 FIDENTIAL

WAR DIWPARTMIREI";

OFFICE OF THE CHIEF SIGFAL OFTFICER

- Hishincrion
\therefore REI IV

by

Principal Cryptanalio々,
SIGIAL INTHETIGENCE: . 'ICE
Prepared under the direction of the Chie: Signé Officorr.
(PRBHTMINARY EDITION)
NOTN: Students are earnestly requested to make nots of all. eiry, cif amu obscure points in this text and to advise the instructor, so theit sorrections may be made in the printed edition.

	* * *		
\therefore,			*

Notice. - This document contains information affecting the national defense of the United States within the meaning of the Espionage Act (U.S.C. 50: 31, 32). The transmission of this document or the revelation of its contents in any manner to any unauthorized person is prohibited.

30 April 1959
This document is re-graded "Conrfinmifin" UP of DOD Directive 5200.1 dated 8 July 1957, and by authority of the Director, National Security Agency.

CONFIDERTHAL

Section Paragraphs Pages
I. General 1-3 1-5
II. Solution of simple transposition ciphers 6-27
III. Incompletely-filled rectangles 12-16 28-48
IV. Opfortunities afforded by studying errors and blunders ande by enemy cryptographers .. 17-19 49-54
V. Special solutions for transposition ciphers 20-29 55-92
VI. Miscellanoous transposition ciphers 93-108
VII. Combined substitution-transposition systems 35-36 109-113
VIII. Solution of the ADFGVX system 114-177
IX. Solution of the bifid fractionating system . 44-51 178-217
Analytical key 218
Index 219-221

SECTICN I.

GENERAI

Paragraph

Introductory remarks concerming transposition ciphers 1
Baslc machanism of transposition ciphers 2
Monophase and polyphase transposition 3

1. Introductory remarks concerning transposition clphers. - a. As stated in a previous text, transposition ciphers are roughly analogous to "Jig-saw puzzles" in that all. the pleces of which the original is composed are present but are merely disarranged. The pieces into which the picture forming the basis of a jig-saw puzzle may be divided are usually quate irregular in size and shape, the greater the amount of irregularity, as a rule, the greater the difficulty in reassembling the pleces in proper order. In this respect, too, transposition ciphers are analogous to jig-saw puzzles, for the greater the amount of distortion to which the plann toxt is subjected in the transposition process, the mors difficult becomes the solution.
b. In jig-saw puzzles there is usually no regularity about the size of the individual pleces into which the original picture has been cut, and this feature, of course, materially contributes to the difficulty in roconstructing the picture. There aro, to be sure, limits (dictated by considerations of practicability) which sorve to prevent the pieces being made too small, for then they would bocome unmanageable; on the other hand, thers are also limits which must be observed in rospect to the upper magnitude of the
pieces, for if they are made too large the puzzie becomes too easy to solve. These features of jig-saw puzzies also have their analogies in transposition methods. In the latter, if the textual units to be subjected to transposition are made quite large, say entire sentences, the difficulties a cryptanalyst will have in reconstructing the text are practically nil; on the other hand, if these textual units are made quite small, even smaller than single letters ${ }^{1}$, then the reconstruction of the transposition text by a cryptanalyst often becomes a very difficult matter. In between these two extrames there may be various degrees of fragmentation, limited only by considerations of practicability.
c. It is fortunate, however, that the cryptanalyst does not, as a rule, have to contend with probloms in which the size of the textual units varies within the same message, as is the case in jigsaw puzzles. It ia perhaps possibio to devise a transposition system in which the text is divided up in such a manner that entire sentences, whole words, syliables, individual letters, and fractions of letters form the units for transposition; but it is not difficult to imagine how impractical such a scheme would be for regular communication, and it may be takon for granted that such irregularity in sizo of textual units will not be oncountered in such communication.
d. The days when the simple metbods of word or letter transposition were sufficient-for military purposes have long since
$1_{\text {Reference }}$ is here made to so-called fractionating systams. See Special Text No. 166, Advanced Military Cryotography, Sect. XI.
passed by, and it is hardly to be expected that cryptograms of such ineffectual hature will be encountered in the military comnunications of even the smaller amies of today. However, in time of omergency, when a counter-espionage censorship is exercised over internal communications, it is possible that isolated instances of simple transposition may be encountered. The solution of such cases should present no difficulties, unless numerous code names and nulls are also usod in the cryptograms. Mere oxperimentation with the cryptograms, trying various sizes of rectangles, will usually disclose the secret text. If code names are usod and the context gives no clue to the identity of the persons or places applicable, it may be necessary to wait until additional messages become available, or, lacking such a possibility, there is usually sufficiont justification, under the exigencies of war, to compol the corrospondents to reveal the meaning of these code names.
e. Al.though transposition ciphors, as a general rulu, are much less complex in thair mechanics than are substitution ciphors, the cryptanalyst usually experiances a feeling of distaste and dismay when confronted with unknown ciphors of this category. There ars several reasons for his aislike for them. In the first place, although transposition ciphers are admittedly loss intricate than substitution ciphers, as a general rule there are not nearly so many cryptanalytic tools and "tricks" to be used in the solution of the former as there are in the latter, and therefore the montal stanulus and satisfaction which the cryptanclyst usualiy derives and regards as part of the reward for his hard labor in solving a cipber is often
missing in the case of transposition ciphers. In the second place, despite their lack' of complexity, the solution of transposition ciphers often involves a tremendous amount of time and labor most of which commonly turns out to be fruitless experimentation. Thirdly, in modern military communication trensposition methods are usually not amployed alone but in conjunction with substitution methods -- and then the problems may become difficult indeed, for usually before the substitution can be solved it is necessary to uncover the substitutive text by first removing the transposition. Finally, in working with transposition ciphors a much higher degree of accuracy in mere mechanical operations is renuired than in working with substitution ciphers, because the accidental amission or addition of a single letter vrill usually necessitate rewriting entire messages and starting afresh. Thus, this sort of work calls for a constant state of concentratod attentios, with its resulting stitio of mental tension, which takes its toll in mental wear and toar.
2. Basic mechanism of trensposition ciphers. - a. Basically all transposition ciphers irvolve at least two processes: (1) writing the plain-text units (usually single letters) within a epocific regular or irregular two-dimenstonal dosign, in such a prearmanged mannor that the said units are distributed regularly or irregularly throughout the various sells or subsoctions of that design; (2) removing the plain-text units from the design in such a prearrenged manner as to change the original sequence in which they followed one another in the plain text, thus producing cipher toxt. Since the first process consisits of inscribing the text within the design, it is

REF ID:A56913

technicaliy refarred to as the process of inscription; and sance the second process conslsts of transcrlbing the text from the design, it is technically referred to as, that of transcription. Elther or both processes may be repetitive, by prearrangenent of course, in which case the intergediate steps may be referred to as processes of rescription, or rescriptive 'processes.
b. It is hardily necessary at this point to give the student any indications as to how to differentiate a transposition from a substitution cipher. If a review is nocessary, however, he is reforred to Section IV of Military Cryptanalysis, Part I.
3. Monophase and polyphase transposition. - a. As may be inferred from the forggolng dofinitions, when a transposition system involves but a single process of inscription, followed by a single procoss of transcription, the systom may be reforrod to as monophase transposition, comoonly called singlo transposition. When one or more rescriftlve processes intervene botween the original inscription and the final transcription the system may be reforrod to as polyphase transposition. As a goneral rule, the solution of the latter type is much more difficult than the former, especially when the transpositions are theoretacally correct in pranciple.
b. Any system which is sulted for monophese transposition is also unually sulted for polyphase transposition, tho processes of inscription, rescription and transcription being accomplished with the samo or with difforent koys.
Simple types of transposition .. 4 The pranciples of aolution of uniliteral route transposition ciphers ... 5
Keyed columar transposition with completely-filled rectengles . 6 Example of solutionb.. 7
The probable-word method of solution \&
General remarks on solution .. 9
Raconstruction of literal key ... 10
Golumn and row transposition .. 11
4. Simple types of transposition. - a. Thu sample cases of reversed writing, vertical writing, or rail. fonce writing hardly' require serious attention, since thay may bo solved almost by inspoction. Theso mothods aro included hore only bocausa they may be encountered in consorship opdrations.
b. The lov de,gree of cryptcerrarinc sicurity afforded by those mothods may be increasod to a slifst dogrec by adding nuils or by disguising the original word longths, and regrouping into false words or into groups of resular longth.
c. Some oxamplas of these simplest types of trensposition follow. Let the message be: BRTDGE DESTROYED AI $\mathrm{In}_{\mathrm{I}} \mathrm{EVEN}$ PM.
(1) Reversing only the words and rotainnnis original word lengths:

Cipher..EGDIRBEEYORTSEDTANEVELEMP
(2) Revorsing only tho words and regrouping into falso word
lengths:
Ciphor...EGDTRBDEYORTSEDTANEVELEMP
(3) Revorsing the whole tuxt and regroupirg into fives:

Cipher.. MPNEVELETADEYORTSEDEGDIRB
(4) Reversing the whole text, regrouping into fives, and inserting a null in every fifth position:

Cipher..TRIMMPNEVPELTTAADEYRORTSL EDEGUDIRBM
(5) Writing the text vertically in two columns and taking the resulting digraphs for the cipher text, as shown at the side. The cipher message becomes:

B S	B R
R T	I D
I R	GE
D 0	D E
G Y	S T
E E	R 0
D D	Y E
E	D

BSRTI RDOGY EEDDE , or
BIGDS RYDRD E E OE
These simple types can be solved merely by inspection.
5. The principles of solution of uniliteral route transposition ciphers. - a. The so-called uniliteral route transposition methods ${ }^{1}$ are next to be examined. The solution of cryptograms enciphered by these methods is a matter of experimenting with rectangles of various dimensions suggested by the total number of ietters in the message, then inspecting these rectangles, searching for whole words or the fragments of words by reading horizontally, diagonally, vertically, spirally, and so on.
b. The amount of experimentation that must bo performed in the solution of ciphers of this type may be materially shortened by means of formulae and tablos constructed for the purpose. But because ciphers of this type are of infrequont occurrence today, these

[^0]
REF: ID:A56913

formulae and tables are only occasionally useful and hence they have been placed in an appendix to this volune. ${ }^{2}$
6. Keyed columnar transposition with completely-filled rectangles. - a. In practical cryptography, the dimensions of the transposition rectangle, as a general rule, cannot vary between large limits; that is, it can be assumed in practice that rectangles based upon lines of writing containing less than 5 letters or more then 25 letters will not commonly be encountered. If the width, that is, the number of colums, is determinad by a key, then the number of rows becomes a function of the length of the message to be enciphored. If the latter is very long, longer than can be conveniontly handled without too many errors, it is a common practico to break up a message into two or more parts and treat each part as though it were a separate communication.
b. When the last row of a transposition rectangle is completely filled, the solution of the resulting cryptogram is considerably more simple than when this is not the case. ${ }^{3}$ Consequently, this wall be the first case to be studied.
c. In solving a cryptogram of this type the first stop taken by the cryptanelyst is to ascertain the dimensions of the rectangle. clues for this are usually afforded by finding the factors of the total

[^1]number of letters in the cryptogram. Suppose the cryptogram contains 152 letters. The dimensions of the transposition rectangle may be $4 \times 38,8 \times 19$, by which is meant that four hypotheses may be made with respect to its dimensions. The rectangle may consist of:
(1) 4 columns with 38 rows, or
(2) 38 columns with 4 rows, or
(3) 8 columns with 19 rows, or
(4) 19 columns with 8 rows.

In practical work it is rather unlikely to encounter a rectangle that conforms to hypothesis (1) or (2), and for the present these may be discarded. As to choosing between hypotheses (3) and (4), a rather simple test will disclose which is the more likely to be true.
d. It is obvious that if the cryptogram is transcribed within a rectangle of the correct dimensions, the letters in oach row will be the ones which actually were in those rows in the original transposition rectangle and formed good plain text therein. In fact, the rows of letters in the correctly-dimensioned rectangle would read plain text were it not for the transposition which they have undergone within the rows. Therefore, the rows of a correctly-dimensioned rectangle are more likely to manifest the expected vowel-consonant proportions of normal plain text than are the rows of an incorrectly-dimensioned roctengle, because in the latter case there are brought into some of the rows letters which belong to other rows and which are likely to disturb the nornal vowel-consonent proportions of plain text. That is, in an incorrectiy-dimensioned rectangle some of the rows will have too many consonants and not enough vowels, in other rows this relationship
will be reversed; whereas in a correctly-dimensioned rectangle each row will have the proper number of vowels and consonants. Hence in solving an unknown cryptogram of this type, if a count is made of the vowels and consonants in the rows of rectangles of various probable dimensions, that rectangle in which the rows show the best distribution of vowels and consonants is most likely to be the correctly-dimensioned one, and the one that should be tried first.
e. Having ascertained the correct dimensions of the rectangle by the foregoing procedure, the next step is to experiment with the columns of the rectangle, trying to bring together several which will show good digraphs, trigraphs, or polygraphs in the rows thereof. This process of combining or matching colums in order to build up these fragments of plain text will hercin be referred to as anagramming. 4

4ithe Standard Dictionary defines the word anagram as follows: "(noun) 1. The letters of a word or phrase so transposed as to make a different word or phrase; as, 'time' and 'mite' are anagrams of 'amit'. 2. A transposition; interchange." As a verb, it is defined as "to anagrammatize; to make an anagram of; make anagrams." (The construction of anagrems was a very widespread pastime in previous centuries. See Wheatley's of Anagrams, London, 1862.) A strict interpretation of the word would therefore confine it to cases wherein the letters to be rearranged already form bonafide words or intelligible phrases. However, this would hardly be broad enough for cryptanalytic purposes. As used in cryptenalysis the word is commonly employed as a verb to refer to the process of rearranging the disordered letters of cipher text so as to roconstruct the original plain text.

The procedure is to select a column which has a good assortment of high-frequency latters and find another column which may be added before or after the selected column to build up high-frequency digraphs; when such a pair of columns has been found, attempt is made to add another column before or after this pair to build up highfrequency trigraphs, and so on, gradually building up longer and longer polygraphs until entire words begin to appear in the various rows of the rectangle. In this process of anagramming advantage may be taken of such simple mathematical considerations as adding the normal plaintext frequency values of the digraphs in the columns to assist in discarding combinations which are on the borderline of choice. Once a set of four or five columns has been correctly assembled it is usually the case that the process may be completed very quickly, for with the placement of each colum the number of remaining colums possible for selection diminishes; toward the close of the process, when only two or three columns remain, their placement $1 s$ almost automatic.
f. It is deairable as a final step to try to roconstruct, if possible, the literal key from which the numerical transposition key was derived.
7. Examplo of solution. - a. Given the following cryptogram, the steps in solution will be set forth in detail:

CRYPTOGRAM (126 letters)

REF 'ID:'A56913

b. The cryptogram contains 126 letters and the factors of 126 are 2, 3, 7, 9, 21, suggesting rectangles 7×18 or 9×14. If 'the former dimensions are taken, the rectangle may have 7 columns and 18 rows or 18 columns and 7 rows; if the latter dimensions are taken, it may have 9 columns and 14 rows or 14 columns and 9 rows. In making the vowel-consonant test described in Par. 5d, it is advisable to make the count on the columns as well as the rows of a rectangle, since it is possible that the cryptogren was prepared by inscribing the plain text in rows and transcribing the text from the columns, of pice verse. After examining a rectangle both horizontally and vertically, it is often possible to discard various arrangements without further tests. For example, Fig. la shows a rectangle of 7 colums and 18 rows. Now in

No. of vowels

No. of
vowels
ROW NO.
N
No. of
NOwels
Vow

最 18×7

No. of
vowela
b

c
a row of 7 letters there should be $(7 \times 40 \%=2.8)$ olther 2 or 3 vowels; but rows 12 and 15 contain no vowels at all and rows 8 and 9 contain 5 vowels, row 16,6 vowels. It is concluded at once that this arrangement is highly improbable. If the plain text had been inscribed vertically in this same rectangle, and then the rows had been transposed in forming the cipher text, thon in each column (18 letters) there should be ($18 \times 40 \%=7.2$) about 7 vowels; but colunan 2 contains 11'vowels and column 6 only 4. This likewnse indicates that it is highly mprobable that the mossage was inscribed vertically and the cryptogram formed by transposing the rows. But when the arrangement in Fig. Ib is studied, it is not so easy to say at once that it is improbable. For in 18 letters there shoula be about 7 vowels and none of the rows of this arrangement shows too great a departure from this expected number. This possibility witl have to be explored further and it is for the moment put aside. If it bo assumed that the message was inscribed vertically in the rectangle 18×7 and the rows subjected to transposition, there should be ($7 \times 40 \%=2.8$) 2 or 3 vowels in each column. But since several of the columns show rather considerable departures from this expected number, it may be concluded that a vertical inscription and horizontal trensposition is not probable and this assumption may be eliminated. Then the arrangements in Fig. 1c and dare studied in the same manner, with the result that at the end of the study the situation as regerds the various assumptions is summarized as follows:

Rectangle 7×18

7 columns and 18 rows:
(1) Horizontal inscription, columnar transcription Very Improbable
(2) Vertical inscription, horizontal transcription Very Improbable

18 columns and 7 rowa:
(3) Horizontal inscription, columnar transcription Possible
(4) Vertical inscription, horizontal transcription Improbable

Rectangle 9×14

9 columns and 14 rows:
(5) Horizontal inscription, columnar transcription Possible
(6) Vertical inscription, horizontal transcription Inprobable

14 columns and 9 rows:
(7) Horizontal inscription, columnar transcription Improbable
(8) Vertical inscription, horizontal transcription Very Improbable
c. Discarding all assumptions except (3) and (5), the latter are subjected to further scrutiny. Suppose the average amount of deviation from the expected number of vowels in each row is calculated by finding the difference between the actual and expected numbers in each row, adding these differences (neglecting signs), and dividing by the total number of rows. For assumptions (3) and (5) the results are as follows:

FIGURE 1b.
2×14 123456789%

1	I	S	T	B	R	T	A	T	F	2	1.6
2	L	0	R	F	I	U	0	.N	A	5	1.4
3	H	N	R	A	I	T	N	F	T	2	1.6
4	H	S	H	E	A	c	A	R	Y	4	4
5	D	0	N	D	R	U	J	A	E	4	4
6	T	0	E	. F	I	V	I	N	C	4	+
7	I	E	A	0	V	R	U	F	F	5	1.4
8	E	E	T	Y	N	A	P	M	X	4	. 4
9	0	E	N	C	I	U	0	N	R	4	4
10	I	E	N	A	R	0	-I	D	T		4
11	U	I	V	P	N	0	R	M	G	3	
12	D	0	U	D	R	0	S	A	E	5	1.4
13	H	E	T	T	W	F	0	S	T	2	1.6
14	T	F	L	R		D		A	A	3	. 6
											12.6
Average de											

FIGURE 1c.
The average amount of deviation for assumption (5) is only . 9 as against 1.2 for assumption (3); therefore the former assumption is considered to be somewhat better than the latter and it will be tried first.
d. The columns of the rectangle shown in Fig. le are now to be cut apart and the procedure of anagraming applied. (For this it is best to have the cryptogram written on cross-section paper preferably with 1/2-inch squares for ease in handling.) Consider column 7, with
the letter J in row 5; thl 13 letter, if it 1 s a part of a word, must be followed by a vowel, which eliminates columns 1, 3, 4, and 5 as possibilities for placement on the right of column 7. Here are the digraphs formed by combining column 7 with 2, 6, 8 and 9, and the totals obtained by adding the frequency values of the digraphs: 5

(1)		(3) 號	
AS - 41	AT -47	AT $\mathrm{T}-47$	AT- 4
00-6	OU-37	ON-77	0A-7
N N-8	N T - 82	N F-9	NT-92
A S-41	A C-14	AR - 44	AY-12
J O-2	JU-2	J A-1	J E-2
I 0-41	IV-25	IN - 75	I C-22
UE-11	UR-31	U F-1	UF-I
P E- 23	P A - 14	PM-4	P X - 0
OE-3	OU-37	ON-77	0R-64
LE - 37	L 0-13	L D - 9	LT- 8
R I-30	R 0-28	RM-9	R G-7
S 0-15	S 0-15	S A-24	SE-49
OE-3	OF-25	OS - 14	OT-19
M F-I	M D - 1	14 $\mathrm{A}-36$	M A - 36
Totals 262	37.	427	313

FIGURE 2.

Combination (3) gives the highest frequency value for the digraphs and an attempt is made to add a column to it. Here aro some of the combinations tried:

5The frequencies shown are as given in Table 6, Appendix to Military Cryptanalysis, Part I. The totals obtained by addition of the frequency values of the digraphs should be cousidered only as rough approximations or guides in reighing probabilities in favor of one hypothesis against another, for theoretically the probability of the simultaneous occurrences of two or more independent events is the product, and not the sum, of their respective probabilities. Howover, in this case the calculation of the producta would involve on amount of labor entirely unwarranted by the results to be expectod, so that a simplo addtion of the probabilities is considered sufficient.

7-8-1	7-8-2	7-8-3	7-8-9
A T I	A T S	A T $\mathrm{T}^{\text {2 }}$	$A T F$
0 NL	CN00	ONR	0 NA
N FH	N F N	N F R	N F'T
A R H	ARS	A R H	A R Y
$J A D$	J A 0	J A N	J \boldsymbol{A} E
INT	INO	I N T	IN C
UFI	U FE	UFA	UFF
PME	PME	PM T	P M X
0 N 0	0 NE	0 N	0 NR
\boldsymbol{L} L	L DE	I D N	L1 T
R M U	R M I	R M V	RMG
SAD	SAO	SA. U	SAE
0 SIH	OSE	OST	LST
M AT	M A fr	M A L	M A A

FICTRE 3

e. Fach of these combinations shows at least one "impossible" trigraph and several "poor" ones.' 6 After more or less work along these lines, the cryptanalyst begins to get the feeling that "something is wrong, " for, as a rule, once a correct start, has been made in cases of this kind, solutıon comes rather quickly. Hence, the cryptanalyst decrdes here that possibly his first choice of combination (3) was e bad one, even though it gave the greatest total when frequency values for the digraphs were summed. The second greatest total was for combination (2), in which columns 7 and 6 were put together. 'The infrequent digraph JU suggests a word such as JUST or JUNCTION. If it were the former there should be a column containing an S in the 5 th rows and there is no such column. If the word is JUNCTLON, there should be a column containang an N in the 5 th row, and there is only one such

[^2]column, the 3a. Placing column 3 after column 7-6 gives the trigraphs shown in Fig. 4. All of these trigraphs are excellent except the last, and that one may be either an abbreviation of a signature, or possibly nulls added to complete the rectangle. If the word JNNCIION is correct then there should-be a column with a C in the 5 th row; but none is found. However, column 9 has a C in the 6th row, and if it happened that the last column on the right is number 3, then column 9 would be the lst column. Thus, as shown in Fig. 5, the arrangement of columns becomes quite definite:

7-6-3	9-?-8-?-?-?-7-6-3	9-1-5-2-8-4-7-6-3
ATT	F. . . . ATT	FIRSTBATT
OUR	A.....OUR	ALIONFOUR
NTR	T. NTR	THINFANTR
ACH	Y.....ACH	YHASREACH
J U N	E.....JUN	EDROADJUN
IVE	C.....IVE	CTIONFIVE
URA	F..... URA	FIVEFOURA
PAT	X.... PAT	XENEMYPAT
0 ON	R.....OUN	ROLENCOUN
LON	T. . . . L 0 N	TEREDALON
ROV	G.....ROV	GUNIMPROV
SO 0	E. . . . SOU	EDROADSOU
OT T	T.....OFT	THWESTOFT
M D L	A..... M D L	ATEFARMDI

FIGURE 4.
FTGURE 5.
FIGURE 6.
I. It is believad that the procedure has been set forth with sufficient detail so as to make further demonstration unnecessary. The rectangle can be completed very quickly and is found to be as shown in Fig. 6.
8. The probable-word method of solution. - a. The probable-word method of attack is as important in the solution of transposition ciphers as it is in the solution of substitution ciphers, and if the
cryptanalyst is able to assume the presence of such probable words as are usually encountered in military communcations, the solution, as a rule, comes very quickly.
b. As an illustration, looking at the first row of letters in the rectangle shown in Fig. le, the letters ISTBRTATF almost at once suggest FIRST BATTALION as the initial words of the message. A rearrangement of the colums of the cryptogram to bring the necessary letters into juxtaposition at once discloses the key. Thus:

$$
\begin{aligned}
& \frac{9-1-5-2-8-4-7-6-3}{\text { FIRSTBATT }} \\
& \text { ALI ON }
\end{aligned}
$$

It will be noted that this assumption requires that there be a column headed by FA, another headed by $工$, another headed by $R I$, and so on. Had such column not been found, then the word BATTIALION would not be possible. In that case the word FIRST would still remain as a point of departure for further experimentation.
c. In the foregoing iliustration, the probable word was assumed to appear in the first line of text in the rectangle. If the probable word being sought is in the interior of the message, the steps must be modified somewhat but the basic principle ramains unchanged. The modifications are of course obvious.
9. General remarks on solution. - a. In solving transposition ciphers advantage should be taken of all the characteristics and idiosyncrasies which are peculiar to the language of the enemy, because they often afford clues of considerable assistance to the cryptanalyst. In all languages there are certain letters, usually of medium or low

REF ID:A56913

frequency, which combine with other letters to form digraphs of high frequency. For instance, in English the letter HI is of medium frequency, but it combines with T to form tho digraph TH, which is of highest frequency in literary text; it also combines with C, a letter of medium frequency, to form the fairly frequent digraph CH. The lotter V is almost in the low-frequency category yet it combines with E to form the digraph VE, which in military text is the 14th in frequency. The low-frequency lettor K often combines with C to form the digraph CK. Consequently, in working with transposition ciphers in Finglish, when there is an H, attompts should be made to combine it first withia T, or whth a C; a V should be combined first with an \mathbb{E}; a K should be combined first with a C; and so on.
b. There is usually in every, lansuage at least one letter which can be followod by only a certain other letter, forming what may be termed an obligatory sequence, or an invariable digraph. In all languages having the letter Q, the combination QU censtitutes such an invariable digraph. ${ }^{7}$ In genuing words of the Gemman language the letter C is nevor used by itsolf, when present the lotter C is invariably followod by an H, except on rare occasions whon the digraph CK is employed. In Bnglish, the letter J can be foilowod only by a vowel; tho letter X can only be precoded by a vowel and, except at the ond of a word, can only be succeeded by a vowel, and so on. Letters

7

The letter Q may, of course, be part of an abbreviation, such as SQ for "square", or it may be used as a null, or as a sign of punctuation. However, unless there are good reusons for believing that this letter is used for these purposes, QU may be considered to be an invariable digraph.
which behave in this manner, that is, letters which have what may be called a limited affinity in combining with other letters to form digraphs, constitute good points of departure for solution and are therefore of sufficient importance to warrant their being designated by the more or less descriptive name of pilot letters.
c. The presence of pilot letters in a transposition cipher often forms the basis for the assumption of probable words. Obviously, a special lookout should be kept for words of rather high frequency (in military correspondence) which contain letters of low or medium frequency. The frequent word CAVALRY, for example, would suggest itself if the cryptogrem has the lotters C, V, I, and Y, which are all of medium frequency. The important word ATTACK suggests itself if the cryptogram has a K, a letter of low frequency and a C, one of medium frequency; and so on.
d. The mechanics of simple columar transposition make possible the production of rather long sequences of vowels and long sequences of consonants in the text of the cryptogram. Note, for example, in the cryptogram on p. 11, the sequence of vowals O OE EXEIOE, and the sequence of consonante VNLRNRW. If the enciphering or plaintext rectangle is consulted, it will be seen that these two sequences belong together, that is, they are in adjacent columns in that rectangle. It is a characteristic of piain text that consonant-vowel or vowelconsonant digraphs are much more frequent than consonant-consonant or vowel-vowel digrephs, 8 and therefore when long sequences of consonants

[^3]and of vowels are found in transposition ciphers, a good start toward solution may result from assuming that such sequences come from adjacent columns.
e. It should, however, be noted in connection with tell-tale letters such as Q (entering into the composition of QU) and C (entering into the composition of $G \mathbb{O}$), that astute cryptographers who realize the clues which such letters afford often replace the invariable sequences they form by a single character, usualily one that is rarely used in the language in question. For example, CH in German may be replaced by Q, QU in French, by K, and so on. When this is done, solution is made more difficult; but only in those cases where it is dependent upon finding letters forming obligatory sequences in plain text does this sort of subterfuge become a factor of importence.
f. The presence of many $Q^{\prime} s$, or $K^{\prime \prime} s$, or $X 1 s$ in a transposition cipher should not, however, be taken as prima facie evidence of the type of roplacement noted in the preceding subparagraph. It is possible that such letters may be used as sentence separators or other punctuation, or possibly they may be nulls, although the alert cryptographer would either use nulls not at all or, if he had to, would use letters of medium or high frequency for this purpose.
g. Because it is important that the cryptanalyat take advantage of every peculiarity specifically applicable to a cryptogram to be solved, especially as regards the presence of low-frequency latters, it is advisable that a uniliteral frequency distribution be pxepared, just as though he were going to deal with a substitution cipher. This is probably the quickost way of bringing to light the peculiarities which may be helpful in solution.
10. Reconstruction of literal key. - a. The reconstruction or recovery of the literal key from which tho numerical transposition key was derived is naturally the last step in the solution of cryptograms of this type. It is often of more than merely academic interest, because if it is found that the onemy.is omploying for this purpose words or phrases of a simple nature associated with the locale of operations this fact may be of importance in subsequent work.
b. In this process there are only a few guiding principles to be noted and much must be left to the ingenuity and imaginative powers of the cryptanalyst. Taking as an example the numerical key uncovered in the solution of the cryptogram in Par. 7, the procedure will be set forth below.
c. The numerical key referred to was found to be 9-1-5-2-8-4-7-6-3. Assuming that this sequence was derived in the usual manner, by assigning numbers to the letters of a keyword in accordance with their relative positions in the normal alphabet, then it is likely that the digit 1 in the foregoing numerical key represents a letter at or at least close to the beginning of the alphabet. Since the digits 2 and 3 are to the right of 1 in the key, it is likely (1) that the letter represented by 1 occurs two more times in the keynord, or (2) that they ropresent another letter, also near the beginning of the alphabet, and repeated, or (3) that they represent two different letters both near the beginning of the alphabet. The digit 4 must represent a letter beyond the letter represented by the digit 3 ; the digit 5 must represent one beyond the letter represented by the digit 4, and so on. Assuming that the letters composing the keyword are fairly woll distributed over the entire

REF ID:A56913

alphabet the digit 7 must represent a letter near or slightly beyond the middle of the alphabet, the digit 8 must represent one further toward the end of the alphabet than does the digit 7, and so on. Assigning several values to the digits, in accordance with the foregoing principle, the results are as follows:

1-2-3-4-5-6-7-8-9
9-1-5-2-8-4-7-6-3
RAKAMFLKA
S BL BMGML B
TCMCOHNMC
UDNDPIOND
VEOERJPOE
W
X
\mathbf{Y}
\mathbf{Z}

FIGURE 7.
d. Now comes the trying procoss of finding a "good" word in this assemblage of letters. The bcginning and end of the word are the easiest points of attack, and it is useful to keep in mind the relative frequency order of letters as initial and final letters of the language in question.

For English, the data are as follows:9
As Initial Letters . \therefore TSAFCORDNPEMIWBHLUGYVJQKZX As Final Letters ETDSNYROHLAFGPMXCKWUBIZQJV Studying the list of letters at the end of the key, it is soen that E is one of the possibilaties. If that is correct, then a good ending would be one of the type $V-C-V$, with E as the final letter. There is

[^4]but one vowel in the column under the digit 7, the letter 0 . This gives OKE, OLE, OME, ONE as possible ending trigraphs, the best of which from a frequency standpoint is ONE. Seeing the letters P and H in columns 5 and 6, the ending PHONE and then the word TESEPHONE suggests itself. Checking to see if there are any inconsistencies, none is found and the solution is:
\[

$$
\begin{aligned}
& \text { Column number } \frac{1-2-3-4-5-6-7-8-9}{9-1-5-2-8-4-7-6-3} \\
& \text { Nunerical key } \\
& \text { Literal key T E L E P H O N E }
\end{aligned}
$$
\]

e. In future studies cases will be encountered wherein the reconstruction of the numerical key is on essential or at least useful element after the solution of one or more cryptogranas has been achieved by cryptanalysis; this is done in order that subsequent cryptograms in the same key cair be read directly without cryptanalysis. The reconstruction of the numerical key is, however, a different process then the one illustrated in this paragraph, wherein the problem is solely one of building up a literal key from its numerical equivelent.
11. Column and row transposition. - It should be obvious that when the rows as well as the columns of a completely-filled rectangle undergo transposition the incruase in socurity is hardly worth mention, since the underlying procedure in solution aims simply at assembling a few columns on the basis of "good" digraphs and trigraphs brought to light by juxtaposing columns. After three or four columns have been properly juxtaposed, the placement of additional columns becomes easier and easier, merely by continuing to build upon the fragnents of words in the rows. Hence, the cryptanalyst is, during a large part of the process, not particularly interested in the intelligibility of the text

REF ID:A56913
he is building up; only at the and of the procoss doos this become a factor. When all of the columis heve been assemblec in proper order, then the text will read continuously in the normol maner (left to right, top to bottom). If it does not, thon it is usugily a very simple matter to rearrange the rows of the rectangle to bring this about, since the letters at the ends and beginnings of the rows give the necessary clues for continuity.

SECIION III.

Paragraph
General principles underlying solution 12
Construction of diagram 13
Solution of example 14
Alternative method of solution 15
Example of solution by alternative method 16
12. General principles underlying solution. - a. In the system designated keyed columnar transposition the feature which differentiates an incompletely-filled rectangle from one that is completely filled is a very simple one from the cryptographic point of view: the bottom row of the rectangle in the former case merely lacks one or more lotters, a feature which only very slightly complicatos the system in practical operation. But the consequonces of this simple difference between the two types are, from the cryptanalytic point of viow, quite profound, and the cryptanalytic effect of this small chango in cryptographic procedure is seamingly all out of proportion with the simplicity of the difforence.
b. Cryptograns involving completely-filled rectangles are rathor easy to solve because of two circumstances. In the first place, since the rectengle is completely fillod, the various possible dinensions of the rectangle can bo ascertained by noting the factors of the total number of letters. Usually only a few yossibilities are indicated and thorefore this materially roduces the amount of experimentation that would be required in the absence of this situation, since it is obvious that when working with incompletely-filled rectangles a good many rectangles of various dimenaions become possibilities for trial.

