CONPMETAFTAAL
—

military cryptanalysis

PART I -- MONOALPHABETIC SUBSTITUTION SYSTEMS

WILLIAM F. FRIEDMAN

Principal Cryptanalyst

Prepared under the direction of the Chief Signal Officer.

Declassified and approved for release by NSA on 12-23-2013 pursuant to E.O. 13526

1936
CONFHENTIAL

REF ID:A64644

30 April 1959
This document is re-graded "ConmexterviAL" UP of DOD Directive 520 drted 8 July 1957, and by authertty of the Director, Nitional Security Agency.

Paul s. Willard Colonel, AGC Ad.jutant General

MILITARY ORIPTIANALYSIS. PART I
Ronoalphavetic Substitution Systems

Section
Paragraphs

Page

I. Introductory remarks 1-3 1
Il. Fundamental principles. 10
III. Froquency dictributjons 16
IV. Fundemental uses or the monvliteral Erequency distribution 32-16 24
V. Nonoliteral substitution with standard eipher alphabets 17-22 31
VI. Monoliteral substitution with mixed sipher alphabets 23-34 49
VII. Polyliteral substitution with mono-equivalent cipher alphabets 35-36 73
VIII. Polyliteral substitution with poly-equivalent cipher alphabets 37-40 77
IX. Polygraphic substitution systems 41-46 85
X. Concluding remorks $47-50$ 120
APPENDIX
Table No. Pnge
1-A Absolute frequencies of letters npyearing in five sets of Government plrin-text telegrams, each set containing 10,000 letters. Arranged il- phabetically 127
1--D Absolute frequencies of lettors appearing in five sets of Government pirin-text telegrams, oach set containing 10,000 letters. Arranged ac- cording to frequency 123
1-C Absolute frequencies of vowels, high frequency con- sonants, medium frequency consonnnts, and low frequency consonants appearing in five sets of Government plain-text telegrans, each set oon- taining 10,000 letters 128
2-A Absolute frequency of letters appearing in the com- bined five gets of messnges totalling 50,000 let- ters, nrranged alphabetically 127
2-E Absolute frequency of letters appering in the com- biner five sats of messages totilling 50,000 let- ters, arranged according to frequency 129
2-C Absolute frequency of vowels, high fruquency conso-nants, medium frequency consonants, and low fre-quency consonants appearing in the combined fivesets of messages totilling 50,000 letters129
Table No. Page
R-D Absolute frequencies of letters as initial letters of 10,000 words foun in Gjvernment plain-text telegrams, (1) arranged ilphabetically, and (2) according to absolute frequencies 129
2-E Absolute frequencies of letters as final letters of 10,000 wurds found in Gnvernment plain-text telegrams, (1) arranged alphabetically, and (2) according to ubs lute frequencies............... 130
3. Relative frequencies of lettors mrovinf; in 1 , oon letters besed upon Trble 2, (1) arranged al- phabetically, (2) scecrding t, absolute fre- quency, (3) vowels, (4) Figh frequensy con- sonants, (5) mediurn frequency conson'ints, and (6) low frequency ennsonnnts....................... 130-131
4. Frequency distribution for 10,000 letters of lit-erary English, (1) arranger alphabetically, and
(2) accurding to obs lute Prequencies 131
5. Frequency distribution for 10,000 letters of tele- graphic English, (1) arranged alphabetically, and (2) according to nbsolute frecuencies. 131
6. Frequency distribution of digraphs, basen on 50,000letters of Government, plain-text telcgrams, ro--duced to 5,000 digraphs.132
7-A The 438 different digraphs of Table 6 arranged ac- cording to their sbsolute frequencies 133-134
7-B The 13 digraphs enmposing 2 io of the digraphs inTable 6. Arranged alphabetically acourding totheir indtial letters, (1) and accorrling totheir final letters (2) and according to theirabsolute frequencies135
7-C The 53 digraphs composing 50% of the digraphs inTable 6. Arranged alphrbetically arorording totheir initial letters, (1) and according t".their final letters (2) and according to theirnbsulute frequencies136
7-D The 117 digrophs cempesing 75 of the digraphs inTable 6. Arranged alphabetjcally according totheir initial letters, (1) and according totheir final letters (2) and acc.rding to theirabs slute frequencies137-138
7-E All the 438 digraphs of Table 6, arranged first al- phabetically according to their iniむial letters and then alphabetically according to their final letters 1.38
(See Table 6. Rear across the rows) 132
8. The 438 different digraphs of Toble 6 arranged first alphabetically according to their initial letters, and then according to their absolute irequencies under each initial lctter...... 139-141
9-A The 438 different digraphs of Table 6 arranged first alphabetically according to their final letters and then according to their absolute frequencies.. 142-144

REF ID:A64644

Table No. Page
9-B The 18 digraphs composing 257° of the 5000 digruphs of Table 6, arrenged alphabeticelly qccording to their final letters, (1) and recording te their initial letters, (2) anl accorring to their absolute frequencios 145
9-C The 53 digraphs composing 50% of the 5000 digraphs of Table 6, arranger alphabetically recording to thoir final letters, (1) and recording to their initial letters, (2) and accurding totheir absolute frequencies.146
9-D The 117 digraphs composing 75% of the 5000 digraphs of Table 6, arranged alphabetically accurding to their final letters, (1) and according th their initial letters 147
(2) and accurding to their abs:lute frequencies 148
9-E All the 438 different digraphs of Table 6 arranged alphabetically first acc rding t. their final letters and then according to their initial let- ters 148
(Sec Table 6. Read duwn the columns) 132
10- The 56 trigraphs appearing 100 or more times in the 50,000 letters of government plain-text tele- grams --
-A Arranged according to their absolute frequencies 149
-B Arranged first alphabetically according to theirinitial letters and then according to theirabsolute frequencies..................................150
-C Arranged first alphabetically according to their contral letters and then according to their absolute frequencies..-D Arranged first alphabetically according to theirfinal letters and then according to theirabsolute frequencies152
11- The 54 tetragraphs appearing 50 or more times in the 50,000 letters of government plain-text tolegrams --
-A Arranged according to their absolute frequencies 153
-B Arranged first alphabetically according to their initial letters and then according to their absolute froquencies 154- C Arranged first alphabetically according to theirsecond letters and then according to theirabsolutc frequencies155
-D Arranged first alphabotically according to their third letters and then according to their absolute frequencies 156
-E Arranged first alphabetically according to their final letters and then according to their absolute frequencies. 157
12. Average and mean lengths of words 158

REF ID:A64644

ERRATA

Page	Paragraph	Line	Now Reads --	Correction --
3	2 b	Last line	"--more expecially"	"--more especially--"
4	20	5	"--light breaks and.-"	"--light breaks through,
4	Footnote			
	2nd Par.	2	"--into casual"	"--into causal"
7	$2 f$	2	"--mental jarrs--"	"--mental jars--"
17	9 c	6	"Ill in Fig. $2^{-1 "}$	"... in Fig. 2"
17	98	4	"totaling approximate1y 10,000"	"totalling 10,000"
22	Tables 4,5	$\begin{gathered} \text { 2nd Title } \\ \text { Iine } \end{gathered}$	"-according to rolative frequency"	"-according to fre- quency"
24	Footnote	Last line	"--a bar-distribution"	"--a distribution"
26	138	13	"--bctween 0 and 8--"	"---betwoen 0 and 3--"
28	146	9	"--to certain language	""--to certain languages"
35	18c	$\begin{aligned} & \text { Ifiddle of } \\ & \text { Page } \end{aligned}$	5th group in 2nd line of cryptogram - "GXUUT	should read - "GZUUT"
35	180	Fig. 7	Tally over letter \bar{D} sh	ould be omitted. -
36	18 e	4,7,12,13	"---three letters--"	"--four lotters--"
38	19a(2)	7	"--to note where--"	"--to note whother--"
38	19a(2)	9	"--quenoy letters--"	"--quency consonants--"
38	19a(4)	6	"--to curve ${ }^{\text {C" }}$	"--to ourve R"
39	19a.(6)	4	"Fp, $\mathrm{G}_{\mathrm{p}}, \mathrm{H}_{\mathrm{p}}$, thus: ${ }^{\text {\% }}$	" $\mathrm{F}_{\mathrm{p}}, \mathrm{G}_{\mathrm{p}}, \mathrm{H}_{\mathrm{p}}, \ldots$. thus:"
40	19b(4)	Fig.10d	Add one more tally o	letter X.
42	20a(4)	13	"-fifrst 15 lettors"	"--first 20 letters"
47	21 b	7	"its oxtant"	"its extent"
47	21 c	17	"-- K Z $\overline{\mathrm{G}} \mathrm{H}^{\prime}$	"-- K Z \bar{G} D
51	25a	5	"Table I"	"Tablo 6"
51	25a	7	"--that 546"	"--that 428 "
52	26 c	6	"--allow one space--"	"--a.llow two spaces--"
54	27 e	4	"--upper half--"	"--1oft half.--"
54	27e	5,6	"--directly opposite"	"--directly above"
54	27 e	6	"--lower half"	"-rright half"
54	27 e	8	"--directly above"	"--directly to tho left of ${ }^{\prime \prime}$
56	27 f	9	Under "Digraphs based on Suffixes"--"DF,DZ,"	"DT, DZ"
56	279	5	"DF appears 6 times"	"DF appears five times"
57	28a	Last line	"filed in--"	"filled in--T
58	28b	4th line from end	"--as does also--"	"--as do also.-."
58	29a	4	"--to Table 11"	"--to Table 6"
58	29a	7	Correct figuros to rea	$\begin{gathered} \text { " } 41,37,35,27,17,13,13, \\ 12,12,11 " \end{gathered}$
59	29a	$\begin{aligned} & \text { 3rd line } \\ & \text { from bottom } \end{aligned}$	"--in Table 11"	"--in Table 6 "
60	29a	rop of page	Correct figures to rea	: "7,5,13,25,37,17,5,59
60	29a	6	"SVc=uIp	"SV ${ }_{c}=A I_{p}$ "
60	29a	7		

REF ID:A64644

Pago	Paragraph	Line	Now Reads ---	Corrootion --		
60	29a	9	"m-is almost"	"--is more than"		
60	29 b	8	"--vize, TION ${ }_{\text {c }}$	"m-vize, TIONp"		
65	310	2	Last lotter in line 2	should be E instead of Z		
65	31d	9	"--this keyword six"	"--this keyword five"		
-67	32c (5)	5	"Table 13"	"Table 10 A"		
-68	32e	9,10	Delcte sentence beginni	ing: "In this connection		
73	35b	5,6	$\\|^{\prime \prime} \frac{\mathrm{C}}{\mathrm{WC}} \cdots \frac{\mathrm{~F}}{\mathrm{HE}} \cdots \frac{Z^{\prime \prime}}{\cdots}$	$\left.\right\|^{\\| N I} \cdots \frac{F}{H W} \cdots \frac{Z}{E E}{ }^{n}$		
75	36a	13	"P p y y emns h ¢ $\mathrm{y}^{\prime \prime}$	"Ppyyommsn ${ }^{\prime \prime}$		
75	36a	14	"n s s ousm"	"n spensm"		
75	36a	16	End of line: "t e $\mathrm{I}^{\text {" }}$	"t o it"		
76	36b	4	End of line: "55 52"	"55 42"		
76	36b	5	"90 $66 \quad 776533843^{63}$	"93 $\overline{66} 77 \quad 66338466{ }^{\prime \prime}$		
79	38c	2	"--for oxample 3301"	"--for examplo 494"		
79	38 c	3	"-mcomposed of 165	"-mcomposed of 247"		
83	40a	12	"-row and indicators"	"-nrow and column indicators"		
84	40b	11	"Only 3"	"Only a $^{\prime \prime}$		
86	41 c	7	"--XY ${ }_{0}$ and $A C O^{\prime \prime}$	"--XY ${ }_{c}$ and $A C_{p} "$		
86	410	9	"--wholo rosult."	"-whole result. ${ }^{\text {- }}$		
92	44c (4)	4th line from ond	"J. ZI QC --"..	"J. ZL QC --"		
94	440 (8)	5	"--Sections 3 and 2"	"-msections 3 and 4 "		
106	46d(1)	7	"-min Fig. 25"	"--in Fig. 25a"		
108	46c(1)	8,11	"XCPTOTCXOT-"	"XCPTOTCXOT--"		
108	460 (2)	footnoto	"ISeo Par. $48 \mathrm{c}^{\prime \prime}$	"ISOO Par. 44 c "		
111	46 e	3,15	"--CY NO TT--	"--CY NO TY--"		
119	46h	12	"othor devinned-a"	"other divinod--"		
121	47 c	8	"onvolop"	"envelope"		
-67	320(5)	9	"Table 14"	"Table 11 A"		

REF ID:A64644

SECTION I.

INTRODUCTORY REMARKS

1. Scope of this text. - a. It is assumed that the student has studied the two preceding texts forming part of this series, viz., Special Text No. 165, Elementary dilitary Cryptography, and Special Text No. 166, Advanced lilitary Cryptography. The latter texts deal exclusively with cryptography as defined therein; that is, with the various types of ciphers and codes, their principles of construction, and their employment in cryptographing and decryptographing messages. Particular emphasis was placed upon such means and methods as are practicable for military usage. It is also assumed that the student has firmly in mind the technically precise, special nomenclature employed in those texts, for the terms and definitions therein will all be used in the present text, with essentially the same significances. If this is not the case, it is recommended that the student review his preceding work, in order to regain a familiarity with the specific meanings assigned to the terms used therein. There will be no opportunity herein to repeat this information and unless he understands clearly the significance of the terms employed, his progress will be retarded.
b. This text constitutes the first of a series of texts on cryptanalysis. Although most of the information contained herein is applicable to cryptograms of whatever type and source, special emphasis will be laid upon the principles and methods of solving military cryptograms. Except for an introductory discussion of fundamental principles underlying the science of cryptanalytics, this first text in the series will deal solely with the principles and methods for the analysis of monalphabetic substitution ciphers. Sven with this limitation it will be impossible to discuss all the many variations of this one type, but with a firm grasp upon the general principles no difficulties should be experienced with, any variations that may be encountered.
c. This and some of the succeeding texts will deal only with elementary types of cipher systoms not bacause they may bo encountered in military operations but because their study is essential to an understanding of the principles underlying the solution of the modern, very much moro complex types of ciphors and codes that are employod by the larger governments today in the conduct of their military affairs in time of war.
d. All of this scries of texts will deal only with the solution of visible secret writing. At some future date texts doaling with the solution of invisible secrat writing, and with socrot signalling systoms may bo preparod.

REF ID:A64644

- 2 -

2. Nontal squipmont nocossary for cryptanalytic wors. - a. Captain Parkor Hitt, in tho first Unitud Statos Army manual doaling with cryptography, opens the first chi ptor of his villuable treatise with the following sont once:
"Success in dealing with unknown ciphers is measured by these four thinjs in the order named. perseverance, careful methods of analysis, intuition, luck."

These words are as true today as they were then. There is no royal road to success in the solution of cryptograms. Hitt goes on to say:
"Cipher work rill have little permanent attraction for one who expects results at once, without labor, for there is a vast amount of purely routine labor in the preparation of frequency tables, the rearrangement of ciphers for examination, and the trial and fitting of letter to latter before the message begins to appear."

The present author deems it advisable to add that the kind of work in-. volved in solving cryptograms is not at all similar to that involved in solving "cross-word puzzles," for example. The wide vogue the lattor have had and continue to have is due to the appeal they make to the quite common instinct for mysteries of one sort or another; but in solving a crossword puzzle there is usually no necessity for performing any preliminary labor, and palpable results become evident after the first minute or two of attention. This successful start spurs the cross-word "addict" on to complete the solution, which rarely requires more than an hour's time. Furthermore, cross-word puzzles are all alike in basic principle and once understood, there is no more to learn. Skill comes largely from the ombellishment of one's vocabulary, though, to be sure, constant practice and exercise of the imagination contribute to the ease and rapidity with which solutions are genorally rezensd. In solving cryptograms, however, many principles must bu luarned, for thero are many diffo ont systoms, of varying degrees of complexity. Even somo of the simpler viricties require the preparation of tabulations of one sort or another, which many people find irksome; moreover, it is only toward the very close of the solution that results in the form of intelligible text become evident. Often, indeed, the student will not even know whether he is on the right track until he has performed a large amount of preliminary "spade work" involving many hours of labor. Thus, without at least a willingness to pursue a fair amount of theoretical study, and a more then average amount of patience. and perseverance, little skill and experience can bo gainud in the rather

[^0]
REF ID:A64644

- 3-
difficult ait of cryptanalysis. General Givierge's remarks in this connection are of interest. He saysl,
> "The cryptanalyst's attitude must be that of william the Silent: No need to hope in order to undertake, nor to succeed in order to persevere."
b. As regards Hitt's reference to careful methods of analysis, before one can be said to be a cryptanalyst worthy of the name it is necessary that one should have first a sound knowledge of the basic principles of cryptanalysis, and secondly a long, varied, and active practical experience in the successful application of those principles. It is not sufficient to have read treatises on this subject. Ono month's actual. practice in solution is worth a whole year's mere reading of theoretical principles. An excoodingly important olement of succoss in solving the more intricate ciphers is the possossion of tho rather unusual mental faculty designatod in gonoral terms as the powar of inductive and deductive reasoning. Probably this is an inherited rather than an acquired faculty; the best sort of training for its omergonce, if latont in tho individual, and for its dovelopment is the study of the natural sciences, such as chomistry, physics, biology, goology, and ths liko. Other sciences such as linguistics and philology are also excellent. Aptitude in mathematics is quite important, more expecially in the solution of ciphers than of codes.
c. An active imagination, on perhaps what Hitt and other writers call intuition, is essential, but mere imagination uncontrolled by a judicious spirit will more often be a hind rance than a help. In practical cryptanalysis the imaginative or intuitive faculties must, in other words, be guided by good judgment, by practical experience, and by as thorough a knowledge of the general situation or extraneous circumstances that led to the sending of the cryptogrem as is possible to obtain. In this respect the many cryptogroms exchanged between correspondents whose identities and general affairs, commercial, social, or politiczl, are known are fir more rendily solved thrn are isolnted cryptograms exchanged between unknown correspondents, dealing with unknown subjects. It is obvious that in the former case thore are good data upon which the intuitive powers of the cryptanalyst can be brought to bear, whereas in the latter case no such data are aviilable. Consequently, in the zbsence of such datr, no mattor hov good the imaginntion and intuition of tho cryptanrlyst, these powers are of no particular survico to him. Some writors, however, regard the intuitive spirit as valuable from still another viewpoint, as may be noted in the following: 2
1 Givierge, General larcel. Cours de Cryptographie, Paris, 1925. (P. 301)

[^1]
REF- ID : A64644

"Intuition, like a flash of lishtning, lasts only for a second. It jenerally comes when one is tormented by a difficult decipherment and when one reviews in his mind the fruitless experiments alieady tried. Suddenly the light breaks and one finds after a fow minutes what previous days of labor were unable to reveal."

This, too, is true, but unforturately there is no way in which the intuition may be summoned at will, when it is most needed. 1 There are certain
1 The following extracts are of interest in tris connoction:
"The fact that the scientific investigator works 50 por cont of his time by non-rational moans is, it soems, quite insufficiently rocognized. Thero is without the loast doubt an instinct for rosearch, and ofton tho most successful invostigators of naturo aro quito unable to give an account of thoir roasons for doing such and such an oxporimont, or for placing side by side two apparently unrelatod facts. Agnin, ono of tho most saliont traits in tho charactor of tho successful scientific workor is tho capacity for knowing that a point is provod whon it would not apporr to be provod to in outside intolligenco functioning in a puroly rationnl mannor; thus tho invsstigator fools that somo proposition is truo, and proceods at once to tho noxt set of oxporimonts without wniting and masting time in tho olnboration of the formal proof of the point which henvior minds would nood. Questionloss such a sciontific intuition may and doos sometimos lond invostigators estray, but it is quite corthin that if thoy did not widely mako use of it, thoy would not get a quartor as far as thoy do. Exporimonts confirm each other, and a false step is usually soon discovered. And not only by this partial replacement of reason by intuition does the work of science go on, but also to the born scientific worker - and emphatically they cannot be made - the structure of the method of research is as it were given, he cannot explain it to you, though he may be brought to agree a postiori to a formal logical presentation of the way the method works." - Excerpt from Needham, Joseph. "The Sceptical Biologist," page 79. London, 1929.
"The essence of scientific method, quite simply, is to try to see how data arrange themselves into casual configurations. Scientific problems are solved by collecting data and by 'thinking about them all the time.' We need to look at strange things until, by the appearance of known configurations, they seem frmiliar, and to look at familiar things until we see novel configurations which

REF ID:A64644

- 5 -
authors who regard as indispensable the possession of a somewhat rare, rather mysterious faculty that they designate by the word "flair," or by the expression "cipher brains." Even so excellent an authority as General Givierge, 1 in referring to this mental facility, uses the following words: "... and this aptitude of mind which some authors consider a special gift, and which they call intuition, or even, in its highest manifestation, clairvoyance" Although the present author believes a special aptitude for the work is essential to cryptanalytic success, he is sure thoro is nothing mysterious about the matter at all. Special aptitude is prorequisito to success in all fields of endorvor. Thors are, for oxnmpla, thousands of physicists, hundrods of excellont ones, but only a handful of world-wide famo. Should it bo said, then, that a physicist who has zchiovod vory notizblo succoss in his fiold hns dono so bscauso ho is tho fortunats possossor of a mysterious feculty? Thit ho is fortunato in possossing \imath spocial aptitudu for his subjoct is frantod, but that thoro is mything mystorious about it, partaking of the noturs of clairvoynnco (if, indoed, ths lattor is a roality) is not granted. While tho ultimato nature of any montal procoss soems to be as complate a mystary todey ns it has ovar boen, the presont nuthor would like to soo tho suparficinl voil of mystory romovod from a subject that has been shrouded in mystery from even before the kiddle Ages down to our own times. (The principal and easily understandable reason for this is that governments have always closely guarded cryptographic secrets and anything so guarded soon becomes "mysterious.") He would, rather, have the student approach the subject as he might approach any other science that can stand on its own merits with other sciences, because cryptanalytics, like other sciences, has a practical importance in human affairs. It presents to the inquiring mind an interest in its own
make them appear strange. We must look at events until they become luminous. That is scientific method.... Insight is the touchstone The application of insight as the touchstone of method enables us to evaluate properly the role of imagination in scientific mothod. Tho scientific process is akin to the artistic process, it is a process of selecting out those elemonts of experience which fit together and recombining them in the mind. Much of this kind of research is simply a ceaseless mulling over, and even the physical scientist, has considerable need of an armchair." "Our view of scientific method as a struggle to obtain insight forces the admission that science is half art." "Insight is the unknown quantity which has eluded students of scientific method." - Excerpts from an article entitled "Insight and Scientific wiethod" by Willard Waller, in The American Journal of Sociology, Vol. XL, 1934.
1 Loc. cit., p. 302

REF_ID : A64644

rirht as a branch of knowledge; it, too, holds forth many difficulties and disappointments, and these are all the more keenly felt when the nature of these difficulties is not understood by those unfamiliar with the special circumstances that very often are the real factors that led to success in other cases. Finally, just as in the other sciences wherein many men labor long and earnestly for the true satisfaction and pleasure that comes from work well-done, so the mental pleasure that the successful cryptanalyst derives from his accomplishments is very often the only reward for much of the drudgery that he must do in his daily work. Givierge's words in this connection are well worth quoting. He says (p. 301):
"Some studies will last for years bofore bearing fruit. In the case of others, cryptanalysts undertaking thom never get any rusult. But, for a cryptanalyst who likes the work, the joy of discoveries offaces the memory of his hours of doubt and impationce."
d. With his usual deft touch, Hitt says of the element of luck, as regards tho role it plays in analysis:
"As to luck, there is the old miners' proverb 'Gold is where you find it'."

Tho cryptanalyst is lucky whon ono of the corrospondonts whose ciphers ho is studying makos a blundor that gives the nocossary cluoj or when he finds two cryptograms idontical in toxt but in difforont koys in tho same systom; or whon he finds two cryptograms identical in toxt but in difforont systoms, and so on. Ths oloment of luck is thoro, to be suro, but tho cryptanalyst must be on tho alort if he is to profit by these lucky "breaks."
e. If the present author were asked to state, in view of the progress in the field since l916, what elements might be added to the four ingredients Hitt thourht essential to cryptanalytic success, he would be inclined to mention the following:
(1) A broad, general education, embodying interests covering as many fields of practical knowledge as possible. This is useful because the cryptanalyst is often called upon to solve messages dealing with the most varied of human activities, and the more he knows about these activities, the ensier his task.
(2) Access to a large library of current litorature and wide and direct contacts with sources of collateral information. These often afford clues as to the contents of specific massages. For axample, to be able instantly to have at his disposil a newspaper report or a personal report of events described or reforred to in a message under investigation goes a long wry townrd simplifying or facilitating solution. Government cryptannlysts are sometimes fortunately situnt 3 d in this respect, ospecinlly whore various ingoncios work in hirmony.

