REF ID:A60198
 GQPNFMENYFAI

ARMY FXTEENSION GOURSES

sUBCCURSE
mIIITARY CZYPTANALYSLE, PART LII
SIMPLコ TYPES OF APERLORIC SUESTITUTICN SYETEM
193s-39
(Tntraduction and Largoa 1)

 F
 F
 of DOD Directive 5200.1 dated 8 July 1957, and by authority of the Director, National Security Agency.

ARMI EXTFNSION COURSES

Subcourse-Military Cryptanalysis, Part III
Simple Types of Aperioaic Substitution Systems

Introduction

Purpose and Scope:

The purpose of this subcourse is to teach the methods of analysis of aome of the more simple varieties of apericdic substitution systems. To a lesser degree it is intended also to devolop the student's ability to ascertain, by cryptanalytic methods, the gonoral system upon which a cryptogram that is to be solvod is based.

The scope of the subcourse is: Kore compres types of polyalphabetic substitution systume; auto-ker syft.mas; interrupted, variable, and non-periodic key systens; systems emoloying lengthy keying sequences.

Number of Lessons and Approximete Time Required:
This subcourse consists of 32 lessons aach oi which will probably require approximately 5 hours of work by the average student.

The time indicated above ic only an estimate and should be considered merely as a guide. It does not in any way limit the time that may be devoted to each lesson or to the subcoursc as a whole. No further mention of the time required will be made in the lesson assignments.

Texts Required:

Military Cryptanalysis, Part III, Aperiodic Substitution Systems, 1938, as prepared under the direction of tho Chief Signal Officer.

Materials Required:

Since only the usual cross-suction paper and frequency table forms will be required, no further mention of these itums will be made in the lesson assignments.

Special Instructions and Information:

Each lesson assigmont has a maximum welght of 100. So far as practicable, detsiied work sheots which ususily form a part of the solution should be subnitted sith the solutione. Thuy will be returned to the student for file or further study. DO INOT REIURN TIIE LESSON

Militery Cryptanalysis-Part III, 1-p.1, 1938.

REF ID:A60198

SHEETS UNLESS WORK IS SHOWN THEREN. In a.LI cases show the primary components and keys from which derived.

It is essential that the sludent first raad the entire text before attempting to solve any of the problems. This will give hir a general background of all the principles and methods covered in the subcourse and will materially assist in the solution of the spocific problems in the various lessons. Of course, further study of specific portions of the text will be necessary but the student will have to use his orn judgment in this regard. No toxt assignment will be indicatod as specifically applicable to any lesson. Nor will the subject-matter to be covered by each lesson bu indicated, as is usually the case in these subenurses, the purpose being to give the student a little oractice in ascertojnjng, by cryptanelytic methods, the cryplogr phic systeri involved in a cryptogram to be solved. of course, no lesson contains a problum involving principles beyond the scope of this and the procedine two texts in cryptanalysis.

The student is urged to apply the ininciples explianed in the text in solving the problews, even though solutious may be obtained in some cases by other meanc. Only by unteretanding each principle in turn will progressive result: be obtained.

A guiding principle in the solution of any problem stould be: ALWAYE TRY THE SIMPLEST THING FIRST.

The text of all ressagos will be military unless otherwise stated.

LESSCN ASSIGNULNE
SUBCOURSE - Military Gryptanalysis, Port III
I.ESSON - I

Weight:

15 İ. Solvo the following mossage: RFCEBUZMUENG:GA PGILAKLSZDKMNMT
 KKJGXTBGTC\&DZQ心

5
b. What is the keyword for the messege?

Military Cryptanalysie-Purt ILI, 1-g.2, 19³.

REF ID:A60198

 cey:
No. 1.

 LPTIBKT\&HUTAYTAJサRZDERITQDGEWM MSGUXKYPRSARJSUOZTGUKUZGAEDIXM ITLWIGZKBABJCGTGTAMEYACWRALAAम ZMVLMFGDGASEAGHITLCK JZHLMKGZFG SFMESEXXLCVHPMPBNEBZESSIBGWGMS AIZOWEAZRSNHJMTSGSECKDHSGHVFZV FMEGZEKEEVKKDAGEEAAEVIXHBZGNLZ NEJ悬EESOKDHSCH

$$
\text { Ro. } 2
$$

MGWHPLBZRGBIEGVGEMWYBJCGPRXQA

2. Solve the following cryptogram, in which the text, has been allowed to remain in its bonailide word lengths: NPMESSEVZAXMPECENGQANTJOLABMYK VKVKJJZODZ I AK V B FBEIEBAFIX JUXMGENTSBGTFPPBDDRECE QSBEBPVEKE EJVJZDJXTBLEUEUFZZPSJFSOD
 3a. Sclve the following anumpene rhich ore in the sme

3b. What relatica, if anf, con you find between Problem 2 and 3a?

Military Cryptanalysis-Part IIL, 1.p.3, 1938.

REF ID:A60198

Weight:

5 3c. The following cryntogr:ma was sent later on the same day by the same headquarters thet scnt the one given in Problem 3a. Solve i.t.

HSONSAENGRKSUBYANYOYWZEHMBPNZR AXNDQDGXXX

REF ID:A60198

ARMI EXTIENSION COUPSES
LESSON ASSIGNMENT

SUBCOURSE - Military Cryptanalysis, Part III.
LESSON - 2

CORRECTION

Problem 3 should read - "The enemy is usinc the word-length keying system exemplified in Problem 2, but the primary components are differently mixed sequences. The letter Z_{p} is employed as word separator. The following message has been intercepted. Solve it, reconstruct the primary component and the key for the message."

REF ID:A60198

ARMY EXTENSION COURSES
LESEON ASSTGNYENT

```
SUBCOURSE -. Military Cryptanalysis, Part III
LESSON - 2
```


Weight:

1. Accompanying this lesson sheel is a paper entitled "Instructions relative to a cryptographic system originated by Mr. X." These instructions lescribe one of the many systems submitted to the War Depertment for consideration for military use. the description is in the "inventor's" own language and includes one sample nessage, the key for which he gives, and one test messuge concerning which he says: "As I ajone know the key words of the message below, it should prove a good excmple to tost the efficiency of my cipher." You are to solve his test, message.
2. The following has been enciphered by means of a disk similar to the obsolete U.S. Army disk except thet both primary components are the same mixed sequence, proceeding in the same direction. The successive plain-text words are enciphered by successive keyletters of a keyrord. Solve the message, reconstruct the primnry component and find the keyword for the message.

A.	1	2	3	4	5
	ANCKG	EHWY J	EFV!	\& OVDW	P BNFN
B.	L U Z I U	RWRPO	I2 $\mathrm{Q}_{\text {V }} \mathrm{N}$	İ V B L	MKQ K Y
C	W R K 6 B	D J D BL	Y J J N I	ATEJD	2DVQZ
D.	L X Z P U	M NA FI	MEYJA	RPOZ	B BYKU
E.	OTTM G Q	DKBUI	£ Y J E J	Y Q DVV	FDGQS
	GKGIG	DCPBU	V G I H J	MUOZG	JsOKB
G.	Q EOMZ	Oท D V 7	K K L J N	7 A E DP	EQOGK
H.	UPBUV	GIOIR	J $\mathrm{m}_{2} \mathrm{~V} \mathrm{~V}$	MBMGF	NNHL
	X ¢ D V W			V $\because . J$ D 0	DOPQS

Military Cryptanalysis-Part III, 2-p.].,1932.
2. Continueü:

L. SIWTBLYJEEDGVWQ ZLVUUPPNXA
M. QNLUB IPLMO IZYVTMVGWL JDCWY
N. NBLGK TYXCKEWEKFUQZDFI

40 3. The enemy is using the word-length keying system exemplified in Problem 2, but the primary components are differently mixed sequences, the lotter Z_{p} being employed for this purpose. The following message has been interccpted. Solve it, roconstruct the primary component and the key for the mossage.

B. ONNYS FMLUTILTFKVDDGZ QUSKAOYPDV C. XKVWNNPNOTHIYUFWBBAM DWWRLGCBMV D. CAQPN DPZGHGNGOGTKJHGFIVCZYSAEX E. XVHMGGXNDI RQTDTJJBKSNUDFPVZDXX

REF ID:A60198
"INSTRUCTIONS RELATIVE TO A CRYPIOCRAPHIC SYSTEM ORIGINATED BY MR. X"

Lay out the working form as follows:
(Material required: Pencil, Papur and Dividers.)

1. On stiff paper, scribe a circle 3 or 4 jnches in diameter. Divide the circle into 26 equal spacos.
Letter into these spaces the lettcrs of the alphabet, A to Z, pointing the base of the letwer toward the center of the circle.

Inside of the line of letters, nuaber the spaces 1 to 26 , starting with A.
Now cut out the circle and lay it aside.
2. Scribe anothor circle of same size, on another piece of paper.

Divide this into 26 divisions, with tre dividing marks on the outside of the periphery of the circle.
Into these spaces letter in the lotters arranged in a form specified in the following paragraph:
3. On a scrap of paper, set dow the Jetters of the alphabet. Under those letters, set down the proarranged secret key word or sentence. (In enciphering the enclosed message, I used GIMPY FURBETOW.)
Cancel out of the full alphabet all of the letters contained in the key word.
Now set down the first letter of the key, and follow it with the first letter remaining uncanceiled in the alphabet. Then the second letter of the lrej, Followed bre the second remaining uncancelled lettel in tic alphiket above. Continue until all the letters have been used in loti. Excmple:

GIMPYPUIBELOW
GAICMDPHYJFKUNRQBSETLTOXWZ
Now, keeping a near the top, letter into the spaces, from left to right, the letters formed by the combination above. (It will be found easier to read if the leiters are inserted with the bases all pointing toward the bottom of the sheet of paper. The sheet of paper doos not move, as is the case with the circular out-put.)

You are now ready to start to encipher.
4. Place cut-out circle on top of circlo on sheet, pinning at centers so the cut-out will revolve and the respectivc letters of each circle will match up.

A
Set the space 1 on the rotating circle opposite A on the stationary circle.

Military Cryptanalysis-Part III, 2-p.3,1938.

REF ID: A60198

Now move the rotating circle (top) to the left as many spaces as the date of the month. (In the sample message it is the 6th.)
Moving the top of the circle to the left progrosses up in numbers and toward Z in the alphabet.

A
This brings us to $\underset{7}{G}$, from which point we encipher our first word of our sample message, the rotating circle bcing used for the regular word, and the code word being derived from the stationary or outer circle.

When the word is finished, add the code letter for Z.
Now movo tho rotating circle ahead (top to left) as many spaces as there were letters in the word iumediately preceding, not including the added Z.
(In dividing cryptographic messages into lettor groups of five, the addition of the letter Z to cach word mininizes possibility of error in deciphering. Also the wrords ending in Z are very few, and in ZZ, none. If such an ending were oncountered in forcign proper nomes, the instances would be so rarc $2 s$ to moke the verification of same necessary.)

A
In the message datod August 6 th, we start at G, and our first word KUMPE will encipher DQHIZJ. RHoving five spaces ahead brings us to A I, and COLONEL becomes EMAMCLAQ. Grouned inte fives, we have DQHFZ 12
LEMAM CLAQ etc. Note that E was Z in Kumpe, but is L in Colcnel.
And so the enciphering process continues until the message is completed.
5. DECIPHERING is simply a reversal of the foregoing.

The receiving operator luilds up his daily layout along the identical lines employed by the sending cperator.
6. The key word, words or sentence may be made up of a thousand different combinations of 13 lcttors.

The key word for tomorrow, or next changing date, can also be incorporated in any regularily ciphercd message with safcty.

Military Cryptanalysis-Part III, 2-p.4, 1938.

August 6th, 1930.

3
4
5
A. DQHFZLEMAMCLAQASQOJLYDSLE
B. VIWATPRIBXXVTVZFBWQJFZPX
C. AORZYXQBFHNTNPZHJKOXSORZA
D. WNMURIJRPI LIYPAYJIIOEFGCB
E. $S Q B E L A T B C B Q K L V B S A P C X A B N Q C$
F. GNVTUQAXIQYXCIRPESJUVBOCM
G. QRVAP TVTMMAJAMAUSEZNFDVAVO
H. HQIJARDBQOZFJBRSICHO IANKL
I. $X D Q K R K Q C L A T G C Z P W I X H K W E Q$
J. KXGGN AWXOU NOKNY

As I alone know the key words of the message below, it should prove a good example to test the efficiency of my cipher. Exactly following the layout of the other one, and enciphered by employing the same system, it may givo the "enemy" something to do to decipher it.

TEST MESSAGE

August 5th, 1930.

1	2	3	4	5

A. VFUYOXNEOWXNLDYAQWXYYIPZQ

C. KALTN ZHGHS FZVJ「EOJUGUSOZB
D. JUYYQJKOVBTWJPIEQPALSREHM
E. SNHSRYYUMA QKAPOXHLIZ ZCHVM

REF ID:A60198

LESSON ASSIGMMEIT SHEET

SUBCOURSE - Military Cryptanalysis, Part III
LESSON - 3

Weight:

8 la. Solve the following cryptugram: AXKBY LBLXKLGBJOBYXQXKRVGECUCUO PHQDQ DYUGXKLVAX KJGDDMDFQRYXEJY ZRZZD DERZYZVVFM GJVUZ Y WJPL BNMOK Z D Q
b. What is the keyword and how does it control the shirting of the primary components?

Ra. Solve the following cryptogram:
XJHFEUGRBBITLRNFYQRYIJSZGGFJZB QWVRQWCQRQ JMUJTWFDSIWAMPLOL
b. What is the keyword-and how does it control the shisting of the primary components?

30
3a. Solve the following crjptogram:
$Z S I I F Q V Z O R V S Q Q X U T Y V I \quad B R A A X H X Y C R$ IECNM FBHCDGRYZAYMLEMYZAUCMYJZB KLLZSIJFQYZOKVSQSTCPGMCXHECZCD CRIYI BDTKGYBOCYEXBDYCFBUVYUWVQ
 HCRDCNBYTJXAUUNLGNWLKOLEMYZAMZ SQRDZRPVRIUBDUNPTDFBBIQTHBDSRU IDYCHURRZSDHEBDUSIDTMYUDTjXRDVZ RULUBPZYBOGUVSX KXGYQXBVYCXBQBI S D

Military Cryptanalysis-Part III, 3-p.1,193s.

REF ID:A60198

Weight:
10
b. Having found the primary components, solve the following cryptogram which is enciphered according to the same system but with a differont key.

CWIEQ GEROMVSQPVMMOXXDUHEDGKEWG UKFQZ RVSQAVGUUVOPCGDSMJHOKJRDO QXBSDRORVGBICMVIEKYOEEJBI

30 4a. The cnemy is using the syritom exemplified by Problem 3aThe primary components and the injord change every day. From cryptanalytic work on his provicha traftic it has been noted that three stations in a cortain radio net alweys begin their messages with the enciphered serial number of tho uessage. (Example: N UMBERTWELVNX) The last decioberod messeges orchanged among those particular stotions wore found to begin with the serial numbers shown bulow:

From Station	To Stetiun	Serial No.
	A	B

The next day the following were the first cryptograms to be intercepted between the stations indicated. Solve the messages, ascertain the primary componunts and the daily keyword.

$$
\text { No. } 1
$$

From B to A
UHOKB DQFQEHUIAUIOUMUIFSDCOQGCC OYZFCIPHDBLZPBITCAEPBUIJKXGIUO Y

Military Cryptanklysis-Part III, 3-p.2, 1938.

REF ID:A60198

Weight:

No. 2
From C to Λ
UHOKBDPNBFENYPGAOCOUMIDBRWICOY SIPOX JGCPBLJHIG JOOCULIJMEAPBVV UHPO

No. 3
From A to C
UHOKBDZFMEHUIAI UOKZAHUHBOFHRDO

4b. What principal lesson does this particular problem teach you as a cryptograrhor? As a craptionalist?

ARMY EXTENSION COURSES
Subcourse-Military Cryptanalysis, Part III, Aperjodic Suistitution Systems.

LESSON ASSIGNAENT

SUBCOURSE	$-\quad$ Military Cryptanalysis, Part III.
LESSON	-4

Weight:

30 la. Solve the beginnings of the 35 messages given in Paragraph 20 b of the text. A work-sheet ccpy is attached.

1

3

1
35
2a. The thirty-five messages just solved were the traffic of the eighth of the month. The first message intercepted on the ninth is below. Solve the message and determine the key.
C. 0. 95th Infantry

JTKFLQUDLFIJRHR PMTOKWAHCBTGDHH LSOSRPKHTIXSDIFLUFRSZZSQVSFQHC SHJSBDZMKPEWIDMIXGCKX

Smith, Brigadier General
30
3. The following message was intercepted on the tenth of the month (the next succueding day after the message of 2 in this lesson). Solve the message and determine the key word.

