格! an D. Sisfar

WAR DEPARTMENT
OFFICE OF THE CHIEF SIGNAL OFFICER
washington

GENERAL SOLUTION FOR THE DOUBLE TRANSPOSITION CIPHER

TECHNICAL PAPER

By
SOLOMON KULLBACK, Ph.D.
Junior Cryptanalyst
SIGNAL INTELLIGENCE SECTION
War Plans and training division

UNITED STATES
GOVERNMENT PRINTING OPFICE
WASHINGTON: 1934

CONTENTS
Section Page
I. Introductory remarks
1
II. Analysis of syatem and general procedure 2-4
III. Reconstruction of key, solution known 5-8
IV. Reconstruction of key, plain-text positions of several cipher letters known 9-13
V. Reconstruction of key, relative positions in plain-text of several cipher letters being known 14-17
VI. Solution of messages enciphered by double transposition cipher system 18
VII. Double transposition with different keys 19-23
Appendix 25-27

GENERAL SOLUTION FOR THE DOUBLE TRANSPOSITION CIPHER

Section i

INTRODUCTORY REMARKS
Paragraph

urpose of this paper
2

1. Ifature of investigation.-It is known that two or more messages of identical length, enciphered by means of a double transposition system, may be read by anagramming. It was conjectured that the very nature of the system is such that some pseudomathematical procedure could be devised for the solution of single messages or messages of different lengths enciphered by means of a double transposition system.
2. Purpose of this paper.-This paper was written for the purpose of setting forth in detail the results of a study for a general method of solution of the double transposition cipher system. The method herein described is novel in cryptography and presents a principle which may be of value for other types of transposition. A preliminary knowledge of the more important and fundamental principles of cryptanalysis, particularly with regard to transposition systems, is advisable, though not absolutely necessary, for a proper understanding of the details of this analysis. Reference is therefore made to Signal Corps Training Pamphlet No. 3, "Elements of Cryptanalysis", wherein will be found elucidated the basic principles of the science. The method of procedure, though mathematical in nature, makes no heavy demands on the mathematical knowledge and ability of the reader.
3. Summary of conclusions.-It is shown in this paper that it is possible to solve a single message, or several messages of different lengths enciphered by means of a double transposition tipher system. The ease and speed with which the solution may be attained will depend on the number of cryptanalysts, the general situation, etc., and no attempt has been made to estimate an average time of solution.

Section II

ANALYSIS OF SYSTEM AND GENERAL PROCEDURE

Abstract

 4. General considerations.-The general method herein presented for the solution of a double transposition cipher involvee pome potions which may not be fanailipr and are therefore discussed in this section.

Consider the fundamental element of a transposition method. Transposition is a process which does not change the identity of the letters of a message but does change their relative positions. As a result of any transposition, the soparate latters of the plain text are rearranged In oome new order. It will be found of value to oonsider this process as one in which a letter of the plain text is replaced by some other letter of the plain text. Consider, for example, a columnar transposition with key 2-5-6-1-4-3 applied to a message of 50 letters, It will be found convenient in what follows to disregard the identity of the letters and represent them by; numbers giving their position in the plain text. Thus, 1 will mean the first plain-text Ifter; 2 , the second plain-text letter; etc.

2	5	6	1	4	3
01	02	03	04	05	06
07	08	09	10	11	12
13	14	15	16	17	18
19	20	21	(25)	23	24
25	26	27	28	29	30
31	32	33	34	35	36
37	38	39	40	41	42
43	44	45	46	47	48
49	50				

Fraure 1
The cipher text, obtained by columnar transposition, in terms of thase numbers is 04-10-16-22-28-34-40-46-01-07-13-19-25-31-37-43-49-06-12-18-24-30-36-42-48-05-11-17-23-29-35-41-47-02-08-14-20-26-32-38-44-50-03-09-15-21-27-33-39-45.

The above notation means that the first cipher letter is the fourth plain-text letter, the second cipher letter is the tenth plain-text letter, etc. This may be represented as follows:

REF ID:A57071

$2011222324252627282930313233 \quad 34,35363738$ 3940.41 .42 .43 .444546474849565152535455565 ? 585460,61626364656667686970717273747576 77787980818283848586878889909192934495 4697984910010110210310410510610710410911011111213114 134135136157,38139140141142143144145146147148149150151152 153154											

- Here the number in line C_{0} represents the position in the cipher text of the letter whose position in the plain text is given directly beneath it. (Notice that the sequence of numbers of C_{1} are those of the columns of figure 1. The columns have been rearranged according to the key and written horizontally in sequence.)

5. Notation.-For convenience, the following notation will be used: C_{0} will represent the plain text and also will be used to enumefate the positions in the cipher text; C_{1} will represent the cipher text resulting from the first transposition and thus also the "plain text" for the second transposition; C_{2} will represent the cipher text resulting from the second transposition.

It is seen from figure 2 that the transposition in question replaces the first plain-text letter by the fourth, the second plain-text letter, by the tenth, the third plain-text letter by the sixteenth, etc.

To effect the second transposition the same operation must be performed on C_{1} that was , performed on C_{0}. The first letter of C_{1} (4 of C_{0}) must be replaced by the fourth letter of C_{1} (22 of C_{0}); the second letter of C_{1} (10 of C_{0}) must be replaced by the tenth letter of $\mathrm{C}_{1}\left(7\right.$ of C_{0}); the third letter of $\mathrm{C}_{1}\left(16\right.$ of $\left.\mathrm{C}_{0}\right)$ must be replaced by the sixteenth letter of $\mathrm{C}_{1}\left(43\right.$ of $\left.\mathrm{C}_{0}\right)$, etc.

The operations discussed above may be represented as in figure 3. In figure 4 is shown the result of the operations, where again C_{0} is the plain text (and also used to enumerate the positions), C_{1} the result of the first transposition and C_{9} the result of the second transposition.

This scheme can now be used to effect a double transposition with the same key.

4

```
CO_-OE 02 03 0405 06 07 08 09 10 11 12 13 14 15 16 17 18 1920
C
C2__-22 07 43 30 17 02 38 21 04 40 25 12 48 35 20 03 39 34 1906
```



```
C1_--24 30 36 42 48 05 11 17 23 29 35 41 47 02 08 14 20 26 32 38
C2__--42 29 14 50 33 28 13 49 36 23 08 44 27 10 46 31 18 05 41 26
C0_-_-41424344454647484950
C1_\ldots._4450 03 09 15 21 27 33 39 45
C2\ldots_-09 45 16 01 37 24 11 47 32 15
```

Figurie 4
6. Plain-text cipher-text relationships.-Since the same operation has been effected twice, there ought to exist a "plain-text cipher-text" relationship between $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2} \mathrm{C}_{2}\right)$ which remains invariant. Such a relationship does exist. Notice that the pairs in $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ are the same as those in ($\mathrm{C}_{1} \mathrm{C}_{2}$) ; their relative positions have been changed. For example, under 1 in C_{0}, we find 4 in C_{1}; under 1 in C_{1}, we find 4 in C_{2}; under 2 in C_{0}, we find 10 in C_{1}; under 2 in C_{1}, we find 10 in C_{2}, etc.