REF ID:A64644

- 7 -
(3) Proper coordination of effort. This includes the organization of cryptanalytic personnel into harmonious, efficient teams of cooperating individuals.
(4) Under mental equipment he would also include the faculty of being able to concentrate on a problem for rather long periods of time, without distraction, nervous irritability, and impatience. The strain under which cryptanalytic studies are necessarily conducted is quite severe and too long-continued application has the effect of draining nervous energy to an unwholesome degree, so that a word or two of caution may not here be out of place. One should continue at work only so long as a peaceful, calm spirit prevails, whether the work is fruitful or not. But just as soon as the mind becomes wearied with the exertion, or just as soon as a feeling of hopelessness or mental fatigue intorvenes, it is better to stop completoly and turn to other activities, rost, or play. It is ossential to -emark that systomatization and orderliness of work are aids in reducing nervous tension and irritability. On this account it is better to take the time to prepare the data carefully, rewrite the text if necessary, and so on, rather than work with slipshod, incomplete, or improperly arranged material.
(5) A retentive memory is an important asset to cryptanalytic skill, especially in the solution of codes. The ability to remember individual groups, their approximate locations in other messages, the associations they form with other groups, their peculiarities and similarities saves much wear and tear of the mental machinery, as well as much time in looking up these groups in indexes.
f. It may be advisable to add a word or two at this point to prepare the student to expect slight mental jarrs and tensions which will almost inevitably come to him in the conscientious study of this and the subsequent texts. The present author is well aware of the complaint of students that authors of texts on cryptanalysis baso much of their explanation upon their fore-knowledge of the "answer"- which the student does not know while he is attempting to follow tho solution with an unbiased mind. Thoy complain too that those authors uso such oxprossions as "obviously", "naturally", "of course", "It is evident that", and so on, whon tho circumstances soom not at all to warrant thoir usc. Thoro is no quostion but that this sort of troatment is apt to discourage the studont, ospocially whon tho point olucidated bocomes cloar to him only aftor many hours labor, whoroas, according to the book, the author noted the weak spot'at the first moment's inspection. The present author can only promise to try to avoid making the steps appear to be much more simple than they really are, and to suppress

REF ID:A64644

- 8 -

glaring instances of unjustifiable "jumping at conclusions". At the same time he must indicate that for pedagogical reasons in many cases a message has been consciously "manipulated" so as to allow certain principles to become more obvious in the illustrative examples than they ever are in practical work. During the course of some of the explanations attention will even be directed to cases of unjustified inforences. Furthermore, of the student who is quick in observation and deduction, the author will only ask that he bear in aind that if the olucidation of cortain principles seoms prolix and occupies more space than nocessary, this is occasioned by the author's desire to carry tho oxplanation forward in very short, oasilycomprohended, and plainly-duscribod stops, for the benofit of students who ar. parhaps a bit slowor to grasp but who, onco they understand, aro able to retain and apply principlos slowly learnod just as woll, if not bottor than the students who loarn moro quickly.
3. Validity of results of cryptanalysis. - Valid, or authentic cryptanalytic solutions cennot and do not roprosont "opinions" of the cryptanalyst. They are valid only so far as they are wholly objective, and are susceptible of demonstration and proof, employing authentic, objective methods. It should hardly be necessary (but an attitude frequently encountered among laymen makes it advisable) to indicate that the validity of the results achieved by uny serious cryptanalytic studies on authentic material rests upon the same sure foundations and are reached by the same general steps as the results achieved by any other scientific studies; viz., observation, hypothesis, deduction and induction, and confirmatory experiment. Implied in the latter is the possibility that two or more qualified investigators, each working independently upon the same materinl, will achieve identical (or practically identical) results. Occasionally a pseudo-cryptanalyst offers "solutions" which cannot withstend such tests; a second, unbiased, investigator working independently either cannot consistently apply the methods alleged to have been applied by the pseudocryptanalyst, or else, if he c?n spply them at all, the results (plaintext translations) are far different in the two cases. The reason for this is that in such cases it is generally found that the "methods" are not clear-cut, strairhtforward or mathematical in character. Instead, they often involve the making of judgments on matters too tenuous to measure, weigh, or otherwise subject to careful scrutiny. In such cases, the conclusion to which the unprejudiced observer is forced to come is that the alleged "solution" obtained by the first investigator, the pseudocryptanalyst, is purely subjective. In nearly all cases where this has happened (and they occur from time to time) there has been uncovered nothing which can in any way be used to impugn the integrity of the pseudo-cryptanalyst. The worst that can be said of him is that he has become a victim of a special or peculiar form of solf-delusion, and that his dosire to solve the problom, usually in accord with somo previouslyformed opinion, or notion, has over-balanced, or undormined, his judgment
and good sense 1

1 Specific reference can be made to the following typical "case histories":

Donnelly, Ignatius, The $\hat{\text { Great Cryptogram. Chicago, } 1888 .}$
Owen, Orville W., Sir Francis Bacon's Gipher Story. Detroit, 1895.
Callup, Elizabeth Wells, Francis Bacon's Biliteral Cipher. Detroit, 1900.
Margoliouth, \downarrow. S., The Homer of Aristotle. Oxford, 1923.
Newbold, William Romaine, The Cipher of Roger Bacon. Philadelphia, 1928.
(For a scholarly and complete demolition of Profossor Newbold's
work, see an article entitled "Roger Bacon and the Voynich MS", by
John M. Kanly, in Speculum, Vol. VI, No. 3, July 1931.)
Arensberg, Jalter Conrad, The Cryptography of Shakespeare. Los Angeles, 1922.

The Shakespearean hiystery. Pittsburgh, 1928. Tho Baconian Keys. Pittsburgh, 1928.
Feely, Joseph Martin, The Shakespearean Cypher. Rochostor, N. Y., 193l. Deciphering Shakespoare. Rochoster, N. Y., 1934.

SECTION II

FUMJAMAENTAL FRIJCIPLES

The four basic operations in cryptanalysis. 4
The determination of the language employed. 5
The determination of the general system 6
The reconstruction of the specific key. 7
The reconstruction of the plain text. 8
4. The four basic operations in cryptanalysis. - a. The solution of practically every cryptogram involves four fundamental operations or steps:
(1) The determination of the language employed in the plain-text version.
(2) The determination of the general system of cryptography employed.
(3) The reconstruction of the specific key in the case of a cipher system, or the reconstruction, partial or complete, of the code book, in the case of a code system; or both, in the case of an enciphered code system.
(4) The reconstruction or establishment of the plain text.
b. These operations will be taken up in the order in which they are given above and in which thoy usually are performed in the solution of cryptograms, although occesionally the socond stop mey precedo the first.
5. The determination of the langunge employed. - n. There is not much that need be said with respect to this operation except that the determination of the language employed seldom comes into question in the case of studies made of the cryptograms of an organized enemy. By this is meant that during war time the enemy is of course known, and it follows, therefore, that the language he employs in his messages will almost certainly be his native or mother tongue. Only occasionally nowadays is this rule broken. Formerly it often happened, or it might have indeed been the general rule, that the language used in diplomatic correspondence was not the mother tongue, but French. In isolated instances during the World War, the Gormans usod English when their own language could for ono roason or anoth3r not be omployed. For oxampla, for a yoar or two bofore the ontry of the Unitod States into that war, during the time morica was noutral and the Gorman Government maintainod its ombassy in Washington, the mossagos oxchanged betweon tho Foroign Office in Berlin and tho Embassy in Fashington wore cryptographed in English, and a copy of tho codo usod was deposited with the Department of State and our censor. Another instance is found in the case of certain Hindu conspirators who were associated with and partially financed by the German Government in 1915 and 1916; they employed English as

REF ID:A64644

- 11 -
the language of their cryptorraphic messades. Dccasionally the cryptograms of enemy agents may $b \in$ in a language dif"cerent Srom that of the enemy. But in general these tre, as has been aaid, isolated instances; as a rule, the language used in cryptograms exchanged becween members of large organizations is the mother tongue of the correspondents. Where this ia not the case, that is, when cryptograms of unknown origin must be studied, the cryptanelyst looks for any indications on the cryptograms themselves which mey lead to a conclusion as to the language employed. Address, signature, and plain-language words in the proamble or in the body of the text all come under careful scrutiny, as rell as all extraneous circurnstances connected "rith the manner in which the cryptograms were obtained, the person on whor they were found, or the locale of their origin and destination.
b. In special cases, or under special circumstances a clue to the language enployed is found in the neture and composition of the cryptographic text itself. For oxarple, if the letters K and M are entiroly absent or appear very rarely in massages, it may indicato that the language is Spanish, for these letters aro aisent in the alphabet of that language and are used only to spell foreign vords or nemes. Thr presence of accented letters or letters marked with special signs of one sort or anothor, peculiar to certain languages, will sometimes indicate the language used. The Japanese Llorse tclegraph alphabst and the Russian morse telegrarh alphabet contajn combinfions of dots and dashes vhich are peculiar to those alphabets and thus the inturception of messages containing these special worse combinations at once indicates the language involved. Finally, there are cortain peculiarities of clphrbetic 1 ngusages wich, in certain typis of cryptograms (pure trensposition), give cluos as to the languagc used. For example, the frecuent digraph CH, in Gormon, leads to the presence, in cryptograns of the type mentioned, of mony isolated C's and H's; if this is noted, the cryptogrem may be assumed to bo in German.
c. In some cases it is perfectiy possible to perforn certain steps in cryptanalysis before the languaga of the cryptozram has been definitely dotermined. Frequency studics, for cximplo, may bu nado and alalytic processes performed without thjis knowludge, and by a cryptanelyst pholly unfomiliar with the language even if it has bren identifice, or who knows only onough about the languege to unable him io recognize valid combinations of letters, syllables, or fow cammon words in that language. He may, after this, call to his assistance a transle tor who may not be a cryptanalyst but who can meterially nid in making necessary nasumptions based upon his special knowledge of the characteristica of the language in question. lhus, cooperation botween cryptanalyst and translator results in solution. ${ }^{1}$
1 The writor has seen in print statements that "during the Horld War decoded messages in Japanene and Russian mithout knowing a mord of fither language." H_{e} has even hecrd alleged cryptanalysts mak: such fantastic claims. But to say that it is possible to solve a cryptogrem in a forcign lenguage "without knowing a word of that languago" is quite o different thing from saying thnt it is possiblc to do so with only a slight knowledge of the language. The absurdity end amount of exagroration contained in the former statement will soon become obvious to the student. It may be stated without cavil that the better the cryptanslyat's knowledge of the language, the easier is his work.

REF ID:A64644

- 12 -

6. The deternination of the peneral system. - a. Except in the case of the more simple types of cryptograme, the determination of the general system according to which 2 given cryptorram has been produced is usually a difficult, if not the most difficult, step in its solution. The reason for this is not hard to find.
b. As will become apparent to the student as he proceeds with his study, in the final analysis, the solution of every cryptogram involving a form of substitution depends upon its reduction to monoal phabetic terms, if it is not originally in those terms. This is true not only of ordinary substitution ciphers, but also of combined substitution-transposition ciphers, and of enciphered code. If the cryptogram must be reduced to monoalphabetic terms, the manner of its accomplishment is either indicated by the cryptogram itself, by external or internal phenomena which become apparent to the cryptanalyst as he studies the cryptogram. If this is impossible, or too difficult the cryptanalyst must, by one means or another, discover how to accomplish this reduction by bringing to bear all the special or collateral information he can get from all the sources at his command. If both these possibilities fail him, there is little left but the long, tedious, and often fruitless process of elimination. In the case of transposition ciphers of the more complex type, the discovery of the basic method is often simply a matter of long and tedious elimination of possibilities. For cryptanalysis has unfortunately not yet attained and may indeed never attain the precision found today in qualitative analysis in chemistry, for example, where the analytic process is absolutely clear cut and exact in its dichotomy. A few words in explanation of what is meant may not be amiss. When a chemist seeks to determine the identity of an unknown substance, he applies certain specific reagents to the substance and in a specific sequence. The first reagent tolls him definitely into which of two primary classes the unknown substance falls, say class A. He then applies a second tost with another specific reagent, which tells him again quite dofinitoly into which of two socondary classes the unknown substance falls, and so on, until finally he has reduced the unknown substance to its simplest terns and has found out what it is. In striking contrast to this situation, cryptanalysis affords exceadingly few "reagents" or tests that nay bo appliad to determine positively that a given cipher belongs to on? or the other of two systems yiclding extornally sirilar results. And this is what makos tho analysis of an isolated, complex cryptogram so difficult. Noto the limiting cdjoctive "isolatsd" in tho foregoing sontence, for it is usod advisedly. It is not often that the goneral systom fails to discloss itsulf or cannot be discovored by painstaking invostigation whon thoro is a groat volums of tuxt accumulating from a regular traffic between numerous correspondents in a large organization. Sooner or later the system becomes known, either as the result of blunders and carelessness on the part of the personnel entrusted with the cryptographing of the messages, or the accumulation of text itself makes possible the determination of the general system by cryptanalytic studies. But in the case of a single or even a few isolated cryptograms concerning which little or no information can be gained by the cryptanalyst, he is often unable, without a knowledge of, or a shrewd guess as to the general system employed, to decompose the heterogeneous text of the cryptogram into homogeneous,

REF ID:A64644

monoalphabetic text, which is the ultimate and essential step in analysis. The only knowledge that the cryptanalyst can bring to his aid in this most difficult step is that gained by long experience and practice in the analysis of many different types of systems.
c. On account of the complexities surrounding this particular phase of cryptanalysis, and because in any scheme of analysis based upon successive eliminations of alternatives the analyst can only progress as far as the extent of his own innowledge of all the possible alturnatives will permit, it is necessary that detailod discussion of the eliminative process be post poned until the studunt has covorod most of tie field. For example, the student will parhaps want to know at once how ho can distinguish botweon a cryptogrom that is in code or encipherod code from ono that is in cipher. It is at this stage of his studies impracticable to give him any helpful indications on his question. In return it may be askod of him why he should expect to be abls to do this in the varly stagos of his studies when ofton tho experionced export cryptanalyst is baffled on the sama scoro.
d. Nevertholess, in lieu of more procise tests not yot discovered, a gonoral guide that may be useful in cryptanalysis will bo built up, stop by stop as tho studonl progrossos, in tho form of a sorics of charts comprising what may bo dosignatod "An Analytical Koy For Cryptanalysis." (See Par. 50.) It may be of assistance to the student if, as he proceeds, he will carefully study the charts and note the place which the particular cipher he is solving occupies in the general cryptanalytic panorama. They admittedly constitute only very brief outlines, and can therefore be of but little direct assistance to him in the analysis of the more complex types of ciphers he may encounter later on. So far as they go, however, they may be found to be quite useful in the study of elementary cryptanalysis. For the experienced cryptanalyst they can sorve only as a means of assuring that no possible step or process is inadvertently overlooked in attempts to solve a difficult cipher.
e. hiuch of the labor involved in cryptanalytic work, as referred to in Par. 2, is connected with this determination of the general system. The preparation of the text, its rewriting in difforent forms, sometimes being rewritten in a half dozon ways, the recording of letters, the establishment of frequencios of occurrences of letters, comparisons and experiments mada with known material of similar character, and 50 on, constitute much labor that is most ofton indispensable, but which somotimes turns out to have been wholly unnecessary, or in vain. In a rocent treatisc ${ }^{1}$ it is stated quite boldly that "this work onco done, the determination of the systom is ofton relativoly sasy." This statomunt can cortainly apply only to the simpler typos of ciphors; it is ontiruly misloading as rogards the much more frequontly oncountorod complex cryptograms of modern timos.

[^2]
REF ID:A64644

- 14 -

7. The reconstruction of tho spocific kuy. - a. Nearly all practical cryptographic methods require the use of a specific key to guide, control or modify the various steps under the general system. Once the latter has been disclosed, discovered, or has otherwise come into the possession of the cryptanalyst, the noxt stop in solution is to determine, if necessary, and if possible, the specific key that was employed to cryptorraph the message or mossages under examination. This deturmination may not be in complete detail; it may go only so far as to load to a knowledge of the number of alphabets involvad in a substitution cipho:, or the number of columns involved in a transposition cipher, or that a one-part codo has been used, in tha cass of a codo system. But it is ofton dosirable to detormino the spocific koy in as comploto a form and with as much dotril as possible, for this information will very froquently be usoful in the solution of subsoquont cryptograms oxchanged betwoon tho samo corrospondents, sinco the nture of the spocific koy in a solvod casu may be cxpoctod to givo clues to the spscific key in an unsolved case.
b. Frequently, however, the reconstruction of the key is not a prerequisite to, and does not constitute an absolutely necessary preliminary step in the fourth basic operation, the reconstruction or establishment of the plain text. In many cases, indeed, the two processes are carried along simultaneously, the one assisting the other, until in the f'inal stages both have been completed in their entireties. In still other cases the reconstruction of the specific key ray succeed instead of precede the reconstruction of the plain text, and is accomplished purely as a matter of academic interest; or the specific key may, in unusual cases, never be reconstructed.
8. The reconstruction of the plain text. - a. Little need be said at this point on this phase of cryptanalysis. The process usually consists, in the case of substitution ciphers, in the establishment of equivalency between specific letters of the cipher text and the plain text, letter by letter, pair by pair, and so on, depending upon the particular type of substitution system involvad. In the case of transposition ciphers, the process consists in rearranging the olements of the cipher text, letter by lotter, pair by pair, or occasionally word by word, dopending upon the particular typo of transposition system involved, until the letters have been returned to their original plain-text ordar. In the case of code, the process consists in dotormining the meaning of each code group and inserting this moaning in the code toxt to reestablish the original plain text.
b. The foregoing processes do not, as a rule, begin at the beginning of a message and continue letter by letter, or group by group in sequence up to the very end of the message. The establisnnent of values of cipher letters in substitution methods, or of the positions to which cipher letters should be transferred to form the plain text in the case of transposition methods, comes at very irregular intervals in the process. At first only one or two values scattered here and there throughout the text may ap. pear; these then form the "skaletons" of words, upon which further work, by a continuation of the reconstruction process, is made possible; in the

REF ID:A64644

$$
-15 \text { - }
$$

end the complete or nearly completel toxt is established.
c. In the case of cryptograms in a foreign language, the translation of the solved messajes is a final and necossary step, but is not to be considered as a cryptenalytic process. However, it is commonly the case that the translation process will be carried on simultaneously with the cryptanalytic, and will aid tho latter, ospecially when there are lacunae which may be filled in from the context. (Soo also Yar. 5 c in this connection.)

Sometimes in the caso of code, tho meaning of a fow code groups may be lacking, bucause there is insufficient text to establish their meaning.

REF ID:A64644

- 16 -

SECTION III.

FREVMLCY DIST-IIBUSIOINS

Abstract

Paragraph The simple or monoliteral-frequency distribution 9 Important features of the normal monoliteral frequency, bardistribution. 10 Constancy of the standard or normal monoliteral-frequency distribution. 11 9. The simple or monoliteral-Prequency distribution. - a. It has long been knorm to cryptographers and typorraphers that the letters composing the words of any intelligible written cext composed in any language wich is alphabetic in construction are employed with greatly varying frequencies. For example, if on cross-section paper a simple graph, shown in Fig. 1 , called a monoliteral freguency, bar-distribution, is dade of the letters comprising the words of the preceding sentence, the variation in frequency is strikingly demonstrated. It is seen that wherees certain letters, such as H, I, L, N, O, K, S, and T, are emplojed very frequently, other letters, such as C, \mathcal{X}, P and $i j$ are employed not nearly so frequently, while still other letters, such as $P, J, 2, V$, and Z are employed either seldom or not at all.

b. If a similar graph is now made of the letters comprising the words of the second sentence in the preceding parasraph, the graph show in Fig. 2 is obtained. Both sentences have exactly the same number of letters (200).

REF ID:A64644

- 17 -
c. Although each of these two graphs exhibits great variation in the relative frequencies with which different letters are employed in the sentences to vhich they apply, no marked differences are exhibited between the frequencies of the same letter in the two graphs. Compare, for example, the frequencies of A_{1}, B, C, ... in Fig. 1 with those of A, B, C, 111 in Fig. 2. Aside frou one or two exceptions, as in the case of the letter F or the letter N, these tyo graphs agree rather strikingly.
d. This agreement, or sinilarity, would be practically complete if the two texts were much longer, for example, five times as long. In fact, when two texts of similar character, each containing more than 1000 letters, are compared, it would be found that the respective frequencies of the 26 letters composing the two graphs show only very slight differences. This means, in other words, that in normal text each letter of the alphabet occurs with a rather constant or characteristic frequency which it tends to approximate, depending upon the length of the text analyzed. the longer the text (within certain limits), the closer will be the approximation. ${ }^{1}$
Q. An experiinent along these lines will be convincing. A series of 260 official telegrams ${ }^{2}$ passing through the "ar Department iessaje Center was examined statistically. The messages were divided into five sets, each totaling approximately 10,000 lettera, and the five distributions shown in Table 1 were obtained.
f. If the five distributions in Table 1 are summed, the results are as shown in Table 2.
g. The frequencies noted in subparagraph f, when reduced to the basis of 1,000 letters and then used as a basis for constructing a simple chart that will exhibit the variations in frequency in a striking manner, yield the following graph which is hereafter designated as the normal, or standard monoliteral frequency, bar-distribution for English telegraphic plain text:

1 See footnote 1 to page 23.

[^3]
NINN

MRINTN MNINTNINIT
 MNININN NNINIII WINDIN

INKINTNUNININN

NNMMMXNMN

$\begin{array}{lllllllllllllllllllllllll}A & B & C & D & \mathrm{E} & \mathrm{F} & \mathrm{G} & \mathrm{H} & \mathrm{I} & \mathrm{J} & \mathrm{K} & \mathrm{L} & \mathrm{Ii} & \mathrm{N} & 0 & \mathrm{P} & \text { ? } & \mathrm{R} & \mathrm{S} & \mathrm{T} & \mathrm{U} & \mathrm{V} & \mathrm{W} & \mathrm{X} & Y\end{array}$ $\begin{array}{lllllllllllllllllllll}74 & 10 & 31 & 42130 & 28 & 16 & 34 & 74 & 2 & 3 & 36 & 25 & 79 & 75 & 27 & 3 & 76 & 61 & 92 & 26 & 15 \\ 16 & 5 & 19 & 1\end{array}$
10. Impo tant features of the noral, monoliteral-frequency, bardistribution. - a. When the graph shown in Fig. 3 is studied in detail, the following features are apparent.
(1) It is quite irregular in appearance. This is because the letters are used with greatly varying frequencies, as discussed in the preceding paragraph. Ihis irregular appearance is often described by saying that tine rraph shows marked crests and troughs, that is, points of high frequency and low frequency.

REF ID：A．64644

TMBLE＇1－A
Absoluto froquencies of lattirs appoaring in five sets of Govorm－ mental plain－text tologrums，e．ach aet containing 10，000 letters．

Arraned alphabetically．

Message No． 1	Miescage No． 2	miessage No． 3	Message No． 4	Mossage No． 5
A－738	A－785	人－681	A－740	A－741
B－ 104	B－ 103	B－-38	B－ 35	3－99
C－ 319	C－300	C－ 238	C－ 326	C－ 301
D－ 383	D－－ 413	D－ 423	D－ 451	D－ 448
E－1367	E－123a	E－1292	F－1270	E -1275
F－253	F－287	F－308	F－287	F－281
G－166	G－ 175	C－161	G－167	G－150
H－ 31.0	H－351	H－835	H－349	H－ 349
I－742	I－ 750	I－ 737	I－ 700	I－ 9.97
J－ 18	J－17	J－10	J－ 2.	J－ 15
K－ 36	K． 38	K－2n	K－2L	K－31
L－ 365	L－ 393	L－333	1－38G	L－ 34.4
M－242	M－240	戉－238	IM－ 249	M－ 2.68
N－786	N－794	N－815	N－800	N－780
0－685	0－770	0－73．	0－756	0－762
P－241	P－272	P－3．17	P－24．5	P－260
Q－ 40	Q－ 22	C－45	Q－ 38	Q－ 30
R－760	R－745	If－ 75%	R－735	R－786
S－ 658	S－ 583	S－585	S－628	S－ 604
T－936	T－ 879	T－894	T－ 958	T－928
U－ 270	U－233	U－31？	U－247	U－238
V－ 163	V－17\％	V－14？	V－133	V－155
W－166	『－ 163	Th－ 136	W－1．33	［T－ 182
X－ 43	$\mathrm{X}-50$	X－ 14	X－5＇s	X－ 41
Y－ 191	Y－155	Y－ 179	Y－ 213	Y－ 229
Z－14	Z－17	$\mathrm{Z}-2$	$\mathrm{Z}-11$	$2-5$
Totals				
10，000	10，000	10，000	10，000	10，000
		Table 2－		

Absolute frequencies of lettcrs appearing in the combjincd five sets of messages totalling 50，000 lettcrs arr＇nged alphabetically．

A－ 3683	$G-819$	$\mathrm{I}-1821$	$\mathrm{Q}-175$	$\mathrm{~V}-766$
$\mathrm{~B}-487$	$\mathrm{H}-1694$	$\mathrm{M}-1237$	$\mathrm{R}-3788$	$\mathrm{~W}-780$
$\mathrm{C}-1534$.	$\mathrm{I}-3676$.	$\mathrm{N}-3975$	$\mathrm{~S}-3058$	$\mathrm{X}-231$
$\mathrm{D}-2122$	$\mathrm{~J}-82$	$0-3764$	$\mathrm{~T}-4595$	$\mathrm{Y}=967$
$\mathrm{E}-6498$	$\mathrm{~K}-148$	$\mathrm{P}-1335$	$\mathrm{U}-1300$	$\mathrm{Z}=49$
$\mathrm{~F}-1416$				

-RWE ID:A64644

(2) The relative positions in which the crests and troughs fall with the graph, that is, the spatial relations of the crests and troushs, are rather definitely fixed and are determined by circumstances which have been explained in a precedinn text. ${ }^{1}$
(3) The relative heirhts and depths of the crests and trourhs within the graph, that is, the linear extensions of the lines narking the respective frequencies, are also rather definitely fixed, as would be found if an equal volume of si’ular text were analyzed.
(4) The most prominent crests are marked by the vowels i, $\mathcal{A}, \mathrm{I}, \mathrm{O}$, and the consonants $\mathrm{N}, \mathrm{i}, \mathrm{S}, \mathrm{T}$; the most prominent troughs are marked by the consonants T, L, $?, X$, and Z.
(5) The important data are sunmarized in tabulai form in Table 3.
T. 3 BL 3

		Frequency	$\%$ of Total	1o of Total in Round Numbers
	6 Vowels. A 工 I O O U Y \%	- 398	39.8	40
	$\int \begin{aligned} & 5 \text { High Frequency } \\ & (D \text { if } R S T) \end{aligned}$	$\text { - } 350$	35.0	35
20	$\text { Consonants } 10 \text {, edium Frequency. }$	- 238	23.8	24
	$\left(\begin{array}{l}5 \text { Low Frequency, . . } \\ (\mathrm{J} \mathrm{L} \text { ? } \mathrm{X} \text {) }\end{array}\right.$	14	1.4	1
	Total.	$\overline{1000}$	$\overline{100.0}$	$\overline{100}$

(6) The frequencies of the letters of the alphabet are as follows.

$A-74$	$G-16$	$L-36$	$G-3$	$V-15$
$B-10$	$H-34$	$L-25$	$R-76$	$V-16$
$G-31$	$I-74$	$N-79$	$S-61$	$X-Y$
$J-42$	$J-2$	$O-75$	$T-92$	$Y-19$
$J-130$	$G-3$	$Y-27$	$U-26$	$Z-1$

F-28
(7) The relative order of frequency of the letters is as
follows.

7 -130	I-74	C-31	Y-19	$\bar{\sim}-5$
T-92	S-61	F-28	G-16	$r-3$
IN - 79	D - 42	P-27	1-16	K-3
-1-76	L-36	U - 26	V-15	J-. 2
0-75	H - 34	w-25	B-10	Z - 1

A. 74
(8) The four vowels $\dot{A}, ~ \lambda, ~ I, ~ O$ (combined frequency 353) and the four consonants iJ, R, S, i (combined frequency 308) form 661 out of every 1,000 letters of plain text; in other vords, less than $1 / 3$ of the "alphabet is employed in writing $2 / 3$ of normal plain text.