PVESKWVHBPYIRISXHITHJZKUGUGLWZ ZSZPD JAVEAIECWHYYIJI ZVQHHMIAAM HKDHZ UZOTQLEUEGCEQWGEUUCX LUUXQ APMPXMVQHHMLXQJZQUKFRULLOLDPNM Military Cryptanalysis, Part III, 4-p.1, 1938.

REF ID:A60198

Weight:

MVXSVUQWOQVEVCHKKBBUMOFASSHGXP WVLSHKKDBLXOHQHEFJJCBUMFDBIKWV
 NDEVBPGOVQ HHMLROURDCDSKUW QWVNV XSVUEUDKRS

LESSON 4 - Problem 1

MESSAGES WORK SHEET.

(1) ZCTPZWZPEPZQX
(2) WTEQMXZSYSPRC
(3) TCRWCXTBHH
(4) EFKCSZRIHA
(5) YANCIHZNUW
(6) $V Z I E T I R R G X$
(7) HCQICKGUON
(8) $\mathrm{ZCFCL} \mathrm{X} R \mathrm{~K} \mathrm{Q} \mathrm{H}$
(9) HWMPTEWCIMJS
(10) EPDOZCLIK J J
(11) $W T S S Q Z P Z I E T$
(12) ZCGGYFCSBG
(13) CWZAOOEMHWTP
(14) CIYGIFBDTVX
(15) EAQDRDNSRCAPDT
(16) Y FWCQQBZCWC
(17) WTEZQSKUHC
(18) ZCVXQZKZYDWLK
(19) AFEOJTDTIT
(20) KPVFQWPKTPV
(21) $Z A B G R T X P U Q X$
(22) YHEOCUHMDT
(23) CLCPZIKOTH
(24) AFIWWZQMDT
(25) ZCWAPMBSAWL
(26) HFIMHRZNAPECEI
(27) CI, ZGEMKZTO
(2.8) IPYFKOTIZUH
(29) $\mathrm{C} C \mathrm{CPSNEOPHDYL}$
(30) CJIGIFTSYTLE
(31) I TSVWVDGHPGUZ
(32) NOCAIFBJBLGHY
(33) XXXPIFEGJI
(34) ZCTMMBZJOO
(35) HCQIWSYSBPHCZV

REF ID:A60198

ARMI EXTENSION COURSES
LISSSON ASSIGNMENT SHEET

| SUBCOURSE | - Military Cryptanalysis, Part III |
| :--- | :--- | :--- |
| LESSON | $-\quad 5$ |

Weight:
10 1. Solve the followj.ng:
KGGLN GSAHZOKKTA §HWSEDYQZVEAIXG NJGFBIMIERFMDPRPIOYVOOBYXXGVHI GPBPWAMTMENUNDPWPYUQQE

HOTE: ADDITIONAI IESSAGEG, IF FO'JND NECESGARY, WILL BE GIVEN UPOE: REQUEST.

30 2. The following are the bcginnings of 45 military-text messages. Solve them, reconstruct the primary components, and briofly describe the system of encipherment employed. Submit the beginnings of the first 5 messages only.

1. SCOPAKFRUC GIMJV
2. FHTGMGYHKGQGNIC
3. SRLENTRCTRARUBW
4. VLRENMLUTJ DQEXO
5. LZVSI EOOAT GUNVT
6. HYLVDAOTEXWWTAT
7. YOQNMPDQBQYIZUA
8. Z 0 WKXRKI K R K KKCJ
9. CGUQVRBHOS SXOXK
10. $\operatorname{SRRKMALWZJAKKMX}$
11. C Λ UEJ OTLEZVII JEU
12. CYUQN CHAXX UNRFA

Military Cryptanalysis, Part III, 5-p.1, 1938.

Weight:

13. UOISVROJFE JBRHI
14. NRIGF UWZPAHZCDT
15. YOKERHNSGZ OBACN
16. OYTYRDGCNEJQHNG
17. VBLSQ ZBDJQ IKPZV
18. THNPRBOEFLHXSKK
19. OYUKI RBWBE LJIMS
20. SRLMRQFYTSVVITQ
21. MHTCY DGYYJ VVEBZ
22. CMEEXEROXMQVVIT
23. SREIK DKQTVTSDKK
24. NORKGXIMIWEIZintin
25. YTBUMNIXYWVDYE
26. WT TGYCTLMY UIYMB
27. CWJYIHHJOIATSGT
28. YOPXI QKAQR WAMAH
29. $C M W Q G H Q A J F N Z R Z F$
30. $\operatorname{FTHQGRCENBEZEEF}$
31. TOTIFZTHUYRSOWJ
32. E Z VWNKPVOWKRLCR
33. TZWKD CTKOWTLKGZ
34. VBLSG NNJUO BUPXB
35. UZBNIKBFUI OZRDM
36. EZKVF UGGEGOUYQK
37. NRLWE HNPUTLAUYY

REF ID:A60198

Weight:
38. DORKFHKHIFMDHMJ
39. ZAIGTKQOOWOLIAW
40. CSJENVMZXDXMUXT

4土. EHWEVSEHEM QXWIV
42. OYBEX DOAYX FZWUL
43. YOTKITTKCPDATHD
44. ZLPYVCEDJSKESSH
45. YHUQIHNPZEWAUCI

50 3. Solve the following messages, which are all enciphered by the same primary components.

1	2	3	4	5

I.
A. TRSPGGKXGXGJCXZ IR1TKEVVLX
B. LYLLY DXZZP if im HZXLNGQ JTXYL
C. BPYMVZBQBB FUVVASYSBNVSPPM

E. HJAUP UNSDL CLJ ADKXXHGFZCNS
F. BAUVGHPTFU MKKEMXGEXX
II.
G. ZSOPPRKYNPGDUNS HALIPPQHD
H. WXYLB PVWGCBTTGDVABMWDCGYD
J. XDBQUTQUJUDTPWTNGMHQSSFSK
K. SRMHJOFQWRKRRMWUEIGJNHYEG
L. JJESHBHQXEAKKHNYMHBX

Military Cryptanalysis, Part I[I, 5-p.3, 1938.

Weight:

III.

B. HJFQXZNTBTBMiTSHCYBSKONEOR
C. $\mathrm{F} N \mathrm{~N}$ ED HRYEE
IV.
D. ZJDOM HNDKWGYGLCBSKOXHJYBE

F. FVETJYNSKM HJVPIKPWDCWXXXX
V.
G. TKKLSGDCWGDOFVA UTWSDSOBGE
H. HCMSVEVVSXPVWRRGGLRREDWSQ VI.
J. JUZPC GGHGGALIRGGTNPWJTFIZ
K. CFFZIBLQZDVUUVVVHCBGBBFMS
L. CCTBFMXXXX
VII.
M. VVWJK GRLKSERZIr GWEAQXCTSO

IN. VIBIJ YYXXX
VIII.
O. SEPBOZRNVDYEHHBCRRNKACYFW P. $P R K C I I R X E T Y X I X X$ IX.
Q. EIHTXGLRQZSSACBXTTLCRFUVX
R. GLZLRKMWPX TZJFXMQSFUAPEIE
S. EHNGTEEDZJUSDDK FVOMMJJXX

Military Cryptanalysis, Part III, 5-p.4, 1938.
X.
A. LIIWT QIEAP QQEAOLLLIYUUHXX B. AOZTUNNSDQXEGHJPOKVZTOYHQ C. JAQJXRGHABEEXXX
XI.
D. UBHZI YKVNOKXCAT OYKSBXDRNG
E. YHHPPGGLYQ JXYYJTXIGHABEEA
F. QLFFV VWPUZKKXXY

10 4. The following message wiss intercapted on the same day as that on which those in Problum 3 vurc intercopted. This message uses an introductury koy of muknow length (but is of several letters). Solve the cryltogram.

NUUBK OCiVVSQIXYMPAIQGBMRT SPYCJVESFO

SUBCOURSE	Military Cryptanalysis, Part III
LESSON	-6

Weight:

1. Solve the following message:

KXIVNIYBSLNKVVHBXETIVQZFNXAMZT ZQDQIDBEEUDMLSMZFJTYVA.FNZ:
2. Solve the following message:
1
2
3
4
5
6
A. NCEISGVSUKJXCHJIIHIBFHKVDEAIJR B. IVZGJ DKVHQRMHGHYZCNGKDJCSIFHIB
C. ї HKVCKOAYV JDZVFCFGOZBFVBBSKOAG
D. FCJKVHQRMENWUGJZPBBTDJZBTJBEOZ
E. COXSUEFPXVQPEXROFFGBFVBBRXEERC
F. IGTCYGPOLH CDEBUOPHEYGPKOQ VJBBR
G. XAEWMWYBQFSOCBYCZNEJKFCBFVBBRX

H, EAEJRRGPJZJFIVHFCGVGCEYBRZVTCP
I. EHJTMBDJZM HUMEEDDSFJLEZGSDHZJK
J. OAPPIECXSGMHQZYHFNDJZMHUT JBJFX
K. CXTWD DQQWI FYTVDICVNGXCRVLSIKOC
L. AJKIPQREXX 巴IIAK WSIBOEFCTCXSURI
M. HCDEB UFEZN HFGKQ DDJZMHSREKZHCVJ
N. IFHMQ LHGJREBVQPJECZNEJKFCBFVBB
O. SKOAYAHEOD HOOFHGMISCZNTJUGCZBF

Weight:

$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$
A. VBBXDJZMHTSTJYTZDVEKYBRQQAGOZI B. PDSOAXBFCRYVEFCVVQISKBSKOKXYPW
3. The following message was the reply to that in Problem 2. Solve it.
$V A L I B A \nabla P J X A H E O D H O O F H G M I S E B H Q X D$ HCVPVTHTPRYJ

REF ID:A60198

ARMY EXTENSION CUURSES

LESSON ASSIGNMENT SHEET

```
SUBCOURSE - Military Cryptanalysis, Part III
LESSON - 7
```


Weight:

la. The following represent the beginnings of 20 cryptograms enciphered by means of the obsolete U. S. Army disk with a running key. All the messages begin at the same point in the key. Solve the first two groups of each message.

2. ZOCAGEKAAB HNDMZ PMWVW
3. D X Y CPE JLER HNKGE Z I Z DK
4. OBISVGMJSI QGMEZCNDWG
5. BKXQGPMTHRHMHEHATKWR
6. ZHVAP HMLZTWWNRA FWGBF
7. OOKXBEKLEC FQPSS GYKXO
8. BKWKP QTTERHLTQFEWKBG
9. $N X I M M P V Q E E P I T T H C X Z D K$
10. WHIRXABTWPGAKAH LXTKH
11. $A K Z B C E I R N G C X S O M W O R$
12. AKRAGPFZKP WBBNZ LQDKT
13. $B K G K I V Q R B D N G E Z I N B S C$
14. $Z H V Q Z C F Q Y A O X X R K N U V O Z$
15. BKHACEZCOVTKKNS QTABW

16。 BKUACNIEGHNRTLKFOSGZ
17. DXIPTRILETOLBCITIABG

Military Cryptanalysis, Part III, 7-p.1, 1938.

b. What are the first 15 letters of the running-key text?
2. The following was enciphered by the same means as above, with a different running key. The running key is presumed to have been taken from an ordinary book in English. Circumstances surrounding the transmission of the message suggest the presence of one of the words BATTALION, BAGGAGE, and UNLOAD in the plain text. Solve the message and reconstruct the running key.
 B. OMEQKFUSBMAKYLPOWYVD JFITO
 D. VAMZCFISCXNPBGKWTAOA RZBDR E. EHARH

REF ID:A60198

ARMY EXTENSION COURSES
LESSON ASSIGNMENT SHEET

```
SUBCOURSE - Military Cryptanalysis, Part III
LESSON - 8
```

Weight:
100

1. Solve the following messages, all intercepted on the same date. Prisoners state that the enemy is using a cipher machine, but nothing is known about its operation.

MESSAGE NO. 1
RXOWZ UZULIKTOGDFCJTGFMKLR REAVHJVSMAYtIZGAAFWGEHNCC ACYAE EDGPA IJNQTTGTXLKYBEO HJQQS DPPKGHUNRS UQIRKMOUPJ MCTYVWOTXDSCXCKXCPRACXXXX MESSAGE NO. 2

IWKWXYOKCFSONSFESRFVONZKU NDYAZ MZHNC CACYA

MESSAGE NO. 3
WLWTLOHCHNMQRYONDXJYJGUVG QCJSI OOZDVVMBMY DASXHYCQOM LOTWR CEUZNVCNTPYQNJHTTZKN QGMSW RVPWRFWGAN CRDCTEJTGF PONMQ DEMBVDZKYNNRYCCAHIHY ZPONLOYTDGWRGAGOISGQDOHST IJLIFNNRWSIFQJI JJZKU DTWEW PXZUA QJAJSIOCRFKVMBMMIVKB

Weight:

MESSAGE NO. 3 (Continued)

Abstract

AFXNMJNHIZSYOZHNGZZMYAXT $F S D P G I I E Q A T Z X O V D Z I P L K I C V P$ NEIHK BPDK•V AVMPSPFHZRWKISC GRFFD FWBUAVMJRILOPDPXOXFX MESSAGE NO. 4

$R U J J N G O T F E I T H Q J P C C G Q W Z S E D$ HGWRYTICTVFXJTUMDARH

MESSAGE NO. 5
 SGDXPONBJLCSTJWGNDHGGSGIP BYUNV ZUTGR GCSJYXMNFZNPLIZ ARUVJVCPOPNQFXTRXSPXGSCXC K X C L V

MESSHGE NO. 6

 WWOXKTKZSYIYQCDPXQSVCAORX PMXES SLKODOBTYFFNFGAKNGTN

MESSAGE NO. 7
PGSAWOGTIQGBCUYIIPHFHVILG EDXSWAGIKUDTWTI JJTPK CXNKT

REF ID:A60198

Weight:

> | MESSAGE NO. 8 |
| :--- |
| ZUNXW KZTGC TWFDEKKIOL FTZTS |
| OUXXX |

```
SUBCOURSE - Military Cryptanalysis, Part III.
IESSON - 9
```

Weight:
85

1. The following three cryptograms have been enciphered by a cipher machine employing two primary components which are shifted according to a very long keying sequence. Each message starts at a different point in the kering sequence. For purposes of simplification, it will be stated that the starting points of Messages No. 2 and 3 are not more than 10 intervals forward or behind the starting point of Message No. 1. Find the proper points of superimposition of these cryptograms and show the actual and expected number of coincidences for the various superimpositions you try, using diagrams such as those given in the text and specifying in each test the messages and superimposition points involved.

No. 1
$\because K D G I O J T P L O S K W A P H U C B C J Y M C S V L W A H$ VZCQU HODCCRPNTXNADIH MJXKP PXCOT XUMTLHGWAH NPWQJPNTOMFZTAIFBJDH MBZVV CAUSY QSIKQ OPMUXXXUNTEFKYT NNSCJZNZCGCKORP ZUBSNTYEQLNZEWD $Z P Q Q V X N R B X S J A G A A A U G A Y W B D G Z F G M$ UBHDAWWWKIKFIEBGNFFEOOOILQLXED DNHAT JGGXJVUWZZ GAHKKUPJTUKXVFD VTMJN GWHZXGLOUOEUYMJWVWEXPUGGC LRJFPVRTMMQTGYCBAEHYCEKTQ CNXOS DNGFCWJRWCQCAPCSIEAS SXJLALLBJJ NZVZPZSJEVPZWTLRKQOUVWVPOOHIHE OPNMMAQIED LWJHDXTJHJZIODVETDEI Military Cryptanalysis, Part III, 9-p.l, 1938。

A ZPLGITPIH GSTDOGEGUPWLSMN DYFBY UKJFHVOZLVGYXNW IVRTFIUQHVXXUCZ $F L X Q W G Q I V V M C U H P \quad T B V L X C R V M O X X W O$ $G K B V Y X A B F R H Y E B U R O$

No. 2

$B P D I N I I J W L I U O U V H M K H I E Z G C U A N H S E$ KJASR JPZLX SNZIB WNBHP PHZXLKGSST NXJCA HJQEURUFJVYYEIGDZQUCHTBPK $K V L M W W R E I V D H \quad H O L B H U I E B D H K E C D Z P$ CIHSQ LPYFRPGTZFFAOPFBHQYTAMC DXNNXHFGWIYKHIIWXGOBECMXFKEMN
 JFVPGAEUOOAGRQK MQDDIUATVGSMMGG WTKWINGGEKMETJZ JOZXIXTOGZ CXTGH SZETJTZHMAVBFFTWCEOIYRTUOKYZGE MWHTEOZIPMASKCKOYXGYQKLOWNBDZB YRSEETBVOI LSHZCPZHSNRPZLVKMKNS QYUID ZLGIWXNGXH QNVYOKTAXOTNJFG NFFKY HZRSQ QCQCCPFKCZ BPRAX JAUME $H V S V N D J U C T L P H W D X M O Q D T U Q M H D F M H W$
 D UKXP

No. 3

CHUVO XBDBO CYMNL UQFUV RYQUM HUUAQ WRELFASRNVZUGSQVDXJK CXUFXIZDBU
 OXPGH JSZVT HZZNO YVIBZ LZAPZ ZTWUY $J E R O Q C Q L L F U W K A X Y W G D J \quad L W N Z W Z G T W O$ LWKMU CELCO JSQYVBHPCP PGWUQ HNVNQ CRVXZ OILNP DDANU DIIUQ LD Z DYY FX JWW CTRUO BFZZERBFIS ZXDBY RWINX LMWBT
 $T Y Q L G S J X W A K Z X H Z A E H V A W T K C L A D D W$ CYYCH OJVSE YOROO ZPVLBISZFL UOVMT NZABFTTMRK QPQHBENVZGYJAFDPHVF AIBPTKCSXYXNEXR PYYOUZIIUUCSOEK
 BWWVP CLNAV BZXNW UUXDGAENQIXXYJJ IOEOZULKYTBEGSFDQARR QVRDE
2. The primary components involved in the three cryptograms of Problem 1 are reversed standard alphabets. Solve the first few groups in each message. The text is strictly military and may be expected to contain such words as ARTILLERY, BATTALION, BRIGADE, etc.

