are as follows:

Repetition	Interval	Factors
lst USYE to 2 d USYE	40	$2,4,5,8,10,20$.
1st BC to 2d. BC	16	$2,4,8$.
1st CX to 2d.CX	25	
1st EC to 2d.EC	88	2, 4, 11, 22, 44
1st LE to 2d LE	16	2, $4,8.2$
2d LE to 3d LE.	4	2,4.
1st LE to 3d. LE	20	2; 4, 5, 10.
lst JY to 2d JY	8	$2,4$
1st PL to 2d PL	24	$2,3,4,6,8,10,12 .$
Ist SC to 2d SC (lst SY to 2d SY, already ancluded in USYE.)	52	$2,4,13,26 .$
(lst US to 2d US, alremdy included in USYE.)		
2d US to 3d US (lst US to 3d US, already included in USYE.)	36	2, 3, 4, 6, 9, 18.
(lst YE to 2d YE, already incIuded jin USYM.)		

q. Are all these repetitions causal repetitions? It has been seen that the odds against a theory that the UBE repetition is accidental are about 995 to 5 (since the probability for its occurrence is .005), or 199 to 1. It has also been seen that the odde against a theory that the eight digraphs which occur twice are accidentel repetitions are about 99 to 1 (since the probability for 2 occurrences of a specified digraph is .01); the odds against a theory that the two digraphs which occur 3 times ore accidental repetitions are 999 to 1 . The chances are very great, therefore, that all or nearly all these repetitions ape causal. Certainly the chances agoinst the two occurrences of the tetragraph USYE and the three occurrences of the two differont digraphe (LE and US) being accidental are quite high, and it is therefore not estonishing thet the intervals between all the various repetitions, except in one cese, eontain the factors 2 and 4 .
r. This means that if the cipher is wrtten out in either 2 cclumns or 4 columns, all these repetitions (except the CX repetition) would fall into the same columns. From tais it follows that the length of the key is either 2 or 4 , the latter, of pactical grounds, being more provable than the former. Doubts conceming the intter of choosing between a 2 -letter and a h-letter key will be dispolved when the cipher text; is distributed into its component uniliternl frequencris.enibutions.
S. The repeated digraph CX in the foregcing message is an accidentel repetition, as will be apprent by referring to Fig. 1 . Hed the message been longer there would have beon more buch accidental repetitions; but, on the other hand, there mould be a proportionately greater number of causal repetitions. This is because the phenomenon of repetition in plain text is so all-pervading.
t. Sometimes it happens that the cryptanalyst quickly notes a repetition of a prlygraph of four or more letters, the interval between the first and second occurrences of which has only two factors, of which one

REF ID:A4146445

- 14e -

is a relatively snall number, the other a relatively high incommensurable number. He may therefore assume st once that the length of the key is equel to the smaller factor without searching for additional recurrences upon which to corroborate his assumption. Suppose, for example, that in a relatively short cryptogram the interval between the first and second occurrences of a polygraph of five letters happens to be a number such as 203, the factors of which are 7 and 29. Evidently the number of alphabets may at once be assumed to be 7 , unless one is decling with messages exchanged among correspondents known to use long keys. In the latter case one could assume the number of alphabets to be 29.
u. : The foregoing method of determining the period in a polyalphabetic cipher is commonly referred to in the literature as "factoring the intervals between repetitions"; or more often it is simply called "factoring." Because the latter is an apt term and is brief, it will be employed hereafter in this text to designate the process.
10. General remarks on factoring. .-. . The statement made in Par. 2 with respect to the cyclic phencmena said to be exhibited in cryptograms of the periodic type now becomes clear. The use of a short repeating key produces a periodicity of recurrences or repetitions collectively termed "cyclic phenomena", an arialysis of which leads to a determination of the length of the period or cycle, and this gives the length of the key. Only in the case of relatively short cryptograms enciphered by a relatively long key does factoring fail to lead to the correct determination of the number of cipher alphabets in a repeating-key cipher; and of course, the fact that a cryptogram contains repetitions whose factors show constency is in itself an indication and test of its periodic nature. It also follows that if the cryptogram is not a repeating-key cipher, then factoring will show no def... inite results, and conversely the fact that it does not yield definite results at once indicates that the cryptogram is not a periodic, repeatingkey cipher.
b. There are two cases in which factoring leads to no definite resul.ts One is in the case of monolphabetic substitution ciphers. Here recurrencea are very plentiful as a rule, and the intorvals separating these recurrences may be factored, but the factors will show no constancy; there will be sev.eral factors common to meny or most of the recurrences. This in itself is an indication of a monolphabetic substitution cipher, if the very fact of the presence of meny recurrences fails to impress itself upon the inexperienced cryptanalyst. The other case in which the process of factoring is nonsignificant involves certain types of nonperiodic, polyalphabetic ciphers. In certain of these ciphers recurrences of digraphs, trigraphs, and even polygraphs may be plentiful in a long message; but the intervals between such recurrences bear no definite multiple rejation to the length of the key, such as in the case of the true periodic, repecting-key cipher, in which the alphabets change with successive letters and repent themselves over and over again.
c. Factoring is not the only method of determining the length of the period of a periodic, polyalphabetic substitution cipher, although it is by far the most common and easily applied. At this point it will merely be noted that when the message under study is relatively short in comparison with the length of the key, so that there are onjy a few cycles of cipher text and no long repetitions affording a basis for factoring, there are several other methods available. However, it being deemed inadvisable to interject the data concerning those other methods at this point, they will be explained subsequently. It is desirable at this juncture merely to indicate thet methods other then factoring do exist and are used in practical work.

REF ID:A4146445

11. Second step: distributing the cipher text into the component nonoalphabets. - a. After the number of cipher alphabets involved in the cryptogran has been ascertained, the next step is to rewrite the message in groups corresponding to the lengith of the key, or in columnar fashion, whichever is more convenient, and this autonatically divides up the text so that the letters belonging to the same cipher alphabet occupy similar positions in the groups, or, if the columnar nethod is used, fall in the same column. The letters are thus allocated or distributed into the respective cipher alphabets to which they belong. This reduces the polyalphabetic text to monoalphabetic terms.
b. Then separate monoliteral frecuency distributions for the thus isolated individual alphabets are compiled. For example, in the case of the cipher on page 9 , having determined that four alphabets are involved, and having revritten the message in four columns, a frequency distribution is made of the lettors in Columa 1 , another is made of the letters in Column 2, and so on for the rest of the colums. Dach of the resulting distributions is therefore a monalphabetic freguency distribution. If these distributions do not give the irregular crest and trough appearance of single frequency distributions, then the analysis which led to the hypothesis as regards the number of alphabets involved is fallacious. In fact, the appearance of these individual distributions may be considered to be an index of the correctness of the factoring process: for theoretically, and practically, the individual distributions constructed upon the correct hypothesis will tend to conform more closely to the irregular crest and trough appearance of a single alphabet frequency distribution than will the graphic tables constructed upon an incorrect hypothesis.
12. Third step: solving the monoalphabetic distributions. The difficulty experienced in analyzing the individual or isolated frequency distributions depends mostly upon the type of cipher alphabets that i.s used. It is apparent that mixed alphabets may be used just as easily as standard alphabets, and, of course, the cipher letters themselves give no indication as to which is the case. How. ever, just as it was found that in the case of monoalphabetic, substitution ciphers a monoliteral frequency distribution will give clear indications whether the cipher alphabet is a standard or a mixed alphabet, by the relative positions and extensions of the crests and troughs in the table, so it is found that in the case of repeating-key ciphers, monoliteral frequency distributions for the isolated oi individual alphabets will also give clear indications as to whether these alphabets are standard alphabets or, mixed alphabets. Only one or two such Irequency distributions are necessary for this determination; if they appear to be standard alphabets, similar distributions can be made for the rest of the alphabets: but if they appear to be mixed alphabets, then it is best to compile triliteral frequacy distributions for all the alphabets. The

REF ID :A4146445

- 16 -
analysis of the values of the cipher letters in each table proceeds along the same lines as in the case of monoalphabetic ciphers. The analysis is more difficult only because of the reduced size of the tables; but if the message be very long, then each frequency distribution will contain a sufficient number of elements to enable a speedy solution to be achieved.

SECTION IV

REPEATHGGEY SYSTEMS WITH STMDARD CIPHER ALIAABETS

Paragraph

Solution by applying principles of frequency 13
Solution by completing the pläin-component sequence 14
Solution by the "probable-word method" 15.
13. Solution by applying principles of frequency o - a. In the light of the foregoing principles, let the following cryptogram be studied:

IUSSAGA
$1 \because 2 \quad \therefore \quad . \quad 3 \quad \because$
\qquad CHUAS HR GK IP LW P
\qquad G U. MTV \qquad ECMYS Q BA
ALAHY:POEXW PVVYE EYXEE UUDPXRBVZVI ZIIVO.S PEGHUB BRQ LIXH
\qquad PT.IKWDJZXI GOIOI
2 LA V
KG. W. F
N. PL Z I
O. V VF M

ZKTXG
K NLMDF

ABRI
J LUFM, YZJN_C CA I I

L
UAW PR

NV I W \qquad Z AS Z LA EMHS

REF ID:A4146445

A search for repetitions discloses the following short list. of most of the longer repetitions, with the intervals and iectors below ll listed for previous experience may lead to the conclusion that it is unlikely that the cryptogram involves more than 10 alphabets, showing the number of recurrences which it does):

Repetition	Location	Interval	Factors
LUFMPZJJVGC	D1, K3	160	2, 4, 5, 8, 10
JZXIG	El, H_{4}	90	2, 3, 5, 6, 9, 10
EJK ؛	B4, L2	315	3, 5, 7, 9
PTE	E3, G3	50	2, 5, 10
QGK	D4, H1	85	5
UKH	Al, C2	55	5
2LA	J1, L4	65	5
AS	D3, L3	175	3, 5, 7
EJ	B4, LP	115	5
FM	A5, DI	57	3
FM	A5, J2	185	5
FM	J2, J4	12	2, 3, 4, 6
FM	J4, K3	20	2, 4, 5, 10
FM	K3, L4	30	2, 3, 5, 6, 10
JA	A2, C_{4}	60	$2,3,4,5,6,10$
LA	Fl, J1	75	3, 5
LA.	J1, [4	65	5
LI	G5, H2	10	2,5
NL	D1, H2	105	3, 5, 7
NL	H2, KI	45	3,5,9
VX	C1, C 5	20	2, 4, 5, 10
YM	A3, B3	25	5

REF ID :A4146445

b. The factor 5 appears in all but two cases, each of which involves only a digraph. It seems almost certain that the number of alphabets is five. Since the text already appears in groups of five letters, it is unnecessary to rewrite the message. The next step is to make a monoliteral frequency distribution for Alphabet $\frac{1}{?}$ to see if it can be determined whether or not standard alphabets are involved. It is as follows:

Alphabet 1.

c. Although the indications are not very clear cut, yet if one takes into consideration the small amount of data the assumption of a direct standard alphabet with $W_{c} \leq A_{p}$, is worth further test. Accordingly a similar distribution is made for Alphabet 2.

Alphabet 2 。
d. There is every indication of a direct standard alphabet, with $\bar{H}_{c}=A_{p}$. Let similar distribution bo made for the last three alphabets. They are as follows:

Alphabet 3.

Alphabet 4.

Alphabet 5.

REF ID：A4146445

e．After but little experiment it is found that the distribu－ tions can best be made to fit the normal when the following values are assumed：

$$
\begin{aligned}
& \text { Alphabet } 1-A_{\mathrm{p}}=W_{C} \\
& \text { Alphabet } 2-A_{\mathrm{p}}=H_{C} \\
& \text { Alphabet } 3-A_{\mathrm{p}}=I_{C} \\
& \text { Alphabet } 4-A_{\mathrm{p}}=T_{C} \\
& \text { Alphabet } 5-A_{\mathrm{p}}=\mathrm{E}_{\mathrm{C}}
\end{aligned}
$$

f．Note the key word given by the successive equivalents of Ap：WIITE．The real proof of the correctness of the analysis is， of course，to test the values of the solved alphabets on the crypto－ gram．The five complete cipher alphabets are as follows：

Fig． 2
－ge Applying these values to the first few groups of our mes－ sage，the following is found：

$$
\begin{aligned}
& \text { Cipher-AUKHY.JAMKI.ZYMWM JMIGX NFMLX。。. }
\end{aligned}
$$

h．Intelligible text at once results，and the solution can now be completed very quickly．The complete message is as follows：

> EICOUNTERED RED INFANTRY ESTIMATED AT ONE PEGIMEIT AID MACHINE GUN COMPANY IN TRUCKS NEAR EMMITSBUPG. AM HOLDING MIDDLA CREEK NEAR HILL 543 SOUTHWEST OF FAIRPLAY. WHEN PORCED BACK WILL CONTINUE DEIAYING REDS AT MARSH OREEK. HAVE DESTROYED BRIDGES ON MIDDLE CREEK BETWEEN EMMTTSBURG-TANEYTOWN ROAD AND RHODES MILL.
i．It is obvious that reversed standard alphabets may be used． The solution is accomplished in the same manner．In fact，the now obsolete cipher disk used by the United States Army for a number of years yields exactly this type of cipher and may just as readily be solved．In fitting the isolated frequency distributions to the normal direction of＂reading＂the crests and troughs is merely reversed．
14. Solution by completing the plain-component sequence. - a. There is another method of solving this typs of cipher, which is worthwhile explaining, because the underlying principles will be found useful in many cases. It is a modification of the method of solution by completing the plain-component sequence, already explained in Par. 20 of Part I.
b. Aiter all, the individual alphabets of a cipher such as the one just solved are inerely standard direct alphabets. It has been seen that monoalphabetic ciphers in which standard cipher alphabets are employed may be solved almost mechanically by completing the plain-component sequence. The plain text reappears on only one generatrix and this generatrix is the same for the whole message. It is easy to pick this generatrix out of all the other generatrices because it is the only one which yields intelligible text. Is it not apparent that if the sane process is applied to the cipher letters of the individual alphabets of the cipher just solved that the plaintext eçuivalents of these letters must all reappear on one and the same generatrix? But how will the generatrix which actually contains the plain-text letters be distinguishable from the other generatrices, since these plain-text letters are not consecutive letters in the plain text but only letters separated from one another by a constant interval? The answer is simple. The plain-text generatrix should be distinguishable from the others because it will show more and a better assortment of high-frequency letters, and can thus be selected by the eve froc the whole set of generatrices. If this is done with all the alphabets in the cryptogram, it will merely be necessary to assemble the letters of the thus selected generatrices in proper order, and the result should be consecutive letters forming intelligible text。
c. An example will serve to make the process clear. Let the same message be used as before. Factoring showed that it involves five alphabets. Let the first ten cipher letters in each alphabet be set down in a horizontal line and let the normal alphabet sequences be completed. Thus:

REF ID:A4146445.

- 21 -

1	AJZJNEZAIJ	UAYMETHYLK	NMIMIBEVU	HKGGLMHZET	YİXXIRNITG
2	BKALOFABJK	VBZINGUIZiL	Liliojivjenty	ILXimanian	ZJIVYYJSNFH
3	CLBLFGBCKL	WChOHVJANA	WOOKOKDOX:	JiYInojeov	AKOZZKTOGI
4		XDBYTHKBON	NPFLPLIEYY	KivZJOHKCPM	BLPAALUPHJ
5	ZUDNRIDENTN	YECQJXLCPO	090 milezy	LOARPMLDS	CMOBBMVQIK
6	FOこOSJ 3 FiNO	ZFDEMMIDP	PrRnINGRaz	Hiblerutay	DNRCCNVRJL
7	GPTYTKPGOP	AGSSLZMGR	OSSOSOHSBA	WOCinSinesz	BOSDDOXSKI
8	HQGOULGHPC	BHFTMAOFSR	RTTHTMTCB	ORDISTTOGTA	FITEEPYTLN
9	IRHRVMHIQR	CIGUNBYGTS	SUUQUQJUDC	Psiotuphub	GOUFFOZUMO
0	JSISTINIJRS	DJHVOCDHUT	TVVRVRIEVED	QTFPUVOIVC	HRVGGRAVNP
1	KTJTXOJKST	QKIGPD:IVU	UUUS:ISLTFT	PUGQVIRJTD	ISTHHS BYOQ
2	LUKUYFKLTU	FLJXQ®SJTV	VXXTXTEXGF	SVHR:IXSKXI	JTXIITCXPR
3	Rivivzaliuv	Gifyriatcin	WYYUYUNYHG	TWISXYTLYF	KUYJJUDY?S
14	WWmatava	HiJLZSGUEYX	XZZVZVOZIH	UXJTYZUWZG	LVZMEVEZRT
15	OXIJXBSNO:IX	iomathvizy	YALWAYPAJI	VYKUZAVNAH	mallital
16	FYOYCTOHX	JPiobuimjaz	ZBiSXBXZBKJ	WZLVABWOBI	NXBiPixGBTV
17	QZPZDUFQYZ	KQOCVJXOBA	ACCYCYRCLK	XhimbcXPCJ	OYCINYYHCUW
13	Raqaivirza	LRPDMEYPCB	BdDZDESDEL	YBNXCDYODK	PZDOOZIDVX
19	S BRBF:NSAB	MSQPXLZ ${ }^{\text {d }}$ DC	Cgeamatmm	ZCOYDEZSL	QAPPPAJEWY
20	TCSCGXSTBC	NTRFYMAPIED	DFFBTEUFOT	ADPZEFASTM	-RBFTQBKFXZ
1	UDPDHYTUCD	OUSGZNBSPE	BGGGGCVGPO	BPOAFGBTGN	SCGRRCLGYA
	VIURIZUVDE	PVTHAOCTGF	FHHDHDTHQ	CFREGHCUHO	TDHSS Dilliza
23	WFVFJAVETE	QUUIBPJUHG	GIIEIEXIRQ	DGSCHIJVIP	UEITTENIAC
24	XG\#GKB JXFG	RXVJCESVIH	HJJFJFYJSR	3HTDIJEMJQ	VFJUUFOJBD
25	YHXHLCXYGH	SYMKD:PFIJI	IKIGKCZKTS	FIUPJKFXIR	WGKVVGPKCD
26	ZIYMindYZHI	TZXLESGXKJ	JLLHLHALUT.	GJVFi	W?LDP

Fig. 3
d. If now high-frequency generatrices underlined in Fig. 3 are selected and their letters are juxtaposed in colums, the consecutive letters of intelligible plain text immediately present themselves. Thus:

Selected
Generatrices

For Alphabet 2 , generatrix 20 - NTRFMMARDD For Alphabet 3 , .generatrix $19-C \mathbb{B} A \mathbb{A} T \mathrm{~A}$ in For Alphabet 4; generatrix 8... ORDNS TOGTA For Alphabet 5, generatrix $23-\mathrm{U}$ (I T T EN I A C

	Hecou in $\mathrm{T} R \mathrm{R}$
Columnar	D R P D
juxtaposition	IN. FA N
of	RYSST
letters from	IMAT
selected	DATO
generatrices	DR G
	HRN
	N D 嗵 A

Fig. 4

REF ID:A4146445

-22-

Pain text: DNCOUNTERED RED INFANTRY ESTIMATED AT ONE REGIMENT AND MAC.:。..
e. Solution by this method can thus be achieved without the compilation of any frequency tables whatever and is very quickiy. attained. The inexperienced cryptanalyst may have difficulty at first in selecting the generatrices which contain the most and the best assortinent of high-frequency letters, but with increased practice, a high degree of proficiency is attained. After all it is only a matter of experiment, trial, and error to select and assemble the proper generatrices so as to produce intelligible text.
f. If the letters on the sliding strips were accompanied by numbers representing their relative frequencies in plain text, and these numbers were added across each generatrix then that generatrix with the highest total frequency would theoretically always be the plain-text generatrix. Practically it will be anong the generatrices which show the first three or four greatest totals. Thus, an entirely mathematical solution for this type of cipher may be applied.
g. If the cipher alphabets are reversed standard alphabets, it is only necessary to convert the cipher letters of each isolated alphabet into their normal plain component equivalents and then proceed as in the case of direct standard alphabets.
ho It has been seen how the key word ray be discovered in this type of cryptogram. Usually the key is made up of those letters in the successive alphabets whose equivalents are Ap. Sometimes a key number is used, such as 8-4-7-1-12, which means merely that A_{p} is represented by the eight letter from A (in the normal alphabet) in the first cipher alphabet, by the fourth letter from A in the second cipher alphabet, and so on However, the method of solution as illustrated above, being independent of the nature of the key, is the same as before.
15. Solution by the "probable word method". - a. The common use of key words in cryptograms such as the foregoing makes possible a method of solution that is simple and can be used where the more detailed method of analysis using frequency distributions or by completing the plain-component sequence is of no avail, so that in the case of a very short message which may show no recurrences and give no indications as to the number of alphabets involved, this modified method will be found useful.
b. Briefly, the method consists in assuming the presence of a probable word in the message, and referring to the alphabets to find the key letters applicable when this hypothetical word is assumed to be present in various positions in the cipher text. If the assumed word happens to be correct, and is placed in the correct location in the message, the key letters produced by referring to the alphabets will yield the key word. In the following example it is assumed that reversed standard alphabets are known to be used by the enemy.