If a third, fourth, . . . nth transposition is effected with the same key, the same phenomenon will occur and can be used to find $\mathrm{C}_{3}, \mathrm{C}_{4}, \ldots \mathrm{C}_{\mathrm{n}}$ readily. The pairs in ($\mathrm{C}_{0} \mathrm{C}_{1}$), $\left(\mathrm{C}_{1} \mathrm{C}_{2}\right),\left(\mathrm{C}_{2} \mathrm{C}_{3}\right),\left(\mathrm{C}_{3} \mathrm{C}_{4}\right) \ldots$ will all be the same so that C_{2} can be found by writing under C_{2} the numbers to form the pairs already determined by $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$.
7. Number of different cipher resultants possible with given key and message.-It is possible to determine the number of transpositions which may be effected with a given key on a message before the original message is obtained. Using the scheme of figure 4 and the message already discussed, the numbers of $C_{1}, C_{2}, C_{3}, \ldots C_{n}$ appearing under the 1 of C_{0} will be limited to a particular set. The number of elements in this set depends on the number of steps in the chain $1 \rightarrow 4,4 \rightarrow 22,22 \rightarrow 30, \ldots, 44 \rightarrow 9,9 \rightarrow 1$, i.e., 38 . Similarly, the set of numbers corresponding to any element in this chain will be of the same length. The last number in any one of these 38 sets is always the same as the corresponding number in C_{0} so that any number of transpositions which is a multiple of 38 will always make the first cipher letter the first plaintext letter, the fourth cipher letter the fourth plain-text letter, etc.

The message being 50 letters long, there are still 12 unaccounted for, the smallest of which is 3. We can form a chain for this number in the same way as for 1, viz, $3 \rightarrow 16,16 \rightarrow 43,43 \rightarrow 3$ whose length is 3. Any number of transpositions which is a multiple of 3 will make the third, sixteenth, and forty-third plain-text letters become the third, sixte日nth, and forty-third cipher letters, respectively.

Continuing this process all 50 letters may be accounted for. In this particular case four chains were needed of lengths $38,7,3$, and 2 . In order that the plain and cipher texts be identical, the number of transpositions used must involve each of these numbers as a factor. The smallest number possible is therefore the least common multiple of them, $3 \times 7 \times 38$, or 798.

This same notion is applicable to any type of transposition and will determine how many steps are needed to regain the original text as a cipher message.

```
(2) \(11 \cdot 13-25-48-33 \cdot 47 \cdot 27-11\)
(2) 12-19-12
```


Section III
 RECONSTRUCTION OF THE KEY, THE SOLUTION BEING KNOWN
 Paragraph
 Application of paired relationships
 8
 Test of assumptions
 9

8. Application of paired relationships.-The notions set forth in section II may be used to great advantage for the solution of messages enciphered by means of a double transposition. The method will be illustrated by several examples, increasing in difficulty.

Suppose several messages, enciphered by means of a double transposition, have been read by anagramming messages of identical length. In order to read other messages in this same key, but of different length, it is necessary to know the key, which can be recovered by applying some of the ideas set forth in section II.

Let us refer for a minute to figure 4. The knowledge of line C_{1} is sufficient to recover the key since $\left\{\begin{array}{ll}\mathrm{C}_{0} & 1 \\ \mathrm{C}_{1} & 4\end{array}\right\}$ indicates that the fourth column was read first, $\left\{\begin{array}{l}\mathrm{C}_{0} \\ \mathrm{C}_{1}\end{array}\right\}$

The complete k key is thus found to be:-

$$
\text { Key }\left\{\begin{array}{llllll}
2 & 5 & 6 & 1 & 4 & 3 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right.
$$

If the message has been read by anagramming, lines C_{0} and C_{2} are both known, but C_{1} must be reconstructed before the key can be.obtained. The method for reconstructing C_{1} is, in general terms, to assume a width which will enable one to arrange the sequence of numbers of C_{1} to insure proper pairing of $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$. The procedure will be illustrated by using the message of figure 4 , assuming C_{1} unknown. Let- us write the numbers of C_{0} and C_{2}, leaving space for C_{1}.

```
C0_\ldots.- 01 02 03 04 05 06 07 08 09 10 11 12 13 14 l5 16 17 18 19 20
C
```



```
C0_-_- 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
C
```



```
C0_--- 41 42 43 44 45 46 47 48 49 50
C
C2__-- 09 45 16 01 37 24 11 47. 32 15.
```

Figure 5
9. Test of assumptions.-Let us assume that the keyword is not less than five letters in length. As a first case then, suppose the width of the rectangle to be five. The first number of C_{1} must then be $1,2,3,4$, or 5 .

If it is 1 , then the next several are $1,6,11,16,21,26,31,36,41,46$; we stop with 46 since 51 is not possible, there being but 50 letters in the message. Writing these numbers in their positions, we have

$$
\begin{array}{lllllllllll}
\mathbf{C}_{0} \ldots & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10, \text { etc. } \\
\mathrm{C}_{1 \ldots} & 01 & 06 & 11 & 16 & 21 & 26 & 31 & 36 & 41 & 46 \text {, etc. } \\
\mathbf{C}_{2} \ldots & 22 & 07 & 43 & 30 & 17 & 02 & 38 & 21 & 04 & 40 \text {, etc. }
\end{array}
$$

Figure 6
This is impossible since $1 \rightarrow 1$ in ($\mathrm{C}_{0} \mathrm{C}_{1}$) contradicts $1 \rightarrow 22$ in ($\mathrm{C}_{1} \mathrm{C}_{2}$).
The remaining possibilities for width 5 yield similar contradictions, as shown below:

C					

Figure 7
The transposition rectangle therefore cannot be five columns wide.
On the assumption of width 6 , the initial number of C_{1} may be any one of the numbers 1 to 6 . The first three yield immediate contradictions.

For the assumption $\left\{\begin{array}{ll}\mathrm{C}_{0} & 1 \\ \mathrm{C}_{1} & 4\end{array}\right\}$ there is found

```
C0__-- }0102030405060708 . . .
C1_\ldots.- 04 1016 22 28 34 40 46 . . .
C2__-- 22 07 43 30 17 02 3821 . . 
```

Figure 9
This is possible since we have $4 \rightarrow 22$ in both ($\left(\mathrm{C}_{8} \mathrm{C}_{1}\right)$ and ($\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$. Since ($\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$ yields $10 \rightarrow 7,\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ should also yield $10 \rightarrow 7$. Inserting 7 in C_{1} under 10 of C_{0}, no contradiction is obtained, since there is room in C_{1} for the number 1 which must precede 7 and we find that both $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$ yield $1 \rightarrow 4$. We now have-

```
C0_-_- 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17, 18 19 20
C1_--- 04 10 16 22 28 34 40 46 01 07 13 19 25.31 37 43 49
C2_\ldots-- 22 07 43 30 17 02 38 21 04 40 25 12 48 35 20 03 39 34 19 06
C0_--- 21 22 23 . . .
C
C2-_-- 42 29 14 . . .
```


Fiaure 10

Notice the further checks: $16 \rightarrow 43 ; 13 \rightarrow 25$ in both $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$.
Since in $\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$ we find $22 \rightarrow 30$, we insert in C_{1} the number 30° under the 22 of C_{0}. There is no contradiction, as there are just enough places for the numbers $06,12,18,24$, which must precede 30. We now have-

```
C0__-. 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
C1_-_- 04 10 16 22 28 34 40 46 01 07 13 19 25 31 37 43 49 06 12 18 24
C2_-_- 22 07 43 30 17 02 38 21 04 40 25 12 48 35 20 03 39 34 19 06 42
C0__-- 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 . . .
C1_-.- 30 364248
C
```

 Figure 11
 The further checks can leave no doubt in our minds of the fact that we are on the right track. Since in ($\mathrm{C}_{1} \mathrm{C}_{2}$) we find $30 \rightarrow 29$, we insert 29 in C_{1} under the 30 of C_{0}. We now have-

Con... 2223242526272829303132333435363738394041 . . .
C 1 -_-- $3036424805111723 \quad 29354147$
$\mathrm{C}_{2} \ldots 2914503328134936230844271046311805412609 .$.