REF ID:A60198

ARMY EXTENSION CUURSES
LESSUN ASSIGNAENT SHEET

SUBCOURSE - Military Cryptanalysis, Part III.
Lessun - 10

Weight:

40
la. Of the follnwing 10 frequency distributions the majority are monoalphabetic. Find them and indicate your answer by placing a check mark in the appropriate place in the diagram below.

(8) $\frac{2}{A B C D E F G H I J K L M M O P Q R S T U V W X Y Z}$

(10)

REF ID:A60198

" "Weight:

		Monoal phabetic		Non Monoalphabetic		DecisionSuspended
Distribution	Q	Surely	Probably			
1						
2						
3						
4						
5						
6						
7	-					
8						
9						
10						

b. Using the X-test, answer the following questions, showm ing the results of your calculations and presenting E summary of the reasoning which lead to your conclusions:

5 (1) Which distributions are monoalphabetic and which are not?

5
(2) How many different cipher alphabets are there in the distributions classified as monoalphabetic?

50 (3) Allocate the distributions to their respective cipher alphabets.

REF ID:A60198

ARMY EXTENSIUN CUURSES

LESSUN ASSIGNMENT SHETY
SUBCOURSE - Military Cryptanalysis, Part III.
LESSON - 11

Weight:
85
l. The enemy is using a cipher disk similar to the obsolete U. S. Army cipher disk but with two differently-mixed primary components which are changed every day. The method of using the device is to set the two sequences according to a prearranged initial position and step the revolvable disk one letter forward in a clockrise direction after the encipherment of every letter. The following message was intercepted at 8:00 Poli. and was the first message of a new day's traffic. Solve the message showing the solution of the first 25 letters of the message only. Reconstruct the primary components, determine the keywords upon which they are based and their initial juxtaposition.

NOTE: When you have decided how to go about solving this problem, open the accompanying envolope.

OBDZR DRUAJ PODBJ RYYD彐AOXYXWBWA: OQNEYFJVRMKHRLQPCQUOSLRXNEWWTE OUVZHNKAOA QFNQOUSJIFIDEGMEYMLU KGZFQ ZZWCBOZCQERNUXDTRANTYDVPW CMLYGIVBSDDTNXHHPAONSQAKJOIZPR MEWAS QBLJUMSVTSHMLKH QMSALVBZQL OMMLHISWHP MKLKGQEUCKJKHOGTHPMS PZVDH UDNLW HDHVI CITUXJZBKROISES ZQORLHHDHVDSKIMBNRBTYFNDEGMBYM LUKGLIZLKVXDZZX JQBOU UOMUX CSEN BFZBZSPMUDSORDJ CEWTLEDZYOEGUUE XWMFXVQJYANZTKQAKAXXJCXVUMVTDB

Military Cryptanalysis, Part III, 11-p.1, 1938.

REF ID:A60198

Weight:

$X R I Q E F X I C A \quad U Q E Z R Y K T Z K V Z D V D Q Y F P$ MMAOTIIMAWUZQNTXTHAVBINRIPWTBP LQPTK UAQQUZXNYYWYINVKPVEJSESZG
 PDHXFCKPDIDRLQUSIVEQSJTQPZGTPX LRQRMIICWI WGVPI QVEAAIKGCFAOAQO HJUYBUTFNSESZZKEUQFPAVRPEVBKTR GDWSJDBHPCTQTTACANSLDTDBVYCJYY HTSRPAERNUKPAYRDQPAKUOCITHGUYF ROOHI HFGZFIBFWGBWTBPOBDZRDRUEV

10 2. The foregoing message was one of many transmitted by onemy stations from 7:00 P.Me until 11:30 P.Me, 10 June. The: at 11: 45 P.Ma, 10 June, the messege labeled No。 1 below was iriercepted, after which all enemy stations were silent until 4:00 AoMa. 11 June, when tho single short message labolod No. 2 below was intercepted. Solve these two messages:

> No. 1
> $11: 45$ P.Me, 10 Juno.
(5) AGSUH HPRCSARAAKOIYEBITYHDRSARK
 NEAGISFUHGODHNLDLEOOQUCRXXYLFY MJWPJODF

No. 2
4:00 A.M., 11 June.
(5) BBIXJNYIVGEQVVOUPKCA

5
3. What important principle of cryptographic security doos Problem 2 teach?

Military Cryptanalysis, Part III, 11-p.2, 1938. OBDZRDRUAJPODBJRYYDRAOXYXW BKAZOQNEYFJVRMKHRLQPCQUOSL RXNEWWTEOUVZHNKAOAQFNQOUSJ. IFIDEGMBYMLUKGZFQZZWCBOZCQ ERNUXDTRANTYDVPWCMLYGIVBSD DTNXHHPAONSQAKJOIZPRMEWASQ BLJUMSVTSHMLKHQMSALVBZQLOM MLHISWHPNKLKGQEUCKJKHOGTHP MS PZVDHUDNLWHDHVICITUXJZBK ROISESZQORLHHDHVDSKIMBNRBU TFNDEGMBYMLUKGLIZLKVXDZZXJ QBOOUOMUXCSENNBFZBZSPMUDSO RDJCEWTEEDZYOTGUUEXWMFXVQJ Y $h \mathrm{~N} Z \mathrm{TK} \mathrm{Q}$ i $\mathrm{K} h \mathrm{XXJCXVUMVTDBXRIQ}$ EFXICAUQEZRYKTZKVZDVDQXYFP MMAOTIIMAWUZQNTXTHAVBINRIP WTBPLQPTKUAQQUZXNYYWYINVKP VEJSESZGTGUBCBLNFYNMPZDKL EXHZYADXRJPOPDHXFCKPDIDRLQ USIVEQSJTQPZGTPXLRQRMLICWI WGVPLQVEAAIKGGFAOAQOHJUYBU TFNSESZZKEUQFPAVRPEVBKTRGD WS JDBHPCTQ UTACANSLDTDBVYCJ YYHTSRPAERNUKPAYRDQPAKUOCI THGUYFROOHLHFGZFIBFWGBWTBP OBDZRDRUEVPLRHTKBKLURMJCKL ELHVY

Military Cryptanalysis, Part III, ll-p.la 1938.

. REF ID:A60198

PROBLEM 11 - CRYPTANALYSIS III
 FREQUENCY DISTRIBUTION TABLE

0	1	2	0	0	2	0	3	4	2	1	0	2	0	3	2	0	3	1	0	2	0	0	1	0	0	29
2	3	1	0	1	0	0	2	0	0	0	1	0	2	1	0	1	2	0	0	3	5	0	1	4	0	29
0	0	0	1	1	0	0	1	0	1	0	0	1	3	0	0	2	2	0	0	2	0	0	2	3	0	19
1	1	2	3	0	4	1	0	1	1	0	0	2	3	0	0	1	1	3	0	4	1	1	2	0	2	34
4	1	0	1	7	0	0	3	4	1	0	1	0	1	1	0	0	1	1	0	0	1	0	0	0	0	27
0	4	0	0	0	1	0	0	0	1	0	0	2	0	1	3	2	0	1	1	0	1	0	0	1	0	18
0	1	1	0	0	2	0	1	0	1	0	0	3	3	1	0	0	0	0	0	2	0	1	0	1	0	17
0	1	4	0	1	2	2	0	0	2	0	2	3	2	3	1	0	1	0	0	2	0	0	0	1	0	27
1	0	3	2	0	1	1	0	0	0	1	0	0	0	0	1	3	0	1	1	0	4	1	0	2	2	2
0	0	4	0	0	0	0	1	1	2	1	0	1	0	2	0	0	0	1	0	0	1	2	0	0	4	20
0	0	0	0	0	1	0	0	3	1	0	2	5	1	2	2	0	2	3	1	0	2	0	0	3	1	29
0	3	0	0	2	0	0	1	0	0	6	2	0	0	2	0	1	3	3	0	0	1	0	1	1	3	29
3	2	0	0	1	0	3	1	0	2	1	0	0	1	0	1	0	2	0	0	5	2	0	0	0	1	
0	0	6	0	0	0	1	0	1	3	1	0	1	3	0	2	1	0	0	1	1	0	3	0	0	0	
2	1	1	2	1	1	0	1	4	0	0	2	1	0	0	1	2	0	0	1	0	2	2	2	1	1	
0	0	1	2	0	0	4	1	0	0	4	0	1	2	2	0	0	1	1	3	1	1	0	0	0	5	29
1	0	0	0	0	4	1	2	0	2	0	3	2	1	1	0	1	0	5	0	0	3	1	0	1	4	
3	1	0	0	2	1	3	1	1	2	1	0	2	0	0	1	3	1	0	3	1	0	0	5	0	0	
0	3	0	3	2	4	1	0	1	0	2	0	0	0	0	0	2	1	0	1	0	0	0	0	5	0	
3	2	0	1	2	0	3	2	2	0	1	1	0	2	2	0	1	0	0	3	0	0	1	2	0	0	
1	0	0	3	1	0	1	4	0	2	4	3	0	1	0	2	2	0	0	1	1	0	4	1	0	2	
1	0	1	2	1	0	2	0	0	1	1	1	0	1	0	4	1	0	1	5	0	0	2	2	0	0	
3	0	0	0	1	3	0	0	0	1	0	1	0	0	0	1	0	0	0	4	0	0	2	0	1	1	
0	2	1	1	1	0	0	1	1	0	1	1	0	0	1	4	0	0	1	0	1	2	4	0	2	0	
2	1	0	0	3	0	0	0	3	0	0	3	0	0	0	1	1	2	2	1	1	0	0	4	0		
0	0	0	6	0	0	3	1	0	I	1	3	0	0	4	0	2	4	2	0	0	0	2	3	0	0	

Letters Arranged
According to Frequency

34	D	28	O T	22	
33	U	27	E	H	21
32	$\mathrm{Q} Z$	26	V	20	J
31	R	25	M S	19	C
30		24	I NXY	18	$\mathrm{~F} W$
29	A B K L P	23		17	G

Military Cryptanalysis, Part III, ll-pa2a, 1938.

REF ID:A60198

ARMY EXTENSION COURSES LESSON ASSIGNMENT SHEET

SUBCOURSE - Military Cryptanalysis, Part III.
LESSON - 12

DEFAILS OF SYSTEM

The enemy is using a cipher system (possibly a machine) concerning which the following information has been deduced from cryptanalytic work:
a. In general the system is like an ordinary repeatingkey cipher. It uses two differently-mixed primary components which slide against each other to produce a set of 26 secondary cipher alphabets. (The primary components are derived fron key-words, by key-number transposition, and the keywords change monthly.)
b. Each radio net is daily assigned a different messagekeyword for enoiphering messages within the net. These keywords vary from 5 to 20 letters in length; their composition determines the specific secondary alphabets to be used in enciphering messages.
c. The encipherment of a message can start with any one of the letters of the message-keyword, there being an indicator in each message which tells the recipient with which letter of the key the message begins. The indicator is usually the lst group in the text and the meaning of every indicator is known. The indicator AMASS, for example, means that the lst letter of the message is enciphered by the lst letter of the keyword. The complete list of indicators and their values, is as follows:

Indicator

Letter of keyword with which encipherment of message commencos

AMASS	1st
A M ITY	2nd
ARROW	3rd
ASSAY	4th
A URAL	5 th
AVAST	6th
AXIOM	7th
A ZTEC	8th
BRICK	9th
BROIL	10th
BROOD	11th

Military Cryptanalysis, Part III, 12-p.1, 1938.

REF ID:A60198

Indicator
Letter of keyword with which encipherment

- of message commences

| B R U T E | $12 t h$ |
| :--- | :--- | :--- |
| B U G G Y | $13 t h$ |
| B U G L E | $14 t h$ |
| B U M P S | $15 t h$ |
| B U P L Y | $16 t h$ |
| B U S H Y | $17 t h$ |
| B U X O M | $18 t h$ |
| C A B I N | $19 t h$ |
| C A L Y X | $20 t h$ |

d. After this initial appearance of the keyword (either in whole or in part), each subsequent cycle of this key uses the same set of cipher alphabets but in a different order. That is, the order varies from cycle to cycle and does not repeat for a long time. For example, suppose that on a certain day the keyword for messages originating at station A is IIARVEST, a 7-letter word. A certain messaq; begins with an indicator that shows that the initial key-letter employed is the R. The sequence of alphabets for the initial cyole is therefore $R-V-E-S-T$. For the second cycle the order of use of the 7 alphabets might be $T-A-V-H-R-S-F$ for the third cycle it might be $\mathrm{V}-\mathrm{H}-\mathrm{S}-\mathrm{A}-\mathrm{R}-\mathrm{E}-\mathrm{T}$, and so on. In this case there are 8: ($8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=40,320$) different arrangements or orders possible. Just what determines which arrangement will be used, that is, the sequence of orders is unlenown. It seems to be governed by a long and complex key.

Weight:

1. On a certain day 25 messages were oxchanged by the radio stations within one of the radio nets of a certain division. The beginnings of these messages follow. Solve the first three groups of each message and reconstruct the primary components.
1) AVAST JEXTWYCKGEEXWXVICNRJGUMSF

2) AURAL SUECQMYKCASEECANSFSYIXOKJ
3) ASSAY NGLWRSWBYA JQOEKFIMRZFXUEU 5) AZTEC WJOKKRREZDNICHYDRRVEJLBMZ 6) AXIOM EBDKKKPOEHUMIVHNRNJEEXJHE 7) ASSAY QFNEHGWFRHZJAGGRNCRSXCSSA

Military Cryptanalysis, Part III, 12-p.2, 1938.

Weight:

8) AURAL GQEBH TBWCCISXALMOWNKOKHUE
 10) AMITY UHNWPYDIIPKUVIEDCJIAKUNJD 11) AMASSYTXQIVBWJTEUHARDEODXTNGC 12) AXIOMEBDKKMBWMUYGJQDKHRESSAJCJ 13) AVAST JEXTOCABICTWDDXSJNDQESJLB 14) $A Z T E C V W E R U Z I Q Z X K T K F Q D G N J W E B E R$
 16) ASSAY HICYKNIFACHJJQIPIMVSCOZIC 17) AVASTJEHDCRRFIWLOVXPORDRPSOADN 18) AVASTGEBAMZUNIWSOALPOKEFIPGOCK 19) ASSAY HKFYR PKSVXKXXJRWHSZLBISDC 20) AMASSYTZZZJTLPMYKLFLDQCPIBTGVE. 21) AURAL A JELP CRACJDVLRHNTZTBXUMRD 22) ASSAY HIEMSDIGMLREDEUKNPKERGZSE 23) A URAL GQBBPKRUVBAEXUL,CFOCNPSGCP
 25) AURAL GQEYDTYCII CTOHP XSWCDRGVMI
2. What is the message keyword for this unit?
3. What are the keywords from whioh the primary oomponents are derived?