REF ID:A4146445

MDSTJ
LQCXC
$K Z A S A$
NY Y K 0
L P
c. Bxtraneous circumstances lead to the assumption of the presence of the word AMMUNITION. One may assune that this word begins the message. Using sliding normal alphabets, one reversed, the other direct, one proceeds to find the key letters by noting what the successive equivalents of A_{p} are. Thus:

> If M D S T J L Q C X C equals AM M UN I T I O N, then the key letters ($=A_{0}$) are $M \mathrm{M}$
-The "key" does not spell any intelligible word. One therefore shifts the assuned word one letter forward and another trial is made.

If DSTJLQCXCK equals
AMMUNITION, then the key letters ($=A_{p}$) are DEFDYYVFQX。

This elso yields no intelligible key word. One continues to shift the assumed word forward one space at a time until the following point is reached:

If"L Q CXCKZASA equals
AMMUNITION, then the key letters $\left(=A_{p}\right)$ are LCORPSSIGI.

The key stands out: It is a cyclic permutation of the name SIGFAL CORPS. 1
d. If the assumption of reversed standard alphabets yields no good results, then direct standard alphabets are assumed and the test made exactly in the same manner. Solution by this method is inevitable when the correct word has been assumed and its correct position ascertained. Here again is an example of the efficacy of the "probable word" method. Furthermore, as will be shown subsequently, it can also be used as a last resort when mixed alphabets are employed.

1 It should be clear that since the key word or key phrase repeats itself during the encipherment of such a message, the plain-text word upon whose assumed presence in the message this test is being based may begin to be enciphered at any point in the key, and continue. over into its next repetition if it is longer than the key. When this is the case it is merely necessary to shift the latter part of the sequence of determined key letters to the first part, as in the case noted: LCORPSSIGN is transposed into SIGN...LCORPS, and thus SIGNAL CORPS.

REF ID:A4146445

e. It fill be seen in the foregoing method of solution that the length of the key is of no particular interest or consequence in the steps taken in effecting the solution. The determination of the length and elements of the key comes after the solution rather than before it. In this case the length of the period is seen to be eleven (SIGNAL CORis).
f. The foregoing method is one of the other methods of determining the length of the key (besides factoring), referred to in Par. 10 c.

SBCTION V

REFEATING-KEY SYSTEMS WITH MIXED GIPER ALHABETS; I.
Paragraph
Reason for the use of mixed alphabets........... 16
Interrelated mixed alphabets 17
Principles of direct symmetry of position...... . . 13
Initial steps in the solution of a typical example...... 19
Application of principles of direct symmetry of position . . 20
Subsequent steps in solution 21
Completing the solution. 22
Solution of subsequent messages encipherod by same cipher component...................... 23
Summation of relative frequencies as an aid to the selection of the correct generatrices......... 24
Solution by the probabloword method.............. 25
Solution when plain component is mixed, the cipher, normal. . 26
16. Reason for the use of mixed alhabets.... a. It has been seen in the examples considered thus far that the use of several alphabets in the same message does not greatly conplicate the analysis of such a cryptogram. There are three reasons why this is so: Firstly, only relatively few alphabets were employedj secondy, these alphabets were employed in a periodic or repeating nanner, giving rise to cyclic phenomena in the cryptogram, by means of which the number of alphabets could be determined; and, thirdly, the cipher alphabets were known alphabets, by which is mant merely that the sequences of letters in both components of the cipher alphabets vere known sequences.
b. In the case of monoalphabetic ciphers it was found that the use of a mixed alphabet delayed the solution to a considerable degree, and it will now be seen that the use of mixed alphabets in polyalphabetic ciphers renders the analysis much more difficult than the use of standard alphabets, but the solution is still fairly easy to achieve.

REF ID：A4146445

17．Interrelated mixed alphabots．－a．It was stated in Par． 2 that the method of producing the mixed alphabets in a polyalphabetic cipher often affords clues which are of sreat assistance in the anal－ ysis of the cipher alphabets．This is so，of course，only when the cipher alphabets are interrelated secondary alphabets produced by sliding components．Reference is now made to the classification set forth in Par．6，－in connection with the types of alphabets which may be employed in polyalphabetic substitution．It will be seen that thus far only Cases $A(1)$ and（2）have been treated．Case $B(1)$ will now be discussed．
b．Here one of the components，the plain component，is the normal sequence，while the cipher component is a mixed sequence，the sliding of the two components yielding mixed alphabets．The mixed component may be a systematically－mixed or a random－mixed sequence．If the successive alphabets produced by the sliding of two such components are set down as in the case of the Vigenere Square，a symmetrical square such as that shown in Fig． 5 results therefrom．

Hlain：	ABCDEFGHIJKLMNOEQRSTUVWXYZ
	LA， $\mathrm{L}^{\text {AORTHBCDFGIJKMFQSUXYZ }}$
	ZAVNサORTHBCDFGIJKHPQSUXYZL
	AVN\＃ORTHBCDFGIUKMEQSUXYZLE
	NOORTHBCDPGIJKMF？SUXYZLEAV
	TORTHBCDFGIJKMPQSUXYZLEAVN
	ORTHBCDFGIJKMYOSUXYZ
	RTHBCDFGIJKEPQSUXYZLDAVI\＃O
	HBCDPGIJKWPQSUXYZLZAVUWORT
	BCDEGIJKIPQSUXYZLTAVNTORTH
	CDFGIJKMY2SUXYZ LTAVN才ORTHB
Cipher：	DFGIJKEPQSUXTZLDAVNWORTHBC
	GIJKKPQSUXYZITAVNTORTHBCDF
	IJKM户QSUXYZLEAVNTORTHBCDFG
	JKHFQSUXYZLDAVNサORTHECDFGI
	K1PQSUXYZDEAVMWORTHBCDFGIJ
	HFQSUXYZLTAVIJOKTHBCDFGIJK
	PQSUXYZLEAVNDORTHBCDFGIJKM，
	Q SUXYZLEAVNXORTHBCDFGIJKIP
	SUXYZLZAVHTORTHBCDFGIJK
	UXYZ L Dat V N ORTHBCDFGIJKW
	XYZLJAVNORTHBCDFGIJKXFQS
	乙LEAVNORTHBCDFGIJKMPQSUX

REF ID:A4146445

c. Such a table may be used in exactly the same manner as the Vigenere Table. With the key word BLUE the following secondary alphabets would be used:

Fig. 6
18. Principles of direct symetry of position. - a. It was stated directly above that Fig. 5 is a symetrical cipher square, by Which is meant that the letters in its successive horizontal lines shov a direct symnetry of position with respect to one another. They constitute, really, one and only one secuence or series of letters, the sequences being merely displaced successively $I_{2} 2,3$, ... intervals. The symetry exhibited is obvious and is said to be patent, or "direct". This fact can be used to good advantage.
b. Consider, for example, the pair of letters G and V in the B, or lst, cipher a.lphabet directly above; the letter V is the l5th letter to the right of G. In the L, or $2 d$, cipher alphabot, V is also the l5th letter to the right of G, as is the case in every one of thesesecondary alphabets, since the relative positions they occupy are the same in each horizontal line, that is, in each cipher alphabet. If, therefore, the relative positions occupied by a given pair of letters in one of these cipher alphaiots is known and one of the members of this same jair has been located in another of these cipher alphabets, one nay at once place the other member of this. pair in its proper position in the secoad of the cipher alphabets. Suppose, for example, that as the result of an analysis based upon considerations of frecuency; the following values in a given cryptogran have been tontatively determined:

Fig。 7

The letter G is conmon to Alphabets 1 and 2. In Alphabet 2 it is noted that if occupies the loth position to the left of G, and the letter P occupies the 5 th position to the right of. G. One nay therefore place these letters, N and H , in their proper positions in Alphabet 1 , the letter $1 /$ being placed 10 letters before G, and the letter $\dot{F}, 5$ letters after G_{0} Thus:

$$
\begin{aligned}
& \text { rlain -- AEDEFGHIJKLMNOPQRSTUVWXYZ } \\
& \text { 1.- } G \quad P \quad Y \text { Vis }
\end{aligned}
$$

Thus, the values of two new letters in Alphabet 1 , viz., $P_{C}=J_{p}$, and ${ }^{W}{ }_{c}=U_{p}$ have been automatically detormined; these val ues were obtained vithout any analysis based upon the frequency of \dot{P}_{c} and N_{c}. Likewise, in Alphabet 2 , the letters Y and V may be inserted in these positions:

$$
\begin{aligned}
& \text { Flain -- ABCDFGHIJKLMNOPQRSTUVWXYZ } \\
& 2-- V N O
\end{aligned}
$$

This gives the new values $\mathrm{V}_{\mathrm{c}}=\mathrm{D}_{\mathrm{p}}$ and $\mathrm{Y}_{\mathrm{c}}=\mathrm{Y}_{\mathrm{p}}$ in Alphabet 2。 Alphabets 3 and 4 have a common letter I, which permits of the placement of Q and Z in Alphabet 3, and of B and L in Alphabet 4 。
c. The new values thus found are of course imediately inserted throughout the cryptogram, thus leading to the assumption of further values in the cipher text. This process, the reconstruction of the primary components by the application of the principles of direct syminetry of position, thus facilitates and hastens solution.
d. It must be clearly understood that before the principles of direct symmetry of position can be applied in cases such as the fore.. going, it is necessary that the plain compone be a known sequence. Whether it is the normal sequence or not is imaterial, 50 long as the sequence is known. Obviously, if the sequence is unknom, symatry even if present, cannot be detected by the cryptanalyst because he has no base upon which to try out his assumptions for symmetry. In other words, direct symetry of position is manifested in the illustrative example because the plain component was a mown sequence, and not because it was the normal alphabet. The significance of this point will become aparent later on in comection with the problein discussed in Par. 26p.
19. Initial steps in the solution of a typical example... a. In the light of the foregoing principles let a typical message now be studied.

REF ID：A4146445

－ 28 －
MESSAGE

2
3
4
5
A QBBRI VVYCA ISEJI RBZQY YYYRU

 D IDERUVEZYG GIGVN CTGYO BPDBL
 F．QLFCO MTYZT CCBYZ OPDKA GDGIG G VPJWR QIIEW I CGXGBLGX又 VBGRS i $M Y J J Y G V F W Y$ RWNFL GXNFW MCJKX J IDDRU OPJQQ ZRHCN VNDXQ RDGDG ii $\quad \mathrm{BXDB} \mathrm{A}$ PXFEU YXNFG PJ卫LSANCD L $\quad S 巴 Z Z G B B Y U E H C A B B J J F K I L C J$ M MPDZTCTJRD MIYZQACJRR SBGZN
 PIVJRN．WNBRI VIDL TAGDH IRGQP Q ATYEGCBYZ ZVGQU VYYHL LRZNQ

b．The principal repetitions of three or more letters have been underlined in the message and the factors（up to 20 only）of the intervals between them are as follows：

$$
\begin{aligned}
& \text { Qbirlviry -- } 45=3,5,9,15 \\
& \begin{array}{l}
\text { CGXGB - } 60 \equiv 2,3,4,5,6,10,12,15,20 \\
\text { PJML }-95=19 \\
\text { ZZGI -- } 145=5
\end{array} \\
& \text { BHIL -- }=35=5,15,19 \\
& \text { BRI -- } 45=3,5,9,15 \text {. } \\
& \text { KAG -- } 75=3,5,15 \\
& \begin{array}{l}
\operatorname{QRD}-165=3,5,15 \\
45=3,5,9,1
\end{array} \\
& \text { WIC -- } 130=2,5,10,13
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2TC -- } 145=3 \text {, } 5
\end{aligned}
$$

The factor 5 is common to all of these repetitions, and there seems to be every indication that five alphebets are involved. Sinoe the message already apnears in groups of five letters, it is unnecessary in this case to rewrite it in groups corresponding to the length of the key. The monoliteral frequency distribution for Alphabet 1 is as follows:

Fig. 8.
c. Attempts to fit this distribution to the normal on the basis of a direct or reversed standard alphebet do not give positive results, and it is assumed that mixed alphabets are involved. Individuel trigraphic frequency distributions are then compiled and are shown in Fig. 9. These tables are similar to those made for single mixed olphabet ciphers, and are made in the same way except that instead of taking the letters one after the other, we now must assemble in separate tables the letters which belong to the separate elphabets. For example, in Alphebet 1 , the trigraph QAC meens that A occurs in Alphebet $1 ; Q$, its prefix, occurs in Alphabet 5, and C, its suffix, occurs in Alphabet 2. We may avoid all confusion by placing numbers indicating the elohebets in which they belong above the letters, thus: $\frac{512}{Q A C}$.

Alphabet 1.

Fig. 9.

REF ID:A4146445

- 30 -

Alphabet ? .

A. phatet 3

Alphabet 4

$Z 0 \mathrm{NQ} Y A G G Z Y N L$ Mir $A Q Y G P L B N \quad W R Z Q \quad F U G H B I \therefore \quad G N F Y$ GN $Z G Z G$ DL JI GN YU IW YL GG JY:JA DNXU ZI NG BI JF•DA NA FO FQ: WQ JX HN IV FQ GQ BI

GG GO YT
JQ MU
GG BQ ZG
GP GS
DQ DT
ND JL
HA JL
LJ Yw
GU DU
EU YQ
JD
ZF GN
JR JQ YT
DQ
BI
NL तX
VS
Fig. 9 (continued)

Alphabet 5 .

Condensed table of repetitions.

$5-1-2 \%$	(1-2
I V W-2	Q W-5
Q F.D-2	$\therefore \mathrm{V} \mathrm{P}-3$
$7 \mathrm{I} \mathrm{C-2}$	V W-3
	2-3
	CG-3
	C J-3
1-2-3	P"J-3
Q* B-3	:W B-3
V: W\% Y-2	W F-3
	7 Y-3
	X N-3
	3-4
2-3-4	B $\mathrm{F}-3$
CGX-2	$\mathrm{G} Q 4$
PJ J F-R	:-GX-3
]ii $\mathrm{Br}-2$	J R-3
X N-F-2	- NF-3
	Y $\mathrm{z}-3$

$3 \div 4-5$
B. $\mathrm{R} \mathrm{I}-3$

4-5
G X G-2
R I- 3
$Y_{1}(1-3$

$2 \mathrm{Z} \mathrm{C-2}$
4-5-1 : $\quad \therefore \quad . \quad 1$
$K A G-2 \quad . \quad \therefore \quad . \quad \mathrm{B}-4$
X G B-2
I Vi-3
ZGI-2
Qa-3
ZT $\mathrm{C}-2$
R.I.V-3

Fig. 9 (continued)

REF ID:A4146445

d. One now proceeds to analyze each alphabet distribution, in an endeavor to establish identifications of cipher equivalents. First, of course, attempts should be made to separate the vowels from the consonants in each alphabet, using the same test as in the case of a simple mixed alphabet cipher. There seems to be no doubt about the equivalent of E_{p} in each alphabet: $E=\frac{1}{I_{C}} \prod_{C} \vec{G}_{C} C_{C} \cdot \sum_{C}$.
e. The letters of greatest frequency in Alphabet 1 are I, M, Q, V, B, G, L, R, S, and C. I_{C} has already been assumed to be E_{p}. If W_{c} and ${ }^{5} Q_{c}=E_{p}$, then ore should be able to distinguish the vowels from the consonants among the letters $M, Q, V, B, S^{G}, L, R, S$, and C by examining the prefixes of ${\underset{W}{C}}$; and the suffixes of \mathcal{Q}_{C}. The prefixes and suffixes of these letters, as shown by the trigraphic frequency tables, are these:

Prefixes of $\stackrel{2}{W}_{c}\left(=\frac{2}{E_{p}}\right)$

Suffixes of $\bar{Q}_{c}\left(=\sum_{p}\right)$

$$
\underline{Q} \quad G \quad K \quad \underset{B}{\equiv} \quad \text { B } \quad I \quad L
$$

$$
I \quad \overline{\bar{Q}} \vec{R} \quad X \quad L \quad \bar{V} \quad A \quad Z \quad 0
$$

f. Consider now the letter ${ }^{1}{ }_{C}$; it does not occur either as a prefix of. $\stackrel{2}{W}_{c}$, or as a suffix of ${\underset{Q}{c}}^{c}$. Hence it is most probably a vowel, and on account of its high frequency it may be assumed to be O_{p}. On the other hand, note that ${ }_{5} Q_{c}$ occurs five times ${ }^{1}$ as a prefix of $W_{c}{ }_{c}$ and three times as a suffix of Q. It is therefore a consonant, most probably R, for it would give the digraph $E R\left(=\left\langle\hat{Q}_{c}\right)\right.$ as occurring three times and $R E\left(=\frac{12}{Q W_{C}}\right.$) as occurring five times.
g. The letter $\stackrel{1}{V}_{c}$ occurs three times as a prefix of $\frac{2}{W}_{c}$ and twice as a suffix of $\bar{\xi}_{c}$. It is therefore a consonant, and on account of its frequency, let it be assumed to be T_{p}. The letter $\frac{1}{B_{c}}$ occurs twice as a prefix of $\frac{2}{W_{c}}$ but not as a suffix of \tilde{Q}_{c}. Its frequency is only medium, and it is probably a consonant. In fact, the twice repeated digraph ${ }_{B W_{C}}$ is once a part of the trigraph $\frac{512}{} \frac{1}{T}$, and \bar{F}_{C}, the letter of second highest frequency in Alphabet 5, looks excellent for T_{p}. Might not the trigraph GBI be THE? It will be well to keep this possibility in mind.
n. The letter \bar{G}_{c} occurs only once as a prefix of $\frac{2}{W}_{c}$ and does not occur as a suffix of $\overline{\mathcal{Z}}_{c}$. It may be a vowel, but one can not be sure.