[^4]
REF ID:A64644
 - 21 -

b. The data given in Fig. 3 and Table 3 represent the relative frequencies found in a large volume of English telegraphic text of a governmental, administrative character. These frequencies will vary somewhat with the nature of the text analyzed. For example, if an equal number of telegrams dealing solely with commercial transactions in the leather industry were studied statistically, the frequencies would be slightly different because of the repeated occurrence of words peculier to that industry. Again, if an equal number of telegrams dealing solely with military messages of a tactical character were studied statistically, the frequencies would differ slightly from those found above for general governmental messages of an administrative character.
c. If ordinary English literary toxt (such as may be found in any book, news paper, or printed document) were analyzed, the frequencies of certain letters would be changed to an appreciable degree. This is because in telegraphic text words which are not strictly essential for intelligibility (such as the definite and indofinite articles, certain prepositions, con,junctions and pronouns) aro omitted. In addition, certain essential words, such as "stop", "period", "comma", and the like, which are usually indicated in writton or printed mattor by symbols not easy to transmit telographically and which must therefore be spelled out in telegrams, occur very frequently. Furthermore, telegraphic text often employs longer and more uncommon words than does ordinary newspaper or book text.
d. As a matter of fact, other tables compiled in the Office of the Chief Signal Officer gave slizhtly different results, depending upon the source of the text. For example, three tables based upon 75,000, 100,000, and 136,257 letters taken from various sources (telegrams, newspapers, magazine articles, books of fiction) gave as the relative order of frequency for the first 10 letters the following.

> For 75,000 letters : T T R N O A S D L
> For 100,000 letters : ETRINOASDL
> For 136,257 letters $E T R I N O I S L D$
e. Frequency data applicable purely to printed military text vere compiled by Hitt 1 , from a study of 10,000 letters taken from orders and reports. The frequencies found by him are given in Tables 4 and 5.
11. Constancy of the standard or normal, monoliteral-froquency distribution. - a. The relative frequencies disclosed by the statistical study of large volumes of text may be considered to be tho standard or normal frequencios of tho lotters of writton English. Counts mado of smaller volumes of text aill tond to approximato these normal froquencies,

[^5]
REF ID:A64644

TABLE 4

Froquoncy Table for 10,000 litt,rs of literary Inglish, as compilod by Hitt.

Al phibetically arrangod.

$A-778$	$G-174$	$L-372$	$Q-8$	$V-112$
$B-141$	$H-595$	N -288	$R-651$	$W-176$
$C-296$	$I-667$	$I N-686$	$S-622$	$X-27$
$D-402$	$J-51$	$O-807$	$T-855$	$Y-196$
$E-1277$	$K-74$	$P-223$	$U-308$	$Z-17$
$F-197$				

Arranged according to relativo froquoncy.

E-1277	R-651	U - 308	Y-196	K - 74
T - 855	$S-622$	C-296	W-176	J - 51
0-807	H-595	M-288	$G-174$	X - 27
A - 778	D - 402	P-223	B - 141	Z - 17
is - 686	L-372	F-197	$V-112$	Q-8
I - 667				

Hitt also compilod data for tolegraphic text (but does not stato what kind of messages) and gives the following table:

TABLE 5

Frequency Table for 10,000 letters of telegraphic English, as compiled by Hitt.

Al phabotically arranged.

A -813	G - 201	L - 392	Q-38	V-136
B - 149	H-386	上-273	R-677	I - 166
C - 306	I-711		S - 656	X - 51
D - 417	J - 42	0-844	T-634	Y-208
ㅍ -1319	K-88	$P-243$	U - 321	Z - 6

Arranged according to relative frequency.

REF ID:A64644

and, aithin certain limits, ${ }^{1}$ the smaller the volume, the lower will be the degree of approximation to tho normal, until, in the case of a very short message, the normal proportions may not obtain at all. It is advisable that the student fix this fact firmly in mind, for the sooner he realizes the true nature of any data relative to the frequency of occurrence of letters in text, the less often will his labors toward the solution of specific ciphers be thwarted and retarded by too strict an adherence to these generalized principles of frequency. He should constantly bear in mind that such data are merely statistical generalizations, that they will be found to hold strictly true only in large volumes of text, and that thoy may not even be approximated in short messages.
b. Nevertheless the normal frequency standard or the "normal expectancy" for any alphabetic language is, in the last analysis, the best guide to, and the usual basis for, the solution of cryptograms of a certain type. It is useful, therefore, to reduce the normal, monoliteral frequency, bar-distribution to a basis that more or less closely approximates the volume of text which the cryptanalyst most often encounters in individual cryptograms. As regnrds length of messages, counting only the letters in the body, and excluding address and signature, a study of the 260 talegrams referred to in paragraph 9 shows that the arithnotical average is 217 letters; the statistical menn, or weighted avernge ${ }^{2}$, however, is 191 lottors. These two results are, however, close onough together to warrant the statement that the average length of tolegrams is approximately 200 letters. The frequencies given in Par. 9 f have therefore been reduced to a basis of 200 letters, and the following monoliteral-frequency distribution may be taken as showing the most typical distribution to be expected in 200 letters of telegraphic English text:

It is useless to go beyond a certain limit in establishing the normal-frequency distribution for a given language. As a striking instance of this fact, witness the frequency study made by an indefatigable German, Kaeding, who in 1898 made a count of the letters in about $11,000,000$ words, totalling about 62,000,000 letters in German text. When reduced to a percentage basis, and when the relative order of frequency was determined, the results he obtained differed very little from the results obtained by Kasiski, a German cryptographer, from a count of only 1060 letters. See Kaeding, "Haeufigkeitswoorterbuch", Steglitz, 1898; Kasiski, "Die Geheimschriften und die Dechiffrir-Kunst", Berlin, 1363.
2 The arithmetical average is obtained by adding each different length and dividing by the number of different-length messages; the mean is obtained by multiplying each different length by the number of messages of that length, adding all products, and dividing by the total number of messages.

- 2REF ID:A64644

c. The student should take careful note of the appoarance of the distribution ${ }^{1}$ shown in Fig. 4, for it will be of much assistance to him in the early stages of his study. The manner of setting down the tallies should be followed by him in making his own distributions, indicating every fifth occurrence of a letter by an oblique tally. This procedure almost automatically shows the total number of occurrences for each letter, and yet does not destroy the graphical appearance of the distribution, especially if care is taken to use approximately the same amount of space for each set of five tallies. Cross-section paper is very useful for this purpose.

SECTION IV

FUNDAMESTAL USES OF THE MONOLITERAL FREQUGNCY DISTRIBUTION

The four facts which can be determined from a study of the monoliteral-frequency distribution for a cryptogram. .	Paragraph - 12
Determining the class to which a cipher belongs	13
Determining whether a substitution cipher is monoalphabetic or polyalphabetic.	14
Determining whether the cipher alphabet is a standard, or a mixed cipher alphabet.	15
Determining whether the standard cipher alphabet is direct or reversed.	16

12. The four facts which can be determined from a study of the mono-literal-frequency distribution for a cryptogram. - a. The following four facts (to be explained subsequently) can usually be determined from an inspection of the monoliteral frequency, bar-distribution for a given ciphor message of average length, composed of lettors:
(1) Whether the cipher belongs to the substitution or the transposition class;
(2) If to the former, whether it is monoalphabetic or polyalphabetic in character;
l The use of the terms "distribution" and "frequency distribution", instead of "table" and "frequency table", respectively, is considered advisable from the point of view of consistency with the usual statistical nomenclature. Then data are given in tabular form, with frequencies indicated by numbers, then they may properly be said to be set out in the form of a table. Then, however, the same data are distributed in a chart which partakes of the nature of a graph, with the data indicated by horizontal or vertical linear extensions, or by a curve connecting points corresponding to quantities, then it is more proper to call such a graphic representation of the data a bar-distribution.

REF ID:A64644
 - 25 -

(3) If monoal phabotic, whether the cipher alpha-bet is a standard cipher alphabet or a mixed cipher alphabat;
(4) If standard, whether it is a direct or reversed standard ci.pher alphabet.
b. For immediate purposes the first two of the foregoing determinations are quite important and will be discussed in detail in the next two subparasraphs, the other two determinations will be touchod upon very briefly, leaving their detailed discussion for subsequent sections of the text.
13. Detormining the class to which a cipher belongs. - - . The determination of the class to which a cipher belongs is usually a relatively oasy matter bocause of the fundmental differonce in the nature of transposition and of substitution as cryptographic processos. In a transposition ciphor the original lotturs of the plain toxt have meroly been roarranged, without any change whatsoever in their identities, that is, in the conventional values they have in the normal alphabet. Hence, the numbers of vovels (A, E, I, O, U, Y), high-frequency consonants (D, N, R, S, T), medium-frequency consonants ($B, C, F, G, H, L, M, P, V, T$), and low-frequency consonants (J, K, Q, X, Z) are exactly the same in the cryptogram as they are in the plain-text message. Therefore, the percentages of vowels, high, medium, and low-frequency consonants are the same in the transposed text as in the equivalent plain text. In a substitution cipher, on the other hand, the identities of the original letters of the plain text have been changed, that is, the conventional values they have in the normal alphabet have been altered. Consequently, if a count is made of the various letiers present in such a cryptogram, it will be found that the number of vowels, high, medium, and low-frequency consonants will usually be quite different in the cryptogram from what they are in the original plain-text message. Therefore, the percentages of vovels, high, medium, and low-frequency consonants are usually quite different in the substitution text from what they are in the equivalent plain toxt. From these considerations it follows that if in a specific cryptogram the percentages of vowols, high, nedium, and low-frequency consonants are approximatcly the same as would be oxpected in normal plain toxt, the cryptosram probably belongs to the transposition class; if these percentages are quite different from those to be expected in normal plain text tho cryptogram probably belongs to the substitution class.
b. In the precoding subparagraph the word "probably" was emphasized by undorscoring it, for thors can be no cortainty in ovary case of this dotormination. Usually those porcentages in a transposition ciphor are closo to tho normal porcentagos for plain toxt; usually, in a substitution cipher, they are far different from the normal porcentages for plain text. But occasionally a cipher message is oncountored which is difficult to classify with a reasonable dogree of certainty because the message is too short for the gonoral principlos of froquency to manifost thomsolves. It is cloar that if in actual messages thero woro no variation whatevor

REF ID:A64644

- 26 -
from the normal vowel and consonant percentages given in Table 3, the determination of the class to wiach a specific cryptogram belongs would be an extremely simple uatter. But unfortunately there is always some variation or deviation from the normal. Intuition suggests that as messages decrease in length there may be a greater and greater departure from the normal proportions of vowels, high, medium and lowfrequency consonants, until in very short messages the normal proportions may not hold at all. Similarly, as messages increase in length there may be a lesser and lesser departure from the normal proportions, until in messages totalling a thousand or more letters there may be no difference at all between the actual and the theoretical proportions. But intuition is not enough, for in dealing with specific messages of the length of those commonly encountered in practical work the question sometimes arises as to exactly how much deviation from the normal proportions may be allowed for in a cryptorram that shows a considerable amount of deviation from the normal and might still belong to the transpasition rather than to the substitution class.
c. Statistical studies have been made on this matter and some graphs have been constructed therson. These are shown in Charts l-4 in the form of simple curves, the use of which will now be explained. Each chart contains two curves marking the lower and upper limits, respectively, of the theoretical amount of deviation (from the normal percentages) of vowels or consonants which may be allowable in a cipher believed to belong to the transposition class.
d. In Chart l, curve V_{l} marks the lower linit of the theoretical amount of deviation from the normal number of vowels to be expected in a messafe of given length; curve V_{2} marks the upper limit of the same thing. Thus, for example, in a message of 100 letters in plain English there should be between 33 and 47 vovels (AEIOUY). Likewise, in Chart 2 curves A_{1} and H_{2} mark the lower and upper limits as regards the high-frequency consonants. In a message of 100 letters there should be between 28 and 42 high-frequency consonants (DINRST). In Chart 3, curves Ei_{1} and H_{2} mark the lower and upper limits as regards the medium-frequency consonants. In a nessage of 100 letters there should be between 17 and 31 medium-frequency consonants (3CDFGHLiFVI). Finally, in Chart 4, curves I_{1} and L_{2} mark the lower and upper limits as regards the low-frequency consonants. ${ }^{2}$ In a message of 100 letters there should be between 0 and 8 low-frequency consonants (JKNXZ). In usinf the charts, therefore, one finds the point of intersection of the vertical coordinate correspondins to the length of the message, with the horizontal coordinate corresponding to (1) the number of vowels, (2) the number of hirh-frequency consonants, (3) the number of medium-frequency consonants, and (4) the number of low-frequency consonants actually counted in the message. If all four points of intersection fall within the area delinitied by the respective curves, then the number of vowels, high, medium, and lowfrequency consonants corresponds with the number theoretically expected in a normal plain-text nessage of the same length; since the messaje under investigation is not plain text, it follows that the cryptogram may certainly be classified as a transposition cipher. On the other hand; if one or more of these points of intersection falls outside the area delimited by the respective curves, it follows that the
crypto ram is probably a substitution cipher. The distance that the point of intersection falls outside the area delinited by these curves is a more or les's rough weasure oin the inprobability of the cryptozram's being a transposition cipher.
Q. Sometiues a crypto, ram is eacountered which is hard to classify with certainty even rith the foreroinj aids, because it has been consciously prepared with a view to making the classification difficult. This can be done eitier by selecting peculiar vords (as in "trick cryptograms") or by employing a cipher alphabet in which letters of approximately siailir normal frequencies have been interchanged. For example, \mathbb{E} may be replaced by $0, T$ by, \mathcal{A}, and so on, thus yislding a cryptogram givins external indications of being a transposition cipher but which is really a substitution cipher. If the cryptogram is not too short, a close study will usually disclose what has been dones as well as the futility of so simple a subterfuge.
f. In the majority of cases, in practical work, the determination of the class to which a cijher of average length belongs can be made from a mere inspection of the message, after the cryptanalyst has acquired a familiarity $\begin{aligned} \\ \text { ith }\end{aligned}$ the normal appearance of transposition and of substitution ciphers. In the former case, his eyes very speedily note many highfrequency letters, such as $: T, i v, R, O$, and S, with the absence of lowfrequency letters, such as J, K,, , X, and Z_{j} in the latter case, his eyes just as quicily note the presence of many low-frequency letters, and a corresponding absence of the usual high-frequency letters.
' I. snot'ier rather quickly completed test, in the case of the simpler varieties of cipiers, is to look for repetitions of groups of letters. As will become apparent very soon, recurrences of syllables, entire words and short phrases constitute a characteristic of all normal plain text. Since a transposition cipher involves a change in the sequence of the letters composing a plain-text nessage, such recurrences are broken up so that the cipher text no longer will show repetitions of more or less lengthy sequences of letters. but if a cipher message does show many repetitions and these are of several letters in length, say over four or five, the conclusion is at once tarranted that the cryptogran is most probably a substitution and not a transposition cipher. dowever, for the beginner in cryptanalysis, it will be advisable to wale the monoliteral frequency, barmistribution, and note the frequencies of the vovels, the high, medium, and lor-frequency consonants. Then, reierring lo Charts 1 to 4, he should carefully note whether or not the observed frequencies for these categories of letters fall fithin the linits of the theoretical frequencies for a normal plain-text message of the same length, and be guidod accordingly.
h. It is obvious that the foregoing rule applies only to ciphers composed rholly of letters. If a message is coiaposed entirely of figures, or of arbitrary signs and symbols, or of intarmixtures of letters, ficures and other symbols, it is iraediately apparent that the cryptogram is a substitution cipher

REF ID:A64644

i. Finally, it should be mentioned that there are certain kinds of cryptograns whose class cannot be deternined by the method set forth in subparagraphs \underline{b}, \underline{c}, \underline{d} above. $1^{\text {These exceptions will be discussed }}$ in a subsequent section of this text. ${ }^{1}$
14. Determining whether a substitution cipher is monoal phabetic or polyalphabetic. - a. It will be remembored that a monoalphabetic substitution cipher is one in which a single cipher alphabet is employed throughout the whole message, that is, a given plain-text letter is invariably represented throughout the message by one and the same letter in the cipher text. On the other hand, a polyalphabetic substitution cipher is one in which two or more cipher alphabets are employed within the same message; that is, a given plain-text letter may be represented by two or more different letters in the cipher text, eccording to some rule governing the selection of the equivalent to be used in each case. From this it follows that a single cipher letter may represent two or more different plain-text letters.
b. It is easy to see why and how the appearance of the monoliteralfrequency distrioution for a substitution cipher may be used to determine - whether the cryptogram is monoal phabetic or polyalphabetic in character. The normal distribution presents maried crests and trnughs by virtue of two circumstances. First, the elementary sounds which the syubols represent are used with greatly varying frequencies, it being one of the striking characteristics of every alphabetic language that its elementary sounds are used with greatly varying frequencies. ${ }^{2}$ In the second place, except for orthographic aberrations peculiar to certain language (conspicuously, Inglish and French), each such sound is represented by the same symbol. It follows, therefore, that since in a monoalphabetic substitution cipher each different plain-text letter ($=$ elementary sound) is represented by one and only one cipher letter (= elementary symbol), the monoliteral-frequency distribution for such a cipher message must also exhibit the irregular crest and trough appearance of the normal distribution, but with only this important modirication. the absolute positions of the crests and troughs will not be the same as in the normal. That is, the letters accompanying the crests and the troughs in the distribution for the cryptogram vill be different from those accompanying the crests and the troughs in the normal distribution. But the marked irregularity of the distribution, the presence of accentuated crests and troughs, is in itself an indication that each symbol or cipher letter always represents the same plain-text letter in that cryptogram. Hence the general rule. A marked crest and trough appearance in the monoliteral-frequency distribution for a given crypto 3 ram indicates that a single cipher al phabet is involved and constitutes one of the tests for a nonoalphabetic substitution cipher.

1 Par. 47.
2 The student who is interested in this phase of the subject may find the following reference of value. Zipf, G. K. "Selected Studies of the Principle of Relative Frequency in Language." Cambridge, rass., 1932.
c. On the other hand, suppose that in a cryptogram each cipher letter reprosents several different plain-text letters. Some of them are of high frequency, others of low frequency. The net result of such a situation, so far as the monoliteral frequency distribution for the cryptogram is concerned, is to prevent the amearance of any marked crests and troughs and to tend to reduce the elements of the distribution to a more or less common level. This inparts a "flattened out" appearance to the distribution. For exaiple, in a certain cryptogran of polyalphabetic construction, $I_{c}=J_{p}, G_{p}$, and $J_{p} ; R_{c}=A_{p}$, D_{p}, and $B_{p} ; X_{c}=O_{p}, L_{p}$, and $F p$. The frequencies of $\mathrm{K}_{\mathrm{c}}, \mathrm{R}_{\mathrm{c}}$ and X_{c} will be approximately equal because the summations of the frequencies of the several plain-text letters each of these cipher letters represents at different times will be about equal. If this same phenomenon were true of all the letters of the cryptogram, it is clear that the frecuencies of the 26 letters, when shown by means of the ordinary monoliteral frequency distribution, would show no striking differences and the distribution would have the flat appearance of a typical polyalphabetic substitution cipher. Hence, the zeneral rule The absence of marked crests and troughs in the monoliteral-frequency distribution indicates that two or more cipher alphabets are involved. The flattened-out appearance of the distribution constitutes one of the tests for a poly= alphabetic substitution cipher.
d. The foregoing test based upon the appearance of the frequency distribution constitutes only one of several means of deterinining whether a substitution cipher is monoalphabetic or polyalphabetic in composition. It can be amployed in cases yielding frequency distributions from which definite conclusions can be drawn with uore or less certainty by mere ocular examination. In those cases in which the frequency distributions contain insufficient data to permit drawing definite conclusions by such examination, certain statistical tests can be applied. These will be discussed in a subsequent text.
Q. At this point, however, one additional test will be given because of its simplicity of application. It nay be employed in testing messages up to 200 letters in length, it being assumed that in messages of greater length ocular examination of the frequency distribution offers little or no difficulty. This test concerns the number of blanks in the frequency distribution, that is, the number of letters of the alphabet which are entirely absent from the message. It has been found from statistical studies that rather definite "laws" govern the theoretically expected nurber of blanks in normal plain-text messages and in frequency distributions for cryptorrams of different natures and of various sizes. The results of certain of these studies have been embodied in Chart 5 .
f. This chart contains two curves. The one labeled P applies to the average number of blanks theoretically expected in frequency distributions based upon normal plain-text messages of the indicated lengths. The other curve, labeled R , applies to the average number of blaniss theoretically expected in frequency distributions based upon perfectly random assortments of letters, that is, assortments such as would be found by random selection of letters out of a hat containing thousands of letters, all of the

REF ID:A64644

- 30 .

25 letters of the alphabet being present in equal proportions, each letter being replaced aifer a record of its selection has been nade. Such random assort.lents correspond to polyalphabetic cipher messages in which the number of cipher alphabets is so large that if monoliteral-frequency distributions are made of the letters, the distributions are practically identical with those which are obtained by random selections of letters out of a hat.
g. In using this chart, one finds the point of intersection of the vertical coordinate corresponding to the length of the message, with the horizontal coordinate corresponding to the observed number of blanks in the monoliteral-frequency distribution for the message. If this point of intersection falls closer to curve P than it does to curve R, the number of blanks in the message approximates or corresponds more closely to the number theoretically expected in a plain-text message than it does to a random cipher-text message of the same length; therefore, this is evidence that the cryptogram is monoalphabetic. Conversely, if this point of intersection falls closer to curve R than to curve P, the number of blanks in the message approximates or corresponds more closely to the number theoretically expected in a random text than it does to a plain-text message of the same length; therefore, this is evidence that the cryptogram is polyalphabetic.
h. Practical examples of the use of this chart all be given in some of the illustrative messages to follow.
15. Determining whet'rer the cipher alphabet is a standard, or a mixed cipher alphabet. - a. Assuming that the monoliteral-frequency distribution for a given cryptojran has been made, and that it shows clearly, that the cryptogram is a substitution cipher and is monoalphabetic in character, a consideration of the nature of standard cipher alphabets ${ }^{1}$ almost makes it obvious hov an inspection of the distribution will disclose whether the cipher alphabet involved is a standard cipher alphabet or a mixed cipher alphabet. If the crests and troughs of the monoliteral-frequency distribution occupy positions which correspond to the relative positions they occupy in the normal frequency distribution, then the cipher alphabet is a standard cipher alphabot. If this is not the case, then it is highly probable that the cryptozram has been prepared by the use of a mixed cipher alphabet.
b. A mechanical test may be applied in doubtful cases arising from lack of material available for study. Just what this test involves, and an illustration of its apolication will be riven in the next section, using specific examples.
16. Jetermining whether the standard cipher alphabet is direct or reversed. - Assuming that the monoliteral-frequency distribution for a given cryptogram shows clearly that a standard cipher alphabet is involved, the determination as to whether the alphabet is direct or reversed.can also

[^6]be made by inspection, since the difference between the two is merely a matter of the dirgction in wich the sequence of crests and troughs prosresses: to the rirat, as in nomal reading or writinj, or the left. In a direct cipher alphabet the direction in which the crests and troughs of the ionoliteral-frequency distribution should be read is the normal direction, from left to risht; in a reversed cipher alphabet this direction is reversed, from right to left.

SECTION V.

Faragraph
Frinciples of solution by construction and analysis of the monoliteral-frequency distribution 17
Theoretical exa:mple of solution 18
Practical exanple of solution by the frequency method 19
Solution by completing the plain-component sequence 20
Special remarks on the mothod of solution by completing the plain- component sequence 21
Value of mechanical solution as a short cut 22
17. Principles of solution by construction and analysis of the mono-literal-frequency distrijution. - E. Standard cipher alphabets are of two sorts, direct and reversed. The analysis of monoal phabetic cryptograms prepared by their use follows almost directly from a consideration of the nature of such alphabets. Since the cipher component of a standard cipher alphabet consists either of the normal sequence merely displaced $1,2,3$... intervals from the normal point of coincidence, or of the normal sequence proceeding in a reversed-normal direction, it is obvious that the monoliteral-frequency distribution for a cryptogram prepared by means of such a cipher alphabet employed monoal phabetically will show crests and troughs whose relative positions and frequencies will be exactly the same as in the monoliteral-frequency distribution for the plain text of that cryptorram. The only thin that has happened is that the shole set of crests and troughs of the monoliteral-frequency distribution has been displaced to the right or left of the position it occupies in the monoliteralfrequency distribution for the plain text; or else the successive elements of the thole set prozress in the opposite direction. Hence, it follows that the correct determination of the plain-text value of the letter marking any crest or trough of the monoliteral-frequency distribution will result at one stroke in the correct deternination of the plain-text values of all the remaining 25 letters respectively marking the other crests and troughs in that distribution. Thus, having determined the value of a single element of the cipher component of the cipher alphabet, the values

REF ID:A64644

- 32-
of all the remaining letters of the cipher component are automatically solved at one stroxe. In hore simple lenguage, the correct determination of the value of a single latter af the cipher text automatically gives the values of the other 25 letters of the cipher text. The problem thus resolves itself into a matter of selecting that point of attack which will most quickly or most easily lead to the determination of the value of one cipher letter. The single word identification will hereafter be used for the phrase "determination of the value of a cipher letter"; to identify a cipher letter is to find its plain-text value.
b. It is obvious that the easiest point of attack is to assume that the letter marking the crest of greatest frequency in the wonoliteralfrequency distribution for the cryptogram represents ip, Proceeding from this initial point, the identifications of the remaining cipher letters marking the other crests and troughs are tentatively made on the basis that the latters of the cipher component proceed in accordance with the nornal alpnabetic sequence, either direct or reversed. If the actual frequency of each letter marking a crest or a trough approximates to a fairly close degree the normal theoretical frequency of the assumed plaintext equivalent, then the initial identification $\theta_{c}=E_{p}$ may be assumed to be correct and therefore the derived identifications of the other cipher letters may be assumed to be correct. If the original starting point for assignment of plain-text velues is not correct, or if the direction of "reading" the successive crests and troughs of the nonoliteral-frequency distribution is not correct, then the frequencies of the other 25 cipher letters rill not correspond to or even approximate the normal theoretical frequencies of their hypothetical plain-text equivalents on the basis of the initial identification. A new initial point, that is, a different cipher eñivalent must then be selected to represent \mathcal{J}_{p}; or else the direction of "reading" the crests and t-oughs must be reversed. This procedure, that is, the attempt to make the actual frequency relations exhibited by monoliteral-frequency distribution for a ziven cryptosram conform to the theorgtical frequency relations of the normal-frequency distribution in an effort to solve the cryptogram, is referred to technically as "fitting the actual monoliteral-frequency bar distribution for a cryptogram to the theoretical monoliteral-frequency bar distribution for normal plain text", or, more briefly, as "fitting the frequency distribution for the cryptogram to the normal-frequency distribution," or, still more briefly, "fitting the distribution to the normal." In statistical work the expression commonly employed in connection "ith this process of fitting an actual distribution to a theoretical one is "testing the joodness of fit". The closeness of the degree of goodness of fit may be stated in various ways, mathematical in character.
c. In fittins the distribution to the normal, it is necessary to regard the cipher component (that is, the letters A ... Z marking the successive crests and troughs of the monoliteral-frequency distribution) as partaking of the nature of a rheel or sequence closing in uison itself, so that no matter with what crest or trough one starts, the spatial and frequency relations of the crests and troughs are constant. This manner of regardinf the cipher component as being cyclic in nature is valid because it is
obvious that the relative positions and frequencies of the crosts and trough of any monoliteral-frequency distribution must remain the same regardless of that letter is employed as the initial point of the distribution. Fig. 5 gives a clear picture of what is meant in this connection, as applied to the normal-frequency distribution.