REF ID:A60198

ARMY EXTENSION COTLSMS

SOLUTIOIK

SUBCOURSE - Military Cryptanalysis, Parrt TrI
LESSON 1 - Aperiodic kejing by word lengths.

Weight:

15 la. Solution is obtainable by finding the plaincomponent equivalents (reversed standard sequence set against the normal secuence) and then completing the plaincomponent sequences. Each plain-text word comes out on a single generatrix but the euccessive words reappear on different generatrices. The letter-for-lettor decipherment:

T	U	E	S	D	A
ORPS	AVIATIOH	EEPORTS	H AT	AT	N L
F FCEB	U Z MUSMGH	APQNLM	L S 2		N W

| Y | I | D | E | S | D | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | FIVEFOUREIVENOMOVENENTOFENEMY TQDUOWZCPMZGKQGEXOGOFZPYWNWOC

$\mathrm{Y} \quad \mathrm{T} \quad \mathrm{U}$
TROOPS WAS OBSERVED FHKKJGYTBGTC@DZ日
b. Ke,fword: TUNSDAY
2. Since the cipher text is aronped according to the original word lengths, idiomoruhic words such as ATTACK, FIFTEEN, etc., can readily be spotted. Assuming a mixed cipher component sliding ogainst the normad plein component, and applying the princjeples of direct symmetry of position in the reconstruction of the former componert solution is obtained as follows:

$\begin{array}{ccccc}N & T & P & \text { E }\end{array}$ FIFTEENSTOPNOCASUALTIESIN VKVRJJZODZLAKVEFHELSBAFIX

M A N E SQUADRONPERSONNELSTOPANTIAIRCRAF JUXMCENTSBGTPPPBDDRLCEQSBEBPYPEK!

REF ID:A60198

Weight:

2. Continuer:

N	T	P	E
DEFENSE	H 2 mP ¢ R E D	A T T A CK	STOP
EJVJZDJ	XTBL下GEJ	P Z ¿ P S J	FSOD

R N A N
AIRPLANESNOWBEINGDECONTAMINATED RIYKJRXIBTNKKBCPZE TULZRNMKZNRJII

The primary components are as follows:
Plein: ABCDEFGiIJKLMNOP\{RSTUVWXYZ Cipher: XaKWYBMZLCQODRPFiAGTNIUEJV

The mixed component is durived by trenscribing the colums (from left to right) of a simple transposition rectangle besed upon the keyword XYLOPHONE. Thus:

$$
\begin{array}{llllllll}
X & Y & L & O & P & H & N & R \\
A & B & C & D & F & G & I & J \\
K & M & Q & B & E & T & U & V \\
W & Z & & & & &
\end{array}
$$

Sequence: XAKXYBMZLCGetc.
3a. In Message iNo. I the sequence LBERSSIBG is repeated in Messoge No. 2. This idiomorph sugreste the word ARTILLERY. Immediately preceding tivis sequence in No. 2 is the sequence WGWHP, which is isomorphic with the sequcnce PKPBN which precedes the LBZESSIBG sequence in No. 2. The wurd ENEMY suggests.itself. With these words and requences as a start, the reconstruction of the primnry mised cipher component is not difficult. The letter-for--letter decipherments are as follows:

No. 1

$\begin{array}{llllll}\text { U } & \text { L } & \text { L } & \text { S }\end{array}$
FIVEZEROFIVEOCLOCKWITHEEAVY FALPTIBKTQWGTAVTAJVRZDSRITQ

D E \quad E \quad U ARTILLERYEUPPURTANDABOUTFIFTY DGLWMMSGUXKPPRSARJSUOZTGURUZG

Solutions
Military Cryptanalysis-Fsrt III, 1-p.2,1938.

Weight：

3a．Continued：

D E $\quad \begin{array}{llll}\mathrm{E} & \mathrm{U} & \mathrm{L}\end{array}$
HUNDREDYARDS STOP 世NEMYARTILLERY KCEFGSFME EHX LCVHPMPDNLBZRSSIBG

VERYACTIVEUNTILZEROSEVENHUNDRED WGSMSAIZOWEAZRSNEJMTSQSECKDHSG日

R U L L 女 S

I I D E

No． 2

I D \＆It
TAKEN EYIISTTANKS HIKRBRUCQXCRJMLXX

The keyword for the message is SLIDERULE and the primary com－ ponents are as follows：

Plain：ABCDEFGHIJKLMNOPQRETUVWXYZ Cipher：EJVHGTLCQNIUODRPFSXAKWYBMZ

Solutions
Military Cryptanalysis－Prart III，1－p．3，1938．

Weight:
5 3E. Noting thet the cipher compcnent shows sections identical with sections in the cipher component of Problem 2, it is pussible to block off tle identical sections. Thus:

For Ho. 1 :

For in. ?:

It soon becomes nbvicus thet the cipher component for No. 2 is based upon the same keyword and roctangle as the cipher sumponent for No. 1, but the columns in the transposition restangle have jeen transcriber in key nuaber order. Thus:

$$
\begin{array}{llllllll}
7 & 8 & 3 & 5 & 1 & 2 & 4 & 1 \\
X & Y & L & O & P & H & N & E \\
A & B & C & D & F & G & I & J \\
K & M & Q & K & S & T & U & V \\
W & Z & & & & &
\end{array}
$$

Sequence: E J VHGTLC etc.
c. Hevine reconstructed the mixed cipher compenent, the sulution of a subsequent message enciphered by the same components but in e different $k e s$ is a simple mattor. Converting the first few cipher letters into their plain-comp-nent equivalents and then completing the plein-componcnt sequencer, the soluti, n is as follows:

T	3	
0 NL	N N - E	
A X N	DQ DG	XXX

Solutions

Military Cryptanalysis-Pret III, I-p.L, 1938.

REF ID:A60198

ARMY EXTENSION COURSES
SOLUTIONs

SUBCOURSE - Military Ciyptanalysis, Part III
LESSON 2 - Aperiodic keying by word lengths, continued.

Weight;

30

1. This problem is no different in principle from that in Problem 3a of Lusson I, but was introduccd in order to give the student an opportunity to take what appears to be a complex scheme of enciphormont and romove the extraneous "trimmings" which cryptographic inventors usuoily omplor with the idea that these additional elements impart cryptographic securitor to their scheme. The solution of the "challenge" message is as follows:

CHARLESZSULZERZSHAFPEZMINORZ VFUYOXNEOWYNDNAQWXYYIPZQHTB

INVENTDRZTIISZCEYPTOGRAPIICZ DZLBZEKPGWVIPNFJARXSFKALTNZ

SYSTEMZREGORDEDZWARZOFFICEZ HGHSFZVJGEOJUGUSOZBJUYYQJKC

THASHINGTONZBANDZ LTADERZFORTIETHZ VBTWJPIEQPALSREHMSNHSRYYUMAQKAPO

ARTILLERYZCOASTZARTILLERYZCORPSZ XHLIZZCHVMLRIWJQKFRTGGQFJZRHTSEB

PRESIDIOZ CALIFORNIAZMATTHEWSONZ YPBQDADKGSQAVECOFVQPSDMMYJBVTLR

COLONELZFORKERLYZNATIONALZGUAKDZ VJOJWXOETFDALDXYNTOXPETOSDRLMQBV

The primary cipner componenl is bssed upon the phrase A FROWZY PHLIGM and the compenents are ass follows:

Plain: ABCDEFGKIJKJMNOPQRSTUVWXYZ Cipher: ABFCRDOIGJZXYNPQHSLTEUGVMX

30 2a. The man length of words in Fnglish telegraphic text is 5.2 letters. When separator's aro יsed the mean length becomes 6.2. Since a keymord is used in this case, thon if we should find a repetition of significant length the interval between its lst and 2nd appearances should give a fair indication of the length of the key.

Solutions
Military Cryptanalysis-. Part III, 2-p.1,1933.

REF ID:A60198

key. For cxamplo, note the sequence PBUVGI repeated at an interval oi 44 lettors. If the mean word length is 6 it follows' that the koyword in this case should be 7 or 8 letters in length. Now, since the repeated sequonce PBUVGI. seems about in the middle of the message, if the text is written out in lines of about 45 to 50 lettors before and arter the repetition, then each such line will contain about 7 or of words cach monoslphabetically enciphered by this ieyword, and nerhaps by careful scrutiny one can pick out the successive viord senarntors. Note in the following transcription how the repeatcd sequence PBUVGI has been used as a sort of base for writing out the ioxt in superimposed lines; how the word separators P and I appear in the lines above and below the lines with this repetition; how certain lettors (E, Q, P, I, L, M, D, L) urpear to be distributed on each line more or less in accordance with the intervals to be expected of word lengths.

AMCKGEHMYJEFVVJUQOVDNPBNFNLUZIURWMPOIZQVNYVBLIMKQHYWRKQBDJDBL
YJJNLATEJDZDVQZLXZEURANAPIMRYJARFOZYBBI KUOTMGQDKBUIL
 JNZAEDPEQOGKUPBUJVGIOIRUMZYOMBMGFNMHLKXMDVINVI_

CTYXSMEVZJDQDOPQSPBUIFTRRRNZZBCWMIKAVLDJQXBSITTBL
YJEEDGVWQZLLVUUPPNXAQiILJBIPLMOIZYVTTWVGWLJDCVYNBL

GKTYXCKIHFEKFUQZDFI

b. Once the sequence of cipher equivalents for the word separators has been ascortained, this enables one to block out words and these having been enciphered monoalphabetically, solution comes rather easily. For example, immediately preceding the lst appearance of the soquonce PBOVGI is the sequence QSGKGIGDC. The Q is, of coursc, the soparator terminating the word in front of SGKGIGDG; the latter supgests DIVISION.
c. The primaiy components sire based uron the keyword DERMATOLOGY and aro as follews:

> Plein. . DERMATOLGIBCFHIJKNPQSUVWXZ Cipher \cdot DERMATOLGXBCFHIJKNPQSUVWXZ
d. The keyword for the message is MUSKETRY,

Sclutions
Military Mryptanalysis-Part III, 2-r.2, 1938.

REF ID:A60198

Feight:

e. The complete text is as follows:

| M | U | K | E | T | R | Y |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ANCKGEHTYJEFVIUJQOVDIL PBNFNLUZIUPRIRPCIZOVNYYBLIMKQHYWRKQBIJDBL EIGHT FRISONERS From seventy seventh division Including one

| M | U | S | K | E | T | R | Y |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | IJEJYQDVVFDGQSGKGIGDCPMUVGIIIJMUOZCJSOKBQEOMZOVDVFHKK OF SIXTEENTH DIVISION STOP FIRS'I OBJECTIVE WAS IIILL

$\begin{array}{llllllll}\mathrm{M} & \mathrm{U} & \mathrm{S} & \mathrm{K} & \mathrm{E} & \mathrm{I} & \mathrm{R} & Y\end{array}$
JNZAEDPEGOGKUPBUUYCIOTRTMZVORBMGFNAHLLKXMDVHIVL
FIVE THO FIVE STOP THEIR NEXT OBJECTIVE HIGH
$\begin{array}{llllllll}M & \mathrm{U} & \mathrm{S} & \mathrm{K} & \mathrm{E} & \mathrm{T} & \mathrm{R} & \mathrm{Y}\end{array}$ CTYXSMEVZJDQDOPQCPBMIFMRRXZZECIMMIKAVLDJQXBSTWTBL ground east of mersh creer stop fitist objective

M	U	S	K	E	T	R	Y

YJEEDGYWQZLVUUPEINXAQNLUBIPLMOIZYVTMVGIULJDCHYNBI OF OTHEP. THREE REGINENTS NORTH AND SOUTH RIDGE
M U U \quad U
GKTYXCKENEKFUQZDFI
THROUGH ROUND TOPS
3. Examination of the text discloses four isomorphic sequences. They are superimposcd for study.

These sequences contain all the letsers of the alphabet except these 5: E, H, I, P, and X; so that even if we can construct a chain of 26 places, we will have at least 5 blanks in it.

The application of the principles of indirect symmetry of position to the lines of the superimposition diagram yields the following data:

Solutions
Military Cryptanalysis-Part III, 2-p.3, 1938.

Isomorphs	Isomorphs	Isomorphs
A\&B	A\&C	A\&D
MUK	UMC	LUD
OV	OD	OYB
IND	NIV	MNJ
YG	YR	TFSK
ISZ	SLB	
TA	FG	
	TV	

The data from isomorphs A and C may be immediately amalgamated with those from A and B. By careful study of the columns of the superimposition diagram we may add data as shown below:
Isomorins
A\&B, $A \& C$
CMUK
WNDUTA
JRYGFQ
BLSZ

Isomorphs
A\&D
AQZ.VGLIJDR.CW
TFSI:CYBMIJ are here confronted with one of two conditions:
(1) Either the two sequences, by chance, are the nearly complete halves of a single sequence of 26 letters, in which case we should put the two sequences together according to one of the following 13 arrangements:

$$
\begin{aligned}
& 1234567891011121312345678910111213 \\
& \text { AGZ.VGLUDR.CTTESKOYBMNJ... } \\
& \text { SKOYBMNJ...TF } \\
& \text {. TFSKOYBMNJ.. }
\end{aligned}
$$

or else
(2) The two sequences (AQZ ... and TPS ...) represent two holf-chains of 13 letters each, the letters of which must be properly dovetailed in order to produce a single sequence of 26 letters. The former bypothesis is not so likely as the latter. We could proceed to test out the former hypothesis, trying all 13 arrangements mentioncd abovo and seeing if the interval relationships can be made consistent with those given by the actual data. This would be a lengthy and laborinus procedure. On the other hand, we may assume the latter hypothesis to be true (that we have two half-chains) and try to dovetail them properly so as to produce a single chain of 26 places, which is not so difficult a process.

REF ID:A60198

Suppose we suporimpose the AQ7. ... half-chain over the TFS ... half-chain ;o as tc give values that will correspond to any one of the values given in the partial cnains CMUI, BNDOVTA, JRYGFQ, or ELSK. Thus, selecting VI' in the wDNOVTA cnain:

It will bo seen thet this yiclds ralios ennsistent with those given by the partial chains under ismorphs A\&D. Now sincc we aro probably really dealing with helle chains of 13 letters, we may repeat the AgZ ... half chain in its supcrinposition with the TFS ... half chain. Thus:

123456789101112131234567390111213
AQZ.VGIUDR.CHAQZ.VGLUDR.CW
TFEKOXBMNJ
123456789011123
Since this gives the value AJ, we conclude that the WNDOVTA and JRYGFQ partial chains can be combired at once into one chain:

WNDOVTAJTYGFQ

In the samo way tho other partial chains may be added to this sequence until a complete sequence (lacking only the 5 originally missinc letiers) has bcen complcted, as follows:
 WNDOVTAJRYGFQ..BIGZ.CMUK. .

The problem states that the letter Z is boing used as the word separator, hence the lettor inmediziely preceding each isomorph and the last letter of each iromorph should bo the equivalenl of Z_{p}, the seporator. Hy studying the various cipher equivalenls of this separator let'or before and at the tail end of each isomorph the fcllowing pairs can be constructed, which give the seguent valucs of lettce $\mathrm{cip}_{\mathrm{p}}$ in zoquent cipher alphabets, according to sequent key lettens. This

| N | U | N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Unitine the sequent Values in a chain, one gets the sequence $N T$ TF $F A$ iV $=$ NTFAV as the successive values of $Z p$, corresponding to successive key lettors. Whether this is the entire sequence of separator values, that is, whether tho koy is but

Solutions
Military Cryptanalysis-Part III, 2-p.5,19; $\%$.

5 lettors in length cannot yot be ascertained definitely. However, ong mísht make a tıy at blocking out some or all of the rords in the message by means of tris sequonce of 5 separator volues. Simply go through tho text ard underline places where lotters of the sequence NTFLV oculu ill mopur ordur. Thus:

VKVNU ONNYS FMIUT IT, THK VDDGZ...
Now lot us werk backwerd from i imown print. It is obvicus that immediatoly preceding the isomorpl. UCNNIEFRD.UT there is, in the plain toxt, a seraxatur letior, z_{p}. Eence z_{p} mast bo Nc. Thereforc, the V immodiately preceding tilis N cunnot bo a separator. The V beforc tine K must be Z_{p}, liee separatov. If this is correct, then the A immudinteily in i'ront of theit V cannot be a separator; the A in BBAOB must be thu seprantor, 'ip. If this is correct, then the lst of the tro T's in HPETI must be the separator end not the 2nd, since if the lattur were the separetor, one would have a 2-1etter vord with both lettoles identical (corresponding to BB_{c}), which is impossible in Enelish. By proceeding alcrg those linos, by caroful obsorvation and deduction, the entire text can be blocked off into word longths. Thus:

YRMLIGCTJMHPFPFBBAOBJSDDAVKVN. UONNYSFMLUT TLTE KVDDGZQUSEA OYPTY XKVWN NPWOT HIYUF IBBA MDWWRLGCBMY CAQPN DPZGHGNGOST KJHGE IVCZYSA EXXV HMGGXN DLRQT DYJJBKSNUDFPVZD』:

The cipher toxt can now be convor'sed into monoalphabetic terms and solved quitu rapidly. One mikht, to satisfy curiosity, find the koyvord to the message. It i,s DRONE. Tho solution is as follows:

$$
\begin{array}{llll}
\mathbf{D} & \boldsymbol{R} & 0 & \mathbf{N}
\end{array}
$$

GETTYSBURGZVIAZ GE!TYSBURGZPIKEZ UONNYSFMLUTILTFKV1DGZQUSKAOYPDV

Solutions
Military Cryptanalysis-Part III, 2-p.6, 1938.