1. The letter Q has four tallies under it, plus one occurrence indicated by the presence of the letter itself among the prefixes, equals five occurrences. The same applies to the other letters.

REF ID:A4146445

- $33-$

The letter $L_{c}{ }^{2}$ occurs once as a prefix of \prod_{c} and once as a suffix of Q_{c}. It may be considered to be a consonant. $\frac{l_{c}}{R_{C}}$ occurs once as a prefix of ${ }^{2}$, and twice as a suffix of Q_{c}, and is certainly a consonant. Neither the letter $\stackrel{l}{S}_{c}$ nor the letter \bar{C}_{c} occurs as a prefix of $\stackrel{\rightharpoonup}{W}_{c}$ or as a suffix of $\bar{\delta}_{c}$; both would seem to be vowels, but a study of the prefixes and suffixes of the se letters lends more weight to the assumption that ${ }_{\mathrm{C}_{C}}^{1}$ is a vowel then that $\stackrel{l}{S}_{C}$ is a vowel. For all the prefixes of C, $\forall i z$, $\frac{5}{4}, \frac{5}{1}$, and $\frac{5}{7}$, are in subsequent analysis of Alohabet 5 classified as consonants, as are likewise its suffixes, viz, T, C, and B in Alphabet 2. On the other hand, only one prefix, L_{C}, and one suffix, ${\underset{B}{C}}$, of \mathcal{S}_{c} are later classified as consonants: Since vowels are more of ten associated with consonants than with other vowels, it would seem that ${ }_{C}$ is more likely to be a vowel than $\frac{1}{S}_{c}$. At any rate $\overline{\mathrm{C}}_{\mathrm{C}}$ is assumed to be a vowel, for the present, leaving ${ }^{\frac{1}{S}}{ }_{C}$ unclassified.
i. Going through the same steps with the remaining alphabets, the following results are obtained:

Alphabet	Consonants	Vowels
1	$Q, V, B, L, R, G ?$	I, M, C
2	B, C, D, T	W, P, I
3	J, N, D, Y, F	G, Z
4	Y, Z, J, Q	C, E?, R?
5	G, N, A, I, W, L, T	Q, 0

20. Appiication of principles of direct symmetry of position. - a. The next step is to try to determine a few values in each alphabet. In Alphabet 1 , from the analysis above, the following data are on hand:

$$
\begin{aligned}
& \text { Plain--ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\
& \text { Cipher -- C? I C? } M \text { Q V }
\end{aligned}
$$

Let the values of E_{p} alreedy assumed in the remaining alphabets, be set down, as follows:

Fig. 10
b. It is seen thet by good fortune the letter Q is common to Alphabets 1 and 5 , and the letter C is common to Alphabets 1 and 4. If it is assumed that one is dealing with a case in which a mixed component is sliding against the normal component, one can apply the principles of direct symmetry of position to these alphabets, as outlined in Par. 18. For example, one may insert the following values in Alphabet 5:

Fig. 11
c. The process at once gives three definite values: $\quad \int_{c}=B_{p}$, $\stackrel{F}{c}=G_{p}, \mathcal{I}_{c}=R_{p}$. Let these deduced values be substantiated by referring to the frequency distribution. Since B and G are normally low or medium frequency letters in plain text, one should find that M_{c} and V_{c}, their hypothetical equivalents in Alphabet 5, should have low frequencies. As a matter of fact, they do not appear in this alphabet, which thus far corroborates the assumption. On the other hend, since $\sum_{c}=R_{p}$, if the values derived from symmetry of position are correct, \dot{Y}_{c} should be of
high frequency, and it is. The position of C is doubtful; it belongs either under N_{p} or V_{p}. If the former is correct, then the frequency of ${ }_{5}{ }_{c}$ should be high, for it would equal N_{p}; if the latter is correct, then its frequency should be low, for it would equal V_{C}. As a matter of fact 5_{c} does not occur, and it must be concluded that it belongs under V_{p}. This in turn settles the value of $\frac{1}{C}_{c}$, for it must now be placed definitely under I_{p} and removed from beneath A_{p}.
d. The definite placement of C now permits the insertion of new values in Alphabet 4, and one now hes the following:

Fig. 12.
21. Subsequent steps in solution. - a. It is high time that the thus far deduced values be inserted, in the cipher text, for by this time it must seem that one has certainly gone too far with work based upon unproved hypotheses. The following results:

QWBRI	VWYCA	${ }_{\mathrm{E}}^{\text {ISPJI }}$	RBZEY	QWYEU RE	LWMGW	ICJCI $\mathrm{E} \quad \mathrm{ER}$	MTZEI:	$0^{\text {MIIBKN }}$	QWBRI RE R
VWYIG	BWNBQ	QCGQH	IWJKA	GEGXN	IDMRU	VEZYG	QIGVN	CTGYO	BPDBL
TE A	E E	R: EN	EE	E	E	T	R \mathbb{P} :	I E	
VCGXG	BKZZG.	IVXCU	NTZAO	$B W E E Q$	QLFCO	MTYZT	GCBYQ	OPDKA	GD'GIG
T $\mathrm{E}^{\text {P }}$		$E \quad$ E		E E	R E	0	I E		EA
VPWMR	QIIEW	IGGXG	BLGQQ	VBGRS	MYJJY	QVFWY	RWNFL	GXNFW	MCJKX
T K	R	¢ E	A ENE	T: B	0 O\%	R	E.	\%	
IDDRU	OPJQQ	ZRHCN	VWDYQ	RDGIDG	BXDBN	PXFPU	YXNFG	MPTEL	SANCD
E	NE	E	TE E	E				0	D
SEZZG	IBEYU	KDHCA	MBJJF	KILCJ	MFDZT	CIJRD	MIYZQ	ACJRR	SBG2N
	E.: ${ }^{\text {a }}$	S	0	E	0	I	0% E		E
QYAHQ	VEDCGi	LXNSCL	LVVCS	QVibI I	IVJRN	WMBRI	VPJEL	TAGDN	IRGQP
R E	T. EP	E	E	REAR	I		T	E	$\pm \mathrm{EN}$
ATYEN	CBYZT	EVGQU	VPYEL	LRZNQ	XINBA	IKWJQ	RDZYF:	KINFLL	GWFJQ
	I	EN	T	E		E E		E.	E E
Quits SQ	IBmRX							
RE : E	E								

b. The combinations given are excellent throughout and no inconsistencies appear. Note the trigraph $Q 23$, which is repeated in the following polygraphs (underlined in the for egoing text):

$$
\begin{array}{llllllllllllllll}
1 & 2 & 3 & 4 & 5 & 1 & & & 5 & 1 & 2 & 3 & 4 & 5 & 1 \\
Q & W & B & R & I & V & & . & . & S & Q & 7 & B & I & I & I \\
R & E & & & R & T & . & \cdot & . & & R & E & A & R & E
\end{array}
$$

c. The letter B_{c} is common to both polygraphs, and a little imaginetion will lead to the assumption of the value $B_{c}=P_{p}$, yielding the following:

$$
\begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & I & & & 5 & 1 & 2 & 3 & 4 & 5 & 1 & \\
Q & i & B & R & I & V & . & . & \cdot & S & Q & V & B & I & I & I \\
R & E & P & 0 & R & T & \cdot & \cdot & \cdot & P & R & E & P & A & R & E \\
\hline
\end{array}
$$

looks like the word ATTACK. The frequency distributions are consulted

REF ID:A4146445

$-37-$
to see whether the frequencies given for \mathcal{F}_{c} end ${ }^{2}{ }^{2}$ are high enough for T_{p} and A_{p}, respectively, end also whether the frequency of 3_{c} is good enough for C_{p}; it is noted that they ere excellent. Moreover, the digraph ${ }^{51} \mathbb{B}_{c}$, which occurs four times, looks like $T H$, thus making $\frac{1}{B_{c}}=H_{p}$. Does the insertion of these four new values in our diagram of alphabets bring forth eny inconsistencies? The insertion of the value ${ }_{P}^{2}=A_{p}$ and $B_{c}=H_{p}$ gives no indications either way, since neither letter has yet been loceted in any of the other elphebets. The insertion of the value ${\underset{F}{c}}^{5}=T_{p}$ gives a value common to Alphabets 3 and 5 , for the value $\xi_{c}=E_{p}$ was assumed long ago. Unfortunately an inconsistency is found here. The letter I has been placed two letters to the left of G in the mixed component, and has given good results in Alphebets 1 and 5 ; if the value $3_{c}=C_{p}$, as obtained above from the assumption of the word ATTACK, is correct, then W, and not. I, should be the second letter to the left of G. Which shall be retained? There has been so far nothing to establish the value of $\mathcal{Z}_{c}=E_{p}$; this value was assumed from frequency considerations solely. Perhaps it is wrong. It certainly behaves like a vowel, end one may see what happens when one changes its value to O_{p}. The following placements result from the analysis when only two or three new values have been added as a result of the clues afforded by the deductions:

Fig. 13 a.
e. Many new val ues are produced, and these are inserted throughout the message, yielding the following:

QWBRI	VWYCA:	ISPJI	RBZEY	QWYEU	LWMGW	ICJCI	MTZEI	MIBKN	QWBRI
REPOR	TE E	EMY	SR	RE	EWCH	ES ER	- R	OOP	REPOR
VWYIG	BWNBQ	QCGQE	IWJKA	GEGXI	IDMRU	VEZYG	QIGVN	CTGYO	BPDBL
TE AT	HE DF	RSON	EF	G 0	E. WO	T T	ROOP	I 0	HA D
VCGXG	BKZZG	IVXCU:	NTZAO	BWFEQ	QLFCO	MTYZT	CCBYQ	OPDKA	GDGIG
TSO T	H T	ED E		HE E		$0:$	ISP ${ }^{\text {E }}$	A	G OAT
VPWMR	QIIEN	ICGXG	BLGQQ	VBGRS	MYJJY	QVPWY	RWNHL	GXINT	MCJKX
TACKF	ROM H	ESO. T.	H ONE	TROOP	0	RD Q	SE	G.. H	OS

IDDRU	OPJQQ	ZRHCN	VWIYQ	RDGDG	BXDBN	PKFEV	YXNEG	MPJEL	SANCD
E 0	A NE	C.E.	$T E . E$	S O.T	H D	Q M	T	OA	C E

SEZZG	IBEYU	KDHCA	MBJJF	KILCJ	MFDZT	CTJRD	MIYZQ	ACJRR	SBGZN
T	ER	E	OR	0 E	0		00 E	S Or	CRO
QYAHQ	VEDCQ	LXINCL	LVVCS	QWBII	IV̇JR	WMBRI	VPJEL	tagdn	IRGQP
E	T EF.	E	DBEP	REPAR	ED 0	U POR	TA	0	ECOND
ATYEW	CBYZT	EVGQU	VPYHL	LRZNQ	XINBA	IKWJQ	RDZYF	KWF'ZL	GWFJQ
H	IR	DON	TA	C. E	\bigcirc D	E E	S	E	$G E \quad E$

QWJYQ IBWRX
RE E ER 0
22. Completing the solution. - a. Completion of solution is now a very easy matter. The mixed component is finally found to be the following sequence, based upon the word $3 \times H A U S T I N G:$
EXHAUSTINGBCDFJKLMOPQRVWYZ

b. Note that the successive equivalents of Ap spell the word APRIL, which is the key for the message. The plain-text message fs as follows:

REPORTED ENEMY HAS RETIRED TO NEWCHESTER. ONE TROOP IS REPORTED AT HENDERSON MEETING HOUSE: TNO OTHER TROOPS IN ORCHARD AI SOUTHWEST EDGE OF NEMCHESTER. 2D SQ IS PREPARIIG TO ATTACK FROM THE SOUTH. ONE TROOP OF $3 D$ SQ IS ZITGAGING HOSTILE TROOP AT NEFCHESTER. REST OF 3D SQ IS MOVIING TO AITACK NETCHESTER FROM IHE NURTH. MOVE YOUR SQ INTO WOODS EAST OF CROSSROAD 539 AND BE PREPARED TO SUPPORT ATTACK OF 2D AND 3D SQ. DO NOT ADVANCE BEYOND NEWCHESTER. MESSAGES HERE.

TREER,
COL.
c. The preceding case is a good examole of the value of the principles of direct symmetry of position when applied properly to a cryptogram enciphered by the sliding of a mixed component against the normal. The cryptanalyst starts off with only a very limited number of assumptions and builds up many new values as a result of the placement of the few original values'in the diagram of the alphabets.
23. Solution of subsequent messages enciphered by the same cipher component. - a. Preliminary remarks. Let it be supposed that the correspondents are using the same basic or primary component but with different key words for other messages. Can the knowledge of the sequence of letters in the reconstructed primary component be used to solve the subsequent messages? It has been shown that in the case of a monoalphabetic cipher in which a mixed alphabet was used, the process of completing the plain component could be applied to solve subsequent messages in which the same cipher component was used even though the. cipher component was set at a different key letter. A modification of the procedure used in that case can be used in this case, where a plurality of cipher alphabets based upon a sliding primary component is used.
b.: The message $:$ Let it be supposed that the following message passing between the same two correspondents as in the preceding message has been intercepted:

c. Factoring and conversion into plain component equivalents. The presence of a repetition of a four-letter polygraph whose interval is 21 letters suggests a key word of seven letters. There are very, few other repetitions, and this is to be expected in a short message with a key of such length.

REF ID:A4146445

- 41 -
e. Examination end selection of generatrices. It has been shown that in the case of a monolphabetic eioher it was merely necessary to complete the normal alphabet sequence beneath the plain-component equivalents and the plain text all reappeared on one generatrix. It was also found that in the case of a multiple-alphebet cipher involving standard alphabets, the plain-text equivalents of each alphabet reappeared on the same generatrix, and it was necessary only to combine the proper generatrices in order to produce the plain text of the message. In the case at hand both processes are combined: the normal alphabet sequence is continued beneath the letters of each colum and then the generatrices are combined to produce the plain text. The completion diagrams for the first two columns are as follows (Fig. 16):

Column 1 .
FVQUPRLWVGVHIQZHVDLF GWRVQSMXWHWIJRAIWEMG . : 1 HXSWRTNYXIXJKSBJXFNH : . 2 IYIXSUOZYJYKLTCKYGOI JZUYMVPAZKZLMUDLZHPJ KAVZUWQBALAMNVEMAIQK LBWAVXRCBMBNOWFNBJRI MCXBWYSDCNGOPKGOCKSM NDYCXZTEDODPGYHPDLTN OEZDYAUFEPEQRZIQEMUO PFAEZBVGFQFRSAJRFIVVP QGBFACWHGRGSTBKSGOWQ RHCGBDXIHSHIUCLTHPXR SIDHGEYJITIUVDMUIQYS TJEIDFZKJUJVWENVJRZT UKFJEGALKVKWXFOWKSAU VLGKFHBMLWLXYGPXITIBV WMHLGICNMXMYZHQYMUCW XNIMMEJDONYNZAIRZNVDX YOJNIKEPOZOABJSAOWEY ZPKOJLFQPAPBCKIBPXFZ AQLPKMGRQBQCDLUCQYGA BRMQLNHSRCRDEMVDRZHB CSNRMOITSDSEFNWESAIC DTOSNPJUTETFGOXFTBJD EUPTOQKVIFUGHPYGUCKE

Column 2 :
NPDNNMUGSHGWQENCNSBZ OQEOONVHTIHXRFODOTCA PRFPPOWIUJIYSGPEPUDB QSGQQPXJVKJZTHQFQVEC RTHRRQYKWLKAUIRGRWFD SUISSRZLXXMLBVJSHSXGE TVJTTSAMYNMCNKTITYHF UWKUUTBNZONDXLUJUZIG VXIVVUCOAPOEYMVKVAJH WYMWTVDPBBQFFZNWLWBKI XZNXXTEQCRQGAOXNXCLJ YAOYYXFRDSRHBPYNYDMK ZBPZZYGSETSICQZOZENL ACQAAZHTFUTJDRAPAFOM BDRBBAIUGVUKESBQBGPN CESCCBJVHWVLFTCRCHQO DFTDDCKWIXWMGUDSDIRP EGUEEDLXJYXNHVETEJSQ FHVFFEMYKZYOIWFUFKTR GIWGGFNZLAZPJXGVGLUS HJXHHGOAMBAQKYHWHMVT IKYI IHPBNCBRLZIXINWU JLZJJIQCODCSMAJYJOXV KMAKKJRDPEDTNBKZKPYW LNBLLKSEEQFEUOCLALQZX MOCMMLTFRGFVPDMBMRAY

Fig. 16.
f. Combining the selected generatrices. After some experimenting with these generatrices the 23d generatrix of Column 1 and the lst of Column 2, which yields the digraphs shown in Fig. 17, are combined. The generatrices of the subsequent columns are examined to select those which may be added to these already selected in order to build up the plain

REF ID:A4146445

$-42-$
1.
text. The results are shown in Fig. 18. This process is a very valuable aid in the solution of messages after the primary component has been recovered as a result of the longer and more detailed analysis of the frequency tables of the first message intercepted. Very of ten a short message can be solved in no other way than the one shown, when the primary: alphabet is completely known.
g. Recovery of the key. It may be of interest to find the key word for the message. All that is necessary is to set the mixed component of the cipher alphabet underneath the plain component so as to produce the cipher letter indisated as the equivalent of any given plain-text letter in each of the alphabets. For example, in the first alphabet it is noted that $C_{p}=S_{C}$. Setting the two components under each other so
Fig. 17. as to bring S of the cipher component beneath C of the plain component, thus:

$\begin{array}{lllllll} 1 \cdot 2 & 3 & 4 & 5 & 6 & 7 \\ C . O F & I & R & S & I \end{array}$	
$\begin{aligned} & C O F I R S T \\ & S O U A D R O \end{aligned}$	
NENEMYT	
ROOPDIS	
MOUNTED	
0 NHIL L	
I VENINE	
THREEWE	
STOFGOO	
DI:NENT	
S H X L:I:N:E	
EXTENDS	
F R O.M COR	
NFIELDT	
WOHUNDR	
EDYAR DS	
SOOUTH:X I	
ATTACKR	

Fig. 18

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher: EXHAUSTINGBCDFJKLMOPQRVWYZ

It is noted that $A_{p}=A_{C}$. Hence, the first letter of the key word to the message is A. The 2d, 3 d, 4 th, ... 7 th key letters are found in exactly the same manner, and the following is obtained:

24. Summation of relative frequencies as an aid to the selection of the correct generatrices. - a. In the foregoing example; under subparagraph f, there occurs this phrase: "After some experimenting with these generatrices..." By this was meant, of course, that the selection of the correct initial pair of generatrices of plain-text equivalents is in this process a matter of trial and error. The test of "correctness" is whether, when juxtaposed, the two generatrices so selected yield "good" digraphs, that is, high-frequency digraphs such as occur in normal plain text. In his early efforts the student may have some difficulty in selecting, merely with his eyes, the most likely generatrices to try. There may be in each diagram several generatrices which contain good assortments of high-frequency letters, and the number of trials of combinations of generatrices may be quite large. Perhaps a simple mathematical method may be of assistance in the process.