Fig. 5
d. In the third sentence of subparagraph \underline{b}, the phrase "assumed to be correct" was advisedly employed in describing the results of the attempt to fit the distribution to the normal, because the final test of the goodness of fit in this connection (that is, of the correctness of the assi minent of values to the crests and trou phs of the monoliteralfrequency distribution) is whether the consistent substitution of the plain-text values of the cipher chasacters in the cryptogram will yield intelligible plain text. If this is not the case, then no natter how close the approximation between actual and theoretical frequencies is, no matter how well the monoliteral-frequency distribution fits the normal, the only possible inferences are that (1) either the closeness of the fit is a pure coincidence in this case, and that another equally good fit may be obtained from the same data, or else (2) the crfptogram involves somethiny aore than simple monoalphabetic substitution by means of a single standard cipher alphabet. For example, suppose a transposition has been applied in addition to the substitution. Then, although an excellent correspondence betveen the monoliteral-frequency distribution and the normal-frequency distribution has been obtained, the substitution of the cipher letters by their assumed equivalents will still not yield plain text. .fowever, aside fron such cases of double encipher rent, instances in which the monoliteral-frequency distribution may be easily fitted to the normal-frequency distribution and in thich at the same time an attempted

REF ID:A64644

- 34 -
sinple substitution fails to yield intelligible text are rare. It may be said that, in practical opeations vhenever the monoliteral-frequency distribution can be male to fit the iorial-frequency distribution, substitution of valuss rill result in solution; and, as a corollary, whenever the monoliteral-frequency distribution cannot be ade to fit the normalfrequency distribution, the cryptogram does not represent a case of simple, monoalphabetic substitution by means of a standa dalphabet.

13. Theoretical example of solution. - a. The foregoing principles will become clearer by notinf the cryptographing and solution of a theoretical example. The following aessar, is to be cryptographed.

GU.EK
b. First, solely for purposes of demonstrating certain principles, the nonoliteral-frequency distribution for this wessage is presented in Fig. 6.

£. Now let the foregaing message be cryptosraphed nonoalphabetically by the follo:ring cipher alphabet, yielding the cryptogram and the mono-literal-frequency distribution shown below.

```
Cipher. GHIJKL&NOr!{bTUV暞IZABCDEF
```


REF ID：A64644

 Cipher．YZUVi KGJUL IURAS TTKGX OTi．XU GJYAT

 Cipher．U 3 is $\AA 0$ TJO；TIXKi？

Cryptozram．

Y 20	，	I	¢ 2 K	J	K
SKTZO	TLGTz	人AGTJ	2 CUVA	GXUUT	Y IGBG
	30 T －	UA2iju	T 1 ¢ 0 T	TOSUT	2V0こL
Y $2 \mathrm{UV} \mathrm{i}^{\text {r }}$	K $\mathrm{G}_{\mathrm{G}} \mathrm{J}$ U L	IURAS	TTK $\mathrm{T}_{\text {¢ }}$	0 T．XU	む J ¢
IZOUT	Y 23 KT	Z I XK E	Y \therefore B C T	IUSSG	KGYZ
L．XKi：		Y INUU	RLOKK	Javut	
	－2Y Y U		JKYZX	U SKJH	X 0 J
U B ix ${ }^{\text {¢ }}$	TJOGT				

d．Let the student now compare Figs． 6 and 7，which have been super－ imposed in Fig． 8 for convenience in examination．Crests and troughs ars present in both distributions；moreover，their relative positions and fre－ quencies have not been changed in the slightest particular．Only the absolute

REF ID:A64644

positinn of the sequence as a whole has been displaced six intervals te the right in Fig. 7, as compared with the absclute position ef the sequence in Fig. 6 .

E. If the two distributions are compared in detail the student will clearly understand how easy the solution of the cryptogram would be to one who knew nothing about how it was prepared. For example, the frequency ef the highest crest, representing E_{p} in Fig. 6 is 28 ; at an interval of three letters befcre ${ }^{H} p$ there is another crest representing A with frequency 16. Between A and E there is a trcugh, representing the low frequency letters B, G, D. On the other side of E, at an interval of three letters, onmes another crest, representing I with frequency 14 . Between \mathbb{H}. and I there is another trough, representing the low-frequency letters F, G, H. Compare these crests and. troughs with their homologous crests and troughs in Fig. 7. In the latter, the letter K marks the highest crest in the monoliteralfrequency distribution with a frequency of 28 ; three letters before K there is another crest, frequency 16 , and three letters on the other side of K there is another crest, frequency l4. Troughs corresponding to B, C, D and F, G, Hare seen at, H, I, J and L, M, N in Fig. 7. In fact, the two distributions may be made to coincide exactly, by shifting the monoliteralfrequency distribution for the cryptrgram six intervals to the left with respect to the monnliteral-frequency distributinn for the equivalent plaintext message, as shown herewith.

f. Let us suppose ncw that nothing is known about the cryptographing process, and that only the cryptogram and its monoliteral-frequency distribution is at hand. It is clear that simply bearing in mind the spatial relations of the crests and troughs in a normal-frequency distribution would enable the cryptanalyst to fit the moncliteral-frequency distribution to the normalfrequency distribution in this case. He would naturally first assume that $G_{c}=A_{p}$, from which it would follow that if a direct standard alphabet is involved, $H_{c}=B_{p,} I_{c}=C_{p}$, and so on, yielding the following (tontative) deciphering ${ }^{\text {c alphebet }}$:

> Cipher: ABCDEFGHIJKLMNOPQRSTUVWXYZ Plain : UVWXYZABCDEFGHIJKLMNOPQRST
g. Now comes the final test: If these assumed values are substituted in the cipher text, the plain text immediately appears. Thus:

N U Y Z O	RK L U X	IK K Y Z	OS GZK	2	
HOSTI	LEFOR	CEEST	IMATE	D AT	

[^7]
REF ID:A64644

19. Practical example of solution by the frecuency method. - a. The case of direct standard alphabet cipherg.
(1) The follo ring cryptofram is to be solved by applying the foresoing principles

(3) From tio persence of epotitions and so nazy low-frequency letiers such as 3,2 , and Z it is at once suspected t'aat this is a supsitution cirher. jut to illust aid the stops that nust be tajen in difficult cases in ord?e to be certain in this iespect, a zono-literal-frequency distribution is const-ucted, and then reference is mae to charts 1 to 4 to note 'here the actual numbers of vousls, hi;h, nedium, and lov-freouency lettars fall insive or outsiie the a eas delinited by the resnective curves.

Trequency
17
ioisls a : I U U :
.ifoh-frequency Jonco ants (JNRD T)
i.ediuq.freauenc l Ionsonants

rosition vith respect to areas dali it ad by curves outsiae, Chant l outside, Cha-t 2
outsiie: Chart 3
outsicie, Chart 4
(3) all four points falling quite outsiue the areas delinited by the curves applicable to these four classes of letters, the crvptorra, is clearly a substitution cisie.-
(4) The appearaice of the frequency distibution, with waried crests and trourls, indicates that the crs.to fran is provaily ronoal, habetic. -eference is nov dale to C'ia.'t 5. The riessage has 60° letters and 6 blanls. Tie point of intersection on the c.ra:t is closer to curve r than it is to curve C, therefore, this is additinnal eviuence tiat the aessaje is probably : monoalphabetic.
(5) ine "iext step is to deter"ine whether a standard or a nixed ci her alphabst is involved. This is * done by studving the sequence of crests and trou; hs in the monoliteral-frequenc I dist ioution, and t ring to fit tie distribution to t'le mornal.

REF ID:A64644

- 39 -
(6) Ihe first assumption to be made is that a direct stindard is involy3d. The inifiest crest in the aistribution is marked by B_{C}. Let it be assumed that $B_{c}=\mathcal{Z}_{p}$, Then $C_{c}, D_{c}, \mathcal{Z}_{c}, \ldots=F_{p}, G_{p}$, H_{p}, thus.

at first rlance the approxination to the expected frequencies seans fair, especially in the region F GHI $J K_{p}$ and $\because S T_{p}$. 3ut there are too many occurrences of L_{p}, F_{p}, X_{0} and G_{p} and too ferv occurrences of A_{p}, I_{p}, $I_{p}, 0_{p}$ Loreover, if a substitution is attempted on $t^{\text {tiis }}$ basis, the folloring is obtained for the first two cipher groups

$$
\begin{aligned}
& \text { Cipher . IBKQU FBIUO } \\
& \text { "Flain text", I } \mathbb{A} \mathrm{L}^{\prime} \mathrm{TR} \mathrm{SELXR}
\end{aligned}
$$

This is certainly aot plain text and it seens clear that B_{c} is not E_{p}. A different assuaption will have to be made.
(7) Suppose $Q_{c}=\boldsymbol{I}_{p}$. Going through the same steps as befors, a jain no satisfactory results are obtained. Further trials ${ }^{1}$ are made along the same lines, until the assu.iption $i_{c}=\mu_{\mathrm{p}}$ is tested.
 riz. 10 c .
(8) The fit in this case is quite roodi possibly there are too many occusrences of G_{p} and I. few of $J_{p}{ }^{2} O_{p}$ and S_{p}. But the final test ferains. trial of the substitution alphabet on the cryptogram itself. This is inmodiately done and the results are as follows.

1 It is unnecessary, of course, to urite out the alphabets as s!own in rizs. 10 b and c when testing assurptions. This is usually all done ientally.

REF ID：A64644

MARCHING IIJFANTRY．

（9）It is always advisable to note the specific key．In this case the correspondence between any plain－ text letter and its cipher equivalent will indicate the key；it is usual，hovever，to indicate the key by not－ ing the cipher equivalent of A_{p} ．In this case $A_{p}=I_{c}$ ．
b．The case of reversed standard alphabet ciphers．－
（1）Let the following crypto；ram and its mono－ literal－frequency distribution be studied．

（2）The preliminary steps illustrated above，under subpar．a（1）to（4）inclusive，in connection with the test for class and monoalphabeticity，will here be omitted，since they are exactly the same in nature． The result is that the cryptorram is obviously a sub－ stitution cipher and is monoalphabetic．
（3）assuming＇that it is＂hnt known whether a direct or a reversed standard alphabet is involved，atiempts are at once made to fit the monoliteral－frequency dis－ tribution to the direct sequence．If the student will try them he will soon find out that these are unsuc－ cessful．All this takes but a few minutes．
（4）The next logical assutption is now made，viz．， that the cipher alphabet is a reversed standard alpha－ bet．Then on this basis J_{c} is assumed to be \mathcal{B}_{p} ，the distribution can readily be fitted to the normal， practically every crest and trough in the actual dis－ tripution corresponding to a crest or trough in the ex－ pected distribution．

	吾三殅＝
Cipher，	
Plain	
	Fig． 10 d

REF_ID:A64644

(5) :Non the substitution is made in the cryptom gram, the following is obtained.

(6) The plain-text message is identical with that under paragraph a. The specific key in this case is also $\Lambda_{p}=I_{c}$. If the student will compare the frequency distributions in the two cases, he will note that the relative positions and extensions of the crests and troughs are identic.sl; they merely proxress in opposite directions.
20. Solution by completing the plain-component sequence. a. The case of direct standard alphabet ciphers. -
(1) The foregoing method of analysis, involving as it does the construction of a monoliteral-frequency distribution, ias termed a solution by the frequency method because it involves the construction of a frequency distribution and its studv. There is, however, another method winch is much more rapid, alnost wholly mechanical, and which, moreover, does not necessitate the const -uction or study of any frecuency dist.ibution whatever. An understanding of the nethod follows from a consideration of the method of encipherment of a messace by the use of a single, direct standard cipher alphabet.
(2) Jote the following encipherment.
hessage: Rispil Invadidg Cavalley
Inciphering Alphabet
Plain.abCDEFGHIJKLhNOPQRSTUV」XYZ Cipher. GHIJKLMNOPQRSTUVサXYZABCDEF

Encipherment
Plain text. AEPELINVAD INGCA VALRY Cryptogram. XKVKR UTBGJ OTMIG BGRXZ

Cryptogram

XLVIR OTBGJ OTIIG BGRXZ
(3) The enciphering alphabet shorm above represents a case wherein the sequence of letters of both components of the cipher alphabet is the normal sequence, with the sequence forming the cipher component merely shifted six

REF ID:A64644

intervals in retard (or 20 intervals in aivence) of the position it occupies in the normal alphabet. If, therefora, two strips of paper bearing the letters of the norinal sequence equally spaced are rega.ded as the two composents of the cipher aljuruet and are. juxtaposed at all of the $2 j$ possible points of coincideace that field direct standard cipher alphabets, it is obvious that one of these 25 juxtapositions must correspond to the actual juxtaposition shown in the enciphering alphabet directly above. ${ }^{1}$ it is equally obvious that if a rocerd vere kept of the results obtained by applyino the values given at each juxtaposition to the letters of the crrptorren, one of these results would yield the plain text of the cryptogram.
(4) Let the worl be systematized and the results set down in an ordeily manner for examination. It is obviously unnecessany to juxtapose the two components so that $A_{c}=A_{p}$, for on the assunption of a direct standerd alphabet, juxtaposing two direct nortal components at their normal point of coincidence merely yields plain text. The next possible juxtaposition, therefore, is $A_{c}=B_{p}$. Let the juxtaposition of the two sliding strips therefore be $A_{c}=3_{p}$, as shom here:
 Cipher: -BCDw'GAIJIL INOERR'TUV IXIZ

The values given by this juxtaposition are substituted for the first 15 letters of the cryptogram and the following results are obtained.

This certainly is not intelligible text; obviously, the two components were not in the position indicated in this first test. The cipher component is therefore slid one iaterval to tie $-i$ rat, maxing $A_{c}=C_{p}$, and a second test is made. Ihus.

lleither does the second test result in disclosing any plain text. sut, if the results of the two tests are studied a phenomenon that at first seems quite puzaliny comes to licht. 'rhus, suppose the results of the two tests are superimposed in this fashion.
\bar{I} Une of the st ips s'ıoulu bea" the sequence repeated. This allo: f for juxtaposing the two ssquencos at any of the 26 possible points of coincidonce so as to have a complete cipher allabet shorin; at all tiıes.

(5) Note what has happened. The net result of the two experiments was merely to continue the normal sequence begun by the cipher letters at the heads of the sevoral columns. It is obvious that if the normal sequence is completed in each column the results will be exactly the same as though the whole set of 25 possible tests had actually been performed. Let the colums therefore be conpleted, as shown in Fig. 11.

An examination of the successive horizontal lines of the diagram discloses one and only one line of plain text, that warked by the asterisk and realing $R \mathrm{Z} \dot{\mathrm{F}} \mathrm{I} \mathrm{L}$ IN VADIIGCAVALRY.
(6) Since each column in Fig. 11 is nothing but a normal sequence, it is obvious that instead of laboriously writias down these colums of letters every time a cryptozran is to be exarined, it would be more convenient to prepare a set of strips each bearing the normal sequence doubled (to pernit complete coincidence for an

REF ID:A64644

- 44 -
entire alphabet at any setting), and have them available for exa nining any future cryptorrans. In using such a set of sliding strips in order to solve a crylto, ;ram prepared by means of a sin-le direct stundard cipher alphabet, or to maine a test t'o detemine hether a cryptoxra.. has beon so prepared, it is only necessary to "set up" the letters of the cryptogram on the strips, that is, align them in a single row across the strips (by sliding the individual strips up or down). The successive horizontal linas, called generatrices (singular peneratrix), are then examined in a search for intelligible text. If the cryptogram really belongs to this simple type of cipher, one of the generatrices will exhibit intellici"ble text'all the way across; this text aill practically invariably be the plain text of the message. This method of analysis may be termed a solution by completing the plain-component sequence. Someti.ies it is referred to as "running down" the sequence. The principle upon which the method is based constitutes one of the cryptanalyst's most valuable tools. ${ }^{1}$

b. The case of reversod standard alphabets. -

(1) The sethod described under subpar. a may also be applied in sli弓htly modified form, in the case of a cryptogram enciphered by a single reversed standard alphabet. The basic principles are identical in the tyo cases.
(2) To show thịs it is necessary to experiment with two sliding components as before, except that in this case one of the components must be a reversed normal sequence, the other, a direct normal sequence:
(3) Let the two components be .juxtaposed i to A, as shown below, and then let the resultent velues be substituted for the letters of the cryptorram. Thus.

Cryptogram

$$
\begin{aligned}
& \text { rGRCV YTLGD YTATG LGVFI }
\end{aligned}
$$

Cipher: ZYXNUTSR_FONMLKJTIIGFEDCBA
${ }^{1}$ It is racomnended that the student prepare a set of 25 strips $\dot{q}^{\prime \prime} x$ $\frac{1}{2} " x$ 15", made of well-seasoned wood, and glue alphabet strips to the wood. The alphabet on each strip should be a double or repeated alphabet with all letters equally spaced, so as to permit of coincidence throughout a complete alphabet.
(4) This does not yield intelligible text, and therefore the reversed compozent is slid one space for rard and a second test is made. Thus.

(5) Neither does the second test yield intelligible text. sut let the results of the two tests be superimposed. Thus.

(6) It is seen that the letters of the "plain text" given by the second trial are merely the continuants of the normal sequences initiated by the letters of the "plain text" given by the first trial. If these sequences are "run down", that is, completed within the colunns, the results must obviously be the salse as thourg successive tests exactly similar to the first two were applied to the cryptogram, usiny one reversed normal and one direct norial conponent. If the crypto rran has really been prepared by invans of a single reversed standard alphabet, one of the generatrices of the diagran that results from conpletinc the sequences must yield intelligible text.
(7) Let the diagram be made, or better yet, if the stulent has already at hand the set of sliding strips referred to in the footnote to page 44, let hin "set up" the letters given by the first trial. Fig. 12 shows the diarram and indicates the plain-text jeneratrix.

(8) The only difference in procedure between this case and the preceding one (where the cipner alphabet was a direct standard alphabet) is that the letters of the cipher text are first "deciphered" by means of any reversed standard alphabet and then the colunns are "run down" according to the normal ABC...Z sequence. For reasons which will become apparent very soon, the first step in this method is called "converting the cipher lettras into their plain-component equivalents"; the second step is the sacie as before "completing the plain-component sequences".
21. Special remarks on the method of solution by conplatiag the plaincomponent sequence. - a. The terns employed to designate the steps in the solution set forth in Par. 20 b, viz., "converting the cipher letters into their plain-component equivalents" and "completing the plain-comonent sequence", accurately describe the process. Their meaning will becone more clear as the student prosresses with the work. It may be said that whenever the plain component of a cipher alphabet is a known sequence, the difficulty and tiae required to solve any cryptogram involving the use of that plain component is practically cut in half. In some casss this knowledge facilitates and in other cases is the only thin that makes possible the solution of a very short cryptogram that misht otherwise defy solution.

REF ID: A64644
 - 47 -

Later on an example vill be given to illustrate what is meant in this regard.
'b. Tine student should'take note, however, of two gualifying expressions that reere emplojed in a preceding yara;raph to describe the results of the application of the aethod. It was stated that "one of the generatrices will exhibit intelligible text all the way across; this text will practically invariably be the plain text". lill there ever be a case in which rore than one zeneratrix will yield intellizible text throu-hout its extant: That obviously depends almost entirely on the number of letters that are ali rned to form a jeneratrix. If a jeneratrix contains but a very few letters, only five, for example, it may happen as a result of pure chance that there vill be two or more generatrices sho.ing what might be "intellizible text". iJote in rig. ll, for example, that there are several cases in :hich 3-letter and 4-letter English zords (alJI, VAIN, ' ${ }^{\prime} O T, \mathrm{TIP}$, etc.) appear on generatrices that are not correct, these words being formed by pure chance. sut there is not a single case, in this diarran, of a 5-letter or longer word appearing fortuitously, because obviously the longar the rord the smaller the probability of its appearance purely by chance; and the probability that two generatrices of 15 letters each will both yield intellizible text along their entire length is exceedingly remote, so remote, in fact, that in practical cryptography such a case may be considered nonexistent. ${ }^{1}$
c. The student should observe that in reality there is no difference rinatsoever in principle between the two methods presented in subpars. a and \underline{b} of Far. 20. In the former the prelininary step of converting the cipher lattors into their plain-component equivalents is apparently not present but in reality it is there. The reason for its apparent absence is that in that case the plain component of the cipher alphabet is identical in all respects with the cipher component, so that the cipher letters require no conversion, or, rather, they are identical with the equivalents that would result if they rere converted on the basis $\mathrm{s}_{\mathrm{c}}=\mathrm{A}_{\mathrm{p}}$. In fact, if the solution process had been arbitrarily initiated by converting the cipher letters into their plain-component equivalents at the setting ${ }^{4}=$ ap for exa ple, and the cipher component slid one interval to the risht thereafter, the results of the first and second tests of Par. 20 a would be this.

Thus, the foregoing diagram duplicates in every particular the diagram resulting from the first two tests under Par. 20 a. a first line of cipher letters, a second line of letters derived from them but showing externally no relationship rith the first line, and a third line derived innediately from the second line by continuing the direct normal sequence. This point

A person with patience and an inclination toward the curiosities of the science ni sht construct a text of 15 or more letters which would yield twe "intellizible" texts on the plain-conponent completion diagram.

REF ID:A64644

is brought to attention only for the purpose of showin; that a single, broad principle is the basis of the ;eneral method of solution by completing the plain-comprnent sequence, and once the student has this firmly in mind he will have no difficulty whatsoever in realizing when the principle is applicable, what a powerful cryptanalytic tool it can be, and what results he may expect from its application in specific instances.
d. In the two foregoing examples of the application of the principle, the plain component was a normal sequence but it should be clear to the student, if he has grasped what has been said in the preceding subparagraph, that this component may be a mixed sequence which if known (that is, \ddagger if the sequence of letters comprising the sequence is known to the cryptanalyst) can be handled just as readily as can a plain component, that is a normal sequence.
e. It is entirely immaterial at what points the plain and the cipher components are juxtaposed in the preliminary step of converting the cipher letters into their plain-component equivalente. For example, in the case of the reversed alphabet cipher solved in far. 20 b , the two components were arbitrarily juxtaposed to give the value $A=A$, but they might have been juxtaposed at any of the other 25 possible points of coincidence without in any way affecting the final result, viz., the production of one plain-text seneratrix in the completion diagram.
22. Value of mechanical solution as a short cut. - E. It is obvious that the very first step the student should take in his attempts to solve an unknown cryptogram that is obviously a substitution cipher is to try the mechanical method of solution by coapletins the plain-component sequence, using the normal alshabet, first direct, then reversed. This takes only a very few minutes and is conclusive in fts results. It saves the labor and trouble of constructing a monoliteral-frequency distribution in case the cipher is of this sinille type. Later on it will be seen how certain variations of this simple type may also be solved by the application of this method. Thus, a very easy short cut to solution is afforded, which even the experienced cryptanalyst never overlooks in his first attack on an uninown cipher.
b. It is ipportant now to note that if neither of the two foregoing attempts is successful in bringing plain text to li rht and the cryptozram is quite obviously monoalphabotic in character, the cryptanalyst is warranted in assuminc that the cryptorram involves a mixed cjpher alphabet. ${ }^{1}$ The steps to be taken in attacking a cipher of the latter type will be discussed in the next section.
${ }^{1}$ There is but one other possibility, already referred to under iar. 17 , which involves the case where tiransposition and monoal phabetic substitution processes have reen applied in successive steps. This is unusual, howewsr, and will be discussed in its proper place.

REF ID:A64644
 - 45 -

SECTIOIV VI

Paragraph
Basic reason for the low degree of cryptographic security afforded by monoalphabetic cryptograms involving standard cipher alphabets 23
Preliminary steps in the analysis of a monoalphabetic, mixed- alphabet cryptogram. 24
Further data concerning normal plain text 25
Preparation of the work sheet 26
Triliteral-frequency distributions. 27
Classifying the cipher letters into vowels and consonants 28
Further analysis of the letters representing vowels and consonants 29
Substituting deduced values in the cryptogram 30
Completing the solution 31
General remarks on the foregoing solution 32
\therefore The "probable-word" method; its value and applicability' 33
solution of additional cryptograns produced by the same cipher component 34
23. Basic reason for the low degree of cryptographic security afforded by monoalphabetic cryptograms involving standard cipher alphabets. - a. The student has seen that the solution of monoalphabetic cryptograms involving standard cipher alphabets is a very easy matter. Two methods of analysis were described, one involving the construction of a frequency distribution, the other not requiring this kind of tabulation, being almost mechanical in nature and correspondingly rapid. In the first of these two methods it was necessary to make a correct assumption as to the value of but one of the 26 letters of the cipher alphabet and the values of the remaining 25 letters become at once known; in the second method it was not necessary to assume a value for even a single cipher letter. The student, should understand what constitutes the basis of this situation: the fact that the two components of the cipher alphabet are composed of known seguences. .hat if one or both of these components are, for the cryptanalyst, unknown sequences: In other words, what difficulties will confront the cryptanalyst if the cipher component of the cipher alphabet is a mixed sequence? ilill such an alphabet be solvable as a whole at one stroke, or will it be necessary to solve its values individually? Since the determination of the value of one cipher
letter in this case gives no direct clues to the value of any other letter, it would seem that the solution of such a cipher should involve considerably more analysis and experinent than has the solution of either of the two types of ciphers so far examined occasioned. A typical example will be studied.
24. Preliminary steps in the analysis of a monoal phabetic, mixed alphabet crypto rram. - a. Note the follorring cryptogram:

SFPDF	IOGHL	PZFs	DYSFF	H3ZDS	GVHTF	UFIVD	FgYvj	VFVHT	GADZZ	AITYD
2YizJ	ZIGPT	VTZ.30	VFHTZ	DTXSB	GIDZY	VTXOI	YVTPF	Vi:GZZ	THLLV	XZDEM
$\mathrm{HTZ}_{\text {HI }}$	TYJZY	B DVFH	TZ.JFK	Z.2ZZJ	SXISG	ZYGriV	PSLGZ	DTHHT	C.LZRS	VTYZD
OZFFH	TZATT	YDZYG	AVDGZ	ZTKHI	TYZ	DZボIU	ZFZTG	Ur'guI	X 'GHX	ASRUZ
QFUIJ	ISFTV	3AGXX								

b. A casual inspection of the text discloses the presence of several long repetitions as well as of many letters of normally low frequency, such ge F, G, V, X, and Z; on the other hand, letters of normally hiJh frequency, such as the vowels, and the consonants is and R, are relatively scarce. The oryptogram is obviously a substitution cipher ${ }^{1}$ and the usual mechanical tests for determining whether it is possibly of the monoalphabetic, standard-alphabet type ${ }^{2}$ are applied. The results being negative, the nonoliteral-frequency distribution is inmediately constructed and is as shown in Fig. 13.