REF ID:A60198

E D $\quad \mathrm{D} \quad \mathrm{O} \quad \mathrm{N}$
STOFZTAKEZOVERZ iA JLZ GETYYSBURGZ XKVWNNPWOTHIYUH i B BAMDWWRLGCBMV
E
D
R
0

WIRE H HACILITIESZSTOPZCENSORZ CAQPNDPZGHGNGCSTKJHGFIVCZYSA

ALJZCALLSZFROMZGETTYSBURGZ WEST EXXVHMGGXNDLRQTDYJJBKSNUDFPVZDXX

The primary comronents are:
Plain ... FEPZHDOYIBMVEJRSCNXUGQWAKT Ciphor... GFQXHBLGZICMUKEPWNDOVTAJXY

These two components werc derived, by (key number) columnar transposition from the koywords MISHFUL and THINKING.

Plain component
$\begin{array}{lllllll}7 & 3 & 5 & 2 & 1 & 6 & L_{r} \\ W & I & S & H & F & U & L \\ A & B & D & E & G & J \\ K & M & O & P & Q & R \\ T & V & X & Y & Z & \end{array}$
OLeher compenent

623541
?HINKG
ABCDEF
JLMOFQ
K S UVWX Y Z

REF ID:A60198

MRITY EXIENSION COURSES

SOLUTTONS

SUBCOURSE - Military Cryptanalysis, Part III
IESSON 3 - Irregular-length plain-text groupings.

Weight:

8 la. This problem is ensily read by converting the cipher letters into normal alphabot cquivalents (using a standard reversed sequence against a direct) and then completing the plain component sequences. The plain text reappears in irregular length sequences on different generatrices, the latter corresponding with the successive latters of the key FOGHORN. The solution is as follow:
$\mathrm{F} \quad 0$
0 G
FIVEHUNDFEDINFANTSYREPLACEME $A X K B Y L B L Y K L G B さ O B V Y Q Y K F V G E C U C$
$\mathrm{H} \quad 0$
NTSAIEREQUTAEDTOREFTLLC

$$
\mathrm{R}
$$

OMBATUNITSASSOONAS POSEIBLESTOPRE DFQRYXEJYZ「ZZDDERZYZVVFMCJVUZYWJ

F
QUESTREPLY PLBNMOKZDQ
b. The succossive letiters of the keyword FOGHORN have the following numerical values (in tho normal alphabet):

FOGHORN
61378151814
Each keylettor is then used for anciphering as many plain-text letters as its numerical value. Thus, the setting $A_{p}=F_{c}$ is used for the first 6 letters; $A_{p}=O_{c}$, for the next 15 letters, and so on.

8
2a. This problem is irentical in principle with Problem 1, but the primary components shift much sooner than in Problem 1, making the solution more difficuit. The primary components are

Solutions
Military. Cryptanalysis-Pait III, 3-p.1, 1933.

REF ID:A60198

Weight:

both direct standard sequences. The keyword is FRIDAY and the solution is as follows:

R	I	D	A	Y	F	R
PPOSI	T I O N	0 N	W	ESTGLO	P EO	FAMBR
GGFJZ	B W W V	RQ		CQFQJM	U J I	WR D S I

I	D
SE	1 L

b. The letters of the keyford are given numerical values corresponding to their relittive order in the normal sequence. Thus:

$$
\begin{array}{llll}
\text { FRIDA } \\
354216
\end{array}
$$

Each keyietter then enciphers as many letters as its numerical value, the F secondary alphabut being used for the first 3 letters, the R sccondary alphelbet for the next 5 letters, and so on. Ascertaining the metiod in which the keyword controls the shifting of the components in cases like this and the foregoing is a mattor of observation and expericnce, with the application of simple reasoning. The studont should always try to resclve a problom into its simplest torms, for in practical work it will often bo found of great assistance in solving unlnown systems.

3a. The idiomorphic repetition and its isomorph underscored in the cryptogram sugest the word COMMUNICATTON. Immediately beyond the first two appearances of this word (lst and 3rd lines of text) are the sequencos:

I, ine 1
ZSIIFQVZORVSQQXUTIYLBRAAXHXYCRIEC

Line 3

 COMMUNICATION

REF ID:A60198

Wieight:

These two sequences certainly suggest that the samo or nearly the same words follow COMMUNICATION bnth times, and that their different extcrnol appearances are occasioned by difference in the kcy. The word which commonly follows COMMUNICATION is WITH. The form of the sequences suggesto:

ZSIIFQVZORVSQ QXUTYVLBRAhXHXY CRIEC COMMUNICATION WYTHSECONDDIVIS ION

When these hypothetical values aro insorted within the cells of a sequence-reconstruction dicgram, logether with the values given by the isomorphic scquence pointed out above, one has the following:

From these walues it is possible to reconstruct the primary cipher component basod upen LAFN TENNIS:

LAWNTEISBCDFGHJKMOPQRUVXYZ

From this point on solution can be promptly reached by deciphorment. It is as follows:

$$
M(13) \quad O(15)
$$

COMMUNICATIONWITESECONDDIVIS ZSIIFQVZORVSQQXUTYVLBRAAXHXY

$$
N(14) \quad U(21)
$$

IONWILLBEDISCONTINUEDUNTIJJUNETIRE: CRIECNNFBHCDGRYZAYMLEMYZAUCMYLZBKL

$$
M(13) \quad E(5) \quad N(14)
$$

COMMUNICATION WITHENIRDDIVISIONUN ZSIIFQVZORVSQSFCPCMCXHHCZCDCRIXI

$$
T(20) \quad M(13)
$$

TILFURTEERNOTICESTOPBEGINNINGATZE BDTKZYBCCYSUBDHCFBUVYUWVQQVQWORKU

REF ID:A60198

Weight:

$$
0(15)
$$

ROZEROFITEZEROSTRICTRADIOSILE FBMVFBWXHVMVFBYSXCGSXTHCRDCNB

$$
U(21) \quad M(13)
$$

NCEWILLBEOESERVEDUNTI LCONTACTNTTME YTIXAUUNIGNWLKOLEMYZAMZSQROZRPVRNU
$E(5)$
$N(14)$
NEMYH ASBEENMADESTOP $B D U N P T D F B B L Q T H B D \subseteq R U$
$T(20)$
M(13)
WIRECOMMUNTCATIONWILISBERESTRICTED IDYCHURRZSDYEBDUSIDYMYUDUXRDVZRUL

O(15)
N(14)
TOABSOLUTEMINTMUMTEQUIREMENTS UBPZYBOGUTSXRXSYQXBYYCXBQBISD
b. Solution of this message is accomplished by employing the IAFNTEIS ... sequonce and completing plain-componont sequences. The text is as follows:

M E F F A
TRANSPORTATIONATFOURTHIRTYPM RDOQXBSDRORVSBICMVIEKYOEEJBI
c. The keyword for Problem 3 a is hondman each letter of which not only determines the scoondiary alphabet to be employed, but also for how many plein-text lottorn, according to the key:

$$
\begin{array}{cccccccc}
M & 0 & \mathrm{~N} & \mathrm{U} & \mathrm{M} & \mathrm{~F} & \mathrm{~N} & \mathrm{~T} \\
13 & 15 & 14 & 21 & 13 & 5 & 14 & 20
\end{array}
$$

In Problem 3b the keyword is F A M E , used in exactly the same manner.

REF ID:A60198

Weight:

30
4a. From the data given it is clear that Mossage 1 should start with NUMBFRFIIPTEENX, Messuge 2 should sturt with NUMBFITVENTYTWOX, Message 3 shculd start with NUMBPRSIXTEENX.

Placing these plain-text beginnings under the proper messages, and applying principles of indirect symmetry of position, the primary component based upon PAN AMEIIICAN UNION is reconstructed. The solutions are as follows:

From B to A

From C to A
I B E R NUMBERTWENTYTWOXENEMYAIRPLANESHAV1 UHOKBDPNBPENYPGA OCOUMIDBRWICOYSIPr

From A to C
I B E R NUMBERSIXTEENXNEEDTHOMORECOPIESOFT UHOKBDZFM 巨II UIAIUOKZaHUHBOFHRDOYHL'

b. The principal lesson which this problen holds for the cryptographer is the danger (to cryptographic security) of following a fixed procedure in enciphering and especially of enciphering reference numbers in su conspicuous a manner.

Solutions
Military Cryptanalysis-Part III, 3-p.5, 1938.

Height:

The Irincipal lesson the problem holds for the cryptanalyst is that he should be quick to note weaknesses such as the foregoing and take advantage of them so far as concerns enemy traffic. He should do all in his jower to prevent procedures of this kind in our cwn traffic and to call attontion to such weaknesses when he finds them in our own traffic.

Solutions
Military Cryptanalysis-Part III, 3-p.6, 1938.

REF ID:A60198

fRIMY EXTENSION COURSES

SOLUTIONS

SUBCOURSE - Military Cryptanalysis, Part III.
LESSON 4 - Variable-length keying; interruptions in keying sequence.

Ficight:

30 la. Mcssages with thair plain texts:

 wtogmxz: y sprc
(3) $N E X T T R A T N W I L$ tcrwcrtbhh
(4) CIIEFSIGNAL cfkcseriha
(5) TATESTEPSTO y\&ncihznuw
(6) O. RDERSVIIL v zietirrgx
(7) SENDTHEEEMEN hcqickguon
(8) REFERRINGTO zcfclxrkqw
(9) STPONGRESIST hwwptewcimjs
(10) Co UNTERATTACK ep dozcliksj
(11) PRO MPTORDER wtis isquziet

Solutions
Military Cryptanalysis, Part III, L-p.1, I938,

Weight:
(12) REGIMENTVILI zcggyfcsbg

(14) ADVISEO UIV Q ciJgifb dtvx
(15) CANYO UMO VEIOUR eaqdrdnstapdt
(16) THREEMORERE yfwcqqbzewc
(17) PREVENTENE皆Y wtezqskuhc
(18) RE กUESTYOUTAKE zcveqzkzydwlk
(19) WHENYOURBRIGADE afoojt dtit
(20) GO O DPRO GRESS

(22) TVENTXFOUR yheocuhm dit
(23) ACCO RDINGTO clcpzikoth
(24) WHATISYOUR afIwwzqmdt
(25) RERADIOMARCH zcwapmbsawl
(26) SHALLEEPROCEED hfimhrenapecei
(27) ACTIVITYINCREASING clegemkzto

REF ID:A60198

(28) NOTHINGSEEN t p yfkotizuh
(29) RECOMMFNDTAT zccpsnoophdyl
(30) ADVISEATONCE ciygiftsytle
(31) TROOPSWILLREMAIN yts vivdghpguz
(32) INCASEOTFAILURE nocaifbjblghy
(33) RUSHREPLACEHENTS xxxflfeg f
(34) REPLACEMENTS zctmmbzjoo
(35) SENDINGTWOSETS hcqiwsysbphczv
b. Key for messages: CALAMITY JANE
c. Primary components: Plain . . .ABCDEFGHIJKLM...Z Ciphor . . .HYDRAULICBCEF...Z
d. Interrupter: ${ }^{0}{ }_{p}$.

2e. Same primary components as in Problem 1. Key MISSISSSIPPI RIVEF, applied to irregular lengthe of text, starting at beginning of keyword after encipherment of each K_{p}. Solution most easily obtained by guessing the probable word RicIMENT, the indications of the probable prescnce of this word baing the address and signature.
C. 0. 95th Infantry

Solutions
Military Cryptanalysis, Part III, 4-p.3, 1938.

REF ID:A60198

Weight:

Smith, Brigadier General.
3. Same primary components as in Problems 1 and 2; each word begins with a new juxtaposition of the primary components, the kejword JAPAN being used for this purpose. The letter X is used as a word soparator, and is treated as though it were an ordinary letter. Within each word the cipher component is shifted to the left after tho encipherment of each letter, including the X separator. The lattor then serves as a signal to shift the cipher component to the next keyletter before beginning to encipher the next word.

Solution is most roadily obtained by converting the first ten cipher letters intu thcir plain-component equivalents, completing the plain-component sequences initiated thereby, and noting plain-text on a diagonal line: FIVEXTRUCK.

Message

	F I V EX	T R U C	SXI OA	D F D X	I T H X
Key:	J K M N	4 U L I C	BE? Q S	T V W X	U L I C
Cipher:	PVESK	WV HB P	Y I FIS	X II HT	J Z K U G
1ai	0 UNDE	D Y M EN	XAFEX	PKOCE	EDIN
Key:	0 PQST	V W J K H	IJ A U I I	PQST	W X Z H Y
Cipher:	U G L W Z	ZSZ B D	J A_{1} V 4	IES H H	Y Y I
Plain:	X S OU	IIX O N X	N A N	NGXR	A D X
Key:	D A U L I	CBNOP	J K M N	PQSA	L I C
Cipher:	Z V Q H	MJA A M	HKD H \%	UZOTQ	LEUEG
Plain	0 PXTH	F $\Psi \times \mathrm{X} \mathrm{H}$	$\bigcirc \mathrm{U}$ O D X	REACH	X S O T T
Key:	$S T V A \mathrm{U}$	LICNO	PQSTV	J KMNO	PAULI
Cipher:	$C E Q \square G$	E U U C X	L J UXQ	A PMPX	MVQHH
Plain	HXGAT	EX B Y X	If 00 NX	TODAY	X STOP
Key:	CBPQS	TVAU	NOPQS	JKMNO	PAULI
Cipher:	MLX Q J	ZQURR	ㄱU U L 0	LDPN	MVXSV
Plain:	X B E X ${ }^{\prime}$	$\mathrm{F}_{1} \mathrm{EP} \mathrm{A}_{\mathrm{n}} \mathrm{R}$	E D X T	XEXPE	DITEX
Koy:	CPQSA	U L I C B	EFGNO	P JKMN	0 PQST
Cipher:	UQ IT O Q	VEVCH	KKBBU	MOFAS	SHGXP

Solutions
Military Cryptanalysis, Part III, 4-p.4, 1938.

Weight:

Plain:	S F	FXIOU NDEDX TOXY
Ke	AULIC beFGP	OSAUL ICBEF
Cipher:	WVLSHKKDB	XOHQHSFJJC B
	U	
Key:	MnOAULICBP	QStVbaturn
Cipher:	B 工 K w v	BQWAB
Plai	E	
Key	v	Cbefg PQSau licha
Cipher:	HKTLDGFQXV	DEVBPGOVQ
Plain:	ANKTNGX	DGEXSTOPX
Key:	OPQSTVNJ	NOPQA ULI
Cipher	0 U	x s

REF ID:A60198

ARMY EXTENSION (GOURSES

SOLUTIONS

SUBCOURSE - Mi_itary Cryptanalysis, Part, III.

LESSON 5 - Cipher-text auto-keying.

Weight:

1. The solution of this message requires only the use of two normel sequences, one direct, the other reversed. The usual sinple steps having beon tried, without success, cipher-text outo-keying is assumed. Since the initial keyletier is unknow, we may disregard the first plain-toxt loltor of the message (which will be found easily enough later, from the context) and start with K as the koyletter. Then the lst cipher group yields the following:
$K G G L N$
$-E A V Y$

Obviously the word is HEAVY.
2. A frequency distribution for each of the first 5 columns of letters is made. Ecch distribution sinows monoalphabeticjt-r, and shows crests and troughs in the same order but at different points along the normal sequence. These frequency distributions are solved by arplying the principlos of direct symmetry of position and the rixed primary component is reconstructed. The five secondary cipher alphabets are sts Iollows:

The bogimings of some words (as in Nos. 7, 18, 42, etc.) indicate definitely what plain-text lettors follow in columns succeeding column 5. From these values, the systcm is quickly determinad to be cipher-text auto-key with lst letter keying 6th, $2 d$ koying the 7th, etc. Note the initial keyword for the messages (CHIEF) reappearing under A_{p} in the reconstruction skeleten.