In the second place, the columns in a completely-rilied rectangle all contain the same number of letters, and therefore the anagramming process (matching and assembling of columans) can be performed whthout any mental reservations such as must be made in working with incompletelyfilied rectangles because of uncertainty as to whether the letters which are juxtaposed to form digraphs and trigraphs really come from the same row in the plain-text rectanglc. The latter statemunt calls for a bit more explanation.
c. The columns of an incompletcly-filled rectangle are of two sorts which may conveniantly bo designsted as long and short. The long colung are at the lerf of the rectangle and each ono contains just one more letter than the short columns, wiich are at tho right. This follows, of course, from the fact that it is only the last row in such a rectangle which lacks one or more lettors to complete the rectangle. The term width, as applisd to a transposition rectangle, will be convenient to designate tive numbor of colunns, which is, of course, determined by tho lengtr of tho numerical key or the number of letters in the literal key. Given the width of the rectangle and the total number of letters in the cryptogrem, the length and numbor of tho long and the short columns may be found by a simple calculation: Multiply the width of the rectengle by the gmallest number wilich will yiold a product greater than the totial number of lettors in the cryptogram. The multiplier gives tho length of the long colums; this multiplier minus 1 gives the length of the short columns; the axcess ovor the total number of letters gives the number of short columns, the latter deducted from the width gives the number of long colunns. Thus, with a

REF ID:A56913

cryptogram of 287 letters and a rectangle 15 columns in width: $[\lfloor 15 \times 20)-13=287]$; the long columns will have 20 letters, the short ones, 19 letters; there, will be 13 short columns and 2 long ones.
d. Now if the cryptanalyst were able to cut up the text of a cryptogram produced from an incompletely-filled rectangle into sections corresponding in length with the actual long and short columns, he could handle these columns in exactly the same manner that he handles the equal-length columns in the solution of a cryptogram produced from a completoly-filled rectangle. In fact, the solution would be easier because he knows that all the short column fall, at the right, all the long columns at the left of the transposition rectangle, and therefore the amount of oxperinentation he must undertake in his attempts to juxtapose columns in the anagraming process is considerably reduced. But, unfortunatoly, there is usually no way in which, at tho initial stage of solution, the cryptanalyst can find out, from a single cryptogram, which are the long columns and which the short. This is obviously a matter directly connocted with the specific transposition key, and the latter is the sole unknown factor in the whole problem.
e. If it were practicable to transcribe a cryptogram of this type according to all the possible transposition keys for a given width of rectangle, solution would obviously merely consist in scanning the various rectangles to find the one which is comect - for there will be only one such ractangle. A roctanglo 15 columns in width may have been enciphered by any one of factorial 15 transposition koys. ${ }^{1}$ While it is

[^5]conceivable that machinery might be devised for this purpose, so that the production of the millions of possible rectangles could be effected in a relatively short time, in the present state of the art no such machinery has yet been devised. Furthermore, it is problematical whether a solution by such means could be achieved in a reasonable length of time even if the machinery were available, because of the immensity of the task it would have to perform.
f. However, this question may be asked: Given a cryptogram of T letters and a rectangle of n columns in width, is it possible to transcribe the text within a single rectangle so that the latter will show what letters will constitute the respective columns for all possible transposition keys of n elements? If so, then such a rectangle would be useful in trying to solve the cryptogram, because the rectangle would then limit the amount of experimentation that would have to be performed by the anagramming process, since it would show whether or not two letters which are brought together in that process to form a digraph could poseibly have been in the same row in the plain-text rectangle. If not, then of course there would be no use in forming such digraphs, and thus the number of trials becomes much reduced. Another way of indicating what is meant is to say that such a rectangle would show the maximum amount that one column may be shifted up or down in trying to match it with another column in the anagraming process. This will be made clearer in a subsequent paragraph. At this point it will merely be stated that it is easy to prepare a rectangle of the nature indicated above, for any keyed columnar transposition cryptogram.
13. Construction of diagram. - a. Given the following cryptogram of 224 letters and an assumed width of 12 columns in the enciphering rectangle:

CRIPIOGRAM

O DNNP	T IRNT	DTORO	EXALN	LETGN	W T T M E
DSTEO	IT D M A	NLNOR	.BOUHE	NLESE	AACTR
MSCLC	SOEFC	FFTEE	EMIAI	TEAIJ	NSOIV
FMBIE	H B V T B	ESRSY	L X R OR	UMETY	O I K N, K
TNDAH	IRHQI	ETETN	OTRAA	VRIRS	TGSEF
EAOOT	HEACN	SHEEV	T R ESR	AIIEA	TEEAL
AENEE	MYTFI	TANLN	NOACL	R EN-RT	RATSO
ALODI	RORYN	NRGY			

Distribution

b. A cryptogram of 224 letters and a rectangle of 12 columns $[(12 \times 19)-4=22]$ indicates 4 short columns of 18 letters and 8 long columns of 19 letters. The outlines of a rectangle of this specification are drawn on a sheet of cross-section paper and the text is transcribed within it, for the moment assuning merely that the transposition key consists merely of the straight sequence of numbers 1 to 12. Thus:

12345678910112
NMCMHYTOAFA

DEHESLHRTACO TDEFOXISEELR USNCIRRTVNRY RTLFVOHGTEEN OEEFFRQSREN.N EOSTKUIEEMRR XIEEBMEFSYTG ATAEIETERTRY LDAEETEA

FIGURE 8.
c. The rectangle shown in Fig. 8 is the same as though it had been assumed that the key numbers 9, 10,11 , and 12 happened to fall at the extreme right in the numerical transposition key. Columns 1 to 8 , inclusive, would then be long columns, and columns 9, 10, 11, and 12 would be short columns. But suppose that the key numbers on the extreme right happened to be $1,2,3$, and 4 , instead of $9,10,11$, and 12. Then columns 1 , 2, 3, and 4 would be the short columns, 5 to 12 the long ones. In this case, making reference to Fig. 8 , the final letter of column 1 would pass to the top of column 2; tho final two letters of column 2 would pass to the top of column 3; the final 3 letters of column 3 would pass to the top of column 4; the final 4 letters of columns $4,5,6,7$, and 8 would pass to the top of columns $5,6,7,8$, and 9 ; the final 3 letters of column 9 would pass to the top of column 10; the final 2 letters of column 10 would pass to the top of column 11; and the final letter of column 11 would pass to the top of column 12. The results of the foregoing reasoning are indicated in Fig. 9.
d. Now the capital letters in Fig. 9 represent the letters which are in the columns in case the first hypothesis (key numbers 9, 10, 11, . 12 at the extreme right) is true. Tho capital lettors above the heavy

12345678910112
0 mbmere
taeietesy
1daeeteartr ONMCMHYTOATA DIATIBONOIIT NTNRAVIOTITS NTIMITKTHEAO PGNSTBNREANA TNOCEEKAATLL IWELASTACENO RTBCIRNVNEND NTOSJSDRSAUI TMUONYAIHLAR DEHESLHREACO TDETOXISEEIR USNCIRRTVNRY RTIFVOHGTEEN OEEFFRQSRENN
 ATAEIETERTRTY LDAEETEA

FIGORE 9.
black line togather with the small letters at the top of the diagram (the latter forming what may be termed the crown) represent the letters which are in the columns in case the second hypothesis (key numbers 1 , 2, 3, 4 at the extreme right) is true. Therefore, Fig. 9, since it covers the two possible extremes with reference to the positions occupied by the short columns, embraces all possible intermediate conditions and shows what letters may be in the respective columns under any possible arrangement of long and short columns, and hence this diagram is applicable to any possible numerical key for the cryptogram in question and for the assumed width of rectangle. Therefore, in the anagraming process such a diagram shows the maximm possible amount that any column may be shifted up or down in juxtaposing two columns to form digraphs of letters assumed to come from the same row in the plaintext rectangle. This is because all the letters of the lst row of the actual enciphering rectangle whll be found in rows 1 to 5, inclusive, of Fig. 9; ald the lotters of the 2 d row of the rectangle will be found in rows 2 to 6, inclusive, and so on, as indicated by the braces at the right in Fig. 9.
e. Thus there arises the following important principle: Designating the number of short columns in a specific diagran by \underline{n}, only such letters as fall within ($n+1$) consecutive rows, will be letters that may have appeared in the same row in the actual transposition rectangle. Or, another way of stating the principle is this: both members of any pair of letters actually in the same row in the transposition rectangle will be found only among the letters appearing in ($n+1$) consecutive rows in tho reconstruction diagram. In the case under discussion, if
the first letter of such a pair. is located in row 8, for example, the other letter cannot be in rows 1, 2, 3, or 13 to 23 of Fig. 9.
f. The usefulness of this principle will soon become apparent. For example, again referring to Fig. 9, take the letter Q in row 19, column 7; it inust be followed by a_ 0 in the plain text. There are 4 Jis in the message; they are in row 13 column 11, row 14 column 3, row 17 column 1, and row 20 'solumn 6. Now the question is, can any of these 4 U's follow the Q, or may one or more of them be eliminated from consideration at once? Since the U's in rows 13 and 14 fall outside the 4 consecutive rows above that in which the Q is located, it follows that neither one of these U 's can be the one that succeeds the Q. Thus two candidates are automatically eliminated from consideration. The U in row 17 and the U in row 20 are both possible candidates.
14. Solution of example. - a. With the foregoing preliminaries out of the way, the solution of the cryptogram can now be carried form ward with rapid progress. It has been indicated that the Q in row 19, column 7, (Fig. 9), may be combined with either the σ in row 17 column 1, or the U in row 20 column 6. Suppose the columns of Fig. 9 are now cut apart for ease in anagraming. Juxtaposing the indicated colums yields what is shown in Fig. 10: Since the combination shown at Fig. 10a involves column 1, it obviously begins with the letter 0 and ends with the letter A or L; no other letters can be added to this column. Since column 7 is already the maximum length this column can be under any circumstances, no letters can be added to it at the bottom. Therefore, all the digraphs possible to form by juxtaposing these two columns are indicated in Fig. 10a. There are only 17 digraphs in all,

7-1	7-6
u	u b
m	mi
θ	e e
t	t H
Y	Y B
0	0 V
$\overline{1}$	I T
K D	K B
N N	N E
K N	K S
T P	T R
N T	N S
D I	D Y
AR	A I
H N	H \mathbf{X}
I T	I R
R D	R 0
H T	HR
Q U	Q ${ }^{\text {U }}$
I R	IM
E 0	E
T $\mathrm{E}_{\mathbf{~}}$	T T
E X	E
$\frac{A}{I}$	
a	b

whereas there should be at least 18. Hence, combination 7-1 is impossible, and combination 7-6 is the only one that needs to be considered further. There are many excellent digraphs in it, and only one which admittedly looks rather bad, the HX. Seeing the digraphs $K B$ and $K S$ in these columns, a good assumption to make is that the K's are preceded by the letter C. Is there a column with $2 \mathrm{Cl}_{\mathrm{s}}$ in approximately the correct region? Column 4 meets this requirenent. Note the excellent trigraphs it yields, as shown in Fig. 10c. It now becomes fairly easy to add columns to this nucleus. For instance, the trigraph R Y B suggests a word ending in $R Y$, such as INFANTRY, ARTIHMRY, CAVALRY; the trigraph M O V suggesta MOVING; the trigraph CKB suggests the word ATPACK; followed by a word beginning with B, and so on. Trial of only a few columns soon yields what is shown in Fig. 10d, from which it soon becomes probable that the long colums end with column 12, since the letters after I Y yield an impossible sequence (E E E Y). Since at was originally assumed that thore are only 4 short columns in the transposition rectangle, and since 4 columns have already been placed at the right (4-7-6-10), the rectangle, with the colunns thus far placed, must be as shown in Fig. 10@. This then at once tells what the limits of

$4-7-6$	1－12－4－7－6－10	
e	a u b	columns 2，3，5，8，9，and 11 must be，
auh	8 III 10	
a 111	0 Icees	and the rectangle can now be filled
cee	DATtHr	
T 6 H	NTRYBA	iñ without further delay．The com－
R Y B	NSMOVI	
M OV	POSITI	pleted rectangle 18 shown in Pig． 11.
S IT	TACKBE	
CKB	ILLNEA	
L N \＄	ROCKST	
CKS	NDSTRE	，
$\mathbf{S T R}$	TIONSE	，
0 NS	DREDYA	\square
EDY	TOFALL	
FAL	URCHXA	
C H X	RYTIRE	
FIR	ONTRON	
FRO	ENTHRT	
管 H R	又R世Q	－
E $\mathrm{Q}^{\mathbf{T}}$	AGEIMM	－
E IM		
EEE	TT「	
T T	E	
E		

FICURE 10c TIGNR 10a
11247610

FIGURE 10＠

82531191124760

FIGURE 11
b. The last step, recovering the literal key, is then taken. The key is to be found among the letters of the diagram in Fig. 12.

FIGURE 12
The ternination ATIONS seams a likely possibility. If this is correct, assigment of letters becomes modjfied as shown in Fig. 13:

FTGURE 13.
The word PENEIRATIONS will fit and it is taken to be presumably correct. There is no absolute certainty about the matter, for it is conceivable and possible that there are other words which can be made to fit the sequence of key numbers given, but inasmuch as the recovery of the literal key is not an essential part of the solution and is often merely a subject for curiosity or speculation, no further time will be spent on the matter.
15. Alternative method of solution. - a. The foregoing solution will no doubt appeal to the student as being straightforward and simple if the original assumption as to the width of the transposition rectangle is correct. But, unfortunately, there is no way of knowing whether such an original assumption is correct until solution is well under way. In practice, of course, what might be done within a wellorganized cryptanalytic unit would bo to divide up the work among the

REF ID:A56913

individuals constituting the unit, each being assigned one or more specific hypotheses to try out with respect to width of rectangle. Then one of these individuals would find the correct width and he would be joined by the others as soon as an antering wedge had been found in this way. $O r$, if the cryptanalyst is working alone, he must try out successive hypotheses as to width of rectangie until he hits upon the correct one. In making these hypotheses he must be gulded by previous experience with enemy correspondence, which may afford clues as to minimum and maximum widths of rectanglos.
b. However, thore is anothor mothod of attack which does not necessitate making any definite initial assumptions with respect to the width of the transposition roctanglo. This method is a modification of the method set forth in the preceding paragraph. The text of the cryptogrem is written out colunnmise on cross-soction paper, evory 5th letter being nímbered tor purposes of referance. Plenty of space is left between the columns, and about 10 or 15 letters at the bottom of each column are repented at the top of the next column so that at any point in the transcription there will bo in a single unbroken string at least one complete colum of letters from the transposition ractangle. Then a soction of consocutivo letters of text is yrritten on a separato strip of cross-scction papor, colmnwisc of course, and by juxtaposing this strip against the whole toxt, sliding it to various points of coinciderce against the text, an attompt is made to find that position in which the best digraphs are formed of the lotters on the movablo strip and the fixed sequence. Of course, if there $1 s$ a Q in the cryptogrem, the sliding strip section is made to contain this lettur,
and the strip is then placed against the text where a U is found, so as to form the digraph QU. The digraphs formed above and below the QU are then studied; possibly a written record is made of the digraphs found. Then the same thing is done with the Q and all other U's in tho text, to insure that a correct start is made. It is this initial step which is likely to give the most difficulty (if there is anything difficult at all in the procedure) and it is important that it be correct. If this first step is easy, then solution follows quite rapidly; if the cryptanalyst is unlucky and makes several false starts, the process is likely to be a slow one. In choosing from among soveral possible juxtapositions it may bo advisable to calculate the probability value of each possibiliwy by addine the frequoncy values of tho digraphs, as oxplanned in Par. 7d. In the absunce of any Q's in the text, recourse must be had to ths formation of other probable digraphs, based upon the prooonce of certain other tell-tale low-frequency letters, such as C, H, J, K, V, anl X. The cryptanalyst is fortunate if there are two or three of theae low-frequency lettere close to one another in a series of letters, for in this caso he can search for a place where there are high-frequency loters (in a corresponding sequence) that might be combined with tham. For example, suppose that a toxt shows a sequence ... V E H FI K ... ; a sequence such as ... ARTCC... would be excellent to try, for it will yield the digraphs AV, RE, TH, CY, CK. Or if therc is a long sequence of consononts, the cryptanalyst should look for a correspoudingly long sequonce of vowels, since these make the best combinations and are therefore most probalile. For these reasons it pays to study the text quite carefully before
choosing a starting point, to find all such peculiar sequences as might be useful in affording a good point of departure. It should also be noted that there are at least two correct positions at which the sliding strip can be juxtaposed against the text, since in the enciphering rectangle the letters in one column form digraphs with the letters in the column not only on the right but, also on the laft. In. the absence of any 'Q's, or other low=frequency letters suitable for a point of departure, the very first 20 or 25 letters of the cryptogram may be used as the starting point, since these letters come from column 1 of the transposition rectangle and therefore there is no uncertainty at least as to the letter which is at the top of that column; or, the last 20 or 25 letters of the cryptogram may be used as the starting point, since these letturs come from the last-numbered column of the . rectangle and therefore there is no_uncertainty at least as to the Letter which is at the bottom of that column.
c. Suppose that a good initial juxtaposition has been found for the portion of the text that has been written on the silding strip, and that a series of oxcellent digraphs has been brought to light. The \ldots. next step is, of courso, to add to these digraphs on either side by finding sections of text that will yield "good" trigraphs and tetragraphs. For example, suppose that the initial juxtaposition has yielded what is shown in Fig. 14. The digraph PR suggests that it must be followed by a vowel, preferably E, A, or 0 ; the digraph AV might be part of the word CAVALRY, in which case it will be followed by A; the , digraph GR suggests that it might be followed by the vowel A or E. A place is therefore sought, in the rest of the text, where there is a
sequence of the letters here desired, and, of course, at the proper intervals. Suppose such a sequence is found and yields what is shown in Fig. 15. The skeletons of words are now beginning to appear.

-		Assuming that AVA is indead part
-	-. .	of the word CAVALRY, there should be
R R	R R S	
N A	N A T	an L to follow it; the trigraph T I N
P R	PRE	
T 0	TOR	suggests the termination G; the tri-
A V	A V A	,-
R E	RED	graph Z ER suggests the word Zirro. A
T H	THR	
CH	CHU	section of text is therefore sought,
C K	' CKA	
I L	I I L	which will have the letters L, G,
T I	T IN	
CR	CRA	and 0 in the order
BE	BES	
$\mathbf{Z E}$	Z ER	
E A	E A. 0	beon shown to demonstrate the procedure.
- .		
- •	- ••	In the course of the work it soon be-
FIGURE 14.	FIGURE 15.	comes ovident where the ends of
	- .	columns are, because the digraphs

above and below the nuclear or "good" portion become "bad" quite suddenly, just as soon as letters belonging to non-adjacent columns in the original rectangle are brought togother. For example, in Fig. 15 it is observod that the topmost trigraph R R S is highly improbable, and likowise the bottom-most trigraph FAO. This suggests that these latters have been brought togother crroneously, that is, that they do not bolong in adjacent columns in the enciphering rectangle. If this is true then the "good" portion is composed of the 13 letters between these two extremities and therefore the colunns are about 13 letters long. Additional work will soon show exactly how long each column really
is, and when this has been ascertained the problem has been practically completed, since at the same time that this becomes evident the sequence of colums has also become evident.
16. Example of solution by alternative method. - a. Using the cryptogram of Par. 14 as an example, Fig. It shows how the text might be transcribed on a sheet of cross-section paper. Noting that the message contains a Q as the 129th letter, a section of text to include the Q is transcribed on a strip of cross-section paper and this strip is then juxtapossd against the whole text so as to bring the Q in front of a U. How many letters should be included in this strip? The message contains 224 letters; if a width of say 10 to 20 columns is assumed, the columns of the rectangle will be about 12 to 22 letters in length. It will be safer to assume a convenient length closer to the maximum than to the minimum; consequently a length of 20 letters will be tentatively assumed. Now the Q may be at the top of a column, at the middle, or at the bottom-there is no way of telling at this point. Hence, to make sure that nothing is overlooked, suppose a section of 4 letters 18 taken, with the Q at the center. There are 4 U's in the message, and four trials are to be made. The results are as indicated in Fig. 17. Fsamining combination 1 in Fig. 17, the digraphs formed both above and below the QU aro not at all bad. In fact, not one of those above the qJ is impossible and the same is true of those below the QU until the digraph $V \mathrm{~N}$ is reached. Hence, combination 1 is possible. As for combination 2, this at once appears to be bed. Trigraphs such as I I, and I H are highly improbable, and this combination may be discarded with safets. Combination 3 is possible from

	0	31	D	61	M	91	F	121	T	151	E	181	A	211	A
	D		S		S		M		N		A		E		L
	N		T		C		B		D		0		N		0
	N		E		L		I		A		0		E		D
5	P	35	0	65	C	95	E	125	H	155	T	185	E	215	I
	T		I		S		H		I		H		M		R
	I		T		0	,	B		R		E		Y		0
	R		D	.	E		V		H		A		T		R
	N		M		F		T		Q		C		F		I
10	T	40	A	70	C	100	B	130	I	160	N	190	I	220	N
	D		N		F		E		E		S		T		N
	T		L		F		S		T		H		A		R
	U		N		T		R		E		E		N		G
	R		0		E		S		T		E		I		Y
15	0	45	E	75	E	105	Y	135	N	165	V	195	N		
	E		B		E		L		0		T		N		
	X		0		M		X		T		R		U		
	A		0		I		R		R		E		A		
	L		H		A		0.		A		S		C		
20	N	50	E	80	I	110	R	140	A	170	R	200	L		
	I		N		T		U		V		A		R		
	E		I		E		M		R		I		E		
	T		E		A		E		I		I		N		
	G		S		I		T		R		E		R		
25	N	55	E	85	J	115	\underline{Y}	145	S	175	A.	205	T		
	w		A		N		0		T		T		R		
	T		A		S		I		G		E		A		
	T		0		0		K		S		E		T		
	M		T		I		N		E		A.		S		
30	E	60	R	90	∇	120	K	150	F	180	L	210	0		
	D		M		F		T		E		A		A		
	S		S		M		N		A		E		L		
	T		C		B		D.		0		N		0		
	E		I		I		A		0		E		D		
35	0	65	c	95	E	125	H	155	T	185	E	215	I		
	I		S		H		I		H		M		R		
	T		0		B		R		E		\mathbf{Y}		0		
	D		E		V		H		A		T		R		
	M		F		T		Q		C		F		Y		
40	A	70	C	100	B	130	I	160	N	190	I	220	N		

FIGURE 16.

FIGURP 17.
the top digraph, 0 F, to the 12th digraph below the Q U, although the digraph H X looks very bad. However, the X might be a sentence separator, so that this combination cannot be discarded. Combination 4 looks very improbable, with the digraph $E N$ occurring twice, and other equally bad digraphs showing. Of the four possibilities then, combinations 2 and 4 are discarded, leaving 1 and 3 for further study. It is very diffacult to choose between these tio possibilitios. All the digraphs in combination 1 down to digraph $V N$ are possible; many of them are excellent. As for combination

3, ail the digraphs down to
$V D$ are also possible and many of them are oxcellent. Thore does not
seam to be much use to add the froquoncy values of the digraphs in each
combination because it is hard to know with what digraphs to begin or ond. However, perhaps it is not essential that a choice be made at once; possibly further work along the ilnes now to be demonstrated will show which combination is correct. Noting the two K's (in the digraphs K B and K S) among the combinations before the Q, assume that these K's are parts of the digraph CK. Is there a sequence C-C in the text? There is but one such place, at the 63rd letter. Suppose the corresponding section is placed in front of the combinations 1 and 3 of Fig. 17, as shown in Fig. 18. It inmediately becomes evident that

	SOF	SOEV
	ETiN	HRPAT
	AUB	AUERR
	AMII	AMTE
	CHE	CWES
	THIH	THTHR
	RYB	RYBA
	MOV	MOVI
SIO	SIT	SIMI
CKD	CKB	CKBE:
INN	INS	INEA
CKIN	CKS	CKST
SIP	SIR	STRE
ONT	ONS	ONSE
8DI	EFI	ETYY
FAR	FAL	FALT
CENT ${ }^{-}$	CHX	CHXA
HIT	FIR	FIRT
FRD	FRO	FRON
THI	THR	THRE
EQU	EQU	EQUE
ETR	ETM	ETMM
EEO	FHETH	EHELSY
MTTE	MITI	
IIIX	IEY	FTGURE 19.
ATA	ATO	
INL	INI	
TON	TOK	
EII	EINT	
ARE	ARK	
IAT	IAT	
JAG	JAN	
1	3	

FIGURE 18.
combination 3 is the correct one, for note the excellent trigraphs it gives, as compared with those in combination 1. Also note that the second trigraph below the E Q U in combination 3 consists of three Els, indicating that the end of the columns has been reached just before this trigraph. As for the top trigraphs of Fig. 18, they are good all the way up. But now the skeletons of words are beginning to appear. The THR immodiately above the $\mathbb{E} Q \mathrm{O}$ suggesta either THRRE or THROUGH; the FR O above the THR suggests FROM or FRONT. Suppose the word Requist is assuned for the $E Q \dot{U}$, and the word THREE is assumed for the THR above it. This requires a section with two E's in succession.

REF ID: A56913

There are several such places in the text, and further limitation is advisable. The bth trigraph from the top is certannly suggestive of the word MOVING, which requires an I to follow the V. Is there a place in the text whers an I occurs 12 letters before a double Ef There is one such place, and the corresponding section is juxtaposed at the proper place, yielding what 1 s shown in Fig. 19. The upper and lower limits of the columns are now fairly definite and are marked by the horizontal bars; tetragraphs E EEY at the botton and AMIE at the top are very improbable. The tetragraph CEES below the top bar is posaible, because it may represent the end of a word like FORCE followed by the beginning of the word ESTIMATED; the tetragraph below the bottom bar suggests a word ending in $\underset{i}{ }$ followed by the word DMFDIATE. It seems hardly necessary to continue with the demonstration; in a few moments the entire diagram 18 reconstructed and yields the solution. During this process, as soon as a section of text in Fig. 16 has been used it is crossed off, so as to prēvent its lettors from being considered as further possibilities for addition to the reconstruction diagram. Thus, as the work progrosses the number of availablo sections becomes progressively less, and the chonce for successive sections for addition to the diagram becomes a quite easy mattor.
b. When two or three operators are assigned to work upon a cryptogram by this motiod, solution can be roacheã in a very short space of time, espocially if each one of=the operators takes a different point of attack. Aftor a few minutes the fracmonts of texts obtained may be assimilated into one message which is then completed very spcedily.

SRCTION IV.

OPPORTUNITIES AFFORUED BY STUDYING FRRORS AND BJUNDHFS MADE BY INERY CRYPTOGRAPHERS.

Paragraph

Importance of the study of errors and blunders in early work
upon an unknown system 17
Significance of terms special solution and general solution .. 18Examples to be studied.19
17. Importance of the study of errors and blunders in early work upon an unknown system. - a. Blunders and mistakes made by cryptographic clerks in the execution of cryptographic instructions should be rare in a well-trained and well.-disciplined cryptographic service. Nevertheless, blunders and mistakes aro committed despite all that can be done to prevent their occurrence. Especially in the excitement prior to or during an important action or movenent do such Instances take place and these afford golden opportunities for the enemy cryptanalytic service. This cituation exists in respect to all types of cryptographic systems and no cryptanalytic anstruction would be complete if cognizance werv not taken of the advantages which may bo reaped from the blunders, the mistakes, and, occasionally, the downright ineptitude of the adversary's cryptographors.
b. Practically evory cryptographic system affords opportunities for the commission of errors in its application, and each system more or less presents a separate case. That is, the errors which may be made in one type of cryptographic system may be peculiar to that type alone and to no other type; henco, the astute cryptanalyst is constantly on the lookout for inctances of cryptograms containing the specific type of error by which that system is handicapped. Furthermore, the
general types of blunders or errors that may be committed are nearly as numerous as are the general types of cryptographic systems, so that no complete list of such as may be encountered in practice can be drawn up.
c. After the cryptanalyst has by painstaking and more or less arduous labors solved a system and has become thoroughly familiar with its mechanics, he should carefully review the details of the mechanics to learn what things can go wrong, what sorts of mistakes the enemy, cryptographic personnel are likely to make, and then study the external manifestations of these aberrations so that he may be able to recognize instances of their occurrence in subsequent cryptograms. This sort of study has no value in itself particularly; its importance lies in the fact that the effects of erroneous treatment may lead to very rapid solution or to quick recovery of keys of subsequent messages.
d. When an unknown system is under investigation and the cryptanalyst is striving to ascertain just how it operates (which is often the most difficult step in solution, a study of the cryptograms representing;corrections to previous messages containing orrors is a most fruitful source of data. Indeed, at times this sort of intensive study will yield clues for solving a system which might otherwise resist all efforts to break it down for a very long time. - 18. Significance of terms.special solution and general solution. a. Now the importance of the couments made in the foregoing paragraph will be clear if it is noted that a study of the blunders and errors often leads to the elaboration of methods for-the rapid, breaking down of cryptographic systems. Bùt it must also be realized that in some
cases no blunders or errors are essential to a rapid solution of the type alluded to above: sometimes the mechanics of the system are such that unavoidable or unpredictable circumstances arise, so that special solutions become possible. The latter tern calls for a bit of explanation.
b. When the circunstances surrounding a specific cryptogram or set of cryptograms are such as to present peculiar or unusual conditions that make a solution possible when in the absence of these conditions solution is either impossible or improbable, the methods amployed in reaching a solution in such cases constitute what is conmonly termed a special solution. Some examples will be demonstrated very soon. Systems of which this may be true are, of course, cryptographically weak but it may be observed that it is perhaps impossible to devise a system which may bo considered to be absolutely free from this source of weakness.
c. The advantages of a special solution for any type of cryptographic system aro, as a rule, two in number. First, it often makes a solution possible when otherwise this might not be the case. Secondly, it often affords a method of achieving a very rapid solution in the case of a problem which otherwise might require a long time. But a special solution presents one basic disadvantage: it is by its very nature dependent upon the existence of unusual circumstances, in other words, upon chance or good fortune bringing about a set of circumstances favorable for a solution. When these unusual conditions or circumstances do not obtain, then solution may be impossible. Therefore, it is desirable to have, if possible, for every type of system a more or less
general solution which may be applied in the absence of the unusual conditions necessary for the application of a special solution. In other words, a general solution in cryptanalysis implies a method or procedure which if applied in ordinary cases and under normal conditions will yield the solution. However, the term general soluticn in cryptanalysis must not be taken too literally. The situation in cryptanalysis is not exactly analogous to that which obtains in the field of pure mathematics, for the circumstances are often quite different in the two sciences. A general solution in mathematics is expected to and will solve every case that falls within its province; a genoral solution in cryptanalysis is intended to solve every case that falls within its province but this 13 more of a hopo than an oxpectation. Much depends upon the amount of traffic available for study, the length of indiridual cryptograms, and the indefinable olement called "luck", that is, a set of fortuitous circumstances which happen to make a solution easy or difficult, such as the presence of many or exceptionally long repatitions, etc. Furthermore, whereas in mathematics a general solution prescribes the exact steps to be followed in arriving at the solution; the lattor can be applied in all instances without variation or deviation from a fixed procedure, in cryptanalysis a general solution merely outlines a broad path that may be followed in order to arrive at a solution; application of the lattor an specific instances may involve ninor detours to circumvent urexpected obstecles, or it may involve quite large changes or modifications in the general procedure.
19. Examples to be studied. - a. As stated above in Paragraph 17, a complete list of the specific blunders that cryptographic clerks are prone to perpetrate cannot be drawn up. Certain of them may be described in general terms and examples given of some which have already been encountered in this and in preceding texts. Commonly it is the case that these blumders do not become evident until two or more cryptograms are available for comparison. One of the most frequent sources of circumstances leading to the transmission of cryptogrems affording rich material for cryptanalytic comparison is the following: A cryptographic clerk prepares a cryptogram, in the course of which he makes a mistake of such a nature as to render tho cryptogram difficult or impossible to decipher by the cryptographic clerk serving the addressee. A request for repetition onsued, wheroupon the enciphering clerk reexamines his original work and finds that ne hns made a mistako. He then commits the grave blunder of reenciphering the identical message (without paraphrasing) and transmitting what to tho enemy cryptanalysts is obviously a second version of the original message. The consequences are often fatel to cryptographic security. The loast that can happen is that the key for this particular message may be disclosed very quackly; more serlous, the basic or 2 rimary elements for the entire day's traffic may be wrested from the blundor; but most sorious are the consequences if it happens that the blunder has been committed inmediately or soon after a new cryptographic system has been instituted and the enemy cryptanalysts are exerting strenuous efforts to learn its mechanics, for then is when the information to be gained is most valuable.
b. In the next few paragraphs some specific oxamples of the consequences of cryptographic blunders and ineptitude in the case of transposition systems will be studied. These are intended to give the student some idea of the far-reaching effects auch studies may have. It is important that he grasp the fundamental principles for they will enable him to develop for himself the methods that he may find necessary in practical work. Incidentelly, it may be added that the student should not get the idea that these instances are purely theoretical. It is sometimes almost unbelievable that cryptographic clerke with any common sense would perpetrate the stupid blunders that they do occasionally commit.

SECTION V

SPECIAL SOLUTIONS FOR TRANSPOSITION CIPHERS

 pression REFHRRING TO YOUR NTMBERR. 'Here is a cryptogrom assumed to begin with this phrase:CRYPTOGRAM

IMAOD	RMGRN	ERNIN	TUSFS	D R Y EP	BRCFT
O IRNW	TMUIS	OIEGE	D HOPN	CHLFU	ESEPQ
ERIAR	UHIAG	PAUOO	SSSCI	0 NRRE	OVOEY
玉MEVG	TRIA	HTEPB	N BTNE	AEETA	

c. Assuming that previous experience has indicated that the enemy uses keys varying from 10 to 20 letters in length, the arrangement of the letters in the tops of columns under a key length of 10 would be as shown in Fig. 20.

> | 12345678910 |
| :--- |
| RTFTRTINT | OYOURNUMBE R

FIGURI 20.
The lst group of the cryptogram begins with I M. The arrangement shown above gives I U as the top of a column: hence a key length of 10 is not correct. A key length of 11 is then tried.

> | 123456789 | 1717 |
| :--- | :--- | :--- | YOURNUMBER

FIGURE 21.
Here a column is headed by $I M$, so that this is a possible arrangement. If the width of the rectangle is 11 , its outlines are as shown in Fig. 22. There are 5 columns of 11 letters and 6 columns of 10 letters. The

FIGURE 22.
text can now be marked off into sactions of proper lengths and, moreover, guided by the letters which must be at the heads of columns, the text can be inscribed in the rectangle in key order. For example, column 1 must end with the $2 d$ group, RMGRN; column 2 therefore begins with $\mathbb{F} R$. There is only one possibility, viz, the 4 th column. This is a long column, and must therefore have 11 letters, making column 3 begin with R Y. This definitely fixes the position of the number 3 in the key, and so on. The solution is reached after only a very few moments and is as show in Fig. 23.

39624710508
REFERTNGTO YOURNOMBERS EVENWHATDIS
POSITIONHAS BEENMADEOFC RYPTOGRAPHI CEQUIPMENTO FMESSAGECEN TERFOURTHPR OVISIONALBR IGADE

FIGURE 23.
d. The same general principles, modifiod to suit tho circumstances, may be followed in the case involving known or suspected ondings of messages. The probable words are written out according to various assumed key lengths and the superimposed letters falling at the bottoms of columns are sought
in the cryptogram.
21. The case of an omitted column. - a. Sometimes a very careless clerk omits a column in transcribing the text from the enciphering rectangle and fails to chock the number of letters in the final cryptogram. Obviously such a cxyptogrem will be difficult if not impossible to decipher at the other ond, and a repetition is requested and sent. If now the identical plain text is enciphered correctly, two cryptom grams are at hand for comparison. This will disclose the length of one column, which can be assumed to be either a long ons or a short one.

The position, in the correct cryptogram, of the column omitted from the incorrect one will often afford direct clues as to the exact dimensions of the enciphering rectangle. For example, suppose the cryptogram in Par. 20b had first been transmitted as follows:

CRYPTOCRAM

0 D	R	RYEPB	RCFTO	IRNWT	MOISO
IEGED	HOPNC	HLFUE	SEPQ	RIARU	HIAGP
AOOOS	SSCIO	NRREO-	V $0 \mathbf{E} \mathbf{Y}$ F	MIVGT	R I AFH
TEPBN	BTNEA	EET			

b. The column which was omitted is ERNINTUSFSD, and falls between columns 1 and 3. Since the omitted column contains 11 letters and column 1 contains 10 , the dimensions of the rectangle immodiately become known. Thus, uncertainties as to the dimensions of the rectangle are dissolved and a large step in the solution taken. Also, the general positions of column 1 and 2 are now known, since the former is a short one, the latter a long one.
22. The case of an interchanged pair of columns. - a. The keying element in the case of columnar transposition is simply a practical means of controlling the order in which the columns of the enciphering rectangle are transcribed in forming the cipher text. Commonly this numerical key is derived from a literal key. Suppose that a cryptographic clerk makes a mistake in the latter step. For example, suppose that the literal key is ADMIRATION and that as a result of a slight relaxation in attention he assigns the number 5 to the letter N and the number 6 to the letter M. A pair of columns will become interchanged as regards their order of selection in the transcription process, and likely as not a repetition will be requested by the addressee. If a
second version is sent, enciphered by the correct kcy, a comparison of the two versions will disclose the width of the enciphering rectangle and possibly the general position (left or right) of the columns that were interchanged.
b. An example will serve to make the matter clear. Assume the two cryptograms to be as follows:

FIRST VERSION

SECOND VERSION

c. The two cryptograms are supermposed as shown in Fig. 24 and their points of similarity and difforence noted.
lat version.. ODNILNTTHDGSOHAOOQSGTERESINEN ET 2nd Version.. ODNILNTTHDGSOEAOOQSGTERUTUEHRW,

1st, version.. NTEHRWRRIRATPEDETANOOCOOROGTOE 2nd version.. 臽PSINENERIEATPEDETANOOCOOROGIOS

FIGURE 24.
d. The two versions are alike except for a pair of interchanged sequences; the bracketed sequence $P S I N E N E$ in the lst version is matched by the same sequence in the 2 d version, but at a different position in the message; likewise the brackoted sequence N F U E HRWR in the lst vorsion is matched by a similar sequence in the $2 d$ version, but at a different position in the message. The various deductions which can be made from tho situation will now bo set forth.

REF ID:A56913

e. One of these sequences contains 7 letters, the other contains 8. It follows that the columns of the enciphering rectengle are probably 7 and 8 letters in length; hence, with 61 letters, the width of rectangle is 8 . Since there are 23 letters from the beginning of the messages to the first point of their difforence, it follows that there are 2 column of 8 letters and 1 column of 7 letters involved in this section $[(2 \times 8)+(1 \times 7)=2 \overline{3}]$, and that tho error made in encipherment doos not involve columns 1, 2, or 3, which are therefore properly placed in the lst varsion. Since the sequonces which are intorchanged aro consecutive in the text it means that the numbers 4 and 5 were interchanged in the key for the lst version. Since one of these sequencos is of 7 letters, the other of 8 letters, one of the numbers, 4 or 5, applies to a long column, the other, to a short column. Since the 2 d vorsion is presumably the correct version, and sinco in the $2 d$ version the 3 -letter sequence comes first, the koy number 4 applies to a long column, the key number 5 , to a short column in the correct version. With the foregoing deductions in mind, the solution and the reconstiuction of the numerical key becomes a simple matter.
I. The text of the corroct version is written out as seon in Fig. 25a. Seoing a Q in columin 3 and a O in column 4, these two columns are made adjacent by sliding colunn 3 one interval downward, as shown in Fig. 25b. In the latter, column 7 has also been placod to the right of column 5, because it yieids good trigraphs with columns 3-4. Seeing the trigraph T R 0 near the bottom of columns 3-4-5 and the letters 0 and P in the same row, auggeste the word TROOP . The columns are to be roarcanged to make this word IROOP. Thore are two columns which have

12345678	12345678	34526	34726815
a c	c	0 NETR	ONETROOP
tod do	d 0	OFTHI	OFTHIRDS
OHONPREO	OTANERPO	QUADR	QUADRONI
DDQFSITR	DHOFTISR	SENGA	SENGAGIN
NGSUIRAO	NDQUARIO	GHOST	GHOSTILE
ISGENANG	IGSENANG	TROOP	TROOPONN
LOTEETOI	LSGHOTEI	EWCHE	EWCHESTE
NHERNPOO	NOTROPNO	RRO D	RROAD
TARWEECS	THEWCEES		
TO R DO	T RROD		
日	b	$\underline{\text { c }}$	d

an 0 in the proper row, columns 2 and 8. The trial of combination 3-4-5-8-6, while producing TROOP in the proper row, gives bad pentagraphs in the other rows; but the combination 3-4-5-2-6 shows excellent pentagraphs, as will be seen in Fig. 25c. The words SQUADRON and HOSTIIT are clearly evident; the completion of the rectengle is now a very simple matter. The result is shown in Fig. 25d. The recovery of the numerical key now will enable other cryptograms to be read directly.
23. Massages with similar beginnings. - a. In military correspondence it is often the casc that somowhat similar insuructions or information must be conveyed by a superior commander to several subordinato commanders simultanoously. Such a situation frequently results in the circumstance that two or moro cryptograms addressed to different stations will begin with exactly the same words. When simple columar transposition is the systam used for encipherment, then it will result, in such cases as the forsgoing, that the first two or more rows of the transposition rectangle will be identical in the messages which begin alike. Therefore, the cryptograms will show identical sequences of two or more letters, distributed throughout the texts and
by studying these identities the cryptanelyst is able at once not only to ascertain the width of the rectangle but also to divide up the cipher text into sections corresponding.with the exact columns of the rectangle, thus eliminating the only real difficulty in solution, viz, the determination of which are the long colums, which the short. . An example will demonstrate the short cut to solution which such a situation provides.
b. Here are two cryptograms which are assuned to have been intercepted within a few minutes of each other, the messages being addressed to two battalion commanders by the regimental commander.

CRYPTOCRRAM 1
BNTSEARKCLCETTNEITERROTAELTNNONNENO OTOKMSZTGNYITDKIANARFTHSNPGNPARWOLA OFGTPCTOTDNINOEWXERFASIOSTIDRRRMMAO ARPATOUTIOBIEOAGAAPNEIK

CNXPTOGRAMI 2

c. The cryptanalyst now carefully compares the two texts, looking for identical sequences of letters between the cryptograms. For example, No. 1 begins with $B \mathrm{~N} T \mathrm{~S} \mathrm{E}$ and so does No. 2; after an interval of 4 letters in No. 1 and 5 letters in No. 2 he notes the identical sequences LC IT; aftor an intorval of 5 lettors in No. 1 and 5 letters in No. 2 he notes the identical sequences E R $\mathbb{F} 0$, and so on. The identities are underlined or marked in sone distanctive mannor throughout tho texts, as shown in Fig. 26.