Since in $\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$ we find $35 \rightarrow 8$ and $47 \rightarrow 27$, we insert 8 in C_{1}, under the 35 of C_{0}, and 27 in C_{1} under the 47 in C_{0}. We now have-

```
C0__-- Ol 02 03 04.05 06 07 08 09 10 ll 12 13 14 15 l6 17 18 19 20
C1_\ldots-- 04 10 16 22 28 34 40 46 01 07 13 19 25 31 37 43 49 06 12 18
C2---- 22 07 43 30.17 02 38 21 04 40 25 12 48 35 20 03 39 34 19 06
C0_\ldots-- 21 22 23 24 25 26 27 28:29 30 31 32 33 34 35 36 37 38 39 40
C1_-_- 24 30 3.6 42 48 05 11 17 23 29 35 41 47 02 08 14 20 26 32 38
C2\ldots_- 42 29 14 50 33 28 13 49 36 23 08 44 27 10 46 31 18 05 41 26
C0_--- 41 42 43 44 45 46 47 48 49 50
C1-_-- 44 50 03 09 15 21 27 33 39 45
C2_\ldots.- 09 45 16 O1 37 24 11 47 32 15
```

Figure 13
Having reconstructed C_{1}, it is a very simple matter to find the key.

Section IV

RECONSTRUCTION OF THE KEY, THE PLAIN-TEXT POSITIONS OF SEVERAL OF THE CIPHER LETTERS BEING KNOWN

Paragraph			Paragraph
The problem presented	10	Testing assumptions	12
Preliminary consideratio	- 11		

10. The problem presented.-Suppose the following message is intercepted (the enemy is known to be using double transposition).
```
LDECSENNREOTNEHE BNGLI ALDTOTITEME
TASMK EWANE FACNE FLLLAI F
```

Later a C. P. is captured and the following plain text found without the work sheets.
IN CASE OF GENERAL ATTACK THE MAIN LINE OF DEFENSE WILL BE HELD.
In order to read other messages, we must reconstruct the key. A frequency table (fig. 14) shows the message to have but one B, G, K, M, R, W.

We can definitely correlate these letters in the cipher text with the same letters in the plain text.
11. Preliminary considerations.-Let us assign the numerical positions to those letters which are definitely known. (The numbers in C_{2} are the positions in the plain text of the corresponding letters in the cipher text, e.g., R is the thirteenth letter in the plain text, etc.)

We will find it convenient to write down the numbers corresponding to columns of different widths for a message of 51 letters, since the numbers of C_{1} are these columns rearranged, each column being kept as a unit. We thus hạve, for example, for widths 5-7:

Figure 16
For a width 5 there is 1 column of 11 and 4 columns of 10 letters; for a width 6 there are 3 columns of 9 and 3 columns of 8 letters, etc. It will be found convenient to prepare a list showing the number of letters corresponding to various combinations of short and long columns; for example, for width 5 we have

$$
\begin{aligned}
& 1 \times 10=10,1 \times 11=11 ; 2 \times 10=20, \quad 1 \times 10+1 \times 11=21, \quad 3 \times 10=30, \\
& 2 \times 10+1 \times 11=31 ; 4 \times 10=40,3 \times 10+1 \times 11=41,4 \times 10+1 \times 11=51
\end{aligned}
$$

12. Testing assumptions.-Let us suppose the transposition rectangle was 5 columns wide. The number of C_{1} under 8 of C_{0} must be either $36,37,38,39$, or 40 , since the first number of C_{1} must be either $1,2,3,4$, or 5 . (See fig. $16 a$.)

If it were 36 , then under the 36 of C_{0}, we must place 13 of C_{1}. This is impossible, since this would place the beginning of a column ${ }^{1}$ under $34\left\{\begin{array}{l:lll}\mathrm{C}_{0}: & 34 & 35 & 36 \\ \mathrm{C}_{1}: & 03 & 08 & 13\end{array}\right]$ and no combination of short and long columns will yield such a result. (No combination of 10 's and one 11 is equal to 33 .)

The remaining possibilities yield similar contradictions as shown below.

[^0]| Assumption | | Contradiction |
| :---: | :---: | :---: |
| $\mathrm{C}_{0} 08$ | $\mathrm{C}_{0} 3536$ | 37 |
| $\mathrm{C}_{1} 37$ | $\mathrm{C}_{1} 0308$ | $13^{(n \times 10+11 \neq 34)}$ |
| $\mathrm{C}_{2} 13$ | | |
| $\mathrm{C}_{0} 08$ | $\mathrm{C}_{0} 3637$ | |
| $\mathrm{C}_{1} 38$ | $\mathrm{C}_{1} 0308$ | $13^{(n \times 10+117}$ |
| $\mathrm{C}_{2} 13$ | | |
| $\mathrm{C}_{0} 08$ | $\mathrm{C}_{0} 3738$ | |
| $\mathrm{C}_{1} 39$ | $\mathrm{C}_{1} 0308$ | 13 |
| $\mathrm{C}_{2} 13$ | | |
| $\mathrm{C}_{0} 08$ | $\mathrm{C}_{0} 3839$ | 40 |
| $\mathrm{C}_{1} 40$ | $\mathrm{C}_{1} 0308$ | 13 |
| $\mathrm{C}_{2} 13$ | | |

Figure 17

The transposition rectangle is therefore not 5 columns wide.
Suppose the width to be 6 . This means 3 columns of 9 and 3 columns of 8 letters. (See fig. 16b.)

$$
\begin{aligned}
& 1 \times 8=8 ; 1 \times 9=9,2 \times 8=16,1 \times 8+1 \times 9=17,2 \times 9=18,3 \times 8=24, \\
& 2 \times 8+1 \times 9=25,1 \times 8+2 \times 9=26,3 \times 9=27,3 \times 8+1 \times 9=33,2 \times 8+2 \times 9=34, \\
& 1 \times 8+3 \times 9=35,3 \times 8+2 \times 9=42,2 \times 8+3 \times 9=43 ; 3 \times 8+3 \times 9=51^{.}
\end{aligned}
$$

The number of C_{1} under the 8 of C_{0} must be either $43,44,45,46,47$, or 48 . (See fig. 16b.)

If it were 43 , then under the 43 of C_{0}, we must place 13 of C_{1}. This is impossible, since it would place the beginning of a column under 41.

If it were 44 , then under the 44 of C_{0}, we must-place 13 of C_{1}. This is impossible, since it would place the beginning of a column under 42.