£. The fact that the nonoliteral-frequency distribution shows very marked crests and troughs means that the cryptogran is undoubtodly monoalphabetic; the fact that it has already been tested (by the method of completing the plain-component sequence) and found not to be of the monoalphabetic, standard-alphabet type, indicates with a high degree of probability that it involves a mixed cipher alphabet. A few monents mi ght be devot ad to making a careful inspection of the ionoliterel-frequency distribution to insure that it cannot be made to fit the nomal; the object of this would be to rule out the possibility that the text resulting from substitution by a standard cipher

[^8]
REF_ IP:A64644

alphabet had not subsequently been transposed. But this inspection in this case is hardly necessary, in vie: of the presence of long repetitions in the message. 1 (See Far. 13 g .)
d. One minht, of course, attempt to solve the cryptogram by applying the simple priyoiples of frequency. One might, in other words, assume that Z_{c} (the letter of greatest irequency) represents $\mathrm{H}_{\mathrm{p}} ; \mathrm{D}_{\mathrm{c}}$ (the letter of next greatest frequency) represents T_{p} and so on. If the message were long enough this simple procedure might more or less quickly give the solution. But the message is relatively short and many difficulties would be encountered. liuch time and effort would be expended unnecessarily, because it is hardly to be expected that in a message of only 235 letters the relative order of frequency of the various cipher letters should exactly coincide with, or even closely approximate the relative order of frequency of letters of normal plain text found in a count of 50,000 letters. It is to be emphasized that the beginner must repress the natural tendency to place too much confidence in the generalized principles of frequency and to rely too much upon them. It is far better to bring into effective use certain other data concerning normal plain text which thus far have not been brought to notice.
25. Further data concerning normal plain text. - a. Just as the individual letters constituting a large volume of plain text have more or less characteristic or fixed frequencies, so it is found that digraphs and trigraphs have characteristic frequencies, when a large volume of text is studied statistically. In Appendix 1, Table 1 are shown the relative frequencies of all digraphs appearing in the 260 telegrams referred to in Paragraph 9 e. It will be noted that 546 of the 676 possible pairs of letters occur in these telegrams, but whereas many of them occur but once or twice, there are a few which occur hundreds of times.
b. In Appendix 1 will also be found several other kinds of tables and lists which vill be useful to the student in his work, such as the relative order of frequency of the 50 digraphs of greatest frequency, the relative order of frequency of doubled letters, doubled vowels, doubled consonants, and so on. It is suggested that the student refer to this appendix now, to gain an idea of the data available for his future reference. Just how these data may be employed will become apparent very shortly.
26. Preparation of the work sheet. - a. The details to be considered in this paragraph may at first appear to be superfluous but long experience has proved that systematization of the work, and preparation of the data in the most utilizable, condensed form is most advisable, even if this takes

[^9]
REF ID:A64644

- 52 -
some time. In the first place if it merely serves to avoid interruptions and irritations occasioned by failure to have the data in an instantly available form, it will pay by saving mental vear and tear. In the second place, especially in the case of complicated cryptograms, painstaking care in these details, while it may not al:rays brin- about success, is often the factor that is of greatost assistance in ultimate solution. The detailed preparation of the data may be irksome to the student, and he may be tempted to avoid as much of it as possible, but, unfortunately, in the early stages of solving a cryptorram he does not lnow (nor, for that matter, does the sxpert al:rays knovs) just which data are essential and which may be neglected. Even thou jh not all of the data may turn out to have been necessary, as a seneral rule, time is saved in the end if all the usual data are preparod as a regular preliminary to the solution of most cryptorrans.
․ First, the cryptorran is recopiod in the form of a work sheet. This sheet should be of a good quality of puper so as to witistand considerable erasure. If the cr fato;ran is to je couied by hand, cross-section paper of z^{-1} squares is extremely useful. The rritint should be in ink, and plain, carefully made roman capital letters should be used in all cases. If the crypto; ram is to be copied on a typewriter, the ribjon employed should be impregnated with an inc that vill not smear or smudge under t'is hand.
c. The arrangement of the characters of the cryptogram on the work sheet is a matter of considerable importance. If the cryptogram as first obtained is in groups of regular length (usually five characters to a group) and if the monoliteral-frequency distrijution shows the cryptogram to be monoalphabetic, the characters should be copied rithout regard to this grouning. It is advisable to allom one space betreen letters, and to write a constant number of letters per line, approximately 25. At least two spaces, preferably three spaces should be left between horizontal lines. Care should be tai:en to avoid crowding the letters in any case, for this is not only confusing to the eye jut also mentally irritatins when later it is found that not enough space has been left for maling various sorts of marks or indications. If the cryptocran is originally in what appears to be word lengths (and this is the case as a rule only with the cryptograns of amateurs), naturally it should be copisd on the work sheet in the original groupings. If fu:thre study of a cryptogran shors that sone sprial grouping is required, it is best to recopv it on a fresh work sheet rather than to attempt to indicate the new groupiny on the old vork sheet.
d. In order to be able to locate or refer to specific letters or sroups of letters with speed, certainty, and vithout possibility of confusion, it is advisable to use coordinates applied to the lines and columns of the text as it appears on the work sheet. To miniaize possibility of confusion, it is best to apply letters to the horizontal lines of the text, numbers to the vertical colu.nns. In referring to a letter the horizontal line in which the letter is located is usuelly given first. Thus, referring to the work sheet show below, coordinates Al7 desis: nate the letter Y, the 17th letter in the first line. The lette. I is usually onitted from the series of line indicators, so as to avoid confusion with the figure 1 . If

REF ID:A64644
 - 53 -

lines are limited to 25 letters each, then each set of 100 letters of the text is automatically blocked off by remembering that 4 lines constitute 100 letters.
e. Above each character of the cipher text may be some indication of the frequency of that character in the whole cryptogran. This indication may be the actual number of times the character occurs, or, if colored pencils are used, the cipher letters may be divided up into three categories or groups. high frequency, medium frequency, and low frequency. It is perhaps simpler, if clerical help is available, to indicate the actual frequencies. This saves constant reference to the frequency tables, w'1ich interrupts the train of thought, and saves considerable time in the end.
f. After the special frequency distribution, explained in Par. 27 below, has been constructed, repetitions of digraphs and trigraphs should be underscored. In so doing, the student should be particularly watchful of trigraph repetitions which can be further extended into tetragraphs and polygraphs of greater length. Repetitions of more than six or seven characters should be set off by heavy vertical lines, as they indicate repeated phrases and are of considerable assistance in solution. Reversible digraphs should also be indicated by an underscore with a loop in it. Anything thich stri ses the eye as being peculiar, unusual, or significant as regards the distribution or recurrence of the characters should be noted. all these marks should, if convenient, be made with ink so as not to cause snudging. The work sheet will now appear as shown herewith.

$\begin{array}{lllllllllllllllllllllllllllll}19 & 16 & 15 & 22 & 19 & 5 & 5 & 5 & 16 & 23 & 19 & 19 & 14 & 16 & 3 & 16 & 19 & 16 & 15 & 22 & 19 & 8 & 23 & 35 & 35\end{array}$

$\begin{array}{llllllllllllllllllll}23 & 19 & 8 & 10 & 4 & 19 & 10 & 23 & 35 & 14 & 16 & 22 & 8 & 3 & 10 & 14 & 16 & 22 & 3 & 19\end{array} 16 \quad 2193545$

 $\begin{array}{lllllllllllllllllllll}22 & 35 & 23 & 19 & 2 & 35 & 23 & 35 & 35 & 3 & 10 & 8 & 10 & 10 & 19 & 35 & 14 & 19 & 8 & 16 & 19 \\ 10 & 5 & 19 & 35\end{array}$

$\begin{array}{lllllllllllllllllllll}35 & 19 & 35 & 22 & 19 & 5 & 5 & 19 & 23 & 10 & 8 & 1 & 19 & 15 & 8 & 8 & 10 & 2 & 5 & 35 & 23\end{array} 19 \begin{array}{ccc}10 & 23\end{array}$

$$
\begin{array}{lllllllll}
3 & 19 & 15 & 22 & 16 & 3 & 8 & 19 & 8 \\
8
\end{array}
$$

K. $\mathcal{B} G H T V I A G X X$
27. Triliteral-frequency distributions. - as In what has gone before, a type of frequency distribution known as a monoliteral-frequency, bar-distribution was used. This, of course, shows only the number of times each individual letter occurs. In order to apply the normal digraph and trigraph frequency data (given in dppendix l) to the solution of a cryptogram of the type now being studied, it is obvious that the data rith respect to digraphs and trigraphs. occurring in the cryptogram should be compiled and should be compared with the data for normal plain text. In order to accomplish this in suitable manner, it is advisable to construct a slichtly more complicated form of distribution termed a triliteral-frequencr distribution. ${ }^{l}$
b. Given a cryptogram of 50 or nore letters and the tasl: of determining what trigraphs are present in the cryptorrem, there are three ways in rhich the data hay be arranged or assembled. One may require that the data show.
(1) wach letter with its two succeeding lettors,
(2) Bach lettor rith its two preceding letters;
(3) Each lettor fith one preceding letter and one succeeding letter.
c. A distribution of the first of the three foregoing types may be designated as a "triliteral-frequency distribution sho'ing two suffixes"; the second type may be designated as a "triliteral-frequency distribution showing two prefixes"; the third type may be designated as a "triliteralfrequency distribution shoring one prefix and one suffix." juadriliteraland pentaliteral-frequency distributions may occasionally be found useful.
d. inich of these three arrangements is to be employed at a specific time depends largely upon what the data are intended to show. For present purposes, in connection with the solution of a monoal phabetic substitution cipher employing a mixed alphabet, possibly the third arrangenent, that showing one prefix and one suffix, is nost satisfactory.
Q. It is convenient to use aross-section paper for the construction $^{\prime \prime}$ for of a triliteral-frequency distribution in the forr of a bar-distribution showing crasts and trourhs, such as that in Figure 14. In that figure the prefix to each lette: to be rocorded is inserted in the upper half of the cell directly opposite the cipher letter being recorded; the suffix to each letter is inserted in the lorer half of the csll directly opposite the letter being recorded; and in each case the prefix and tho suffix to the letter being recorded occupy the same cell, the prefix being directly above the suffix. The number in pareritheses jives the total freyuencr for each letter.
${ }^{1}$ Heretofore such a distribution has been terwed a "trigraphic-frequency table". It is thourht that the :rord "triliteral"is more suitable, to correspond with the designation "monoliteral" in the case of the distribution of the single letters. The use of the word "distribution" to replace the word "table" has already been explained.

- REF ID:A64644

For example, in Fiz. 14 , note the prefixes and suffixes of the letter D_{c} :

$$
\begin{aligned}
& D(23)
\end{aligned}
$$

f. The triliteral-frequency diatribution is now to be examined with a view to ascertaining what digraphs and trigraphs occur two or more times in the cryptogram. Consider the pair of lines containing the prefixes and suffixes to D_{c} in the distribution, as shom diractly above. This pair of lines shows that the following digraphs appear in the cryptogram:

Jigraphs based on prefixes

$\mathrm{FD}, \mathrm{ZD}, \mathrm{ZD}, \mathrm{VD}, \mathrm{AD}, \mathrm{YD}, \mathrm{BD}$,
ZD, ID, ZD, YD, $B D, Z D, Z D$,
ZD, $C D, Z D, Y D, V D, S D, G D$, ZD, ID

Digraphs based on suffixes

$$
\begin{aligned}
& \mathrm{DZ}, \mathrm{DY}, \mathrm{DS}, \mathrm{DF}, \mathrm{DZ}, \mathrm{DZ}, \mathrm{DV}, \\
& \mathrm{Dr}, \mathrm{DZ}, \mathrm{DF}, \mathrm{DZ}, \mathrm{DV}, \mathrm{DF}, \mathrm{DZ}, \\
& \mathrm{DF}, \mathrm{DZ}, \mathrm{DO}, \mathrm{DZ}, \mathrm{DG}, \mathrm{DZ}, \mathrm{DI}, \\
& \mathrm{DF}, \mathrm{DE}
\end{aligned}
$$

The nature of the tabulation in the triliteral-frequency distribution is such that in finding what digraphs are present in the cryptogram it is immaterial whether the prefixes or the suffixos to the cipher letters are studied, so long as one is consistent in the study. For example, in the foregoing list of digraphs besed on the prefixes to D_{c}, the digraphs FD, $\mathrm{Zi}, \mathrm{ZD}, \mathrm{VD}$, etc., are found; if now, the student will refer to the suffixes of F_{c}, Z_{c}, V_{c}, etc., he will find the vary same digraphs indicated. This being the case, the question may be raised as to what value there is in listing both the prefixes and the suffixes to the cipher letters. The answer is that by so doing the trigraphs are indicated at the same time. For example, in the case of D_{c}, the following trigraphs are indicated:

FDZ, $Z D Y, ~ Z D S, ~ V D F, ~ A D Z, ~ Y D Z, ~ B D V, ~ Z D F, ~ I D Z, ~ Z D F, ~ Y D Z, ~ B D V, ~ Z D F, ~$ $\mathrm{ZDZ}, \mathrm{ZDT}, \mathrm{CDZ}, \mathrm{ZDO}, \mathrm{YDZ}, \mathrm{VDG}, \mathrm{SDZ}$, GDI, ZDF, IDE.
g. The repeated digraphs and trigraphs can norz be found quite readily. Thus, in the case of D_{c}, examining the list of digraphs based on suffixes, the following repetitions are noted:

> DZ appears 9 times
> DF appears 6 tines
> DV appears 2 times

Exanining the trigraphs with ν_{c} as central letter, the following ropetitions are noted:

$$
\begin{aligned}
& \text { ZDF appears } 4 \text { times } \\
& \text { YDZ appears } 3 \text { times } \\
& \text { BDV appears } 2 \text { times }
\end{aligned}
$$

h. It is unnecessery, of course, to go through the detailed procedure set forth in the preceding subparagraphs in order to find all the repeated digraphs and trigraphs. The repeated trigraphs with D_{c} as central letter

REF- ID; A64644

can be found merely from an inspection of the prefixes and suffixes opposite D_{c} in the distrijution. It is necessary only to find those cases in which two or more prefixes are identical at the same time that the suffixes are identical. For example, the distri'jution shows at once that in four cases the prefix to D_{C} is Z_{c} at the same time that the suffix to this letter is F_{C}. Hence, the trigraph ZDF appears four tines. The repeated trigraphs may all be found in this manner.
i. The most frequently ropeated digraphs and trigraphs are then assembled in what is termed a condensed table of repetitions, so as to bring this information prominently before the eye. as a rule, digraphs which occur less than four or five times, and trigraphs which occur less than three or four times may be omitted from the condensed table as being relatively of no importance in the study of repetitions. In the condensed table the frequencies of the individual letters forming the most important digraphs, trizraphs, etc., should be indicated.
28. Classifying the cipher letters into vowels and consonants. - E. Before proceeding to a detailed analysis of the repeated digraphs and trigraphs, a very important step can be taken which will be of assistance not only in the analysis of the repetitions but also in the final solution of the cryptogram. This stop concerns the classification of the high-frequency letters into two groups: vorels and consonants. For if the cryptanalyst can quickly ascertain the equivalents of the four vovels, $A ; \mathbb{A}, \mathrm{I}$, and O, and of only the four consonants, I, R, S, and T, he will then have the values of approximately two-thirds of all the cipher letters that occur in the cryptorram; the values of the remaining letters can almost be filed in automatically.
b. The basis for the classification vill be found to rest upon a comparatively simple phenomenon. the associational or combinatory behavior of vowels is, in general, quite different from that of consonants. If an examination be made of Table 7Bin Appendix l, showing the relative order of frequency of the 18 digraphs composing 25 per cent of Jnglish telegraphic text, it will be seen that the letter \mathbb{I} enters into the composition of 9 of the 18 digraphs; that is, in exactly half of all the cases the letter is one of the two letters forming the digraph. The digraphs containing E are as follows:

$$
\begin{array}{llllll}
3 D & \operatorname{IN} & \mathrm{ER} & \mathrm{ES} \\
& \mathrm{ES} & \mathrm{RH} & \mathrm{SE} & \mathrm{~T} A & \mathrm{VA}
\end{array}
$$

The reinaining nine dizraphs are as follows.

AIN	IND	OR	ST
IN	INT		TH
ON			TO

None of the 18 digraphs are combinations of vowels. Note now that of the 9 combinations with $\mathbb{H}, 7$ are with the consonants $N, ~ i, S$, and T, one is with D, one is with V, and none is with any vowel. In other words, \mathbb{E}_{p} combines most readily with consonants but not with other vowels, or even with

REE -ID:A64644

itself. Using the terms often employed in the chemical analogy, E shows a rreat "affinity" for the consonants $19,3, S, T$, but not for the vowels. Ihererore, if the letters of hirchest fremency occurring in a given cryptom grain are listed, together ith the number of times each of them conbines rith the cipiner equivalent of A_{p}, those which show considerable combining power or affinity for the cipher equivalent of I_{p} may be assumed to be the cipher equivalents of $N, K, 3, T p$ those which do not show any affinity for the cioher aquivalent of E_{p} may be assumed to be the cipher equivalents of A, I, $0, U_{p}$. Applying thes principles to tho problem in hand, and examining the triliteral-frequency distribution, it is quite certain that $Z_{c}=\mathbb{E} p$, not only because Z_{c} is the letter of highest frequency, but also because it combines with several other high-frequency latters, such as $\mathrm{D}_{\mathrm{c}}, \mathrm{F}_{\mathrm{c}}$, G_{c}, etc. The nine letters of next highest frequency are:

$$
\begin{array}{rrrrrrrrr}
23 & 22 & 19 & 19 & 15 & 15 & 14 & \text { io } & 10 \\
\mathrm{D} & \mathrm{~T} & \mathrm{~F} & \mathrm{G} & \mathrm{~V} & \mathrm{H} & \mathrm{Y} & \mathrm{~S} & \mathrm{I}
\end{array}
$$

Let the conjinations thase letters form with Z_{c} be indicated in the followiny manner.

Consider D_{c}. It occurs 23 times in the message and 18 of those times it is combined with $Z_{c}, 9$ times in the forn $Z_{c} D_{c}\left(=E \theta_{p}\right)$, and 9 times in the form $D_{c} Z_{c}\left(=\theta \sum_{p}^{2}\right)$. It is clear that D_{c} must ive a consonant. In the same way, consider \mathbb{T}_{c}, which shows 9 combinations :Tith Z_{c}, 4 in the form $Z_{c} T_{c}\left(=E \theta_{p}\right)$ and 5 in the form $T_{c} L_{c}\left(=\theta \mathrm{E}_{\mathrm{p}}\right)$. The letter T_{c} appours to represent a consonant, as do also tho lottors F_{c}, G_{c}, and Y_{c}. On the other hand, consider V_{c}, occurring in all lof tiues but never in combination with Z_{c}; it appears to represent a vorel, as does also the letters H_{c}, S_{c}, and I_{c}. So far, then, the following classification would seem logical:

Vonels

$$
Z_{c}\left(=Z_{p}\right), V_{c}, H_{c}, S_{c}, I_{c}
$$

Consonants

$$
D_{c}, T_{G}, T_{c}, G_{C}, Y_{c}
$$

29. Further analysis of the letters representing voryels and consonants. a. O_{p} is usually the vorel of second hig'est frequency. Is it possible to dotermine which of the letters $\mathrm{V}, \mathrm{H}, \mathrm{S}, \mathrm{I}_{\mathrm{c}}$ is the cipher equivalent of O_{p} ? Let reference bo uade again to Table 11 in appendix 1 , where it is seen that the 10 most frequently occurring diphthon;s are.

Diphthong - IO	OU	EA	RI	AI	II	AU	EO	AI	$U T$
Frequency - 406	365	345	273	172	131	128	121	120	114

If V, H, S, I_{c} are really the cipher equivalents of A, I, O, U_{p} (not rer spectively), perhaps it is possible to determine ohich is which by examining the combinations they make a:mons themselves and with Z_{c} ($=\mathrm{E}_{\mathrm{p}}$). Let the combinations of V, A, I, and Z that occur in the message be listed. There are only the following:

$$
\begin{array}{llll}
\mathrm{ZZ}_{\mathrm{c}}(= & \left.3 \mathrm{~N}_{\mathrm{p}}\right) & -4 & \mathrm{HI} \\
\mathrm{VH} & -2 & \mathrm{SV} & -1 \\
\mathrm{HH} & -1 & \text { IS } & -1 \\
& -1
\end{array}
$$

Note the doublat HH_{c}; if H_{C} is a vovel, then the chances are excellent that $\mathrm{II}_{\mathrm{c}}=\mathrm{O}_{\mathrm{p}}$, becauso t'se doublats $九 \mathrm{~A}_{\mathrm{p}}, \mathrm{II}_{\mathrm{p}}, \mathrm{UU}_{\mathrm{p}}$, are practically non-existent, whereas the double voidel combination, 00_{p}, is of next highest frequency to the double vowel comination, $\begin{aligned} & 3 \\ & j\end{aligned}$. If $H_{c}=O_{p}$, then V_{c} must be I_{p} because the digraph V_{c} occurring two times in the nessage could hardiy be $A O_{p}$, or $U O_{p}$, whereas the diphthong $I U_{p}$ is the one of high frequeicy in English. So far then, the tentative (because so far unverified) results of the analysis are as follows.

$$
Z_{c}=E_{p} \quad H_{c}=O_{p} \quad V_{c}=I_{p}
$$

This leaves only two letters, I_{c} and S_{c}, classified as vovels, to be separated into A_{p} and U_{p}. Note the disraphs:

$$
\begin{aligned}
& H I_{c}=O \theta \\
& \mathrm{SV}_{\mathrm{c}}=\theta \mathrm{I}_{\mathrm{p}} \\
& \mathrm{IS}_{\mathrm{c}}=\Theta \theta_{\mathrm{p}}
\end{aligned}
$$

Only two alternatives are open.
(1) Sither $I_{c}=A_{p}$ and $S_{c}=U_{p}$,
(2) Or $\quad I_{c}=U_{p}$ and $S_{c}=A_{p}$.