REF ID:A56913

CRYPTOGRAM 1

 ARPAT[OTITO BIEO[AGAAP]NEIK

CRYPTOGRAM 2

 FIGURE 26.
d. Now it is obvious that these identities exist because the two messages begin alike, and by taking advantage of the identical portions in the cryptograms it will be possible to transcribe the texts of the latter into transposition rectangles wnich shall not only have the identical portions in homologous positions, but also shail show which are long columns, which are short. All that is necessary is to begin transcribing the texts on cross-section paper, in colums, arranging matters so that the identical sequences will fall at the tops of the columns. Thus, the lst column of No. 1 will contann the letters BNTSEARKC and the lst column of No. 2 will contain the letters BNTSEINDOT; the $2 d$ column of No. 1 will contain the lotters LCTTTNBITand the 2 A column of No. 2 will contain the letters LCETSAFPI, and so on. It appoars that the identical portion ambraces the first four rows of the roctangle and runs over a number of
letters on the 5th row. This is because the identical sequences consist of 4 and 5 letters. Fig. 27 genows the identities between the lst 5 columns of the two transposition rectangles. Only once in the case

12

EN T	E
NCRNO	NCRNO
TEROK	TERO
STONM	STONM
ETTNS	ESMS F
ANAEZ	IAOTE
R B ENT	NFII
K I O G	D P I K
CTTON	0 L 0 UP
	T \mathbf{E}

FIGURI 27a.
of this particular example does any uncertainty arise as to exactly where an identical sequence begins or ends, and that is in connection with the 7th pair of identities, involving the series of letters AETTFSNPGNP in No. 1 , and AETESTONTN in No. 2. These sequences contain 6 identical letters, but oven here the uncertainty is of only a moment's duration: the injtial letter A does not belong to the identical portions at the top of the transposition rectangle because the Als are needed to complate columns 6 in both rectangles. (If the A were placed at the head of column 7 in No. 1, then column. 6 would lack a letter at the bottom.) Cases of "accidental identities" of courso complicate the process of cutting up the text Into the respective columns, but they only serve to add a small degree of interest to- what would otherwase be a purely cut and dried process. The final results of the transcription into columans are shown in Fig. 27 .

- E. It is clear from a comparison of these two transposition rectangles, and a consideration of the fact that the long colums must of necessity go to the left side, that the numbers 7 and 10 occupy the first two positions in the key, and that the numbers 2, 4, 11, and 13 occupy the last four positions in the key. By segregating and anagraming

1

$1234567892111213 y_{4} 1234567891011013 y_{4}$	
NCRNOIFRFOOMUG	NCRNOJFRFOOHUG
TEROKTTWCESATA	TEROKTTWCESATA
STONMDFOTWTOIA	STONMDTOTWTOIA
ETTNSKSIOXIAOP	ESMSFVSATXTOEA
ANAEZINATEDRBN	\bar{I} AOTESTRLPTSEB
RBENTAPODRRPIE	NFIIYIOOTVFCII
KIIOGNGFNFRAEI	DPSIKNNEATOAST
CTTONANGIARTOK	OLOUPTTr゙ICNOR
P S	T E CANKAT R T
FIGURE	

1.			2.		
710		241-13-4	70	.	241-12-4
EN		LION	EN		I ION
F 0	COUN	Fo	COUN
T E	ESTO	T E	ESTO
FW		T TIN	F W	.0.0.0.	T T IN
5 X	-•...0.0	TION	5 X		STES
N E		NDBE	T P		ATET
PR		BRIN	0 V		FFLI
G F		IREO	NT		POSI
N A		TROO	T I		L C O J
P S			N T		

FIGURE 27․
columns 7 and 10 as one group, and columns 2, 4, 11 , and 13 as another group, the exact positions occupied by these 6 columins are easily ascertained, as shown in Fig. 27c.
f. The remaining columns $1,3,5,6,8,9,10,12$, and 14 fomn a third group of columns to be anagrammed, but this is ratier easy now that the columans on either side are fixed. The completed rectangles are shown in Fig. 27d.
24. Messages with similar endings. - a. What has deen said at the beginning at the preceding paragraph with respect to the nature of military correspondence and the presence of identical phraseology in

$\frac{70-342-641-4-9-5-8-2 n-13-4}{\text { E }}$ FORMINGFORCOUN TERATTACKWESTO FWOODSATMOTTIN SXMOVEATHASTES TPOSSIBLERATET OVICINITYOFFII NTSANDTAKEPOSI TIONTOREPELCOU NTERATTACK

FIGURE 27a.
the messages sent by a ulperior commander to his subordinates also operates to produce messages in which the ondings are identical. It has been noted that when two messages with similar beginnings are available for comparison, the reconstruction of the transposition rectangles and the recovery of the transposition key is an easy matter, It will now be shown that solution is an even easier matter when two泡sages having identical endings are available for study. b. Given the following two cryptograms:

No. 1.

No. 2.
TLTSXOPNREMEFDSKYENRURERBTSREHTIANT IVYMR VESIREENEI NOLTMNNEDETROOPUNARA CIAAINSCWNA

The cryptanalyst now carofully compares the two texts, searching for identical sequences of letters, but in this case instead of trying to locate identities in what may be termed a parallel progrossion (as in the preceding caso) he searches for identical sequences of two or more letters
appearing in both messages. For example, in the present case, he notes the sequence $T \mathrm{R} O$ forming the final trigraph of the 8th group of No. 1 and finds a similar sequence forming the initial trigranh of the l3th group of No. 2. Going through both cryptograms in this way, all the identities are marked off in some fashion, by colored crayon or by brackets, as shown below. In this search for identities the cryptanalyst bears in mind that when all have been found they should be distributed at quite regular intervals throughout the text. For example, noto in the following that the identities in No. 1 fall at intervals of 6 letters, with one exception; in No, 2 they fall at intervals of 4 letters, with one exception. The intorvals between identitios serve as a guide in finding them, After thoy have all been located, the identities in the cryptograms are numbered serially.

No. 1

No. 2

 $\operatorname{CIA}\left[\begin{array}{l}12 \\ \text { I }] ~ N S C W\left[\mathbb{N}^{13} A\right]\end{array}\right.$
c. The numbers above the identities may now be used to draw up a table of equivalencies of identities. For instance, 1dentity 1 in cryptogram 1 matches 1 dontity 7 in cryptogram 2; 1dentity 2 in cryptogram 1 matches ldentity 6 in cryptogram 2, and so on. Thus:

Cryptogram 1 ... 1-2-3-4--5-6-7-7-9-10-11-12-13
Gryptogram 2 ... 7-6-9-2-10-5-11-3-4-12-13--1--8
d. Now cryptogram 1 has 105 letters, since the key concists of 13 numbers (indicated by the 13 identities), tho rectangle for cryptogram 1 contains 12 columns of 8 letters and 1 colunn of 9 letters. Cryptogram 2 has $\delta 1$ lutters, and its ractangle contains 10 columns of 6 latters and 3 columins of 7 lettors. The roctangle of cryptogram 1 has but 1 long column, whereas that of cryptogrem 2 las 3 long columns. Rolative to the position the last letter in each rectancle occupies in the last row of tho restanglo, it $1 \bar{s}$ obvious that the last letter of the rectanglo for cryptogram 2 is 2 lettors in advance of the last letter of tho roctanglo for cryptogran 1. Using this difficronce, viz, 2, a cyclic sequonce is gonerated from the sorive of equivaloncies given above. Thus, the equivalont of indentity 1 of cryptogram 1 is identity 7 of cryptogram 2, and the numbar 7 is placed two intervals to tho raght of the numbor 1 ; tho equivalont of idontity 7 of cryptogram 1 is 1dentaty 11 of cryptogram 2, and the number 11 is placed two intervals to the right of number 7, and so on until the followng sequence is obtained:

$$
\begin{aligned}
& 1-2-3-4-5-6-7-8-9-10-11-12-13 \\
& 1-7-11-13-8-9-9
\end{aligned}
$$

Q. The equavalont of 1 dontaty 9 of cryptogram 1 1s Identity 4 of cryptogram 2, and the numbor 4 is plinesd betwoen the numbors 1 and 7 in
this sequence, for the sequence may be regarled as partaking of the nature of a cycle or a contınuous series. From this point on, the process is the same as before, and finally the followng is obtained:

$$
\begin{aligned}
& 1--2--3--4---5-6---7-8--9--10--11--12--13 \\
& 1--4--7-2--11-6--13--5--8--10--3-12--9
\end{aligned}
$$

f. After little oxporiment it bocomes obvious that column 8 belongs on the extreme loft and that the key $1 s$ 8-10-3-12-9-1-4-7-2-ll-6-13-5. The completely deciphured messages are shown in Fig. 28.

$\frac{8-10-3-12-9-1-4-7-2-11-6-13-5}{\text { HEADREDCOIUNNN }}$	
	N F
TILIERYMAR	
NGNORTHREACHE	
DSILVERRUNCRE	
EKATSEVENTOR	
YAEXREMAINHER	
EINOBSERVATIO	

FIGURE 28.
g. The possibility of the rapid solution of columnar transposition ciphers by moans of the method of similar buginnings and endings, constitutes one of the moct sarious drawbecks to the use of trinsposition caphers in malitary cryptography, bocause it is alniost impossible to avold such cases whare many messages must bo sont in the same key each day.
25. Solution of a slngle messaze containing a long repetition. a. Sometimes a lenethy phaso or a suries of numbers (spolled out in lettors) is ropocted within a nossoge and if tho message is oncipherod by a transposition ractanglo of such narrow wath (in comparison with the length of the repotition) that the repeated portion forms identical
sequences within the text of the cryptogram, a solution somewhat similar in principle to that explained in Par. 24 may be achieved within a fow minutes.
b. Note the following cryptogram, in which identical portions have been underlined.

> CRYPTOCRAM (169 letters)

OEAELTRSEDHNUFF $\frac{R N R Y F N T A E D I L S M Y}{1 \mathrm{E}}$ NCETSLSTOCAWIAO TSLSS LEDHN ORIIS
 RSEOM SWERNRAST BOSAAAOSNOOI BOSD CAYHL HONEMSETFYKLAUX TAOGGPRSVL

c. There are 18 segments of underlined letters, which means in this case that the rectangle is 9 columns wide, because the repeated portion in the text will give rise to two repeated sequences in each column. This means that the rectangle has 7 colunns of 19 lotters and 2 columns of 18 letters. The first two segments may therefore be assigned the numbers $1 \underline{a}$ and $1 \underline{b}$, since they come from column 1 ; the next two segments may be assigned the numbers $2 \underline{a}$ and $2 \underline{b}$, since they come from column 2, and so on, as shown above. A table of equivalencies may now be drawn up, showing the segments which are identical. Thus:

$$
\begin{aligned}
& 1 a-2 a-3 a-4 a-5 a-6 a-7 a-8 a-9 a \\
& 3 b-4 b-2 b-9 b-8 b-1 b-6 b-7 b-5 b
\end{aligned}
$$

This gives rise to the cycle $1-3-2-4-9-5-8-7-6$, which is a cyclic permutation of the actual transposition key.
d. By transcribing the text into a rectangle of proper width, "cutting" the columns so as to bring the identical portions within the same rows, the result shown in Fig. 29 is obtained.

FIGURE 29.

469153827
$R E P O R T O F A$

IRRECONNA ISSANCETO SEVENAMAS FOLLOWSEN EMYTRIEDO BSERVATIO NWESTOFLI NEGETTYSB URGDASHMO UNTHOLLYS PRINGSAND WASUNSUCC ISSTULXEA STOFGETTY SBURGDASH MOUNTHOL1 YSPRINGSH EAVYFOG

FIGURE 30.

- Study of Fig. 29 shows that columns 2 and 7 are the short columns and belong on the right, either in the sequence 2-7 or 7-2. The cyclic permutation of the transposition key obtained in subparagraph $\underset{c}{ }$ is

$$
1-3-2-4-9-5-8-7-6
$$

In order to bring the 2 and 7 adjacent in a sequence 2-7 or 7-2 one must take
intervals of 5 and 4, respectively, and "decimate" the cycle, giving the following:

$$
1-5-3-8-2-7-4-6-9 \text { or } 1-9-6-4-7-2-8-3-5
$$

Since columns 2 and 7 belong on the right, the key must be:

$$
4-6-9-1-5-3-8-2-7 \text { or } 8-3-5-1-9-6-4-7-2
$$

Only a few moments are necessary to establish the correctness of the former altornative and the solution is at hand. It is as shown in Fig. 30.
26. Solution when several cryptograms of identical length and in the same key are available. - a. Although the method to be described in
this paragraph is included within the category of special solutions, it is of such general applicability that it ringht well be treated as a general solution for all transposition systems. It is based upon the very mechanics of transposition as a cryptographic scheme, viz, that the essential feature of the transposition method consists merely in the alterations in the positions of the elements (letters, groups of lettors; or words) composing the plain text according to a specific koy. It follows, therofore, that the rospective elemente of two or more massages of identical lengths, when transposed according to the samo key, will undergo identical alterations in position in the course of encipherment, and therefore all plain-text elements occupying homologous positions in the original mossages will emerge in homologous positions in the cryptogrems. The situation 18 very much like that which may be observed in the movements executod by two symmetrical groups of dancers in a chorus. Suppose each group consists of 8 dancers starting originally in definite positions relative to one another. When a movement is executed each dancer.in each group performs certain evolutions; at the conclusion of the movement the 8 dancors in each group may be in quite different positions relative to one another than they wore at the beginning of the movemont, but the correspondingly numbered dancers in both groups find themselves in identical positions relative to their neighbors. Of courso, the fact that in this analogy the groups are based upon 81s is of no significance; if the groups consistod of many more the principle would still apply. Another way of looking at the matter is to call attention to the fact that in any type of transposition the position which a specified letter or element of the plain text will
occupy in the final cryptogran is quite definitely a function of the number of letters or elements in the plain text itself. For example, suppose that a plain-text message contains exactly 100 letters, and suppose that the transposition systom and speciric key is such that the 1st plein-text letter appears as the 17th cipher-text letter, the 2 d plain-text letter, as the 68 th , and so on; in another message of exactly 100 letters, enciphered by the same general system and specific koy, it is obvious that tho lst plain-text lettor must also appear as the 17 th cipher-tcxt letter, the 2d plain-text letter, as the 68th, and so on. In short, all correspondingly numbered plain-toxt letters in both messages will appear in identical positions in the cryptograms.
b. Granting the obvious truth of the foregoing, to what use can it be put in the solution of transposition ciphers? Simply this: it enables the cryptanalyst to reconstruct the plain texts of cryptograms: of identical length without oven knowing what the transposition koy or system was that produced them. The process is not at all complicated and if there are several messagos the process is very easy. It consists in superimposing the severai cryptograms and anagramming the columns formed by the superimposition, for it is obvious that any circumstances which can be used as a guide for roarranging the letters in one of the lines of superimposed text in order to form plain toxt will require and can be checked by the rosults of an identical roarrangement of the corrosponding lettors of the other lines of superimposed text.
c. An ex:mple of tho method involving the application of the principles of solution will now be given, using as a basis five mossages assumed to have been enciphered by on unknown but complex type of
transposition. It will now be shown how the security of such a system is demolished when it is used by a large number of intercommunicating commands.
d. Let the following be five cryptograms isolated from among many messages intercepted on the same day and therefore suspected of being in the same key. These five cryptogrems have been isolated because thoy all contain exactly the same number of letters. They are here shown superimposed (Fig. 31) and therefore all the letters in one column have undergone oxactly the same evolutions or changes in position in tho course of encipherment.
TDNMRGREONARIEUETNYITCOFE
ANELNEXEHGILACEMEEN工FXTEE
EENETSLNNTTCOIDOSEAILFIGD
RAMETMIONODIUMALITINOATGT
2673333373333304142344546474849505
EIHISATTMDNRIVORODSWHERORQ
AIEUTTARDTEDNSORIPECMFEARN
EISIGAORWIIDLVVORDELOCHOTH
-WIAARNOIHNLLNRTVWLREMRAIEA
NNAIBTNHITNIASDRMSECUIOVSA
e. Noting a Q in Message 1 column 51 , the obligatory sequence Q U is assumed to be present in that message. There is in Message 1 but one U, which is fortunate. Combining columns 51 and 23, the results are found to be fair. (Fig. 32a). The $\mathbb{F} T$ in the $3 d$ row suggests a, word onding in G H T, such as FIGHP, MIGHT, FIGHP, etc. Searching in Message 3 for a G, two candidates are found: columns 10 and 30. The trigraphs yielded by each combination are shown in Fig. 32b. The second of the two possibilities looks much the better. The trigraph in the first row

51-23	10-51-23	30-51-23
Q U	G Q U	S Q J
NO	N N 0	T N 0
H T	G H T	G IT T
A I	F A I	R A I
A T	0 A T	B A T

FIGURE 32a. FIGURE 32b.
suggests the word SQUARE or SQUADRON; that in the last row suggests BAITLE or BATTALION. This means that a columa with an A at the top and a T at the bottom should be sought. There is only one sucp column, 31. Adding it to the 30-51-23 combination gives what is shown in Fig. 32c. Looking for a column with a D at the top (for SQUAD) and either an A (for BAITALION) or an L (for BAIHLIS), there is only one candidate, column 22, yielding the sequences shown in Fig. 32d. Enough hes been shown of the procedure to make further demonstration unnecessary.

30-51-23-31				30-51-23-31-22				
5	Q	J	A	S	Q	U	A	D
T	N	0	T	T	N	0	T	C
G	H	T	A	G	H	T	A	X
R	A	I	N	F	A	I	${ }^{N}$	F
B	A	T	T	B	A	T	T	A

FIGURE 32c.

Once a good start has been
made, progress is quite rapid, unless the cryptanalyst is unfortunate and arrives at a point where all tho messages
simultaneously terminate in complete words, without a clue as to what follows or precedes in any one of the messages. In such a contingency the only thing he can do is to try all sorts of possible continuations, either "fore" or "aft", that is, in front of the original starting point or after it, until he picks up another word which will enable him to continue. Or he may have to search for a now point of ontry and build upon that, later joining this structure with the other. In the case under examination no particular difficulties are experienced and
the entire five messages are reconstructed. In the course of this reconstruction the numbers applicable to the columns become assembled in proper order. This sequence of numbers is shown in Fig. 33, as the second row of numbers. In the first row are shown the numbers 1, 2, 3, corresponding to the order of the lettors in the plain text.

28314	4619	37				26	35	41	2					45	17	13	40	18	2		
HA V	E 0	R	D	E	R	E	D	R	A	T	I	0	N	W	A	G	0	N	S	0	F
ENE	M Y	D	E	F	E	A	T	E	D	D	I	R	\%	C	T	I	0	N	0	F	R
SEC	$0^{\circ} \mathrm{N}$	D	E	C	H	E	L	0	N	W	I	L	L	L	E	A	V	E	H	E	R
AN I	M A	L	D	R	A	W	N	V	E	H	I	C	L	E	S	0	F	E	N	G	
A M M	O N	I	T	I	0	N	T	R	A	T	N	I	N	c	L	U	D	I	N	G	

8		50	44			51		31				21				49		43		5	39			8	
F	I	R	S	T	S	Q	U	A	D	R	0	N	T	-	G	0	L	D	E	N	V	I	L	L	E
E	T	R	E	A	T	N	0	T	c	E	R	T	A	I	N	A	M	P	U	R	S	U	I	N	G
E	A	T	E	I	G	H	T	A	X	M	X	F	0	R	G	0	L	D	E	N	v	I	L	1	E
N	E	E	R	T	R	A	I	N	F	0	L	L	0	W	F	I	E	L	D	T	R	A		N	
0	R	5	E	D	B	A	T	T	A	L	I	0	N	M	0	V	E	S	A	T	S	I		A	

FIGURE 33.
27. Recovery of the transposition key. - a. Having reconstructed the plain text of the messages in the foregoing case, can the transposition key be found? First, it is necessary to ascertain whother a sirgle columar transposition had been used and if not, then the assumption will be that a double transpositionl had been used.
b. If a single transposition were the case, then there would be a rather simple relationship between the letters which are in adjacent columns in the rectangle. Note what happens in a simple transposition
${ }^{1}$ See Special Text No. 166, Advanced Military Cryptography, Sect. IV.
rectangle such as that shown in Fig. 3t, where the successive cells are numbered and these numbers, taken out of columns just as though letters were present in the cells, then are set down as though they constituted the cryptogram. The numbers then give the order in which the plain-toxt letters, if present, would appear in the cryptogram. Order in which the plain-text letters would appear in cryptogram: 04-12-20-28-36-44-02-10-18-26-34-42-06-14-22-etc. Note the constant difference between

$\begin{array}{llllllllll}6 & 2 & 7 & 1 & 5 & 3 & 8 & 4\end{array}$	sequent numbers: $04-12=8 ; 20-12$
0102030405060708	
0910111213141516	= 8; 28-20 = 8; etc. The only exceptions
1718192021222324	
2526272829303132	to thas constant difference of 8 occur
3334353637383940	
41424344	whon there is a break occasioned by
FIGURE 34.	passing from the bottom of one column to

c. In order to ascertain, in tho case of the 5 mossages, solved In Par. 26, whether single columar transposition was employed, it is nocossary first to obtain the series of numbers which give the order in which the plain-text letters appear in the cryptogram. This is now easy In the case of the 5 messagos solved in Par. 26, for the disarranged numerical sequence at the top of Fig. 33 gives the inverse of the sequance desired. Thero the numbors in maxed sequence morely give the order of the cipher letters in the cryptogram. Hence, by developing the inverse of this sequence, the order in which the plain-tex letters appear in the cryptogram may be obtainod. The disarranged numerical sequence in Fig. 33 is as follows:

The inverse derived from this sequence is as follows:

FIGURE 36.
Such a sequence will hereinafter be termed the basic transposition sequence, or simply the basic sequence. It merely is a sequence of numbers giving the order in which the piann-toxt letters appear in the final ، cryptogram.
d. Since there is seen to, be no constant difference between successive numbers in the basic sequence in Fig. 36, single columnar transposition is ruled out. Double transposition is now assumed to have been used.
e. Referring back to Fig. 34, suppose true double transposition has been effected. Now note the order in which the plain-text letters would appear in the cryptogram.

6	2	7	1	5	3	8	4
01	02	03	04	05	06	07	08
09	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44				

Rectangle D-1

6	2	7	1	5	3	8	4
04	12	20	20	36	44	02	10
18	26	34	42	06	14	22	30
38	08	16	24	32	40	05	13
21	29	37	01	09	17	25	33
41	03	11	19	27	35	43	07
15	23	31	39				

Rectangle D-2

A
B
Basic sequence: 28-42-24-01-19-39-12-26-08-29-03-23-44-14-40-17-35-10-30-13-33-07-36-06-32-09-27-04-18-38-21-41-15-20-34-16-37-11-31-02-22-05-25-43 FIGURE 37.

Nothing in the nature of a series of constant differences between successive numbers is now discerniblc in the basic sequence. But there is, as can readily be seen, a fairly constant relationship between sections of this sequence. For example, take the series of numbers 04-18-38-21-41-15 appearing in the latter half of the sequence and set them under the series of numbers 12-26-08-29-03-23 appearing in the first half of the saquence and find the difference between superimposed numbers only when the number in the uppor line is greater than that in the lower line. Thus:

12-26-08-29-03-23
04-18-38-21-41-15
Differences: 8 \& 8
There is a constant difference between superimposed numbers. The reason for the constant difference $1 s$ nct hard to see if one studios the rectangle at B in Fig. 37. It is caused by the mechanics of the method. The 0_{4} and the 12 come from the same column in A of Fig. 37; the 18 and the 26 also come from one column, the 21 and the 29 , the 15 and the 23. But the 08 and the 38 are in different columns in A of

Fig. 37, and so are the 03 and the 43. These two casos therefore represent instances whers there is a passage from one column to another in the transposition process. Now the constant difference is int this case 8 because the superimposed mumbers happen to be sequent in the columns in which they occur in A, Fig. 37. If two other sections of numbers are compared the constant difference may not be 8 but will be a multiple of that number. For example:

$$
\begin{aligned}
& \begin{array}{l}
28-42-24-01-19-39 \\
- \\
\text { Differences: }
\end{array} \frac{04-18-38-21-41-15}{24} 24
\end{aligned}
$$

Here the difference is a multiple of 24 because the superimposed numbers are at 3 intervals from each other in the respective columns of A; Fig. 37.
f. The foregoing affords a method of ascertaining the width of the transposition rectangle, which is the first step in recovering the key. For if a study is made of the numbers appearing in the basic sequence shown in Fig. 36, based upon finding sections which show a constent difference, the latter will corrospond to either the width of the rectangle or a multiple of the width. An easy way of making this study is to take a section of the mixed sequence in Fig. 36 and add $5,6,7, \ldots$ to the numbers of the sequence for the totals thus obtained from the various additions. A beginning will be made with an assumption of a rectangle of 5 columns. Sinco the cryptograms contain only 51 letters, all totals beyond 51 will be of no significance: Hence it is best to take a section which has a long series of low numbers so that when the additive is applied the majority of the totals will not exceed 51. Such a series is the following (only one number in
it is close to the meximum):
Section of)
basic sequence)... 38-35-33-24--7-10-15-1-48-31-34-39-25-14-11-17-6
Totels after)
adding 5) ... 43-40-38-29-12-15-20-6----36-39-44-30-19-16-22-11
Searching through the besic sequence for a section which has a part of the sequence of numbers in the totals after the additive of 5 has been applied, the results are negative. Trisl is then made of additives of 6 to ll, inclusive, with similar negative results. When an addative of 12 1s applied the rosults are as follows:

Section of)
basic sequence) ... 38-25-33-24--7-10-15--1-48-31-34-39-25-14-11-17-6
Totals after)
adding 12) ... 50-47-45-36-19-22-27-13----43-46-51-37-26-23-29-18 It will be seen, on referring to Fig. 36, that the followng sections are duplicated in the basic sequonce:

$$
50-47 ; 45-36-19-22 ; 27-13-2-43-46-5 i-37-26-23 ; 29-18
$$

The width of the transposition rectangle is certainly 12 columns. There are therefore 3 long columns of 5 letters and 9 short columns of 4 letters in the transposition rectangles D_{1} and D_{2}.
g: Having ascertanned the width, the naxt step is to ascertain the transposition key. Let the additive 12 be applied to the entire basic sequence, as shown in Fig. 38a:

```
A. Besic 27 13 02 43 46 51 37 26 23 41 30 16 20
sequence
B. Plus }3925145558634938 35 53 42 28 32
adaitive
A. Basic 03 45 36 19 22 05 49 38 35 33 24 07 10
sequence
B. Plus 15 57 48 31 34 17 61 50 47 45 36 19 22
additive
```

A. Basic 15014831343925141117065047 sequence B. Plus additixe
A. Basic 211240442918040809422832 sequence B. Plus 332452564130162021544044 additive

FIGURE 38a.
A study is now made to isolate and identify duplicate sections in lines A and B. For example, in line A the sequence 27-13-02-43-46-51-37-26-23 is, except for one number, identical with a sequence in line B. The number 02 in line A is replaced by the number 60 in line B. Since the number 60 in line B is greater than 51 , the total number of letters in the cryptogram, it is clear that it represents the 02 in line A. Now these duplicate sections consist of 9 numbers, and it is clear that two columns of the transposition rectangle are involved, one long column of 5 and one short column of 4 numbers. The dividing point may be between the numbers 43 and 46, or between 46 and 51. No' decision will be made at the moment as to which of these possibilities will be selected. But the whole section will be marked off by brackets be
and the small numbers 1 and 2 will/written along the brackets, as shown in Fig. 38b:

REF ID:A56913

A. Basic $\frac{1}{127130243465137 \quad 262314} 301620$ sequence B. Plus 39251455586349383553422832 additive
A. Basic 03453619220549383533240710 sequence B. Plus 15574831341761504745361922 adaitive
A. Basic 15014331343925141117065047 sequence B. Plus 27 $13604346 \quad 51 \quad 37 \quad 26 \quad 23,29186259$ additive
A. Basic 211240442918040809422832 sequence B. Plus 332452564130162021544044 additive

FIGURE 38b.
The neat section in line A which has a duplicate in line B is 41-30-16-20. The two duplicate sections are bracketed and the process is continucd in this manner and the successive sections are numbered successively in both lines until what is shown in Fig. 38c is obtained:

A. Basic sequence B. Plus additive	12
	$392514.55 .58,63.493835,53422832$
	2
A. Besic sequence B. Plus additive	4 4 5
	$03453619.2205493835133240710^{\prime}$
A. Basic B. Plus àdaitive	8
	15014831343925141117065047
	$2713604346,51372623,29 \cdot 186259$
	7 7 8
A. Basic sequence B. Plus additive	
	211240442918040859422832
	$3324 \quad 5256413016 \quad 20,21 \quad 544044$
	$\frac{12}{10} \frac{12}{12}$
	FIGURP 38.

Now a table of equivalencies between the duplacate sections in lines A and B is drawn up, as follows:

$$
\begin{array}{rllllllllllrrr}
A & \ldots . & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
B & \ldots & 8 & 5 & 12 & 7 & 9 & 4 & 1 & 2 & 11 & 6 & 3 & 10
\end{array}
$$

Deriving a chain of equivalents (as in Par. 24), the following is obtained:

$$
1-8-2-5-9-11-3-12-10-6-4-7
$$

This is a cyclic perqutation of the transposition key. Since Sections 1, 4, and 7 of line A have 5 numbers, the other sections only 4, it follows that these correspond to long columns, which, of course, go to the left of the rectanglo. Honce the transposition key is 4-7-1-8-2-5-9-11-3-12-10-6. "This koy may be proved by applying it to one of the cryptograms and deciphering it.

REF ID:A56913

28. Special cases of solution of double transposition ciphers. a. When the double transposition system is employed in the field and is used for a voluminous traffic it is almost inevitable that certain situations will arise which make possible a ravher easy nolution. Aside from the case in which several cryptograms of identical length and in the same key are intercepted, other cases of a special nature may ariso. Somo of these will be discussed in this paragraph.
b. First, there is the case in which an inexperienced cryptographic clerk fails to execute the double transposition properly and causes the transmission of a cryptogram which is only a singla transposition. The solution of this mossage will be a simple matter and wili, of courso, yield tho koy which will pormit the reading of all other messages even though the latter have been corrcctly cryptographed. The only difficult part of the matter is to find among a large number of intercepted cryptograms one which involves a blundor of this sort. When the cryptonalyst has, as a resuit of considerable oxperience, become adept in the solution of tranoposition ciphers the work of testing cryptograms to ascertain whether or not they involve single colunnar transposition is not difficult and goes quito rapidly. For only a few minutes are sufficient to give him tho "feoling" that the cryptogram is or is not solvable by single transposition. He might not be able to point out any spocific indications which give him this foeling if asked to do so; nerertheless it must be recognized that his intuition is alone sufficient to tell him when there is hope of solution along this line and when further work upon the hypothesis of single transposition is useless.
c. (1) Next comes the çase in which the enciphering rectangle of a double transposition cryptogram happens to be a perfect square, (that 1s, both D_{1} and D_{2} rectangiep are perfect squares). In this case, not only, is such a cryptogram deftectable at once, since the total number of letters is the square of the number of elements in the key, but also the cryptogram can be solved in very simple manner. For the cryptogram now represents a case in whifeh a completely filled rectangle has been employed, and moreover there is no need even to assume various widths.
(2) Given the following cryptogram of 49 letters (7x7) as an example, the text is transeribed as shown in Fig. 39a and retranscribed as in Fig. 39b.

MRYPTOGRAM
UCTRNOESHIETOLRGASOEDUWDD
NOKOERDNDIRFENCOEEEMNNVE

1234567	1	74	261537
USRUORE		COUNTER	HOSTILE
CHGWEFE	SHIET $\mathrm{C}_{\text {L }}$	HOSTILE	FORCEE
TIADREM	RGASOFD	GEROADS	COUNTER
RESDDNN	UWDDNOE	FOUNDED	EDONRID
NTONNCN	OERDNDI	EDONRID	GEROADS
OOEODOV	RFENCPE	FORCEEN	EVEN
ELDEIEE	EEMNNTH	EVENMEN	W0 0

FIGURT 39日. FIGURE 392
(3) The columns of Fifg. 39b are now anagrammed, as in Fig. 39C, and the rows rearranged, as in Fig. 39d.
' ${ }^{\text {d, When the encipheripe rectangle is not a perfect square but }}$ nevertheless a complete rectegngle, solution of a single cryptogram becomes somewhat mofe diffiçft, Here the columns are all equal in length, since the last row of the rectangle is completely filled. Two cases will be consịaered; fipst, when the width of the rectangle is a
multiple of the depth, or number of letters in the colums, and second, when the depth is a multiple of the width.

- $\{1$ Yaking $u p$ the first case, note the encipherment in Fig. 40.

Besic
sequence 343940353714142015173236313833261834246414843 Cryptogram IONLESROQANLETVHIWLEGDIIH

4910574449504547122621282312161118182429302527 NFIWL TSEAV RHNOESURDTALDCG FIGURE 40.

If the numbers above the letters in the cryptogram are examined it will
be found that the cipher groups fall into two categories, as follows:
$\mathrm{A}\left\{\begin{array}{rrrrr}4 & 9 & 10 & 5 & 7 \\ 14 & 19 & 20 & 15 & 17 \\ 24 & 29 & 30 & 25 & 27 \\ 34 & 39 & 40 & 35 & 37 \\ 44 & 49 & 50 & 45 & 47\end{array}\right.$
B $\left\{\begin{array}{rrrrr}2 & 6 & 1 & 8 & 3 \\ 12 & 16 & 11 & 18 & 13 \\ 22 & 26 & 21 & 28 & 23 \\ 32 & 36 & 31 & 38 & 33 \\ 42 & 46 & 41 & 48 & 43\end{array}\right.$
(2) There is obviously a definite regularity in the composition of the cjpher groups whereby if tho letters in any one group can be assembled properly, all the letters in the other groups belonging to the same category (A or B) will be assembled correctily too. For example, in category B the 3d, lst, and 5th letters in each group are sequent; in the plain-text rectangle in category A the lst and 4 th letters in each group are sequent.

Moreover, all the letters in each group come from the same row in the D_{1} rectangle. Consequently, if two groups coming from the same row can be identified, there will be 10 letters whach may be rearranged by experiment to form plain text, and the key for this rearrangement will apply to all other pairs of groups. For example, the messago in this case has a Q and only one U. The Q is in the $2 d$ group, the U.is in the 9th group." These two groups come from the same row and the letters may be anagraramed:

$$
\frac{12345}{S R O Q A} \text { and } \frac{678910}{S U R D T}
$$

$$
\begin{array}{lll}
2 i & 6 & 8 \\
86101 & 475 & 2 \\
\hline \text { RSTSQUAD R }
\end{array}
$$

Experiment may now be made with two other groups, applying the same transposition. Thus:

$$
\begin{aligned}
& \frac{12345}{10 N I E} \text { and } \frac{678910}{\text { NLETV }}
\end{aligned}
$$

Obviously the proper key for rearrangement is 8-6-10-1-4-7-5-9-2-3. By continuing this procedure the following additional rows of the D_{1} rectangle are reconstructed.

(12345		678910
NFIW	and	HIWLE
$\left\{\begin{array}{l}8-6-0-1-4\end{array}\right.$		7-5-9-2-3
WHENW		ILIFI
(12345		678910
TSTAV	and	G D I H
$\left\{\begin{array}{l}8-6-10-1-4\end{array}\right.$		7-5-9-2-3
I GHTA		D VISE
(122345		678910
ALDCG	and	RHNOE
$\{8-6-10-7-4$		7-5-9-2-3
NREAC		HGOL D

The various rows are now assembled in sequence, giving the foliowing:

> WHENWILLII
> RSTSQUADRO
> NREACHGOLD
> ENVILIETCN
> IGHTADVISE

The key can now be reconstiructed with ease.
(3) The exyptanalyst in tinis case must, of course, make on assumption as to the width of the enciphering rectangle before he can apply the method. With a number such as 50 , the dimensions 10×5 or 5 स 10 suggest themsolves. The process of finding ciphor groups which form pairs on the same row is one of "cut and try." If there is a single Q and a single U in the message, the intial pair of groups is obvious.
f. When the depth of the rectangle is a multiple of the width, solution follows the lines of the precoding case. Taking the same message as beforo, noto what happens in oncipherment with a rectongle of 5 columns containing 10 lettors ench:

 184316412045194717 kz 336311035934732
DHUIO ARTAG LVIEI LTIIN
FIGURE 47.
Taking the numbers above the letters and arranging them in sections of 10, the results are as follows:

1	2	3	4	5	6	7	8	9	10
3	28	1	26	5	30	4	29	2	27
8	33	6	31	10	35	9	34	7	32
13	38	11	36	15	40	14	39	12	37
18	43	16	41	20	45	19	44	17	42
23	48	21	46	25	50	24	49	22	47

It is obvious that if the 3d, 9th, lst, 7th, and 5 th columns are made sequent, good text will be produced within the 5 rows. Thus:

1-2-3-4-5-6-7-8-9-10	3-9-1-7-5
TTRIQNSOSE	RSTSG
EOWHWDNLHG	WHENW
EINDCEASRV	NREAC
DHUIOARTAG	UADRO
LVIEILFILN	ILIFI

FIGURE 42.

The subsequent stops ars obvious. Here again in solving an unknown example it would be necessary to test out various assumptions with respect to the dimensions of the rectanglo before attempting to apply the method outlined.
g. Whencver this simple relationship. betweon the width and dopth of the rectangle obtains, that is, when one dimension is a multiple of the other, solution of a single cryptogram is relatively easy., The reason for this is not hard to see. When the enciphering rectangle is a perfect square, every column of the D_{2} rectengle 1 s composed of letters which all come from the same row of the D_{1} rectangle. Hence solution is in this case the same as though a false double transposition were in effect, with merely the columns and the rows of a single rectangle shifted about. When the width of the transposition rectangle is twice the depth, a colunn of the D_{2} rectangle contains half the letters appearing on one row of the D_{1} rectangle; two columns therefore contain all the letters belonging in the same row of the D_{1} rectangle. If the width were three times the depth, then three columns of the I_{2} rectangle would contain all the letters belonging in tho same row of the D_{1} rectangle, and so on. When the width is half the depth, a column of the D_{2} rectangle contains all the letters appearing in two rows of tho D_{1} rectangle; when the width is one-third the depth, a colunn of the D_{2} rectanglo contains all the letters appearing in three rows of the D_{1} rectangle, and so on. But when this multiplo relationship no longer obtains, solution becones more difficult because each column of the D_{2} rectangle is composed of letters coming from several columns of the D_{1} rectangle, in an irregular distribution. Solution is, of course, most
difficuit when incompletely-filled rectangles are, used. However, although solvable, even in the case of a single message, the solution will not be dealt with in this text.
29. Concluding remarks on transposition systems. - a. Pure transposition, that is, transposition by itself, without an accompanying subistitution or other means of disguise for the letters of the plain text, hardly affords sufficient guarantees for cryptographic security in.the case of a voluminous correspondence which must be kept really secrot for any length of time. For no matter how complex the method, or how many transpositions may bo applied to the letters of a single message, sight must nevor be lost of the fact that when there are many messages in the same koy there are bound to be two or more of idenitical length; and when this is the case the type of solution described in Par. 26 may be applied to these cryptograns, the transposition keys recovered, and then all other messages in the same key translated.
b. Transposition methods are, from the cryptographic point of view, rather highly regarded because they are, as "hand methods" go, rather rapid in operation and usually quite simple. However, from their very nature they entail the disadvantage that a single-letter omission or addition may render their decryptographing difficult if not impossible for the average cryptographic clerk. But from the standpoint of modern cryptography the principal disadvantage of transposition mothods is that thoy can be mechanized only with great difficulty-meertainly with groater difficulty than is the case of substitution methods. Orily ono or two attempts have been made to produce machinery for effacting transposition, and these have not been successful.