If it wëre 45 , then under the 45 of C_{0}, we must place 13 of C_{1}. This is possible, since it would place the beginning of a column under 43 and 3 short and 2 long columns make this possible. $(3 \times 8+2 \times 9=42$.) This information added to figure 15 gives the following:
$\begin{array}{llllllllllllllllllll}\text { L } & \mathrm{D} & \mathrm{E} & \mathrm{C} & \mathrm{S} & \mathrm{E} & \mathrm{N} & \mathrm{R} & \mathrm{E} & \mathbf{O} & \mathbf{T} & \mathrm{N} & \mathrm{E} & \mathrm{H} & \mathrm{E} & \mathrm{B} & \mathrm{N} & \mathrm{G} & \mathrm{L} & \mathrm{I}\end{array}$

C1 \ldots - $030915212733 \quad 394551$
$\mathrm{C}_{2} \ldots 131346$
$\begin{array}{llllllllllllllllllll}\text { A } & \text { L } & \mathrm{D} & \mathrm{T} & \mathrm{O} & \mathrm{I} & \mathrm{I} & \mathrm{E} & \mathrm{H} & \mathrm{E} & \mathrm{T} & \mathrm{A} & \mathrm{S} & \mathrm{M} & \mathrm{K} & \mathrm{E} & \mathrm{W} & \mathrm{A} & \mathrm{N} & \mathrm{E}\end{array}$
Con-_- 2122232425262728293031323334353637383940
$\mathrm{C}_{1} \ldots$
$\mathrm{C}_{2} \ldots$
252142

${ }_{1}$ No combination of 10 's and one 11 can equal 34.

There are several checks which seem to indicate that this is the correct arrangement. From $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ we find $43 \rightarrow 1$ also $1 \rightarrow 3$. This means that under the 1 of C_{1} must go 3 of C_{2}, indicating that the corresponding letter, C , is the third letter of the plain text. There is no contradiction, as the third plain-text letter is a C. Similarly, from $1 \rightarrow 3,3 \rightarrow 15$, we place 15 of C_{2} under 3 of C_{1}. (See fig. 19.) This indicates that the corresponding letter, L , is the fifteenth letter of the plain text. There is no contradiction, as the fifteenth plain-text letter is an L , etc.

From $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ we find $2 \rightarrow 9$; we must therefore place 2 of C_{1} over the 9 of C_{2}. This involves no contradiction, as a column may begin under 18 of $\mathrm{C}_{0}(1 \times 8+1 \times 9=17)$. From ($\left.\mathrm{C}_{0} \mathrm{C}_{1}\right)$ we find $4 \rightarrow 21$; we must therefore place 4 of C_{1} over 21 of C_{2}. This involves no contradiction, as a column may begin under 35 of $\mathrm{C}_{0}(2 \times 9+2 \times 8=34)$. Adding this new information, we have-

$\begin{array}{lllllllllll}\text { F } & \text { A } & \text { C } & \mathrm{N} & \mathrm{E} & \mathrm{F} & \mathrm{L} & \mathrm{L} & \mathrm{A} & \mathrm{I} & \mathrm{F}\end{array}$
Co--- 4142434445464748495051
$\begin{array}{lllllllllll}C_{1} & - & 40 & 46 & 01 & 07 & 13 & 19 & 25 & 31 & 37\end{array} 4349$
$\mathrm{C}_{2 \text { _--- }} 03$
Figure 19
From $\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$ we can now obtain $16 \rightarrow 42$, so that 42 of C_{1} goes under 16 of C_{0}. Inserting this, we have-

$\begin{array}{lllllllllll}\text { F } & A & C & N & E & F & L & L & A & I & F\end{array}$
Co_-_ 4142434445464748495051
$\mathrm{C}_{1} \ldots \ldots 4046010713192531374349$
$\mathrm{C}_{2} \ldots \mathrm{C} \quad 03$.
Ftadre 20

Obviously, the column headed by 5 must go into the blank spaces. From C_{1} the key is found to be $\left\{\begin{array}{llllll}6 & 3 & 1 & 5 & 4 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6\end{array}\right\}$. That this is correct may be verified by using the rectangle.

31542	6315
C G L K I 0	INCASE
NLDEET	0 FGENE
EIEWHN	RALAT T
FACAEE	A CKT
L LSNTH	M A I N
L DEEAE	N E 0
AT N F:S B	F. E N
I ORAMN	I L L B E
I E	ELD

Section V

RECONSTRUCTION OF THE KEY, THE RELATIVE POSITION IN THE PLAIN TEXT OF SEVERAL LETTERS BEING KNOWN

ParagraphParagraphThe problem presented - 13
Testing assumptions
The problem presid.14

13. The problem presented.-Consider the following two messages of identical length.
 pletely by anagramming, but the following procedure is believed to be simpler.
14. Preliminary consideration.-Consider ${ }^{1}$ the second message, assuming the width of the rectangle to be 8.

$1 \ldots--$	01	02	03	04	05	06	07	08
$2 \ldots-$	09	10	11	12	13	14	15	16
$3 \ldots-$	17	18	19	20	21	22	23	24
$4-\ldots$	25	26	27	28	29	30	31	32
$5 \ldots-$	33	34	35	36	37	38	39	40
$6 \ldots$	41	42	43	44	45	46	47	48
$7 \ldots-$	49	50	51	52	53	54	55	56
$8 \ldots$	57	58	59					

Figuri 22

[^1]$\begin{array}{llllllllllllllllllll}S & A & U & T & L & A & N & I & F & N & L & A & N & H & T & R & A & E & U & V\end{array}$
 $\mathrm{C}_{1-\ldots}$
$\mathrm{C}_{2 \ldots}$
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{H} & \mathrm{M} & \mathrm{T} & \mathrm{E} & \mathrm{S} & \mathrm{S} & \mathrm{S} & \mathrm{H} & \mathrm{E} & \mathrm{O} & \mathrm{T} & \mathrm{Y} & \mathbf{A} & \mathrm{R} & \underline{\mathrm{Y}} & \mathrm{T} & \mathrm{T} & \mathrm{W} & \mathrm{E}\end{array}$ $\begin{array}{llllllllllllllllllllll}C_{0-\ldots} & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$
$\mathrm{C}_{1-\ldots}$
$\mathrm{C}_{2-\ldots}$
$\begin{array}{lllllllllllllllllll}R & \underline{C} & N & \underline{V} & C & I & G & I & R & N & O & I & A & D & A & R & O & A & H\end{array}$
 $\mathrm{C}_{1} \ldots{ }^{-\cdots}$
C2...-
Figdre 23

The underlined letters are those underlined in $\underline{C} A \underline{V} \underset{A}{\underline{A} R \underline{Y} \text {, viz, those which could }}$ be determined uniquely; there are two possibilities each for $\left\{\begin{array}{cc}A \\ A & \text { and } \\ A\end{array}\right\}$. If p represents the position of Cin the plain text, the positions of V, A, L, Y are respectively $(p+2),(p+3),(p+4),(p+6)$.
15. Testing assumptions.-If the last three columns in C_{1} were long, the numbers of C_{1} corresponding to Y and V, letters number 36 and 44 of the cipher text, respectively, would be 1,2 , or 3 , the initial numbers of the long columns. (See fig. 22.) This would make it impossible for the plain-text positions of V and Y (i.e., the corresponding numbers in C_{2}) to differ by 4, as the number of C_{1} under $1,2,3$ of C_{0} are $x, x+8, x+16, \ldots$ and differ by at least 8 . At least one of the last three columns is a short one.