If the fisst alternative is selected, then

$$
\begin{aligned}
& H I_{c}=O A_{p} \\
& S V_{c}=U I_{p} \\
& I S_{c}=A U_{p}
\end{aligned}
$$

If the second alternative is selocted, then

$$
\begin{aligned}
& A I_{C}=O U_{p} \\
& S V_{c}=A I_{p} \\
& I S_{c}=U A_{p}
\end{aligned}
$$

The eye finds it difficult to choose between these alternativesg but suppose the frequency values of the plain-text diphthongs as given in Table 11 of Appendix 1 are added for each of these alternatives, giving the following:

_REE ID:A64644

$$
\begin{aligned}
& \mathrm{HI}_{\mathrm{c}}=\mathrm{OH}_{\mathrm{p}}, \text { frecuency value }=72 \\
& S V_{c}=U I_{p} \text {, frectuency value }=46 \\
& I S_{c}=A U_{p} \text {, frequency value }=128 \\
& \text { Total } 246
\end{aligned}
$$

-athematically, the second alternative is almost twice as probable as the first. Let it be assumed to be correct and the following (still tentative) velues are now at hand:

$$
Z_{c}=E_{p} \quad H_{c}=O_{p} \quad V_{c}=I_{p} \quad S_{c}=A_{p} \quad I_{c}=U_{p}
$$

b. Attention is now directed to the letters classified as consonants. Iow far is it possible to determine their values? The letter, D_{c}, from considerations of frequency nlone, would seen to be $T p$, but its frequency, 23, is not considerably greater than that for T_{C}. It ${ }^{\text {P }}$ is not much greater than that for F_{c} or G_{c}, rith a frequency of 19 each. But perhaps it is possible to determine not the value of one letter alone but of two letters at one stroke. To do this one may make use of a tetragraph of considerable importance in Inglish, viz., TION. For if the anelysis pertaining to the vorels is correct, and if $V_{i f}=I 0_{p}$, then an examination of the letters imaediately before and after the digraph $V H_{c}$ in the cipher text might disclose both T_{p} and N_{p}. Reference to the text gives the folloving:

$$
\begin{array}{ll}
\operatorname{GVHT}_{c} & \mathrm{FVHT}_{\mathrm{c}} \\
\theta I O \theta_{\mathrm{p}} & \theta I O \theta_{\mathrm{p}}
\end{array}
$$

The letter T_{c} follows VHe in both cases, indicates very prodably that $T_{c}=$ ${ }^{1 H}$; but as to whether \mathcal{G}_{c} or F_{c} eguals T_{p} camnot be decided. However, two conclusions are clear: first, the letter D_{c} is neither T_{p} nor N_{p}, from which it follows that it must be either R_{p} or S_{p}; second, the letters G_{c} and F_{c} must be either T_{p} and S_{p}, respectivaly, or S_{p} and T_{p} respectively, because the only tetragraphs usually found (in English) containing the diphthong $I O_{p}$ as central letters are $S I O_{1} i_{p}$ and TIOIIp. This in turn means that as regards D_{c}, the latter cannot be eilher R_{p} or S_{p}; it must be K_{p}, a. conclusion which is corroborated by the fact that $Z D_{c}\left(=E R_{p}\right)$ and ωZ_{c} ($=R 3_{p}$) occur 9 tines each. Thus far, then, the identifications, when inserted in an enciphering alphabet, are as follows.

$$
\begin{aligned}
& \text { Plain: ABSDSFGHIJKLANOPZqSTUVNXYZ } \\
& \text { Cipher: } S \quad Z \quad V \quad \text { TH } \mathrm{Z} \text { GFI } \\
& \text { FG }
\end{aligned}
$$

REF_ JD_A64644

30. Substituting deduced values in the cryptogram. - a. Thus far the analysis has been almost purely hypothetical, for as yet not a single one of the values deduced from the foregoing analysis has been tried out in the cryptogram. It is high time that this be done, because the final test of the validity of the hypotheses, assumptions and identifications made in any cryptographic study is, after all, only this: do these hypotheses, assumptions and identifications ultimately yield verifiable, intelligible, plain-text when consistently applied to the cipher text?
b. At the present stage in the process, since there are at hand the assumed values of but 9 out of the 25 letters that appear, it is obvious that a continuous "reading" of the cryptogram can certainly not be expected fron a mere insertion of the values of the 9 letters. However, the substitution of these values should do two things: first, it should immediately disclose the frag.ents, outlines, or "skeletons" of "good" words in the text; and second, it should disclose no places in the text rhere "impossible" sequences of letters are established. By the first is meant that the partially deciphered text should show the outlines or skeletons of words such as may be expected to be found in the cormunication; this vill becoal quite clear in the next subparagraph. By the second is neant that sequences, such as "AOUNN" or "TINRSEIO" or the like, obviously not possible or extrenely unusual in normal Inglish text, must not result from the substitution of the tentative identifications resulting from the analysis. The appearance of several such extremely unusual or impossible sequences at once signifies that one or more of the assuned values is incorrect.
c. Here are the results of substituting the nine values which have been deduced by the reasoning based on a classification of the high-frequency letters into vowels and consonants and the study of the members of the two groups:

REF ID:A64644

- 62 -

 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrr}22 & 35 & 23 & 19 & 2 & 35 & 23 & 35 & 35 & 3 & 10 & 8 & 10 & 10 & 19 & 35 & 14 & 19 & 8 & 16 & 19 & 10 & 5 & 19 & 35 \\ \mathrm{~T} & \mathrm{Z} & \mathrm{D} & \mathrm{F} & \mathrm{K} & \mathrm{Z} & \mathrm{D} & \mathrm{Z} & \mathrm{Z} & \mathrm{J} & \mathrm{S} & \mathrm{X} & \mathrm{I} & \mathrm{S} & \mathrm{G} & \mathrm{Z} & \mathbf{Y} & \mathrm{G} & \mathrm{A} & \mathrm{V} & \mathrm{F} & \mathrm{S} & \mathrm{I} & \mathrm{G} & \mathrm{Z} \\ \mathrm{N} & \mathrm{E} & \mathrm{R} & \mathrm{T} & & \mathrm{E} & \mathrm{R} & \mathrm{E} & \mathrm{I} & & \mathrm{A} & & & \mathrm{A} & \mathrm{S} & \mathrm{E} & & \mathrm{S} & & \mathrm{I} & \mathrm{T} & \mathrm{A} & & \mathrm{S} & \mathrm{E} \\ & & & \mathrm{S} & & & & & & & & & & & \mathrm{T} & & & \mathrm{T} & & & \mathrm{S} & & & \mathrm{T} & \end{array}$
 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrr}14 & 23 & 35 & 14 & 19 & 8 & 16 & 23 & 19 & 35 & 35 & 22 & 2 & 15 & 10 & 22 & 14 & 35 & 14 & 10 & 23 & 35 & 19 & 15 & 5 \\ \mathrm{Y} & \mathrm{D} & \mathrm{Z} & \mathrm{Y} & \mathrm{G} & \mathrm{A} & \mathrm{V} & \mathrm{D} & \mathrm{G} & \mathrm{Z} & \mathrm{Z} & \mathrm{T} & \mathrm{K} & \mathrm{H} & \mathrm{I} & \mathrm{T} & \mathrm{Y} & \mathrm{Z} & \mathrm{Y} & \mathrm{S} & \mathrm{D} & \mathrm{Z} & \mathrm{G} & \mathrm{H} & \mathrm{U} \\ & \mathrm{R} & \mathrm{H} & & \mathrm{S} & & \mathrm{I} & \mathrm{R} & \mathrm{S} & \mathrm{E} & \mathrm{F} & \mathrm{N} & & \mathrm{O} & & \mathrm{N} & & \mathrm{E} & & \mathrm{A} & \mathrm{R} & \mathrm{I} & \mathrm{S} & \mathrm{O} & \\ & & & & \mathrm{T} & & & & \mathrm{T} & & & & & & & & & & & & & & \mathrm{T} & & \end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrr}35 & 19 & 35 & 22 & 19 & 5 & 5 & 19 & 23 & 10 & 8 & 1 & 24 & 15 & 8 & 8 & 10 & 2 & 5 & 35 & 23 & 19 & 5 & 10 & 23 \\ Z & \mathrm{~F} & \mathrm{Z} & \mathrm{T} & \mathrm{G} & \mathrm{U} & \mathrm{P} & \mathrm{G} & \mathrm{D} & \mathrm{I} & \mathrm{X} & \mathrm{W} & \mathrm{G} & \mathrm{H} & \mathrm{X} & \mathrm{A} & \mathrm{S} & \mathrm{R} & \mathrm{U} & \mathrm{Z} & \mathrm{D} & \mathrm{F} & \mathrm{U} & \mathrm{I} & \mathrm{D} \\ \mathrm{E} & \mathrm{T} & \mathrm{A} & \mathrm{N} & \mathrm{S} & & & \mathrm{S} & \mathrm{R} & & & & \mathrm{S} & 0 & & & \mathrm{~A} & & & \mathrm{E} & \mathrm{R} & \mathrm{T} & & & \mathrm{R} \\ & \mathrm{S} & & & \mathrm{T} & & & \mathrm{T} & & & & & \mathrm{T} & & & & & & & & & & \mathrm{S} & & & \end{array}$ $\begin{array}{rrrrrrrrrr}3 & 19 & 15 & 22 & 16 & 3 & 8 & 19 & 8 & 8 \\ \text { H } & G & H & T & V & \mathrm{I} & \mathrm{A} & \mathrm{G} & \mathrm{X} & \mathrm{X} \\ & \mathrm{S} & \mathrm{O} & \mathrm{N} & \mathrm{I} & & & \mathrm{S} & & \\ & \mathrm{T} & & & & & & T & & \end{array}$
d. Jo impossible sequences are b ought to light, and, moreover, several long words, nearly complete, stand out in the text. Note the following portions:

REF＿TD：A64644

$$
\begin{array}{cccccccccc}
A 21 & & & & & & B 5 \\
H & B & Z & D & S & G & V & H & T & F \\
0 & & \beth & Z & A & S & I & 0 & T & T \\
& & & & T & & & & S
\end{array}
$$

（1）
（2）

C15												D2
T	V	T	Z	B	D	V	F	H	T	Z	D	F
N	I	N	E		R	I	T	0	N	H	R	T

> F22

G5
（3）

$$
\begin{array}{ccccccccc}
\mathrm{S} & \mathrm{~L} & G & Z & D & \mathrm{~T} & \mathrm{H} & \mathrm{H} & \mathrm{~T} \\
\mathrm{~A} & & \mathrm{~S} & \mathrm{~T} & \mathrm{R} & \mathrm{~N} & 0 & 0 & \mathrm{~N}
\end{array}
$$

The words are obviously OPRTATIOHS，NINE PRISONERS，and ATMBRINOON．The value G_{c} is clearly $T_{p} ;$ that of F_{c} is S_{p} ；and the following additional values are certain：

$$
B_{c}=P_{p} \quad L_{c}=F_{p}
$$

31．Completing the solution．－a．Bach tine an additional value is obtained，substitution is at once made throughout the cryptogram．This leads to the determination of further values，in an ever－widening circle， until all the identifications are firmly and finally established，and the message is completely solved．In this case the decipherment is as follows：

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	5	16	17	18	19	20		22	23		
A	S	F	D	2	F	I	0	G	H	L	P	2	F	G	2	D	Y	S	P	F	H	B	Z	D	S
A	A	5	R	E	S	U	L	T	0	F	Y	د	S	T	\＃	R	D	A	Y	S	0	P	조	R	A
B	G	V	H	T	F	U	P	L	V	D	F	G	Y	V	J	V	F	V	H	T	G	A	D	2	Z
B	T	I	0	N	S	B	Y	F	I	2	S	T	D	I	V	I	S	I	0	N	T	H	R	点	E
C	A	I	T	Y	د	2	Y	F	2	J	2	T	G	P	T	V	T	Z	B	D	V	F	H	T	Z
C	H	U	17	D	R	卫	D	S	\pm	V	T	N	T	Y	N	I	iJ	\square	．${ }^{2}$	R	I	S	0	N	E
D	D	F	X	S	B	G	I	D	Z	Y	V	T	X	0	I	Y	V	T	\＄	F	V	M	－	Z	Z
D	R	5	C	A	P	T	U	R	3	ป	I	N	G	L	U	D	I	N	G	S	I	X	T	出	T
\square	T	H	L	L	V	X	2	D	F	is	H	T	2	A	I	T	Y	D	Z	Y	B	D	V	F	H
H	N	0	F	F	I	C	포	నె	S	X	0	N	3	H	U	IJ	D	R	3	D	P	2	I	S	0
T	T	． 2	D	F	K	Z	D	2	2	J	S	X	I	S	G	2	Y	G	4	V	F	S	L	G	2
F	N	E	R	S	T	E	R	式	E	V	A	0	U	A	T	出	D	T	H	I	S	A	F	T	玉
G	D	T	H	H	T	C	D	2	R	S	V	T	Y		D	0	Z	F	F	H	T	2	A	I	T
G	R	N	0	0	iv	Q	R	工	Li	A	I	N	D	T	R	I	I	5	S	0	IJ	\＃	H	U	N
H	Y.	D	2	Y	G	A	V	D	G	Z	2	T	K	H	I	T	Y	2	Y	S	D	2	G	H	U
H	，D	R	ヱ	D	T	H	I	$\underline{2}$	T	2	E	iv	V	0	U	IN	D	3	D	A	R	E	T	0	B
	Z．	F	Z	T	G	U	F	G	D	I	X	W	G	H	X	A	S	R	U	2	D	F	U	I	D
J	E	S	玉	iv	T．	3	Y	T	R	U	C	K	T	0	C	H	A	：	B	\cdots	R	S	B	U	R
	\％	G	H	T	V	H	A	G	X	X															
K	G	T	0	N	I	－	H	T	X	X															

Message: AS RISUlit OF GESTERDAYS OFERATOIS BY FIRST DIVIjION THREE HUN-
DRED SEVEINTY NINE $⺊$-ZISONERS CAFTURED IHCLUJING SIXTGHN OFFICARS ONE HUN-
DRED PRISONERS VGTE SNACUATGD THIS AFTJRNOON RE:AINJER LESS ONE HUINDRED
THIRTEEN TOUNDED ARE TO BE SEIJT BY TPUCK TO CHABBERSBURG TONIGHT
b. The solution should, as a rule, not be considered complete until an attempt has been made to discover all the elements underlying the general system and the specific key to a message. In this case, there is no need to delve further into the zeneral system, for it is merely one of monoalphabetic substitution with a mixed cipher alphabet. It is necessary or advisable, however, to reconstruct the cipher alphabet because this may give clues that later may become valuable.
c. Cipher alphabets should, as a rule, be reconstructed by the cryptanalyst in the form of enciphering alphabets because they will then be in the form in which the encipherer used them. This is important for two reasons. First, if the sequence in the cipher component gives evidence of system in its construction or if it yields clues pointing toward its derivation from a keyword or a key-phrase, this may often corroborate the identifications already made and may lead directly to additional identifications. A word or two of explanation is advisable here. For example, refer to the skeletonized enciphering alphabet given at the end of par. 29b:

Suppose the cryptanalyst, looking at the sequence DGFI or DFGI in the cipher component, suspects the presence of a keyword-mixed alphabet. Then DFGI is certainly a more plausible sequence than DGFI. Again, noting the sequence S...Z...V....TH..D, he might have an idea that the keyword begins after the Z and that the $T H$ is followed by $A B$ or BC. This would mean that either $P, Q_{p}=A, B_{c}$ or B, C_{c}. Assuming that $P, Q_{p}=A, B_{c}$, he refers th the frequency distribution and finds that the assumptions $P_{p}=A_{c}$ and $Q_{p}=$ B_{c} are not good on the other hand, assuming that $P, Q_{p}=B, C_{c}$, the frequency distribution gives excellent corroboration. A trial of these walues would materially hasten solution because it is often the case in cryptanalysis that if the value of a very low-frequency letter can be surely established it will yield clues to other values very quickly. Thus, if Q_{p} is definitely identified it almost invariably will identify U_{p}, and will p give clues to the letter following the U_{p}; since it must be a vowel. In the case under discussion the identification $P Q_{p}=B C_{c}$ would have turned out to be correct. For the foregoing reason an attempt should always be made in the early stages of the analysis to determine, if possible, the basis of construction or derivation of the cipher alphabet; as a rule this can be done only by means of the enciphering alphabet, and not the deciphering alphabet. For example, the skeletonized deciphering alphabet corresponding to the enciphering alphabet directly above is as follows:

REF ID:A64644
 - 65 -

rlain • R TSOU AN I

Here no evidences of a keyword-miæed alphabet are seen at all. However, if the enciphering alihabet has been examined and shows no evidences of systematic construction, the leciphering alphabet should then be examined with this in view, because occasionally it is the deciphering alphaiet which shows the presence of a key or keying element, or winich has been systematically derived from a word or phrase. Ihe second reason mhy it is imyortant to try to discover the basis of construction or derivation of the cipher alpiabet is that it affords clues to the general type of keywords or keying elements employed by the enemy. This is a psycholorical factor, of course, and may be of assistance in subsequent studies of his traffic. It merely gives a clue to the general type of thinking indulged in by certain of his cryptographers.
d. In the case of the foregoing solution, the complete enciphering alphabet is found to be as follows:

Obviously, the letter 2 , which is the only letter not appearing in the cryptogram, should follow P in the cipher component. ilote now that the latter is based upon the keyvord LisivN OXTH, and that this particular cipher alphabet has been coraposed by shifting the mixed sequence based upon this keyword six intervals to the right so that the key for the messare is $A_{p}=S_{c}$ lJote also that the deciphering alphabet fails to give any evidence of keyword construction based upon the word LFAVENTORPH.

日. If neither the enciphering or the deciphering alphabet exhibits characteristics which give indication of derivation from a keyword by some form of uixing or disarrangement, the latter is nevertheless not finally excluded as a possibility. The student is referred to pars. 46 and 47 of Special Text 10 . 165, 色lementary lilitary Cryptorraphy, wherein will be found methods for deriviny mixed alphabets by transposition methods applied to keyrord-inxed al phabets. For the reconstruction of such mixed alphabots the cryptanalyst must use ingenuity and a knowledge of the more common methods of suppressing the appearance of leywords in the mixed alphabets.
32. General notes on the foregoing solution. - a. The example solved above is admittedly a more or less artificial illustration of the steps in analysis, made so in order to detonstrate reneral principles. It was easy to solve because the frequencies of the various cipher letters coresponied quite lell with the normal or expected frecuencies. Gowever, all cryotograms of the same monoalphabetical nature can be solved along the same general lines, after more or less experimentation, depending upon the longth of the cryptogram, the skill, and the experience of the cryptanalyst.

REF -ID : A64644

b. It is no cause for discouragement if the student's initial attempts to solve a cryptogram of this type require much nore time and effort than were apparently required in solving the foregoing purely illustrative example. It is indeed rarely the case that every assumption made by the cryptanalyst proves in the end to have been correct; eore often is it the case that the anajority of his initial assumptions are incorrect, and that he loses much time in casting out the erroneous ones. The speed and facility with which this elimination process is conducted is in many cases all that distinguishes the expert from the novice.
c. Nor will the student always find that the initial classification into vowels and consonants can be accomplished as easily and quickly as was apparently the case in the illustrative example. The principles indicated are very general in their nature and applicability, and there are, in addition, some other principles that may be brought to bear in case of difficulty. Of these, perhaps the most useful are the folloving.
(1) In normal English it is unusual to find two or three consonants in succession, each of high frequency. If in a cryptogram a succession of three or four let.ters of inigh-frequency appear in succession, it is practically certain that at least one of these represents a vowel. 1
(2) Successions of three vowels are rather unusual in English. 2 Practically the only tine this happens is when a word ends in two vowels and the next word begins with a vowel. 3
(3) hen two letters already classified as vowelequivalents are separated by a sequence of six or more letters, it is either the case that one of the supposed vowel-equivalents is incorroct, or else that one or more of the internediate lettors is a vovel-equivalent. 4
1 Sequences of seven consonants are not impossible, however, as in STRANGTH THROUGH.
2 Iote that the ford RmDICבD, pest tense of the verb RiDIO, is coming into usage.
3 A sequence of five vowels is not impossible, however, as in YOU AUTHORIZE.
4 Some cryptanalysts place a zood deal of emphasis upon this principle as a method of locating the remaining vowels after the first two or three have been located. They recomend that the latter be underlined throughout the text and then all sequences of five or more letters showing no underlines be studied attentively. Certain letters which occur in several such sequences are sure to be vowels. An arithmetical aid in the study is as follows: Take a letter thought to be a good possibility as the cipher equivalent of a vowel (hereafter termed a possible vowel-eguivalent) and find the length of each interval from the possible vowel-equivalent to the next known (fairly surely deternined) vowel-equivalent. Lultiply the interval by the number of times this interval is found. Add the products and divide by the total number of intervals considered. This will give the mean interval for that possible vowel-equivalent. Do the same for all the other possible vowelequivalents. The one for which the mean is the greatest is most probably a vowel-equivalent. Underline this letter throughout the text and repeat the process for locating additional vowel-equivalents, if any remain to be located.
(4) Reference to Table TB of sppendix 1 discloses the following.

Distribution of lst 18 digraphs forning 25/ of 2 inglish text:

No. of consonant-consonant digraphs	- 4
No. of consonant-vowel digraphs	-6
No. of vowel-consonant digraphs	-8
Ho. of vowel-vowel digraphs	-0

Distribution of lst 53 digraphs forming 50/of snglish text.

Ho. of consonant-consonant dirraphs - 8
No. of consonant-vowel digraphs . . . 23
No. of vowel-consonant digraphs - 18
No. of vowel-vowel digraphs - . 4
The latter tabulation shows that oin the first 53 digraphs which form 50, of Inglish text, 41 of them, that is, over 75/a, are combinations of a voryel with a consonant. In short, in normal English the vovels and the high-frequency consonants are in the long run distributed fairly evenly and regularly throughout the text.
(5) As a rule, repetitions of trigraphs in the cipher text are composed of high-frequency letters forming high-frequency combinations. The latter practically always contain at least one voisel; in fact, if reference is made to Table 13 of ripendix 1 , it will be noted that 36 . of the 56 trigraphs having a frequency of 100 or more contain one vovel, 17 of them contain two vowels, and only three of them contain no vowel. In the case of tetragraph repetitions, Table 14 of Appendix 1 shows that no totragraph listed therein fails to contain at least one vowel, 28 of them contain one vovel, 25 contain two vorels, and 2 contain three vowels.
(6) 了uite frequent ly then twọ knoin vowel-equivalents are separated by six or nore letters none of which seens to be of sufficiently high frequency to represent one of the vo:zels A E I O, the chances are good tirat the cipher-equivalent of the vorvel U or Y is present. (See Póotinote No. 4, page 66)
(7) The letter ? is invariably followed by U_{j} the letters J and V are invariably followed by a vowel.

RF F ${ }_{6}$ ID: A64644

d. In the foregoing example the amount of expe:imentation or "cutting and fitting" was practically nil. (This is not true of real cases as a rule.) here such experimentation is necessary, the underscoring of all repetitions of several letters is very essential, as it calls attention to peculiarities of structure that often yield clues.
@. After a few basic assumptions of values have been made, if short vords or skeletons of words do not becone manifest, it is necessary to make further assumptions for unidentified letters. This is accomplished most often by assuming a word. ${ }^{1}$ Now there are two places in every messaze which lend themselves more readily to successful attack by the assumption of words than do any other places. the very beginning and the very end of the message. The reason is quite obvious, for although words may berin or ond with almost any letter of the alphabet, they usually begin and end with but a few very common digraphs and trigraphs. In this connection reference should be made to Tables 15 and 16 of appendix l. Very often the association of letters in peculiar combinations will enable the student to note where one word ends and the next begins. For example, suppose $\mathrm{F}, \mathrm{N}, \mathrm{S}$ and T have been definitely identified, and a sequence like the following is found in a cryptogram.
———ENTSNE———

Obviously the break between two words should fall either after the S of ㄱ N T S or after the T of i N T, so that two possibilities are offered:
 there are very few words with the initial trigraph S NE , it is most likely that the proper division is . . . ENT S / NE Obviously, when several ward divisions have been found, the solution is rendered more easy by virtue of the greater ease with which assumptions of additional new values may be made.
33. The "probable-word" method; its value and applicability. - a. In practically all cryptanalytic studies, short-cuts can often be made by assuming the presence of certain words in the message under study. Some writers attach so much value to this kind of an "attack from the rear" that they practically elevate it to the position of a method and call it the "intuitive method" or the "probable-vord method". It is, of course, merely a refinement of what in every-day language is called "assuning" or "guessing" a word in the message. The value of making a "good guess" can hardly be overestimated, and the cryptanalyst should never feel that he is accomplishing a solution by an illegitimate subterfuge when he has made a fortunate guess leading to solution. A correct assumption as to plain text will often save hours or days of labor, and sometimes there is no alternative but to try to "guess" a word, for occasionally a system is encountered the solution of which is absolutely dependent upon this artifice.
1 This process does not involve anything more mysterious than ordinary, logical reasoning; there is nothing of the subnormal or supernormal about it. If cryptanalytic success seems to require processes akin to those of medieval magic, if "hocus-pocus" is much to the fore, the student should begin to look for items that the claimant of such success has carefully hidden from view, for the mystification of the uninitiated. (See Par. 33 in this connection.)

REF ID:A64644

- 69 -
b. The expression "rooo ruess" is used advisedly. For it is "good" in two respects. First, the cryptanalyst nust use care in making his assumptions es to plain-text rords. In this he must be guided by extraneous circumstances leading to the assumption of probable words - not just any words that come to his mind. Therefore he must use his imajination but he nust nevertheless carefully control it by the exercise of good judgment. Second, only if the "guess" is correct and leads to solution, or at least puts him on the road to solution, is it a good guessa. But, while realizing the usefulness and the time and labor-saving features of a solution by assuming a probable word, the cryptanalyst should exercise discretion in regard to hov long he may continue in his efforts vith this method. sometimes he may actually waste time by adhering to the method too long, if straightforward, methodical analysis will yield results more quickly.
c. Obviously, the "probable-word" method has much wore applicability when borking upon material the general nature of which is know, than when working upon more or less isolated coamunications exchanged between corraspondents concening whor or whose activities nothing is known. For in the latter case there is little or nothing that the inagination can seize upon as a back rround or basis for the assumptions. ${ }^{1}$
d. Very frequently, the choice of probable words is aided or limited by the number and positions of repeated letters. These repetitions may be patent, that is, externally visible in the cryptographic text as it originally stands, or they may be latent, that is, externally invisible but susceptible of being made patent as a result of the analysis. For example, in a monoalphabetic substitution cipher, such as that discussed in the preceding paragraph, the repeated letters are directly exhibited in the cryptojram; later the student will encounter many cases in which the repetitions are latent, but are made patent iy the analytical process. ihen the repetitions are patent, then the pattern or foriula to which the repeated letters conform is of direct use in assuming plain-text words; and when the text is in vord-lengths, the pattern is obviously of oven greater assistance. Suppose the cryptanalyst is dealing with military text, in which case he may expect such worde as JIVIsION, BATTALION, etc., to be present in the text. The positions of the repeated letter I in DIVISIONs, of the reversible digraph AT, TA in BATTALION, and so on, constitute for the experienced cryptanalyst, tell-tale indications of the presence of these vords, even Then the text is not divided up into its original word lengths.

[^10]
REFF_ID:A64644

e. The important aid that a study of word patterns can afford in cryptanalysis Jarrants the use of definite terminology ana the establishment of certain data having a bearing thereon. The phenomenon hersin under discussion, namely, that many words are of such construction as regards the number and positions of repeated letters as to make them readily identifiable, will be termed idiomorijhism (from the ureek "idios" = one's own, individual, peculiar + "morple" = form). :.ords which show this phenomena will be termed idiomorphic. It will be useful to deal with the idiomorphisms symbolically and systematically as described below.
f. Then dealing with cryptograms in which the word lengths are determined or specifically shown, it is convenient to indicate their lengths and their repeated letters in somo easily recognized nanner or by formulas. This is exemplified, in the case of the word IIVISION, by the formula ABOEDBAF; in the case of the word BriThLIGI, by the formula ABCCBDEFG If the cryptanalyst, during the course of his studies, nakes note of striking formulas he has encountered, with the words which fit them, after some time he will have assembled a quite valuable body of data. And after more or less complete lists of such formiss have been established in some systematic arrangement, a rapid comparison of the idiomorphs in a specific cryptogram with those in his lists will be feasible and will often lead to the assumption of the correct word. Such lists can be arranged according to word length, as shown herewith:

g. Then dealing with cryptographic text in which the lengths of the words are not indicated or otherwise determinable, lists of the foregoing nature are not so useful as lists in which the words (or parts of words) are arranged according to the intervals between identical letters, in the following manner:

1 Interval	2 Intervals	3 Intervals	Repeated digraphs
-DiD-	AbbAcy	AbeyAnce	COCOa
-Evi-	ArAbiA	habitAble	dERBR
-EyE-	AbiAtive	laborAtory	ICICle
dIvIsion	AboArd	AbreAst	IIINg
revIsIon	-AciA-	AbroAd	bAGgAGe
etc.	etc.	etc.	etc.