REF ID:A56913

SECIION VI

MISCELLLANEOUS TRANSPOSITION CIPHERS

Paragraph

Special designs or geometric figures 30
Revolving grilles 31
Solution of example 32
Concluding remarks on the solution of revolving grilles 33
Indefinite or continuous grilles 34
30. Special designs or geometric figures. - It is impossible here to 'elucidate and demonstrate by example all the methods which may be used for the solution of cryptograms produced by the many various types of transposition designs or geometric figures other than the rectangular ones thus far treated. Referonce may be made to such dosigns as triangles, trapezolds, and polygons of various symmotrical shapes. Most of these dosigns, howover, are impractical for military correspondence in any case, so that no attention need be given them in this text. If such designs were used, although it might be difficult to solve a single or oven a few messagos in the same key, the general solution later to bo described is applicable whenevor two or more messages of identical longths but in the seme kay ars available for study. Since most of thesc designs are of a fixed or inflexible character with regard to the number of letters that can be accommodated with ono application of the design to tho plain text to be enciphered, the production of several cryptograms of identical longth in the aame key is by no moans an unusual circumstance. Thore are, however, one or two methods which do warrant discussion in this text, the most mportant being thoso which use grilles of the revolving, ${ }^{1}$ or continuous types.

[^6]31. Revolving grilles. - a. In this type of grille apertures are distributed among the cells of a square sheet of cross-section paper in such a manner that when tho grille is placed upon a grid (a sheet of cross-section paper of the same size as the grille) and turned three times succossively through angles of 90° from an initial position upon the grid, all the grid cells (or all but the central grid cell) are disclosed in turn. Correspondents must, of course, possess identical grilles and they must have an understanding as to its initial position and direction of rotation, clockvisc or counterclockwise. There are two procedures possible in using such a grille. (1) The letters of the plain text may be inscribed successavely in the grid cells through the aportures disclosed by the grille; when the grid has been completely filled the grille is removed and the letters transcribed from the grid according to a prearranged route. (2) All the letters of the plain text may first be inscribed in the grid cells according to a prearranged route and then the grille applicd to the completely-fillod grid to give the sequence of letters forming the cryptogram. The two methods of using the grille are reciprocal; if the first describod mothod is used to encipher a message, the second method is used to deciphor the cryptogram, and vice vorsa. The first of the two abovc-described methods, the ono in which the plain text is inscribed through the apertures, will here be referred to as the alpha method; the second method will be referred to as the beta mothod.
b. The number of letters in a cryptogram enciphered by such a device is either a perfect square, when the grillo has an even number of cells per alde, or 1 s 1 less than a perfect squaro, when the grille has
an odd number of cells per side; in which case the central cell of the grid is not disclosed and hence remains unifilled. ${ }^{2}$
c. The manner of construction and the method of use of a grille entails certain consequences which can be employed to solve the cryptograms and to reconstruct the grille itself. The student who wishes to get a thorough grasp of the underlying principles to be explained will do well to prepare a grille ${ }^{3}$ and study the properties which characterize cryptograms produced by its use. Three principles will be brought to bear in the solution of grille ciphers of this type and they will be demonstratad by reference to the grille and message shown in Fig. 43.
d. The first principle may be termed that of gymmotry. When a rovolving grille is in position 1 a certain number of cells of the underlying grid are disclosed (uncovered). For oach such disclosed cell of the grid there is a symmotrically corresponding cell on the same grid which is disclosod when the grille is turned to positions 2, 3, and 4, because the aportures of the grille remain fixed--only their positions change as the grille is turned in the procoss of enciphernont. Now two successive apertures in position 1 will of course be occupicd by a
2^{2} of course, the cryptogram may consist of the letters produced by several applications of the same grille. For example, if a message of

YOUR LINES TO THIS COMGLAND POST CUT BY SIMEL FIRRI-REQUTST YOU CEIANGE THE ROUTE

* GRILLE: 8×8

B

$$
\text { a Position 1 } \quad \text { b }
$$

C

Position 3							
1	2				6	$\begin{aligned} & \text { II } \\ & 7 \end{aligned}$	8
9	10	$\begin{array}{\|l\|} \hline \mathrm{F} \\ 11 \end{array}$	12	13	14	15	1 16
$\begin{gathered} \mathrm{F} \\ \hline 17 \\ \hline \end{gathered}$	18	19	$\frac{I}{20}$	R	22	23	F
$\begin{array}{\|l\|} \hline \mathrm{R} \\ 25 \\ \hline \end{array}$	26	27	28	29	30	31	32
33	34	35	36	$\begin{array}{\|c\|} \hline \frac{5}{37} \\ \hline \end{array}$	38	Q	40
42	42	$\begin{aligned} & 4 \\ & 43 \\ & \hline \end{aligned}$	44	45	46	47	48
49	50	$\begin{aligned} & \mathrm{E} \\ & 51 \\ & \hline \end{aligned}$	52	53	54	S	56
$\begin{aligned} & T \\ & \hline T \\ & 57 \end{aligned}$		59	60	$\begin{array}{\|c\|} \hline y \\ 61 \\ \hline \end{array}$	62	63	64

0	Position 4						
$\left\lvert\, \begin{aligned} & 0 \\ & 1 \end{aligned}\right.$				$\left\lvert\, \begin{array}{\|c\|} U_{5} \\ \hline \end{array}\right.$	C 6	1	8
9	10	11	12	13	14	15	15
17	$\begin{gathered} \mathrm{H} \\ 18 \end{gathered}$	A 19	20	21	22	N 23	24
25	26	27	28	29.	G	㝥	32
$\begin{gathered} \mathrm{T} \\ 33 \\ \hline \end{gathered}$	34	35	$\begin{array}{\|c\|} \hline H \\ \hline 36 \\ \hline \end{array}$		$\begin{array}{\|r} \hline \\ \hline 38 \\ \hline \end{array}$	39	40
41	42	43	44	45	46	47	48
49	$\begin{array}{\|l\|} \mathrm{R} \\ 50 \end{array}$	51	$\begin{array}{\|c\|} 0 \\ 52 \\ \hline \end{array}$	53	54	55	
57	58		60		$\begin{array}{\|c\|} \hline T \\ 62 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \frac{1}{63} \\ \hline \end{array}$	64

Tinal Grid								
	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	O	M 3	Y 4	0 5	C	H 7	0 8
	$\begin{aligned} & 2 \mathrm{I} \\ & 9 \\ & 9 \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{U} \\ 10 \\ \hline \end{array}$	1.	12	A	R	N	${ }_{16}$
	$\begin{gathered} F \\ 17 \\ \hline \end{gathered}$	H	A	20	$\begin{array}{r} R \\ 21 \end{array}$	${ }_{2}{ }_{2}$	N	E
E 2	$\begin{aligned} & \hline \mathrm{R} \\ & 25 \\ & \hline \end{aligned}$	I 26	$\begin{array}{\|c\|} D \\ 27 \\ \hline \end{array}$	$\begin{array}{\|c\|} \mathrm{N} \\ 28 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline p \\ 29 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{G} \\ \hline 0^{2} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{E} \\ & 31 \\ & \hline \end{aligned}$	- $\begin{array}{r}0 \\ 32 \\ \hline\end{array}$
	$\begin{aligned} & T \\ & \hline \\ & 33 \end{aligned}$	$\begin{array}{\|c\|} \hline 5 \\ 34 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 9 \\ \hline 95 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{5}{36} \\ \hline \end{array}$	$\begin{gathered} \mathrm{E} \\ 37 \end{gathered}$	$\begin{array}{\|c\|} \hline \\ \hline 8 \\ \hline \end{array}$	38	
	S	$\begin{gathered} c \\ 42 \\ 4 \end{gathered}$	U 4	T 4	- 45	U	T 47	[${ }_{4}^{8}$
	$\begin{aligned} & 4 \\ & 49 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline R \\ 50 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \\ 51 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ 52 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \\ 53 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \\ 54 \\ \hline \end{array}$	$\begin{array}{\|r\|} \mathbf{s} \\ 55 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ 56 \\ \hline \end{array}$
		$\begin{gathered} c \\ 58 \end{gathered}$	$\left.\begin{array}{\|c} 3 \\ 59 \end{array} \right\rvert\,$	$\begin{array}{\|c} Y \\ 60 \end{array}$	$\begin{array}{\|c\|} \hline \\ 61 \end{array}$	$\begin{array}{\|c\|} \hline \\ 62 \\ \hline \end{array}$	$\begin{gathered} E \\ 63 \\ \hline \end{gathered}$	(S

plain-text digraph (alpha method of encipherment). When the grille reaches position 3, after a turn of 180°, the two apertures concerned will disclose two cells which will also be occupied by a plain-text digraph, but the letters composing the digraph will be in reverse order in the plain text. This property is true also of two successive apertures in position 2 when thoy turn up in position 4 . Let the student verify this by unoans of the grille which he has constructad. Thus, reforring to Fig. 43, at A 1s shown the grille in position i. In the first row are shown 2 apertures, at coordinatos 1-4 and 1-8. At B arc shown the results of the first application of the erille to the grid. Note the letters YO (first 2 letters of message) in cells 4 and 8. Now noto that tho symnetrically corresponding cells disclosod when the grille is in position 3 are cells 57 and 61 and thoso correspond to cells 4 and 8 in the rovorso order. The lettor T in cell 57 therefore symmetrically corresponds with letter 0 in cell 8 ; the letter Y in cell 61 corresponds with letter Y in cell 4. The same is true of all othor lottors in positions 1 and 3. As a consequence of this proporty of grilles, a singlo cryptogram can be handled as though it were really two cryptograms of identical length, having certain characteristics by means of which an assumption made in one toxt may be verified by what it fielde In the other text. That is, when the cryptogram is tronscribed as a scries of letters in ono line and the same text is wnitten in another line under these lettors but in revorsed order, then the superimposed letters will bear the symmetrical relationship pointed out in this paregraph. If two letters in the upper line of such a transcription are taken to form a digroph, the two corresponding letters in the lower line

REF ID:A56913

must form a digraph but in reversed order in the plain text. For example, if the cryptogram of Fig. 43 is written out as explained above, the result is as shown at 'Fig. 44. Now the presence of the Q in position

123456789101112134151617181922223423273203132
OOMYUCHOMUELARNLFHAIRLNERIDNPGEO SETYYBCTUSSIOERHTTUOTUCSEQEEHTST

33343537733944424344546474849505152545556575856061626364 TSTHETRESCUTOUTTHREOISSUTCBYYTES OEGPNDIRENLR.IAHFLNRALEUMOHCUYMOO FIGORE 44.

39 suggests that it be combined with a U. If the U in position 43 is taken then the symmetrical digraph corresponding to QU would be LI; if the U in position 56 is taken, the symmetrically corresponding digraph would be MI. Furthernore, two apertures which are in the same column and which do not have an intorvening aperture between them, will yield a good digraph in all 4 positions of the grille. For exemple, note apertures 2-6 and 3-6 in Fig. 43-A. Whon the grillo is turned to positions 2, 3, and 4 they will disclose two sequont letters in each case. An analysis of the symmotries produced by an 8×8 grille yields the following table, which shows what cells are disclosed in the other 3 positions when an aperture is cut in any one cell in one of the four positions of the grille. For example, an aperture cut in cell 11 (position 1) will disclose grid cell 23 when the grille takes position 2, grid cell 54 when tho grille takes position 3, and grid coll 42 when the grille takos position 4.

Positions:

13	24	13	24	13	24	13	24
1	8	5	25	11	23	19	22
64	57	60	40	54	42	46	43
2	16	6	17	12	31	20	30
63	49	59	48	53	34	45	35
3	24	7	9	13	26	21	27
62	41	58	56	52	39	44	38
4	32	10	15	14	18	28	29
61	33	55	50	51	47	37	36

FIGURE 45.
e. The second principle may be termed that of exclusion. On account of the system upon which the construction of a revolving grille is based, a knowledge of the location of an aperture in one of the bands brings with it a knowledge of 3 other locations in which there can be no apertures. For example, referring to Fig. 43-A, the presence of the aperture at coordinates 1-4 precludes the presence of apertures at coordinates $4-8,8-5$, and 5-1. By virtue of this principle of exclusion, the number of possibilities for choice of letters in solving a cryptogram prepared by means of a revolving grille becomes much reduced and the problem is correspondingly simplified; as will be seen presently.
f. The third principle may be termod that of sequence. When trying to build up text, the letters wich follow a given sequence of plain-text letters will usually be found to the right and below, that is, If the normal method of writing was used (left to right and from the top downward). For example, referring to Fig. 44, if the trigraph Q U \mathbb{S} is to be built up, neither the U in position 5 nor that in position 10 Ls very likely to bo the one that follows the Q; the U in position 43 is
the most likely candidate because it is the first one beyond the Q. Suppose the \mathbb{U} in position 43 is selected. Then the \mathbb{E} for Q U E cannot be the one in position 40 , or in any position in front of 40 , since the E muat be beyond the \bar{J} in the diacram.
g. In solving a grille, it will be found advisable to prepare a piece of cross-section paper of proper size for the grille and to cut each aperture as soon as its position becomes quite definate. In this way not only will the problem be simplified but also when completed the propor grille is at hand.
32. Solution of example. - a. Suppose the cryptogram at Fig. 43-G is to be solved. It has 64 letters, suggesting a grille 8×8. The cryptogram is first transcribed into a square 8×8, yialding what has already been obtained as Fig. 43-F. The Q in position 39 suggests that it is part of a word inscribed when the grille was in position 3, since there will be 16 plain-text lottors inscribed at oach position of the grille. Then a piece of cross-section papor is prepared for making the grille as shown in Fig. 45-A, and an aperture is cut'in the proper position to disclose, in position 3, cell 39. It will be found that this is the aperture located at coordinatos 4-2 of the grille shown in Fig. 45-A. At the same time the other 3 cells numbered 4 in the 2 d band of the grille are markad so that thcy cannot bocome apertures. The result is shown in Fig. 45-B. Conforming to the principie of sequence, the U to be combined with the Q is sought to the right of the Q in Fig. 43-F'. Thore are three candidates, in positions 43, 46 and 56. They yield:

（Grille in position 3）

REF ID:A56913

-					
39	43	39	46	39	56
Q	U	Q	U	Q	U
I	L	I	A	I	M
$(=I$	$\left.I_{p}\right)$	$(=A$	$\left.I_{p}\right)(=M$	$\left.I_{p}\right)$	

All of the symmetrical correspondents of these 3 QU's are good digraphs and it is impossible to eliminate any of the three alternatives. The U in position 43 would place an aperture at coordinates 6-3 in Fig. 45-B; the U in position 46 would place an aperture at coordinates 6-6; and the U in position 56 would place an aperture at coordinates 7-8. All of these are possible, none being excluded by principle 2. Suppose the $Q U$ is followed by E. There are only two possibilities: an E in cell'5l and an E in cell 63. The following possibilities are presented:

None of the symmetrical correspondents of the G EIS are imposaible sequences in plain text, although 0 A I is not as probablo as the others. (The 0 could be the end of a word, the AI the beginning of the word AID, ATM, ATR, etc.) Each of these possibilities would be tested by principle 2 to see if any conflicts would arise as to the positions of apertures. As in all cases of transposition ciphers, the most difficult part of the solution is that of rorcing an entoring wedge into the structure and getting a good start; when this has been done the rest is oasy. Note what the results are when the proper spertures are assumed for QUEST in this case, as shown in Fig. 45-G. In position 1 this yields OUR LI ...; in position 2 it yiolds two digraphs AN and UT; in position 4 it yields two digraphs $H A$ and RO. Tho student should note that the

FIGURE 45-C.
(Grille in position 3)
indicated digraphs AN and RO in positions 2 and 4, respectively, are certain despite the fact that there is a space between the two apertures disclosing these letters, for the principle of exclusion has permitted the crossing off of this cell as a possibility for an aperture.
b. Bnough has been shown of the procedure to make further demonstration unnecessary. Given the sequence OUR II one bogins to build on that, assuning a word auch as LINEL. This yields possibilitics for tho placement of additional aportures in the grille; these are tested in positions 2, 3, 4, and so on. When any 16 consecutive letters of plain toxt have 'been established all apertures have been ascertained and the problem has been completod. Subsequent cryptograns propared by the same grille can be read at once.
c. If attompts at solution on the basis of the alpha method of using a grille have failod, the obvious modifications in procedure on the basis of the bota method cian readily be made.
33. Concluding remarks on the solution of ruvolving grilles. a. Thore is nothing about the mechanics of revolving grillos which prevents their omployment in onciphoring complete words instond of individual Letters. Howover, tho assambling of whole words in intolligible sequences and thus the reconstruction of the orieinal plain text is a much easier matter than asscmbling single letters to form the words of the original plain text.
b. In case the same grille has been employed several times with separate grids to encipher a message that is considerably longer than a single grid will accomodate (see footnote 2, Par. 3lb), the several sections eech representing the set of letters enciphered on one grid may be superimposod and the general solution described in Paragraph 28 may then be applied.
c. In case the capacity of a grille is in excess of the number required by the length of the text to be onciphered, either of two procedures may be agreed upon. The grid cells which would otherwise be unoccupied may be filled by nuils, or the grid may be left incomplete. As regards the former procedure, little more need be said than that the presence of a few nulls will only delay solution a bit unvil the fact that nulls are being employed for this purpose becomes established. But the second type of procedure calls for more commont. If the grid is to be loft incomplete it is necessary, bofore applying the grille, to count the number of plain-text letters and to cancel from the grid a number of cells equal to the number of cells in oxcoss over the total number requirod. The position of the cells to be cancelled must be agreed upon; commonly they are those at the end of the grid. Such cells are marked 80 that when they bocome exposed during the rotations of the grille they will not be used. Thus, for example, the erille shown in Fig. 43-A is intended for a grid of 64 letters; if the message to be enciphered contains only 53 letters, 12 cells of the grid must bo concelled, and by agroement thoy may be cells 53 to 64 , inclusivo. The solution of a single cryptogram of this sort, or oven of several of thom of differont lengths, may become a rather aififcult matter. First of all, cluos as to
the dimensions of the grille are- no longer afforded by the total number of letters in the cryptogram, so that this information can be obtained only by more or less laborious expèrimentation. Grilles of various dimensions,must be assumed, one after the other, until the correct dimensions have been found. In the second place, the symmotrical relationships poinied out in Paragraph 31 no longer obtain, so that a single cryptogram cannot be handled as though it were constituted of two messages of 1 dentical length. of coursc, in trying out any assumed dimensions, the 64 jetters of the cryptogram may be writton out in two superimposed lines, blanks being left for those positions which are unfilled. The procedure thon follows the normal linos. About the most hopeful clues would be obtainod from a knowledge of the circumstances surrounding the transmission and affording a basis for the assumption of probable words. However, were such a system amployod for regular communication there would undoubtedly be cases of cryptograms of idontical lengths, so that tho type of solution given in Paragraph 28 will be applicable. Once a solution of this sort has been obtained, tho dimensions of tho grille may be ascortained. Subsequent cryptograms may then be attacked on the basis of the normal proceduro, with such modifications as are indicated by the absonce of the number of lettors needed to make a completely-filled grid.
34. Indefinito or continuous grilles. - a. In his manual of cryptography, Sacco illustratos a type of grille which he has devised and which has elements of practical importance. An oxample of such a grille is shown in Fig. 46. This grille contidins 20 columns of cells and ench column contains 5 apertures distributed at randem in the column.

REF ID:A56913

FIGURE 46.
There are therefore 100 apertures in all and this is the naximum number of letters which may be enciphered in one position of the grille. The plain text as inscribed vortically, from left to right, using only as many columns as may be necescary to inscribe the complete message. A 25-letter message would roquire but 5 columns. To form the cryptogram the lettors are transcribed from the rows, taking the letters from loft to right as they appsar in the apartures. If the total number of lettors is not a multiple of 5 , sufficient nulls are addod to mako it so. In decryptographing, the total number of lettors 20 divided by 5 , this giving the numbur of colume amployed. The cipher text is inscribod from left to right and top downmards in the apertures in the rows of the rndicated number of columns and the plain text then reappears in the apertures in the columns, reading downard and from loft to right. b. Such a grille con assume 4 positions, two obvorse and two
reverse. Arrangements must be made in advance as to which positions will be employed.
c. The solution of a single cryptogram enciphered by one and only one position of such a grille presents a hopeless problem, for the apertures being distributed at random throughout the grille there is nothing which may be seized upon as a guide to the reconstruction of either the grille or the plain text. It is conceivable, of course, that a person with an infinite amount of patience could produce an intelligible text and a grille conformable to that text, the grille having a definite number of columns and a fixed number of apertures distributed at random throughout the columns. But there would be no way of proving that the plain text so obtained is the actual plain text that was enciphered; for it woul̄ be possible to produce several "solutions" of the same character, any one of which might be correct. 4
d. However, suppose a grille of this sort were employed to encipher a long message, requiring twosor more applications of the grille. For example, in the case of the grille shown in Fig. 46 , having a capacity of 100 letters per applicntion, suppose a message of 400 letters were to be enciphered, requiring two obverse and two reverse applications of the grille. It is obvious that symmetrical relationships of the nature of those pointed out in Paragraph 31 can be established. of course, if the grille is used several times in the same position to its full capacity, producing cryptograms of multiples of 100 letters, then the

[^7]
REF ID : A56913

sections of 100 letters may be superimposed and the solution in Paragraph 28 applied.
Q. If the grille shown in Fig. 46 were used to encipher two messages, one of 80 letters,, the other of 85 , it would be possible to solve these messages. For by eliminating 5 letters from the longer message, the two cryptograms can be superimposed and handled as in Paragraph 28. The difficulty would be in finding the 5 extra letters. of course, if it should happen that one of the messeges required 3 or 4 nulls and letters such as J, X or Z were amployed for this purpose, the nulls would be likely characters for elimination. But regardless of this, even if letters of medium or high frequency were used as nulls, patient experimentation would ultimately lead to solution. The latter, it must be conceded, would be difficult but not impossible.

SECTION VII

COMBINED SUBSTITUTITON-TRANSPOSITION SYSTITMS
Paragraph
$\begin{array}{lll}\text { Monoalphabetic substitution combaned with transposition } & 35 \\ \text { Other types of combined substitution-transposition systems .. } & 36\end{array}$
35. Monoalphabetic substitution combined with transposition. a. A message may undergo monoalphabetic substitution and the resulting text passed through a simple transposition. When this is the case a uniliteral frequency distribution will, of course, exhibit all the characteristics oi monoalphabeticity, yet the cryptogram will resist all attempts at solution according to straightforward simple substitution principles. It is usually not dıfficult to detect that a transposition is involvea because there will not only be long strings of low-frequency letters or high-frequency letters but what is more important, there will be very few or no repetitions of digraphs, trigraphs, and totragraphs, since these will be broken up by the transposition. When a unilitoral distribution presents all the external evidences of monoalphabeticity and yet there are no ropetitions, it is almost a positive indication of the presence of transposition superimposed upon the substitution, or vice versa. (The former is usually the case).
b. When confrontod with such a situation the cryptanalyst usually proceeds by stages, first eliminating the transposition and then solving the monoalphabet. It is of course obvious that the general solution for transposition ciphers (cryptograms of identical length in the same key) will not be applicable hara, for the reason that such a solution is based upon anagramming, which in turn is guided by the
development of good digraphs,-trigraphs, and polygraphs. Since the letters of a combined substitution-transposition cipher are no longer the same as the original plain-text letters, anagraming of colums forméd by superimposing identical-length cryptograms can yield no results, because there is nothing to guide the cryptanaylst in his juxtaposition of columns.
c. Of course, if it should happen that the substitution process involves known alphabets, the cryptanalyst can remove the effects of the substitutive process before proceeding to eliminate the transposition, even if in the encipherment the substitution came first. For example, if a standard cipher alphabet were_employed for the substitution the uniliteral frequoncy distribution would give indications thereof and the cipher letters could mmodiately be converted to the normal plaintext equivalents. The latter may then be studied as though meroly transpósition-had been applied.. But if unknown mixed cipher alphabets were employed, this initial comparison can not be accomplished and a solution must wait upon the removal of the transposition before the substitution can be attacked.
d. Of course, if nothing is known about the system of transposition that has been employed, there is hardly anything to do but experiment with various types of transposition in an attampt to bring about such an arrangement of the toxt as will show rapetitions. If this can be done, then the problem can be solved. For example, suppose that a message has beon enciphered by a single mixed cipher alphabot and the substitution text has then been inscribed within a rectangle of certain dimensions according to one of the usual routes mentioned in Paragraph 5.

REF ID:A56913

Repetitions in the plain text will of courise be preserved in the substitution text but will be destroyed after the transposition has been applied. The cryptanalyst, howevor, in his attempts to eliminate the transposition may experiment with route transpositions of the various types, employing rectangles of various dimensions as suggested by the total number of letters in the cryptogram. If he perseveres; he will find one route which he will know is correct as soon as he tries it because it will disclose the repetitions in the plain text, although the latter are still covered by a substitution.
e. Practically all the methods of transposition which may be applied to plain text may also be applied to a text resulting from an initial transformation by substitution. As already mentioned, route transposition may be used; reversed and rail-fonce writing, columar transposition with or without keying and with complete or incomplete rectangles are also possible. From a practical standpoint, keyed columnar transposition applied to a monoalphabetic substitution is not only a popular but also a fairly secure combination becauso in this case the elimination of the transposition is a rather difficult matter. If the rectangle is completely filled the problem is not insurmountable In the cese of a long message transposed by means of transposition with a rectangle of fairly small dimensions. For by assuming roctangles of various dimensions suggested by the total number of letters, cutting the columns apart, and then combining colums on the basis of the number of repetitions produced within juxtaposed columns and between different sets of juxtaposed columns, it is possible to reconstruct the roctangle nnd thus renove the transposition phasc. This, however, is

REF ID:A56913

admittedy a slow and difficult process even under the most favorable conditions; and if the rectangle is incompletely filled the process is practically futile. For in the latter case the lack of absolutely clear-cut knowledge as to the lengths of the columng, the juxtaposition of columar material becomes replete with uncertainties and engenders feelings of confusion, hopelessness, and inadequacy in the mind of the cryptanalyst. However, he need not be wholly in despair if he is confronted with a problem of this nature in war time, when many cryptograms become available for study. For there are special methods of solution suitable to the occasion, created by special circumstances attendant upon the interception of a voluminous traffic. In subsequent paragraphs the student will come to understand what is here moent by the special circumstences and will learn of these special solutions.
36. Other types of combincd substitution-transposition systems. a. There is no technical obstacle to the application of a transposition to the text resulting from any type of substitution, even if the latter is polyalphabetic or polygraphic in nature. Tho obstacles or rather objections to such combinations are practical in thoir character--they are too complex for ordinary use and the prevalence of errors makes them too difficult to handle, as a general rule. However, they have been and are sometimes used even as fiold ciphers. For instance, on the southeastern front during the Horld War the Central Powers made use of a somewhat irregular polyalphabetic substitution involving 4 standard alphabets and a keyed columar transposition with incompletely filled rectangles of a relatively large number of columns. Nevortheless, messages in this system were solvod by taking advantage of the possibility of devising special solutions.

REF ID:A56913

b. Digraphic substitution, such as the Playfair cipher, may be combined with transposition to yield cryptograms of fair sccurity. But here again the elimination of the transpasition phase by taking advantage of special circumstances or by rearranging tho text so as to uncover the repetitions which are inevitable in the Playfair cipher, will result in solution. '.
c. A particularly fruitful source of combined substitutiontransposition is to be zound in those methods generally designated as fractionating systoms, wherein the substitution phase roplaces each plain-text letter by an equivalent composed of two or mors components or "fractions" and then these components are subjected to transposition in a second phase. This latter may be followed by a thard phase, recombination of distributed compononts, and a fourth phase, the replacement of the recombined componerts by letters. Thus such a system comprises a first substitution, a transposition, a recombination, and e sucond substitution. ${ }^{1}$ In the subsequent paragraphs cortain systems of this sort will be dealt with in detail. .They are interesting cxamples of practical systems of cryptography which have boen used in the field of military operations in the past and may agoin be used in the future. The first ono to be discussed is particularly interesting for this reason alone; but it is also of interest because it will serve as a model for the student to follow in his study of methods for the solution of combined substitution-transposition ciphers in general.

[^8]
37. Introductory remarks. - \bar{a}_{-}. One of the most interesting and practical of the many methods in which substitution and transposition are combined within a single system is that known in the literature as the ADFGVX cipher. ${ }^{1}$ In this system a 36-character bipartité substitution checkerboard is employed, in the cells of which the 26 letters of the alphabet and the 10 digits are distributad in mixed order, often according to some keyword. The row and column indicators (coordinates) are the latters ADFGVX, and taken in pairs the latter are used as substitutes for the letters of the plain text. These substitutive pairs are then inscribed within a rectangle and a colunarar transposition takes place, according to a numerical key. The cipher text consists then merely of the 6 letters A, D, F, G, V, and X.
b. The ADFGVX cipher system was inaugurated on the Western Front by the German Army on March 1, 1918, for communication between higher headquarters, principally between headquarters of divisions and corps. When first instituted on March 1, 1918, the checkerboard consisted of 25 cells, for a 25-letter German alphabet (J was omitted), and the 5

[^9]letters A, D, F, G, and X used as coordinates. On June 1 the letter V was added, the checkerboard having been enlarged to 36 cells, to take care of a 26-1etter alphabet plus the 10 digits. Transposition keys ranged from 15 to 22 numbers (inclusive) and both the checkerboard and the transposition key were clanged daily. The mmber of messages in this system varied from 25 a day upon the inception of the system to as many as 150 per day, during the last days of May, 1918. The first solution was made on April 6 by the French. The cipher continued in use rather extensively until late in June but from that time until the Armistice the volume of messages diminıshed very considerably. Although only 10 keys, covering a period of as many days were ever solved, the proportion of solved messages in the whole intercepted traffic was about 50\%. This was true because of the fact that the keys solved were those for days on which the greatest number of messages was intercepted. The same system was employed on the southeastern front from July, 1918, to the end of the war. Keys werc in effact at first for a period of 2 days and beginning on Scptember 1, for a period of 3 days. In all 17 keys, covaring a totsl of 44 days, were solved.
c. At the time that the Allied cryptanalytic offices were working with cryptograms in this system only three mothods were known for their solution and all three of them are classifiable under the heading of special solutions, because certain conditions had to obtain before they could be applied. No general solution had beon developed until after hostilities had ceased. Because they are interesting and useful some attention will be dovoted to both the general and the special solutions. Since the special solutions are easy to understond and serve as a good
introduction to the general solution, they will be taken up first.
38. Special solution by means of identical endings. - a. In Par. 24 it was demonstrated how the solution of keyed columnar transposition ciphers can be facilitated and simplified by the comparison of two cryptograms which are in the same key and the plain-text endings of which are identical. It was noted in that case that a study of tho irregularly distributed cipher-text identities between the two cryptograms permits of not only cutting up the text into sections that correspond with the long and the short columns of the transposition rectangle but also of establishing the transposition key in a direct manner almost entirely mathematical in nature. When this has been accomplished the plain texts of these two messages are at once disclosed, and all other messages in the same key may be read by means of the key so reconstructed.
b. The same method of solution is applicable to the similar situation, if it can be found, in the case of the ADFGVX system, except that one more step intervenes betwoen the reconstruction of the transposition rectangle and the appearance of the plain text in the rectangle: a monoslphabetic substitution must be solved, since the text in the rows of the rectangle does not consist of plain-text letters but of pairs of components represonting these letters as enciphered by means of a bipartite substitution alphabet. Moreover, this latter step is comparatively simple when there is a sufficient amount of text in the two rectangles; if not, additional material for use in solving the monoalphabet can be obtained from other cryptograms, in the same key, if they are availeble, since the transposition key, having already beon reconstructed from the two cryptograms with identical endings, will
permit of inscribing all other cryptograms in the same key within their proper rectangles.
c. A demonstration of the application of the principles involved in euch a solution will be useful. The following cryptograms have been intercepted:

No. 1

No. 2.

FDFFF		DVFVD	GAFDF		G
$\checkmark \mathrm{GVFF}$	FDAFF	FXDAF	XGAFD	$V \mathrm{FGXV}$	D DFAD
DAAAX	AAFFA	FVFXF	FAXXA	X DGXA	VDAVF
DFAVX	VADX F	AXFEX	XAAVX	XADXA	AAVVG
AGDXX	FDFAX	FDGDF	FXDGX	FAGDF	FDDVD
	A GXX	FGAV			

a. 'The delimitation and marking of identities between these two cryptograms is a procedure similar to that explained in Par. 24b, except that a little more study may be necessary in this case because occasionally there may be considorable uncertainty as to exactly where an identity begins or ends. The reason for this is not difficult to understand. Whereas in Par. 24b the process involves "unfractionated" letters and there aro about 18 or 20 different letters to deal with, so that an "accidental identity" is a rather rare occurrence, in the presont problom tho process involves fractions of letters (the components of the bipartite cipher equivalentel, and therc are only 6 difforent characters to deal with, so that such "accidental identities"
are quite frequent. Now the cryptanalyst is not able at first to distinguish between these accidental identities and actual identities and this is what makes the process somewhat difficult. What is meant will become perfectly clear presently.
e. Taking the two illustrative cryptograns, the first step is to ascertain what identities can be found between them, and then mark off these idontities. For oxample, it is obvious that if the messages end alike the lest several letters in No. 1 should be found somewhere in No. 2, and likewnse the last several letters in No. 2 should be found somowhore in No. 1. The number of letters in identical sequences will depend upon the length of the identical toxt and the width of the transposition rectangle. Searching through No. 2 for a sequence such as AGDX, or GDX, or at least DX, the tetragraph AGDX is found as latters 151-54. The last column of No. 2 ends with FGAV; searching through No. 1 for a sequence FGAV, or GAV, or at least AV, the tetragraph FGAV is found as letters 87-90. These identities are underlined or marked off in some fashion, and search is made for other identitios. It would be a great help if the width of the transposition rectangle were known, for then it would be possible to cut up the text into lengths approximately corresponding to colvmin lengths, and this would then restrict the search for identical sequences to those sections which corrospond to the bottoms of the colums. Suppose the key to contain 20 numbers. Then the roctanglo for No. 1, containing 152 lotters, would consist of 12 long columns of 8 letters and 8 short ones of 7 letters; that for No. 2, containing 194 letters, would consist of 14 long columns of 10 letters and 6 short ones of 9 letters. If that
were correct then in No. 1 the end of the first column would be either XVDD, or XVD. Searching through No. 2 for either of these a sequence XVDD is found as letters 84-7. Column 1 is probably a long column in No. 1. The word probably is used because the identity may extend only over the letters XVD, and the next D may be an accidental similarity, since the chances that D will appear by pure accident are 1 in 6, which is not at all improbable. It must also be pointed out that a certain number of telegraphic errors may be expected, and since there are only 6 different letters the chances that an F, for oxample, will be received or recorded as a D are fairly good. Column 1 of No. 2 ends either with VFAD or VFA. Searching through NO. 1, a sequence VFAD is found as letters 14-17; a sequence VFA is found as letters 34-6; a sequence VFFD is found as letters 79-82; a sequence VFAD is also found as letters 126-130; a sequence VFA is found as letters 131-3. Here are several possibilitios; which is the one to choose? Two of these possibilities coincide exactly with the full sequence being sought, VFAD. One of them is at 14-17, but this is rather unlikely to be the ${ }^{\prime}$ correct one. For if an hypothesis of a key of 20 columns is assumed, as has here been done, then column 2 must contain either 8 or 7 letters and to assume VFAD in positions $1 / 4-17$ would make column 2 a column of 9 letters, which is inconsistent with that hypothesis. The other VFAD sequence, at $126-30$, remains a candidate, since at this stage it_is not possible to tell just where the ends of the columns are, and there is therefore nothing to indicate that this possibility may be ruled out. Another section of the text of one or the other cryptogram is selected, with a view to establishing additional identities. To go through the
whole process here would consume too much space and time. Moreover, it is not necessary, for the only purpose in carrying the demonstration this far is to indicate to the student the general procedure and to show him some of the difficulties he will encounter in the identification of the similar portions when the text is composed of only a very limited number of different letters; In this case, after more or less tedious experimentation, the hypothesis of a key of 20 column is established as correct when two sets of 20 identities are uncovered and the identities are found to be as shown in Fig. 47.

> I. A table of equivalencies is then drawn up:

 Since the rectangle for No. 2 has 2 more letters in the last row than the rectangle for $\bar{N} 0$. 1, two chains of equivalents at 2 intervals are constructed. Thus:

$\frac{1}{1}$									
	9	19	3	8	2	6	11	7	17
4	10	15	5	13	14	12	20	16	18

These chains must now be united into a single chain by proper interlocking. Since cryptogram No. 1 has 12 long columns, and since the identities of these 12 coliums are now $k n o w n(1,3,5,7,9,12,13$, $14,16,17,19,20)$, the interlocking of the two chains and hence the transposition key must be this:

$$
\begin{aligned}
& 1-2--3--4-5-6-7--8--9-10-11-12-13-14-15-16-17-18-19-20 \\
& 7-5-17-13-1-14-9-12-19-20-3-16--8-18-2-14-6-11-15
\end{aligned}
$$

g. The two cxyptograms may now be transcribed into their proper transposition rectangles, as shown in Fig. 48.

REF ID:A56913

No. 1.

 $\frac{D X I}{20}$

No. 2.

 GVFFVXAXAXDADFGVDGDF AAAAAFDFAFAVDADXGGFG GVGFAVDGAADAGVAFFAVX FFVXXDDFFAAFAVDAFAFA DAFFVGXGDGFAFXVXXDFA GVAFDXDAFDXGDGFAFXDA DXDXDAAVAXGD

No. 1.

No. 2.

FIGURE 48.