REF ID:A4146445

- 43 -
b. Suppose, in Fig. 16, that each letter were accompanied by a number which corresponds to its relative frequency. Then, by adding the numbers along each horizontal line, the totals thus found will give a numerical measure of the frequency value of each generatrix. Theoretically, the generatrix with the greatest value will be the correct generatrix because its total will represent the sum of the individual values of the actual plain-text letters. In actual practice, of course, the generatrix with the greatest value may not be the correct one, but the correct one will certainly be emong the three or four generatrices with the largest. values. Thus, the number of trials may be greatly reduced, in the attempt to put together the correct generatrices.
c. Using the preceding message as an example, note the respective generatrix values in Fig. 19.

Fig. 19 (continued)

Column 1 (continued)

$\begin{array}{rrrrrrrrrrrrrrrrrrrrr} \\ 9 & O & E & Z & D & Y & A & U & F & E & P & E & Q & R & Z & I & Q & E & M & U & 0 \\ & 8 & 13 & 0 & 4 & 2 & 7 & 3 & 3 & 13 & 3 & 13 & 0 & 8 & 0 & 7 & 0 & 13 & 2 & 3 & 8\end{array}$
110
$10 \begin{array}{lllllllllllllllllllll} & P & F & A & E & Z & B & V & G & F & Q & F & R & S & A & J & R & F & N & V & P \\ & 3 & 3 & 7 & 13 & 0 & 1 & 2 & 2 & 3 & 0 & 3 & 8 & 6 & 7 & 0 & 8 & 3 & 8 & 2 & 3\end{array}$
82
$\begin{array}{llllllllllllllllllllll}11 & Q & G & B & F & A & C & W & F & G & R & G & S & T & B & K & S & G & 0 & W & Q & \\ & 0 & 2 & 1 & 3 & 7 & 3 & 2 & 3 & 2 & 8 & 2 & 6 & 9 & 1 & 0 & 6 & 2 & 8 & 2 & 0 & 67\end{array}$
$\begin{array}{cccccccccccccccccccccc}12 & R & H & C & G & B & D & X & I & H & S & H & T & U & C & L & T & H & P & X & R & \\ & 8 & 3 & 3 & 2 & 1 & 4 & 0 & 7 & 3 & 6 & 3 & 9 & 3 & 3 & 4 & 9 & 3 & 3 & 0 & 8 & 82\end{array}$
13. $\begin{array}{llllllllllllllllllllll}S & I & D & H & C & E & Y & J & I & T & I & U & V & D & M & U & I & Q & Y & S & \\ & 6 & 7 & 4 & 3 & 3 & 13 & 2 & 0 & 7 & 9 & 7 & 3 & 2 & 4 & 2 & 3 & 7 & 0 & 2 & 6 & 90\end{array}$
 $\begin{array}{lllllllllllllllllll}9 & 0 & 13 & 7 & 4 & 3 & 0 & 0 & 0 & 3 & 0 & 2 & 2 & 13 & 8 & 2 & 0 & 8 & 0\end{array}$
$15 \quad \begin{array}{lllllllllllllllllllll} & U & K & F & J & E & G & A & L & K & V & K & W & X & F & 0 & W & K & S & A & U \\ & 3 & 0 & 3 & 0 & 13 & 2 & 7 & 4 & 0 & 2 & 0 & 2 & 0 & 3 & 8 & 2 & 0 & 6 & 7 & 3\end{array}$
$\begin{array}{lllllllllllllllllllllll}16 & V & I & G & K & F & H & B & M & L & W & I & X & Y & G & P & X & I & T & B & V & & \\ & 2 & 4 & 2 & 0 & 3 & 3 & 1 & 2 & 4 & 2 & 4 & 0 & 2 & 2 & 3 & 0 & 4 & 9 & 1 & 2 & & 50\end{array}$
$\begin{array}{llllllllllllllllllllll}17 & W & M & H & L & G & I & C & N & M & X & M & Y & Z & H & Q & Y & M & U & C & \mathbb{N} & \\ & 2 & 2 & 3 & 4 & 2 & 7 & 3 & 8 & 2 & 0 & 2 & 2 & 0 & 3 & 0 & 2 & 2 & 3 & 3 & 2 & 52\end{array}$
$\begin{array}{llllllllllllllllllllll}18 & X & N & I & M & E & J & D & 0 & N & Y & N & Z & A & I & R & Z & N & V & D & X & \\ & 0 & 8 & 7 & 2 & 3 & 0 & 4 & 8 & 8 & 2 & 8 & 0 & 7 & 7 & 8 & 0 & 8 & 2 & 4 & 0 & 86\end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrr}19 & \mathbf{Y} & 0 & J & N & I & K & E & P & 0 & Z & 0 & A & B & J & S & A & 0 & W & E & Y & \\ 2 & 8 & 0 & 8 & 7 & 0 & 13 & 3 & 8 & 0 & 8 & 7 & 1 & 0 & 6 & 7 & 8 & 2 & 13 & 2 & 103\end{array}$
 $\begin{array}{lllllllllllllllllllll}0 & 3 & 0 & 8 & 0 & 4 & 3 & 0 & 3 & 7 & 3 & 1 & 3 & 0 & 9 & 1 & 3 & 0 & 3 & 0 & \\ 51\end{array}$
$\begin{array}{lllllllllllllllllllll} & 21 & A & Q & L & P & K & M & G & R & Q & B & Q & C & D & L & U & C & Q & Y & G \\ & A & 0 & 4 & 3 & 0 & 2 & 2 & 8 & 0 & 1 & 0 & 3 & 4 & 4 & 3 & 3 & 0 & 2 & 2 & 7\end{array}$ 55
$\begin{array}{llllllllllllllllllllll}22 & B & R & M & Q & I & N & H & S & R & C & R & D & E & M & V & D & R & Z & H & B & \\ & 1 & 8 & 2 & 0 & 4 & 8 & 3 & 6 & 8 & 3 & 8 & 4 & 13 & 2 & 2 & 4 & \sigma & 0 & 3 & 1 & 88\end{array}$

REF ID:A4146445

- 45 -

Fig. 19 (continued)

Golumn 1 (continued)

23 $\quad \begin{array}{llllllllllllllllllll}C & S & N & R & M & 0 & I & T & S & D & S & E & T & N & N & E & S & A & I & C \\ 3 & 6 & 8 & 8 & 2 & 8 & 7 & 9 & 6 & 4 & 6 & 13 & 3 & 8 & 2 & 13 & 6 & 7 & 7 & 3\end{array}$
 129

25. E U P TO Q K V U F G G P Y G U O K E

Column 2

90
$\begin{array}{llllllllllllllllllllll} & 0 & Q & E & 0 & 0 & N & V & \text { Bi } & T & I & H & X & R & F & 0 & D & 0 & T & C & A & \\ 8 & 0 & 13 & 8 & 8 & 8 & 2 & 3 & 9 & 7 & 3 & 0 & 8 & 3 & 8 & 4 & 8 & 9 & 3 & 7 & 119\end{array}$
 $\begin{array}{llllllllllllllllllll}3 & 8 & 3 & 3 & 3 & 8 & 2 & 7 & 3 & 0 & 7 & 2 & 6 & 2 & 3 & 13 & 3 & 3 & 4 & 1\end{array}$
$3 \begin{array}{llllllllllllllllllllll}\text { Q } & S & G & Q & Q & P & X & J & V & K & J & Z & T & H & Q & F & Q & V & E & C & \\ 0 & 6 & 2 & 0 & 0 & 3 & 0 & 0 & 2 & 0 & 0 & 0 & 9 & 3 & 0 & 3 & 0 & 2 & 13 & 3 & 46\end{array}$
$\begin{array}{lllllllllllllllllllllll}4 & R & T & H & R & R & Q & Y & K & W & L & K & A & U & I & R & G & R & \text { Wher } & \text { F } & D & \\ & 8 & 9 & 3 & 8 & 8 & 0 & 2 & 0 & 2 & 4 & 0 & 7 & 3 & 7 & 8 & 2 & 8 & 2 & 3 & 4 & & 88\end{array}$
$\begin{array}{llllllllllllllllllllll}5 & S & U & I & S & S & R & Z & L & X & M & L & B & V & J & S & H & S & X & G & I & \\ & 6 & 3 & 7 & 6 & 6 & 6 & 0 & 4 & 0 & 2 & 4 & 1 & 2 & 0 & 6 & 3 & 6 & 0 & 2 & 13 & 79\end{array}$

 $\begin{array}{lllllllllllllllllllll}3 & 2 & 0 & 3 & 3 & 9 & 1 & 8 & 0 & 8 & 8 & 4 & 0 & 4 & 3 & 0 & 3 & 0 & 7 & 2 & 68\end{array}$

REF ID:A4146445

- 46 -

Fig. 19 (continued)

REF ID:A4146445

$-47-$
Fig. 19 (continued)

Column 2 (continued)

d. It will be noted that the frequency value of the 23 d generatrix for the first column of cipher letters is the greatest value; that of the first generatrix for the second column is the greatest. In both cases these are the correct generatrices. Thus the selection of the correct generatrices in such cases has been reduced to a purely mather matical basis which is at times of much assistance in effecting a quick solution. Moreover, an understanding of the principles involved will be of considerable value in subsequent work.
25. Solution by the probable-word method. - Occasionally one may encounter a cryptogram which is so short that it contains no recurrences of even digraphs, and thus gives no indications of the number of alphabets involved. If the sliding mixed component is known one may apply the methodillustratedin Par. 15 , assuming the presence of a probable word, and checking it against the text and the sliding components to establish a key, if the correspondents are using key words. .
b. For example, suppose that the presence of the word ENEMY is assumed in the message in Par. Whb Gove. One proceeds to check it against an unknown key word, using the already reconstructed mixed component sliding against the normal and starting with the first letter of the cryptogram in this manner:

If SFDRR equals ENEMY, then the successive equivalents of A_{p} equal XENFW:

The sequence XENFW spells no intelligible word. Therefore one shifts the location of the assumed word ENEMY one letter forward in the cipher text, and the test is made again, just as was explained on page 23.

REF ID:A4146445

When the group AQRLU is tried one obtains as the key letters ZIMUT, which, taken as a part of a word, suggests the word AZIMUTH. The .. method must yield solution when a correct word is assumed and correctly placed.
c. The danger to cryptographic security resulting from the inclusion of cryotographed addresses and signatures in cryptographic messages is directly connected with the principles of solution by the probable-word method. To illustrate, reference is made to the message employed in Pars. 19-22. It will be noted in Par. 22 b that the message cerried a signature (Treer, Col.) and that the latter was enciphered. Suppose that this were an authorized practice, and that every message could be assumed to conclude with a cryptographed. signature. The signature, ITREAR COL" would at once afford very good basis for the quick solution of subsequent messages emanating from the same. headquarters as didthe first message, because presumably this same signature would appear in other messages. It is for this reason that addresses and signatures must not be cryptographed; if they must be included they should be cryptographed in a totally different system or by a wholly different method, perhaps by means of a special address and signature code. It would be best, however, to omit all addresses and signatures, and to let the call signs of the headquarters concerned also co nvey these parts of the message, leaving the distribution or delivery to the offices concerned a matter for local action.
26. Solution when the plein component is a mixed sequence, the cipher component, the normal. -a.. This falls under Case B (2) outlined in Par. 6. It is not the usual method of employing a single mixed component, but may be encountered occasionally in cipher devices.
b. The preliminary steps, as regards factoring to determine the length of the period, ere the same es usuel. The messege is then transcribed into its periods. Frequency distributions are then mede, as usual, and these are attacked by the principles of frequency and recurrence. An attempt is made to epply the principles of direct symmetry of position, but this attempt will be futile, for the reason the the plain component is in this case an unknown mixed sequence. (See Par. 18. d.) Any attempt to find symnetry in the secondory alphebets based upon the normal sequence can therefore disclose no symmetry because the symmetry which exists is based upon o wholly different sequence.
c. However, if the principles of direct symmetry of position are of no avail in this case, there are certain other principles of symmetry which may be employed to great edvantage. To expla in them an ectuel example will be used. Let it be assumed that it is known to the cryptanalyst that the enemy is using the general system under discussion, viz, a mixed sequence variable from dey to day is used as plain component, the normal sequence is used as cipher component, and a repeating key, variable from message to message, is used in the ordinary manner.

The following message has been intercepted:

- 50 -
d. A study of the recurrences and factoring their intervals discloses that five alphabets are involved. Monoliteral bar frequency distributions are made and are as follows:

Alphabet 1%

ABCDEEGHIUKXMNQPQRSTUVGXYZ
Alphabet 2.

AIphabet 3.

3
3
7
7

ABCDEFGHIJतLMNOPQRSTUVWXYZ
Alphabet 5.

REF ID:A4146445

$-51 .-$

e. Since the cipher component in this case is the normal alphabet, it follows that the five frequercy distributiors are based upon a seguence which is know. Therefore the five frequency distributions should manifest. a direct symmetry of distribution of crests and troughs. By shifting the five distributions relative to one another, all five can be matched as regards the positions of the crests and troughs, thus reducing the five distributions to a single equivalent moncalphabetic distribution. Note how this has been done in the case of the five.illustrative distributions:

Fig. 21.
f. The superimposition of the respective distributions enables one to convert the cipher letters of the fivo alphabotsinto one alphabot. Suppose it is decided to convert alphobets 2, 3, 4, and 5 into alphabot I. It is meroly necessary to substitute for tho rospoctivo lettors in tho four alphabets those which stand abovo thom in. Alphabet I. For, example, in Fig. 21, X ${ }_{c}$ in. Alphabet 2 is directly undor A_{c} in Alphabet 1 ; hence, if the suporimposi- ${ }^{C}$ tion is corroct then ${\underset{X}{C}}^{2}=A_{c}$ Thorororo, in the eryptogram it is meroly necessary to roplace every X_{C} in the second position by A_{C} : Again T_{C} in Alphabet $3=A_{c}$ in Alphabet 7 ; thorefore, in the cryptogram one roplacos overy T_{C} in the third position by A_{c}. The ontire process gives the following corvertod message:

QHVHT LUTXI: JYNFPYNG-SHTEYUFHEUTGNUGYX
 KTFYD_NHSHC:KTPXNOKIGNUOPNTNGHJKXXKSU LDKHTERHKXDNRKTEDKTHBXUREUHIYN FITFN - GYDNH TYKLU" NFMEQ HVHTHTPNGS HTEBY DNVGNXXXHK FYDNG. NAHXK TFKXVIYHMJNVGUU OYDHYYDNIU.SKTYN GTK, TX YK PHYYRYDNXNKCIOGNUOP NTNGH JLDK.H TPHTF XUSNUODKXP PTNGH JXBSK JKYHG EUMXN GZNGXXHKFYDNLUI VAUIJ FDHZN MNNTK SVUXX KMJNXTJNXXPNTNGHJLDHTTPDXINTUKHTPDUY DNHFN FOUGSNGAHG JUGFUOSHTLDIGKHDHFOU GSNFH THJJKHTINAKYDYDNLUSSITKXY JNHFN GXDNA HXXIVVUXNFYUMNOKPDYK TPBXIXLDTH JJKHTLNYDNXNUMXNGZNGXFNLJHGNFUVNTNF IVHGN FGUIYNOGUS SUXLUAYUTUGYDHTELNTY GHJLD KTHB

REF ID:A4146445

- 53 -

The monoalphabetic frequency for this follows. Note that the frequency of each letter is the sum of the five frequencies in the corresponding columns of Fig. 21.

Fig. 21 a .
g. The problem having been reduced to monoalphabetic terms, a trigraphic frequency distribution can now be nade and solution readily attained by simple principles. It yields the following:

JAPAN CONSULTED GEMANY TODAY ON REPORTS THAT THE COMMUNIST INTERNATIONAL WAS BEHIND THE AMAZING SEIZURE OF GENERALISSIMO CHIANG KAI SHEK IN CHINA. TOKYO ACTED UNDER THE ANTICONWUNIST ACCORD RECENTLY SIGNED BY JAPAN AND GERNANY. THE PRESS SAID THERE NAS INDIS PUTABLE PROOF THAT THE COMINTERN INSTIGATED THB SEIZURE OF GENERAL GHIANG AND SOME OF HIS GENERALS : :MILITARY OBSERVERS SAID THE COUP WOULD HAVE BEEN MPOSSIBLE UNLESS GENERAL CHANG HSUEN LIANG HOTHEADED FORNER WAR LORD OF MANCHURIA HAD FORMED AN ALLIANCE WITH THE COMNUNIST LEADERS HE WAS SUPPOSED TO BE FIGHTING. SUCH AN ALLIANCE THESE OBSERVERS DECLARED OFENED UP A RED ROUTE FROM MCSCOW TO NORTH AND CENTRAL CHINA.
h. The reconstruction of the plain component is now a very simple matter. It is found to be as follows:

HYDRAULICBEFGJKMNOPQSTVWXZ

Note also, in Fig. 2l, the keyword for the message, (HEVVY), the letters being in the columns headed by the letter H.
i. The solution of subsequent messages with different keys can now be reached directly, by a simple modification of the principles explained in Paragraph 18. This modification consists in using for the completion the mixed piain component (now known) instead of the normal alphabet, after the cipher letters have been converted into their plain component equivalents. Let the student confirm this by an experinent.
i. The probable-word method of solution discussed under Paragraph 20 is also applicable here, in case of very short cryptograms. This method presupposes of course, possession of the mixed component; the procodure is essentially the same as that in Faragraph 20. In the example discussed in the present paragraph, the letter A on the plain component was successfully set against the key lotters $H E A V Y$; but this is not the only possible procedure.
k. The student should go over carefully the principle of "conversion into monoalphabetic torms" explainod in subparagraph $£$ above until he thoroughly understands it. Later on he will encounter cases in which this principle is of very great assistance in the cryptanalysis of more complex probloms.
REPETTING-KEY SYSTAMS WTH MIXED CIFHER ALPHABETS, II.Par.