The plain text of the first 20 messages follows:

1. TWO HONDRED PRISO 11. ATTACK PLANES HAV
2. EASTERN SLOPES OF 12. ANTI-TANK GUNS ON H
3. THE ATTACK PLANNE
4. NEARLY ALI OUK GAS
5. OUR ATTACK JUMPED 14. WHAT ARE YOUR DISP
6. YOUR REQUEST FOR A
7. REMAIN ON THE DEFE
8. ENEMY TROOPS HAVE
9. IN SPITE OF REPEAT
10. REQUEST ADDITTON
11. OVEIHEAD MACIINE
12. SEVENTY FITE AMMU9. ARTILJJELY FIRE IS
13. THREE ENEMY AIITPL
14. MECITNE GUN FJRE I
15. JNJ EHDICTING FIR
16. WHE FISST FIELD AR
This problem illustrates how easy it is to solve cases ofthis type when a sufficient number of messages is available topermit of this method of atleck by superimposition. If this werenot possible, solution would become much more difficult.
17. These messages being only 11 in number, the method of solution by superimposition is impracticable. Prequency dist: :butions besed upon the letters immediately following each different cipher letter must be prepared and these are solved by applying the principles of indirect symmetry of positicn. The mixed primary components are based upon the keyphrase ENGLISH-JAPANESE DICTIONARY. They are as follows:

Plain - ENGLISHJAPDCTONYBFKMQUVWXZ Cipher - ENGLISHJAPDCTORYBFKMQUVWXZ

The initial leylctters for the messages are as follows:

1)	N	4)	R	7)	F	10)	L
2)	U	5)	E	8)	E	11)	B
3)	N	6)	F	9)	E		

The texts of the messages are as fullows:

Solutions

Military Cryptanalysis, Part III, 5-p.2, 1938.

	1	2	3	4	5
I.					
	CGFI品	STJIV	ISION	STOP	AVEJU
	TRSPW	GRXGX	GJCXZ	I BL T	EVVIX
E.	STRET	URNED	TOCOM	MAND	OSTFR
	L Y L L Y	DX2ZP	U AMHZ	$\mathrm{K} E \mathrm{NCQ}$	J TXY
c.	OMHIL	LFIVE	NINET	WOOCC	UPIED
	BPYMV	2 BGBB	FUVYA	SKSBN	V g P $\mathrm{H}^{\text {d }}$
D.	BYFOU	FTHIN	FANTE	YSTDP	ENEMY
	PXYGW	CWLJA	Z J is Q L	UGINND	DCCIM
E.	ONNOR	THISM	AKING	\& HEA V	Y i. T T A
	H JAUP	UNS DL	C L J \& D	KXXHG	FZCWS
F.	CKONH	I LI S I		S I X	
	BAUYG	HPIFU	M K K H LI	X GEXX	
			II.		
G.	IHAVE	SENTA	MACHI	NECUN	SECTI
	ZSOPP	RRYN	G D UNS	Hj H L L	FPQ HD
H.	ONFEO	Mresem	FVEDit		ONFOT
	WXY L B	? $\mathrm{T}, \mathrm{K} \mathrm{GG}$	ETTGU		DCGYD
J.	FTHIN	Fhin Til	YTOKE	INror	CETFO
	XDBQU	TQUJU	D V P W	\% G M H $\mathrm{H}^{\text {d }}$	SSFSK
K.	OPSON	HILIT	IVESI	X ¢ X S	TOPCG
	SRMHJ	OFQWK	E. F IL CH	UEIGJ	M II Y EG
L.	SECON	D BEIG	L D ETE	IIIOD	
	J JKSH	EHGXE	AKKNT	YMHBX	
III.					
M.	SULMI	TRECO	MMEND	ATION	STORH
	HNFDR	ERRZ	SXXZ	FIJQU	EFIXK
N.	í $\mathrm{N} D \mathrm{D}$ L I	NGCIV	ILIAN	SINYO	UKZON
	H JFQX	Z NT T T	E in lis H	CYBSK	ONEOR
	EOFAD	VANCE			
	If K E D	HRYEE			

Solutions

Military Cryntanalysis, Part III, 5-p.3, 1938.

Weight:

IV.
 V.
D. THECG WANTSALISTOFCASUALTI TKKLSGDCTGDOFVA UTWSDSOBGH

TI.

H. HENING CCTBFMXXXX
VII.
J. SENDCOPYYO URCIR CULATEIONMA VVWJK SRLKSERZLFGWEAQXCTSO
K. PATONCE

V IBLIXYXXX
VIII.

M. TGIMMEDIRTEIY

PRKCIIKKET TYIXX

Solutions
Military Cryptanalysis, Part III, 5-p.4, 1938.

REF ID:A60198

Weight:

IX.
A. EIGYT INCHS HEILSAPEFALLING EIHTXGLRQZSSACBXTTLCRFUVX
B. INVIC INITV ROADJ UNCTIONFIV GLZLRKMWPXTZJFXMQGFUAPEIE
C. EHUND $\mathrm{E} E \mathrm{D}$ YA RDSEASTOFHERE EHNGTEEDZJUSDDKWPVOMMJJXX

X.

D. ENEMYADVANCEMASEEENCHECKE LIIWT QIEAP QQEAOLLIIYUUHXX
E. DSTOP HEISD IGGINGINALONGFR AOZTUNNSDQXEGHJPORVZTOYHQ
F. ONTOFBRIGADE

J\&QJXRGHABEEXXX
XI.
G. SUBMI TLISTEXOWINGLOCATION UBHZIJYVNOKXCATOYKS Y KXDIVG
H. OFELEMENTSOFFIRSTRRIGADTA YHHPYGGLYQ JXYMJ TXRGHEBEEA
J. TPRES ENTTIME QLFFV Vi.; UZ YKXXX
4. Having reconstructed the jrimary cumponents used in Problom 3, the solution of this messsge represents morely a special application of the method used in solving Problcm 1, despite the fact that an introductory koyword of 7 letters is used. By trying introductory keys of $1,2,3, \ldots$ letters the soluticn is solution is reached when IZNFU is used for keying the 8th, 9th, loth ... lotturs beyond.

	IZN	FUQGK	IIIEIG	BSATB	Yохкт	IXSC
	. .OND	ITION	WIFEL	INESI	NYOUR	AREA
IZITFT	QGFTI	ZRGBS	A.TBKO	XKTI	SCTIL	IYPC

The text is seen tc bcgin with

IZNFU	QGKPI	ZRGBS	etc.
$\ldots . .$.	..OND	ITTON	etc.

Solutions
Military Cryptanalysis, Part III, 5-p.5, 1938.

Weight:
The 2 d word of the message is obviously CONDITION. When $\mathrm{G}_{\mathrm{c}}=\mathrm{C}_{\mathrm{p}}$, the keyletter is E . The introductory keyword ends in E, then. By assuming various words, when REPORT is tried, the keyword OUTLINE is found. The begiming of the text:

$$
\begin{array}{ll}
\text { OUTLINE } & \text { IZN... } \\
\text { REFORTC } & \text { OND... } \\
\text { IZNFUQG } & \text { KTI... }
\end{array}
$$

REF ID:A60198

ARMY EXTENSION COURSES
SOIUTIIONS

SUBCOURSE	-	Military Cryptanalysis, Part III
LESSON 6	- Plain-text auto-koying.	

Weight:

10

1. This message represents a case of simple plain-text automey enciphorment with two normal sequences, one direct, the other reversed. The usual simple steps having been tried, without success, plain-text auto-keying is assumed. Since the initial keyletter is unknown, we may assume the first cipher letter of the message to be A, B, C, ... and try to build up text. It happens that the first plain-text lettor is A, end yields ADVAN for the cipher group K X I V N.

The large number of repetitions together with non-monoalphabeticity denoted by a frequency table of a few lines of cipher text, strongly indicates a plain-text auto-key system. In such a system, the plain-text repetitions are one letter longer than the cipher-text repetitions. Consider the third and fourth lines of cipher text. So many repetitions occur here that we can lay off the word lengtins with a fair degree of assurance that they are correct. Beginning beck in the third lire, we have:

TGO F C:FGCZ: BFVBB:SKOA:G FC:JTV HQRMH: NWUGJ ZPBB:T DJZ:BT JB:

Colons indicate probable word separations.

Solutions
Military Cryptanalysis, Part IIIn 6-p.1, 1938.

REF ID:A60198

Weight:

Now consider the 8 plain-text letters represented by JKVHQRMH. An excellent "probable word" to assume for this is DIVISION.

Suppose we assume:
$D I V I S I O N$ to be enciphored by
$J K V H Q R M E$

Now if the plain component is standard and if we assume the base letter to be A_{p}, we would have from consideration of letters following I_{p} :

Plain - ABCDEFGHIJKIMNOPQRSTUVWXYZ Cipher - I M Q

That M, Q, and V should fall in such order if something were not controlling their positions, would be quite a coincidence, particularly as there is just the right number of spaces between M and Q for N, O, and P to be inserted.

Let us tentatively insert N, O, and P in place, and then slide V_{c} under A_{p}, in which case $I_{p}=H_{C}$. We have:

Plain - ABCDETGHIJKIMNOPQRSTUVNXYZ Cipher - $V \quad I \quad H \quad M N O P Q$

This position of H is not inconsistent witi its occurring in the keyword.

Now the digraph $F C_{C}$ which precedes the cipher equivelents of DIVISION, occurs no less than 9 times. This might well then be the encipherment of the HFp of THE. If it were, when Hc is under A_{p}, then C_{c} is under \mathbb{H}_{p}. We would have:

```
Plain - ABCDFFGHIJKIMNOPQRSTUVWXYZ
Cipher - H O MNOPQ I
```

This location of C near end of keyword is excellent. Our essumptions seem to work out too well to be incorrect.

Now since the cipher letter following the encipherment of DIVISION is \mathbb{N}_{C}, the plain-tert letter folloring DIVISION must be A_{p}.

We have nine letters, perhaps one word, perhaps several, beginning with A, following the mord DIVISION. The word ARTILIERY immediately arises for consideration.

Solutions
Military Oryptanalysis, Part III, 6-p.2, 1938.

REF ID:A60198

Weight:

Suppose the word ARTILLERY is enciphered by NWUGJZPBB

Setting the I_{c} under A_{p}, we have $I_{p}=J_{c}$
Plain - ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher - \quad H \quad C \quad M NOPQ \quad V
which is excellent--too good to be wrong. We can also insert K_{c} and I_{c}, a very important addition as we can put I_{c} under A_{p} and use values of $Z_{c}=I_{p}$ and $P_{c}=\mathbb{F}_{p}$. We have:

Plain - ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher - IMNOPQ V Z I H O \quad H
P_{c} checks and Z_{c} falls into place.
Now since H and I are in the keyword, G_{c} might well just precede J_{c}. If it did, then from enciphernent of I_{p} in ARTIIIERY to be G_{c}, we would have T_{c} falling in front of H_{c}, fcrming a very high frequency digraph.

Experimentation quickly shows the correct placement of the remaining letters and develops the cipher sequence:

BIRTHDAYCEFGJKLMNOPQSUVEXZ

The foregoing procedure represents only one of perhaps several different lines of attack. Other openings are possible, just as in chess or checkers.

The plain text is:
HEAVY ENEMY FORCES HAVE BETN PRESSING OUR DIVISION VIGOROUSLY BUT HAVE BEEN STOPPED AT THE BLUE RIVER STOP THE DIVISION ARTILIERY WILL MOVE ALL UNITS UP AS CIOSE TO THE RIVER AS PRACTICABLE IN ORDER TO BE ABLE TO COVER AS MUCH TERPITORI ACROSS THE RIVER AS POSSIBLE DURING THE COUNTERATTACK WHICH WILL BE MADE WITHIN TWO DAYS STOP AMMUNITION DUMPS WILI BE MOVED FORWARD AND SUPPLIES OF GASOLINE STORED IN CLOSE PROXIMITY TO THE UNITS IN ORDER THAT NO TIME WILL BE LOST WHEN WE BEGIN OUR ADVANCE ACROSS THE RIVER STOP PONTOON BRIDGES ACROSS BLUE RIVER WILI BE BUIIT AT COSTER AND BLUEFIELD BY THE TENTH ENGINEERS TONIGHT.
3. The solution of this message follows along the lines of that in Problem I, since the pr imary components are now known. It is as follows:

Solutions
Military Cryptanalysis, Part III, 6-p.3, 1938.

Meight:
REFERENOEPONTOONBRIDGESAD
VALIBAVPJXAH®OD HOOFHGMISE
VISETHENCOMPLETED
BHQXDHCVPVTHTPRYJ

REF ID:A60198

ARMY EXTENSION COURSES

SOLUTIONS

```
SUBCOURSE - Military Cryptanalysis, Part III
LESSON 7 - Running key siphers.
```


Weight:

la. Superimposition of the 20 beginnings provides more than sufficient material for the solution of the first two or three columns. Since the cipher alphabets are known; frequency distributions of columns of the text can be solved quite readily, aided by a study of the repetitions of digraphs and trigraphs appearing within consecutive columns. The key text can be reconstructed simultaneously with the solution of the oryptographic text. Solution is as follows:

2. ZOCAGEKhABHNDMZ PMWVW TAKENECESSARYSTEPSTO
3. DXYCPE JLER HNKGEZIZDK PROCEEDTOCARRYOUTPLA
4. OBISV GMJSI QGMEZ CNDWG ENEMYCAVALRYPATROLSE
5. BKXQC PMTHR HMHEHATKWR REPORTALLCASUALTIEST
6. ZHVAP HMLZTWWNRA FWGBF THREEBATTALIONSOFINF
7. OOKXBEKLEC FQPSS GYKXO EACHSECTORCOMMANDERW
8. BKWKP QTTERHLTQFFWKBG REQUESTLOCATIONOFENE
9. NXIMMPVQETPITTHCXZDK FRESHTROOPSWILLREPLA
10. WHIRXABTWPGAKAH LXTKH WHENWILLWEBERELIEVED
Solutions
Military Cryptanalysis, Part III, 7-p.1, 1938。

REF ID:A60198

10 b. The first 15 letters of the running-key text are as follows: SOMETIMESTHEBES
2. By assuming the presence of the word THE in the keytext or the presence of the word BATThLION in the cipher text, a start is made in the solution. By working forward and backward from this initial ontering wedge, solution can be oompletod in the manner stated in the text. The solution is as follows:
 A。 QASOD PKASH LZEHA YCTQL RQQJX MOVEFOURBATTGLI ONSOFDOCKL

ONSHOWMANY ENGLISHWORDSSHO B. OMEQKFUSBMAKYLPOWYVDJFHTO ABORERSIMMEDIATELYTOUNLOA

ULDTHEORDINARYBOYORGIRLKN C. RKDNBEINPDVWPKO LWAENAEFGA DBAGGAGEOFSECON DCONTINGEN

OWTHEMEANTNGSOFATTHEENDOF D. VAMZCFISCXNPBGKWTAOARZBDR TWHICHWILLARRIVEATTENOCLO

GRADE
F. EHARH

CKAMX

ARMY EXTENSION COURSES

SOLUTIONS

SUBCOURSE - Military Cryptanalysis, Part III

LESSON 8 - Progressive-alphabet systems.

Weight:

100 l. Other methods of attack ending in failure, all the messages are rewritten, one under the othor.

By means of the repetition of $N M Q R Y$ (mossages 1 and 6), C JTG F (inessage 1 and lino 4 of message 3) , K UT D W (message 7 and line 6 of message 3), C X C K X C índs of messages 1 and 5), and other repetitions, the messages are all lined up in propor columns.

Fron the ropotition in mossage 3 of $\mathrm{J} S \mathrm{I} 0$... V M B M (lines 1 and 7) at interval of 156, and from other shorter repetitions, it is determinod that 26 alphabets aro used.

The messages are rowritten in lines of 26 lotters long, using message 3 as a bese, and starting tho other messages at the proper places to bring the repotitions into alignment.

Froquoncy tabl os are made of the lottors in each column of the superimposition dingram and the messages solved as a polyalphabetic substitution oipher of 26 secondary olphabets, using indirect symmetry to assist in determining values and building up the primary components. A start is probubly most easily made in message 3 where the repetitions indicate the lengths of three four-letter words in sequence. A guess that these words are numbers follows.