In Appendix 2 will be found some useful lists of words arranged in this manner.
34. Solution of additional cryptograns produced by the same cipher component. - a. To return, after a rather long digression, to the cryptogram solved in pars. 28 - 31, once the cipher component of a cipher alphabet

REF ID:A64644

- 71 -
has been reconstructed, subsgruent nessages rhich have been encipiered by means of the same cipher component may be solved ve.y roadily, and rithout recourse to the principles of frequency, or application of the "probableword" method. It has been sem that the illustrative crypto rram treated in parasraphs 24-31 was enciphered by juxtaposing the cioher component a component may be set a jainst the plain component at any one of 26 different points of coincidence, each yielding a different cipher alphabet. after a cipher component has been reconstructed; hovever, it becomes a known sequence, and the method of converting the cipher letters into their plain-component equivalents and then completing the plain-component sequence begun by each equivalent can be a pilied to solve any cryjtogram which has been enciphered by that cipher component.
b. An example rill serve to make the process quite clear. Suppose the following messaje passing between the sane tioo stations as before was intercepted shortly after the first message had been solved.

$$
\text { IY UK C URNZ OFOSD LFOOH } 2 \text { AZXX }
$$

It is assumed that the same cipher component was used, but with a different key letter. First the initial group or two groups are converted into their plain-coaponent equivalents by setting the cipher component against the normal sequence at any arbitrary point of coincidence. The initial letter of the former may as rell be set azainst A of the latter, with the following result.
Gipher. LIAVN'ORTHBCDFGIJ:ifysuxyz

```
Crypto;ram : I Y N:V K O ב R Il 'I
{quivalents, & Y B FR L BHEF
```

The nomal sequence initiated by each of these conversion equivalents is now completed, with the results shom in Fig. l5. Hote the plain-text generatrix, CLOSJYOURS, which ianifests itself 'ithout further analysis. The rest of the messace may be read either by continuing the same process, or, that is even nore simple, the key letter of the message may now be determined quite readily and the message deciphered by its means.

－REF ID ：A64644

FY FRIBHR	
	RADHTND
	SBEIUOJ
	U J GK．
	V ¢ H L X
	UFIHYS C ¢
	X G JWZ T
	YHKOAUK
	2 L L P V L R
	Ј M \％ 6
	BK1： K D X
OLOS H Y U R S	
	Did P T F Z PV
	豆 is？UGA ！
	FORVHBRX
	GPSWICS
	H 2 TXJDTZ
	IRUYREUA
	JSVZLFV
	LTW in M G C
	L U X B NH
	茊 V Y G I Y
OXAE RKA \mathfrak{C} D$\text { Fig. } 15$	

c．In order that the student may understand without question just what is involved in the latter step，that is，discovering the key letter after the first two or three groups have been deciphered by the conver－ sion－completion process，the foregoing example rill be used．It was noted that the first cipher group was finally deciphered as follows．

> Cipher. I Y E WK
> Hlain: CLOS

Now set the cipher component against the normal sequence so that $C_{p}=I_{c}$ ． Thus：

Plain：ABCDJrGYIJKLENOP！RSTUVixyz Cipher：FGIJKw户口SUXYZLコAVNJORTHBCD

It is seen here that when $C_{p}=I_{c}$ then $A_{p}=F_{c}$ ．This is the key for the entire message．The decipherment may be completed by direct reference to the foregoing cipher alphabet．Thus：
Plain：CLOS」 YOURS TATIO HATTYOPhXX
iiessage．CLOSE YOUR jTation at t 10 hi

REF ID:A64644
 - 73 -

d. The student should make sure that he understands the fundamental principles involved in this quick solution, for they are among the most important principles in cryptanalytics. How useful they are rill become clear as he progresses into more and more complex cryptanalytic studies;

SECTION VII
 Analysis of polyliteral, monoalphabetic substitution systoms. . . 35 Nistorically interestiņ examples 36
35. Analysis of polyliteral, .anoalphabetic substitution systems. E. substitution methods in general may be classified into monoliteral and polyliteral systems. ${ }^{1}$ In the former there is a strict "one-to-one" correspondence betreen the lensth of the units of the plain and those of the cipher text; that is, each letter of the plain text is replaced by a single character in the cipher text. In the latter this correspondence is no longer $l_{p} \cdot I_{c}$ but may be $l_{p} \cdot 2_{c}$, where each letter of the plain text is replaced by a combination of two characters in the cipher text; or $I_{p} \cdot 3_{c}$, where a 3-character conbination in the cipher text represents a single letter of the plain text, and so on. a cipher in which the correspondence is of the $l_{p} . l_{c}$ type is termed monoliteral in character; one in which it is of the $1_{p}: 2_{c}$ type, biliteral; $l_{p} 3_{c}$, triliteral, and so on. Those beyond the $l_{p} I_{c}$ type are classed together as polyliteral.
b. When a polyliteral system employs biliteral e ruivalents, the cipher alphabet is said to be bipartite. Such alphabets are composed of a set of 25 or 26 combinations of a linited number of characters taken in pairs. an exanple of such an alphabet is the following.

This alphabet is derived fron the square shown in Fig. 16.
(2)
(1)

W	A	,	C	D	T
H	F	${ }^{3}$	H	I-	K
I	L	M	N	0	P
T	2	R	S	T	U
[V	V	X	Y	2
	ig. 16				

c. If a message is enciphered by means of the foregoing bipartite alphabet the cryptotram is still monoalphabetic in character. f frequency distribution based upon pairs of letters rill obviously have all the
${ }^{1}$ See Par. 29, Special Text No. 166, advanced .ilitary Cryptography.

_REE ID:A64644

characteristics of a simple, monoliteral distribution for a sonoalphabetic substitution cipher.
d. Ciphers of this type, as well as of those of the triliteral, tetraliteral, ... type are readily detected externally by viitue of the fact that the cryptosraphic text is composed of but a very limited number of different characters. They are handled in exactly the same manner as are monoliteral, monoalphabetic substitution ciphers. So long as the same character, or combination of characters is alvays used to represent the same plain-text letter, and so long as a given letter of the plain text is alyays represented by the same character or combination of characters, the substitution is strictly monoalphabetic and can be handled in the simple manner described under Par. 31 of this text.

日. an interosting example in which the cipher equivalents are pentaliteral groups and yet the resulting cipher is strictly monoalphabetic in character is found in the cipher system invented by Sir Francis Bacon over 300 years ago. Despite its antiquity the sygtem possesses certain features of merit which are well worth noting. Jacon ${ }^{1}$ proposed the following cipher alphabet, composed of permutations of two elements taken five at a time: ${ }^{2}$

$A=$ ąaaa	$G=a a b b a$.	$\mathrm{N}=\mathrm{abbaa}$	$\mathrm{T}=\mathrm{baaba}$
$\mathrm{B}=\mathrm{aaaab}$	$\mathrm{H}=\mathrm{aabbb}$	$0=a b b a b$	U-V = baabb
C = a ${ }^{\text {a }}$ ba	I-J = abaaa	$\mathrm{P}=\mathrm{abbba}$	$W=$ babaa
$D=a \mathrm{abb}$	K = abaab	? $=$ abbbb	$X=$ babab
$E=$ a ${ }_{\text {aba }}$	$\mathrm{L}=\mathrm{ababa}$	$\mathrm{R}=$ baaaa	$Y=$ babba
$\mathrm{F}=$ a $\mathrm{abab}^{\text {a }}$	$\mathrm{Li}=\mathrm{i}=\mathrm{ababb}$	$\mathrm{S}=\mathrm{baaab}$	$\mathrm{Z}=\mathrm{babbb}$

If this were all there were to Bacon's invention it would be hardly worth bringing to attention. Dut what he pointed out, with great clarity and simple examples, was how such an alphabet might be used to convey a secret message by enfolding it in an innocent, external message which might easily evade the strictest kind of censorship. As a very crude example, suppose that a message is written in capital and lower case letters, any capital letter standing for an "a" element of the cipher alphabet, and any small letter, for a " b " elenent. Then the external sentence "All is well with me today" can be made to contain the secret message "Help". Thus:

[^11]
REF ID:A64644

Instead of siploying such an obvious device as capital and small letters, suppose that an "a" will be indicatsd by a very slight shading, or a very slizhtly heavier stroke. ihen a secret message might oasily be thus enfolded within an external messare of exactly opoosite meaning. The number of possible variations of this basic schene is vary high. The fact that the characters of the cryptorsraphic text are hidden in some manner or other has, however, no effect upon the strict monoalphabeticity of the scheme.
36. Historically interestiny exanples. - a. Two examples of historical interest will be cited in tion connection as illustrations. Juring the campaign for the presidential election of 1876 many cipher messages were exchanzed between the Tilden managers and their agents in several states where the voting vas hotly contested. Two years later the New lor: Tribunel exposed many irregularities in the canpaign by publishing the decipherments of many of these messa;es. These decipherments were achieved by tivo investigators employed by the 'iribune, and the plain text of the messages seems to show that illegal attenpts and measures to carry the . election for lilden were made by his managers. Here is one of the messages.

JACKSONVILLS, i!ov. 16 (1876).
NO. F. RANEX, Tallahassee.
Ypyyemnshyyypimashnsyyssitepaaensh nsseusshinsmmpiyysnppyeaapieisoyeshai
 y y pinsyyssitemeipimmeisseiyyeissitely e pyypeeiaassimaayespnsyyianssaeissmm ppnspinssnpinsimimyyitemyysspeyymmns y yssatspyypeepppmaaayypiat L'ingle goes up tomorrow.

$$
\text { D. } \mathrm{t} \text { IIML。 }
$$

Ixamination of the message discloses that only ten different letters are used. It is probable, therefore, that shat one has here is a cipher which employs a bipartite alphabet and in which combinations of two letters represent single letters of the plain text. The message is therefore rewritten in pairs and substitution of arbitrary letters for the pairs is made, as seen below:

$$
\begin{array}{rrrrrrrrrrrrr}
Y & Y Y & \text { W: } & \text { IJS } & H Y^{\prime} & Y Y & P I & i A & S H & \text { NS } & Y Y & S S & \text { etc. } \\
A & B & C & D & \dot{j} & B & F & G & H & D & 3 & I & \text { etc. }
\end{array}
$$

1 Iew Iork Tribune - Bxtra Jo. 44" - "The Cipher Dispatches" - Wew York, 1879。

RFF ID:A64644

A triliteral-frequency distribution is then made and analysis of the table along the lines illustrated in the preceding section of this text yields solution, as follows:

JACKSONVILLỉ, Nov. 16.
G3O. N. RUNY, Tallahassee:
Have marble and Coyle telegraph for influential men from Delaware and Virginia. Indications of weakening here. Press advantage and watch 3oard. L'Ingle goes up tomorrow.

JANI ${ }^{\text {IL }}$
b. The other example, using numbers, is as followis:

JACKSONVILLE, NOV. 17.
S. PaSCO and E. In. L'BiNGLu.

84	55	84	25	93	34	82	31	31	75	93	82	77	33	55	52
93	20	90	66	77	65	33	84	63	31	31	93	20	82	33	66
52	48	44	55	42	82	48	89	42	93	31	82	66	75	31	93

DAIIIEL.
There were, of course, several messages of like nature, and examination disclosed that only 26 different numbers in all were used. Solution of these ciphers followed very easily, the decipherment of the one given above being as follows.

J ${ }^{\text {CIISONVILLE, }}$ Nov. 17.
S. PASCO and E. H. L'RNGLE:

Cocke will be ignored, iagan called in. Authority reliable.
JHIIISL。
c. The Tribune experts gave the following alphabets as the result of their decipherments:

$A A=0$	EN $=1$	$I T=D$	NS $=\mathrm{H}$	$P Y=H$	$S S^{\circ}=\mathrm{N}$
$A I=U$	$\mathbb{E P}=\mathrm{C}$	$\mathrm{ki} A=B$	$\mathrm{NY}=\mathrm{H}$	$\mathrm{SH}=\mathrm{L}$	$Y E=F$
HI $=\mathrm{I}$	$I A=K$	HMI $=G$	$P=T$	$\mathrm{SNF}=\mathrm{P}$	$Y \mathrm{I}=\mathrm{X}$
ELiA $=\mathrm{V}$	$\mathrm{I}_{\mathrm{i} i}=\mathrm{S}$	IIN $=\mathrm{J}$	$Y \mathrm{I}=\mathrm{R}$	SP $=\%$	$Y Y=A$
$20=D$	$33=\mathrm{ij}$	$44=\mathrm{H}$	$62=X$	$77=G$	$89=\mathrm{Y}$
$25=\mathrm{K}$	$34=$ W	$48=\mathrm{T}$	$66=A$	$82=\mathrm{I}$	$93=7$
$27 \times S$	$39=P$	$52=\mathrm{U}$	$68=F$	$84=\mathrm{C}$	$96=\mathrm{M}$
$31=\mathrm{L}$	$42=$ న	$55=0$	$75=B$	$87=\mathrm{V}$	$99=J$

They did not attempt to correlate these alphabets, or at least they say nothing about a possible relationship. The present author has, howeryer, reconstructed the rectangle upon thich these alphabets are based, and it is given herewith:

> 2d Letter
> or

Number
HIS PAYMENT
1234567890

It is amusing. to note that the conspirators selected as their key a phrase quite in keeping with their attempted illegalities; HIS PAYiLNT; for bribery seems to have played a considerable part in that campaign. The blank squares in the diagram probably contained proper names, numbers, etc.

SSCTION VIII
POLYLITERAL SUBSTITUTION WITH YOLY-EOUIVALENT CIPHZR ALYHABETS.

37: Furpose of providing poly-equivalent cipher alphabets. - a. It has been seen that the characteristic frequencies of letters composing normal plain text, the associations they form in combining to forn words, and the peculiarities certain of them manifest in such text all afford direct clues by means of which ordinary monoalphabetic substitution encipherments of such plain text may be more or less speedily solved. This has led to the introduction of simple metheds for disguising or suppressing the manifestations of monoalphabeticity, so far as possible. Basically these methods are polyliteral and they will now be presented.

REF ID:A64644

- 78 -
b. Polyliteral substitutinn may be of two types:
(1) That wherein each letter of the plain text is represented by one and only one polyliteral equivalent. For example, in the Francis Bacon cipher described in Par. 35 e, the letter K_{p} is invariably represented by the permutation absab. For this reason this type of system may be more completely described as monoalphabetic, polyliteral substit,ution with monc-equivalent cipher alphabets.
(2) That wherein, because of the large number of equivalents made available by the combinations and permutations of a limited number of elements, eack. letter of the plain text may be represented by several polyliteral equivalents which may be selected at rendom. For example, if 3 -letter combinations are emp?.oyed there are available 26^{3} or 17,576 equivalents for the 26 letters of the plain text; they may be assigned in equal numbers of different equivalents for the 26 letters, in which case each letter would be representable by 676 di.nferent 3 -letter equivalents; or they may be assigned on some other basis, for example, proportionately to the relative frequencies of plain.text letters. For this reason this type of system may be more completely described as monoalphabetic polvijteral substitution with poly-equivalent cipher alrhajeis. Some authors term such a system "simple substitcition with multiple.equivalents"; others term it mor, al phabetic substitution with varients. For the sake of brevity, the latter designation will be employed in this text.
c. Thie primary object of monoalphabetic substitution with variants is, as has been mentioned above, to provide several values which may be employed at random in a simple substitution of cipher equivalents for the plain-text letters. In this connection, reference is made to section X of Special Text 165, miementary hilitary Cryptography, wherein several of the most common methods for producing and using variants are set forth.
d. A word or two concerning the underlying theory from the cryptanalytic point of view of monoalphabetic substitution with variants, may net be amiss. Thereas in simple or mono-equivalent, monoalphabetic substitution it is seen that:
(1) The same latter of the plain text is invariably represented by but one and always the same character of the cryptogram, and
(2) The same character of the cryptogram invariabiy represents one and always the same letter of the plain text;

REF ID:A64644

- 79 -
in monoalphabetic substitution with variants:
(1) The same letter of the plain text may be represented by one or more different characters of the cryptogram, but
(2) The same character of the cryptogram nevertheless inveriably represents one and always the same letter of the plain text.

38. Solution of a simple example. - a. The following cryptogram has been enciphered by the method explained in Par. 52 b of Special Text No. 165, Flenentary Military Cryptography, and the steps in solution rill now be scrutinized.

CRYPTOGRAM

63321	09022	48057	65111	88648	42036	45235	09144	05764	22684
00225	57003	97357	14074	82524	40768	51058	93074	92188	47264
09328	04255	06186	79882	85144	45886	32574	55136	56019	45722
76844	68350	45219	71649	90528	65106	11886	44044	89669	70553
18491	06985	48579	33684	50957	70612	09795	29148	56109	08546.
62062	65509	32800	32568	97216	44282	34031	84989	68564	53789
12530	77401	68494	38544	11368	87616	56905	20710	58864	67472
22490	09136	62851	24551	35180	14230	50886	44084	06231	12876
05579	58980	29503	99713	32720	36433	82689	04516	52263	21175
06445	72455	68951	86957	76095	67215	53049	08567	9730	

b. Assuming that the foregoing remarks had not been made and that the cryptogram has just been submitted fer solution with no information concerning it, the first step is to make a preliminary study to determine whether the cryptogram involves cipher or code. The cryptogram appears in 5-figure, groups, which may indicate either cipher or code. A few remarks will' be made at this point with reference to the method of determining whether a cryptogram composed of figure groups is in code or cipher, using the foregoing example.
c. In the first place, if the cryptogram contains an even number of digits, as for example 330 in the foregoing message, this leaves open the possibility that it may bo cipher, composed of 165 pairs of digits; were the number of digits an exact odd multiple of five, such as 125, 135, etc., the possibility that tho cryptogram is in codo of the 5-figure group type must bo considured. Noxt, a preliminary study is made to see if there are many repetitions, and what their characteristics are. If the cryptogram is code of tho 5 -figure group type, then such repetitions as appear should gonorally be in whole groups of fivo digits, and they should bo visiblo in tho toxt just as tho mossago stands, unless tho code mossago has undergono onciphorment also. If the cryptogram is in cipher, then tho ropotitions should oxtend boyond tho 5-digit groupingsi if they
conform to any definite groupings at all they should for the most part contain ovon numbers of digits since oach lottor is probably represontod by a pair of digits. If no cluos of the forcgoing nature aro present, doubts will be dissolved by making a dotailod study of froquencies.
d. A simple 4-part froquoncy distribution is thorefore decidod upon. Shall the alphabet be assumed to be a 25- or a 26- charactor ono? If the former, then the 2-digit pairs from 01 to 00 fall into cxactly four groups each corresponding to an alphabet. Since this is tho most common schemo of drawing up such alphabets, lot it bo assumod to be truo of the present case. The following distributions rosult from tho breaking up of the toxt into 2-digit pairs.

$01-/ / /$ $02-$
03-1/I/
04-1
05-WW
06-NWI
07-1/I
03
09-IIII
10-/II/
11-NX/
$12-1 / 1$
13-/
$14-1$
15-/
$16-/ / /$
17 -
18-NW
19
20-1
21-//
$22-N /$
$23-/ /$
24 -
25-1

26-///	
27	
	-1
	-/
	-///
31	-
32	$-\mathbb{X} / 1$
33	-/
34	-/
	-//
36	-1×1
	-1
38	-
39	-1
	- ///
41	-
	- //I/
	- 1
	- NXI
	- NX 1
	- /II
47	
	- //I
49	$-N^{\prime}$
	-AX

	$-x+1$
	-1
78	-
	-///
81	-
	- ////
	- $1 \times 1 /$
	- $1 \times 1 /$
	-///
87	-
	$-1 / 1 /$
	$-17 x$
	$-/ 1 \times 1$
	-1/1
	-1
	-///
96	-
	- INX I
	-1
99	
	-//

Fig. 16
©. If the student will bring to bear upon this problom the principles ho learnod in Section V of this toxt, ho will soon roalize that what he now has bofore him are four, simple, monoalphabotic froquency distributions similar to those involved in a monoalphabotic substitution cipher using standard ciphor alphabots. Tho roalization of this fact immodiatoly provides tho clue to tho next stop: "fitting each of tho distributions to the normal" (Seo Yar. 17 b). This can bo dono without difficulty in this caso (romomboring that a 25-1cttor alphabot is involvod and assuming that

REF ID:A64644

- 81 -

I and J ars tho samo lottor) and tho following alphabots rosult:

01-I-J	26-U	$51=\mathrm{N}$. 76 - E
02-K	$27-\mathrm{V}$	$52 \div 0$. $77-\mathrm{F}$
O3-L	28-W	53-2 P	78-G
04-M	$29-X$	54-Q	79-H
05-N	30-Y	55-R	$80-\mathrm{I}-\mathrm{J}$
06-0	31-Z	56-S	81-K
07-	32-A	57-T	82-L
08-Q	$33-\mathrm{B}$	58-U	83-M
09-R	34-C	59-V	84-N
10-S	35-D	60-W	85-0
11-T	36-E	61-X	86-P
12-U	37-F	62-Y	87-Q
13-V	38-G	63. Z	88-R
14-	39-H	64-A	89-S
15-X	40-I-J	65-B	90-T
16-Y	41-K	66-C	91-U
17-Z	42-L	67-D	92-V
18-A	43-M	68- 玉	93-W
19-B	44-N	69-F	94-X
20-C	45-0	70-G	$95-\mathrm{Y}$
21-D	46-P	71-H	96-Z
22-E	47-Q	72 - I-J	97 - A....
23-Fi	$48-\mathrm{R}$	73 - K	98-B
24-G	49-S	74-L	99-C
25-H	50-T	75-Nin	00-
	Fig.		

f. Tho koywerd. is soon to bo JUND and the first fow groups of tho cryptogram dociphor as follows:

68	32	10	90	22	48	05	76	51
E	A	S	T	d	R	N	E	N
11	88	64	84	20	36	45	23	
T	R	A	N	C	E	0	F	

g. From tho dotailod procoduro givon abovo, tho studont should bo ablo to draw his own conclusions as to tho procoduro to bo followod in solving cryptograms producod by mathods which aro moro or loss simple variations of that just discussod. In this conncction ho is roforrod to Par. 53 of Spocial Toxt No. 165, Elomontary Military Cryptography, whorein a fow of theso variations aro montionod.
39. Solution of a moro "complicatod oxamplo. - a. As soon as a boginnor in cryptography roalizos tho consoquoncos of tho fact that lotturs aro usod with groatly varying froquoncios in normal plain toxt, what sooms to him as a now idoa very spoodily comos to him. Why not disguiso the natural froquoncios by a syatom of substitution using many oquivalonts, and lot tho numbors of oquivalonts assignod to tho various lottors bo moro or loss in diroct proportion to tho normal froquoncios of tho lotters? Let \mathbb{H}, for oxamplo, have 13 or moro oquivalonts; $\mathrm{T}, 10 ; \mathrm{N}, 9 \mathrm{~g}$ otc., and thus (ho thinks) tho onomy cryptanalyst can havo nothing in the way of toll-talo or charactoristic froquoncios to uso as an ontoring wodga.
b. If the toxt availablo for study is small in amount and if the viriant values are wholly-indopondont of ons anothor, the problom can bocome oxceodingly difficult. But in practicnl military communications such mothods aro raroly oncountorod, bocauso the yolumo of toxt is usuilly groat onough to pormit of tho ostnblishmont of equiv2lont valuos. To illustrato what is monnt, suppesc a sot of cryptogrims producod by tho monorlphaboticvarinnt mothod doscribod nbovs shows tho following two sots of groupings in tho toxt:

REF ID:A64644

Sot A
$+12-37-02-79-68-13-03-37-77$
$82-69-03-79-13-68-23-37-35$
$82-69-51-16-13-13-78-05-35$
$91-05-02-01-68-42-78-37-77$

$$
\begin{aligned}
& \text { Sot B } \\
& \text { 71-12-02-51-23-05-77 } \\
& 11-82-51-02-03-05-35 \\
& 11-91-02-02-23-37-35 \\
& 97-12-51-03-78-69-77
\end{aligned}
$$

An examinotion of these groupings would lead to the following tentative conclusions with rogard to probable equivalents:

$12,82,91$	$01,16,79$	$03,23,78$
$05,37,69$	$13,42,68$	35, and 77
02, and 51		

The establishment of thes"e equivalencios would sooner or lator load to the finding of additional sots of oqual values. The complotoness with which this can be accomplished will determine thu onso or difficulty of solution. Of course, if many oquiveloncies can be ostrblishod the problom cin then bo roduced practically to monoalphzbetic terms nad a speedy solution can be attained.
c. Theoretically, the determination of oquivalencies miy seom to be quite in easy matter, but practically it may be very difficult, because the cryptanalyst can never be cortain that a combination showing whet may appear to be a varinnt value is really such, nnd is not a difforent word. Fer oxample, take the groups

$$
\begin{aligned}
& 17-82-31-82-14-63, \text { and } \\
& 27-82-40-82-14-63
\end{aligned}
$$

Here one might suspect that 17 and 27 reprosent tho same lottor, 31 and 40 anothor letter. But it happens that onc group roprosents the word MANAGE, tho other DAWAGE.
d. Whon revorsiblo combinations are used ns varients, the problem is porhaps ? bit moro simple. For oxample, using tho accompanying Fig. 18 for onciphorment, two mossages with tho snme initinl words, REFERENGE YOUR, miy be onciphored as follows:

	K, Z	Q,V	B, H	M, R	D,L
W, ${ }^{\text {S }}$	N	H	A	0	E
F, X	D	T	M	F	P
G, J	Q	B	U	I	V
C, N	G	x	R	c	S
P,T	Z	L	Y	VI	K

(2) CHDERXSLHN DYZWN RLSHP R WJBN H

The experienced cryptanalyst, ncting the appearance of the very first few groups, assumes that he is here confronted with a case involving biliteral reversible equivalents, with variants.
Q. The probable-wred method of solution may be used, but with a slight variation introduced by virtue of the fact that, regardless of the system, letters of low frequency in plain text remain infrequent. Hence, suppose a word containing low-frequency letters, but in itself a rather common word strikingly idiomorphic in character is sought as a "probable word"; for example, words such as CAVALRY, ATTACK, and ERIPAZE. Friting such a word on a slip of paper, it is slid one interval at a time under the text, which has been marked so that the high and lowfrequency characters are indicated. Each coincidence of a low-frequency letter of the text with a low-frequency letter of the assumed word is examined carefully to see whether the edjacent text letters correspond in frequency presents repetitions, whether there are correspondences between repetitions in the text and those in the word. Many trials are necessary but this method will produce results when the difficulties are othervise too much for the cryptanalyst to overcome.
40. A subterfuge to prevent decomposition of cipher text into component units. - a. A fow words should be added with regard to certain subtorfuges which aro sometimes encounterod in monoal phabetic substitution with variants, and which, if not recognized in time, cause considorable delays. Thoso have to doal with tho insertion of nulls so as to prevent the cryptanalyst from breaking up tho text into its roal cryptographic units. The student should take caroful noto of tho last phraso; the mero insortion of symbols having tho samo charactoristics as tha symbols of the cryptographic toxt, excopt that thoy havo no moaning, is not ihat is moant. This class of nulls rarely achioves tho purposo for which thoy aro intondod. That is roally meant can best be explainod in connection with an example. Supposo that a 5×5 chockorboard dosign vith the rov and indicators shown in Fig. 19 is adopted for onciphormont. Normally, the cipher units would consist of 2 -lottor combinations of tho indicators, invariably giving the row indicator first (by agroomont).