Further cases to be considered 27
Identical primary, mixed:components proceeding in the same direction. 28
Cryptographing and decryptographing by means ofidentical, primary inixed components............ 29
Principles of solution. 30

27. Further cases to be considered. - a. Thus far Cases B (1) and (2), mentioned in Paragraph 3 have been treated. There remains Case B (3) to be studied. ...This case has been further subdivided as follows:

Case B (3). Both components are mixed sequences.
(a) Components are identical mixed sequences.
(1) Sequences proceed in the same direction. (The secondary alphabets are mixed alphabets).
(2) Sequences proceed in opposite directions. (The secondary alphabets are reciprocal mixed alphabets).
(b) Components are different mixed sequences. (The secondary alphabets are mixed alphabets).
b. The first of the foregoing subcases will, now be examined.
28. Identical, primary mixed eomponents proceeding in the same direction. - a. It is often the case that the mixed components are derived from an easily remembered word or phrase, so that they can be reproduced at any time from memory. Thus, for example, given the koy word QUESTIONABLY, the following mixed sequence is derived:

QUESTIONABLYCDFGHJKNPRVWXZ.
b. By using this sequence as both plain and cipher component, that is, sliding this sequence againstitself, a series of 26 : secondary mixed alphabets may be produced. For example, by setting the two sliding strips against each other in the two positions shown below, the cipher alphabets labeled (1) and (2) given by the two settings are seen to be different.

```
Key letter \(=A\left(i . c ., ?_{p}=A_{c}\right)\).
    Plain component.
    ,
حUESTIONABLYCDFGHJNRYRVIXZZUESTIONABLYCDFGHJKMPRVWXZ
QUESTIDN:ABLYCDFGHJKIPRVWXZ
Cipher component.
Socondary alphatet:
                Plain - BCDEFGHIJKLNNOPQRSTUVWXYZ
(1) Cipher - HJPRLVWXDZQKUGFEASYCBTIONN
Key letter \(=B\) (i.e., \(Q_{p}=B_{c}\) ).
Plain component.:
ZUESTIONABLYCDFGHJKMPRVVXZQUESTIONABLYCDFGHJKAPRVWXZ. QUESTIONABLYCDFGHJKAPRVEIXZ Cipher component.
Secondary alphabet:
(2) Clain - ABCDEFGHIJKLRNOPQRSTUVWXYZ
```

c. In enciphering a messago by such sliding strips; a koy word is usod to designate the particular positions in which the strips are to be sot, the same as was the case in previous examples of the use of sliding components. The method of designating the positions is, however, slightly different, the reasons for which will appear in the succooding paragraph. In the methods heretofore given, the key letter, as locatod on the cipher component, was set opposite A, as located on the: plain componont; in othor words, if si was the key letter, then the two sliding strips wore set so that $A_{p}=A_{c}$. In this case, however, where identical mixed sliding components are usod, the koy lettor is set opposite the first letter of the soquonce upon which the primary components aro based; that is, if A is the key letter, then tho sliding strips are set so that $Q_{p}=A_{c}$ in the case of the mixed components shown above. Hence, in the first of the two examplos above, the key lottor for the first example being A, then A_{c} is set opposite p; in the socond of these examples,

d. Very froquently a quadricular or square table is employed by the correspondents, instead of sliding strips, but the results are the same. The square table based upon the word ZUESTIONABLY is shown in Table 6. It will be noted that the table does nothing more than set forth the succesisive positions of the two primary sliding components, and the top line of the table is the plain component, the successive horizontal lines bolow it, the cipher component in its various juxtapositions. The usual method of omploying such a table is to take as the cipher oquivalent of a plain-text lotter that lotter which lies at the intersection of the vertical column headed by the plain-text lotter and the horizontal row begun by the key letter. For example, the cipher oquivalent of E_{p} with key lettor T is the letter O_{c} or $E_{p}\left(T_{k}\right)=0_{c}$. Tho method given in paragraph b, for determining the ciphor equivalents by means of the two sliding strips yields the same results as does tho square table.

TABLE 6.
QUESTIONABLYCDFGHJKMPAVWXZ UESTIONABLYCDFGHJKMPRVWXZQ ESTIONABLYCDFGHJKMPRVWXZQU STIONABLYCDFGHJKMPRVWXZQUE TIONABLYCDFGHJKMPRVWXZQUES IONABLYCDFGHJKMPRVWXZQUEST ONABLYCDFGHJKMPRVWXZQUESTI NABLYCDFGHJKMPRVWXZQUESTIO ABLYCDFGH*KMPRVWXZQUESTION BLYCDFGHJKMPRVWXZQUESTIONA LYCDFGHJKMPRVWXZQUESTIONAB YCDFGHJKMPRVWXZQUESTIONABL CD.FGHJKMPRVWXZ QUESTIONA•BLY D'FGHJKMPRVWXZQUESTIONABLYC FGHJKMPRVWXZQUZSTIONABLYCD GHJKWPRVWXZQUESTIONABLYCDF HJKMPRVWXZQUESTIONABLYCDFG JKMPRVサXZ 凤UESTIONABLYCDFGH KHPRVWXZ C UESTIONABLYGDFGH J MPRVWXZQUESTIONABLYCDFGHJK PRVWXZQUESTIDNABLYCDFGHJKM R VWXZ Z UESTIONABLYCDFGHJKMP $V W X Z Q U E S T O N A B L Y C D F G H J K M P R$ VXZQUESTIONABLYCDFGHJKMPRV 'XZUESTIONABLYGDFGHJKMPRVW ZQUESTIONABLYCDFGHJKMPRVWX

REF ID:A4146445

- 58 -

29. Cryptographing and decryptographing by identical, primary mixed components. - There is nothing of special interest to be noted in connection with the use either of identical mixed components of an equivalent quadricular table such as that shown in Table 6 , in enciphering or deciphering a message. The basic principles are the same as in the case of the sliding of one mixed componert against the normal changeable keywords of varying lengths. The components may be changed at will and sa. on. All this hos'becn demonstrated adequately enough An Special Text No. 165, Elementary Military Cryptography
30. Principles of solution. - a. Basically tho principles of solution in the case of a cryptogram encipherod by two identica mixed siding components are the sme as in thopreceding case. Primary recourso is had to the principlosyof frequency and ropetition of single letters digraphs, trigraphs, and polygraphs. Once an entering wodge has been forced into tho problem, the subsequent, steps may consist merely in continuing along tho same lines as before, building up tho solution bit by bit.
b. Doutless the question has already arison in the studont's mind as to whether eny principlos of symmetry of position can be usod to assist in tho solution and in the reconstruction of the ciphor alphabots in cases of this kind under considerationo. This phaso of tho subjoct will be taken up in the noxt section and will bo treated in a sonewhat detailed manner, because the thoory and principles involved are of vory wide application in cryptanalytics.

Reconstruction of premary components from socondery alphabets 31
31. Reconstruction of primary components from secondery alphabets.
a. Note tho two socondary alphabets (1) and (2) given in paragraph 27b. Externally they show no resemblance or symmetry despite the fact that they were produced from tho same primary component.s. Noyertheloss, when the mattor is studicd with care, a symmetry of positicn is discoverablo. Because it is a hiddon or latent phenomenon, it may bo termod latont symnetry of position. However, in previous texts the phonomonon has boen designatod as ar indiroct symmotry of position and this torminology has grown into usago so that a chango is porhaps now inadvisable. Indiroct symmotry of position is a very intorosting and exccodingly useful phenomenon in cryptanalytics.
b. Consider the following secondary al phabet (the one labeled (2) in paragraph 27b):

> Ylain-ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher-JKRVYYXZFOMEHGSBTCDLIONPA
C. Assuming ty to be known that this is a secondary alphabet produced by two primary idnsical mixed components, it is dosired to reconstruct the latter. Construct a chain of alternate $\theta_{p}-\theta_{c}-\theta_{p}$ values, begirining at any point and continuing until the chein has been completed. Thus, for example, beginning with $A_{p}=J_{c}, J_{p}=Q_{c}, Q_{p}=B_{c}$, and dropping out the letters common to successive pairs, there results the sequence A J Q B. . . By completing the chain the following sequence of letters is established:

AJ〇BKULMEYPSCRTDVIFWOGXNHZ
ג. This sequence consists of 26 letters, and when slid against itself will produce exactly the same secondary alphabets as do the primary components based upon the word ?UESTIONABLY. To domonstrate that this is the case, compare the secondary alphabets given by the two settings of the externally different components shown below:

Secondary alphabet:
Plain - ABCDEFGHIJKLINOPORSTUVWXYZ
(1) Cipher - JKRVYVXZFQUMEHGSBTCDLIONPA:

Secondary alphabet:
Plain - ABCDEFGHIJKLMNOPQRSTUVVXYZ:
(2) Cipher - JKRVYWXZFQUMEHGSBTCDIIONPA
e. Since the sequence A J O B K . . . gives exactly the same equivalents in the secondary alphabets as the sequence QUEST. . . gives, it is termed an equivalent primary component. If the real or original primary component is a kev-word mixed sequence, it is hidden or latent within the equivalent primary sequence; it can be made patent by decimation of the equivalent primary component. Find three letters in the equivalent primary component such as are likely to have formed an unbroken sequence in the original primary component, and see if the interval between the first and second is the same as that between the second and third. Such a case is presented by the letters W, X, and Z in the equivalent primary component above; the distance or interval between them is two lettors. Continuing the chain by adding letters two intervals removed, the latent original primary component is made patent...

YXZQUESTIONABLYCDFGHJKMPRV

f. It is possible to perform the steps given in \underline{a} and \underline{e} in a combined single operation when it is suspected that the original primary component is a key-word mixed sequence. Starting with any pair of letters (in the cipher component of the secondary alphabet) likely to be sequent in the key-word mixed sequence, such as $J \mathrm{~K}_{\mathrm{c}}$ in the secondary alphabet labeled (2), the following chain of digraphs may be set up. Thus, J, K, in the plain component stand over Q, U, respectively, in the cipher component; Q, U, in the plain component stand over B, L, rospoctively, in the cipher component, and so on. Connceting the pairs in a sories, the following results are obtained:
$J K-Q U-B L-K M-U E-L Y: M P-E S-Y C-P R-S T-C D-R V-$
$T I$ - $D F-V N$ - $I O-F G-W X-O N-G H-X Z-N A-H J-Z Q-A B-$
These may now be united by means of their common letters:
$J K-K M-M P-P R-R V-e t c .=J K M P R V W X Q U E D T T O N A B L Y C D F G H$
The original primary component is thus completely reconstructed.
g. Not all of the 26 secondary alphabets of the series yielded by two sliding primary components may be used to develop a complete equivalent primary component. If examinetion be made, it will be found that only 13 of these secondary alphabets will yield complete equivalent primary components when the method of reconstruction shown in subparagraph c above is followed. For example, the following secondary alphabet, which is also derived from the primary components based upon the word $\cap U E S T I O N A B L Y$ will not yield a complete chain of 26 plain text-cipher-plain text equivalents:

Plair - ABCDEFGHIJKLINOFQRSTUVYTYZ
Cípher - CDHJOWMPBRVFYLXTZNAIQUEGS
Equivalent primary component:
ACHPXEOLFKV ZTACH. . (The ACH sequence begins again).
h. It is seen that only 13 letters of the chain have been established before the sequence begins to repeat itself. It is evident that exactly onehalf of the chain has been established. The other half may be established by beginning with a letter not in the first half. Thus:

BD JRZSNYGMWUIBDJ...(The B.D J sequence begins again).
i. It is not necessary to distribute the letters of each half-sequence within 26 spaces, to correspond with their placements in a completo alphabet. This can only be done by allowing between the letters of one of the halfsequences a constant odd number of spaces. Distributions are therefore made upon the basis of $3,5,7,9, \ldots$. spaces. Select that distribution which most nearly coincides with the distribution to be expected in a key-word component. Thus, for example, with the first half-sequence the distribution selected is the one made by leaving three spaces between the letters; it is as follows:

$$
\begin{aligned}
& A-L-C-F-H-K-P-V-X-Q-E-T-O-
\end{aligned}
$$

1. Now interpolate, by the same constant interval (three in this case), the letters of the other half-sequence. Noting that the group $\bar{F}-H$ appears in the foregoing distribution, it is apparent that G of the second halfsequence should be inserted between F and H. The letter which immediately follows G in the second half-sequence, viz, M, is next inserted in the position three spaces to the right of G, and so on, until the interpolation has been completed. This yields the original primary component, which is as follows:

ABLYCDFGHJKMPRVWXZ:QUETION

k. Another method of handing cases such as the foregoing is indicated in subparagraph f. By extending the principles set forth in that subparagraph, one may reconstruct the following chain of 13 pairs from the secondary alphabot given in subparagraph g:

$$
C D-H J-P R-X Z-E S-O N-L Y-F G-K M-W W-Q U-T I-A B-C D .
$$

Now find, in the foregoing chain, two pairs likely to be sequent, for example HJ and KM and count the interval between them in the chain. It is 7 (counting by pairs). If this decimation interval is now applied.to the chain of pairs, the following is established:

HJKMPRVWXZQUESTIONABLYABCDFG

REF ID:A4146445

1. The reason why a complete chain of 26 letters cannot be constructed from the secondary alphabet given under subparagraph x is that it represents a case in which two primary components of 26 letters were slid an even number of intervals apart. There are in all 12 "such cases, "none of which will admit: of the construction of a complete chain of 26 letters. In addition; : there is one case wherein, dispite the fact that the primary components are on odd number of intervals apart, the secondary alphabet cannot be made to yield a complete chain of 26 letters for an equivalent primary component This is the case in which the displacement is 13 intervals. Note the following secondary alphabet based upon the primary components shown in subparagraph d:

QUESTI O:NABLYABCDFGHJKMPRVWXZ CDFGHJKMPRVWXZQUESTIONABLYAB

$$
\begin{array}{rc}
\text { Plain- } & A B C D E F G H I J K L M N O P Q R S T U V W X Y Z . \\
\text { Cipher }- & \text { R V Q Q GUESKTIWO PMNDAH J F B LYXC }
\end{array}
$$

m. If an attempt is made to construct a chain of letters from this socondary alphabet alone, no progress "can be made because the alphabot is completely, reciprocal. However, the cryptanalyst need not at, all be baffled by this case. The attack will follow along the lines shown below in subparagraphs \underline{n} and .
n. If the original primary component is a key-word mixed sequence, the cryptanalyst may reconstruct it by attempting to "dovetail" the 13 reciprocal pairs (AR, BV, CZ, DQ, EG, FU, HS, IK; JT, LW, MO, NP, and XY) into one sequence. The members of these pairs are all 13 intervals apart. Thus:

Fig.22.

REF ID:A4146445

- 63 -

Write out the series of numbers from 1 to 26 and insert as many pairs into position as possible, being guided by considerations of probable sequence in the key-word mixed sequence. Thus:

$$
\begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & . & . & . & . & . & . & . & . & . & \mathrm{R} & \mathrm{~V} & \mathrm{Z}
\end{array} \mathrm{Q}
$$

It begins to look as though the key-word commences with the letter Q, in which case it should be followed by U. This means that the next pair to be inserted is FU. Thus:
$\begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 5 & 7 & 3 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array} 1617$
ABCDF........ $R V Z Q U$

The sequence A B C D F means that E is in the key. Perhaps the sequence is A B C D F G H. Upon trial, using the pairs EG and HS, the following placements are obtained:
$\begin{array}{llllllllllllllll}1 & 2 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 14 & 15 & 16 & 17 & 18\end{array} 19$
ABCDFGH...... $R V Z \quad$ U Z E

This suggests the word QUEST or QUESTION. The pair JT is added:

$$
\begin{aligned}
& \begin{array}{llllllllllllllllllllll}
1 & 3 & 4 & 5 & 7 & 8 & 10 & 11 & 12 & 14 & 15 & 16 & 18 & 19 & 20
\end{array} \\
& \text { ABCDFGHJ..... } \quad \text {. V Z Q U E S T }
\end{aligned}
$$

The sequence G H J suggests G H J K, which places an I after T. Enough of the process has been shown to make the steps clear.
Q. Another method of circumventing the difficulties introduced by the l4th secondary alphabet (displacement interval, 13) is to use it in conjunction with another secondary alphabet which is produced by an eveninterval displacement. For examplo, suppose the following two secondary alphabets are available.

O-ABCDEFGHIJKLNNOPQRSTUVWXYZ 1-RVZQGUESKTIWOPMNDAHJFBLYXC $2-X Z E S K T O R N A Q B W V H Y M P J C D F U G$

REF ID:A4146445

-64

The first of these secondaries is the 13 interval secondary; the second is one of the even-interval secondaries, from which only half-chain sequences can be constructed. But if the construction be based upon the two sequences, I and 2 in the foregoing diagram, the following is obtained:
-RXUTNLDHMVZEIAYFJPWQSOBCGK

This is a complete equivalent primary component. The original keyword mixed component can be recovered from it by decimination based upon the 9th interval:

RVWXZQUESTIONABIYCDFGHJKMP
p. (I) When the primary components are identical mixed sequences proceeding in opposite directions, all the secondary alphabets will be reciprocal alphabets. Reconstruction of the primary component can be accomplished by the procedure indicated under subparagraph o above. Note the following three reciprocal secondary alphabets:

O-ABCDEFGHIJKLMNOPQRSTUVWXYZ
1-PMHGQFDCWYLKBRVAENZXUOITJS
2-WVMKSJHGQFDRCXZYILEUTBANPO 3-TSSZLXWVNRPEMIOKCJBAYHG.FUD

Fig. 24.
(2) Using lines 1 and 2 the following chain can be constructed (equivalent primary component):

PWQSOBCGKRXUTNLDHMVZEIATFJ
Or, using lines 2 and 3 :
WTYKZODPUAGVSLJXICMQNFREBH
The original key-word mixed primary component (based on the word QUESTIONABLY) can be recovered from either of the two foregoing equivalent primary components. But if lines l and 3 are used, only half-chains can be constructed:

> PTFXAKECVOHQL and MSDWNJUYRIGZB

This is because 1 and 3 are both odd-interval secondary alphabets, whereas 2 is an even-interval secondary. It may be added that odd-interval secondaries are characterized by having two cases in which $\theta_{p}=\theta_{c}$. (Note that in secondary number labove, $F_{p}=F_{c}$ and $U_{p}=U_{c}$; in secondary number 3 above, $M_{p}=M_{c}$ and $\theta_{p}=\theta_{c}$). This characteristic will enable the cryptanalyst to select at once the proper two secondaries to work with in case several are available; one should show two cases where $\theta_{p}=\theta_{c}$; the other should show none.
q. (1) When the primary components are different mixed sequences, their reconstruction from secondary cipher alphabets follows along the same lines as set fortin under b to i inclusive, above, with the exception that the selection of letters for building up the chain of equivalents for the primary cipher component is restricted to those below the zero line. Having reconstructed the primary cipher component, the plain component can be readily reconstructed. This will become clear if the student will study the following example.
$0-A B C D E F G H J K L M O P Q R S T U V W X Y Z$
1-TVABULIQXYCWSNDPFEZGRHJKMO
$2-Z J S T V I Q R M O N K X E A G B W P L H Y C D U$

Fig. 25.
(2) Using only lines 1 and 2, the following chain is constructed:

TZPGLIQRHYOUVJCNEWKDASXMFB

This is an equivalent primary cipher component. By finding the values of the successive letters of this chain in terms of the plain component of the first secondary alphabet (the zero line), the following is obtained:

TZPGLIQRHYOUVJCNEWKDASXMFB
ASPTFGYUVJZEBWKNRLXOCIMYQD

The sequence AS PT. . . is an equivalent primary plain component. The original key-word mixed components may be recovered from each of the equivalent primary component, That for the primary plain component is based upon the key PUBLISHERS WAGAZINE; that for the primary cipher component is based upon the key QUESTIONABLY.
(3) Another method of accomplishing the process indicated above can be illustrated graphically by the following tiwo chains, based upon the two secondary alphabets set forth in subparagraph q (I):

Col. 1.		Col. 2.		
$A(\phi-1)$	\rightarrow	T(1-1) ;	$T(2-4)$	$\rightarrow D(\not \subset-4) ;$
$D(\phi-4)$	\rightarrow	$B(1-4) ;$	$B(2-17)$	$\rightarrow Q(\phi-17) ;$
$Q(\dot{\phi}-17)$	\rightarrow	$F(1-17) ;$	$F(2-25)$	$\rightarrow Y(\phi-25) ;$
$Y(\not \subset-25)$	\rightarrow	M(1-25) ;	$M(2-9)$	$\rightarrow I(\not \subset-9) ;$
$I(\varnothing-9)$	\rightarrow	$x(1-9)$;	$X(2-13)$	$\rightarrow \operatorname{Ln}(\phi-13) ;$
$M(\not \subset-13)$	\rightarrow	S(1-13) ;	$S(2-3)$	$\rightarrow \mathrm{c}(\phi-3) ;$
etc.		etc.		

