REF ID:A60206
 SOLUTION OF PROGRESSIVE-ALPHABET CIPHER
 with
 STANDARD PLAINTEXT ALPHABET and UNKNOWN MIXED CIPHER ALPHABET.

The message on page 55 of Book III, Military Cryptanalysis is enciphered with ABC. . . . Z plaintext against HYDRAULIC. . . . Z cipher, as follows:
enemyhasplacedheavyinterdi AKLMDGLZWSEJNNTQNGNYIKHKYI
ctionfireuponzanesvilleroad DSEOOEKXGRZZZGKDSBJYULHKGZ

d

R

Suppose, with the technique now suggested, we take a long list of probable words and test one after the other, it will soon become evident that one word alone will fit in the spot we have chosen, and it will quickly prove itself, so we will pass all the preliminary trials and come to INTERDICTION at the place we have chosen, because of some repetition in other messages. I place below the cipher text representing this repetition, in four different positions, to represent \ddagger Pour sets of repeated letters. The repeated letters are underlined. Under each repetition is placed a portion of our standard alphabet in reverse, as a scale. Beneath each of our chosen repetitions is drawn vertically a standard alphabet. At some point below, and within the limits of our chosen repetition must be fitted the probable word. (See next page).

1 nterdicti

पNKNONN MIXED PRIMARY ALPHABETS

This case is touched upon in Par 39 , e, of MItITARY ORYPTANAIYSIS
Part III. I have chosen the brief mespage appearing on pabe 55 , Par. 39 , b, asbuming wé do not know the primaries. Suppose we corfectly assume INTERDIOTION, because of it appearing as a repetition, appearing' in a collection of messages, we first place the components in the following position:
First note cipher component of each
reperted PT letter; take the com-
ponents of "In in same columns
HEAS

 MOIITCIIDRE'TN'I

Then bring down the pt component of
$\mathrm{N}^{\prime} \mathrm{O}$
each repeated cipher "S"

 that each letter in the two 'groups thus brought down' is in' the proper position with reference, to other Ietter or letters on the same line; in other worde, it is building up the primary. any of the scattering groups that may' be tied together. From three, different ines we get the following:

There happens to be Now, to hook in the balance of our scattered, values: rere, happens to be a common letter "o", so we make the following diagram:

REF ID: A60206
Attention' is called to the following principle, for what it is yorth: The interval, between any two sequent cipher text letters is pne digit greater thän between thelr plain text components, meáaured in terms of the primary alphabet. For'instance, note the following firat five letters of both' plain text, and cipher in our message, spread to include the intervals of both:

$$
\begin{aligned}
& \mathbf{E}_{17}{ }^{\prime} O_{Z 21}{ }^{G}{ }_{6}{ }^{\prime} P_{13} U^{\prime}
\end{aligned}
$$

There may be an occasional case, (tho not in our instant "solution") Where we might have an' estabilished E-M, with tro separate groups, with a G in one and P in another. This permits, us to tie them together', aliopfing an interval of 6 inctead of 5 .

This is in a very nebulous state, but it is hoped it may lead to further development.
|Respectfuily submitted,
p, S. It will be noted that in comparing the interyal across other letters the cipher interval becomes greater for each letter forward. thus, from PT E to Y the interval is, 17, and from cipher E to U it is 21.