FXDAXFAFVXAVGVAFAVAF
AFXVFVAFFFFAAFDFAFAX
 GVFFVXAXAXDADFGVDGDF AXTDDAFAFADATFVGDAFA
$\begin{array}{lllllllllllllllllllll}G & G & E & N & I & R & A & L & 2 & 3 & D & A & Y & L & I & G & H & T & S & T\end{array}$ AAAAAFDFAFAVDADXGGFG GVDAFDDXDGAAFXFAGDFA
 GVGFAVDGAADAGVAFFAVX VXFVFXVXDXGVFDVXXDAV
 FFVXXDDFFAAFAVDAFAFA GDAFFTFAVXAVXGDGFAFX
 DAFFVGXGDGFAFXVXXDFA VXXDFAGXDADGDXGDFAVX
 GVAFDXDAFDXGDGFAFXDA FVFFVXXDDFFAAFAVDAFA
$\begin{array}{llllll}\text { L } & \mathrm{L} & \mathrm{A} & \mathrm{R} & \mathrm{M} & \mathbf{S}\end{array}$
DXDXDAAVIAXGD
$\begin{array}{lllllllllll}T & A & C & K & W & I & T & H & 0 & U\end{array}$ FADAFFVGXGDGFAFXVXXD
$\begin{array}{llllllllll}\mathbf{T} & \mathrm{D} & \boldsymbol{T} & \mathbf{L} & \mathbf{A} & \mathbf{Y} & \mathbf{W} & \mathbf{I} & \mathbf{T} & \mathrm{H}\end{array}$ FAGVAFDXDAFDXGDGFAFX
$\begin{array}{lllllll}\text { A } & \mathrm{L} & \mathrm{L} & \mathrm{A} & \mathrm{R} & \mathrm{M} & \mathrm{S}\end{array}$ DADXDXDAAVAGD

No. 1.

$$
\text { No. } 2 .
$$

FIGURE 49.
h. A frequency distribution is now made of all the bipartite pairs, so as to solve the enciphering checkerboard. There $1 s$ no necessity for going through this part of the solution, for it falls along quite normal lines of monoalphabetic substitution. The checkerboard is found to be as follows: ${ }^{2}$
A
D
F
G
∇
\mathbf{X}

A	D	F	G	V	X
\mathbf{G}		H		R	M
A	N	I		I	
T	Y	C	3	P	H
	S	B	2	$\overline{\mathrm{I}}$	F
			K		0
	U	V	W	X	

i. The two plain-text rectangles are show in Fig. 49.
․ Spoculabing upon the disposition of the letters within the enciphoring checkerboard, it soon becomes evidont that the key-phrese upon which it is based is GFRMAN MIIITARI CIPHWRS. The digits arg insertod mmediately after tho letters A, B, C, \ldots, as they occur in tho mixod soquenco, so that the completo shockorboard is asy shown in Fig. 50:

FIGURS 50.
The trangposiuion key mas evidently derived from tho first 20 letters of the mixed soquence:
 7-5-17-13-1-14-9-12-19-20-3-16-8-18-2-4-6-10-11-15
Tho date (20th) indicatos that the transposition koy vill have 20 numbers in it.
39. Special solution by moans of iduntical banguinçs. - A. In Par. 23 was dorionstrated tho nothod of solution based upon finding two cryptograms whicla are in tho seme key and the plain toxts of winlch bogin
$2_{\text {Since the the }}$ list crjptogram is addnosived to tho CG 23d Brigade and the $2 d$ cryptogram mentions that the comrandex of that brir,ndo hns beon orderod to do so and ;30, tho golution of the groups GG $(=2)$ and $F G(=3)$ 1s mado br inforence. This givos the placoment of thuss two digits in the ciphor squire.
with the same words. The application of this method to the correspond--ing situation in the case of the ADTYGVX system should by this time be obvious. The finding of identical sequences is somewhat easier in this case than in the case of identical endings because the identities can be found in parallel progression from the beginning to the end of the two cryptogrems being compared. Moreover, the discovery of two cryptograms with similar beginninge is easier than that of two with similar endings because in the former case the very first groups in the two cryptograms contain identitios, whereas in the latter case the identities are hidden and scattered throughout the texts of the two cryptograma On the other hand, the complete solution of a case of identical endings is very much more simple than that involving identical beginnings because in the former caso tho establishment of the identities carries with it almost automatically the completo reconstruction of the transposition key, whereas in the latter this is far from true and additional cryptograms may be essential in order to accomplish this sine qua non for the solution.
b. The following represent 8 cryptograms of the same date, assumed to have been enciphered by the samo key. The cryptograms have been No. 1.

VDDFAXFAAX DXGGF FVFXFGXDXG DGAGF AGDADVGGDAAADXX DXAFFAADAFDFFDA

No. 2.
GXDDADDGDFVGXAXXXGXGAAAADFADDX AVDXFXAD

No. 3.

A A	$G X D D X$	VFFVD	GADFD	XAAAG	D
AFDAD	GVGDV	FDFXA	GFXAF	AFAXD	DDDFD
XAXVA	DXFXF	DGAGF	GGADD	AGDGX	AVGD
ADAFA	XFAAG	VAAGA	FDVDV	DXFDA	XFDFF
G DXDV	DADAV	DADDD	GADAG	AAAFG	GDXAX
FGVXD	DGDDF	AFAGV	AFGXG	$\nabla D D A X$	X D V F
FFDXG	$V G D F G$	$A \vee A D A$	XDAFA	AFDGF	V FXXX
A AGAG	AFDGX	AFAFX	X G GAG	AAFFA	AFDG
GAFVX'	DGGFG	DAAAF	DADAD	$\mathrm{X} \nabla \mathrm{V}$ ¢ X	FVADD
GAFFF	G				

No. 4.
AFGFXAGXAGXDDAFAAXAVGDDDDFAFGV DGDXAFDXAXGFGDDVADXAXGFAXFDADD GD

No. 5.
XAAAD DGAAGDDDXFFAVGAXDGGDFFAVA DAAXA GDXDXXXXDGVFADA DFFFFVVGFD XIDGGDAXDGADFD

No. 6.

X DAAV	D	X	A V GXa	DXAAD	XGGAA
GDFDA	AAGAX	DVFDF	DFFDD	FDDFX	F' X
FDXAX	GAXFF	VDVAF	GVDVD	D DAGD	GGDAA
GFDD	DVFFV	VAGVA	$\mathrm{XA} A \mathrm{G}$	XGXDD	D
DFFG	DGFDA	AFGAX	FFDVD	DDAGA	F
DDDAV	GAVAD	FGDDF	FDGDV	DGGXA	X
DXDVF	FXVAX	GFDAG	X FFFF	AAXDA	F
XFDAG	AGAVD	VAGAF	DGDAV	VDDD	DFXGV
A A	FFFDV	DFFAF	DAGDG	FAAAF	D
VAXDA	GADXD	VFAFF	FGDDA	D D $\mathrm{D} \boldsymbol{1}$	G D FAX

No. 7.

No. 8.

> DFGFX DFAFFXDXAGADGGGDDFGAXGVDF VVFDAAAXGDAVDVA DDGVDAFAG
examined for identical beginnings, and numbers 3 and 6 apparently begin alike, identical portions being underlined as shown. Now the number of identical sections in the two cryptograms is 15 ; this indicates that, the width of the trensposition rectangle is 15. Therefore, No. 3 (290 letters) has 5 long columns of 20 letters and 10 short columns of 19 letters: $(15 \times 20)-10=290$ No. 6 (302 letters has 2 long columns of 21 letters and, 13 short columns of 20 letters. $[15 \times 21)-13=302]$. The identical sections in No. 3 and No. 6 having been marked off as shown in Fig. 5l, the next step is to transcribe the texts into their correct column lengthis as given by the study of identical sactions, writing them merely in thoir serial order, as shown in Fig. 52. In this transcription no serious difficulty is usually encountered in the division into correct column longths, this process baing guided by the identical sequences, the number of letters between the identical sequences, and the maxinum and minimum lengths of the columns as calculated from the dimonsions of the rectanglo. Whenever difficulties are encountered in this process, they are brought about by accidental identities of letters before and after the true or actual identical sequences. In the present case no such difficulties arise except in going from column 12 to column 13. The identical sections for column 13 here consist of the sequence AFFAAF; if these sections are placed at the head of column 13, it leavgs column 12 one letter short at the bottom in each diagrem. This means that the initial A's in these identical

No. 3.
$\frac{X D A A A G X D D X V F F V D, G A D F}{1} \frac{X A A A G D F A D G}{2}$ AFDAD GVGDVFDFXA GFXAFAFAXDDDDED XAXVA DXFXF DGAGF GGADDAGDGXAVGDG
 $G D X D V A D A V D A D D D G A D A_{B}^{A A A F G G D X A X}$ FGVXD DGDDF AFAGV AFGXGVDDAX XDVFF FFDXGVGDFGAVADAXDAFAAFDGFVFXXX AAGAGAFDGXAFATXXGGAGAAFFAAFDGA GAFVX DGGFG D,AAAF DADADXVVAK FVADD GAFFFGXAXDFDDFXAAAAA

No. 6.
$\frac{X D A A V}{1} D X D G F X V G D D A V G X A \frac{D X A D}{2} X G G A A$ GDFDAAAGAX DVFD DFFDDFDDFXFXXFD $\frac{F D X A X}{4} G \Lambda X F F V D V A F G V D V D \frac{D D G D G G D A A}{5}$ GGFDD DVFFV VAGVA, XAAGGXGXDD DADXF A DFFG DGFDA AFGAX FFDVD D $\underbrace{D A G A}_{8} F A D A V$ DDDAV GAVAD FGDDF FDGDV DGGXAXAXDA DXDVFFXVAX GFDAGXFTFFAAXDAFVDXG XFDAGAGAVDVAGAFDGDAVVDDDD DFXGV AFFAAFFFDV DFFAF DAGDGGAAAF DXAXA VAXDAGADXDVFAFFTGDDADDDFAGDFAX D G

No. 3
12345678910 II 12131415

	D X								D	D X	X 0	G			
	A								D V	∇	DA	A			
	A A								F	F	A F	F			
	A ${ }^{\text {A }}$								A	FT	A				
	(1)								FT	FTA	AG	G			
	D								-	F\|A	+2	\%			
	D F								GD	D H	FA	A	A		
	D A	F							V X	X $\overline{0}$	D	F			
	X D	X							A G	G	G/				
	VG								FV	VF	Fr	F			
	FA	F							GG	G V	V X	X	V V		
	F								X D	D F	F X	X			
	V D								G F	F \bar{X}					
											-				
	G								D	A	X	AG			
									D V			,			
	V														
	G								X 1	D 0	G	AD			

No. 6

123456789 DIRXX 15											
X ${ }^{\text {d }}$	D	T ${ }^{\text {D }}$	$\mathrm{D}^{1} \mathrm{~A}_{1}$	${ }_{4} \mathrm{D}_{\text {j }} \mathrm{D}$	DIC	GIX	X A A	A ${ }^{\text {F }}$	FPA		
D X	V D	D D	DG	G FIA	A 1	D D	D X G	G F	F A		
A A	F X	XA	AV 1	T P	G	D V	V D A	A A	A A		
A A	D A	A G	G A	A 1	A	F F	FA F	F A	A F		
\checkmark D	F X	X D	DX 1	IT	T	F F	$\mathrm{F}^{\text {F }}$			$\underline{\square}$	
DX	T D	GG	G A	G 6	, 1	D 2	X V G	G F		$\bar{\chi}$	
$\mathbf{X} \mathbf{G}$	FA	A G	GAL	1 FI	D	GV	V DD	D	FA		
D G	F X	X D	DGD	G A	A D	DA	AXA	A ${ }^{\text {d }}$			
GA	D F	F A	AGA	GA	VT	V X	X GV	VV			
F A	D F	F. A	A X	X 4	D	D G	GXV	V 1	D V		
X G	焐 V	V G	GG	C F I	D	GF	FPD	DIT	F A		
V D	D D	DG	G \times	O 1	D	GD	D D D	D F			
GF	D $\bar{\square}$	VF	FID	- 21	A	X A	AAD	DA		D	
D D	FA	AD	D D	X V	V	A G	GGD	D	FA	A	
D A	X F			F C	G	X X	$X A, D$	D D			
A A	FG	G D	D A	FA	A	A F	FGT	T ${ }^{\text {F }}$		A	
VA	XV	V V	VI	DT	V	X F	F A. X	IX G			
GG	X D	D F	F ${ }^{\text {P }}$	V VA	A	${ }^{\text {d }}$	F VIG	IG			
X A	F V	V F	FT	D D	D	A	F D V	VG		D	
A X	D D		VA	A D	FD	D A	A V A	AG	G V		
			V							F	

FIGURE 52.
sequences represent an accidental identity; these $A^{\prime \prime} s$ belong at the bottom of column 12 in each diagram, and the true identical sequences are FIAAF, and not AFFAAF. In some cases tinere may be many more instances of such accidental identities berore and after the true identical sequences. Another thing to be noted is that the identical beginnings in this case run along for at least 4 complote rows and part of the 5 th row in the transposition roctangle. Thereforo, the identical sequences should consist of not less than 4 , and not more than 5 lettors; any letters in excoss of 5 in any identical soquence are accidental
identities. Therc are several such accidental identities in the case under study, viz, in columns 5 and 12.
c. Now comes the attompt to place the columns in propor sequence in the rospective transposition rectanglos. Since No. 6 has only 2 long columns, $\begin{aligned} & \text { iz, } \\ & 5 \text { and } 12, \text { it } 1 s \text { obvious that those two column belong at }\end{aligned}$
the extreme left of the rectangle. Their order may be 5-12 or 12-5; there is no way of telling which is correct just yet. Since No. 3 has 5 long columns, $\boldsymbol{\text { Fiz }}, 3,4,5,7,12$, and since fram No. 6 it has been ascertained that 5 and 12 go to the extreme left, it is obvious that columns 3, 4, and 7 occupy the 3d, 4th, and 5 th positions in the rectangles. Their order may be any permutation of the three numbers 3, 4; and 7; their exact order must be ascertained by further study.
a. In this study to fix the exact order of the columns and thus to feconstruct the transposition key, advantage can be taken of the diverse lengths of other cryptograms that may be available in the same key. In this case there are 6 additional cryptograms, Nos. 1, 2, 4, 5, 7, and 8, suitable for the purpose. The following calculations are made:

Cryptogram No.	Total No. of letters	Lengths of columns	No. of columns Long Short	
1	60	4	All same length	
2	38	3 and 2	8	7
4	62	5 and 4	2	13
5	74	5 and 4	14	1
7	124	9 and 8	4	11
8	54	4 and 3	9	6

Now No. 7 hes 4 long columns, and these must consist of four columns from among the five already ascertainad as falling at the extreme left, Fiz, 3, 4, 5, 7, and 14. Columns 5 and 14 have furthermore been placed in positions 1, 2, leaving columns 3, 4, and 7 for positions 3, 4, and 5. Which of these three possibilities is to be omitted as a long column in No. 77 A means or answering this question involves certain considerations of general importance in the cryptanalysis of this type of systam. e. Consider a transposition rectangle in which the number of

REF ID:A56913

columns is even, and consider specifically the lst pair of columns in such a rectangle. The combinations of bipartite components formed by the juxtaposition of these 2 columns correspond to plain-text letters, and therefore the distribution of the bipartite digraphs in these columns'will be monoalphabetic in character. The same is true with respect to the bipartite components in the 3 and 4 th columns, the 5 th and 6th columns, and so on. Hence, if a long cryptogram of this nature is at hand, and if the two columns which belong at the extreme left can be-ascertained, then a distribution of the bipartite digraphs formed by fuxtaposing these columns should not only be monoalphabetic, but also this distribution, if it is at all normal, will afford a basis for matching other columns which will produce similar distributions, for the text as a whole is monoalphabetic. In this way, by proper matching of columans, those wich roally go together to form the pairs containing the bipartite equivalents of the plain-text letters cen be ascertained. From that point on, the solution of the problem is practically the same as that of solving a columnar transposition cipher with non-fractionatod letters.
f. But now consider a plain-text rectangle in the ADFGVX system, In which the number of columns is odd, and consider specifically the lst pair of columns in the rectangle. Now only the alternate combinations of bipertite components in these columns form the units of plaintext letters. The same is true of the bipartite components of the 3d and 4th, the 5th and 6th columns, and so on. In all other respects, however, the remarks contained in subparagraph e apply equally to this case where the width of the rectangle is odd.

REF ID:A56913

g. Returning to the problem under study, it has been ascertained that columns 5 and 14 fall at the extreme left. Whether their correct order is 5-14 or 14-5 cannot at the moment be escertained, nor is it essential. The thing to do is to make a distribution of the bipartite pairs and see what it is like. Since the width of the rectangle here is odd, only the list, 3a, 5th, ... pairs down the columns can be distributed in a frequency square. The results are shown in Fig. 53.

FIGURE 53.
h. The distribution is fairly good. Five occurrences of AA are noted, 3 of FD. These must represent high-frequency letters. The ϕ test for monoslphabeticity may be applied.

स $\left(\phi_{\mathrm{p}}\right)=.0667 \times 21 \times 20=28.01$
E $\left(\theta_{r}\right)=.0385 \times 21 \times 20=16.17$

$$
\phi=(5 \times 4)+(2 \times 1)+(2 \times 1)+(3 \times 2)+(2 \times 1)+(2 \times 1)=34
$$

The observéd value of ϕ is considerably greater, then the expected value for plain text and more than twice as much as the expected value for random text. Using the distribution in Fig. 53 as a basis, an attempt is made to add to the $5-14$ combination a column selected from among columns 3, 4, and 7, so that the 2d, 4th, 6th ... pairs down the 2 d and 3a columns in the rectangle will give bipartite pairs that will conform to the distribution noted in Fig. 53. Since the results sought will be very materisily affected if the combination $5-14$ should really be 14-5, all possible combinations of 5-14 and 14-5 with 3, 4 , and 7 must be tried. The various combinations tested aro shown in Fig. 54.
i. Frequency distributions are now made. If combination 5-14-3 is correct for No. 3, it 1 s also correct for No. 6; hence, a single distribution is made of the bipartite pairs in lines $1,3,5, \ldots$ of columns 5-14, and of the pairs in lines $2,4,6, \ldots$ of columns 14-3. Similar distributions are made of the pairs given under eacn of the other combinations. These distributions are shown in Fig. 55.

1. These distributions are now tested for monoalphabeticity, by applying the ϕ test. The number of occurences.in each distribution is 41. Then $41 \times 40 \times .0667=109.4$ is the expected value of ϕ for plain text; $41 \times 40 \times .0385=63.1$ is the expected value of ϕ for random text. Here are the calculations for the first distribution (combination 5-14-3) yielding the observed value of ϕ as 76:

The observed valuos for all 6 frequency distributions are shown herewith:
(1) 76
(3) . 88
(5) 70
(2) 76
(4) 108
(6) 110

No. 3.

		(1)	(2)	(3)	(4)	(5)	(6)
	1	$\frac{5-y_{4}-3}{D A D}$	$\frac{5-y_{4}-4}{D A F}$	$\frac{5-y_{4}-7}{D A D}$	$\frac{14-5-3}{A D D}$	$\frac{14-5-4}{A D F}$	$\frac{14-5-7}{A D D}$
	2	D A V	, DA D	DAF	A DV	A D D	A D F
	3	A Af	A AX	A A F	A AF	A AX	A AF
\div	4	$G F D$	G FA	GFG	FGD	FGA	FGG
\cdots	5	D D	D D X	D D D	D D F	D D X	D D D
	6	GAX	GAV	GAX	A. $G X$	AGV	AGX
	7	X D A	$\mathbf{X} \mathbf{D} \mathbf{A}$	X D D	D XA	DXA	D X D
\approx	8	A A G	A A D	A A V	A A G	A A D	A A V
	9	V F	V D X	V D D	DVF	D V X	D V D
	10	G X X	G X F	GXA	X GX	$\mathrm{X} G \mathrm{~F}$	X G A
	11	D V A	D V X	DV D	V D A	V D X	\checkmark D D
	12	G V F	GVF	GVA	V GF	VGF	VGA
	13	AAA	AAD	A A V	AAA	A A D	A A V
	14	DXF	D X G	D X D	XDF	XDG	\boldsymbol{X} D D
	15	A F A	A FA	A FA	FAA	FAA	FAA
	16	F V X	F V G	FV D	V $\mathrm{F} \mathbf{X}$	V FG	V F D
	17	AAD	AAF	AAD	AAD	A A F	A AD
	18	X D D	X D G	X D D	D X D	DXG	D X D
	19	FDD	FDG	FDG	D FD	D FG	D F G
	. 20	AGD	A GA	AGA	GAD	GAA	GAA

No. 6.
(1) (2) (3) (4)

5-1-7	14-5-3	14-5-4	14-5-7
DAD	A D D	AD F	A D D
D A F	A D V	A D D	A D F
A A F	A AF	A $A X$	A AF
GFG	FGD	FGA	FGG
D D	D D	D D X	D D D
GXG	$X G D$	$X G G$	$\mathbf{X G G}$
GAF	A FG	A GA	A GF
D X D	X D F	X D X	X D D
A A A	A AF	AAF	A A A
A V A	\checkmark A D	V A F	v A ${ }^{\text {a }}$
GAF	AGD	AGV	A G F
$G X G$	X G F	$\mathbf{X G D}$	X G G
FDA	DFD	D F V	D FA
D AX	A D D	A DA	A D X
DGF	$G D F$	G DF	G D F
D A F	A D X	A DG	A D F
V D D	D V F	DVV	D V D
F X V	$\mathrm{X} \boldsymbol{F} \mathbf{V}$	X F D	X F V
FD D	D F X	DFV	D F D
V V D	V V F	V V D	V V D
V F	F V	F V	FV

REF ID:A56913
(1) $[5-14-3]$
(2) $[5-14-4]$ (3) $[5-14-7]$

A

(4) $(14-5-3)$
(5) $[14-5-4]$
(6) $[14-5-7]$

FIGURE 55.
Only two of these distributions give close approximations to 109, the expected value of ϕ, and they may be retained for further experiment. They are the ones for combinations (4) and (6), with values of 108 and 110, respectively.
k. Selecting combinations (4) and (6) viz, 14-5-3, and 14-5-7, since columns 14, 3, 4, 5 and 7 form the group of 5 columns at the left of the transposition rectangle, the following combinations are possible:

1) 14-5-3-4-7
(3) 14-5-7-3-4
2) $14-5-3-7-4$
(4) 14-5-7-4-3.
1. The following sets of columns correspond to these 4 combinations in the 2 cryptograms (Fig. 56).

No. 3.

	(1)	(2)	(3)	(4)
	14-5-3-4-7	14-5-3-7-4	14-5-7-3-4	14-5-7-4-3
1	ADDFD	AD D F	ADDDF	ADDFD
2	ADVDF	$A D V F D$	ADFVD	ADFDV
3	A AFXF	A A FFX	AAFFX	AAFXF
4	FGDAG	FGDGA	FGGDA	FGGAD
5	D PFXD	DDFDX	D D F ${ }^{\text {P }}$	D D DXF
6	AGX $\mathrm{A}^{\text {P }}$	AGXXV	AGXXV	AGXVX
7	DXAAD	DXADA	DXDAA	DXDAA
8	AAGDV	AAGVD	AAVGD	AAVDG
9	D ${ }^{\text {F }}$ F D	DVFDX	DVDFX	DVDXF
10	XGXFA	XGXAF	XGAXF	$\mathbf{X G A F X}$
11	VDAXD	V DADX	V D DAX	V D DXA
12	VGFFA	VGFAF	VGAFF	VGAFF
13	AAADV	AAAVD	AAVAD	AAVDA
14	XDFGD	$X \mathrm{DFDG}$	XDDFG	$X D D G F$
15	FAAAA	FAAAA	FAAAA	FAAAA
16	VFXGD	$V \mathrm{FXDG}$	$\checkmark \mathrm{FDXG}$	VFDGX
17	AADFD	AADDF	AADDF	$A A D P D$
18	DXDGD	DXDDG	DXDDG	DXDGD
19	DFDGG	DFDGG	DFGDG	DFGGD
20	GADAA	GADAA	GAADA	GAAAD

No. 6.

(I)

(3)

$14-5-7-3-4$
$A D D D$
A
A
A

(4)
$\frac{14-5-7-4-3}{A D D F D}$ ADFDV AAFXF FGGAD DD DXF XGGGD AGFAF XDDXF AAAFF VAAFD $A G F V D$ $X G G D F$ DFAVD ADXAD GDFFF ADFGX DVDVF X TVDX DFD D X $V \nabla D D F$ FV

FIGURE 56.

REF ID:A56913

m. The additional bipartite pairs given by adding columns 4-7 to the basic combination 14-5-3' are, distributed in the 4 th frequency distribution square of Fig. 55, yielding the distribution shown in square (1) of Fig. 57. The other squares in Fig. 57 are constructed in the same way, for the other combinations of Fig. 56.

FIGURE 57.
n. Again" applying the ϕ-test, the expected value of ϕ is 81×80 x. 0667 = 432. The observed values for the four combinations of Figs. 56 and 57 are as follows:
(1) For combination 14-5-3-4-7, $\dot{\phi}=390$
(2) For combination $14-5-3-7-4, \phi=270$
(3) For combination $14-5-7-3-4, \phi=326$
(4) For combination $14-5-7-4-3, \phi=342$

The combination 14-5-3-4-7, giving the greatest value for ϕ, is very probably the correct one.
o. Examining the other cryptograms that are available, it is seen that No. 7 is the third longest one of the entire set, with 124 letters; moreover, the dimensions of the rectangle $[(15 \times 9)-11=12 \overline{4}]$ are such as to bring about 4 long columns of 9 letters and 11 columns of 8 letters. The first 5 colmons are definitely fixed in position, since it is known that the first 5 key numbers are 14-5-3-4-7. The resulting diagram is shown in Fig. 58. There is now a section consisting of 10 columns which

1453		71									
A\|XID		D ${ }^{\text {a }}$	A D	F	D			G			
DAG	D	FG	GT	FI	D	D	X	X	A	AD	D
A A D		A F	FD		∇	A	G			D	
\bar{X} D F	X	D G	G D	X	A				F	$\underline{\square}$	
G D A	A 1	D V	V F		X					FT	
X F X	D	F D	D $\overline{\text { X }}$	DA	A	D	G	F	D	X	
A A V		D D	D F	G	X			A		G	
GGD	A	G D	D D	X	F						
A G D											

FIGURE 58.
are to be anagrammed to ascertain their correct sequence. The column to follow column 7 is ascertained on the basis of the repetitions which are brought about when the selected column is placed on the right. These repetitions should
fall into those cells of frequency distribution (1), Fig. 57, which are of high frequency. In other words, the process is one of selecting from among columns $1,2,6,8,9,10,11,12,13$, and 15 that column which will yield the most repetitions of bipartite digraphs with the digraphs given by the juxtaposition of column 14-5-3-4-7, as distributed in frequency square (1) of Fig. 57. The column thus selected turns out to
be number 10. Then other columns are added by proceeding along the same lines, the work becoming progressively more easy as the number of available candidates decreases. Smetimes the discovery of what appears to be a long repetition within one of the cyyptogrems or between two cryptograms facilitates the process. In this case the results obtained from the 3 cryptograms under study are shown in Fig. 59.

FIGURT 59.

		Figur	$59-$	Nonti	ed.		
14-5	3-4	7-10	15-12	13-1	2-8	6.9	11
A D	D F	D X	A A	F ${ }^{\text {d }}$	D D	A G	A
A D	V D	FD	F G	F D	$\mathbf{X A}$	$G D$	X
A A	FX	F V	FA	A A	AG	V D	D
F G	D A	G F	F F	A A	A A	AF	A
D D	F X	D F	$G D$	F V	D F	X F	F
X G	D G	G X	D G	F' ${ }^{\text {d }}$	X A	A D	V
AG	FA	FV	D D	F \mathbf{X}	G D	A G	D
\mathbf{X} D	FX	D A	A A	D D	G A	G D	\mathbf{x}
A A	D F	A X	D V	V G	A V	G V	G
V A	D F	A G	D V	D F	AD	X D	X
A G	FV	F F	D D	F \mathbf{X}	$G D$	GG	F
X G	D D	G D	F D	F V	D D	X G	D
D F	D V	A A	A D	A G	FA	D X	A
A D	FA	X G	G D	F D	D V	D A	G
$G D$	X F	F X	D D	D D	A G	D X	A
AD	FG	FF	F	A A	A A	A A	G
D V	X V	D F	A X	G V	A V	D X	A
X F	X D	V F	X G	D G	G Λ	X D	V
D F	F V	D F	D V	G X	A D	FA	D
V V	D D	D A	G A	GA	$\mathrm{X} F$	A D	V
F V							,

No. $7 \cdot$

14.5	3.4	210	15-12	13-1	2-3	$6-9$	11
A X	D V	D F	G D	A Ω	D D	F \mathbf{X}	G
D A	G D	F X	D A	A G	FD	F D	\mathbf{x}
A A	D V	A G	G \mathbf{F}	D F	D V	A A	D
X D	F X	D D	V F	X G	D A	X F	A
G D	A A	D V	X V	F V	F X	D X	D
$\mathbf{X} \mathbf{F}$	X D	F G	D D	-X D	$\mathbf{X A}$	D D	F
A A	$\nabla \mathrm{D}$	D F	D G	$G D$	F \mathbf{X}	G D	A
G G	DA	G F	V X	\checkmark D	D F	X G	D
A G	D X						

p. What the cryptanalyst now has before him is a monoalphabetic substitution cipher, the solution of which presents no difficulties. The cipher square is reconstructed as completely as possible, blanks being left where there are no occurrences to give clues as to the character involved, usually some of the digits and the very infrequent letters. In this case the only letters which do not occur in the plain text are

Q, X, and Z. The digits 5 and 7 are recovered from the context, in message number 6, where the caliber of a gun is mentioned and the digits are confirmed at other places in the message. The square that is obtained is seen in Fig. 60. Examination of the mixed sequence discloses that it is based upon the phrase THE FLOWERS THAT BLOOM IN THE SPRING. This permits of the establishment of the trensposition key and of the position of the digits in the checkerboard (as in Par. 38j). The results are shown in Fig. 6l. The completely solved messages are shown in Fig. 62.

No. 1.

No. 2.

$14-5$	$3-4$	$7-10$	$15-12$	$1.3-1$	$2-8$	$6-9$	11
R	E	Q	\bar{U}	E	S	T	I
$D \nabla$	$A G$	$X A$	$X D$	$A G$	$D X$	$A A$	F

Figure 62 - Coitinued.

$$
\text { No. } \overline{3}
$$

$$
\begin{array}{cccccccc}
M+5 & 3-4 & 7-10 & 15-12 & 13-1 & 248 & 6-9 & 11 \\
\hline E & 0 & 5 & T & I & I & I & T
\end{array}
$$

$$
A D D_{P} D O_{0} D X A_{P}^{A A} X_{S} D D A_{S}^{A}-
$$

$$
-\frac{A}{T} D-\frac{V}{I} D \frac{F D}{I}-\frac{F}{A}-\frac{F}{T}-\frac{X A}{E}-\frac{G D}{D}-\frac{X}{0}
$$

$$
A A_{N} F X P X_{B} A_{A} A A_{T} A G D D D_{A}
$$

$$
\frac{F G}{I}-\frac{A}{I}-\frac{F}{O}-\frac{F}{T}-\frac{A}{A}-\frac{A}{T}-A F-A
$$

$$
D_{C} D_{K} X_{K} D_{I} G D A_{G} A A A_{A}^{A} B-
$$

$$
\frac{A G}{S}-\frac{X V}{T}-\frac{X F}{0}-\frac{X G}{F}-\frac{D G}{C}-\frac{G A}{0}-\frac{G}{T}-\frac{A}{T}
$$

$$
D X X_{D} A A_{R} D F A_{S} A X X_{P} D_{P} A_{P}^{A} A
$$

$$
-\frac{A}{R}-\frac{G D}{I}-\frac{V}{S}-\frac{X A}{O}-\frac{A}{N}-\frac{F}{E}-\frac{F}{R}-\frac{F}{S}
$$

$$
-\frac{X}{D} G-\frac{X}{F}-\frac{A}{R} G-\frac{F}{0}-\frac{A}{L}-\frac{D D}{C}-\frac{V A}{0}-\frac{G}{i}
$$

$$
\frac{F G}{T}-\frac{F}{H}-\frac{A}{D} G-\frac{X}{I}-\frac{V}{V}-\frac{A}{I}-\frac{V}{S} G-\frac{V}{I}
$$

$$
X \frac{X}{A}-\frac{G}{T}-\frac{D}{E}-\frac{X G}{E} \frac{D}{N}-\frac{D}{E}-\frac{X G}{X}-\frac{X}{Y}
$$

$$
-\frac{D_{0}}{0}-\frac{D_{V}}{V}-\frac{D}{N}-\frac{A}{T}-\frac{G}{0}-\frac{V}{N}-\frac{X A}{I}-\frac{A}{G}
$$

$$
D T D_{H} G G D A A \quad D F G D \text { IFX G- }
$$

REF ID:A56913

Figure 62 - Continued.
No. 4.

No. 5.

$\begin{array}{cccccccc}E & R & T & R & A & F & F & I \\ A G & D V & A A & D V & F A & A X & A X & F\end{array}$
$X G^{C} X G G^{C} X D G^{N} \quad \mathrm{DA} A D^{\mathrm{R}} V D^{0} F$
$\begin{array}{ccccccc}I & A & T & 0 & N & C & E \\ D D & F A & A A & D F & G D & G X & A G\end{array}$

Figure 62-Continued.
No. 6.

$$
\frac{X}{E} G-\frac{D}{A} G-\frac{X}{I}-\frac{D}{D}-\frac{F}{I} D-\frac{X}{N}-\frac{A}{E} D-\frac{V}{S}
$$

$$
X D-\frac{F}{T} \frac{D}{F}-A A-D D-\frac{G A}{5}-\frac{G D}{7}-\frac{X}{7}-
$$

$$
-\frac{V}{E}-D_{T} F-\frac{A}{\bar{B}} G-\frac{D}{\bar{L}}-\frac{D}{\bar{I}}-\frac{A}{\bar{N}} D-\frac{X}{G}-\frac{X}{I}-
$$

$$
D F_{0} D V{ }_{F}^{A A} A_{G}^{A D} D_{0}^{A G} F_{D} D_{D} X A
$$

$$
-\frac{A D}{N}-\frac{X}{V}-\frac{X}{I}-\frac{D}{L}-\frac{P}{I}-\frac{D}{E}-D A-G
$$

Figure 62 -Continued.
No. 7.

$\begin{array}{cccccccc}T & R & E & P & 0 & R & T & S \\ A A & D V & A G & G F & D F & D V & A A & D\end{array}$
 $\begin{array}{cccccccc}N & T & R & Y & M & I & S & S \\ G D & A A & D V & X V & F V & F X & D X & D\end{array}$

 E $\quad \mathbf{S}$ AG DX

No. 8

$\begin{array}{cccccccc}D & I & N & T & E & R & R & \mathbb{U} \\ \nabla D & F X & G D & A A & A G & D V & D V & X\end{array}$
$D G^{P} F A A^{T} A V^{\mathrm{D}} \mathrm{D}$
40. Special solution by the exact factor method. - a. The student who has comprehended the successive steps in the solution of the example discussed in the preceding paragraph is in a position to grasp at once
the mechanics of the special solution by the exact factor inethod. The latter is based upon the interception of a number of cryptograms, preferably lengthy ones, which have been enciphered by rectangles in which the last row is completely filled with letters. The total number of bipartite components in the case of such a cryptogram will yield clues as to the dimensions of the transposition rectangle. Then the text is transcribed into columns of appropriate length, all being equal in this respect, and the process of combining columns, as explained in Par. 39e, is applied in order to produce the best monoalphabetic distribution of bipartite digraphs down the juxtaposed columns. There is nothing to prevent the sinnultaneous use of all cryptograms that have been enciphered by completely-filled rectangles, for it is clear that if, for exemple, columns 15 and 4 are to be paired in one cryptogram, the aame columns will be paired in all the other cryptograms. Honce, even if the rectangles are small in depth they can be used in this process; it is necessary only that all columns of any rectangle be of the same length. Now if only two or three such pairs of columes can be set up correctly, solution folloys almost as a matter of course. No addıtional or new principles need be brought into play, beyond those already possessed by the student.
b. In this special solution, the important step is, of course, the initial one of experimenting with roctangles of various dimensions until the correct size has beon hit upen. In some cases, excessive experimentation may not be necessary if the total number of characters is such as to yield only one or two possibilities with regard to the length of the columns. For example, suppose that previous work has established
the fact that the enemy uses transposition rectangles not less than 15 and not more than 22 columns in width. A message totaling 703 letters would indicate a rectangle of 19 columns of 37 letters, since these two numbers are the only factors of 703. If this then were corroborated by other cryptograms of $76(19 \times 4), 152(19 \times 8), 190(19 \times 10)$ letters, the probability that 19 is the width of the transposition rectangle becomes quite persuasive. Of course, there will be and there should be other cryptograme of lengths that do not factor exactly; these represent the ones in which the rectangles are not completely filled in their last row. They do not enter into the solution at first, but just as soom as the positions of two or throe key numbers become fixed, the data afforded by these messages become available for use in the later stages in the solution.
c. The exact-factor method is a useful one to know. For despite all instructions that may be drawn up insisting upon the advisability of not completing the last row of a transposition rectangle, the tendency to violate such a rule is quite mariked, especially where a large cryptographic porsonnel must bo employed. It is not astonishing to find that the temptation to fill the rectangle completely is particularly hard for lazy or ignorant clerks to resist when it happens that a message falls just one, two, or three letters short of forming a completelyfilled rectangle: it is so much easier for such clerks to handle a rectangle with equal-1ength columns than one in which this is not the case. Moreover, the number of errors and thereforc the number of times a shiftless or careless clerk must go over his work to correct errors is reduced to a minimum. Hence, it often happens that in such cases an
enciphering clerk adds one, two, or three letters to complete the last row, thus leading to the transmission of not a few cryptograms enciphered by completely-filled rectangles.
d. Space forbids giving an example of such a solution. For students who desire to exercise their skill in oxecuting the procedure, there is gaven in Appendix 2 a set of 44 cryptograms which were actually solved by this method. The text is in German, but a knowledge of the language is not essential to the reconstruction of the transposition key and of the various transposition rectangles involved.
41. General solution for the ADFGVX system. - a. All three of the foregoing methods of solving cryptograms in the ADFGVX system fall in the category of special solutions and therefore are dependent upon the fortuitous existence of the special conditions required under each case. What is really desired in the practical sttuation is a method of solution which is not so dependent upon chance or good fortune for success. A search for a,general solution was, of course, made during the time that the system was under minute study by the cryptanalytic agencies of the Allies, but no genoral solution was devised. All the solutions made dúring actual hostilities and for a number of weeks thereafter were of the special types described in the preceding paragraphs. The first published description of a general solution is, to be found in Givierge's Cours de Cryptograpinie, 1925, but only in broad outlines. A complete 'general solution was indepondently conceived by a group of cryptanalysts in the'office of the Chief Signal Officer ${ }^{3}$.and will be described in Paragraphs 42 and 43.
${ }^{3}$ See footnote 5 below.
b. The attention of the student is directed to the comments made in Paragraph 18, with regard to the significance of the term general solution in cryptanolysis. He must be cautioned not to expect that in practical work a general solution will, in the cryptanalytic as in the mathematical field, invariably lead to a solution. If there is a sufficient amount of text and if the text contains no abnormalities, the attempt to apply the general solution will usually be successful. But the cryptanalyst must remamber that the ADFGVX system is by no means a simple one to solve even under the best of conditions and if there is only a small amount of, text, if it happens that the transposition key is unusually long, or if the text is abnormal, he may not succeed in solving the messages by the stralghtforward method to be set forth below, and he may have to introduce special modificntions. For the latter he can only rely upon his own ingenuity and intuition.
42. Basic principles of the general solution. - a. Every transposition rectangle in the ADFGVX syatam must conform to one or the other of two and only two fundamental types: the number of column must bc oither odd or even. A number of important consequences follow from this simple fact, some of which have already been pointed out in Paragraph 39e. They will be elaborated upon in the next subparagraphs.
b. Consider a rectangle with on even number of columns. Each of its rows contains an even number of bipartite components, half of which are initial components, half, final compononts, alternating in a rogular order from left to right in the rows. When the transposition is applied, all the components within a given column aro of the same class, elther initial or final. No intermixture or alternation of the two
classes is possible. On the other hand, consider a ractangle with an odd number of columns. Fach of its rows cointains an odd number of bipartite components, the lat row containing one more:initial component. than final components, the $2 \dot{d}$ row containing one-more final-compenent than initial components, and"so on, 'this arrangament alternating regularly in the successive rows of tife rectangle.. When one studies the various columns of the rectanglé, it is seen that in each colmm there is a"perfectly regular alternation of initial and final components, the odd columns (ist, 3d, 5th, ...) beginning with an initial component, the even columns (2d, 4th, 6th, ...) beginning with a final component. This alternation in components remains true even after the transposition is applied. These ramarks become very clear if one studies Fig. 63. Two transposition rectangles aré shown, one with an oven mumer or. colums, the other with an'odd number. Instead of the actual components (ADFGVX), the symbols θ_{1} and θ_{2} are used to indicate the two classes of components, initial and final, becauso in this analysis interest centers. not upon the actual identity of a component but upon the class to which it belongs, initial or final. At the top of each. column is. pleced a "plus" to denote a column occupying'an odd-numbered position in the rectangle, or a "minus" to denotio' a columa occupying an even-numbered position.