Suppose the last two columns to be long. Since a long column has 8 letters, the number of C_{1} under 44 of C_{0} is 1,2 , or 3 , and the number of C_{1} under 42 of C_{0} must be the next-to-last one of a short column, i.e., either $44,45,46,47$, or 48 . (See fig. 22.)

Suppose 1 of C_{1} is under 44 of C_{0}. With this assumption we must test $44,45, \ldots 48$ in C_{1} under 42 of C_{0} in turn. $\left\{\begin{array}{ll}\mathrm{C}_{0} & 42 \\ \mathrm{C}_{1} & 44\end{array}\right\}$ and $\left\{\begin{array}{ll}\mathrm{C}_{1} & 44 \\ \mathrm{C}_{2} & 01\end{array}\right\}$ make C the first letter of the plain text t_{1}. Since V would then have to be the third letter of the plan text, 3 of C_{2} must go under 1 of C_{1} or 44 of C_{0}. Since $\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$ yields $1 \rightarrow 3,3$ of C_{1} must go under 1 of C_{0}. Inserted in figure 23, this would be as follows:

1

```
    S A U T L L A N I I F N L L A N H T T R A A E U V
C
C
C
N H M T E S S S H E O T Y A R I Y T T W E
C0_\ldots.- 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
C1-\ldots-_ 04 12 20 28
C2\ldots_- 07
R C N N V C C I G I R N N O I I A D D A R R O A A
Co_-_- 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
C1\ldots_. 36 44 52 01 09 17 25 33 41 49 5%
C2_\ldots 01 03
```

[^2]The number of C_{1} under 36 of C_{0} is either $52,53,54,55,56,57,58$, or 59 (the last mumbor of a column). Since the corresponding \underline{Y} has to be the seventh of the plain text (we saw that C is to be the first of the plain text) then 7 of C_{1} would have to go under either $52,53,54$, $55,56,57,58$, or 59 of C_{0}. This is impossible, as the last column has been assumed to be long and 7 is in a short column. Therefore $\left\{\begin{array}{lll}C_{0} & 42, C_{0} & 44 \\ C_{1} & 44, C_{1} & 01\end{array}\right\}$ is impossible.

If 45 of C_{1} were under 42 of $C_{0}, 9$ of C_{2} would have to go under 45 of C_{1} or 42 of C_{0}, because $42 \rightarrow 45$ and $45 \rightarrow 9$. This would make C of CAVALRY the ninth letter of the plain text and V the eleventh. This is impossible, since this would place 11 of C_{2} under 1 of C_{1} and therefore 11 of C_{1} under 1 of C_{0}, whereas the number of C_{1} under 1 of C_{0} must be 01, 02, . . 08. For similar reasons, we find that 46,47 , or 48 of C_{1} cannot go under 42 of C_{0}. Therefore 1 of C_{1} is not under 44 of $\mathrm{C}_{0.1}$

Suppose 2 of C_{1} is under 44 of C_{0}. If 44 of C_{1} is under 42 of C_{0}, then 2 of C_{2} is under 44 of C_{1}. This would make the Y of CAVALRY the thirty-sixth cipher letter, the eighth of the plain text. This is impossible, since as before the number of C_{1} under 36 of C_{0} is $51,52, \ldots 59$, and these numbers of C_{0} cannot be over 8 of C_{1}, as this would make the last column short. 1

If 45 of C_{1} is under 42 of C_{0}, then 10 of C_{2} is under 45 of C_{1}, since $42 \rightarrow 45$ and $45 \rightarrow 10$. Since the C of CAVALRY must be the tenth plain-text letter, V must be the twelfth, so that 12 of C_{2} must go under 2 of C_{1} or 44 of C_{0}. This makes the Y of CAVALRY the sixteenth plain-text letter. This is impossible, since as before either $52,53, \ldots$ or 59 of C_{1} would be over 16 of C_{2}, necessitating either $52,53, \ldots$ or 59 of C_{0} to be over 16 of C_{1}; and 16 is in a short column. 1

If 46 of C_{1} were under 42 of C_{0}, then 18 of C_{2} would have to go under 46 of C_{1}, since $42 \rightarrow 46$ and $46 \rightarrow 18$. This would make V of CAVALRY the twentieth plain-text letter, placing 2 of C_{1} over 20 of C_{2}. This is impossible, since 2 of C_{0} can be over only $9,10,11, \ldots$ or 16 of C_{1}. (See fig. 22.) For similar reasons 47 and 48 of C_{1} cannot be under 42 of C_{0}. Therefore 2 of C_{1} is not under 44 of $\mathrm{C}_{0.1}$

Suppose 3 of C_{1} is under 44 of C_{0}. If 44 of C_{1} is under 42 of C_{6}, then 3 of C_{2} must be under 44 of C_{1}, since $42 \rightarrow 44,44 \rightarrow 3$. This will make V of CAVALRY the fifth letter of the plain text. This is impossible, since 3 of C_{1} over 5 of C_{2} implies 3 of C_{0} over 5 of C_{1}, whereas 3 of C_{0} must be over 17, 18, 19, . . or 24 of C_{1}. (See fig. 22.) For a similar reason 45 of C_{1} cannot be under 42 of $\mathrm{C}_{0.1}$

If 46 of C_{1} is under 42 of C_{0}, then 19 of C_{2} is under 46 of C_{1}, since $42 \rightarrow 46$ and $46 \rightarrow 19$. This means that 21 of C_{2} must be under 3 of C_{1} and therefore 21 of C_{1} under 3 of C_{0}, which is possible. The fact that Y will be the twenty-fifth plain-text letter, placing 25 of C_{2} under 36 of C_{0} and either $52,53, \ldots$ or 59 of C_{1}, involves no contradiction as yet, since 25 is in a long column and $52,53, \ldots 59$ of C_{0} must be over a number of C_{1} coming from a long column. 1

The number of C_{1} which goes under 36 of C_{0} must be 55 to enable 25 which is the fourth number of the first column to fit in properly in \mathbb{C}_{1}. Inserting this information, we obtain-

[^3]```
 S Allllllllllllllllllllllllll
C0__.- 01 02 03 0405 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
C1---- 05 13 21 29 37 45 53 08 16 24 32 40 48 56
C2---- }2
 N
C0-_-- 21 22 23 24 25 26 27 28 29 30 311 32 33 34 35 36 37 38 39 40
C1_\ldots : & : OT 15 23 31 39 47 55 06 14 22 30
C2__ 22 25
 R
C0_-_-41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
C
C2-\ldots- 19. 21
Figure 25
```

We find a further check. $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ gives $39 \rightarrow 22$ and $\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$ also gives $39 \rightarrow 22$. We canl ocate one more column, since $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ gives $32 \rightarrow 23$, so that 32 of $\mathrm{C}_{1}$ goes over 23 of $\mathrm{C}_{2}$ or under 11 of $C_{0}$. The portion of $C_{1}$, now filled in, gives as part of the key, $\left\{\begin{array}{llllllll}8 & 2 & 7 & 4 & 1 & 5 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\right\}$. Let us now use the transposition rectangle to verify and complete the solution.

|  | 7 . 1652 | 8.7.1652 |
| :---: | :---: | :---: |
| I | V . S T E I | ILEI |
| A | C. A T 0 F | N . A . R Y A |
| D | I. U W T N | N. C. VAL |
| A | G.TEYL | Y . R . AR C |
| R | I . LRAA | $\mathrm{H} . \mathrm{N} . \mathrm{SO}$ |
| 0 | . R . A C R N | H. A . T . I A |
| A | . $\mathrm{N} . \mathrm{N} \mathrm{NYY}$ | . ER R.T |
|  | . A | O.N |

Figure 26
There is now no doubt that we are on the right track. To fit in INFANTRY as the second word, the complete key is 8-3-7-4-1-6-5-2.

$$
\begin{aligned}
& 83741652 \quad 83741652 \\
& \text { ITVMSTEI HOSTILEI } \\
& \text { ARCTATOF NFANTRYA } \\
& \text { DAIEUWTNNDCAVALR } \\
& \text { AEGSTEYL YAREMARC } \\
& \text { RUISLRAA HINGSOUT } \\
& \text { OVRSACRN HEASTVIA) } \\
& \text { ANNHNNYH HUNTERST } \\
& \mathrm{HHO} \quad 0 \mathrm{WN}
\end{aligned}
$$

## Section VI

## SOLUTION OF MESSAGES ENCIPHERED BY A DOUBLE TRANSPOSITION CIPHER SYSTEM