Fig. 26.
i
(4) By joining the letters in Column l, the following chain is obtained: A D Q Y IM, etc. If this be examined, it will be found to be an equivalent primary of the sequence based upon PUBLISHERS in A G A Z INE. By joining the letters in Column 2, the following chain is obtained: T B F M X S. This is an equivalent primary of the sequence based upon? UE STIONABLY.

SECTION VIII.

APPLICATION OF FRINCTPLES OF INDIRECT SYMMETRY OF POSITION.
Par.
Applying the principles to a specific example. 32
The cryptogram employed in the exposition. 33
Fund amental theory. 34
Application of principles 35
General remarks. 36

REF ID:A4146445

- 67 -

32. Applying the principles to a specific example. - a. The preceding section, with the many details covered, now forms a sufficient base for proceeding with an exposition of how the principles of indirect symmetry of position can be applied very early in the solution of a polyalphabetic substitution cipher in which sliding primary components were employed to produce the secondary cipher alphabets for the enciphering of the cryptogram.
b. I'ho caso described below will serve not only to explain the principles of tho method of applying these principles but will su the same time show how the solution of a single, rather difficult, polyal frabetic substitution cipher can ce greatly facilitated by applying these praciples. It is realizod, of course, that tho cryptogram could be soined by the usual methods of incqueney and long, patient experjinentation, howevor, tho nethod to be describod was actually appliod and very materially reduced. the amount of time and labor that would otherwise have been requirsi for solution.
33. The cryptogram employed in the exposition. - e. The problem that will be used in this exposition involves an actual cryptogram submitted for solution in connection with a cipher device having two concentric disks upon which the same random mixed alphabet appears, both alphabets progressing in the same direction. This was obtained from a study of the descriptive circular accompanying the cryptogram. By the usual process of factoring, it was determined that the cryptogram involved 10 alphabets. The message as arranged according to its period is shown in Figure 27, in which all repetitions of two or more letters are indicated.
b. The trigraphic frequence distributions are given in Figure 28. It will be seen that on account of the brevity of the message, considering the number of alphabets involved, the frequency distributions do not yield many clues. By a very careful study of the repetitions, tentative individual determinations of values of cipher letters, as illustrated in Figures 29, 30, 31, and 32, were made. These are given in sequence and in detail in order to show that there is nothing artificial or arbitrary in the preliminary stages of analysis here set forth.

	1234567390		1234567890
A	WFUPCFOC JY	x	$G H X E R O Q P S E$
B	$G B Z D P F B O U 0$	Y	GKBWTLFDUZ
0	GRFTZMGMAV	Z	OCDHWMZTUZ
0		A A	KLBPCJOTXF
E	\underline{G} SXNLWYYUX	B B	HSPUPNMOLH
F	$1 K W E P Q Z O K Z$	$C \mathrm{C}$	GXKWDVBLSE
G	PRXDWLZ 1 CW	DD	GSUGDPQTHX
H	GKaHOLOПVM	E E	BKDZFMTGQUJ
1	G OXSNZHASE	F.F.	LFUYDTZVHU
\checkmark	$B B J \mid P Q F J H D$	$G G$	ZGWNKXJTR
K	QCRZEXQTXZ	HH	$\underline{Y} T \times C D P M \vee L$
L	JCQRQFVHLH	11	BGBWWOQRGN
1	SROEWMLINA	$\checkmark J$	HHVLA日QVAV
N	GSXEROZJSE	K K	JOWUOTTIVA
0	GVOWEJMKGH	L L	BKXUSOZRS
p	RCVOPNBLCW	Mi M 0	Y UXOPPYOXZ
Q	LQZAAAMDCH	$N \mathrm{~N}$	HOZOWEXCGO
R	$B Z Z C K Q O 1 K F$	00	$J J U G D Q R V M$
S	CFRSCVXCHO	p P	UKWPEFXENF
T	ZTZSDMXMCM	90	CCUGDWPEUH
U	RKUHEQEDGX	R R	YBWEWVMDY
V	FKVHPJUK JY	S S	$\mathrm{R} \mathrm{Z} X$
w	Y QDPCUXLLL		

FIGURE 28.
Trigraphic Frequency Distributions.
I.

II.

III.

FIGURP 28 (Cont).
IV.

VI.

REF ID:A4146445

- 71 -

FIGURE 28 (Cont).
VII.

VIII.

IX.

X.


```
\mp@subsup{G}{c}{}}=\mp@subsup{E}{p}{};\mp@subsup{\stackrel{2}{K}}{c}{}=\mp@subsup{E}{p}{};\mp@subsup{\stackrel{3}{X}}{c}{}=\mp@subsup{E}{p}{};\mathrm{ and }\mp@subsup{\stackrel{4}{D}}{c}{\prime}=\mp@subsup{E}{p}{}\mathrm{ , from frequency considerations.
```


1．234567890
A

B
C
D．
E
F
G

H

1

J
K
L
iv
N
0
w

WFUPCFOCJY
$G B Z D P F B Q U 0$ E GRFTZMQMAV KZUGDYFTRW THE
$\frac{G}{E} J \underset{E}{X N L W U U X}$ 1KWEPQZOKZ
$P R \frac{X D W}{E} W Z C W$
GK日HOLODVM．
$\frac{G}{E} O X S N Z H A \frac{S}{T} \frac{E}{H}$ $B B J I P Q F J H D$

QCRZEXQTXZ
JCQRQFVMLH

LQZAAAMDCH
$B Z Z C K O O$ IKF
$\underset{\mathrm{C}}{\mathrm{CFBSCVXCH}}$
ZTZSDMXMCH
RKUHEQEDGX ET
FKVHPJJKUY

1234567890
${ }_{E}^{G} H \frac{X E R O Q P}{E} \frac{S E}{T H}$
$\frac{G K B W T L F D U Z}{E E}$
OCDHWMZTUZ
$K L B \underset{H E}{P C D} O$
HSPOPNMDLMA
$\frac{G}{E} \times K \cup \underset{E}{D} V \frac{S E}{T H}$
$-\frac{G S}{E} \frac{U G P D T H X}{T H}$
BKDZFMTGQU
LEUYOTZVA日
Z GWNKXJTKN
$\underset{\mathrm{Y}}{\mathrm{Y}} \underset{\mathrm{E}}{\mathrm{T}} \underset{\mathrm{E}}{\mathrm{D}} \mathrm{P} \mathrm{MVLW}$
BGBWWOQRGN
HHV．LA日QVAV
JQWUOTTNVQ
L L
in
N N
1） 0
$p p$
00
R R
SS

REF_{73} ID : A4146445

ADDITIONAL VALUES FROM ASSUNPTIONS
Refer to line DD in Figure $29{ }_{9} S_{c}$ assumed to be N_{p}. Refer to line M in figure $29 ; A_{c}$ assumed to be W_{p}. 910123.45 .

Then in lines C-D, A V K.Z U G D is assumed to be WITH THE.

	1234557890			1234567890
A	$W F U P C F O C J Y$		X	$\mathrm{G}_{\mathrm{E}} \mathrm{H} \frac{X E R O Q}{\mathrm{E}} \mathrm{P} \frac{\mathrm{SE}}{\mathrm{~T} H}$
B	$\begin{aligned} & G B Z D P F B Q U 0 \\ & E \end{aligned}$		Y	$\frac{G K B W T L F D U Z}{E E}$
C	$\underset{E}{G R F T Z M Q M A V} \underset{W I}{ }$		Z	()CDHWZWUZ
D	$\begin{aligned} & K Z \frac{U G G}{T} Y F T B W \\ & T H E \end{aligned}$		A	$\frac{K L B P C U}{T} \frac{O T X E}{T E}$
E	$\underset{E}{G} J X N L W Y O U X$	B		$\underset{N}{H S O P N M D L M}$
F	$\frac{K W E P Q Z O K Z}{E}$	C		$-\frac{G}{E} \times K W \vee B E \underset{T}{S H}$
G	$P R \frac{X D W}{E} W Z 1 . C W$	0		$\frac{G S}{E N} \frac{\cup G D P O T H X}{T H}$
H	$\frac{G K G H O L O D V M}{E E}$	E		$\frac{B K D Z F W G Q U}{E} D G$
1	$\mathrm{GOXSN}_{\mathrm{E}}^{\mathrm{G}} \mathrm{SN} \underset{\mathrm{TH}}{\mathrm{~T}}$	F		
J	BBJIPUFJHD	G		ZGWNKXJTRN
K	9CBZEXQTXZ	Hi		$\underline{Y} T \underset{E}{X} C \frac{D P}{E} M \vee L W$
L	JCQRQFVALH	1	1	BGBWWOWRGN
M	$S R Q E W M L N A E$	J		$H H V I . A Q V \frac{A V}{W I}$
N	$\frac{G S}{E N E R O Z U \frac{S E}{T H}}$	K		JのW00TTNV品
0	$\frac{\Omega_{1}}{E} V Q E \mathrm{E} \text { J KGH }$	L L		$\frac{B K}{E} \mathrm{X} \text { S } \mathrm{O} Z \mathrm{~K} \mathrm{~S} \mathrm{~N}$
P^{\prime}	RCVOPNB1 CW	1.1		$\underline{Y} U X$ UPPPYOXZ
Q	LQZAAAMDCH	N		4020 MOCO
R	$\mathrm{BZZCKOO} \mathrm{H}$	0		$J \cup \frac{U G D W Q R V M}{T H E}$
S	$\underset{H}{C F B S C V}$	PP		UKMPEFXENE
I	ZTZSOMX WCM	0		$\text { C C } \frac{\cup G D W P E U H}{T H E}$
U	RKUHEQEDGX	R R		Y BWEWVMDY
V	$\underset{\mathbb{E}}{\mathrm{F}} \mathrm{VHP} \underset{\mathrm{E}}{\mathrm{~J}} \mathrm{JK}$	S S		$R \underset{H}{Z X}$
W	YODPCJXLLL			

Fig. 30.

ADDITIONAL VALUES FROM ASSUMPTIONS（II）
12345678910
Refer to Figure 30，line A；W F U P C F O C J Y；assume to be BUT THOUGH．
－．．T T H
3456
Refer to Figure 30 ，lines N and X ，where repetition XERO occurs；assume EACH

$$
1234557890
$$

A

WFUPCFOCJY BUTTHOUGH： $G B Z D P F B O U O$
E GRFTZMQMAV $K Z \cup G Q Y F T R W$ THTHE GUXNLWYUUX 1．KWE PQ ZOKZ $P R \frac{X D L Z \mid C W}{C}$ GKGHOLODVM $G O X S N Z H A S E$
$B E X$
$B B U P Q F J H D$ GCBZEXNTXZ
JC日RQFVMLH SRQE $\frac{E}{A}-\operatorname{LNA} E$ $\frac{G S}{E N} \frac{X R O}{A C H} Z \cup \frac{S E}{T H}$ GVGWEJMKGH KCVOPNBLCW

LQZAAAMCCH $B Z Z C K Q O . K K F$
H
$C F B S C V X C H \theta$
$-U$ ZTZS $\underset{E}{C A X O M}$
RKUHEQEDGX ET
FKVHPJJK $\underset{E}{K} \frac{J Y}{H}$ $Y ロ \frac{P C J}{T H E} X L$

1234567890
x
Y
Z
A A
$B B$
C．C
D 0
E E
F F
G G
$\mathrm{H} H$
11
U J
$K K$
I．L
日 4
N N
00
P P
00
RR
SS
$G H X E R O Q P S E$
$E G A G H$
$G K B Y T L F D U Z$
$E E D$
$O C D H W H Z T U Z$
KLBPCUOTXE
T
H
N
$\frac{G}{E} \times K W \vee B L \frac{S E}{T H}$

BKOZFMTGQJ E
LFUYDTZVHQ $\overline{U T} \mathrm{~B}$
Z GWNKXJTRN
$\underset{E}{Y} \underset{E}{X P D} \operatorname{CDLW}$
BGEWWORGN
HHVLAUVV $\frac{A V}{W I}$
JQWUOTTNVG
$\frac{B K}{E} \frac{X U}{E} S \underset{H}{S D R S}$
YUXUPPYOXZ
$H O Z O W \underset{G}{X G G} G$
U U $\frac{Q G D W Q R V M}{T H E}$
UKWPEFXEMF
CCUGD WHE WH
$Y B \frac{V E V V}{A} Q J$
$R Z X$
HE

901
HQZ - assume ING from repetition and frequency.

Fig. 32 .
c. From the initial and subsequent tentative identifications shown in Figures 29, 30, 31, and 32, the values obtained were arranged in the form of the secondary alphabets shown in Figure 33.
$12345678 \quad 91011 \quad 1213141516171819 \quad 20 \quad 21 \quad 22 \quad 23 \quad 24 \quad 25 \quad 26$

Fig. 33.
34. Fundamental theory. - a. In paragraph 31 methods of reconstructing primary components from secondary alphabets were given in detail. It is necessary that those methods be fully understood before the following steps be studied. It was there shown that the primary component can be one of a series of 26 equivalent primary sequences, all of which will give exactly similar results so far as the secondary alphabets and the cryptographic text are concerned. It is not necessary that the identical or original primary component employed in the cryptographing be reconstructed; any equivalent primary sequence will serve. The whole question is one of establishing a sequence of letters the interval between which is either identical with that in the original primary component or else is an exact constant multiple of the interval separating the letters in the original primary component. For exmmple, suppose $K P X N Q$ forma a sequence in the original primary component. Here the interval between K and P, P and X, X and N, N and Q is one; in an equivalent primary component, say the sequence I. . P. . X. . N. . Q, the interval between K and P is three, that between P and X also three, and $s o$ on; and the two sequences will yield the same secondary alphabets. So long as the interval between K and P, P and X, X and N, N and Q is a constant one, the sequence will yield the same secondary alphabets as do those of the original primary sequence. However, it is necessary that this interval be an odd number other than 13, as these are the only cases which will yield one unbroken sequence of 26 letters. Suppose a secondary alphabet to be as follows:

$$
\begin{aligned}
& \text { Plain - ABCDEFGHIJKLMNOPQRS.TUVWXYZ } \\
& \text { Cipher - } \\
& \begin{array}{lll}
\mathrm{N} \\
\mathrm{X} & \mathrm{~K} \mathrm{~N} & \mathrm{R} \\
\mathrm{~N}
\end{array}
\end{aligned}
$$

REF ID:A4146445

- 77 -

It can be said that the primary component contains the following sequences:
$X N \quad K P \quad N Q \quad P X$
These, when united by means of their common letters, yield K P. X N Q.
Suppose also the following secondary alphabet is at hand:
Plain-ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher - $\quad \mathrm{P} \quad \mathrm{X}$: K N
Here the sequences $P N, X Q, K X$, and $N Z$ can be obtained, which when united yield the two sequences $K X Q$ and $P N Z$.

By a comparison of the sequences $K P X N Q ; K X Q$, and $P N Z$, one can establish the following:

$$
\begin{aligned}
& K P X N Q \\
& K \cdot X \cdot Q \\
& P \cdot N \cdot Z
\end{aligned}
$$

It follows that one can now add the letter Z to the sequence, making it K P X N Q Z. .
b. The reconstruction of a primary alphabet from one of the secondaries by the process given in paragraph 31 requires a complete or nearly complete secondary alphabet. This is at hand only after a cryptogram has been completely solved. But if one could employ several very scant or skeletonized secondary alphabets simultaneously with the analysis of the cryptegram, one could then possibly build up a primary component from fewer data and thus solve the cryptogram much more rapidly than would otherwise be the case.
c. Suppose only the cipher components of the two secondary alphabets given above be placed into juxtaposition. Thus:

The sequences $P X, X N$, and $K P$ result, which, united, yield KPXN as part of the primary sequence. It follows, therefore, that one can employ the cipher components of secondary alphabets as sources of independent data to assist in building up the primary sequences. The usefulness of this point will become clearer subsequently.
35. Application of principles. - 玉. Refer now to Figure 33. Hereafter, in order to avoid all ambiguity and for ease in reference, the position of a letter in Figure 33 will be indicated by coordinates in parentheses. Thus, $N(6-7)$ refers to the letter N in. line 6 and in column 7 of Figure 33.
b. (I) Now, consider the following pairs of letters:

$$
\begin{aligned}
& E(\not \varnothing-5) J(6-5) . . \\
& G(\not \subset-7) \quad N(6-7) \\
& \left(\begin{array}{lll}
\left(\begin{array}{lll}
\mathrm{H} & (\not-8) & \mathrm{C}(6-8)
\end{array}\right) \mathrm{HO}, \mathrm{OF}=\mathrm{HOF} \\
0 & (\not \subset-15) & \mathrm{F}(6-15)
\end{array}\right) \mathrm{O}
\end{aligned}
$$

(One is able to use the line marked zero in Figure 33 since this is a mixed sequence sliding against itself.)
(2) The immediate results of this set of values will now be given. Having $H O F$ as a sequence, with EJ as belonging to the same interval set, suppose HOF and EJ are placed into juxaposition as portions of sliding alphabets. Thus:

$$
\begin{array}{r}
\text { Plain - • . . H O F • • • } \\
\text { Cipher - . . E J . . . }
\end{array}
$$

When $H_{p}=E_{c}$, then $O_{p}=J_{c}$.
(3) Refer now to al phabet 10, Figure 33, where it is seen that $H_{p}=E_{C}$. The derived velue, $O_{p}=J_{c}$, can immediately be inserted in the same alphabet and substisutied in the cryptogram.
c.(1) Again; CI belongs to the same set of interval values as do EJ and HOF. Hence, by superimposition:

$$
\begin{array}{r}
\text { Pain - . . H } 0 \text { F . . . } \\
\text { Cipher - . G N . . }
\end{array}
$$

(2) Whon $H_{p}=G_{c}$, then $O_{p}=N_{C}$ o Therefore, the value ${ }^{O_{p}}=N_{c}$ can be inserted End aiso substituted in the cryptogram.
(3) Furthermore, note the corroboration we find from this particular superimposition.

$$
\begin{aligned}
& H(\phi-8) \quad G(\not \emptyset-7) \\
& 0(6-8) \\
& N(6-7)
\end{aligned}
$$

REF ID:A4146445

- 79 -

This checks up the value in alphabet $6, G_{p}=N_{c}$.
d. (1) Again superimpose HOF and GN:

$$
\begin{aligned}
& H O F \\
& G N
\end{aligned}
$$

(2) Note this corroboration:

$$
\begin{array}{llll}
0 & (6-8) & G & (4-8) \\
\mathrm{F} & (6-15) & \mathrm{N} & (4-15)
\end{array}
$$

which has just been inserted in Figure 7, as stated above.
e. (1) Again using $H O F$ and $E J$, but in a different superimposition, we have:

(2) Refer now to H (9-9) J (9-8). Directly under these letters is found $V(10-9) E(10-8)$." Therefore, the V can be added immediately before H 0 F , making the sequence VHOF.
f. (1) Now take V H O F and juxapose it with E J, thus:

VHOF
E J :
(2) Refer now to Figure 33, and find the following:

	(10-9)	\pm
H	(9-9)	$J(9-8)$
c	4-9)	$G(4-8)$
I	\varnothing - 9)	H $(\not \varnothing-8)$

(3) From the value OG it follows that G can be set next to J in E J. Thus:

> VHO F
> E J G
(4) But $G \mathbb{N}$ is already a member of the same interval as $E \mathrm{~J}$. Therefore, it is now possible to combine $E J, J G$, and $G N$ into one sequence, E J G N, yielding:

VHOF
E J G N

REF ID:A4146445

- 80 -
g. (1) Refer now to Figure 33.