Eren no. of columns

+	-	-1	-	+	-	+	-	+	-
θ_{1}	θ_{2}								
θ_{1}	θ_{2}								
θ_{1}	θ_{2}								

브

Odd no. of columns

t	-	+	-	+	-	+	-	+
$\frac{\theta_{1}}{1}$	θ_{2}	θ_{1}	θ_{2}	θ_{1}	θ_{2}	$-\theta_{1}$	θ_{2}	θ_{1}
θ_{2}	θ_{1}	θ_{2}	θ_{1}	θ_{2}	θ_{1}	θ_{2}	θ_{1}	θ_{2}
θ_{1}	θ_{2}	θ_{1}	θ_{2}	θ_{1}	θ_{2}	θ_{1}	θ_{2}	θ_{1}

b
FICURE 63.
c. In what follows, the term "odd column" will mean merely that the column in question occupies an odd position (lst, 3d, 5th,) in the transposition rectangle; the term "even column", that it occupies an even position $(2 \mathrm{~d}, 4 \mathrm{th}, 6 \mathrm{th}, \ldots)$ in the rectangle. The odd or even designation has no reference whatever to the nature of the transposition key number applicable to that column, whether it is odd or even. Now when the transposition is applied to the even-width rectangle a, Fig. 63, the cryptographic text will consist of a number of sections of letters, each section corresponding to a column of the rectangle, and therefore the number of sections in this case will be even. Moroover, all the components in a section corresponding to an odd column in rectangle a will be initial components, all those in a section corresponding to an even column, final components. The sections or columns are completely homogenoous with respoct to the class to which their constituent components belong. On the other hand, when the transposition is applied to odd-width rectangle \underline{b}, the cryptographic text will consist of an odd number of sections, each corrosponding to a column of the rectangle. The components in the sections consist of members of both classes of components in a regular alternation; in a section corresponding to an odd column the order is $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$...; in a section corresponding to an even column the order is $\theta_{2} \rightarrow \theta_{1} \rightarrow \theta_{2}$... . The sections or columns are not homogeneous in this case as they aro in the former.
d. Now if there were some way of distinguishing betweon initial components as a class and final components as a class it is clear that it may be possible first of all to ascertain whether the transposition rectangle contains an even or an odd number of columns. Secondly it may be
possible to identify those columns which are ever and those which are odd. Finally, it, may be possible to ascertain which are the long columns and which are short, thus yiolding the exact outlines of the rectangle in case tho last row is incompletely filled. From that point on, solution follows along the same lines as oxplained in paragraph 40 , with the modification that in the pairing of columns the number of possibilitios is greatly reduced, since it is useless to pair two colmms, both containing initial components or final compononts.

- e. The foregoing depends then upon the possibility of being able to distinguish as a class betweon initial and rinal components of the bipartito ciphoi equivilents in this systom, or at least betweon letters belonging to onc or tho other of these tro generel classes of camponents. Now if the substitution chockerboard has not been consciously manipulated with a view to destroying certann proporties normally charactorizing its rows and colums, the sort of differentietion indicated, above is quite possible. FCr oxminlo, if in the checkapboard shown in Fig. 61 the normal frequencios of tho lottors "as they appear in English telegraphic plain text ${ }^{4}$ are insorted in the celis and totals aro obtalned vertically and horizontally, thoso totals will pomit of assignins frequency woights to the letters ADFGVX as initial and as finsl lettors of tho bipartite cipher equivalonts of the plain-text letters. This is show below in Fig. 64. The bipartito lotter A has a frequoncy volue of 284 as an initial component of tho bipartite ciphur equivelents of plain-text , latters, and a froquoncy value of only 169 as fifnal component.

4As given in Fig. 3, page 13, Militery Cryptanalysis, Part I.

REF ID:A56913

A

A	D	F	G	V	X	Sums
$\begin{gathered} T \\ 92 \end{gathered}$	$\left[\begin{array}{l} \mathrm{H} \\ 34 \\ \hline \end{array}\right.$		$\begin{gathered} E \\ 130 \end{gathered}$		$\begin{aligned} & F \\ & 28 \end{aligned}$	284
	$\begin{array}{\|l\|} \hline L \\ \hline 36 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{R} \\ 76 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathbf{S} \\ & 61 \end{aligned}$	264
$\begin{aligned} & \mathrm{A} \\ & 74 \end{aligned}$		$\begin{array}{\|c\|} \hline \mathbf{B} \\ 10 \\ \hline \end{array}$		$\begin{gathered} \frac{M}{M} \\ 25 \\ \hline \end{gathered}$	$\begin{aligned} & \bar{I} \\ & 74 \end{aligned}$	183
	$\begin{gathered} \hline \mathbf{N} \\ 79 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{P} \\ 27 \\ \hline \end{array}$	$\begin{gathered} G \\ 16 \\ \hline \end{gathered}$		C 31	153
	[${ }_{\text {D }}$		J 2		K 3	47
$\begin{aligned} & \bar{Q} \\ & 3 \end{aligned}$	$\begin{array}{\|c\|} \hline \frac{\pi}{2} \\ 26 \end{array}$	$\begin{gathered} \overline{7} \\ 15 \end{gathered}$	$\begin{gathered} \bar{x} \\ 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{Y} \\ 19 \\ \hline \end{array}$	2 1	69
169	217	127	169	120	198	1000

FIGTRE 64.
Similarily, the letters V and X have frequency values of 47 and 69 , respectively, as initial components and 120 and i'98 as final components. It is obvibus, then, that in this checkerboard the weighted frequency values of the lettors A, V, and X as initial components differ considerably from the values of these same lutters as finel components, the value for G as an initial is only a little less than its value as a final, the values of D and F as imilials are only a littie more than their values as finals. But it is the wide variations in the weighted frequency velues of certain of the lettors as initial components and as final components, oxamplifiod in the case of A, V, and X, which form the basis of tho general solution, because these wide variations afford a means for making the various difforentiations noted in subparagraph d.
I. Of course, in working with an unknown example, the composition of the checkerboard is unknown and therefore no accurate frequency weights may be assigned to tho ADFGVX components in the cryptograms. However, it is still possible to arrive at some approximations for these weights in case there are several cryptograms available for study, as would
normally be true in actual practice. How this can be done will be shown very soon, by studying an example. For the purposes of this study the set of 12 cryptograns given below will be used.
I.

D DGG				
d	D X	ADVD	FXGDF	V
DGDGV	GDDD	XFADA	VDVGD	G A
DADAD	FXAVF	VDDAA	VDIFD	F
V DDGV	DDDDA	VADAF	ADDXA	D
V	DGADV	FXVXD	GDDAG	GDDX
FDDXA	DIGDA	GXD-DA	VFDAF	GVFV
FFTF	AFXGT	XDGVA	DFVD	CAV
DDGDV	X			

. II

III

DAGAA	FGAGV	D A FGGG	X	
F D X	DDAGA	DDGVA	D DVDD	G
VGDGX	D	FVDDF	daAAA	D
XAGGD	DAVGV	FGDVF	V DGGX	G
A X	GDDDG	DAFDA	DGGAD	
FVDFD	XFVGD	DVAVF	D D DF	A
AAD	FADG	V $\mathrm{F}^{\text {D A }}$	D G X	
	D			

IV
ADXVFXVGGVFDDVAFGAAVFDVD DDGDGFDVVAFGXFX FDDDDVGDAX DAXDD DAGVFFAADV GDFXGXGVGD DDDADVXVFAVDAXXDFAAFAVDVG VDVDD AXDAA (110'Ietters)
∇

D C (${ }^{\text {d }}$	DVVVD	X FXFX	FFFVA	I
VDAGF	DVDGF	ADAAD	FDVFG	DADFV
FVFXG	XDDAG	DVGVF	DGXXD	FFGDG
XGVDD	VDDFG	FVGDD	VFVAG	XXD F V
DXAVF	GAGAG	AXDVD	FXGVG	DADDX
AGXDA	DFDGX	FDGGF	VGXVV	GDDDA
$G X V D G$	VDVGX	DDFDD	VAGAA	DGDDF
DGAGD	FDDD	XGVGV	GGGDG	XDFGF
A D (202	letters)			

VI				
GDGFX	AGVFV	D D X X	D $\mathrm{DDD}_{\text {D }}$	X J A $A X$
FAGVG	DXFFV	XFADG	FFDXA	AFVXF
DFXFV	GDGFX	FDVVX	VGDFV	D V F D
FVVDV	DGGVF	XFGVX	FFVGV	D DGDD
DDGDD	AVGVX	GAFFX	FV'DD D	(120 letters)

VII

GAFG	FXFVF	,	d	X X D D F
AGVD	VDVFF	ADAVA	VFVGG	ADAAF
VFDF	DXFXX	GDXD ${ }^{\text {d }}$	FVDFF	X D VF
VADXV	AXDVX	AFFVD	TDGXF	DGFDD
FVDVV	AAFVF	FVXDG	FDDVA	D DTDD
D X FFA	G FIXPX	AAGVD	GGVDF	GGGXD
FDFVA	TFGFX	$G D A X D$	GDGGD	DAVDX
ADFA	VFXDD	$X V A G D$	VVDDF	$\mathbf{X D G X X}$
DVFVI	DDDDA	ATDFX	DXGDA	$A F \nabla D F$
DVDDV	ADDVD	$\nabla A V D$	ATVFX	FAAV
D F V D	254 letters)			

VIII

IX

G D D D			FGDFV DVAVD
FAGX	AVFFG	VADD	AXXAX ${ }^{\text {d }}$ GADG
X A V V D	GXXAA	AVADA	DGXDV G D.
GVFXA	AVGGV	FXDAF	DGVGA FGD
AVVGD	DVDFX	DVDGF	VAAGD X
ADAGD	AXFVG	DDDAG	VAVFGXXF'
GXFVD	GGD	DAGGF	X
AXXAD	D F (182	etters)	

X

XI ${ }^{-}$

XII

X FDFX F DAA	$V V D V D$ $X A D F V$		$\begin{aligned} & V F A G D \\ & X F G D V \end{aligned}$	$\begin{aligned} & G V A D D \\ & F V D D D \end{aligned}$
DGDVV	AVVVF	ADDAX	AVFVA	DAXDV
GDDrA	$\mathrm{X} D \mathrm{DGX}$	GVFXA	VXVFD	GDXD
DVXAD	VAVAV	GVDDD	AFDFA	D
VGDAG	FXDDF	ADVXV	DFXFF	V V GFX
XGFVA	VFAGG	DAVVD	XDXGD	DVVAD
D DAGA	AGXFG	DDDGV	FGFVG	$V \chi \in V F$
F	ADVD D	XGDFD	DVDDG	AFGD

43. Illustration of solution. 5 - a. Since the initial letters of all 12 cryptograms are in the same class, that is, either initial or final components, they may all be combined into a single distribution. Furthermore, since it is certain that regardless of whother the transposition rectangle has an odd or an even number of columns the 3d, 5 th, ... letters of the cryptograms are in the same class as the first letter,
[^10]
REF ID:A56913

the $3 \mathrm{~d}, 5 \mathrm{th}, . .$. letters may be added to the distribution, so long as these odd letters come Irom the same section (column 1). It is, however, necessary to limit the number of letters taken from the beginmine of any one cryptogram to a reasonable length of column, depending on the slze of the cryptogram. Assuming it is known that the onemy is using transposition keys of not less than 15 nor more than 22 numbers, the latter could be taken as the maximum possible size. But to be on the safo sids it will be hore assumod that a transposition rectangle of not moro than 25 columns is boing usad. Hence, so far as concerns cryptogram 1, which has 212 lettors, on the basis of a key of 25 nunbers $[(25 \times 9)-13=212]$ there will be 12 columns of 9 letters and 13 columns of 8 lettors. Since thero is no way of telling which aro long and which are short columns, it will be safor to work on tire basis of colums of 8 letters. Therefore, the first E letturs of cryptogram I are to be takon. In the caso of cryptogram II, whth 108 letters, its first 4 letters will be takon, and so on, through the 12 cryptograms, the number of letters to be taken in each case boing governed by the length of the cryptogram. The sections tokon in the casc of the 12 cryptograms aro shown in Fig. 65.

Cryptogram	Longth	Lettors taken	Cryptogram	Longth	Lottors takon
I	212	VDDGGGVF	VII	254	GAFGrFXIVF
II	108	VDAA	VIII	144	DGVVG
III	186	DAGAAFG	IX	182	GDDDDXV
IV	110	ADXV	X	130	DGDDF
V	202	DFXFDDV	XI	186	VFDDVAX
VI	120	GDGF	XII	224	XFDFXVVDV

FIAURE 65.
b. The odd and the even letters of these 12 sections are then distributed soparately, the results being, shown in Figs. 66 and 67. A consideration of the mechanics of 'this system leads to the expectation that if the transposition rectangle has an even number of columns the two distributions will be similar; if it has en odd number, they will be different. The similarity or difference between the two distributions is usually discernible, with as few as 20 or 25 letters.

Odd (1st, 3d,) letters

FICURE 66.

Even (2d, 4th,) letters

FIGURE 67.
c. Letters V and X are of high frequency in the odd positions (Fig. 66) but of low frequency in the even positions, (Fig. 67) whereas the letter F - is of low frequency in the odd positions and of high frequency in the even positions. There can be no question that the two distributions are dissimilar, and the indications are clear that the transposition rectangle involves an oded mmber of colunns.
d. Now tho letters in Fig. 66 may be initial components, those in Fig. 67, final components, or the reverse may be the case. At the present stage of the study it is impossible to ascertain which of these alternative hypotheses is correct. However, this information is really. immaterial at this stage. Suppose the letters in Fig. 66 are arbitrarily designated as class 1 components, those in Fig. 67 are class 2 components. Class 1 components (Fig. 66) are characterizod by a predominance of V 's. and X^{\prime} s (over thair frequencies in Fig. 67); class 2 components (Fig. 67) are characterized by a prodominance of Fr_{s} (over its frequency in Fig. 66.)

REF ID:A56913

e. The two distributions in Figs. 66 and 67 apply to the letters which come from Column 1 of the transposition rectangles for the 12 cryptograms under study. In this column, the $V{ }^{\prime} s$ and $X I s$ fall predominantly in the odd positions, the F's fall predominartly in the even . positions. Therefore, beginning whth position 1 , the components in this column show an alternation of the type $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$. By referring to - Fig. 63.it will become clear that if, class 1 components are initial components, then it must follow that column 1 occupies an odd position . - in the transposition rectangle; but if class 1 components are final components, then it nust follow that column 1 occupies an even position in thie transposition rectangle. Which of these alternatives is true cannot be ascertained at the moment. But the important point to be noted is that a definite reversal in the type of alternation of class 1 and class 2 components indicates the progress, in the transposition, from the end of one column to tine beginning of the next column. That is, if it is found that from the beginning of the cryptogram the alternation of components is $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$ and after a number of letters this alternation changes to $\theta_{2} \longrightarrow \theta_{1} \rightarrow \theta_{2}$, the point where this change occurs marks the ond of column 1 and the beginning of the column 2. For the sake of brevity in reference, in the subsequent paragraphs the type of alternation $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$ will be designated as the "+ typen, and this type of alternation characterizes columns which fall in odd-numbered positions in the transposition rectangle. The other type, $\theta_{2} \rightarrow \theta_{1} \rightarrow \theta_{2}$ will bo designated as tho "- type", and this type of alternation characterizes columns which fall in even-numbered positions in the transposition rectangle.
f. With these principles in mind, let cryptograms III and XI, each containing 186 letters, be studied. They may be superimposed, since they have identical numbers of letters and therefore the colunns end at exactly the same points in both cryptograms.
III. XI.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
D	A	G	A	A	F	G	A	G	V	D	A	F	G	G	X	F	D	X	D	F	V	V
V	F	D	D	V	A	X	G	D	A	D	F	G	G	G	G	F	G	D	D	F	X	X

> III. XI.

> III. XI.

- $\quad x \quad x \quad 1$

III. XI.

III. XI.
$162163164165166167168 / 69170171172173174175176177178129180181182 / 83 / 84$

 III. $\frac{185181}{D}$ XI. D X

FIGURE 68.

g. It has already been noted that beginning with the first letter of any one of the cryptogrems, the type of alternation for column 1 is + . It is therefore not astonishing to find, within the first 10 letters, an
alternation of the + type. Note how the $V^{\prime} s$ and X 's fall in the odd positions, the Fis in the even. Thus:

$$
\begin{aligned}
& \frac{12345678910}{\text { III. } A A A F G A G V} \\
& \text { XI. VFDDVAXGDA}
\end{aligned}
$$

It is seen that there are $2 \mathrm{Vi}^{\mathrm{s}}$ which fall in odd positions (1 and 5), but one V falls in an even position (10). There is an X, which falls in an odd position (7); there are $2 \mathrm{Fr}^{4}$, which fall in even positions (2 and 6). Unquestionably, then, the :type of alternation, at least for the first 10 letters in each of these cryptograms, is + .
h. Take the next section of 10 letters in-these two cryptograms. The letters are as follows:

Here there are 4 Fis; 3 of them fall in odd positions (13, 17, 17), and one falls in an oven position (12). There are $2 \mathrm{X}^{-8}$; one falls in an odd position (19), one in an even position. There are no V's among those letters. So far as the evidence afforded by the Fi_{s} is concerned, it would appear that this section of text shows the type 2 or ${ }^{n-}$ type" of alternation of components, since in type 1 or "-f type" the Fi s occupy even positions and hero the majority of them occupy odd positions. But so far as the X 's are concerned, the ovidonce is equally balanced: one X falls in an odd position, one in an evon position. There being no Vis, no conclusions can be drawn from this letter. To be guided solely by the ovidenco afforded by the $3 \mathrm{Fi}^{\mathrm{s}}$ may be unwarranted. Is it not possible to weight the frequencies of the letters so that it will be unnecessary to rely merely upon a few of tham and the evidence afforded by all the
letters can be taken into account?' Why not assign frequency weights according to the two distributions in Figs. 66 and 67 . The figures then become as follows:

Odd (1st, 3d, ...) letters
_Even (2d, 4th,) letters

A	D	F	G		V		X
E	$\begin{aligned} & E \\ & E \\ & E \end{aligned}$	三)		$\begin{aligned} & \frac{\pi}{2} \\ & 5 \end{aligned}$		5

$\begin{array}{llllll}3 & 11 & 3 & 8 & 11 & 6\end{array}$
Total - 42 letters

FIGURE 69.
Since the odd letters have a total frequency of 42 , the even, a total frequency of 35, for purposes of equalizing the distributions in applying the weights it seems advisable to deduct $1 / 6$ from the total when applying the weights to odd letters.

1. ' Now in applying these weights to the letters, it must be borne in mind that since a transposition rectangle with an odd number of colums is involved, half of the letters are class 1 components, the other half are class 2 components. Hence, in finding the frequency value of the letters it is necessary to apply the weighted frequencies to alternate letters in the sections, as showm in Fig. 70.

			11	12	13	14	15	16	17	18
III.	19	20								
II.	D	A	F	G	G	\mathbf{X}	F	D	X	D
XI.	D	F	G	G	G	G	F	G	D	D

Distribution of odd letters
Distribution of even letters

FIGURE 70.

These diatributions, when evaluated in accordance with Fig. 69, yield a total frequency value of 126; when evaluated in accordance with Fig. 69 reversed, yield a total frequency value of 143. The detailed calculations are as follows:

$$
\begin{aligned}
& \text { (Odd letters as } \theta_{1}^{\prime \prime s} \\
& \text { even letters as } \theta_{2}^{\prime \prime s} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{aligned}
0(3) & +3(11)+3(3)+3(8)+0(11) \\
& +1(6)=72 \\
1(4) & +3(10)+1(11)+4(5)+0(4)
\end{aligned}\right. \\
& \text { (Even letters as } \theta_{1} \text { 's },\left\{\begin{array}{l}
0(4)+3(10)+3(11)+3(5)+0(4)
\end{array}\right. \\
& \left\{\begin{array}{c}
1(3)+3(11)+1(3)+4(8)+0(11) \\
+1(6)=77 \\
0(4)+3(10)+3(11)+3(5)+0(4)
\end{array}\right.
\end{aligned}
$$ Fig. 69 reversed odd lettors as $\theta_{2}{ }^{\frac{1}{1}}$ s)

j. Now the frequency sums here obtained (148 Vs 156) indicate that an alternation of the type $\theta_{2} \rightarrow \theta_{1} \rightarrow \theta_{2}$ is in effect, that is, if a beginning is made with position 11, the type of alternation is "-N. Since the type of alternation for the first 10 letters is "-f" and for the second 10 letters " n ", the reversal in alternation would indicate that column 1 of the transposition rectangle ends somewhers near the loth letter. This same sort of reversal 'takes place after the 20th letter, as shown by the calculation in Fig. ?

Distribution of odd letters

$$
\frac{A D F G V X}{-=-E}
$$

1-2-2-1-1-3

Distribution of even letters

Fig. 69 normal
(Odd Ietters θ_{1} 's oven letters as $\theta_{2}{ }^{\prime} \mathrm{s}$)
$\left\{\begin{aligned} 1(3) & +2(11)+2(3)+1(8)+1(11) \\ & +3(6)=68 ; \\ 0(4) & +2(10)+3(11)+1 \\ (5) & +1(4)+3(1)\end{aligned}\right.$ Fig. 69 reversed
(Even letters as θ_{1} 's, odd letters as $\theta_{2}{ }^{\frac{1}{s}}$)
$\left\{\begin{array}{l}0(3)+2(11)+3(3)+1(8)+1(11) \\ +3(6)=68 ; \\ 1(4)+2(10)+2(11)+1 \\ (5)+1(4)+3(1)\end{array}\right.$
FIGURE 7.
Beginning with 2lst position, the alternation is of type $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$; hence it is of the $"+n$ type. Again the reversal in type of alternation occurs in passing from the 2 d set of 10 letters to the 3 d set, and this indicates that column 2 of the transposition rectangle ends somewhere noar the 20th letter. But, fortunately, this time the exact location of the break is dofinitely indicatod: the simultaneous appearance of \bar{V} and X in the sequent positions 22 and 23 leads to the idea that letter 22 marks the ond of column 2 and letter 23 marks the beginning of column 3. There is nothing of an absolute nature in this point: it is mercly an indication based upon probabilities and does not constitute a conclusive proof by any means. Now if there is this definite break at the end of 22 letters it means that columns 1 and 2 must each contain 11 letters. The calculations have heretofore been based upon sections of 10 letters and
the results are therefore modified as shown in the following calculation: FIRST SECIION (Letters 1-11)

$$
\begin{array}{rccccccccccc}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\text { III. } & D & A & G & A & A & F & G & A & G & V & D \\
X I . & V & F & D & D & V & A & X & G & D & A & D
\end{array}
$$

Distribution of odd letters

$$
\frac{A D F G V X}{-\equiv}
$$

$$
1-5-0-3-2-1
$$

Distribution of even letters

$$
\begin{aligned}
& \frac{A D F G V X}{5}=- \\
& 5-1-2-1-1-0
\end{aligned}
$$

Weighted values of distributions:
On basis of Fig. 69 normal (add letters as θ_{1} 's, even letters as $\left.\theta_{2}^{\prime \prime s}\right)$:
$1(3)+5(11)+0(3)+3(8)+2(11)+1(6)=110 ;$ deduct $1 / 6=92$
$5(4)+1(10)+2(11)+I(5)+1(4)+0(1)=62$
Total 154

On basis of Fig. 69 reversed (even letters as θ_{1} 's, odd letters as θ_{2} 's):
$5(3)+1(11)+2(3)+1(8)+1(11)+0(6)=51 ;$ deduct $1 / 6=42$
$1(4)+5(10)+0(11)+3(5)+2(4)+1(1)=78$
Total
$\frac{78}{120}$
The type of alternation is $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$, or "+".
SECOND SECTION (Letters 12-22)

$\begin{array}{rlllllllllll} &$| 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| III. | | 21 | 22 | | | | | |
| \mathbf{A} | F | G | G | X | F | D | X | D | \& \(F \& G \& G \& V

XI. \& F \& G \& G \& G \& G \& F \& G \& D \& D \& F \& X\end{array}\)

Distribution of odd letters

$$
\frac{A D F G V X}{E \equiv}
$$

$$
0-1-5-3-0-1
$$

Distribution of even letters

$$
\frac{\Lambda \cdot D \text { FG V X }}{-\equiv}
$$

Weighted, values of distributions:
On basis of Fig. 69 norraal (odd letters as θ_{1} 's, even letters as $\theta_{2}{ }^{\prime} \mathrm{s}$):
$0(3)+1(11)+5(3)+3(8)+0(11)+1$
$(6)=56$; deduct $1 / 6=47$
$1(4)+3(10)+1(11)+4(5)+1(4)+2(1)=71$
Total $\frac{71}{118}$

On basis of Fig. 69 reversed (even letters as θ_{1} 's, odd letters as $\theta_{2}{ }^{\text {p }}$):
$1(3)+3(11)+1(3)+4(8)+1(11)+2(6)=94 ;$ deduct $1 / 6=78$
$0(4)+1(10)+5(11)+3(5)+0(4)+1(1)=81$
Total $\frac{81}{159}$
Sınce the best values are obtained on the basis of Fig. 69 reversed, the type of alternation for the 2 d section of 11 letters is therefore again $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$, or "+".

THIPD SECTION (Letters 23-33)

III.

Distribution of oadd lotters

Distribution of evon letters

$$
\begin{aligned}
& A D F G V X \\
& =-1-3-3-1-0-2
\end{aligned}
$$

Weighted values of distributions:

- On basis of Fig. 69 normal (odd letters as $\theta_{1}{ }^{\prime} s$, even letters as θ_{2} 's) :
$2(3)+3(11)+0(3)+2(8)+2(11)+3(6)=95 ;$ deduct $1 / 6=79$ $1(4)+3(10)+3(11)+1(5)+0(4)+2(1)=74$
Total 154

On basis of Fig. 69 reversod (even lettors as θ_{1} 's, odd letters as θ_{2} 's):
$1(3)+3(11)+3(3)+1(8)+0(11)+2(6)=65 ;$ deduct $1 / 6=54$
$2(4)+3(10)+0(11)+2(5)+2(4)+3(1)=59$

[^11]Since the best values are obtained on the basis of Fig. 69 normal, the type of alternation for the 3 section of 11 letters is $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$, or "中".
K. Now if columns 1 and 2 contain 11 letters, and the total number of letters is 186, the transposition roctangle obviously has 17 columns, there being 16 long columns of 11 letters and one short column of 10 letters $[(17 \times 11)-1=186]$.

1. There is another cryptogram which also contains but one short column, Viz, VII, of 254 letters, $[(17 \times 15)-1=254$. The columns of this cryptogram contain 4 more letters than the corresponding columns of III and XI. Assuning, momontarily, the last column to be the short one, cryptogram VII may be added to tho suporposition of III and XI, provided those sets of 4 additional letters are accounted for. This has been done in Fig. 72. In that figure the 4 cxtra letters pertaining to cryptogram VII are shown as falling under the last lettors of the columns of cryptograms III and XI, but this is only an arbitrary placoment. It is sufficient to place these extra letters in such positions as will makc the first one of the series begin in an even position.
m. Since the transposition rectangle is now known to be 17 columns wide, the data in Fig. 69 may be enlarged to correspond to this information For example, whereas in originally constructing Fig. 69 the first column of cryptogram I was assumed to have only 8 latters (to correspond to a key of 25 numbers), it may now be extended to a column of 12 letters, and so on. The additional portions used to mako the distributions in Fig. 74 are show underlined in Fig. 73.
 III.

$\frac{45464748495051525354555657585960616263646566}{D G A}$

 $\frac{89}{90} 919293949596979899100101102103104105106107108109110$ III.

XI. D FGDAGPAAGGADXDG.VDGAVG viI. $F D F \forall A F F$

\mathbf{X} D ${ }_{\text {d }}$

$$
\text { ת- } \mathrm{n} \text { O }
$$

XI. VDFDDFXGAGXFGVFVVDGVDX VII. $\boldsymbol{\nabla} \mathbf{F X D D X X}$

$$
\begin{array}{lllllllllllllll}
A & G & D & \mathbb{V} & X & D & G & X & X & D & V & F & V & F & D \\
\boldsymbol{V} & D & D & F & D & D & A
\end{array}
$$

III. $\frac{15515615715815916016162163164165166167.168169170171172123174175176}{D}$
 VII. A

III.
XI.

FIGURE 72.

> | VII. | A | F | V | F | X | F | A | A | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Cryptogram	Length	Letters taken	Cryptogram	Length	Letters taken
I	212	VDDGGGVFDFVD	VII	254	GAFGFFXFVFGRXA
II	108	VDAAVD	VIII	1144	DGVVGFXG
III	186	DAGAAFGAGV	IX	182	GDDDDXVGVD
IV	110	ADXVFX	X	130	DGDDFVF
V	202	DFXFDDVVDX	XI	186	VFDDVAXGDA
VI	120	GDGFXAG	XII	224	XFDFXVVDVDAVD

FIGURE 73.
The new frequency weights are therefore as follows:
Odd (lst, 3d,) letters

4145111510
Totel $=59$.

Even (2d, 4th, ...) letters

$\begin{array}{lllll}9 & 15148 & 7 & 2\end{array}$
Total $=55$.

FIGURE 74°
Since the two totals are quite close together, no correction need be made of the nature of that mede in preceding calculations, where $1 / 6$ was deducted from the total values of odd letters.
n. Beginning with position 23, in the caso of cryptograms III and XI the next 11 letters, and in the case of cryptogram VJI the next 15 letters are clearly of the "十" type of alternation. The data are as follows:

Distribution of odd letters ．Distribution of even letters
ADFGVX
$=E-E E$
$2-4-1-3-7-3$

$$
\begin{aligned}
& \text { ADFGVX } \\
& \text { 三EF } \\
& 4-4-5-2-0-2
\end{aligned}
$$

Weighted values of distributions：
On basis of Fig： 74 normal（odd letters as θ_{1}＇s，even letters as $\theta_{2}^{\prime s}$ ）：
$2(4)+4(14)+1(5)+3(11)+7(15)+3(10)=237$
$4(9)+4(15)+5(14)+2(8)+0(7)+\underset{i}{2(2)} \begin{array}{r}\text { Total }\end{array}=\frac{186}{423}$
On basis of Fig． 74 reversed（even letters as $\theta_{1}{ }^{\prime s}$ ，odd letters as θ_{2}＇s）：
$4(4)+4(14)+5(5)+2(11)+0(15)+2(10)=139$
$2(9)+4(15)+1(14)+3(8)+7(7)+\underset{\text { Total }}{3(2)}=\frac{171}{310}$
Since the greatest total is obtained on the basis of Fig． 74 nomal，the type of alternation for the 3 d section of letters is $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$ ，or ＂十＂。

ㅇ．Continuing the foregoing process with the letters beyond position 33，the data are as follows：

	34	35	36	37	38	39	40	4	42	43	44
III．	\mathbf{G}	A	D	D	G	V	A	D	D	V	D
XI．	G	A	G	D	V	D	F	D	F	D	D
VII．	A	D	A	A	F	V	F	D	V	F	D
								X	F	\mathbf{X}	\mathbf{X}

Distribution of odd lettors
AD FGVX
$\frac{1}{2}$
$3-8-1-0-3-2$

Distribution of even letters

$$
\begin{aligned}
& \text { ADFGVX } \\
& \text { 三早E } \\
& 3-5-5-4-2-1
\end{aligned}
$$

Weighted values of distributions：
On basis of Fig． 74 normal（odd letters as θ_{1}＇s，even letters as $\theta_{2}^{\prime \prime}$ ）：
$3(4)+8(14)+1(5)+0(11)+3(15)+2(10)=194$
$3(9)+5(15)+5(14)+4(8)+2(7)+1(2)=\frac{220}{\text { Total } \ldots . .414}$

REF ID:A56913

On basis of Fig. 74 reversed (even letters as $\theta_{1}{ }^{p}$, odd letters as $\theta_{2}{ }^{\text {s }}$):

$$
\begin{aligned}
& 3(4)+5(14)+5(5)+4(11)+2(15)+1(10)=191 \\
& 3(9)+8(15)+1(14)+0(8)+3(7)+2(2)=\frac{189}{\text { Total }} .
\end{aligned}
$$

Since the distribution begins here with an even-numbered position (34), and the greatest total is obtained on the basis of Fig. 74 normal, hence the alternation for the 4 th section or column is of the type $\theta_{2} \rightarrow \theta_{1} \rightarrow \theta_{2}$. or "-".
p. (1) The data for letters beyond position 44:

		45	46	47	48	49	50	51	52	53	54

Distribution of odd letters
$\frac{A D F G D X}{\equiv E}$
4-5-1-3-3-4

Distribution of even letters

$$
\begin{aligned}
& \text { A D F G V X } \\
& \hline \text { E } \bar{E} \text { 気 } \\
& 3-4-6-4-0-0
\end{aligned}
$$

Weighted values of distributions:
On basis of Fig. 74 normal (odd lotters as θ_{1} 's, even letters as θ_{2} 's):
$4(4)+5(14)+1(5)+3(11)+3(15)+4(10)=209$
$3(9)+4(15)+6(14)+4(8)+0(7)+0(2)=\frac{203}{0}$
On basis of Fig. 74 reversed (even letters as $\theta_{1}{ }^{\prime} s$, odd letters as θ_{2} 's):
$3(4)+4(14)+6(5)+4(11)+0(15)+0(10)=142$
$4(9)+5(15)+1(14)+3(8)+3(7)+\underset{\text { Total }}{4}(2)=\frac{178}{320}$
Since the distribution starts with an odd position (45) and the greatest total is obtained on the basis of Fig. 74 normal, the type of alternation for the 5 th section or column is $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$, or " + ".
g. The types of alternation for the first 5 columns, which are alllong columns, is therefore $+++\cdots+$. Since cryptograms III and XI contain but one short column, it is advisable to be' on the lookout for it as the work progresses. It is possible to continue with the process detailed above. For example, the calculations for the next or 6th section of 11 letters are shown below:

		56	57	58	59	60	61	62	63	64	65	66
III.		D	D	D	A	V	F	\mathbb{V}	D	D	F	D
XI.	∇	A	V	F	G	G	∇	A	D	D	G	
VII.	∇	A	D	X	\mathbb{V}	A	X	D	V	X	A	
								F	F	V	D	

Distribution of odd letters
$A D F G V X$
定
5-4-4-1-1-2

Distribution of even letters

1-7-1-2-8-1

Welghted values of distributions:
On basis of Fig. 74 normal (odd letters as θ_{1} 's, oven letters as θ_{2} 's):
$5(4)+4(14)+4(5)+1(11)+1(15)+2(10)=142$
$1(9)+7(15)+1(14)+2(8)+8(7)+\underset{\text { Total.... }}{1}(2)=\frac{202}{344}$
On basis of Fig. 74 reversed (even letters as θ_{1} 's, odd letters as $\theta_{2}{ }^{\prime s}$):
$1(4)+7(14)+1(5)+2(11)+8(15)+1(10)=259$
$5(9)+4(15)+4(14)+1(8)+1(7)+2(2)=\frac{180}{2(2)}$
Since the distribution starts with an even position (56) and the greatest total is obtained on the basis of Fig. 74 reversed, the type of alteryation for the 6th section or column is $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$, or "f".
ror But perhaps advantage should be taken of the availability of additional cryptograms. For example, cryptogram ∇, of 202 letters, has 2 short columns $[(17 \times 12)-2=202]$ whereas the cryptograms thus fer dealt
with each have but one. That is, cryptogram V has one short column in common with cryptograms III, XI, and VII, and one additional short column not possessed by the latter. Can this additional short column of cryptogram V be located?
S. Suppose column 1 of cryptogram \mathbb{V} is the additional short column. Then the letters of this column are FXFXPFFVAGFD. These letters when evaluated on the basis of Fig. 74 normal yield a total of 77; when weighted on the basis of Fig. 74 reversed, a total of 144. The calculation is as follows:

Distribution of odd letters Distribution of even letters

ADFGVX	ADFG\%X
竞	D-
1-0-5-0-0-0	$0-1-1-1-1-2$

On basis of Fig. 74 normal:
$1(4)+5(5)+1(15)+1(14)+1(8)+1(7)+2(2)=77$ On basis of Fig. 74 reversed:
$1(9)+5(14)+1(14)+1(5)+1(11)+1(15)+2(10)=144$ According to this calculation column 2 of cryptogram V seems to correspond to the type of alternation $\theta_{2} \rightarrow \theta_{1} \rightarrow \theta_{2}$, that is "-n. But from previous work it is fairly certain that column 2 is of the "f" type. Hence, column 1 of cryptogram V is not the additional short column of that message. Assuming column 2 to be the extra short column, no such contradiction is obtained, for the calculation is as follows:

Assuming column 2 to be short, the letters of column 3 are XAVDAGFDVDFG. The weighted frequency value for a $\theta_{1} \rightarrow \theta_{2} \rightarrow \theta_{1}$ sequence (letters XVAFVG and ADGDDF) $=136$. The weighted frequency value for a $\theta_{2} \rightarrow \theta_{1} \rightarrow \theta_{2}$ sequence (letters $A D_{1} G D D F$ and $\left.X V A F V G\right)=109$. Hence column 3 is a "+" column, which is consistent with the formula +++-+ for columns 1 to 5, as previously ascertained.

If all the foregoing reason is correct, and column 2 is the additional short column for cryptogram V, it must be the next to the last column of the transposition rectangle. Since it is a "f" column, the last colum must be a "-1" one; therefore, there are 9 "-" columns and 8 "+" columns. This definitely determinos that the "-" columns are the odd ones, the n+n columns the even ones, since in an odd-width rectangle there is one more odd column than even columns.
t. The single short column which is common to cryptograms III, XI; and VII is one of the columns beyond column 5. Assuming each possibility in turn, there is obtained for the type of alternation in each column the distributions of "f" and "-" shown in Fig. 75.
u. The correct assumption must satisfy the following conditions:
(a) There must be 9 "-" and 8 "+" columns.
(b) The short column must be "-".

Only assumptions (3) and (5), in which column 8 and column 10 are short columns, satisfy these conditions. Therefore, column 2 is followed by either column 8 or 10. Testing the combination 2-8 for monoalphabeticity of bipartite pairs, the distribution shown in Fig. 76 is obtained. When combination 2-10 is tested, the distribution shown in Fig. 77 is obtained. Obviously, the 2-8 combination is the better.