```
 Paragraph
```



```
Summary ---
```

16. The general problem.-In the previous sections we have reconstructed the key to a double transposition cipher, starting with a great deal of information and progressively decreasing the amount of known information. Given a series of messages our problem is not any different. If one or more of the messages ${ }^{1}$ contains a $Q$ then we can definitely say that the $Q$ must be followed by a U. By proceeding as in the previous sections, we can eliminate various lengths of keys and arrangements of columns and eventually read the message. If there is no $Q$, then the assumption of probable digraphs, trigraphs, or words will enable one to reach a solution. The actual manipulation is easier than it appears to be and provides a straightforward procedure which will eventually yield the solution.
17. Summary.-To summarize, the essential features of the method and its application are the following:
(1) The invariance of $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right),\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$ pairs.
(2) The assumption of probable widths.
(3) The assumption of plain-text position of certain cipher letters (if necessary).
(4) The elimination of incorrect widths by contradictions of-
(a) Known cipher-text plain-text relationships (relative position of letters, final X's, etc.).
(b) Improbable arrangement of plain text (unlikely digraphs, trigraphs, etc.).

It is interesting to note that the method was applied to read intercepted messages of a well-organized group of smugglers. It was discovered that these persons were using a single columnar transposition method with keys from 10 to 20 letters long. Soon a double transposition was introduced, but the messages were read.

A series of messages including some actual intercepts is appended hereto and will serve the reader as an interesting set of problems.

[^4]
## DOUBLE TRANSPOSITION WITH DIFFERENT KEYS

<br>

18. Analysis of the system.-In the preceding sections we limited ourselves to a study of double transposition with the same key. It happens that a very similar procedure is applicable to the case in which a message undergoes columnar transposition twice, using different keys.

For the sake of convenience, suppose we consider a 19-letter message transposed with the key 5-4-2-1-3 and then 1-2-6-3-5-4.

| 5 | 4 | 2 | 1 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 01 | 02 | 03 | 04 | 05 |
| 06 | 07 | 08 | 09 | 10 |
| 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 |  |

C1: 04091419030813180510150207121701061116
$\begin{array}{llllll}1 & 2 & 6 & 3 & 5 & 4\end{array}$
040914190308
131805101502
071217010611
16

$$
\mathrm{C}_{2}: \begin{array}{lllllllllllll}
04 & 13 & 07 & 16 & 09 & 18 & 12 & 19 & 10 & 01 & 08 & 02 & 11 \\
\text { Fiqure } 28
\end{array}
$$

In figure $28 \mathrm{C}_{1}$ is the text after the first transposition and $\mathrm{C}_{2}$ the final text.
Let us analyze this case as we did the previous cases.

$$
\begin{aligned}
& \text { Con--- } 01020304050607080910111213141516171819 \\
& \begin{array}{llllllllllllllllll}
\mathrm{C}_{1} \ldots-. & 04 & 09 & 14 & 19 & 03 & 08 & 13 & 18 & 05 & 10 & 15 & 02 & 07 & 12 & 17 & 01 & 06 \\
\text { Figure } & 29 & 11 & 16
\end{array} \\
& \text { Figure } 29
\end{aligned}
$$

Figure 29 represents the first transposition.
Let us use a similar representation for the operation of the second key on a 19-letter message.

$$
\begin{aligned}
& \text { Figure } 30
\end{aligned}
$$

According to figure 30, the first plain-text letter is replaced by the first, the second plaintext letter by the seventh, etc.

If the second key were the only one applied to the message, then figure 30 would be sufficient. However, the correct plain text for the second key is $\mathrm{C}_{1}$ of figure 29. If we combine figures 29 and 30 and apply the operations of the second key to $\mathrm{C}_{1}$ of figure 29 , we shall obtain the proper cipher message.

| $\mathrm{C}_{0} \ldots \ldots$ | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}_{1} \ldots$ | 04 | 09 | 14 | 19 | 03 | 08 | 13 | 18 | 05 | 10 | 15 | 02 | 07 | 12 | 17 | 01 | 06 | 11 | 16 |
| $\mathrm{C}_{1}^{\prime} \ldots$ | 01 | 07 | 13 | 19 | 02 | 08 | 14 | 04 | 10 | 16 | 06 | 12 | 18 | 05 | 11 | 17 | 03 | 09 | 15 |
| $\mathrm{C}_{2} \ldots$ | 04 | 13 | 07 | 16 | 09 | 18 | 12 | 19 | 10 | 01 | 08 | 02 | 11 | 03 | 15 | 06 | 14 | 05 | 17 |

Let us study figure 31 with respect to the operations of figures 29 and $30 . \mathrm{C}_{0}$ is the plain text and is also used to enumerate the positions. $C_{1}$ indicates the result of the first transposition. The pairs of $\mathrm{C}_{0} \mathrm{C}_{1}{ }^{\prime}$ indicate the operations of the second transposition, the plain text for which is $\mathrm{C}_{1}$. Thus, the second transposition replaces the first plain-text letter of $\mathrm{C}_{1}\left(4\right.$ of $\left.\mathrm{C}_{0}\right)$ by the first letter of $\mathrm{C}_{1}$ ( 4 of $\mathrm{C}_{0}$ ); therefore the first letter of $\mathrm{C}_{2}$ is 4 . The second transposition replaces the second letter of $\mathrm{C}_{1}\left(9\right.$ of $\left.\mathrm{C}_{0}\right)$ by the seventh letter of $\mathrm{C}_{1}\left(13\right.$ of $\left.\mathrm{C}_{0}\right)$; therefore the second letter of $\mathrm{C}_{2}$ is 13 , etc.

The invariance of pairs is maintained in this case also, but now the relationship is $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$, $\left(\mathrm{C}_{1}{ }^{\prime} \mathrm{C}_{2}\right)$. (In the previous case where the two keys were the same, $\mathrm{C}_{1}$ and $\mathrm{C}_{1}$ ' coincided.) Thus, notice the pairs $1 \rightarrow 4 ; 7 \rightarrow 13 ; 13 \rightarrow 7$; etc., in $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{1}{ }^{\prime} \mathrm{C}_{2}\right)$.

The method for recovery of the key or solution of a message is similar to the procedure already outlined. In this case, the assumption as to the length of key may be made for $\mathrm{C}_{1}$ or $\mathrm{C}_{1}$, the length of the other key will be determined therefrom.
19. Example of procedure.-A simple example will make this clear. Suppose that by anagramming, the following message has been determined:

```
23-16-07-37-30-20-15-29-22-13-06-36-26-21-17-10-01-31-24-14-09-
05-35-28-19-12-02-32-27-11-04-34-25-18-08-03-33
```

Let us write out $\mathrm{C}_{0}$ and $\mathrm{C}_{2}$, leaving room for $\mathrm{C}_{1}$ and $\mathrm{C}_{1}{ }^{\prime}$.