V	$(\emptyset-22)$	$E(\emptyset-5)$
$?$	$(1-22)$	$G(1-5)$
$?$	$(2-22)$	$K(2-5)$
$?$	$(3-22)$	$X(3-5)$
$?$	$(5-22)$	$D(5-5)$
$?$	$(6-22)$	$J(6-5)$

(2) The only values which can be inserted are:

$$
\begin{array}{lll}
0 & (1-22) & G(1-5) \\
H & (6-66) & J(6-5)
\end{array}
$$

(3) This means that $V_{p}={ }^{0} c$ in alphabet 1 and that $V_{p}=H_{c}$ in alphabet 6. There is one O_{c} in the frequency distribution for alphabet l, and no H_{c} in that for alphabet 6.. The frequency distribution is, therefore, corroborative insofar ás these values are concerned:
h. (1) Further, taking E JGN and VH O F, superimpose them thus:
EJGN

VH OF
(2) Refer now to. Figure 33.

$$
\begin{array}{lll}
E & (\phi-5) & H(\phi-8) \\
G & (1-5) & ?(1-8)
\end{array}
$$

(3) From the diagram of superimposition the value $G(1-5)$ F (I - 8) can be inserted, which gives $H_{p}=F_{c}$ in alphabet 1.
i. (1). Again, V H O F and E J G N are juxtaposed:

VHOF
EJ G N
(2) Refer to Figure 33 and find the following:

$$
\begin{array}{ll}
H & (\emptyset-8) \\
A(\emptyset-1) & G(4-8) \\
E(4-1)
\end{array}
$$

This means that it is possible to add A, thus:
$A V H O O F$
$E \quad J G N$

REF ID:A4146445

- 81 -
(3) In the set there are also:

$$
\begin{array}{ll}
E(\not D-5) & G(1-5) \\
G(\not D-7) & Z(1-7)
\end{array}
$$

Then in the superimposition

> E J G N

E J G N
It is possible to add Z under G, making the sequence $E J G N Z$.
(4) Then taking
$A V H O F$
$E J G N Z$
and referring to Figure 33:

$$
\begin{array}{ccc}
H & (\phi-8) & N(\phi-14) \\
0 & (6-8) & ?(6-14)
\end{array}
$$

It will be seen that $0=2$ from superimposition, and hence in alphabet 6 $N_{p}=Z_{c}$, an important new value, but occurring only once in the cryptegram. Has an error been made? The work so far seems too corroborative in interlocking details to think so.
i. (1) The possibilities of the superimposition and sliding of the AVHOF and the EJGNZ sequences have by no means been exhausted as yet, but a little different trail this time may be advisable.

E	$(\emptyset-5)$	$\mathrm{T}(\emptyset-20)$
G	$(1-5)$	$\mathrm{K}(1-20)$
K	$(3-5)$	$\mathrm{U}(3-20)$

(2) Then:

$$
\begin{aligned}
& \text { E J G N X } \\
& \text { T. } \mathrm{K}
\end{aligned}
$$

(3) Now refer to the following:

$$
\begin{array}{lll}
E(\emptyset-5) & K(2-5) \\
N & (\emptyset-14) & S(2-14)
\end{array}
$$

REF ID:A4146445

- 82 -
whereupon the value S can be inserted:

$$
\begin{aligned}
& \text { E JGNZ } \\
& T \cdot K \cdot E S
\end{aligned}
$$

k. (1) Consider all the values based upon the interval corresponding to JG:
(2) Since J and G are sequent in the $\operatorname{EJGN} Z$ sequence, it can be said that all the letters of the foregojrg pairs are also sequent. Hence $Z C, S$, and K D are available as new data. These give E J G N Z C and T. K D. S P.

$$
\begin{array}{llll}
\mathrm{T} & (\not \emptyset-20) & \mathrm{P} & (4-20) \\
\mathrm{A} & (\not \subset-1) & \mathrm{E} & (4-1) \\
\mathrm{H} & (\not \emptyset-8) \\
\mathrm{I} & (\not \emptyset-9) & \mathrm{G} & (4-8) \\
\hline
\end{array}
$$

(3) Now in the T. K D. S P sequence the interval between T and P is T I. 3.45 6 follows therefore that the sequences $A V H O F$ and $E J G N Z C$ should be united thus:

$$
\begin{array}{llllll}
I 2 & 3 & 4 & 6 \\
A V H & F & \text { • E JGNZC. }
\end{array}
$$

(4) Corroboration is found in the interval between H and G, which is six. The letter I can be placed into position, from the relation I ($\varnothing-9) 0(4-9)$, thus:

$$
123456
$$

I..AVHOF.E J GNZC
1.(1) From Figure 33:

H	$(\emptyset-8)$	Z	$(2-8)$
E	$(\not-5)$	K	$(2-5)$
N	$(\not-14)$	S	$(2-14)$
U	$(\not-21)$	F	$(2-21)$

(2) From the I. AVHOF.E JGNZC sequence one can write:

(3) Hence one can make the sequence

$$
\text { I. A AVHOFAE } \begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6.78 \\
\hline
\end{array}
$$

Then I. . AVHOF.E JGNZCT:KD.SP

m. (1) Subsequent derivations can be indicated very briefly as follows:

$$
\begin{array}{llll}
\text { E } & (\phi-5) & C & (\phi-3) \\
D & (5-5) & \mathrm{F} & (5-3)
\end{array}
$$

(2) Another derivation:
1234567891011121314151617.181920212223242526
 one can write

U I T
and
making the sequence

UI..A.VHOF.E J G N Z C T . K D X S P • R .

From
(3) Another derivation:
one can write
and then

$$
\begin{array}{ccc}
E \cdot(\phi-5) & G & (1-5) \\
B & (\phi-2) & W \\
(1-2)
\end{array}
$$

There is only one place where B. W can fit, viz, at the end: 1234567891011121314151617181920212223242526 UI..AVHOF. EJGNZCTHKDXSPBRW
n. Only four letters remain to be placed into the sequence: L, M, Q, and Y. They were easily found by application of the primary component to the message. Having the primary component almost fully constructed, decipherment of the cryptogram can be completed with speed and precision. The text is as follows:

36. General remarks. - a. It is to be stated that the sequence of steps described in the preceding paragraphs corresponds quite closely with that actually followed in solving the problem. It is also to be pointed. out that this method can be used as a control in the early stages of analysis because it will allow the cryptanalyst to check assumptions for values. For example, the very first value derived in applying the principles of indirect symmetry to the problem herein described was $H_{c}=A_{p}$ in alphabet 1 . As a matter of fact the writer had been inclined toward this value, from a study of the frequency and combinations which H_{c} showed; when the indirectsymmetry method actually substantiated his tentative hypothesis he immediately proceeded to substitute the value given. If he had assigned a different value to H_{c}, or if he had assumed a letter other than H_{c} for A_{p} in that alphabet, the conclusion would immediately follow that either the assumed value for H_{c} was erroncous, or that one of the values which lot to the derivation of $H_{c}=A_{p}$ by indirect symmetry was wrong. Thus, these principles aid not only in the systematic and nearly automatic derivation of now values (with only occasional, or incidental references to the actual frequencies of letters), but they also assist very materially in serving as corroborative checks upon the validity of the assumptions already made.
b. Furthermore, while the writer has set forth, in Figure 33, a set of 30 values apparently obtained before he began to reconstruct the primary component, this was done for purposes of clarity and brevity in exposition of the principles herein described. As a matter of fact, what he did was to watch very carefully, when inserting values in Figure 33, to find the very first chance to employ the principles of indirect symmetry; and just as soon as a value could be derived, he substituted the value in the cryptographic text. This is good procedure for two reasons. Not only will it disclose impossible combinations but also it gives opportunity for making further assumptions for values by the addition of the derived values to those previously assumed. Thus, the processes of reconstructing the primary component and finding additional data for the reconstruction proceed simultaneously in an ever -widening circle.
c. It is worth noting that the careful analysis of only a sum total of 30 values in Figure 33 results in the derivation of the entire table of secondary alphabets, 676 values in all. And while the elucidation of the method seems long and tedious, in its actual application the results are speedy, accurate, and gratifying in their corroborative effect upon the mental activity of the cryptanalyst.
d. (1) The problem here used as an illustrative case is by no means one that most favorably presents the application and the value of the method, for it has been applied in other cases with much speedier success. For example, suppose that in a cryptogram of 6 alphabets the equivalents of only THE in all 6 alphabets are fairly certain. As in the previous case, it is supposed that the secondary alphabets are obtained by
sliding a mixed alphabet against itself. Suppose the secondary alphabets t.o be as follows:

Fig. 35
(2) Consider the following chain of derivatives arranged diagrammatically:

$$
\begin{aligned}
& \begin{array}{llll}
\mathrm{H} & (\phi-8) & 0 & (5-8) \\
\mathrm{T} & (\phi-20) & \mathrm{p} & (5-20) \\
\mathrm{E} & (\phi-5) & \mathrm{X} & (5-5)
\end{array} \\
& E \quad(\emptyset-5) \quad X(5-5) \rightarrow E \quad(1-20) \cdot \begin{array}{l}
X(2-20) \\
Q
\end{array} \\
& \begin{array}{lllll}
Q \\
\mathrm{~B} & (1-8) & L(2-8) \\
& (1-5) & C(2-5) \rightarrow B(4-20) & C(3-20) \\
N(4-5) & I(3-5)
\end{array} \\
& \mathrm{P}(4-8) \quad \mathrm{V}(3-8) \rightarrow \\
& \left.\left.\begin{array}{rlll}
\rightarrow P & (5-20) & V & (6-20) \\
0 & (5-8) & Z & (6-8) \\
X & (5-5) & T & (6-5) \rightarrow X
\end{array}\right)(2-20) \quad T(\not)^{(}-20\right) \\
& \text { L }(2-8) \quad H(\varnothing-8) \\
& { }^{C}(2-5) \quad E(\not D-5) \rightarrow C(3-20) \quad E(1-20) \\
& \begin{array}{ll}
V(3-8) & Q(1-5) \\
I(3-5) & B(1-5)
\end{array}
\end{aligned}
$$

Fig. 36.
(3) These pairs are manifestly all of the same interval, and therefore unions can be made immediately. The complete list is as follows:

EX	QL	NI	LH
HO	BC	OZ	CE
TP	PV	$X T$	VQ

REF ID:A4146445

- 87:
(4) Joining pairs by their common letters, the following sequence is obtained:

NIBCEXTOVQUHOZ

Abstract

, ${ }^{\text {. With }}$ this as a nucleus the cryptogram can be solved speedily and accurately. When it is realized that the cryptanalyst can assume THE's rather readily in some cases, the value of this principle becomes apparent. When it is further realized that if a cryptogram has sufficient text to enable the THE's to be found easily, it is usually also not at all difficult to make correct assumptions for values for two or three other high-frequency letters, it is clear that the principles of indirect symmetry of position may often be used with gratifyingly quick success to reconstruct the complete primary component.

SECTION IX.

REPEATING-KEY SYSTEMS WITH MIXED CIPHER ALPHABETS,III.
Solution of messages enciphered by known primary components. . . 37

Solution of repeating-key ciphers in which the identical
mixed components proceed in opposite directions. 38
Solution of repeating-key ciphers in which the primary components are different mixed sequences. 39

Solution of subsequent messages after the primary components have been recovered. 40
37. Solution of subsequent messages enciphered by the same primary components. - a. In the discussion of the methods of solving repeating-key ciphers using secondary alphabets derived from the sliding of a mixed component against the normal component, (Section V), it was show how subsequent messages enciphered by the same pair of primary compnents but with different keys could be solved by application of principles involving the completion of the plain-component sequence (paragraphs 23, 24). The present paragraph deals with the application of these same principles to the case where the primary components are identical mixed sequences.
b. Suppose that the following primary component has been reconstructed from the analysis of a lengthy cryptogram:

QUESTIONABLYCDFGHJKMPRVWXZ

REF ID:A4146445

A new message exchanged between the same correspondents is intercepted and is suspected of having been enciphered by the same primary components but with a different key. The message is as follows:

c. Factoring discloses that the period is 7 letters. The text is transcribed accordingly, and is as follows:

N	F	W	W	P	N	O
M	K	I	W	P	I	D
S	C	A	A	E	T	Q
V	Z	S	E	Y	O	J
S	C	A	A	A	F	G
R	V	N	H	D	W	D
S	C	A	E	G	N	F
P	F	O	E	M	T	H
X	L	J	W	P	N	O
M	K	I	Q	D	B	J
I	V	N	H	L	T	F
N	C	S	B	G	C	R
P						

Fig. 37.
d. The letters belonging to the same alphabet are then employed as the initial letters of completion sequences, in the manner shown in paragraph 23e, using the already reconstructed primary component. The completion diagrams for the first five letters of the first three alphabets are as follows:

Alphabet 1.	Alphabet 2.	Alphabet 30.
NMSUS	FKCZC	WI AS A
APTWT	$G M D Q D$	XOBTB
BRIXI	H PFUF	2 NLIL
LVOZO	$J R G E G$	Q AYOY
Y W N Q N	K V H S H	UBCNC
CXAUA	MW JTJ	ELDAD
D Z B E B	P X K I K	$S Y \mathrm{FBF}$
FQLSL	R 2 MOM	T GGLG
G U Y T Y	$V Q P N P$	I DHYH
* E C I C	WURAR	OFJ C J
J'S D O D	$X \mathrm{E} V \mathrm{BV}$	NGKDK
KT F NF	Z SWL	A HMFM
MIGAG	ZTXYX	B J PGP
POHBH	U I Z C Z	L K R H R
R N J L J	EOQDQ	Y M V S V
V A K Y K	5 NUFU	C PWKW
W $\mathrm{W}^{\text {M C M }}$	TAEGE	i) RXMX
X L P D P	I B S H S	$F \vee Z P Z$
Z Y R FR	OLT JT	$G W Q R Q$
Q CVGV	NY I K I	HXUVU
UDWHW	* ACOMO	J Z EWE
EFX J X	B D N P N	KQSXX
SG2K2	LFARA	MUT CT
THQMQ	Y G BVB	PEIQ I
I JUPU	C H LW L	R S OU O
OKERE	D J Y X Y	*V T N EN

Fig. 38.
e. Examining the successive generatives to select the ones showing the best assortment of high-frequency letters, those marked in Figure 38 by asterisks are chosen. These are then assembled in columnar fashion and yield the following plain text:
1234567
HAV
ECT
$C O N$
IME
CON

Fig. 39.

REF ID:A4146445

f. The corresponding key-letters are sought and are found to be JOU, which suggests the keyword JOUREEY. Testing the key-letters RNEY for alphabets 4, 5, 6, and 7, the following results are obtained:

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
J & O & U & R & N & E & Y \\
\hline & & & & & \\
N & F & W & W & N & O \\
H & A & V & E & D & I & R \\
S & C & A & A & E & \\
E & C & Q & E & D & B
\end{array}
$$

Fig. 40.
The message may now be completed with ease. It is as follows:

Fig. 41.
38. Solution of repeating-key ciphers in which the identical mixed components proceed in opposite directions. - The secondary alphabets in this case (paragraph 3, Case B (3) (a) (II) are reciprocal. The steps in solution are essentially the same as in the preceding case (paragraph 28).
the principles of indirect symmetry of position can also be applied with the necessary modifications introduced by virtue of the reciprocity existing within the respective secondary alphabets (paragraph 31 p).
39. Solution of repeating-key ciphers in which the primary components are different mixed sequences. - This is Case B (3) (b) of paragraph 3. The steps in solution are essontially the same as in paragraphs 28 and 31 , except that in applying the principles of indirect symmetry of position it is necessary to take cognizance of the fact that the primary components are different mixed sequences (paragraph 31 g).
40. Solution of subsequont messages after the primary components have been recovered. - a. In the case in which the primary components are identical mixed sequences proceeding in opposite directions, as well as in that in which the primary components are different mixed sequences, the solution of subsequent messages ${ }^{l}$ is a relatively easy matter. In both cases, however, the
$l_{\text {That }}$ is, messages intercepted after the primary components have been reconstructed, and enciphered by keys different from those used in the messages upon which the reconstruction of the primary components was accomplished.
student must remember that before the method illustrated in paragraph 37 can be applied it is necessary to convert the cipher letters into their plaincomponent equivalents before completing the plain-component sequence. From there on, the process of selecting and assembling the proper generatrices is the same as usual.
b. Perhaps an example may be advisable. Suppose the enemy has been found to be using primary components based upon tho keyword QUESTIONABLY, the pisin component running from left to right, the cipher component in tho reverso direction. The following new message has arrived from the intorcopt station:

- 92 -
c. Factoring discloses that the period is 6 and the message is accordingly transcribed into 6 columns, Fig. 42.
$1-23-4-56$
$\mathrm{M} V \mathrm{XOXB}$
Z I Y Z N L
W Z H OXI
E OOOEP
Z F X S RX
E J B S H B
0 NAURA
P2INRA
M V X O.XA
I JY•XWF
KNDOWJ
ER GURA
L VBZAQ
UW JWXY
IDGRKD
Q B DRMQ E CYVQW

The letters of these columns are then con- 12.34 .56 verted into their plain component equivalents by juxtaposing the two primary components at any point of coincidence, for example $Z_{p}=Z_{c}$. The converted letters are shown in Fig. 43. The letters of the individual columns are then used as the initial letters of completion sequences, using the QUESTIONABLY primary sequence. The final step is the selection and assembling of the selected generatrices. The resul.ts for the first ten l.etters of the first three columns are shown below:
$0-\mathrm{S} \cdot \mathrm{U} \cdot \mathrm{H}$ Q PFQKG EQBMUP W M M M WI QYUVTU W A.H V B H M K J X T J I Q PKTJ 0 SUMiUJ PAFUEY NKCMEA WT DXTJ GS.H Q J Z
$X E A: E U \cdot F$ YCLTNC 2 HCTO W D F S Z E Fig. 43.

Column 3.
 SHYRSKNVSH TJCVTMPWTJ
IK DWI PRXIK
0 MFXORVZOM
NPGZNVW Q NP
ARHQAWXUA•R
BVJUBXZEBV
LWK ELZQSLW
YXMSYQUTYX
C Z P T CU.EIC Z
DQRIDESODQ
FUYOFSTNFU
GEW.NGTIAGE
HSXAHIOBHS
JTZBJONLJT
KIQLKNAYKI
MOUYMABCMO
PNECPBLDPN
*R A S DRLYFRA
VBTPFVYGVB
WLIGWCDHWL
XYOHXDFJXY
ZCNJZFGKZC
QDAKQGHNQD

REF ID:A4146445

Columnar assembling of selected generatrices gives what is shown in Fig. 45.