Assumption		Column																	$\begin{aligned} & \text { Sumnation of } \\ & t^{-1} \mathrm{~s} \text { and }-1 \mathrm{~s} \end{aligned}$
		1	2		14		6	7	8	9	10			13	1411	1511	1611	17	
(1)	6th short	+	$+$	$+$	-	-	$+$	$+$	+	-	$+$	4	$+$			-	-		10+, 7-
(2)	7 th short	+	+	+	-	$+$	$+$	-	+	-	$+$	$+$	$+$				-		9+, 8-
(3)	8th short	+	$+$	+	-	+	+			-	$+$	+	+			-	-		8+, 9-
(4)	9 th short	+	$+$	+	-	+	$+$			$+$	-	+	+			-	-	-	9+, 8-
(5)	10th shert	+	$+$	-	-	$+$	+	-		$+$	-	$+$	$+$		-	-	-	-	8+,9-
(6)	11th short	+	-	+	-	$+$	+			$+$	-		$+$				-		$7+, 10-$
(7)	12th short	+-	+	-	-	+	+			$+$					-		-		6+, 11-
(8)	13th short	+	--	+	-	$+$	-			+	-			${ }^{-}$			-		$7+, 10-$
(9)	14 th short	+-	-	$+$	-	$+$	--			$+$	-			+-					8-1, 9-
(10)	15th short	-	-	-	-	$+$	+			+				$+$	$+$		-		9-1, 8 -
(11)	16th short	-1-	-	$+$	-	+	+			+					$+$	$+$			10+5, 7
(-12)	17th short	-	-1-	$+$	-	$+$	+-	-		$+$		-	-		+ +		+		1lt, 6-

FIGURE 75.

$E(\phi)=.0667 \times 17 \times 16=18.14$ Q = 22

$\mathrm{E}(\phi)=.0667 \times 17 \times 16=18.14$
$\phi=4$

FIGURE 76.
V. It is possible by introducing cryptograms with additional short column to determine more of the key. Thus, it was found by using cryptograms XII and VI that the first 3 numbers of the transposition key are 16-5-7. But the process of anagramming will yield tine solution at least as rapidly. In this process, of course, advantage may be taken of the fact that the columns have been classified into the "f" and n-" types and no combinations of two "+" or two "-" columns need be tested, since only combinations of the type "+ -" or "- + " are permissible.
W. The final transposition key and the substitution checkerboard are shown in Fig. 78.

	A	D	F	G	∇	X
A	V	I	9	K	N	G
D	7	S	C	3	R	0
'F	W	H	8	T	E	5
G	L	A	1	B	2	D
V	4	F	6	J	\emptyset	M
X	P	Q	0	X	Y	Z

FIGURE 78.
ㅈ. All the foregoing details concern a case in which the transposition rectangle has an odd number of columns. Now if the rectangle' contains an even number of columns, this type of solution is, of course, still applicable, and in fact is easier, since the/teatt of the respective sections do not have to be distributed into odd and even letters. It is only necessary to identify a section as being composed of initial components or of final components. This analysis then produces a series of sections corresponding in number with the number of columns in the transposition rectangle. This number will, of course, be evon. By a careful study of where alternations in composition of components (θ_{1} or θ_{2}) occur, the division of the text into sections corresponding to long and short columns can be accomplished. The remaining steps are obvious and follow the lines elucidated in Par. 39e-j.
Y. The entire structure upon which this general solution rests 1s destroyad if the substitution checkerboard has been consciously manipulated to impart a homogeneity to the sums of the welghted frequencios of the letters in its rows and columns. For example, note the following. checkerboard, which is not "perfect" but gives fairly homogeneous frequencies in its rows and columns.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{A} \& A \& D \& F \& G \& V \& x \& \multirow[b]{2}{*}{173}

\hline \& $$
\begin{array}{r}
\mathbf{S} \\
58
\end{array}
$$ \& $\begin{array}{r}\text { Q } \\ 3 \\ \hline\end{array}$ \& $\begin{array}{r}\text { I } \\ 36 \\ \hline\end{array}$ \& \& I
76 \& \&

\hline D \& \& $$
\begin{array}{r}
\mathbf{T} \\
90 \\
\hline
\end{array}
$$ \& \& $$
\begin{array}{r}
W \\
14
\end{array}
$$ \& $$
\begin{array}{r}
\mathrm{C} \\
33
\end{array}
$$ \& P
27 \& 164

\hline F \& $\begin{array}{r}\text { G } \\ 18 \\ \hline\end{array}$ \& \& A
72 \& \& \& $\begin{array}{r}N \\ 76 \\ \hline\end{array}$ \& 166

\hline G \& \& $$
\begin{array}{r}
\mathrm{V} \\
13
\end{array}
$$ \& $$
\begin{aligned}
& \text { J } \\
& 2 \\
& 2
\end{aligned}
$$ \& $$
\begin{array}{r}
\mathrm{F} \\
126
\end{array}
$$ \& $$
\begin{array}{r}
B \\
11
\end{array}
$$ \& K

3 \& 155

\hline V \& R
83 \& 1
Y
21 \& F
30 \& \& \& $\begin{array}{r}\text { M } \\ 25 \\ \hline\end{array}$ \& 159

\hline X \& | X |
| :--- | \& D

40 \& | Z |
| :--- |
| 1 | \& U

30 \& 0
74 \& $\begin{array}{r}\text { H } \\ 33 \\ \hline\end{array}$ \& '183

\hline \& 164 \& 167 \& 41 \& 170 \& 194 \& 164 \&

\hline
\end{tabular}

FICURX 79.

Paragraph
Review of principles underlying the cryptographic method 44
General principles underlying the solution 45
Ascertaining the period 46
Illustration of solution 47
Special solutions for bifid systems 48
Solution of trifid systems 49
Concluding remarks on fractionating systams 50
Concluding remarks on transposition systems 51
44. Review of principles underilying the cryptographic method. - a. Soveral bifid fractionating systems have been explained in previous texts of this series. ${ }^{1}$ In certain of these systons four basic steps aro 1 volved, two of substitution and two of transposition. Those steps may be briefly describoä as follows: (1) a prócess of decomposition (substitution), in which each plain-text letter is roplaced by two components, θ_{c}^{1} and $\ddot{\theta}_{c}^{2}$, of a bifịid or bipertito alphabet; (2) a procoss of separation (transposition), in which tho $\theta^{l} \Theta_{c}^{2}$ components originally paired togother aro separated; (3) a process of recombination (transposition), in which the separated components are combinod to form now pairs; (4) a procoss of recomposition (substitution), in which oach new pair of components is given a lettor value according to the original or a dafferent bifid alphabet.
b. Ono of the sumplest and most efficient of the fractionating systoms of the foregoing nature is that in which the processes involved aro applied to groupings or periods of fixed longth, as excmplifled below. Let the bipartita alphabet be based upon the 25 -cell substitution checkerboard shown in Fig. 80. Let the message to be encipherod be ONE PLANE REPORIED LOST AT SEA. Let it also be assumed that, by

[^12](1)

FIGURE 80.
preagreement between correspondents, periods of 5 letters will constitute the units of encipherment. The bipartite equivalents of the plaintext letters are set down vertically below the Ietters. Thus:

ONEPLANEREPORTEDLOSTATSEA 4134411323442233444212431 23331233333232321252225312

Recbmbinations ere effected horizontally within the periods, by joining components in pairs, the first period yielding the pairs $41,34,42,33$, 31. These pairs are then replaced by letters from the original checkerboard, yielding the following:

45. General principles underlying the solution. - a. It will be noted that the periods in the foregoing example contain an odd number of letters. The result of adopting odd-length periods is to impart a much greater degree of cryptographic security to the system than is the case when even-length periods are involved. This point is worth while elaborating upon to make its cryptanalytic significance perfectly clear. Note what happens when an oven period is employed:

ONEPLA	NEREPO	RTEDLO
413441	132344	223344
233312	333332	323212
LHIREA	NRQEED	TEQDDA

Now if each 6-letter cipher group is splat in the middle into two sections and the letters are taken alternately from each section

obtained in case a simple digraphic encipherment were in effect with the 2-square checkerboard shown in Fig. 81.
M/A|NJT F
CTRIG
BD D HK
LOPQS

N世REPO
LR HE LA
L
$\mathrm{L} A$
A
N世 REQD

FIGJRE 81.
For example, $O N_{p}=I R_{c} ; E P_{p}=H E{ }_{c l}$ and so on. Encipherment of this sort brings about a fixed relationship between the plain-text digraphs and their cipher equivalents, so that the solution of a message of this type falls under the category of the cryptanalysis of a case of simple digraphic substitution, once the length of the period has been established. ${ }^{2}$ The latter step can readily be accomplished, as will be seen presently. In brief, then, it may bo said that in this system when encipherment is besed upon even periods the cipher text is purely and simply digraphic in character, each plain-text digraph having one and only one ciphertext digraph as its equivalent.
b. But the latter statement is no longer true in the case of odd periods. Note, in the example under Par. 44b, that the cipher equivalent of the lst plain-text digraph, of the lst group, oN, is damposed of the initial and final components of the letter I_{c}, the final component of the lotter 0_{c}, and the initial component of the letter E_{c}. That is, three different cipher lettors, L, O, and E, are involved in the

[^13]composition of the cipher equivalent of one plain-text digraph, ON. Observe now, in the following examples, that variants may be produced for the digraph ON_{p}.

ON EP L	ON TH E	ON CR U	PR ON G	CONTI I	PO NG I	AT 10 N
41344	41233	42221	$42 \overline{41} 2$	24122	44122	12241
23331	23243	23134	33235	12324	32354	22423
LH OE B	$\stackrel{L R}{\text { LD }} \mathrm{P}$	${ }_{\sim}^{\text {LT }}$ AB ${ }^{\text {H }}$	OL RD ${ }^{\text {K }}$	TA GR I	QA RR Y	$A I$

c. The foregoing examples fall into two classes. In the first, where the 0 of $0 N_{p}$ falls in an odd position in the period, the first letter of the trigraphic cipher equivalent must be an I_{c}, the second must be one of the 5 letters in the $2 d$ column of the substitution checkerboard, the third must be one of the 5 lettors in the $3 d$ row of the checkerboard. Therefore, L_{c} may combine with 5×5 or 25 pairs of letters to form the 2 d and 3 d letters of the 3 -letter equivalent of $0 \mathrm{~N}_{\mathrm{p}}$. In the other class, where the 0 of ON_{p} falls in an even position in the period, the lst letter of the equivalent must be one of the 5 letters in the 4th column of the checkerboard, the second must be one of the 5 letters in the lst column, and the 30 letter must be R_{c}. Therefore, R_{c} may combine with 5×5 or 25 pairs of letters to form the lst and 2 d letters of the 3 -letter equivalent of ON_{p} in this position in the period. Hence, $0 N_{p}$ may be represented by 50 trigraphic combinations; the same $1 s$ true of all other plain-text digraphs. Now if the system based apon even periods is considered as a simple digraphic substitutıon, the foregoing remarks lead to characterizing the system based upon odd periods as a special type of digraphic substitution with variants, in which 3 letters represent 2 plain-text letters.
d. However, further study of the odd-period system may show that there is no necessity for trying to handle it as a digraphic system with
variants, which would be a rather complex affair. Perhaps the matter can be simplified. Referring again to the example of encipherment in Par. 44b:

Now suppose that only the cipher letters are at hand, and that the period is known. The list cipher letter is L, and it is composed of two numerical components that 'come from the 1 st and 2 d positions in the upper row of components in the period. These components are not known, but whatever they are the first of them is the-1st component of L, the second of them is tho. 2d component of L. Therefore, for cryptanalytic purposes, the actual but unknown numerical components, may be represented by the. symbols L_{1} and L_{2}, the former referring to the row coordinate of the substitution chackerboard, the latter to the column coordinate. The same thing may be done with the components of the $2 d$ cipher letter, the 3d, 4th, and 5th, the respective components being placed into their proper positions in the.period. Thus:
Components $\left\{\begin{array}{llllll}L_{1} & L_{2} & H_{1} & H_{2} & O_{1} \\ O_{2} & \mathrm{I}_{1} & \mathrm{E}_{2} & \mathrm{~B}_{1} & \mathrm{~B}_{2}\end{array}\right.$,

Now let the actual plain-text letters be set into position, as shown at the right in the two diagrams below.

Plain text	N .EP I					5		
Components	. 4134						H	
	(23 331					E_{2}		
	L H 0 E B			I	I	0		B

By comparing the two diagrams it becomes obvious that L_{1}, H_{2} and O_{1} all
represent the coordinate $4 ; \mathrm{H}_{1}, \mathrm{~F}_{1}, \mathrm{E}_{2}$, and B_{1} all represent the coordinate 3, and so on. If this equivalency were known for all the 50 combinations of the 25 letters with eubscript 1 or 2 there would be no problem, for the text of a cryptogram could be reduced to 25 pairs of digits representing monoalphabetic oncipherment. But this equivalency is not known in the case of a cryptogram that is to be solved; basically the problem is to establish the equivalency.
e. It is obvious that the vertical pair of components $\mathrm{I}_{1} \mathrm{O}_{2}$ represents O_{p}, the vertical pair ${\underset{\mathrm{E}}{1}}$ represents N_{p}, and so on. The complete example therefore becomes:
 ponents. $\quad O_{2} E_{1} E_{2} B_{1} B_{2} D_{2} E_{2} E_{2} E_{1} E_{2} E_{2} R_{1} R_{2} R_{1} R_{2} T_{2} A_{1} A_{2} W_{1} W_{2} A_{2} G_{1} G_{2} D_{1} D_{2}$

f. Note that a plain-text letter in an odd position in the period has its components in the order $\theta_{1} \theta_{2}$; in an even position in the period the components of a plain-text letter are in the order $\theta_{2} \theta_{1}$. For example, note the O_{p}^{\prime} in the lat period $\left(=L_{1}\right)$ and in the $3 d$ period $\binom{\left(=Q_{2}\right)}{\left(Q_{2}\right)}$ This distinction must be retained since the component indicators for rows and colums are not interchangeable in this systam. From this it follows that the vertical pairs of components reprosenting a givon plain-text letter are of two classes: $\theta_{1} \theta_{2}$ and $\theta_{2} \theta_{1}$, and the two must be kopt separate in cryptanalysis.
g. Now consider the equivalent of o_{p} in the lst period. It is composed of O_{2}. This is only one of a number of equivelents for O_{p} in an odd position in the period. The row of the substitution checkerboard indicated by L_{1} may be represented by 4 other components, since that row contains 5
letters. Therefore the upper component of the $\theta_{2} \theta_{2}$ equivalent of σ_{p} may be any one of 5 letters. The same is true of the lower component. Hence, O_{p} in an odd position in the period may be represented by any one of $5 \times 5=25$ combinations of vertical components in the sequence $\theta_{1} \rightarrow \theta_{2}$. 0_{p} in an even position in the period may be represented by any one of a similar number of combinations of vertical components in the reverse sequence $\theta_{2} \rightarrow \theta_{1}$. Thus, disregarding the position in the period, this system may be described as a monoalphabetic substitution with variants, in which every plain-text letter may be represented by any one of 50 different component-pairs. But in studying an actual cryptogrem in this system, since the position (odd or even) occupied by a cipher letter in the period is obvious after the length of the period has been established, a proper segregation of the cipher letters will permit of handling the cipher letters in the two classos referred to above, in which case one has to deal with only 25 variants for each plain-text lettor. Obviously, the 25 varients are related to one another by virtue of their having been produced from a single checkerboard of but 25 letters. This relationship can be used to good advantage in reconstructing the checkerboard in the course of the solution and will be discussed in its proper place.
h. Now if the foregoing enoipherment is studied intently several important phenomona may be observed. Note, for instance, how many times either the θ_{1} or the θ_{2} component coincides with the plain-text letter of which it is a part. In the very first pariod the O_{p} has an O_{2} under it; in the same period the \mathbb{E}_{p} has an E_{2} under it. The same phenomenon is observed in columns 3 and 5 of the $2 d$ period, in column 3 of the $3 d$ period,
and in column 1 of the 5 th period. In column 5 of the 3 d , 4 th, and 5 th periods the θ_{1} components coincide with the respectave plain-text letters involved. There are, in this short example, 9 cases of this sort, giving rise to instances of what seems to be a sort of self-encipherment of plain-text letters. How does this come about? And 19 it an accident that all these cases involve plain-text letters in odd positions in the periods?

1. If the periods in the foregoing example in subparagraph e are studied closely the following observations may be made. Because of the mechanics of encipherment in this system the lst cipher letter and the lst plain-text letter must come from the same row in the substitution checkerboard. Since there are only 5 letters in a row in the checkerboard the probability that the two letters referred to will be identical 1s $1 / 5$. (The identity will occur every time that the coordinate of the row in which the 2 d plain-text letter stands in the checkerboard is the same as the coordinate of the column in which the lat plain-text letter stands.) The same general remark applies to the 2 d cipher letter and the 3d plain-text letter; as well as to the 3d cipher letter and the 5th plain-text letter: in these cases the two letters must come from the same row in the checkerboard and the probability that they will be identical is likewise 1/5. (The identity in the former case will occur every time that tho coordinate of the row in which the 4 th plain-text letter stands in the checkerboard is the same as that of the column in which the 3d plain-text letter stands; in the latter case the identity will occur every time that the coordinate of the column in which the lst plain-text lotter stands is the same as that of the column in which the 5th plain-text letter stands.) The last of the foregoing sources of identity is
exemplified in only 4 of the 9 cases mentioned in subparagraph habove. These involve the 5th plain-text letter in the 3d, 4 th and 5 th periods, and the lst letter in the 5 th period, wherein it will be noted that the θ_{1} component standing directly undor the plain-text letter is identical with the latter in each case.
2. But how are the other 5 cases of identity brought about? Analysis along the same lines as indicated above will be omitted. It will be sufficient to observe that in each of those cases it is the θ_{2} component which is identical with the plain-text letter involvad, and again the probability of the occurrence of the phenomenon in question is $1 / 5$.
k. Since the probability of the occurrence of the event in question is $1 / 5$ for θ_{1} components and $1 / 5$ for θ_{2} components, the total probability, from either source of identity is 2/5. This probability applies only to the letters occupying odd positions in the period, and it may be said that in 40% of all cases of letters in odd positions in the periods the one or the other of the two cipher components will be identical with the plaintext letter.
3. As regards the plain-text letters in evon positions, analysis will show why only in a very few cases will either of the cipherscomponents coincide with the plain-text letter to which they apply. Now the method of finding equivalents in the substitution checkerboard is to take the lst component as the row coordinate indicator and the 2 d component as the column indicator; a reversal of this order will give wholly different letters, except in those 5 cases in which both components are identical. (The letters involved are those which occupy the 5 cells along the diagonal from the upper left-hand corner to the lower right-hand corner of the checkerboard.) Now in every case of a letter in an odd position in a perioc
the two vertical components are in the $\theta_{1} \theta_{2}$ order, corresponding to the order in which they are normally taken in finding letter equivalents in the checkerboard. But in every case of a letter in an even position in a period, the two vertical components are in the order $\theta_{2} \theta_{1}$, which is a reversal of the normal order. It has been seen that in the case of letters in odd positions in the periods the probability that one of the components will coincide with the plain-text letter is 40%. The reason which led to this determination in the case of the odd letters is exactly the same as that in the case of letters in evon positions, oxcept that in the final recombination-substitution process, since the components in the even positions are in the $\theta_{2} \theta_{1}$ order, which is the reverse of the normal order, identity between one of the components and the plain-text letter can occur in only $1 / 5$ of the 40% or 8% of the cases. It may be said then that in this system 48% of all the letters of the plain text will be "self-enciphered" and represented by one or the other of the two components; in the case of the lotters in odd positions, the amount is 40%, in the case of letters in oven positions, it is 8%.
m. Finally, what of the peculiar phenomenon to be observed in the case of the lst colum of the 5th period of the example in subparagraph h? Here is a case wherein the plain-text valuo of a pair of superimposed components is undstakably indicated directly by the ciphor components themselves. Studying the cipher group concerned it is notod that it contains $2 A_{c}$ s soparated by one, letter, that is, the Als are 2 intervals apart. This situation is as though the plain-text letter were entirely self-enciphered in this case. Now it is obvious that this phenomenon will occur in the case of periods of 5 letters every time that within a period a cipher letter is ropeated at an interval of 2 , for this will
bring about the superimposition of a θ_{1} and θ_{2} with the same principal letter and therefore the plain-text letter is indicated directly. This question may be pertinent: how many times may this be expected to happen? Analysis along the lines already indicated will soon bring the answer that the phenomenon in question may be expected to happen 4 times out of 100 in the case of letters in odd positions and only 8 times out of 1000 in the case of letters in even positions. In the latter cases the letters involved are those falling in the diagonal sloping from left to right in the substitution checkerboard.
n. All of the foregoing phenomena will be useful when the solution of an example is undertaken. But before coming to such an example it is necessary to explain how to ascertain the period of a cryptogram to be solved.
4. Ascortaiming the period. - a. There are several methods available for ascertaining the length of the period. The simplest, of course, is to look for repetitions of the ordinary sort. If the period is a short one, say 3, 5, 7 letters, and if the message is fairly long, the chances are good that a polygraph which occurs aereral times within the message will fall in homologous positions within two different periods and therefore will be identically enciphered both times. There will not be many such repetitions, it is true, but factoring the intervals between such as do occur will at least give same clue, if it will not actually disclose tho length of the period. For example, suppose that a 7 -letter repetition is found, the two accurrences being separated by an intorval of 119. The factors of 119 are 7 and 17; the latter is unlikely to be the length of the poriod, the former, quite likely.
b. If a polygraph is repeated but its two occurrences do not fell in homologous positions in two periods, there will still be manifestations of the presence of repetition but the repeated letters will be separated by one or more intervals in the periods involved. The number of repeated letters will be a function of the length of the polygraph and the length of the period; the interval between the letters constituting the repetition will be a function of the length of the period and the position of the repeated polygraph in two periods in which the two polygraphs occur. Note what happens in the following example:

SENDTHREEMKNDONNTOENDOFENDICOTTROAD 43132323313134512431341313224222413 53322433313322232233225332412223222

PNRGETPENNPBETVIBDDRDLBDTXDLOTXDTDT
 lat period gives rise to the cipher letters . N . . E. . i in the 2 d 1234567 period this trigraph also produces . . N . . E . The interval between the N_{c} and the E_{c} is 3 in both cases. Two times this interval plus one gives the length of the period. In this case the initial letter of the repeated trigraph falls in an even position in the period in both occurrences. The $\mathrm{HaND}_{\mathrm{p}}$ in the 3 d period gives rise to the cipher letters $1234567 \mathrm{p} \quad 1234567$. . B . . . D; in the 4th period it also produces . B . . . D . The interval between the B_{c} and the D_{C} is 4 in both cases. Two timos this interval minus one gives the length of the period. In this case the initial letter of the repeated trigraph falls in an odd position in the period in both occurrences.
c. The foregoing properties of repetitions in this system afford a means or ascortaining the length of the period in an unknown example.

First, it is evident that a repeated trigraph in the plain text produces two different pairs of cipher equivalents according to whether the initial letter of the trigraph occurs in an odd or an even position in the period. The two letters constituting the repetition in the cryptogram will not be sequent but will be separated by an interval of 1,2 , 3, ... letters depending upon the length of the period. This interval, however, is half of the period plus or minus ono. ${ }^{3}$ Conversely, if in a cryptogram there are repetitions of pairs of letters separated by an interval \underline{x}, it is probable that these repetitions represent repetitions of plain-text trigraphs which occupy homologous positions in the period. The interval x (between the letters constituting the repetition in the cipher text) then gives a good clue to the length of the period: p_{-}(length of period) $=2 \underline{1} \mathbf{1}$.
d. A special kind of indox is prepared to facilitate the search for repetitions of the nature indicated. If tabulating machinery is available, an alphabetically-axranged index showing say 10 succeeding letters aftor each $A_{c}, B_{c}, C_{c}, \ldots Z_{c}$ is prepared for the cryptogram. Then this index is studied to see how many coincidences occur at various intervals under each letter. For example, under A_{c} one looks to see if there are 2 or more cases in winch the same letter appears 2, 3, 4, ... intervals to the right of A, a record being kept of the number of such cases under each interval. The samc thing $1 s$ done with reference to B_{c}, C_{c}, and so on. The tallios reprosenting coincidences may be amalgamated for all the letters A, B, C, \ldots Z, only the intervals being kept segregated. When

3The student must remember that the text is here concerned only with cases in which the period is odd. In the case of even periods the interval separating the 2 letters is always exactly half of the length of the period.
tabulating machinery is not available, the search for repetitions may be made by transcribing the cryptogram on two long strips of cross-section paper, juxtaposing the strips at $A, B, C, \ldots Z$, and noting the coincidences occurring $1,2,3, \ldots$ up to say 10 letters beyond the juxtaposed letters. For example, beginning with A_{c}, the two strips are juxtaposed with the list A on one against the lst A on the other. Note is made of any coincidences found within 10 letters beyond the $A^{\prime} \mathrm{s}$, and a record is kept of such coincidences according to intervals. Keeping one strip in position the other is slid along to the $2 \mathrm{~d} A$, and again coincidences are sought. All the Ars are troated in this. way, then the B's, Cls, ... Z's. The record made of tho coincidences may consist merely of a tally stroke written under the intervals $1,2,3, . . .10$. That interval which occurs more frequently, than all the others is probably the correct one. This interval times 2 plus or minus 1 is the length of the perioa. There are, therefore, only two alternatives. A choice between the two alternatives may then be made by transcribing the text or a portion of it according to each hypothesis. That transcription which will most often throw the two mambers constituting a repetition into one and the same period is most likely to be correct.
e. Finally, for ascertaining the period there is one method which is perhaps the most laborious but surest. It has boen pointed out that this system reduces to one that may be describud as monoalphabetic substitution with variants. If the cipher text is transcribed into θ_{1} and θ_{2} components according to various assumed periods, and then a frequency distribution is made of the pairs of vertical components for each hypothesis, that period which gives the best approximation to the sort of

REF ID:A56913

distribution, to be expected for a system of monoalphabetic substitution with 25 varlants for each letter may be taken to be correct. For in the case of an incorrect period the resultant vertical bipartite components are not the equivalents of the actual plain-text letters; hence such repetitions as occur are purely accidental and the number oi such cases would be rather small. But in the case of the correct period the resultant vortical pairs of components are the equivalents of the actual plain-text letters; honce repetitions are causal and falrly frequent. Were it not for variants, of coursc̃, tho distribution would be porfoctly monoalphabotic.
47. Illustration of solution. - a. With tho foregoing princtples in mind, the following cryptogram will be studied. KZFBEILYYWOCBRBLZDOTGBLPKYWCUCEPQL AMEYL ZQXWHLRWQYARWBMTIZEBELAYESOBRY QVBBL NXNAB QBDOYMQDLWLNACOXCRRGASWQB FDDTEBAKFDETENAKGDFOQDUBNDCLYDVWBAX CAUGGXOARTXXTSDAYXHKOLSXABRKRPUZWHO MTDHTSGMLSLQPOUNHCICKKAQBDOFLEKAPRG SXUPO WALMA VQHLM LAXKP WSTMCXKQVH SIXSL LWXLXRSGZDFKLNY BXIURBNADKTTBAEOBHWVL YSXMB OWPGXKORZIUCEADYIDBLZMITANHCAI, DNCIDDOYIBCNOLYUUMCEPOTDMGBFUNAKHLBD WXNXKKCSCTOXTSDA-YXHK CNLDK RRFAY APMHC ANMBVGREZQATCYIMNDIRLGMTWETRCVVKTED UFDEI XHEQVCBLYU DUGYAFHNQLKFRUCNVDIH LZDRELKXKUPSEMCTMKTKEBOEEPGVQTGWERE LZDREIKHAXIYDAK ZLXXORRPERRRRNC, IE
b. The long repetitions noted in the text indicate a period of either 5 or 7. By transcribing several lines of text nnto their θ_{1} and θ_{2} components according to both of these alternatives and distributing the vertically superimposed pairs, it is soon found that a period of 7 produces many more repetitions than does a poriod of 5 . The entire text is then transcribod into its θ_{1} and θ_{2} components according to a poriod of 7 (soo Fig. 82) and complete distributions of $\theta_{1} \theta_{2}$ and $\theta_{2} \theta_{1}$ vertical pairs are made, the distributions boing, of course, kopt separato. They are shown in Figs. 83 and 84. Tho indiyddual distributions show many repetitions and the distributions as a whole are very favorable for a period of 7.
c. The text is accordingly entirely transcribed into periods of 7, with the θ_{1} and θ_{2} compononts indicated by the cipher letters in cach poriod. Then the vertical pairs of components arc oxamined to locate cases in which the basic lotter of the θ_{1} and θ_{2} suporimposed components are idontical, wheroupon the plain-text letters indicated are at once inserted into position. In this oxamplo 10 such cases aro found, onc oach in periods 14, 22, 26, 35, $36,52,59,68$, and two in poriod 74. All of these, of course, involve letters in odd positions in the periods. The plain-toxt letters thus insertod may serve as clues for assuming probablo words.
d. Now if only a few equivalencios can bo ostablishod betwoen a few of the θ_{1} components, or botween a few of tho θ_{2} components, or betwoen a few θ_{1} and θ_{2} components a long step forward may be takon in the solution. Perhaps some information can be fourd by studying Figs. 83 and 84. A consideration of Fig. 83 will soon lead to the idea that each row of frequencies can indicato only 5 different plain-toxt letters, ono of which coincides with the indicating letter at the loft of the row. Moroover, in this same figure, while there are 25 rows in all, there are roally only 5 differont catogorics of rows, each category corresponding

REF ID:A56913

$=$

1		13	4	5
KZFBEIL	YYMOCBR	BLZDOTG	B L P K Y W	UCCEPQL
$\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{Z}_{1} \mathrm{Z}_{2} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{~B}_{1}$	$\mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{M}_{1} \mathrm{M}_{2} \mathrm{O}_{1}$	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~L}_{1} \mathrm{I}_{2} \mathrm{Z}_{1} \mathrm{Z}_{2} \mathrm{D}_{1}$	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{~K}_{1}$	$\mathrm{J}_{1} \mathrm{U}_{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{E}_{1}$
$\mathrm{B}_{2} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{~L}_{1} \mathrm{I}_{2}$	$\mathrm{O}_{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{R}_{1} \mathrm{R}_{2}$	$\mathrm{D}_{2} \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{G}_{1} \mathrm{G}_{2}$	$\mathrm{K}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{~W}_{1} \mathrm{~W}_{2} \mathrm{C}_{1} \mathrm{C}_{2}$	$\mathrm{E}_{2} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{Q}_{1} \mathrm{QLL}_{2} \mathrm{~L}_{2}$
6	7	8	9	10
AMEYLZQ	XWH L RWQ	Y ARWBM		Y ESOBRY
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{HK}_{1} \mathrm{M}_{2} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{Y}_{1}$	$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~W}_{1} \mathrm{~W}_{2} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{~L}_{1}$	$Y_{1} Y_{2} A_{1} A_{2} R_{1} R_{2} W_{1}$	$\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{Z}_{1} \mathrm{Z}_{2} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{~B}_{1}$	$\mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{O}_{1}$
$Y_{2}{ }_{1} L_{2} Z_{1} Z_{2} Q_{1} Q_{2}$	$\mathrm{L}_{2} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~W}_{1} \mathrm{~W}_{2} Q_{1} Q_{2}$	$\mathrm{W}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{M}_{1} \mathrm{M}_{2}^{\mathrm{T}} 1^{\mathrm{T}}$	$\mathrm{B}_{2} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2}$	$\mathrm{O}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2}$
11	12	13	14	15
Q VBEL	NABQBD	YM Q D W L	NACOXCR	RGASWQ B
$\mathrm{C}_{1} \mathrm{Q}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{1}$	$\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{Q}_{1}$	$\mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{M}_{1} \mathrm{M}_{2} \mathrm{Q}_{1} Q_{2} \mathrm{D}_{1}$	$\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{O}_{1}$	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{G}_{1} \mathrm{G}_{2} \mathrm{~A}_{1} A_{2} \mathrm{~S}_{1}$
$1{ }_{-1} \mathrm{~N}_{1} \mathrm{~N}_{2} \mathrm{X}_{1} \mathrm{X}_{2}$	$\mathrm{Q}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{O}_{1} \mathrm{O}_{2}$	$\mathrm{D}_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \mathrm{~W}_{1} W_{2} \mathrm{~L}_{1} \mathrm{~L} 2$	$\mathrm{O}_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{R}_{1} \mathrm{R}_{2}$	$\mathrm{S}_{2} \mathrm{~W}_{1} \mathrm{~W}_{2} \mathrm{Q}_{2} \mathrm{Q}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2}$
16	17	18	19	20
DTEBA	MFDETEN	AKGDFOQ	DUBNDCI	Y DV WBAX
$\mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{~T}_{1}$	$\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{E}_{1}$	$A_{1} A_{2} K_{1} K_{2} G_{1} G_{2} D_{1}$	$\mathrm{D}_{1} \mathrm{D}_{2} \mathrm{U}_{1} \mathrm{U}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~N}_{1}$	$\mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} W_{1}$
$\mathrm{E}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2}$	$\mathrm{T}_{2} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{~N}_{1} \mathrm{~N}_{2}^{\perp}$	${ }^{2}$		$A_{1} A_{2} \mathrm{X}_{1} \mathrm{X}_{2}$
21	22	23	24	25
U G G	ARTXX	DAYXH	LSXAB	R P U Z W H 0
$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{U}_{1} \mathrm{U}_{2} \mathrm{G}_{1}$	$A_{1} A_{2} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{X}_{1}$	$\mathrm{D}_{1} \mathrm{D}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{X}_{1}$	$\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{~S}_{1} \mathrm{~S}_{3} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~A}_{1}$	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{U}_{1} \mathrm{U}_{2} \mathrm{Z}_{1}$
$\mathrm{G}_{2} \mathrm{G}_{1} \mathrm{G}_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{O}_{1} \mathrm{O}_{2}$	$\mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{~S}_{1} \mathrm{~S}_{2}$	$\mathrm{X}_{2} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{O}_{1} \mathrm{O}_{2}$	$\mathrm{A}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2}$	$\mathrm{Z}_{2} \mathrm{~W}_{1} \mathrm{~W}_{2} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{O}_{1} \mathrm{O}_{2}$
26	27	28	29	30
T D HTS	MISLQPO	UNHCECK	KAQBDOF	
$\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{H}_{1}$	$\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{~L}_{1}$	$\mathrm{U}_{1} \mathrm{U}_{2} \mathrm{~N}_{1} \mathrm{~N}_{2} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{C}_{1}$	$\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{O}_{1} \mathrm{Q}_{2} \mathrm{~B}_{1}$	$\mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~A}_{1}$
$\mathrm{H}_{2} \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{G}_{1} \mathrm{G}_{2}$	$L_{2 Q 122 P 1 P 20102 ~}^{2}$	$\mathrm{C}_{2} \mathrm{I} 1 \mathrm{I}_{2} \mathrm{Cl}_{1} \mathrm{C} 2 \mathrm{~K} 1 \mathrm{~K} 2$	B 2 D 1 D 2 O 102 F 1 F 2	A2P1P2R1R2G1G2
31	32	33	34	35
SXUP OWA	LMAVQHL	M LAXK	STMCXK0	V H S I X S L
$\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{U}_{1} \mathrm{U}_{2} \mathrm{P}_{1}$	$\mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{M}_{1} \mathrm{M}_{2}{ }^{\text {A }}{ }_{1} \mathrm{~A}_{2} \mathrm{~V}_{1}$	$M_{1} M_{2} L_{1} L_{2}{ }_{1}{ }_{1} \hat{A}_{2} \mathrm{X}_{1}$	$\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{M}_{1} \mathrm{M}_{2} \mathrm{C}_{1}$	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{I}_{1}$
$\mathrm{P}_{2} \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{~W}_{1} \mathrm{~W}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2}$	$\mathrm{V}_{2} \mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{~L}_{1} \mathrm{~L}_{2}$	$\mathrm{X}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{~W}_{1} \mathrm{~W}_{2}$	$\mathrm{C}_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{C}_{1} Q_{2}$	$\mathrm{I}_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{I}_{1} \mathrm{I}_{2}$
36	37	38	39	40
L W XLXRS	G Z DFKLN	Y BXMRBN	ADKTTBA	EOBHWVL
$L_{1} L_{2}{ }^{W} W_{1} W_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{I}_{1}$	$\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{Z}_{1} \mathrm{Z}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{~F}_{1}$	$\mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{M}_{1}$	$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{D}_{1} D_{2} \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~T}_{1}$	$\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{H}_{1}$
$\mathrm{L}_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~S}_{1} \mathrm{~S}_{2}$	$\mathrm{F}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~L}_{1} \mathrm{I}_{2} \mathrm{~N}_{1} \mathrm{~N}_{2}$	$\mathrm{M}_{2} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~N}_{1} \mathrm{~N}_{2}$	$\mathrm{T}_{2} \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2}$	$\mathrm{H}_{2} \mathrm{~W}_{1} \mathrm{~W}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~L}_{1} \mathrm{I}_{2}$
41	42	43	44	45
YSXMB0	PGXKORZ	IUCEADY	I D B L M I	TANHCAI
$\mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{X}_{1} \mathrm{X}_{2}{ }^{M}$	$\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{G}_{1} \mathrm{G}_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~K}_{1}$	$\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{U}_{1} \mathrm{U}_{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{E}_{1}$	$\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{I}_{1}$	$\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{~N}_{1} \mathrm{~N}_{2} \mathrm{H}_{1}$
$\mathrm{M}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{~W}_{1} \mathrm{~W}_{2}$	$\mathrm{K}_{2} \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{Z}_{1} \mathrm{Z}_{2}$	$\mathrm{E}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2}$		$\mathrm{H}_{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{I}_{1} \mathrm{I}_{2}$
46	47	48	49	50
DNCIDD	I BCNOL	Y U U H CEP	OTDEGBF	UNAHLBD
$\mathrm{D}_{1} \mathrm{D}_{2} \mathrm{~N}_{1} \mathrm{~N}_{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{I}_{1}$	$\mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{C}_{1}$	$\mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{U}_{1} \mathrm{U}_{2} \mathrm{U}_{1} \mathrm{U}_{2}{ }^{\text {M }}$	$\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{M}_{1}$	$\mathrm{U}_{1} \mathrm{U}_{2} \mathrm{~N}_{1} \mathrm{~N}_{2}{ }^{\mathrm{A}_{1}} \mathrm{~A}_{2} \mathrm{H}_{1}$
$\mathrm{I}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{O}_{1} \mathrm{O}_{2}$	$\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{~N}_{2} \mathrm{O}^{0} \mathrm{O}_{2} \mathrm{~L}^{1} \mathrm{~L}_{2}$	$\mathrm{M}_{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{P}_{1} \mathrm{P}_{2}$	$\mathrm{M}_{2} \mathrm{G}_{1} \mathrm{G}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~F}_{1} \mathrm{~F}_{2}$	$\mathrm{H}_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{D}_{1} \mathrm{D}_{2}$ 。

FIGURE 82.