```
C
C
C1'.---
C2---- 23 16 07 37 30 20 15 29 22 13 06 36 26 21 17 10 01 31 24 14
C
C
C
C2_--- 09 05 35 28 19 12 02 32 27.11 04 34 25 18 08 03 33.
```


## Figure 32

Suppose the second key were 5 wide. Then $\mathrm{C}_{1}{ }^{\prime}$ would begin with one of the sequences $1,6,11, \ldots ; 2,7 ; 12 \ldots . . ; 3,8,13, \ldots ; 4,9,14, \ldots$ or $5,10,15 ; \ldots$ Let us try each in turn. The first possibility

$$
\mathrm{C}_{1}^{\prime}----01-06-11-16-21-26-31-36
$$

$$
\mathrm{C}_{2}-23-16-07-37-30-20-15-29
$$

involves the following set-up for $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{1}{ }^{\prime}$, and $\mathrm{C}_{2}$ :

21

```
C0_:-- 01 02 03 04 05 06 07 08.09 10 11 12 13 14 15 16 17 18 19 20
C1_\ldots-23 16 07 37
C1'_..- 01 06 11 16 21 26 31 36
C2_..- 23 16 07 37 30 20 15 29 22 13 06 36 26 21 17 10 01 31 24 14
C0_\ldots-- 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
C1_\ldots. 30 20 15 29
C1'----
C2_\ldots-- 09 05 35 28 19 12 02 32 27 11 04 34 25 18 08 03 33
```

Figura 33

It is doubtful that $\mathbf{C}_{1}$ begins with 23 . Let us test the second possibility.


Figure 34
In order for 23 in $\mathrm{C}_{1}$ to be the second of a column, the key for $\mathrm{C}_{1}$ must be at least 12 letters wide. Let us draw up a table showing the number of long and short columns for different widths and immediately eliminate those which do not fit in properly with 7 of $\mathrm{C}_{1}$ under 12 of $\mathrm{C}_{0}$.

| Width of <br> key | Long and short <br> columns |
| :---: | ---: |
| 12 | $1-4,11-3$ |
| 13 | $11-3,2-2$ |
| 14 | $9-3,5-2$ |
| 15 | $7-3,8-2$ |
| 16 | $5-3,11-2$ |
| 17 | $3-3,14-2$ |
| 18 | $1-3,17-2$ |

We stop with 18 because it is doubtful that the key for $\mathrm{C}_{1}$ is much longer.
Width 12 is immediately impossible since $4+\mathrm{n} \times 3 \neq 11$. Widths $13-18$ are apparently possible since $3 \times 3+2=11$ or $3+4 \times 2=11$. For width 13 , the 7 of $\mathrm{C}_{1}$ is to be followed by 20. But $13 \rightarrow 20$ in $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ and $27 \rightarrow 20$ in ( $\left.\mathrm{C}_{1}{ }^{\prime} \mathrm{C}_{2}\right)$ contradict so that width 13 is impossible. For width 14 the 7 of $\mathrm{C}_{1}$ is to be followed by 21 . The pair $13 \rightarrow 21$ in $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ implies $13 \rightarrow 21$ in ( $\left.\mathrm{C}_{1}{ }^{\prime} \mathrm{C}_{2}\right)$. This is impossible since 13 in $\mathrm{C}_{1}^{\prime}$ cannot be placed over 21 of $\mathrm{C}_{2}$ or under 14 of $\mathrm{C}_{0}$ and still allow for a proper arrangement of $\mathrm{C}_{1}$; therefore width 14 is impossible. Similar results will be found for the remaining widths. ${ }^{1}$

The third possibility for $\mathrm{C}_{1}{ }^{\prime}$ yields the following set-up:

[^5]

In order for 23 in $\mathrm{C}_{1}$ to be under 3 of $\mathrm{C}_{0}$, the key for $\mathrm{C}_{1}$ must be at least 8 letters wide. Let us again indicate the number of long and short columns pertaining to each possible width.

| Width of <br> key | Long and short <br> columns |
| :---: | :---: |
| 8 | $5-5,3-4$ |
| 9 | $1-5,8-4$ |
| 10 | $7-4,3-3$ |
| 11 | $4-4,7-3$ |
| 12 | $1-4,11-3$ |
| 13 | $11-3,2-2$ |
| 14 | $9-3,5-2$ |
| 15 | $7-3,8-2$ |
| 16 | $5-3,11-2$ |
| 17 | $3-3,14-2$ |
| 18 | $1-3,17-2$ |

Widths 8 and 9 are impossible since 16 of $\mathrm{C}_{1}$ cannot be fitted in any arrangement of columns of length 5 and 4. Width 10 is impossible since for 7 of $\mathrm{C}_{1}$ to be under 13 of $\mathrm{C}_{0}$ the first four columns of $\mathrm{C}_{1}$ must be long and 16 of $\mathrm{C}_{1}$ cannot be the last of a column (under 8 of $\mathrm{C}_{0}$ ). Similar contradictions will be found for the other possibilities.?

The fourth possibility for $\mathrm{C}_{1}$ yields the following set-up:


[^6]REF ID:A57071

23
For 23 of $C_{1}$ to be under 4 of $C_{0}$, the key for $C_{1}$ must be at least 6 letters long. For a width 6 there are 5 columns of 6 letters and 1 column of 7 letters. It is possible to fit 7 of $\mathrm{C}_{1}$ under 14 of $\mathrm{C}_{0}$ since $2 \times 6=12$ ( 7 is the second of a column). If the key for $\mathrm{C}_{1}$ is 6 letters long, then $\mathrm{C}_{1}$ must begin with 5-11-17-23-29-35. This means that 29 of $\mathrm{C}_{1}$ is under 05 of $\mathrm{C}_{0}$ and therefore 05 of $\mathrm{C}_{1}{ }^{\prime}$ over 29 of $\mathrm{C}_{2}$. For a key of width 6 for $\mathrm{C}_{1}$, having the positions in $\mathrm{C}_{1}$ of one of the numbers of each column, we can fit in all of $\mathrm{C}_{1}$. If this is done we get the following:

$$
\begin{array}{llllllllllllllllllllll}
\mathrm{C}_{0} \ldots \ldots & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\mathrm{C}_{1} \ldots & 05 & 11 & 17 & 23 & 29 & 35 & 04 & 10 & 16 & 22 & 28 & 34 & 01 & 07 & 13 & 19 & 25 & 31 & 37 & 06 \\
\mathrm{C}_{1} \ldots & 04 & 09 & 14 & 19 & 24 & 29 & 34 & 05 & 10 & 15 & 20 & 25 & 30 & 35 & & & & & & \\
\mathrm{C}_{2} \ldots & 23 & 16 & 07 & 37 & 30 & 20 & 15 & 29 & 22 & 13 & 06 & 36 & 26 & 21 & 17 & 10 & 01 & 31 & 24 & 14 \\
\mathrm{C}_{0} \ldots & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & & & \\
\mathrm{C}_{1} \ldots & 12 & 18 & 24 & 30 & 36 & 02 & 08 & 14 & 20 & 26 & 32 & 03 & 09 & 15 & 21 & 27 & 33 & & \\