$\frac{1}{F} \frac{2}{} \mathrm{R} \cdot \underline{3}-6$
LES •••
IR D •
A DR...
ILIL...
U P Y . .
D E^{F}
FIF
E L A

Fig. 45.
d. The key letters are sought, and found to be NIM, which suggests

NUNBER. The entire message may now be read with ease. It is as follows:

NUMBER	NUMBER
FIRSTC	TAMY
M $\mathrm{V} \times \mathrm{O} \mathrm{B}$	I JYXWF
A V ALRY	GPOSIT
2 I Y 2 NL	KNDOW J
LESSTH	I ONAND
W2 H OX.	ERCURA
IRDSQU	W.ILLPR
H00UEP	LVE ZAQ
A D P ONW	OTECTL
Z F X S R X	UW JWX.Y
I L L OCC	ETTFLA
E J B S H B	I D GRKD
UPYAND	NKOFBR
0 NA URA	Q B D RMQ
DEFEND	IGADEX
PZINRA	ECYVQW
FIRST.	
MVXOX	

Fig. 46.
e. If the primary components are different mixed sequences, the procedure is identical with that just indicated. The important point to note is that one must not fail to convert the letters into their plaincomponent equivalents before the completion-sequence method is applied.

SECTION X.

REPEATING-KEY SYSTEMS WITH MIXED CIMHER ALPHABETS, IV.
General remarks 41
Deriving the secondary alphabets, the primary components, and the key, given a cryptogram with its plain text. 42
Deriving the secondary alphabets, the primary components, and the keywords for messages, given two or more cryptograms in different keys and suspected to contain identical plain text 43
The case of repeating-key systems 44
The case of identical messages enciphered by keywords of different lengths 45
Concluding remarks. 46
41. General remarks. - The preceding three sections have been devoted to an elucidation of the general principles and procedure in the solution of typical cases of repeating-key ciphers. This section will be devoted to a consideration of the variations in cryptanalytic procedure arising from special circumstances. It may be well to add that by the designation special circumstances it is not meant to imply that the latter are necessarily unususl circumstances. The student should always be on the alert to seize upon any opportunities that ony appear in which he may apply the methods to be described. In practical work such opportunities are by no means rare and are seldom overlooked by competent cryptanalysts.
42. Deriving the secondary alphabets, the primary components, and the key, given a cryptogram with its plain text. -. a. It may happen that a cryptogram and its equivalent plain text may. be at hand, as the result of capture, pilferage, compromise, etc. This as a general rule affords a very easy attack upon the whole system.
b. Taking first the case where the plain component is the normal alphabet, the cipher component a mixed sequence, the first thing to do is to write out the cipher text with its letter-for-lettor decipherment. From this, by a slight modification of the principlos of "factoring", one
discovers the length of the key. It is obvious that when a word of three or four letters is enciphered by the same cipher text, the irterval between the two occurrences is almost certainly a multiple of the length of the key. By notirg a few recurrences of plain text and cipher letters, one can quickly determine the length of the key (assuming of course that the message is long trough to afford sufficient data). Having determined the length of the keys the message is rewritten acording to its periods, with the plain text likewise in periods under the cipher letters. From this arrangement one can now reconstruct complete or partial secondary alphabets. If the sosondary alphabets are complete, they will show direct symmetry of pnsition; if they are but fragmentary in several alpliabets, then the primary component can be reconstructed by the application of the principles of direct symmetry of position.
C. If the plain component is a mixed sequence, the cipher component the normal (direct or reversed sequence), the secondary alphabets will. show no direct symmetry unless they are converted into their reciprocals (deciphering alphabets). The student should be on the lookout for such cases.
d. (1) If the plain and cipher primary components are identical mixed sequences proceeding in the same direction, the secondary alphabets will show indirect symetry of position, and they can be used for the speedy reconstruction of the primary components (Paragraph 31 a.to $\underline{o n}_{0}$).
(2) If the piain and the cipher primary components are identical mixed sequerees proceeding in opposite directions, the secondary alphabets will be coneiftely reciprocal secondary alphabets and the primary component may be reccostructed by applying the principles outlined in paragraph 31 p.
(3) If the plain and the cipher primary components are different mixed sequences: the secondary alphabets will show indirect symmetry of position and the primery components may be reconstructed by applying the principles outlined í: paragraph 31 q.
e. In all the foregoing cases, after the primary components have been reconstructed, the keys can be readily recovered.
43. Deriving the secondary alphabets, the primary components, and the keywords for messages, given two or more cryptograms in different keys and suspected to contain identical plain text. - a. The simplest case of this kind is that involving two monoalphabetic substitution ciphers with mixed alphabets derived from the same pair of sliding components. An understanding of this case is necessary to that of the case involving repeating-key ciphers.
b. (1) A message is transmitted from station A to station B. B. sends A some operating signals which indicate that B cannot decipher the
message, and soon thereafter A sends a second.message, identical in length with the first. This leads to the suspicion that the plain text of both messages is the same. The intercepted messages are superimposed. Thus:

1.	NXGRV	MPUOF	ZQVCP	VWERX	QDZVX	WXZQE
2.	EMEHJ	FGVUB	PRJIVG	.JK:NM	RAPJM	KMPRW
1.	TBDSP	VIJXJK	RFFYW	ZJWLU	IYVZQ	FXOAP
2.	ZTAXG	JTUCD	HBPKY	PVKIV	QOJPR	Bivish

(2) In initiating a chain of cipher-text equivalents from message 1 to message 2, the following complete sequence is obtained:

(3) Experimentation along already-indicated lines soon discloses the fact that the foregoing component is an equivalent primary component of the original primary based upon the keyword qUESTIONABLY, decimated on the: 2lst interval. Let the student decipher the cryptogram.
(4) The foregoing example.is somewhat artificial in that the plain text was consciously selected with a view to making it contain every letter of the alphabet. The purpose in doing this was to permit the construction of a complete chain of equivalents from only two short. messages, in order to give a simple illustration of the principles involved. If nnt every letter of the alphabet is present in the plain-text message, then only partial chains of equivalents can be constructed. These may be united, if circumstances will permit, by recourse to the various principles elucidated in paragraph 31.
(5) The student should carefully study the foregoing example in order to obtain a thorough comprehension of the reason why it was possible to reconstruct the primary component from the two cipher messages without having any plain-text to begin with at all. Since the plain text of poth messages is the same, the relative displacement of the primary components in the case of message 1 differs from the relative displacement of the same primary components in the case of message 2 by a fixed interval. Therefore, the distance.on the primary component, between N and \mathbb{I} (the first letters of the two messages), regardless of what plain-text letter these two cipher letters represent, is the same as the distance between P and W (the 18 th letters), W and K (the $17 t h$ letters), and so on. Thus this fixed interval permits of establishing. a complete chain of letters separated by constant intervals and this chain becomes an equivalent primary component.
44. The case of repeating-key systems. - With the foregoing basic principles in mind the student is ready to note the procedure in the case of two repeating-key ciphers having identical plain texts. First, the case in which both messages have keywords of identical length but different compositions will be studied.
b. Given the following two cryptograms suspected to contain the same plain text:

Message 1.

Message 2.
CGSLZ QUBMN CTYBV HL QFT FLRHL MTAIQ ZWMDQ NSDWN LCBLQ NETOC VSNZRBJNOQ

The first step is to try to determine the length of the period. The usual method of factoring cannot be employed because there are no long repetitions and not enough repetitinns even of digraphs to give any convincing indications. However, a subterfuge will be employed, based. upon the theory of factoring.
c. Let the two messages be superimposed.
$1234567891011 \cdot 12 \cdot 1314151617181920$ 2. YHYEXUBUK A:P V L L T A B U:V V 2. CGSLZQUBMN C T Y B V H L Q F T

1. $\mathrm{D} \quad \mathrm{Y}$

$\begin{array}{llllllllllllllllll}41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 \\ 59 & 60\end{array}$

Now let a search be made of cases of identical superimposition. For example, $444 \quad 6 \quad 18 \quad 30$

E and E are separated by 40 letters, U, U, and U are
L L $Q Q Q \quad Q$
separated by 12 letters. Let these.intervals between identical superimpositions be factored, just as though they were ordinary repetitions. That factor which is the most frequent should correspond with the length of the period for the following reason. If the period is the same and the plain text is the same in both messages, then the condition of identity of superimposition can only be the result of identity of encipherments by identical cipher alphabets. This is only another way of saying that the same relative position in the keying cycle has been reached in both cases of identity. Therefore, the distance between identical superimpositions must be either. equal to or else a multiple of the length of the period. Hence, factoring the intervals must yield the length of the period. The complete list of intervals and factors applicable to cases of identical superimposed pairs: is as follows (factors above 12 are omitted):

1st EL to $2 d \mathrm{EL}-40=2,4,5,8,10$ lst TV to $2 \mathrm{~d} \mathrm{TV}-36=2,3,4,6,9,12$ Ist UQ to $2 \mathrm{~d} U Q-12=2,3,4,6,12$ lst AH to 2d AH - $8=2,4,8$ 2d UQ to 3d UQ - $12=2,3,4,6,12$ lst $B L$ to $2 \mathrm{~d} B L-8=2,4,8$
lst $U B$ to $2 d$ UB $-48=2,3,4,6,8,122 d \mathrm{BL}$ to 3d $B L-16=2,4,8$
lst KM to $2 \mathrm{~d} \mathrm{KM}-24=2,3,4,6,8,12$ lst $S R$ to $2 \mathrm{~d} \operatorname{SR}-32=2,4$, 8
lst $A N$ to $2 d A N-36=2,3,4,6,9,12$ lst $F D$ to $2 \mathrm{~d} F D-4=2,4$
2d. AN to 3d: $A N-12=2,3,4,6,12$ lst $Z N$ to $2 d \mathrm{ZN}=4=2,4$
lst VT to $2 \mathrm{~d} V \mathrm{~V}-8=2,4,8 \quad$ lst DC to $2 \mathrm{~d} \mathrm{DC}-8=2,4,8$
$2 \mathrm{~d} V T$ to $3 \mathrm{dVT}-28=2,4,7$

The factor 4 is the only one common to every one of these intervals and it may be taken as beyond question that the length of the period:is 4 .
d. Let the messages now be superimposed according to their periods:

1. HAPK
2. JNOQ
e. Now distribute the superimposed letters into "secondary alphabets".

Thus:
O. ABCDEFGHIJKLMNOPQRSTUVWXYZ

2. $N \quad O \quad D \quad G \quad B \quad M Z \quad Q$
3. $Q U T \quad O \quad W B \quad E \quad Z \quad R \quad F \quad S$
4. H L W A A B
by the usual methods, construct the primary or an equivalent primary component. Taking lines 0 and l, the following sequences are noted:

$$
\mathrm{BL}, \mathrm{DF}, \mathrm{ES}, \mathrm{HJ}, \mathrm{IO}, \mathrm{KH}, \mathrm{LY}, \mathrm{ON}, \mathrm{TI}, \mathrm{KZ}, \mathrm{YC}, \mathrm{ZQ},
$$

which, when united by means of common letters and study of other sequences, yield the complete original primary component based upon the keyword

QUESTIONABLY:

QUESTIONABLYCDFGHJKMPRVWXZ

The fact that the pair of lines with which the process was commenced yield the original primary sequence is purely accidental; it might have just as well yielded an equivalent primary sequence.
f. Having the primary component, the solution of the messages is now a relatively simple matter. An application of the method elucidated in paragraph 37 is made, involving the completion of the plain-component sequence for each alphabet and selecting those generatrices which contain the best assortments of high-frequency letters. Thus, using Message $1:$

lst alphabet	2 d alphabet	3d alphabet	4th alphabet
$\underline{Y} \mathrm{X}$ K L B	HUALU	Y B P I V	EUVAV
C Z M Y L	J ERYE	C LRIW	S EW B W
D Q P C Y	K S L C S	D Y V OX	TS X L X
FURDC	M T Y D T	F C W, 2	ITZYZ
GEVFD	PICFI	G D'XAQ	$\bigcirc I Q C Q$
HSWGF	RODGO	HFZBU	NOUDU
JTXHG	VNFHN	J Q Q L E	* A , F E
K I J H	WAGJA	KHUYS	BASGS
MOQK J	X B HK B	M J ECT	LBTHT
PNUMK	2 L JM	PKSDI	Y L I J I
R A E Pm.	Q Y K P Y	RMTFO	CYOKO
VBSR P	U CMRC	V P I. G N	D C N M N
W LTVR	EDPVD	WROHA	F D A PA
$X \mathrm{Y}$ IW V	SFRWF	$\mathrm{X} \vee \mathrm{NJ} \mathrm{B}$	$G F B R B$
2 COXW	T G V X G	2 WA K L	H G L V L
Q D. N 2 X	IH W 2 H	Q X BMY	JHYYY
UFAQ Z	0 JXQJ	UZLPC	K J C X C
EGBUQ	NKZUK	EQYRD	MK. C Z D
SHLEU	AMQEM	S UCVF	PMFQF
T J Y SE	B.FUS F	T P DWG	RPGU.G
IKCTS.	*L R ET R	IS F X H	$V \mathrm{RHEH}$
0 MDIT	Y V 3 V	0 T GZ J	WV J S J
NPFOI.	CWTOW	N IHOK	XWK T K
*ARGNO	D X I NX	A O J UM	ZXMIM
B V H A N	F 20 A 2	B NKEP	Q Z POP
LW J B A	G Q N B Q	*LAMSR	UQRNR

Fig. 48.
The selected generatrices (those marked by asterisks in Fig. 48) are assembled in columnar manner:

Fig. 49.

The key letters are sought and give the keyword SOUP. The plain text for the second message is now known, and by reference to the cipher text and the primary components, the keyword for this message is found to be TIME. The complete textx are as follows:

- 101 -

$\underline{\mathrm{SO}} \mathrm{O} \mathrm{P}$	T I M E
A L L A	A L L A
Y H Y E	C G S L
R P. AN	R R A N
X U B U	ZQUB
GEME	G EME
K A P V	M N C T
NTS F	NTS F
L LTA	Y B V H
ORRE	ORRE
B U V V	L Q FT
L I EF	L I E F
D Y S A	F L R H
0 F Y 0	0 FY 0
B P C Q	L M T A.
UR OR	UROR
T U N G	IQ 2 W
$G \mathrm{ANI}$	GANI
K F A Z	M.D Q N
2 ATI	ZATI
E F I Z	S D W N
0 NHA	0 NHA
B D J E	L C B L
VEBE	V E B E
Z A L V	Q NET
ENSU	ENS U
I D TR	0 CVS
SPEN	S P N N
0 Q S U	N 2 RB B
D E. $\mathrm{D}^{\text {X }}$	DE D X
HAFK	J N O Q

Fig. 50.
45. The case of identical messages enciphered by keywords. of different
 though different, were identical in length. When this is not true and the keywords are of different lengths, the procedure need be only slightly modified.
b. Given the following two cryptograms suspected of containing the same plain-text enciphered by the same primary components but with different keywords of different lengths.

Miessage 1.

Message 2.

A M T UK	M FGFH	UNN NT	RWi H H	AGBNS
K A GBB	N NOSD	B. Q GKH	S IMDJ	D FY D Z
FH FM C	VGVD X	FMKFA	X C N V F	L O Y R C
W J B D U	TSEIO	D T Y Y X	A FBVD	X K F R L

- -. The messages are long enough to show a few short repetitions which permit factoring. The latter discloses that Message 1 has a period of 4 , Message 2 a.period of 6 letters. The messages are superimposed, with numbers marking the position of each letter in the corresponding period, as shown below:

123412341234123412341234123412 No.l-I Y L FFPHXGCEZTZLAMBKIBYLZELFEI•L No.2-AMTUKMFGFHUNNNTRWAHVAGBNSKAGBB

123456123456123456123456124456
341234123412341234123412341234 No.l-BHNZFUWNXSZORVKBGSLJPSLPFIHKFH No. $2-N$ NOSDBQGKHSIMDJDFYDZFHFMCVGVDX

123456123456123456123456123456
123412341234123412341234123412 No.l-YYXUTZFHWLYXADKODLGLIZSWSILXNZ No.2-F M K FAXCNVFLOYRCMJBDUTSEIODTYYX 123456123456123456123456123456

341234123412
No.l-L H L FHGOU.WLA No.2-A F B V D X K FR L F.N

123456123456
d. A table of "secondary alphabets" is now constructed by distributing the letters in respective lines corresponding to the 12 different superimposed pairs of numbers. For example, all pairs corresponding to the superimposition of position 1 of $\begin{aligned} & \text { inessage } l \\ & l\end{aligned}$ 2 all distributed in lines 0 and 1 of the Table. Thus, the very first 1
superimposed pair is I; the letter A is inserted in line 1 under the letter A
I. The next ${ }_{1}^{1}$ pair is the I I3th superimposition, with N ; the letter N is inserted in line I under the letter T, and so on. The completed diagram is as follows:

Fig. 51.

REF ID:A4146445

Q. There are more than sufficient data here to permit of a complete reconstruction of the primary component, which is found to be that based upon the keyword QUESTIONABLY.
f. The plain text and the keywords for both messages may now be found very easily. They are shown below:

STAR	$\underline{S T}$	STAR	OCEANS	OCEANS
I Y L F	W N X S	A D K O	AMTUKM	CVGVDX
ENEM	PSHA	I B I Y Y	ENEMYH	$\bigcirc \mathrm{L}$ D F OR
F P H X	Z 0 R V	D L G L	FGFHUN	F M K F A X
Y H A S	VEDU	L. 0 NG	ASCAPT	A NHOUR
GCEZ	K B G S	I Z S W	N NTRWA	CNVFLO
CAPT	G INA	ERRE	UREDHI	ORPOSS
T 2 L A	L J P S	S I L K	HVAGBN	YRCMJ•B
U R E D	NDCA	Q UES	L LONET	I B L Y L O
M B K I	LPEI	NZLW	$S K A G B B$	DUTSEI
H I L L	N HOL	T.REE	WOONEO	NGERRE
B Y L Z	H KFH	L K F H	NNOSDB	O D T Y Y X
ONET	D F O R	N F OR	URTROO	QUESTR
E L FE	Y Y X U	G OUW	Q GKHSI	A FBVDX
WOON	A N HO	C EME	PSHAVE	E ENFOR
I L B H	T ZFH	L A	M DSDFY	K F R L F N
E O U R	UROR	N T	DUGINA	CEMENT
$\mathrm{N} \boldsymbol{Z} \mathrm{Fe}$	W L Y X		D 2 FHFW	
TROO	POSS		NDCANH	

Fig. 52.
46. Concluding remarks. - The observant student will have noted that a large part of this text is devoted to the elucidation and application of a very few basic principles. These principles are, however, extremely important and their proper usage in the hands of a skilled cryptanalyst makes them practically indispensable tools of his art. The student should therefore drill himself in the application of these tools by having someone make up problem after problem for him to practice upon, until he acquires facility in their use and feels competent to apply them in practice whenever the least opportunity presents itself. This will save him much time and effort.

Analy \ddagger ical Koy for Military Cryptan
(Numbers in parentheses refer to Faragraph as.

[^2]
[^0]: 1 See rar. 37, Special Text No. 165.
 ${ }^{2}$ See Fars. 49 and 59, Special Toxt No. 165.

[^1]: 1 It is to be understood, of course, that cipher alphabets, with single equivalents are meant in this case.

[^2]: - For explanation of the use of this chart see Far. 50 of Military Cryptenalysis, Fart 7.