Figure 82 －Contınued．
51
52
53
54
55

ANMBVGR EZQATCY IMNDLRE GMTWETR CVVKTED

61
－62．
63
64
65
UFDELXH EQVCBLY UDUGYAF HNQLKTR UGNVDLH $\mathrm{U}_{1} \mathrm{U}_{2} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{E}_{1} \quad \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{C}_{1} \quad \mathrm{U}_{1} \mathrm{U}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{U}_{1} \mathrm{U}_{2} \mathrm{G}_{1} \quad \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{~N}_{2} \mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{H}_{1} \quad \mathrm{U}_{1} \mathrm{O}_{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{~N}_{1} \mathrm{~N}_{2} \mathrm{~V}_{1}$ $\mathrm{E}_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{H}_{1} \mathrm{H}_{2} \quad \mathrm{C}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2} \quad \mathrm{G}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{~F}_{1} \mathrm{~F}_{2} \cdot \mathrm{~L}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{R}_{1} \mathrm{R}_{2} \quad \mathrm{~V}_{2} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \mathrm{H}_{1} \mathrm{H}_{2}$ 66 －ーーーーー 67
$67 \quad$＇ 68
69
LZDRELK XKTXSE CTNKTKE BOEEPGV•QTGWERH
 $\mathrm{R}_{2} \mathrm{E}_{1} \mathrm{~F}_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{P}_{2} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2}, \mathrm{~K}_{2} \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{E}_{1} \mathrm{E}_{2}, \mathrm{E}_{2} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{G}_{1} \mathrm{G}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} W_{2} \mathrm{~F}_{1} \mathrm{E}_{2} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{H}_{1} \mathrm{H}_{2}$
71
72

73

74
75

LZDRELK FAX－I $\begin{array}{llllll}I_{1} I_{2} Z_{1} Z_{2} D_{1} D_{2} R_{1} & F_{1} F_{2} A_{1} A_{2} X_{1} X_{2} I_{1} & K_{1} K_{2} Z_{1} Z_{2} I_{1} L_{2} X_{1} & R_{1} R_{2} P_{1} P_{2} \mathbb{K}_{1} F_{2} R_{1} & N_{1} N_{2} C_{1} C_{2} \\ R_{2} E_{1} E_{2} L_{1} L_{2} K_{1} K_{2} & I_{2} Y_{1} Y_{2} D_{1} D_{2} A_{1} A_{2} & X_{2} X_{1} X_{2} O_{1} O_{2} R_{1} R_{2} & R_{2} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} & I_{1} I_{2} \mathbb{F}_{1} E_{2}\end{array}$
θ_{2} Components
 FIGURE 83.
to a row in tho substitution checkerboard. If the rows belonging to the same category can be ascertained a large step forward in solution can be taken. Why not try to match the distributions in the rows? For example, rows D and M appear to be similar:

FIGURE 84.

FIGURE 85.
Applying the X-test, the observed value of $X=34$, the expected value is
23. An excellent match is obtained, and the hypothesis that D "and M are in the same row in the checkerboard seems promising. Can any confirmation be found in the cryptogram itsolf?

REF ID:A56913

e. It has already been pointed out that this system reduces to monoalphabetic substitution with variants. This being the case it should be possible to find manifestations of equivalency between some of the θ_{1}
θ_{2} vertical pairs in the cryptogram. Note the following instances of apparent oquivalency betwoon D_{1} and M_{1} :

```
Period 16
    \(\begin{array}{rll}16^{\circ} & \mathrm{D}_{2} B_{1} & D_{1} B_{2} \\ 20 & Y_{2} B_{1} & D_{1} B_{2} \\ 49 & T_{2} B_{1} & D_{1} B_{2} \\ 2 & Y_{2} B_{1} & M_{1} B_{2}\end{array}\)
    \(\begin{array}{llllllll}16 & \mathrm{~F}_{2} \mathrm{E}_{1} & \mathrm{D}_{1} \mathrm{E}_{2} & \cdot & & 8 . & \mathrm{A}_{1} \mathrm{~B}_{2} & \mathrm{~A}_{1} \mathrm{M}_{1}\end{array} \mathrm{R}_{1} \mathrm{M}_{2}\)
```



```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline & \multicolumn{2}{|l|}{\[
\begin{array}{ll}
2_{2}^{L_{1}} & D_{1} L_{1} \\
L_{2} & D_{1} I_{2}
\end{array}
\]} \\
\hline \multicolumn{3}{|r|}{\[
\mathrm{N}_{2} \mathrm{I}_{1}^{1} \mathrm{D}_{1} \mathrm{I}_{2}^{2}
\]} \\
\hline \multicolumn{3}{|r|}{\[
\mathrm{Z}_{2}^{\mathrm{L}} \mathrm{~L}_{1}^{\perp} \quad \mathrm{D}_{1}^{1} \mathrm{~L}_{2}^{K}
\]} \\
\hline \multicolumn{3}{|r|}{\[
\begin{array}{lll}
\mathrm{Z}_{2} \mathrm{I}_{1} & \mathrm{~F}_{1} \mathrm{I}_{2}
\end{array}
\]} \\
\hline \multicolumn{3}{|r|}{\[
\mathrm{A}_{2}{ }^{1} 1 \quad \mathrm{M} \frac{1}{1}-2
\]} \\
\hline 13 & \multicolumn{2}{|l|}{\[
\mathrm{Y}_{2}^{\mathrm{L}} \mathrm{M}_{1} \mathrm{M}_{2}
\]} \\
\hline \multicolumn{3}{|r|}{\[
I_{I_{1}} \quad M_{1} L_{2}
\]} \\
\hline
\end{tabular}
```

It may be assumed the $D_{1}^{-}=M_{1}$ and the two distributions in Fig. 85 may be amalgamated.

The only othor row in Fig, 83 which gives indications of being similar to this distribution is the A row. A soarch is made through the text to soe if any equivalence betweon $A_{1} ; D_{1}$ and i_{1} appears.

Note the following cases:

It certainly seams as though $A_{1}=D_{1}=M_{1}$, and this will be assumed to be correct. Among the most frequent combinations is the pair $Y_{2} B_{1}$, appearing in the following sequences:

Period	2	$Y_{2} C_{1}$	$Y_{1} C_{2}$	$Y_{2} B_{1}$	$M_{1} B_{2}$	$M_{2} R_{1}$
8	$I_{1} Q_{2}$	$Y_{1} W_{2}$	$Y_{2} B_{1}$	$A_{1} B_{2}$	$A_{2} M_{1}$	
10	$B_{1} A_{2}$	$Y_{1} O_{2}$	$Y_{2} B_{1}$	$E_{1} B_{2}$	$E_{2} R_{1}$	
20	$N_{1} I_{2}$	$Y_{1} W_{2}$	$Y_{2} B_{1}$	$D_{1} B_{2}$	$D_{2} A_{1}$	
41	$H_{1} I_{2}$	$Y_{1} M_{2}$	$Y_{2} B_{1}$	$S_{1} B_{2}$	$S_{2} O_{1}$	

Note how $M_{1}, A_{1}, \mathbb{E}_{1}, D_{1}$, and S_{1} all appear to be interchangeable. Are these the 5 letters which belong in the same row? The probable equivalence among A_{1}, D_{1}, and M_{1} has been established by noting cases of equivalency In the text. A further search will be mede to see if E_{1} and S_{1} also show equivalencies with A_{1}, D_{1}, and N_{1}.

Note the following:

Period 21	$\mathrm{C}_{2} \mathrm{Cl}_{1}$	$\mathrm{A}_{1} \mathrm{G}_{2}$
3	$\mathrm{Z}_{2} \mathrm{Cl}_{1}$	$\mathrm{D}_{1} \mathrm{G}_{2}$
69	$\mathrm{O}_{2} \mathrm{G}$	El_{1}
56	$\mathrm{N}_{2} \mathrm{G}_{1}$	$M_{1} G_{2}$
23	$\mathrm{D}_{1} \mathrm{X}_{2} \mathrm{D}_{2} \mathrm{H}_{1}$	$\mathrm{A}_{1} \mathrm{H}_{2}$
32	$\mathrm{M}_{1} \mathrm{Q}_{2} \mathrm{M}_{2} \mathrm{H}_{1}$	$\mathrm{A}_{1} \mathrm{H}_{2}$
61	$\mathrm{D}_{1} \mathrm{X}_{2} \mathrm{D}_{2} \mathrm{H}_{1}$	$\mathrm{E}_{1} \mathrm{H}_{2}$

Here are indications that E_{\perp} belongs to the same series, but not enough cases where S_{I} is interchangeable with A, D, E, or M can be found to be convincing. But perhaps it is best not to go too fast in these early stages. Let it be assumed for the present that A, D, E, and M are in the same row of the substitution checkerboard. In period 16 there is the pair of vertical components $D_{1} E_{2}$. Since $D_{1}=E_{1}$ this pair may be written $\mathrm{F}_{1} \mathrm{E}_{2}$; whereupon the plain-text letter E is immediately indicated. All cases of this sort are sought in the text and the plain-text letters are inserted in their proper places, there being 7 such instances in all, but these yield the important letters, A, D, and E.
f. In a similar nanner, by an intensive search for cases in which components appear to be equivalont because they occur in ropotitions wisch are identical save for one or two components, it is established that C, \dot{O}, \mathbb{M}, and W are in the same column in the checkerboard. Note the bracketing of these letters occurring as θ_{2} components in the next to the last list of sequences in subparagraph e. Iikewise, B, H; and N are established as being in the same row. Again the text is examined for cases in which plain-text lotters C, O, M, W, B, H, and N may be inserted. By carrying out this process to its full extent possible, the skeletons of words will soon begin to appear.
g. Bnough has been'demonstrated to show this line of attack. of course, if there is a large volume of text at hand, the simplest procedure would be to construct frequency distributions of the types shown in Figs. 83 and 84, and use the statistical method to match the individual distributions. For this method to be reliable it would be necessary to have several hundred letters of text, but this in actual practice would not be too much to expect.
h. There is, however, anothor line of attack, based upon the probable-word method. It has been pointed out that in the case of letters in odd positions in the periods 40% of the time the plain-text létter involved is indicated by either its θ_{1} or θ_{2} component. This property affords a fair basis for assuming a probable word. For example, the cryptogram here studied shows the following two periods:

Tro letters are quite definite, S_{p} and L_{p}. Suppose the possible plain-text letters be indicated.
 The word HOSTILIR is suggested by the letters H . S . I L . ., This word will be essumed to be correct and it will be written out with its components under the cipher components. Thus:

Plain text
Cipher-toxt Components

Plain-text Components

H 0 S T I	
$\bar{V}_{1} V_{2} H_{1} H_{2} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{I}_{1}$	$\bar{I}_{1} L_{2}$
$\mathrm{I}_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{I}_{1} \mathrm{I}_{2}$	$\mathrm{I}_{2} \mathrm{X}_{1}$
$\mathrm{H}_{\mathrm{r}} \mathrm{O}_{1} \mathrm{~S}_{1} \mathrm{~T}_{1} \mathrm{I}_{\mathrm{l}}$	$\mathrm{I}_{1} \mathbb{E}_{1}$
$H_{2} O_{2} S_{2} T_{2} I_{2}$	$I_{2} E_{2}^{-}$

This word, if correct, gields the following equivalencies: $H_{2}=X_{2}$
$=O_{1} ; S_{1}=O_{2} ; T_{1}=S_{2} ; I_{1}=T_{2} ; I_{2}=L_{2}=I_{1} ; X_{1}=I_{2}$. Again the text is examined for cases in which the plain-text letters may now be directly inserted; but only one case is found, in period 44, where $I_{1} I_{2}=I_{1} I_{2}$ $=I_{p}$. This is unfortunate, so that additional words will have to be assumed. The 14 th period shows a C_{p} and the components after it suggest that the word CROSSROADS may be present. Thus:

Take the first letter R_{p}, represented by $C_{2} R_{1}$.
Since $R_{p}=C_{2} R_{1}$,
Therefore, $\mathrm{R}_{1} \mathrm{R}_{2}=\mathrm{C}_{2} \mathrm{R}_{1}$
Hence $R_{1}=C_{2}$ and $R_{2}=R_{1}$
Thorefore, $\mathrm{R}_{2}=\mathrm{R}_{2}=\mathrm{C}_{2}$
Again, in the case of the lst 0_{p},

$$
\begin{aligned}
O_{p} & =o_{1} R_{2} \\
\text { But } o_{p} & =o_{1} O_{2}=o_{1} R_{2} \\
o_{2} & =R_{2} \\
\text { Therefore, } R_{1} & =R_{2}=o_{2}=c_{2}
\end{aligned}
$$

The various equivalencies yielded are as follows:

$$
\begin{aligned}
& C_{2}=R_{1}=O_{2}=S_{1}=R_{2}=C_{1}=W_{2} \\
& S_{2}=W_{1}=B_{2} \\
& O_{1}=G_{2} \\
& O_{2}=Q_{1} \\
& Q_{2}=A_{2}=D_{1} \\
& B_{1}=D_{2}
\end{aligned}
$$

1.' Let all the equivalencies found thus far be collected in two tables, as shown in Fig. 86.

FIGURE 86.

A study of the equivalencies indicated that
(1) $A_{1} D_{1} E_{1} M$ belong in the same row
(2) $B_{1} H_{1} N$ belong in the same row
(3) $G_{1} R_{1} S$ belong in the same row
(4) $C_{1} O_{1} M_{1} W$ belong in the same column
(5) $I_{1} L$ belong in the same column
(6) $\mathrm{X}_{1} \mathrm{H}$ belong in the same colung
(7) The coordinates of R are identical and hence this letter occupies a cell along a diagonal sloping from left to right.

1. Since a row or a column can contain only 5 letters, it is obvious that A DEM, B HN, and GRS fall in 3 different rows; C 0 MW and I L fall in different columns. A start may be mado by an arbitrary placement of R in the position $1-1$, and since $R_{1}=0_{2}=C_{2}=M_{2}=W_{2}$, this means that R, O, C, M, and W form onu column in the substitution checkerboard, as shown in Fig. 87. The data also indicate that R, G and S must be in row $1, A, D$, and E must be in row 4 , H and X must be in column 3. This means that θ_{1} for A, D, and E must be 4, and that θ_{2} for H and X must be 3. And since $M_{1}=I_{2}=I_{2}, \theta_{2}$ for I and I must be 4 . Substituting in the text the coordinates for the known values, soon additional plain-text words become evident. For example, taking the periods with the word HOSTILE, it becomes

Poriods 35 and 36

H 0 S \quad T I	
$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{I}_{1}$	$\mathrm{I}_{1} \mathrm{I}_{2} W_{1} W_{2} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{I}_{1}$
$\mathrm{I}_{2} \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{~s}_{1} \mathrm{~s}_{2} \mathrm{I}_{1} \mathrm{I}_{2}$	$L_{2} X_{1} X_{2} R_{1} R_{2} S_{1} S_{2}$
H S I X S	L W X L X R

possible to insert the letters R_{p} and O_{p} as the $2 d$ and 4 th letters after I_{p}, suggesting thet the word after HOSITIS is TROOP. This gives $W_{1} X_{2}=T_{p}$, which permits of placing T in position 5-3. Since T in HOSTITK $=S_{2} L_{1}$, therefore $S_{2}=5$ and $L_{1}=3$. Since S is in row 1 , and $S_{2}=5, S$ must go in position 1-5. Since $L_{2}=4$ and $L_{1}=3$, L must go in position 3-4. Since 0_{p} (the lst 0 in TROOP) $=X_{1} R_{2}$ and it is known that $O_{p}=3-1$, therefore X must be in position 3-3. The checkerboard is now as shown in Fig. 88. From Fig. 86, $X_{1}=\mathbb{E}_{2}$. Now $X_{1}=3$, and

FIGURE 88.

TIGORE 89.
since the E must be in row 4, it is evident that E must occupy cell 4-3, as seen in Fig. 89. There are now only 2 possible rows for H, either 1 or 2. It is deamed unnecessary to give further details of the process. Suffice it to say that in a few minutes the entire checkerboard is found to be as shown in Fig. 90. It will docipher the entire cryptogram as it stands, but spoculating upon the presence of W T T V Z in the last row, and assuming a key-word mixed sequence has brought this about, a rearrangement of the columns of the chockerboard is made to give T UVW Z, as shown in Fig. 91. The arrangement of the rows now becomes quite evident and the original checkerboard is found to be as shown in Fig. 92. It secns to be based upon the key phrase XYLOPHONIC BERLAM.

FIGURE 90.

FIGURE 91.

FIGURE 92.
k. The completely deciphered cryptogram is as follows:

1	2	3	4
SITUATI	0 N 0 N FR-O	NTOFTWE	NTYFOUR
4255352	1212341	2513553	2513154
5312313	4242544	2145141	2125424
K Z F E EI	YYMOCBR	BLZDOTG	B L P K Y W C
5	6	7	8
THBRIGA	DEASTOL	LOWSCOL	ONFIRST
5224243	3334311	1154211	1232445
1154313	2135543	3445443	4253451
UCCEPQL	AMEYLZ C	XWHIRWQ	Y DRWBMT
9	10	11	12
BATTALI	0 NFORTY	STVENTH	INFANTR
2355312	1231451	4353252	2233254
5311333	4254412	5131211	3253214
I ZEBELA	YESOBRY	Q ∇ B B L N	NABQBDO
13	14	15	16
Y HASREA	CFEDCRO	SSROADS	E V EN-FIV
1234433	2233241	4441334	3532325
2135413	4112444	5544325	1312533
YMQ D LWL	NACOXCR	RGASWQB	FDDTEBA
17	18	19	20
ESEVEND	DASHROA	D J UNCTI	ONFIVET
3435323	3342413	3252252	1232535
1513122	2351443	2322413	4253311
MFDETEN	AKGDF-OQ	DUBNDCL	Y DVWBAX
21	22	23	24
HREETHR	EEGSTOP		L DS W O O D
2433524	3344511	3233121	1345113
1411114	1115145	1214214	3254442
CAUGGXO	ARTXXTS	D AYXHKO	LSXABRK

25
SSOUTEW
4415525
5542114
R P U Z W

29
$\begin{array}{lllllll}S & I & D & E & R & A & B \\ 4 & 2 & 3 & 3 & 4 & 3 & 2 \\ 5 & 3 & 2 & 1 & 4 & 3 & 5 \\ K & A & Q & B & D & 0 & F\end{array}$
33
ERYEFFO 3413331 1421554 MLAXKPW

37
SOUTAND 4155323 5421322 GZDFKLN

41
ONSTOPM 1245113 4251454 YSXKBOW

49
ORTYFIF 1451323 4412535 OTDMGBF

ENEMYNO 3233121 1214224 DAYXHKC

ESTOFCH $\begin{array}{lllllll}3 & 4 & 5 & 1 & 3 & 2 & 2 \\ 1 & 5 & 1 & 4 & 5 & 4 & 1\end{array}$ MTDHTSG

27

ARLESTO | 3 | 4 | 1 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | | | | |
| 4 | 3 | 1 | 5 | 1 | 4 | HISLQPO.

WN INCON 5222212 $\begin{array}{lllllll}4 & 2 & 3 & 2 & 4 & 4 \\ \mathrm{U} & 2 \\ \mathrm{~N} & \mathrm{H} & \mathrm{C} & \mathrm{I} & \mathrm{C} & \mathrm{K}\end{array}$

31
STOPWIL 4511521 $\begin{array}{lllllll}5 & 1 & 4 & 5 & 4 & 3 & 3 \\ S & X & U & P & 0 & W & A\end{array}$

32
LMAKEEV
1334335

36
LETROOP 1354111 3114445 LWXLXRS

$$
40
$$

巴POSITI 3114252 1545313 E O B H WVL

44
IFFICUL 2332251 $\begin{array}{lllllll}3 & 5 & 5 & 3 & 4 & 2 & 3 \\ I & D & \mathrm{~B} & \mathrm{~L} & \mathrm{Z} & \mathrm{M} & \mathrm{I}\end{array}$

48
ONWITHF 1252523 4243115

52
RTHSTOP 4524511 $\begin{array}{lllllll}4 & 1 & 1 & 5 & 1 & 4 & 5 \\ S & C & T & 0 & X & T & S\end{array}$

56

FFICERC 3322342 5534144 ANMBVGR

57	58^{1}	59	60
APTURED	NEARCHA	R LESTOW	NSTATES
3155433	2334223	4134515	2453534
3512412	2134413	4315144	2513115
EZQATCY	IMNDIR L	GMTWETR	CVVKTEP
61	62	63	64
THATENE	MYSEVEN	THDIVIS	IONISMO
5235323	3143532	5'232524	2122431
1131121	4251312	1123335	3423544
UFDEIXH	EQVCBLY	UDUGYAF	HNQLKFR
65	66	67	68
VINGINT	OATTACK	POSITIO'	NSTONIG
5224225	1355324	1142521	2451224
3321321	4311342	5453134	2514231
UCNVDIH	L Z DRELK	$\mathbf{X K} \mathrm{K} \mathrm{P}$ S E M	CTNKTK
69	70	71	72
HTPREPA	R ATORYT	OATTACK	ATDAYLI
2514313	4351415	1355324	3533112
1154153	4314421	4311342	3123233
BOEEPGV	Q T G W ERH	L Z DRELK	FAXIYDA
73	74	75	
GHTTOMO	R R O W M OR	N ING	
4255131	4415314	2224	
1111444	4444444	2331	
K Z L X X 0 R	$\mathrm{R} \boldsymbol{P} \mathrm{ER} \mathrm{R} \mathbf{R} \mathrm{R}$	NCIE	

1. The stops takon in rocovering the original substitution checkerboard demonstrate that cyclic permutations of a corroct chockorboard will serve to decipher such a cryptogram just as well as the original checkerboard. In other words, a cryptogram prepared according to this method is decipherable by factorial $5(5 \times 4 \times 3 \times 2 \times 1=120)$ checkerboards, all of which are cyclically equivalent. Even though the identities of the components will be different if the same message is enciphored by two different cyclically-equivalent checkerboards, whon these components are
recombined, they will gield identical clpher texts, end therefore so far as external appearances are concerned different checkerboards yield identical cryptograms. The reason that there are only factorial 5 cyclically-equivalent checkerboards and not factorial 10, is that what- ever permutation is applied to the row coordinatos must be the same as that applied to the column coordinates in order that the aforesald relationship hold true. If two checkerboards have iduntical row coordinatos but different column coordinates certain portions of the cryptographic text will docipher corroctly, othors incorroctly. For this roason, in working with cryptograms of this typo tho cryptanalyst may successfully use a checkerboard which is incorrect in part and corroct it as he progresses with the solution. It may also be added that the actual permutation of digits appliod to the side and top of the checkerboard is of no .. consequence, so long as the permutations are identical. In other words, the pormutation 5-2-1-3-4 will work just as well as $3-2-4-1-5$, or 1-2-3-4-5, etc., so long as the seme permutation is used for both row and column coordinates. It is the order of the rows and columns in the checkerboard which is the determining element in this systam. Any arrangement fof the letters within the checkerboard) which retains the original order as regards the letters wathin rows and columns will work just as well as the original checkorboard.

프. A final romark may be worth adding. Aftor all, the security of cryptograms enciphered by the bifid fractionating method rests upon the secrecy inherent in a single mixed alphabet. In ordinary substitution, a singlo mixed alphabst hardly provides any security at all. Why does the bifid system, which also uses only a single mixed alphabet, yield so
much higher a degree of securnty? Is it because of the transpositional features involved? Thinking about-this point gives a negative answer, for after all, finding the length of the periods and replacing the cryptographic text by components based, upon the ciphor letters is a relatively easy matter. The transpositional features are really insignificant. No, the answer to the question lies in a difforent diruction and may be summod up about as follows. In solving a simplo mixed-alphabst substitution cipher one can attack a fow cipher letters (the ones of greatost froquency) and find their-equivalonts, yielding fragmonts of good plain text here and there in the cipher text. Once a feu values have been establishod in this mannor, say 6 valuos, the remaining 20 valucs can be found almost from-the context alone. And in ostablishing these 6 valuos, the letters involved are not so interrclatod that all 6 havs to be ascertained samultancously. The cryptanalyst may ostablish the valuos one at a time. But in the case of the bifid system the equivalents of the plain-text letters are so interreleted that the cryptonalyst is forced to ostablish the positions of severcl lettors in the checkerboard almultaneously, not one by one. In other words, to use an analogy which may be only partially justifiod, the solution of a sample monoalphabotic substitution cipher is somewhat like forcing ore's way into an inner chambor which has a number of doors each having a single lock; the solution of a bifid fractionated capher is somewhat like getting into a vault--thore is only one door which is provided with a complex 5-combination lock and all the tumblers of the lock must be positioned correctly sumultaneously beforo the releasing lever can drop into the slot and the door oponod. Fundamontally, this principle $1 s$ responsible for the very much groater

REF ID:A56913

security of the bifid system as compared whth that afforded by the simple monoalphabetic system. It is a principle well worth remembering and speculating upon.
48. Special solutions for bifid systems. - a. The security of the bifid system is very considerably reduced if the situation in which it is employed happens to be such that two or more messages with identical beginnings, endings, or internal portions can often be expectod to occur." For in this case it is possible to establish equivaluncios betweon components and quickly reconstruct tho substitution checkorboard. An cxample will be givon to illustrato tho stops in a spocific caso.
b. Here aro two cryptograms trensmittod by two cocrdinato units to a suparior headquartors at about the sane time. They show certain identitios, which havo boun undorlinod.

1. QVBBL YXNAB QBDOY HONDW VUYTE NILZD QITKE FWAFK QSLIP QDWC 2. VBNHY XDABG DOTHO ENWVL YTFWH QXDQV LKEEVIN AXDQS ABCAN XGX
c. Apparöntiy thoso two cryptograms contain almost idontical texts. In order to bring the identitios into the form of suporimposed components, it is necessary to transcribe the texts into periods of 7 and to superimpose the two messages as shown in Fig. 93.
d. The shifting of the 2 d cryptogram 2 intervals to the right brings - about the superimposition of the majority of θ_{1} and θ_{2} components and it may be assumed that for the most part the texts tre identical. Allowing for slight differences at the boginnings and onds of the two messages, supposo a table of equivalencies is drawn up, beginning with the 8 th suporimposed pairs. Thus, $\mathrm{N}_{1}=\mathrm{N}_{2}=D_{1}$; honce $Q_{2}=D_{1} . \mathrm{N}_{2}=\mathrm{H}_{1}=\mathrm{D}_{2}$; honce $\mathrm{N}_{2}=H_{1}$ and $B_{1}=D_{2}$. Going through the toxt in this manner and tominating with the 42 d superimposod pairs, the results aro tabulated as shown in Fig. 94.

$\begin{array}{lllllllllllllllllllll}29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49\end{array}$

FIGURE 93.

FIGURE 94.
e. From these equivalencies it is possible to reconstruct, if not the entirely, then at least a portion of the substitution checkerboard. For example, the data show that N, H, and I belong in the same row, E and F belong in the same row, N and K belong in the same column, and so on. Experimentation to make all the data fit one checkerboard would sooner or later result in reconstructing the checkerboard shown in Fig. 92, and the two messages read as follows:

1. SEVENTH INFANIRY IN POSITION TO ATTACK AT FOUR AM PLAN FOUR.
2. TENTH INFANTRY IN POSITION TO ATTACK AT FOUR AM PLAN THIREEX.

REF ID:A56913

f. The foregoing glves a clue to what would happen in the case of an extensive traffic in which long phrases or entire sentences may be expected to occur repeatedly. By a proper indering of all the material, identical sequences would be uncovered and these, attacked along the lines indicated, would soon result in reconstructing the checkerboard, whereupon all the messages may be read with ease.
49. Solution of tririd systems. - a. In the trifid fractionating system the cipher alphabet is tripartite in nature, that 18 , the plaintext letters are ropresented by permutations of 3 components takon in groups of 3^{19}, thus forming a set of 27 equivalents, such as that shown below:

$A=111$	$J=211$	$S=311$
$B=112$	$K=212$	$T=312$
$C=113$	$I=213$	$U=313$
$D=121$	$M=221$	$V=321$
$T=122$	$N=222$	$W=322$
$F=123$	$O=223$	$X=323$
$G=131$	$P=231$	$Y=331$
$H=132$	$Q=232$	$Z=332$
$I=133$	$R=233$	$?=333$

b. The equivalents may, of course, be arranged in a mixed order, and it is possible to use one tripartite alphabet for decomposition and a wholly different one for recomposition. One disadvantage of such an alphabet is that it is a 27 -eloment $2 l p h a b e t$ and therefore some subterfuge must be adopted as regards the 27 th element, such as that illustrated in the footnote to Par. 57 of Special Text No. 166, Advanced Military Cryptography, wherein ZA stonds for Z and $Z B$ for the 27th character.
c. The various types of fractionction possible in bifid systems are also adaptable in trifid systems. For example, using the alphabet shown above for recomposition n s well as decomposition tho encipherment of a message in periods of 5 is as follows:

REIIEFOTYOURREG1MENTTOMORROW 212.111 .2132 .322 .1112 .123 .31222222 .3 $32.132 .2223 .213 .32 \quad 33.222 .11122 .233 .22$
 Cryptogram ... KAQHO RRHWFIXIZABFZBNATNNNWROLZ d. The solution of a single cryptogram of this nature would be a quite difficult matter, especially if there were nothines upon which to make assumptions for probable words. But a whole series of cryptograms could be solved, following in general the procedure outlined in the case of the bifid system, although the solution is, admittedly, much more complicatod. The first step is to ascertain the length of the period, and when this has been done, transcribe the ciphor text into components, which in their vertical combinations then represent monoalphabetic oquivalents, with of course many variants for each lettor of the plain text. Then a study is made to establi'sh component equivalents, just as in tho bifid system.- If the toxt is replete whth repetitiors, or if a long word or a short' phrase may be assumod to be present, a start may be made and once this sort of entering wedge has been forced into the structuro, ats furthor disintegration and ultımate comploto denolition is only a matter of time and patience.
50. Concluding remarks on fractionating systoms. - a. It goes without saying that the basic principles of fractionation in the bifid and trifid systoms are susceptible to a great deal of variation and complication. For example, instoad of having poriods of fixod length through the mesisage, it is possible to vary tho length of the, periods according to some simple or complex koy suitable for this purposo. Or, the bifid and trifid systems may bo combined into a single scheme, onclphoring a toxt by the bifid mothod and then reonciphoring the capher text by the trifid mothod.
and so on. Systems of this sort may become so complex as to defy analysis, especially if the keys are constantly and frequently varied so that no great anount of traffic accumulates in any single key. Fortunately for the cryptanalyst, however, such complex systems as these, if intro- duced into actual usage, are attended by so many difficulties in practice that the enemy cryptographic service would certainly break down and it would not be long before requests for repetation, the transmission of the same cryptogran in different keys, and so on would afford cluos to solution. Could such systems be employed successfully in field service thero is no doubt that from the stindpoint of security, the cryptograms would be thoorctically secure. But the danger of orror and the slownoss with which they could be operated by the usual cryptographic clerks arc such that systoms of this comploxity can hardly bo employod in the field, and therofore the cryptanalyst may not oxpect to encounter them.
b. However, the simple bifid system, the ADFGVX system and the like are indeed practicable for field use, havo boen used vith success in tho past, and may bo expected to be in use in the future. It is therofore advisable that the student become thoroughly familiar with tho basic principles of their solution and practice the application of these princaples as frequently 2 s possible. In this connection, the attontion of the student is directed to the fact that thors is theorotically no reason why the bipartite components of the ADFGVX systen cannot be rocombined by means of the sime or a different checkerboard, thus roducing the cryptographic text to 2 form wherean it consists of 25 different letters, and at the same tinc cutting the longth of the messages in half. The matter is puroly ono of practicability: it adds one more step to the procoss.

But it must not be overlooked that this additional step would add a good deal of strength to the system, for it would shorten, mask, distort, or entirely eliminate similar beginnings and similar endings--the two most fruitful sources of attack on this system.
51. Concluding remarks, on transposition systems. - a. Simple transposition systems hardly afford any security at all, complex ones may in the case of individual or single messages afford a high degree of security. But just as soon as many cryptogrens in the same key are transmitted the chances of finding two or more cryptograms of identical length become quite good and the gencral solution may be applifed.

- b. Contrary to the situation in the case of substitution, in that of transposition wherein the lotters of the plain-text itscle are transposed (not code) the shortor the cryptogram the gruator the possibility of solution. For, in the case of a message of say only 25 or 30 letters, ona might shif't the letters about and actually reconstruct the plain text as onc does in the case of the game called "anagrams." of course, soveral difforcnt "solutions" may thus be obtained, but having such "solutions" it may be possible to reconstruct the system upon which the transposition was based and thus "prove" one of the solutions.
c. The text has confined itself almost entirely to cases of uniliteral transposition, in ordor to demonstrate basic principles. But there is inhorently no reason why transposition may not be applied to digraphs, trigraphs, or totragraphs. If longer soquonces are used as the units of transposition tho sccurity decroases vary sharply, as in the case of the ordinary route ciphers of the Civil War poriod.
d. Transposition designs, diagrams, or patterns are susceptible of
yielding cryptograms of good security; if they are at all irregular or provide for nulls and blank spaces. Such devices dre particularly difficult to solve if frequently changed.
e. Transpositions effected upon fixed-length sequences of plain text yield a low degree of secirity lout when a transposition is applied to the cipher text resulting from a good substitution system or to the code text of cryptograms first encoded by moans of an extonsive codobook the ancreaso in the cryptographic security of such cryptograms is quite notable. In fact, transposition methods and designs are froquently usod to "suporencipher" substitution toxt or code and play a very importont role in this fiold. Their great disadvantige is that inheront in all transposition muthods: tho addition or dclotion of a sanglo lettor or two often makes the ontire cryptogram unreadable ovon wath the correct key.
f. The clues afforded by mossageo with similar boginnings, ondings, or internal portions, and by repotitions of incorrocily onciphered mossages without paraphrasing the origanal text are ofton sufficient to make a solution possible or to factilatate a solution. For this reason the cryptanalyst should note all cascs whorein cluss of this sort may be applicable and be propared to take full advantago of thum.
g. Following out the schome initiatod in the first text, an analytical key applicable to the subjoct-matter in this text will bo found on page 218.

REF ID:A56913
 INDEX

Page
ADFGVX system 114
General solution of 148
Alternation of components 159
Basic principles 149
Final components 149
Illustration of solution 156
Initial components 149
Minus alternation 163
Plus alternation 164
Special solution of 115
Exact-factor method of solution 145
Solution by means of identical beginnings 123
Solution by means of identical endings 116
Alternation of components 159
Analytical key 218
Ascertaining period in bifid system 188
Bifid fractionating system:
Ascertaining of period 188
Basic steps of 178
Bipartite equivalents of 179
Column coordinate 182
Even-length periods 179
General principles underlying solution 179
Illustration of solution 192
Matching of aistributions 196
Odd-length poriods 180
Periods of fixec length 178
Preparation of index 190
Probability of occurrence of oven-positioned litters 186
Probability of occurrence of odd-positionod letters 186
Probable-word mothod of attack 201
Reconstruction of original substitution checkerboard 204
Row coordinate 182
Socurity of 209
Solution of 178
Special solution of 211
Vortical pairs of compononts 183
Bipartite equivalents 179
Columnar transposition clphors:
Comnletcly-filled rectangles 8
Column and row transposition 10
Consonants and vowels, doviation of 16
Invarlable digraph 21
Limitod affinity 22
Obligatory sequences 21
Pilot letters 22
Probable method of solution 19
Reconstruction of literal key 24
Columnar transposition ciphers: (continued)
Incompletely-filled 'réctangles 28
Alternative method of solution 39
Formula for cillculating length and number of long and shórt columns' 29
Goneral principles" underiying' solution 28
Géneral solution 52
Long coilumns of 29
Master diagram 31
Short columns of 29
Special solution of 51
width 29
Special solutions 55
Cryptograms of identical length in same'key 7
Int'erchanged pair of colurins 59
Messages with similar baginnings 61
Messages with similar ondings 65
Omittod column 57
Single mossage containing a long repetition 69
Stereotyped phraseology 55
Combined substitution-transposition systems:
Using digraphic substitution 113
Using fractionating sygtams 113
Using known alphabets 110
Using monoalphabetic oubstitution 109
Using polyailphabetic or polygraphic substitution 112
Completoly-filled roctangles 8
Doublo transposition clphers:
Depth of rectongle a multiple of width 89
Enciphorirg rectangle a perfect suuarc 86
Failure to exccute double transposition properly 83
Spocial cases of solution 85
Width of rectanglo a multiple of depth 87
Exact-factor muthod of solving ADFGVX cipher r145
Fractionating' 'systcms:
ADFGVX 114
Bifid 178
Concluding remarks on 214
Tririd 213
Grilles, indefinite or continuous 105
Grilles, revolving 94
Alpha mothod 94
Beta metrod 94
Principle of exclusion 99
Principle of sequence 99
Principle of symmetry 95
Page
Inscription 5
Invariable digraph 21
Matching distrıbutions 196
Monophase transposition 5
Obligatory sequences 21
Pilot letters 22
Polyphase transposition 5
Processes, rescriptive 5
Rail-fence writing 6
Rescription, process of 5
Reversed writurg 6
Single transposition 5
Transcrıption 5
Transposition:
Columnar 8
Double 78
Monophaso 5
Polyphase 5
Simple types of 6
Singlo 5
Uniliteral route 7
Vertical writing 6
Trifid fractionating system, solution of 213
Unilıteral transpnsition 7
Vertical writing 6

[^0]: ${ }^{1}$ See Special Text No. 165, Elementary inilitaly Cryptography, 1935, Pars. 20, 21.

[^1]: ${ }^{2}$ See Appendix 1.
 ${ }^{3}$ See Special Text No. 165, Elementary Military Cryptography, 1935, Sec. V .

[^2]: $6_{\text {Following the steps taken in subparagraph d, frequency weights may }}$ be given the various trigraphs in Fig.- 3 and the sums obtained taken as indications of the relative probability of each of the four trials. These steps are here omitted, for they are obvious.

[^3]: $8_{\text {The }} C V$ and VC digraphs constitute about 62 per cent of all digraphs.

[^4]: Traken from Tables 2-D (2) and 2-T (2), p. 111, Military Cryptanalyais, Part I.

[^5]: ${ }^{1}$ Factorial 15, or $15 \times 14 \times 13 \times \ldots \times 1$, equals $1,369,944,576,000$ different transposition koys.

[^6]: $I_{\text {See Special Text No. 166, Acivanced Military Cryptography, Sec. V. }}$

[^7]: 4
 In this connection, see Military Cryptanalysis, Part III, Sec. XI, footnote 3.

[^8]: $1_{\text {See Special Text No. 166, Advanced Military Cryptography, Sec. XI. }}$

[^9]: $1_{\text {Special Text No. 166, Advanced Military Cryptography, Sec. XI. }}$

[^10]: ${ }^{5}$ This illustration uses the same cryptograms and follows quite closely along the lines employed in a technical paper of the Signal Intelligence Service entitled Genoral Solution for the ADFGVX Cipher, prepared by Messrs. Rowlett, Kullback, and Sinkov, in 1934.

[^11]: Total 59

[^12]: $\mathbf{I}_{\text {Soc }}$ Spesial Toxt No. 166, Advanced Milltary Cryptography, Sec. XI and Military Cryptanolysis, Part I, Sec. IX.

[^13]: ${ }^{2}$ An example of tho solution of a cryptogram of this type was given in Military Cryptanalysis, Part I, Sec. IX.