Noting that all the secondary alphabets are reciprocal, this fact is found to be of material assistance. All are derived from the sequence based on P U G NA C I T Y slid against itself. The initial setting of column 1 of message 3 is:

Plain: $\quad P U G N A C I T Y B D E F H J K L M O Q R S V W X Z$ Cipher: ZXVVSRQOMLKJHFEDBYTICANGUP

Each succeeding secondary alphabet is derived by moving the cipher component one place to the right.

Solutions

Military Cryptanalysis, Part III, 8-p.1, 1938.

The mossages and plain text follow:

MESSAGE NO. 1

12345	678910	71121314 15	16171819 20	212223242526
INDI	CATIO	NSARE	ANENE	MYATT A
R \times OW	2 J Z J	IKTOG	DFCJT	GFMKLR
: C K WI L	LBELA	UNCHE	DEARL	YTOMOR
REAVH	JVSMA	Y T I G	AAFWG	EH iv C C A
R OWM M	R N I N G	STOPI	FYOUN	EEDAD
CYAEE	DGPAI	J $\mathrm{N}^{\text {Q }} \mathrm{F}$ T	GTXLK	Y EEOH
ITION	A LART	ILLER	YSUPP	ORTCOM
QQSDP	PKGHU	NRSUQ	IRKMO	UPJMCT
MAADV	ISEGD	ASHTH	R E E	
YV\%OT	X DSCX	CKXCP	R A C	

MESSAGE NO. 2

TWILLBERELIEVED\&TFOURTOMOR ONSFHSRFVONZKUNDYAZMZHNCCA R 0 W
C Y A

MESSAGE NO. 3

GDASH FOURCOMMFSECONDCORPS C WLWTL OHCHNMQRYONDXJY JGUVGQ

ONTWONINENINEAR EUNDERCONST TWRCEUZNVCNTPYQNJHTTZKNQGM

ANTINTERDICTIONBYENEMYSART SWRVPWRFWGANCRDCTCJTGFPONM

ILLER YSTOP ITMAYBENECESSARY QDEMB VDZKYNNRYC CAFIHYZPONL

TOROUTEANIMALDRAWNVEHICLES OYTDGWRGAGOISGQ DOHSTIJLIFN

Solutions
Military Cryptanalysis, Part III, 8-p.2, 1938.

REF ID:A60198

MESSAGE NO. 3 (Continued)

MESSAGE NO. 4

$\begin{array}{llllllllllllllllll}F & I & R & S & T & B & R & G & G & D & E & C & P & I & S & M & O & V \\ R & U & J & J & N & G & O & T & F & E & I & I & H & Q & J & P & C & C \\ G\end{array}$ $R U J J N G O T E E I I H Q J P C C G$

INGTOROADJUNCTIONONEONEONE QWZSEDHGWRYTICTVFXJTUMDAR H

MESSAGE NO. 5

$$
\begin{array}{lllllllll}
C & G & F & R & S & D & I & I \\
B & H & E & X & X & H & E & I & U \\
O
\end{array}
$$

SIONA DVISEDATEOFCOMP IETION $A R B Z Z B B P F W Z I A U S G D X P O N B J L C S$

OFAPPROACHTRENCHFROMFOURON TJWGN DHGGS GLPBYUNVZUTGRGCS
$\left.\begin{array}{lllllllllllllllllllllllll}E & O & N & E & P & O & I & N & T & O & N & E & T & O & F & O & U & R & F & O & U & R & O & N & E\end{array}\right) P$
OINTNINEGDASHTWO
$T R X S P X G S C X C K X C L V$

Solutions
Military Cryptanalysis, Part III, 8-p.3, 1938.

REF ID:A60198

MESSAGE NO. 6
THECOMMANDINGGENERAL $X Q V N M Q R Y D A B H K L Y M D G Q Y$

MESSAGE NO. 7

ANENEMYAIRFIELDHASBEE PGSAWOGTIQGBCUY ILPHFH

NREPOCRTEDA TAVEN TOBEA CHSTO P $\nabla \mathrm{ERIF} \mathrm{Y}$ THISREPOR TANDADVISE NKTVMVXQUHKZERQ TEH.TJBXKUF

MESSAGE NO. 8

OURTEN
TZTSOU

Solutions

Military Cryptanalysis, Part III, 8mp4, 1938。

REF Î̀ A A60198

ARMY EXIENSION COURSES
SUIUTIONS

```
SUBCOURSE - Military Cryptanalysis, Part III.
LESSUN 9 - Theory of Coincidences; the Kappa-test; general
    solution for oryptograms with long keys.
```

Woight:
85 1. By applying the K-test, it is found that the three cryptograms should be superimposed thus:
(1) KDGIOJTPLOSKWAP...
(2)
(3)

The data for all tests are shown below:

Relative Settings		Coincidences	No. of Comparisons	Relative Settings		Coincidencos	No Compari sons
$\begin{gathered} \text { Message } \\ \frac{H 1}{\pi} 1 \\ (504) \end{gathered}$	$\begin{gathered} \text { Message } \\ \# 2 \\ \#(485) \\ \hline \end{gathered}$			Message \#1	$\begin{gathered} \text { Message } \\ \#_{2} \end{gathered}$		
1	1	16	485	1	1	16	485
1	2	17	484	2	1	18	"
1	3	20	483	3	1	11	"
1	4	12	482	4	1	20	"
1	5	15	481	5	1	56	"
1	6	17	480	6	1	21	"
1	7	12	479	7	1	19	"
1	8	16	478	8	1	20	"
1	9	16	477	9	1	22	"
1	10	22	476	10	1	11	"

\#1	\#3			\#1	\#3		
1	1	25	475	1	1	25	475
1	2	15	474	2	1	18	"
1	3	13	473	3	1	16	"
1	4	14	472	4	1	17	"
1	5	10	471	5	1	19	"
1	6	15	470	6	1	19	"
1	7	13	469	7	1	27	"
1	8	25	468	8	1	42	"
1	9	14	467	9	1	14	"
1	10	18	466	10	1	17	"

Solutions
Military Cryptanalysis, Part III, 9-p.1, 1938.

Weight:

Relative Settings			No. of \quad Relative				No. of Comparisons
Message \#2	Message \#3	Coincidonces	Comparir sons	$\begin{gathered} \text { Message } \\ \frac{H 2}{\# 2} \end{gathered}$	$\begin{gathered} \text { Message } \\ H 3 \\ \hline 4 \end{gathered}$	Coincidences	
1	1	15	475	1	1	15	475
1	2	15	474	2	1	16	(1
1	3	18	473	3	1	14	"
1	4	22	472	4	1	32	1
1	5	12	471	5	1	20	"
1	6	21	470	6	1	11	"
1	7	14	469	7	1	21	"
1	8	15	468	8	1	19	"
1	9	23	467	9	1	7	"
1	10	19	466	10	1	14	"

15 2. The solution of the first few groups in each message:
(1) KDGIOJTPLOSKWAPHUCBCJYMCS REPORTOFAIRRECONNAISSANCE
(2)

BPDINIIJWLIUOUVHMKHLE
 ENEMYOBSERVATIONPOSTS

(3)

$$
\begin{array}{llllllllllllllllll}
C & H & U & O & X & B & D & B & O & C & Y & M & N & L & U & Q & F \\
S & E & C & O & N & D & B & A & T & T & A & L & I & O & N & F & O & R
\end{array}
$$

REF ID:A60198

ARMY EXTENSIUN COURSES

SULUTION

SUBCOURSE - Military Cryptanalysis, Part III.
LESSUN 10 - The ${ }^{\underline{T}}$ and X tests; ascertaining by statistical methods whether a distributinn is monoalphebetic or polyalphabetic.

Weight:

40 la. All the distributions have 35 letters each. For plain text, the value of $E\left({ }_{p}\right)$ is $0.0667 \times 35 \times 34=79$; for random text $\mathrm{E}\left(\mathbf{\$}_{\mathbf{r}}\right)$ is $.0385 \times 35 \times 34=46$. The midway point between 79 and 46 is 62.5. Consequently we may begin by saying that any distribution which gives a value for ${ }^{\Phi}$ which is 63 or more will tentatively be classified as being monoalphabetic; any distribution which gives a value which is below 63 will tentatively be classified as being not monoalphabetic. Accordingly, the results of this first. examination are as follows:

Distribution	Φ	Monoalphabetic		Non Monoa lphabetic		Desision Suspended
		Surely	Probably	Surely	Probably	
1	106	\checkmark				
2	54				\checkmark	
3	64.					χ
4	44			\checkmark		
5	108	\checkmark				
6	70		\checkmark			
7	58					\checkmark
8	104	\checkmark				
9	48			\checkmark		
10	68		\checkmark			

b. To answer the questions asked we could begin by testing only the distributions which were classified under a above as being "surely monoalphabetic", and then add to the data thus obtained the results of testing the distributions whose classification

Solutions
Military Cryptanalysis, Part III, 10-pol, 1938.

REF ID:A60198

is indicated es probably correct and then treating the distributions whose classification is in doubt. But we might as woll systematize the work and make all the tests at once. Moreover, it is possible that the X-test may corroborate or substantiate lhe results obtained from tho 龺 tost; the X-test may ovon cast some doubt upon the accuracy of the results obtained from the Ψ test in certain cases. Hence, we draw up a diagram as follows:

RESULTS OF X-TEST

Since all tho distributions have 35 letters each, the values of X for plain text and for random text are:
$x_{p}=35 \times 35 \times .0667=81.7075=82$
$x_{r}=35 \times 35 \times .0385=47.1625=47$
The midway point between the two values is 64.5. Examining the values of X for the various comparisons shown in the diagram above we may set down the following reasoning:

Examining the first line in this diagram, we may say that distributions 1 and 8 are cortainly similar and belong to the same monoalphabet ($X=119$); distributions 1 and $7(X=85)$ most probably belong to the same monoalphabet, too, in which case 1 , 7 , and 8 are similar and belong together. If this is correct then 7 and 8 when tostod against each other should give a high value for X. Reference to the tablo shows that X in this case oquals 87, which corroborates the idea that 1,7 , and 8 belong together. Returning to line 1 of the diagram, the values of X for distributims $\operatorname{l-9}$ and l-10 are 74 and 50 , respectively.

Solutions
Military Cryptanalysis, Part III, 10-p.2, 1938.

REF ID:A60198

The first of these values is considerably above the midpoint valuc (64.5) and we may fcel that there is good ovidence for thinking that distribution 9 also belongs to the same monoalphabet with 1, 7, and 8. Furthermore, if 9 doos belong with 1,7 , and 8 , thon the X values for $7-9$, and $8-9$ should be high. They are 66 and 77, respectively. The valuc 77 for the combination 8-9 is high enough to be oonsidered as substentiating the idea that 9 belongs with 1,7 , and 8 , but the value for the combination 7-9 is pretty low and casts some doubt upon the matter. However, let us assumo tentatively that $1,7,8$, and 9 belong togothor. As for distribution 10, it hardly looks as though it belongs with 1, 7, 8, and 9; moreover the X values for 7-10, $8-10$, and $9-10$ should be low. They are 65,53 , and 48. These cortainly corroboreto tho idua that distribution 10 does not bolong with $1,7,8$, and 9.

Still referring to lino 1 of tho diagram, wo may say that distributions 1 and 4, with $X=29$, are certainly not alike. But wo have already concluded in a above that distribution 4 is "suroly not monoalphobotic." -Obviously, if distribution 4 is non monoalphobetic it cannot bo similar to distribution 1 , which is monoalphabetic. Next we consider 1 and 5, with $\mathrm{X}=46$. Now in the Φ test distribution 5 gavo a very high value (108) so that thore con be no doubt about its being monoalphobetic. Hence, the low value of X, whon 1 and 5 are compared, must be due to a dissimilarity in monoolphabeticity, and we conclude that distributions 1 and 5 belong to different monoalphabots.

Likewise, as regards distributions 1 and 6 ($\mathrm{X}=56$) we concludo that thoy belong to differont monoalphabets. Thus we have reached the conclusion that 1 and 5 are different, and that 1 and 6 are different. Now look at the value of X for combinntion 5-6; it is 82 , indicating that distributions 5 and 6 aro similar.

We havo now disposed of these distributions:
Nos. 1, 7, 8 and 9 belong togothor
Nos. 5, 6
No. 4 is not monoalphabotic.
Thero romain distributions 2, 3, and 10 to bo classified.
Now 1 and 2 do nnt go togethor, since $X=52$. But from our work under a above, distribution 2 was classifiod as "probably not monoalphabetica" Henco, the X test corroboratos that conclusion. This is further substantiatod by tho fact that distribution 2 when tested against all the othor distributions (line 2 of the diagram) shors low X values throughout. So we have disposed of distributinn 2: it is suroly not monnalpheibetic and doos

REF ID:A60198

not bolong with eithor the 1-7-8-9 group or the $5-6$ group.
As for distributinn 3, it gives a fairly high valuo for X when tosted against distributinns 5 and 6 (76 and 81 , respectively). It also gives a fairly high value whon tosted against distribution 10 ($\mathrm{X}=78$). Dn $3,5,6$, and 10 go togother? Noto the values:

$$
\begin{aligned}
x \text { for } 3-5 & =76 \\
\text { " } 3-6 & =81 \\
\prime \prime 3-10 & =78
\end{aligned}
$$

X for	$5-6=82$
"	$5-10=88$
"	$6-10=31$

Tho foregoing leaves no doubt that 3, 5, 6, and 10 are sianilar distributions.

All distributions have now boen accounted for, with the follnwing conclusinns:
(1) Distributions 1, 3, 5, 7, 8, 9, and 10 are monoalphabotic; 2 and 4 arc not.
(2) There are but 2 monoalphabets represented among tho 8 distributions which are monoalphabetic.
(3) Distributions $1,7,8$, and 9 belong to one of these mnnnalphabets; distributions 3, 5, 6, and 10 belong to the othor.

REF ID:A60198

GRMY EXTENSION CUURSES

SULUTIU

SUBCOURSE - Military Cryptanalysis, Part III.
LESSON 11 - Progrossive-alphabet systems, continuod. Matching frequoncy distributions; the X-test.

Weight:

1. It is clear that the mossage involves 26 socondary cipher alphabets employed in progression. Transcribing the text in lines of 26 lottors, a distribution is made of the cipher lottors with reforence to the columns in which they appoar. This yiolds the distribution square which has alroady boen furnished.

By using this distribution square it bocomes possiblo to build up the primary oipher component by successively matching pairs of distributions, and applying the X-tost. Wo begin with the D and and U distributions, since thoy have the most data. The oxpostod value of X is: $34 x 33 x, 0667=74.8$. None of the juxtapositions of tho two distributions gives a oross-product sum that approximat.es 75; the juxtaposition giving the groatost value for X is as foijors:

> D ${ }^{1} 11230410110023001130411202$
> U 001104102110031014024301022 Pro- 0023016102100650040601201004 duets

Sum of cross-products $(x)=61$ other
But there are soveral/juxtapositions which give values closo to this, so that it is inadvisable to assume without further corroboration that this juxtaposition is the corract no.

The noxt larfest distribution is thot for Q_{0}. This distributimn is testod against tho D and the U distributions soparately and then against the two distributions combined at the various possible juxtapositions. By such procodure it bocomes easy to piok out tho corroct juxtaposition from among soveral possibilitios.