\mathrm{C}_{1} \ldots \ldots & & & & & & & & & & & & & & & & & & & \\
\mathrm{C}_{2} \ldots \ldots & 09 & 05 & 35 & 28 & 19 & 12 & 02 & 32 & 27 & 11 & 04 & 34 & 25 & 18 & 08 & 03 & 33 & &
\end{array}
$$

Figure 37
-We find a check in that $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{1}{ }^{\prime} \mathrm{C}_{2}\right)$ both show 10-22. Apparently, we are on the right track. The rest is, of course, simple, just a question of combining the proper pairs in $\mathrm{C}_{1}{ }^{\prime} \mathrm{C}_{2}$ according to those of $\mathrm{C}_{0} \mathrm{C}_{1}$.

The final result is as follows:

$$
\begin{array}{lllllllllllllllllllllll}
\mathrm{C}_{0} \ldots \ldots & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\mathrm{C}_{1} \ldots \ldots & 05 & 11 & 17 & 23 & 29 & 35 & 04 & 10 & 16 & 22 & 28 & 34 & 01 & 07 & 13 & 19 & 25 & 31 & 37 & 06 \\
\mathrm{C}_{1} & 04 & 09 & 14 & 19 & 24 & 29 & 34 & 05 & 10 & 15 & 20 & 25 & 30 & 35 & 03 & 08 & 13 & 18 & 23 & 28 \\
\mathrm{C}_{2} \ldots & 23 & 16 & 07 & 37 & 30 & 20 & 15 & 29 & 22 & 13 & 06 & 36 & 26 & 21 & 17 & 10 & 01 & 31 & 24 & 14 \\
\mathrm{C}_{0} \ldots & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & & & \\
\mathrm{C}_{1} \ldots & 12 & 18 & 24 & 30 & 36 & 02 & 08 & 14 & 20 & 26 & 32 & 03 & 09 & 15 & 21 & 27 & 33 & & \\
\mathrm{C}_{1} \ldots \ldots & 33 & 01 & 06 & 11 & 16 & 21 & 26 & 31 & 36 & 02 & 07 & 12 & 17 & 22 & 27 & 32 & 37 & & \\
\mathrm{C}_{2} \ldots & 09 & 05 & 35 & 28 & 19 & 12 & 02 & 32 & 27 & 11 & 04 & 34 & 25 & 18 & 08 & 03 & 33 & &
\end{array}
$$

Figure 38
From $C_{1}$ we find the first key to be $\left\{\begin{array}{l}3-5-6-2-1-4 \\ 1-2-3-4-5-6\end{array}\right\}$ and from $C_{1}{ }^{\prime}$ the second key to be $\left\{\begin{array}{l}4-5-3-1-2 \\ 1-2-3-4-5\end{array}\right.$.

It is thus seen that there exists no radical difference in the procedure when the keys are different from that when the keys are the same.

No further illustrative examples will be given.

## APPENDIX

1. Given that the width of the transposition rectangle is 8 columds and that the phrase JAPANESE NEGOTIATIONS is in the cryptogram, solve the following and reconstruct the key:

REIOHEOATTSWRSESSCWPSOLPI ESLRNIARNO HSCUEAOAELETNUY TEEBSOATLI NAINHTAAGNTEDGI T L.L C G
2. Solve and reconstruct the key for the following cryptogram which is enciphered by a completely filled rectangle and contains the phrase NO DIVISIONS ARE:

| NOIAN SBEKROEIODEIOEHTRRVT <br> NOINN TINAT-ROSNWSNKNN NVOIE <br> ISRIO EADSO SHLER POEARWE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

3. Solve and reconstruct the key for the following, enciphered with a rectangle of 9 columns:

4. Both the following messages were enciphered by completely filled rectangles and both are in the same key. Solve them and reconstruct the key:

5. The following rum-runner messages have been partly reconstructed by anagramming. The enciphering rectangle is incompletely filled. Complete the solution and reconstruct the key:
(1)

EDEI RBFT SEVOTXAT DNAXEPPU DOGOSIYONCSGEMERWILIEWRR IANE OUXL MAES
(2)

OMEHSERLSUCOEXAUTFLXWFRY SENTRCBUPHYA OTDORNAPFCUE TEEEBTXSNEIL
(1) WILLBEONPOSITIONWEDNESD.AYATFOURPM
(2) CHASEDOFFBYCUTTERIMPOSSIBLERETURM
6. Given the width of rectangle as 7 columne, and the known text TOMORROW, solve the following:

TTOIR OTTEOAFNHPEORLTGOJPR
EYIEWIOETNMCTTTMNRPCLEWOM
LHBETREIREOSSN
7. Given the width of rectangle as 7 columns, solve the following:

$$
\begin{aligned}
& \text { GOHUP IAROT PODAU SOIXR RECRA } \\
& \text { VYURA LTBON NATOO FMNRT RT }
\end{aligned}
$$

8. The following three messages with different keys are intercepts of rum-runner traffic. Solve the mesisages and reconstruct the numerical and the literal keys.. X's were used as nulls to make the total number of letters a multiple of four.
(1)

DEC 26, 1932 CHAS EDWARDS FROM BELIZE CK 10.
HGLTIGTIHTEEHTHRYGODNIOG
CNUTEXIITEAYVFEX
(2)

MAR 20, 1933 BELIZE FROM NEW ORLEANS CK 28
RNTIRNYHSLEEXVENUVOTERMC PTUEEDIOECMTOAHEVRPINTXW REDY JLEENATEROAI MUVNSPTS SEODIIYW FEAOVTEFHIOEGGTI RUTI FHUOXYETBOFI
(3)

APR 8, 1933 BELIZE AND NEW ORLEANS FROM CORAZEL CK 22 ENDS MKSN OUODREIXGYTI OEAV LTARYHTETEIZTXGD DNTBHRAH CTEEPUIA RRIREXNR GUNS LTOO ICEO IRGANEEE UNIC


[^0]:    ${ }^{1}$ By a column of $C_{1}$, we shall understand a sequence of numbers which come from a column of the transposition rectangle.

[^1]:    ${ }^{1}$ It is advisable that the reader himself carry out the steps outlined, writing the cipher message and $\mathrm{C}_{0}$ in ink and $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ in pencil, to allow erasures.

[^2]:    ${ }_{1}$ Because of the assumption that $44 \rightarrow 1$ in $\left(\mathrm{C}_{0} \mathrm{C}_{1}\right)$.

[^3]:    ${ }_{1}$ It is advisable that the reader himself carry out the steps outlined, writing the cipher message and $\mathrm{C}_{0}$ in ink and $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ in pencil, to allow erasures.

[^4]:    ${ }^{1}$ More than one message can be employed, since an assumption as to position of numbers and length of columns in one message, imposes a definite position in the others.

[^5]:    ${ }^{1}$ It is suggested that the reader carry out the details omitted.

[^6]:    ${ }^{2}$ See note, p. 21.