The final result is that the following soquenco is constructod:
DMXOCLWRBJVSIGTAIUYGPEFNZK

Solutions
Military Cryptanolysis, Part III, ll-pol, 1938。

The cipher text can now be converted into monocilphabetic terms and solved as a monoalphabetic substitution cipher, whereupon the plain component can be constructed. It is found to be as follows:

EGPVLFNUMCJSODKTYBIRXZAHQW
These two primary components were derived from the following transposition rectangles:

653421	6432175
Z YMOLE	TROKEYS
ABCDFG	ABCDFGH
HIJKNP	I J L M N PQ
QRSTUV	U V W X Z

The solution is as follows:
MOVEMENTOFTHREEHUNDREDSECO OBDZRDRUAJPODBJRYYDRAOXYXW

DFIELDARTILLERYPARENTHESIS BMAZOQNEYFJVRMKHRLQPCQUOSL

ONEHUNDREDFIFTYFIVEMMHONIT RXNEWWTEOUVZHNKA OAQFNQOUSJ

ZERPARENTHESISTOFOSITIONSR IFIDEGMBYMLUKGZFQZZWCBOZCQ

ESERVEDFORCORPSARMILLERYIN ERNUXDTRANTYDVPWCALVGIVBSD

FIELDORDERNUMBERFOUROFTHIR DTNXHHPAONSQAKJOIZPRMEWASQ

DCORPSCOMMAWILLBEVIAROADJU BLJUMSVTSHMLKHQMSALVBXQLOM

NCTIONSIXZEROFOURDASHDPARE MLHISWHPNKLKGQEUCKJKHOGTHP

NTHESESTEREEFIVEFIVEPOINTF MS P ZVDHUDNLWHDHVICITUXJZBK

REF ID:A60198

- Weight:

OURDASHSEVENFIVETWOPOINTTH ROISESZQORLHHDHVDSKIMBNRBU

REEPARENTHESISANDROADJUNCT TFNDEGMBYMLUKGLIZLKVXDZZXJ

IONFIVETWENTYTWODASHFSEMIC QBOOUOMUXGSENNBFZBZSPMUDSO

OLONANDVIAROADJUNCTIONSIXT $R D J C E W T L E D Z Y O E G U E X W M F X V Q J$

HREETWODASHAPARENTHRSISTHR YANZTKQAKAXXJCXVUMVTDBXRIQ

EEFIFTYSIXPOINTTWOD\&SHSETE EFXICAUQEZRYKTZKV.ZDVDQXYFP

NFIFTYTWOPOINTFIVEPARENTHE MMEOTIIMATUZQNTXTH\&VBINRIP

SISANDROADJUNCTIUNFIVENINE WTBPLQPTKUAQQUZXNYYWYINVKP

TWODKSHBSTOPHEADSOFCOLUMNS VEJSESZGTGUBCBLNEZYNMPZDKL

ENTERTWELFTHDIVISIONSECTOR EXHZY\&DXRJPOPDHXFCKPDIDRLQ

ATROADJUNCTIONSIXZEROTWODA USIVEQSJTQPZGTPXLRQRMLICWI

SHDANDCROSSROADFITETHREETH WGVPLQVEAAIKGCFAO』QOHJUYBU

REEDASHAABOUTONTAMMARCHTEN TFNSESZZKEUQFPAVRPEVBKTRGD

STOPCORPSCOMMANDERDESIREST WS JDBHPCTQUTACANSLDTDBVYCJ

HATYOURDIVISIONMAKENTCESSA YYETSRPAERNUKPAYRDQPAKUOCI

RYARRANGEMENTSTOFACIJITITE THGUYFROOHLHFGZFIBFWGBWTBP

Solutions
Military Cryptanalysis, Part III, ll-p.3, 1938.

REF ID:A60198

- Weight:

MOVEMENTINTWELETHDIVISIONS OBDZRDRUEVPLRHTKBKLURMJCKL

ECTOR
ELHVY
10 2. By "deciphering" the first few letters (that is, settirg the reconstructed cipher component against the reconstructed plain component at any point and converting the cipher letters into their plain-component equivalents, sliding the cipher component one space to the left each time), and then completing the plain-component sequence, the first word of the mossage is found to bo $R \& D I O_{1}$ This givos the correct initial juxtaposition of the two components and the ontiro message can now be read without further delayo It is as follows:

The toxt of this message then shows what must bo done in ordor to road No. 2. Whon the primary compononts aro intorchanged and the principlo oxplainod above is thon applied, tho mossago is found to road as follows:
 BBIXJNYLVGCQVVOUPKCA.
3. Problam 2 illustrates the gravo dangor of communicating, by radio or any othor intercoptiblo agency and ospocially by moans of a current ciphor systorn and ciphor key, tho key to a future messago or set of mossages. Curront aiphurs and keys should never be usod for such a purposo; nor should such information bo enmmunicatod by means suscoptible of intorcoption.

Solutions

Military Cryptonalysis, Part III, 11-p.4, 1938.

REF ID:A60198

ARMY EXTENSIUN COURSES
 SOLUTION

SUBCOURSE - Military Cryptanalysis, Part III.
LESSON 12 - The X-test and its application in the solution
of a practical example involving the matching
of alphabets.

Weight:
90 I. The first step is, of course, to superimpose the messages properly. This can readily be done by means of the message indicators. Also, since the indicators give the various starting points, the number of different indicators should correspond with the length of the keyword employed by the stations witkin the net. Only 8 different indicators appear and hence it is safe to assume a key of 8 letters. The superimposition diagram is shown in Fif. 1. Since there are 32 columns we may mark off the varying keying "blocks" (i.e., permuted arrangements of the 8 -letter cycles) as shown at the top of Fig. 1.

Frequenoy distributions are then made for the individual columns of the superimposition diagram, beginning with column 4 and ending with column 29. (Coluinns 1-3, 30-32 contain so few letters they may be neglected.) The distributions are shown in Fig. 2.

The next step is to apply the X-test to these distributions for the purpose of combining those which belong to the same cipher alphabets, in ordor to facilitato the analysis of the latter. The process is likely to be a laborious one and we prepare a table so as to systematize the work. In this taiole there are pairs of lines, the upper one of oach pair giving the expectod valuos of X, the lower one the actual values for each test. Whonever we find.a case whorein tho actual value is high, indicating a possible similarity in the two distributions being tested, we mark it by an asterisk or by underscoring it. The result is shown in Tablo 1 , which forms the basis for the analysis of the data from the X-tests.

In ordor to eliminate possiblo aberrations in frequency occasioned by the presence of words ropeatedly occurring at the beginning of messages, we may start our analysis with column 9 , the first column in the second cycle of the koy. Immediately we note the high value of X for the matching of columns 9 and 19 ($X=55$, whereas the expected valuo is 42). Also, in this same pair of lines we note the value of X for

Solutions
Military Cryptanalysis, Part III, 12-p.1, 1938.

REF ID:A60198

combination $9-29$ ($X=36$, expected value 25). Let us, then, assume that 9, 19, and 29 belong to the same cipher alphabet. If 9,19 and 29 are really similar, then the X-test for the combination 19-29 should yield a high value. It is 34, whereas the expected value is only 25. Thus we find excellent corroboration for assuming that columns 9, 19 and 29 belong to the same cipher alphabet. We may now look for that column among columns 1 to 8, inclusive, which belongs with 9,19 and 29. Of course, it may be that column 1 , or 2 , or 3 belongs in that group but if it does we cannot test the idoa because these columns contain so few letters. So we cen only start with column 40 The matching of columns 4 and 9 gives a close approximation to the expected value ($X=15$, expected value 17) but the values for $4-19$ and 4-29 are so low as to make it certain that 4 does not belong with 9-19-29. Columns 5 and 9 certainly do not belong together. But columns 6 and 9 give a high value for X moreover, the combinations 6-19 and 6-29 give excellent corroboration for the analgamation of 6-9-19-29. If this is correct we have isolated from among all the 29 oolumns four which belong in the same cipher alphabet; moreover, we have one representative of this alphabot in each cycle of the key -- which is as it should be.

Now take column 10. There are several candidatos for combination with it, so many, indeed, that we are going to have to be very careful. Columns 10-12 give a value of 40 ; 10-18, a value of 45 ; 10-22, a value of 36 ; columns 10-21, a value of 30 . None seams to be really outstanding; if we take the combination 10-18 we cannot corroborate its correctnoss. Lot us, therefore, suspend judgment on this column for a few minutes.

Take column 1l; certainly it goos with column 24. Now sec how good a valuc the combination 8-11 gives as against 4-11, 5-11, or 7-11 (column 6 can be passed over since it has already been classified with columns 9, 19, 29). Let us assume that 8, 11, and 24 belong together. Then $8-24$ should give a high X-value; it is 38, not as high as we would like to have it, but not bad, since it is only 4 points below tho expected value. However, notice how much lower the other values are in this same line of data for the combination of column 8 with most of the other columns. For these reasons we may rogard it as fairly well established that columns 8, 11, and 24 belong together: moreover, that the alphabet to which they pertain is not represontod in the section containing columns 25-29.

Next take column 12. Here is an excellent case prosenting no difficulty. It obviously goes with columns 18 and 28. Corroboration is immediately seen in the high value for the matching of 18 and 28 (oxpoctod value 33, actual 46). Does column 4, or 5, or 7 belong in this group? Certainly neither 4 nor 7 doos; but 5 may,

Solutions
Military Cryptanalysis, Part III, l2-p.2, 1938.

REF ID:A60198

Weight:

for its value, 23 , is quite olose to the expected value, 25. However, 5 and 14 give a better matoh, so that wo cannot assume 5 bolongs with 12, 18, and 28. Let us be content at this point to group only 12, 18 , and 28, leaving 5 for further consideration.

Thus far, we have definitely tiod together the following onlumns:

Group 1:	$6-9-19-29$	
n	$2:$	$8-11-24$
n	$3:$	$5-12-18-28$

Looking these over we note that we have allocated several columns which are adjacent. Perhaps we can dispense with further X-tests if we have onough data to solve theso adjacent columns. Specifically we note that columns 5, 6, 8 and 9 fall within the three groups of columns definitely combined. Therofore, if wo can find tho group into which column 7 falls we will have 5 adjacent onlumns, with more than enough dnta in the respoative alphabets to permit of solution of theso alphebets. Conscquently, let us study column 7 and see what wo can dn with it.

Certainly column 7 belongs with 17. Columns 15 and 16 with values of 64 and 62 rospectively also appear to belong in the same group with 7 and 1.7. But there are several more oandidates: columns $23(x=44)$, $26(x=30), 27(x=58)$, and $28(x=33)$. Testing columns $15,16,23,26,27,28$ against column 17, it bocomes clear that only columns 15 and 27 bolong with 7 and 17. Thus wo have again found a group of 4 onlumns which go togethor, with a roprosentativo in each koying block.

We havo four groups of alphabets with tho following onlumns in each group:

$$
\begin{array}{rll}
\text { Group } 1: & 5-12-18-28 \\
" & 2: & 6-9-19-29 \\
" & 3: & 7-15-17-27 \\
" & 4: & 8-11-24
\end{array}
$$

Tho respective small distributions are now combined to yield four larger distributions which can be solved by reoourse to principles of frequency and indireot synmetry. Those distributions are shown bolow in Fig. 3

REF ID:A60198

$$
\begin{aligned}
& \begin{array}{l}
\text { 5,14, } \\
22,25 \\
\bar{A} \\
\hline
\end{array}
\end{aligned}
$$

Obviously in alphabet $3, \mathrm{E}_{\mathrm{c}}=\mathrm{F}_{\mathrm{p}}$. The repeated pentagraph E B D K K in messages 23 and 24 , beginning with Ep_{p} certainly seems to be $E N E M Y$, with D_{c} in column 9 (alphabet 2) equalling E_{p}, which is corroborated nicely by the frequency of D_{c} in that alphabet. Also, B_{c} in alphabet 4 is N_{p} and the frequency of B is excellent. Once an entering wedge of this kind has been forced into the problem, the rest follows without difficulty.

A reconstruction diagram for the recovery of the cipher component is drawn up and the following sequence is reconstructed:

Solution

Military Cryptanalysis, Part III, 12-p.4, 1938.

REF ID:A60198

Cipher compe: NAJVOBLWSCPXGHUIFTKERZMDQY
which is seen to be derived from the key NO SMOKING:
5-6-7-4-3-2-1
NOSMKIG
ABCDEFH J L P Q R T U
V W X Y Z
The plain component is then quickly recovered: "
Plain comp: NPAMSCQTFUVGWYKEHXIDRIJZOB which is seen to be derived from the key POSITIVELY:

$$
\begin{aligned}
& \text { 5-4-6-2-7-8-1-3-9 } \\
& \text { POSITVELY } \\
& \text { ABCDFGHJK } \\
& \text { MNQRUWXZ }
\end{aligned}
$$

The keyword for the unit whose messages have been solved is CONSIDER.

The letter-for-letter solution of the messages is as follows:
 CONSIDERDORCNIESECDNOISRISECDNO
1)

AVAST
2)

AXIOM
3)

AURAL
4)

ASSAY
5)

AZTEC
6)

AXIOM
7)

ASSAY
8)

AURAL

REQUIRETWENTYMINUTEADVANC JEXTWYCKGEEXWXVICNRJGUMSF

THREEMINUTESAFTERRECEIVIN XZJORDVNHNEQPEMIHYIQEGKVI

FRESHTROOPSNEEDEDHEREINOR S JECQMYKCASEECANSFSYIXOKJ

TWOMENINCHARGEOFSTRAGGLERSH NGLWRSWBYAJQOEKFIMRZFXUEUGA

AREYOUREADYTOOBSERVEFORTH W J OKKRREZDWICHYDRRVEJLBMZ

ENEMYOBSERVATIONPLANECRAS EBDKKKPOEHUMIVHNRNJEEYJHE

CHIEFSIGNALOFFICERREQUEST QFNEHGWFRHZJAGGHNCRSXCSSA

WHENCANYOUGETTOGETTYSBURG GQEBHTBWCCISXALMOWNKOKHUE

Solution
Military Cryptanalysis, Part III, l2-p.5, 1938.

REF ID: A60198

9) $\quad C O N S I D E R A B R I D A D E O F I N F A N T R$ AnASS YHXDKAEYPUYGMJDSJJNXDJEGR
10)

AMITY
11) AMASS 12)

AXIOML
13)

AVAST
14)

AZTEC
15)

ARROW
16)

ASSAY
17)

AVAST
18)

AVAST
19)

ASSAY
20) AMitiSS
21)

GTRAL
22)

ASSAY
23)
hURAL
24)

AVAST
25)

IURAL

ENEMYARTILLERYFIREDESTROY EBDKKMBWMUYCJQDKHRESSAJCJ

REQUESTRECOMMENDATIONSFOR JEXTOCABICTWDDXSJNDQESJLB

COMMANDINGOFFICERSOFALIUN
FTVXLBAWBBCSGXCCJIHSZNZ JO
REPLYINGTYYOURLASTMESSAGE
HICYKNIFACHJJQIPIMVSCOZIC
REFERENCEMYNUMBERSEVENTEE
JEHDCRRFIWLOVXPORDRPSOADN
SENDTHREENENTOBRTNGEXCEPT
GEBAMZUNIWSOALPCKEFIPCCCK
RIFLEAMMUNITIONBADLYNEEDE
HKFYRPKSVXKXXJRWHSZLBISDC
CAVALRYPATROLHASREACHEDOL
YTZZZJTLPMYKLFLDQCPIBIGVZ
PREPARETOADVANCEALONGLINE
hJELPCRKCJDVLRHNTZTBXUMRD
REGIMENTALRESERVELINEHASB
HIEMSDIGMLREDEUKNPKERFZSE
WHENAMERICANTROOPSHAVEREA
GQEBPKRUVBLEXULCFOCWPSQCP
REFERRINGTOPARAGRAPHONEOF
JEHDCYGXXXTBMJHNRZLFTOCLE
WHEREARESECONDANDTHIRDBAT
GQEYDTYCIICTOHPXSWCDRGVMI
Military Cryptanalysis, Part III, 12-p.6, 1938.

Solution

 $2 \quad 23$

Solutions
Military Cryptanalysis, Part III, 12,p8, 1938

REF ID:A60198

FIGURE \dot{z} (continued)

22

Solutions
Military Cryptanalysis, Part III, 12,po9-1938

FIGURE 2 (continued)

Column

Solutions
Military Gryptanalysis, Part III, 12vp.10, 1938

REF ID: A60198

TABLE I
 $4 \frac{N}{10}\left\{\begin{array}{lllllllllllllllllllllll}10 & 13 & 15 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 15 & 14\end{array} 1310\right.$ $\begin{array}{lllllllllllllllllllllll}1 & 8 & 1 & 11 & 15 & 3 & 1 & 1 & 9 & 6 & 9 & 13 & 6 & 6 & 11 & 16 & 15 & 8 & 19 & 8 & 6 & 6 & 6\end{array} 00$

 $\begin{array}{lllllllllllllll}42 & 42 & 42 & 42 & 42 & 42 & 42 & 42 & 42 & 42 & 42 & 42 & 42 & 42 & 42 \\ 37 & 35 & 33 & 25\end{array}$ $\begin{array}{llllllllllllll}15 & 40 & 26 & 29 & 24 & 17 & 22 & 45 & 17 & 29 & 30 & 36 & 13 & 14 \\ 25 & 25 & 11 & 30 & 29 & 11\end{array}$

$1225\{$
$1325\{$ $\begin{array}{lllllllllllll}42 & 42 & 42 & 42 & 42 & 42 & 42 & 42 & 12 & 42 & 42 & 42 & 42 \\ 37 & 35 & 33 & 25\end{array}$ $\begin{array}{llllllllllllllll}30 & 22 & 14 & 11 & 13 & 48 & 11 & 13 & 16 & 34 & 17 & 31 & 10 & 19 & 11 & 41\end{array} 10$

Solution
Military Cryptanalysis, Part III, 12. -poll, 1938

REF ID:A60198

TABLE 1 (Continued)

Solution
Military Cryptanalysis, Part III, 12.-p.I2, 1938