REF ID:A64644

- 84 -

Fig. 19
The phrase COMAANDER OF SPICInL TROOPS might be onciphered thus:

$$
\begin{array}{rrrrrrrrrrrr}
C & 0 & M & M & A & N & D & I & R & 0 & F & \ldots \\
V I & E B & P H & I U & F T & I F & A B & T A & -T O & P W & G T & \ldots
\end{array}
$$

Thoso would normally thon be arranged in 5-lottor groups, thus:
b. It will be noted, however, that only 20 of thu 26 lotters of tho alphabet have beon omployed as row and column indicators, loaving J, K, 2, X, Y, and Z unused. Now suppose those five lettors are usod as nulls, not in pairs, but as individual lottors insortod at random just boforo the real toxt is arranged in 5-lettor groups. Occasionally, a pair of nulls is inserted. Thus, for oxamplo:

The cryptanalyst, after somo study, suspecting a biliteral cipher, procoods to broak up the text into pairs:

> VI EX BP HK IU FJ XI IZ AJ BT IKN OQ PII GK TY

Compare this set of 2-lottor combinations with tho corroct sot. Only 3 of the 15 pairs aro "propor" units. It is oasy to soo that without a knowledge of the oxistonce of the nulls, and ovon with a knowlodgo, if he does not know which lotters are nulls, the cryptanalyst would bc confronted with a quito difficult problem, for tho solution of which a vory large amount of toxt might be nocessary. Tho careful omploymont of the variants also very matorially adds to the security of the mothod bocauso ropotitions can be rather offoctivoly supprossed.

'c. From the cryptographic standpoint, the fact that in this system the cryptographic text is more then twice as long as the plain text constitutes.a serious disadvantage. From the cryptanalytic standpoint, the masking of the cipher units constitutes the most important source of strength of the system; this, coupled with the use of variants, makes it a quite difficult system to solve, despite its monoal phabeticity.

SㅍCTION IX

POLYGGRAYHIC SUBSTITUTION SYSTEMS

Monographic and polygraphic substitution systems 41
Tests for identifying digraphic substitution 42
General procedure in the analysis of digraphic substitution ciphers 43 Analysis of digraphic substitution ciphers based upon

4-square checkerboard designs 44
Analysis of ciphers based upon other types of checkerboard designs 45
Analysis of the playfair cipher system 46
41. Monographic and polygraphic substitution systems. - a. The student is now referred to Sections VII and VIII of Special Text No. 166, Advanced Military Cryptography, wherein polygraphic systems of substitution are discussed from the cryptographic point of view. These will now be discussed from the cryptanalytic point of view.

- $\overline{\mathrm{b}}$. Although the essential differences between polyliteral and polygraphic substitution are treated vith some detail in Pars. 29 and 30 of Special Text No. 166, a fev additional words on the subject may not be amiss at this point.
--a. The two primary divisions of substitution systems into (I) monoliteral and polyliteral methods and into (2) monographic and polygraphic metriods are both based upon considerations as to the number of elements constituting the plain-text and the equivalent cipher-text units. In monoliteral as well as in monographic substitution, each plain-text unit consists of a single element and each cipher-text unit consists of a single element. The two terms monoliteral and monographic are therefore identical in significance, as defined cryptographically. It is when the terms polyliteral and polygraphic are examined that an essential difference is seen. In polyliteral substitution the plain-text unit alvays coneists of a single element (one letter) and tho cipher-text unit consists of a group of two or more elemonts; when bilitoral, it is a pair of alements, when triliteral, it is a set of threo elements, and sc on. In what will herein be designated as true or complete polygraphic substitution the plain-text unit consists of tio or morc olements forming an indivisible compound; the ciphor-text unit usually consists of a corrosponding number

REF ID:A64644

- 86 -
of elements. ${ }^{1}$ When the number of elements comprising the plain-text units is fixed and alwas two, the system is digraphic; whon it is always three, the system is trigraphic, and so on. 2 It is impertant to note that in true or complete polygraphic substitution the olements combine to form indivisible compounds having properties difforont from thoso of either of the constituent lotters. For example, in monoliteral substitution $A B_{p}$ may yiold $X Y_{c}$ and $A C_{c}$ may yield $X Z_{c}$; but in true digraphic substitution $\overline{A B} p$ may yiold $X Y_{c}$ and $\overline{A C}_{p}$ may yield $\mathbb{Q N}_{c}$; A difference in identity of one letter affocts the whole result. ? An analogy is found in chemistry, when two elements combine to form a molecule, the latter usually having properties quite different from those of either of the constituent elements. For example: sodium, a metal, and chlorine, a gas, combine to form sodium chloride, common table salt. Furthermore, sodium and fluorine, also a gas similar in many respects to chlorine, combine to form sodium fluoride, which is much different from table salt. Partial and pseudo-polygraphic substitution will be treated under subparagraphs \underline{d} and e below.
d. Another way of looking at polygraphic substitution is to regard the elements comprising tho plain-text units as being enciphered individually and polyalphabetically by a fairly large number of separate alphabets. For example, in a digraphic systom in which 676 pairs of plaintext letters are ropresentable by 676 ciphor-text pairs assigned at randem, this is equivalent to having a sot of 26 different alphabets for enciphering one member of the pairs, and another set of 26 different alphabets for enciphering tho other member of the pairs. According to this viewpoint the different alphabets are brought into pliy by the particular combination of letters forming each plain-text pair. This is, of course, quite difforent from systems whorein the various alphebots are brought into play by more definite rules; it is perhnps this vory absence of definite rules guiding the solection of alphabets which constitutes the cryptographic strength of this type of polygraphic system.
e. Then regarded in the light of the preceding remerks certain systems which at first glance soem to be polygraphic, in that groupings of plain-text lettors are troztod as units, on closer inspection are seen

The qualifying adverb "usually" is employad because this correspondence is not essential. For example, if one should draw up a set of 676 erbitrary single signs, it would be possiblo to represont the 2 -lettor pairs from $A A$ to $Z Z$ by single symbols. This would still be a digrzphic system.
$\overline{2}$ In this sense a code system is merely η polysraphic substitution system in which tho number of oloments constituting the plain-text units is variable.
3 For this reason the two letters are marked by a ligature, that is, by a bar across their tops.

REF ID:A64644

- 87 - -
to benn partiaily polygraphic, or pseudo-polygraphic in character. For 'example, in a system in which encipherment is by pairs and yet one of the letters in each pair is enciphered monoalphabetically, the other lete er ${ }^{\text {, "polyalphabetically, the method is only psoudo-polygraphic. Cases }}$ aff this type are shown in Par. 31 of Special Text No. 166, Advanced Military Cryptography. Again, in a system in which encipherment is by pairs and the oncipherments of the left-hand and right-hand members of the peirs show group relationships, this is not pseudo-polygraphic but only partially polygraphic. Cases of this type are shown in Pars. 33-37, Special Text No. 166 .
f. The fundamental purpose of polygraphic substitu'tion is again the suppression of the frequency characteristics of plain text, just as is the case in monoolphabetic substitution with variants; but here this is accomplished by a different method, the latter arising from a somewhat different approach to the problem involved in producing cryptographic security. When the substitution involves replacement of single letters in a minotphabotic system, the cryptogram cen be solved rather readily. Basicaliy the reaicon for this is that the principles of frequency and the laws nf probability, applies to individual units of the text (single lete ers), have a very grod opportinity to manifest themselves. A given volume , fif text of say nilain-text letters, enciphered purely monalphabetically affords nipher characters, and the same number of cipher units. The seme volume of text, enciphered digraphically, still affords n cipher charactérs but nnly $\frac{n}{2}$ cipher unitis. Statistically speaking, the sample thin which the laws of probability now apply has been cut in half. Furthermore, from the point nf view of frequency, the very noticeable diversity in the frequencies of individual letters, leading to the marked crestsind troughs of the monoliteral frequency distribution is no longer so strikíngiy in evidence in the frequencies of digraphs. Therefore, although true digraphic encipherment, for example, cuts the cryptographic textual units in half, the difficulty of selution is not doubled, but, if a mat or approfimated mathematically, squared or cubed.
g. Sections VII and VIII of Special Text Ne. I66 ohnw various methods for the derivation of polygraphic equivalents and for handling these equivalients in cryptographing and decryptographing messages. The most practicable of those methods are digraphic in character and for this reason their solution will be treated in a somewhat more detailed manner than will trigraphic methods. The latter can be passed over with the simple statement that their analysis requires much text to permit of solution by the frequency method, and hard labor. Fortunately, they are infrequently encountered because they are difficult to manipulate without extensive tables. 1 If the latter are required they must be compiled in the form of

[^12]
REF ID:A64644

a book or pamphlet. If one is willing to go that far, ono might as well include in such documont more or less extensive lists of words and phrases, in which case the system falls under tho category of code and not ciphor.
42. Tests for identifying digraphic substitution. - a. The tosts which are applied to detormine whether a given cryptogram is digraphic in character aro usually rather simple. If there are plenty of repetitions in the cryptogram and yet the monolitoral-frequency distribution gives no clear-cut indications of monoalphabeticity; if most of the ropetitions contain an even number of letters; and if the cryptogram contains an even number of lettors, it may be assumed to bo digraphic in nature.
b. The student should first try to dotermine whether the substitution is completely digraphic, or only partially digraphic, or pscudodigraphic in charactor, as aro the cryptograms produced by the methods indicated in Par. 31 f to $\underset{i}{ }$ of Special Text No. 166, Advanced Military Cryptography. As mentioned above, there are cases in which, although the substitution is effected by taking pairs of letters, ono of the members of the pairs is enciphered monoalphabetically, the othor member, polyal phabotically. A distribution based upon the letters in the odd positions and one basod upon those in the even positions should bo made. If one of these is clearly monoalphabetic, then this ovidenco that the message represents a case of psoudo-digraphism of the type hore described. By attacking the monoal phabetic portion of the mossages, solution can soon be reachod by slight variation of tho usual method, the polyalphabetic portion boing solvod by the aid of the context and considerations based upon the probable nature of the substitution chart (soo Tablos 2, 3, and 4 of Spocial Toxt No. 166). It will bo noted that tho charts reforrod to show definite symmetry in thoir construction.
c. On the other hand, if the foregoing steps provo fruitloss, it may be assumed that the cryptogram is complotoly digraphic in charactor.
d. Just as cortain statistical tosts may be applied to a cryptogram to ostablish its monoalphaboticity, so also may a statistical tost bo applied to a cryptogram for tho purpose of ostablishing its digraphicity. Tho naturo of this tost and its mothod nf application will bo discussod in a subsequent text.
43. Gonoral proceduro in tho analysis of digraphic substitution ciphers. - a. Tho analysis of cryptograms which have been producod by digraphic substitution is accomplishod lurgoly by the application of the simple principles of froquency of digrrephs, with the additional aid of such spocial circumstancos as may bo known to or suspected by tho cryptanalyst. The latter refer to peculiaritios which may be tho result of tho particular mothod employed in obtaining the oquivalents of the plain-text digraphs in tho cryptographing procoss. In genural, however, only if there is sufficient toxt to disclose the normal phonomon of repotition will solution be forsible or possible.

REF ID:A64644

- 89 -

1. Howover, whon a digraphic systom is omployod in roguler sorvice, thoro is littlo doubt but that traffic will rapidly accumulato to an amount more than sufficient to pormit of solution by simplo principles of froquency. Sometimos only two or throo long messnges, or a half dozen of avorigo longth aro sufficient. For with the idontification of only a few cipher digraphs, larger portions of messag̈es may be read because the skeletons of words formed from the few high-frequency digraphs very definitely limit the values that can be inserted for the intervening unidentified digraphs. For example', suppose that the plain-text digraphs TH, $\mathbb{E R}, \mathrm{IN}$, IS, OF, NT, and TO have been identified by frequency considerations, corroborated by a tentatively identified löng repetition; and suppose alsn that the enemy is known to be using a method which yields reciprocal equivalents between plain and cipher-text digraphs, as for instance the quadricular table shown in $H^{\text {rar. }} 31$ a of Special Text No. 166. Suppose the message begins as follows (in which the assumed values have been inserted):

XQ	V0	$2 I$	LK	$A P^{\text {i }}$	OL	2X	PV	QN	'IK	OL	UK	AL	HN	
FO		TH	IN		NT		RE			NT	NO			
BN	02	KJ	DY	IL	Ls	YW	-•	.	-					
SI		ON	T0											

The words FOURTH INFANTRY REGIMENT are readily recognized. The reciprocal pairs EL" and $\mathrm{LE} \mathrm{E}_{\mathrm{c}}$ suggest ATTACK. The beginning nf the message is now completely disclosed: FOURTH INFANTRY REGIMENT NOT YET IN POSITION TO ATTACK. The values more or less automatically determined are $\mathrm{VO}_{c}=U R_{p}, A L_{c}=T Y$, $H N_{c}=E T_{p}, V L_{c}=P O_{p} ; O Z_{c}=T I_{p}, Y W_{c}=C K_{p}$.
. . Once a good start has been made and a few words have been solved, subsequent work is quite simple and straightforward. A knowledge of enemy correspondence, including data regarding its most common words and phrases, is of great assistance in breaking down new digraphic tables of the same nature but with different equivalents..
d. The remarks mare in above alsa apply to the details of solution in cases of partially digraphic substitutinn.
44. Analysis of digraphic substitution ciphers based upon 4-square checkerboard designs. - E. In Sectirn VIII nf Special Text No. 166, - Ad vanced Military Cryptography, there are shown various examples of digraphic substitution besed upon the use of checkerbnard designs. These may be considered cases of partially digraphic substitution in that in the checkerboard system there are certain relationships between plain-text digraphs having common elements and their corresponding cipher-text digraphs, which will alsc have commen elements. For example, take the following 4-square checkerbcard design:

Fig. 20
Here $B C_{p}=O W_{c}, B C_{p}=O F_{c}, B S_{p}=O P_{c}, B G_{p}=O N_{c}$ and $B T_{p}=O D_{c}$. In each case when Bp_{p} is the initial letter cf the plain-text pair, the initial letter of the cipher-text equivalent is O_{c}. This, of crurse, is the direct result of the method; it means that the encipherment is moncalphabetic for the first half of aach of these five plain-text pairs, polyalphabetic for the second half. This relationship holds true for four cther groups of pairs beginning with B_{p}. In other words, there are five alphabets employed, not 25. Thus, this case differs from the case discussed under Par. 42 b only in that the monoalphabeticity is not complete for one half of all the pairs, but only among the members of certain grrups of pairs. In a completely digraphic system using a 676 -cell randomized square, (for example, the cipher square illustrated in Par. 31 a of Special Text No. 166) such relationships are entirely absent and for this reason the system is cryptographically more secure than the checkerboard system.
b. From the foregoing, it is clear that when solution has progressed sufficiently to disclose a few values, tho insertion of letters within the cells of the checkerbcard design to give the plain-text and cipher relationships indicated by the snlved values immediately leads to the disclosure of additional values. Thus, the solution of only a few values soon leads to the breakdown of the entire checkerboard dosign.
c. (1) The following example will serve to illustrate the procedure. Let the message be as follows:

REF＝I ISA64644

 B．＂Q CLCH QBQBFBMAFX SIOKO QYFNS XMCGY
 D．GOETM UEORD CLTUF KQQCG QNHFX IFBEX
 F．QITXE UQMLFEQQIG OIEUE HPIAN YTFLB G．FEEPI DHPCG NQIHB FHMHF XCKUP DGQPN H．CBCQL QPNF $\stackrel{\vdots}{\circ}$ PNITC RTENG BGN安 FHHAY I．，童志QCI AAIQU CHTPG BIFGW KFCQS LQMCR J．TYGRQ QDPRX FNQMI FIDGC GGIOG OIHHF K．．TRGGG GNDLN OZTFG EERRP IFHOT FHHAY L． \mathbb{Z}
（2）The cipher having been tested far standard alphabets （hy the methot if completing the normal components）and found to give negative results，a moneliteral－frequency distribution is made．It is as follows：

Fig． 21

REF ID:A64644

(3) At first glance this may appear to the untrained eye to be a noncalphabetic frequéncy dibtribution but upen closior inspection it is noted that aside from the frequencies of four or five letters the frequencies for the remaining letters are. not very dissimilar. There are, in reality, no very marked crests and troughs, certainly not as.many as wculd be expected. in a monoalphabetic substitution cipher of equal length.
(4) The message is now carefully examined for repetitions of 4 or more letters.... Here are all of them:

- . Since there are quite a few repetitions, two of considerable . length, since all but one $n f$ them contain an even number of letters, and since the message also contains an even number of letters, 344, iigraphic substitution is suspected. The cryptogram is transcribed in 2-1etter groups, for greater convenience in study. It is as follows:

Message transoribed in pairs

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A.	HF	CA	FG	OQ	IL	BS	PK	MN	DU	KE	OH	? N	FB	OR	UN
B.	20	LC	HQ	B2	BF	HM	AF	XS	IO	KO	QY	FN	SX	MC	GY
c.	XI	FB	EX	AF	CX	LP	MX	HH	RG	KG	QK	QM	LF	E2	QI
D.	G)	IH	MU	EO	RD	CL	TU	FE	QQ	CG	QN	HF	XI	FB	EX
E.	FL	BU	QF	CH	30	2M	AF	TX	SY	CB	EP	FN	BS	FK	NU
F.	QI	TX	EU	QM	LF	E2	21	G0	IT	UE	HP	IA	NY	TF	LE
G.	FE	EP	ID	HP	GG	NQ	IH	BF	HM	HF	XC	KU	PD	GQ	PN
H.	CB	CQ	LQ	PN	FN	PN	IT	OR	TE	NC	CB	CN	TF	HH	AY
J.	ZI	20	IA	AI	QU	CH	TP	CB	IF	GW	KF	CQ	s	QM	CB
K.	OY	CR	QQ	DP	RX	FN	QM	LF	ID	GC	CG	10	GO	IH	HF
L.	IR	CG	GG	ND	LN	02	.TF	GE	ER	RP	IF	H0	TF	HH	AY
M.	2L	QC	IA	AI	QU	CH									

REF ID: A64644

 into $\overline{\text { difpraphs expept }}$ in one cases viz. FEQQ in lines C, D, and F. This seems räthér strange, ánd at first thought one might suppese that a lenter dropped out or was added in the vicinity of the FEQQ in line \bar{D}. But it is immediately seen that the FEQQ in line D has no relation at all to the $F F$ Q Q . in lines C and F, and that the FEQ? in line D is merely an accidental repetition.
(5)"A ¿̈igraphic frequency distribution is made and is shown in. Fig. 22.

REF ID:A64644

(6) The appearance of the digraphic distribution for this message is quite characteristic of that for a digraphic substitution ciphor. There are many blank cells; although there are many cases in which a digraph appears only once, there are quite a few in which a digraph appears two or three times, four casos in which a digraph appears four times, and two cases in which a digraph appears five times. The absence of the lettor J is also noted; this is often tho case in a digraphic system based upon a checkorboard design.
(7) In another common type of checkorboard system known as the Playfair cipher, described in Par. 46, one of the telltals indications besides the absence of the letter J is the absence of double letters, that is, two successive identical letter's. The occurrence of the double. latters GG, HH and 2 ? in the message under investigation eliminates the possibility of its being a Playfair cipher. The simplest thing to assume is that a 4 -squaro checkorboard is involved. One with normal alphabets in Sections 1 and 2 is therefore set down (Fig. 23 a).

(8) The recurrence of tho group MMLF, three times, and at intervals suggesting that it might be a sentence separator, leads to the assumption that it is the wnrd 'STOP. The letters 7, M, L, and F are therofore inserted in the 2ppropriate cells in Sections 3 and 2 of the diagram. Thus (Fig. 23 b):

1

4

A	B	C	D	F					
F	G	H	T-J	İ					
L	M	H	0	P					I
Q	R	S	'	U				0	
V	W	X	Y	Z					
					A	B	C	D	E
					F	C	H	I-J	K
			F		L	M	N	0	P
		M			Q	R	S	T	U
					V	Fi	X	Y	二

3

Tig. 23 b
These placements seem logical. Moreover, in Section 3 the number of cclls hetweon L and Q is just one less than enough to contain all the letters in to P, inclusive, and suggests that either N or 0 is in the koyword portion of the soquence, that is, near the top of Section 3. Tithout meking a comnitnent in the matter, suppose both N and 0 , for the present, be inserted in the cell betreen M and P. Thus (Fig. 23 c):

Fig. 23 c.

REF ID:A64644

- 96 -
(9) Now, if the placoment of P in Section 3 is correct, the cipher equivalent of TH_{p} will be $\mathrm{P} \theta_{\mathrm{c}}$, and there should be a group of adoquato frequency to correspond. Noting that PN_{c} occurs throc times, it is assumed to be TH_{p}, and the luttor N is inserted in the appropriato coll in Section 1. Thus (Fig. 23 d):

Fig. 23 d.
(10) It is about time to try out these as umed values in the message. The proper insortions are made, with the following results:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A.	HF	CA	PG	OQ	IL	BS	PK	MRN	DU	KE	OH	¢N	FB	OR	WN
B.	QC	LC	HQ	BO	BE	HM	AF	XS	IO	Kо	QY	FN	SX	MC	GY
C.	XI	FB	EX	AF	DX	LP	MX	HH	RG	KG	QK	QM	LF	EQ	QI
												ST	OP		
D.	GO	IH	MU	E0	RD	CL	TU	- FE	QQ	CG	QN	HF	XI	FB	EX
E.	FL	BU	QF	CH	Co	ST	AF	TX	SY	C3	EP	FN	BS	PK	NO
F.	QI	TX	EU	QM	LF	EQ	QI	co	IE	UE	HP	IA	NX	TF	LB
				Si	OP										
G.	FE	EP	ID	HP	CG	NO	IH	BT	HM	HF	XC	KU	PD	GO	PN
H.	CB	CQ	LQ	PN	FN	PN	IT	OR	TE	NC	CB	CN	IF	HH	AY
				TH		TH									
J.	ZL	QC	IA	AI	QU	CH	TP	CB	IF	GW	KF	C ¢	SL	QM	CB

	1	2	3	4	5	6	7	8	$\dot{\overline{9}}$	10	11	12^{-}	13	14	1.5
K	OY	CR	QQ	EP	RX	FN	$\frac{\mathrm{QM}}{\mathrm{ST}}$	$\frac{L P}{O P}$		GC^{+}	CG	IO	GO	IH	HF
L.	IR	CG	GG	ND	LN	02	TF	GE	ER	RP	IF	H0	Tr	HH	AY
M	ZL	20	IA	AI	QU	CH	TP								

(11) So far no impossible combinations are in evidence. Beginning with group H4 in the message is seen the following sequenc 6 :

PN FN
TH
Assume it to be THAT THE. Then AT $_{p}=\mathrm{FN}_{\mathrm{C}}$, and the letter N is to be inserted in row 4 column 1. But this is inconsistent with previous assumptions, since N in Section 4 has already been tentatively placed in row 2 column 4 of Section 4. Other assumptions for FN_{C} are made: that it is IS $_{p}$ (THIS TH...); that it is $\mathbb{E N}_{p}$ (THEN TH...); but the same inconsistency is apparent. In fact, the student :will see that FN_{c} must represent a digraph ending in F , G, H, I-J, or K, since N_{c} is tentatively located on the \cdot stame line as these letters in Section 2. Now FN_{c} occurs ' 4 times in the message. The digraph it represents must libe one of the following:

DF, DG, DH, DI, DJ; DK
IF, IG, IH, II, IJ, IK
JF, JG, JH, JI, JJ, JK
OF, OG, OH, OI, OJ, OK
TK,
YF, YG, YH, YI, YJ, YK
Of these the only rne likely to be repeated 4 times is OF, yielding THOFTH which may be a part of PNFNPN

- NORTHOFTHE OR ©SOUTHOFTHE CQLQPNFNPNIT CQLQPNFNPNIT

In either case, the position of the F in Section 3 is excellent: F. . . L in row 3. There are 3 cells intervoning between F and L, into which $G, H,{ }^{\prime}$ I-J, and K may be inserted. It is not nearly so likely that G, H, and K are in the keyword as that I should be in it.

REF ID:A64644

- 98 -

Let it be assumed that this is the case, and let the letters be placed in the appropriate cells in Section 3. Thus (Fig. 23 @).

3

2

Fig. 23 e.
Let the resultant derived values be checked against the frequency distribution. If the position of H in Section 3 is correct, then the digraph ON_{n}, normally of high frequency should be represented several times by HF_{c}. Reference to Fig. 22 shows a frequency of 4 times. And HM_{c} 2 occurrences, represents NS_{p}. There is no need to go through all the possible corroborations.
is part of the expression. NORTHOFTHE.er CQLQPNFNFNIT

- SOUTHOFTHE., it is seen at once from Fig. CQLQJNFNPNIT

23 e that the latter is apparently conrect and not the former, because $L R_{c}$ equals $O U_{n}$ and not $O R_{p}$. If $E S_{p}=C \eta_{c}$, this means that the letter G of the digraph $G \overbrace{c}$ must be placed in row 1 column 3 or row 2 column 3 of Section 3. Now the digraph CB_{c} occurs 5 times, $\mathrm{CG}_{\mathrm{c}}, 4$ times, $\mathrm{CH}_{\mathrm{c}}, 3$ times, $C Q_{c}$, \approx times. Let an attempt be made to deduce the exact position of C in Section 3 and the positions of B, G, and H in Section 4. Since F is already placed

REF ID：A64644

－ 99 －
F．：in Section 4，assume G and H directly follow it，and that B comes before it．＇How much before？Suppose a, trial be made．Thus（Fig． 23 f ）：

亡

4

A	B	C．	D	E			\cdots		－
F	G	H	I－J	．K			\bigcirc		
L	M	N	0	P P	F	G	H	K	L
Q	R	S	中	U	M	$\stackrel{N}{\mathrm{~N}}$	P	2	
V	W	8	Ψ	Z		，			
		；		\vdots	A	官	E	D．	\＃
			N	：	＇	：	H	IJJ	K
B	B	\dot{B}	E	G	\pm	M	N	0	P
H	：	商	Q	：	Q	R	5	T	U
					V	W	X	Y	2

Fig． $23^{\text {f．}}$
By referring now to the frequency distribution，Fig．22， af＇ter a very few minutes，of experimentation it．becomes apparent that the following in corroct：

Fig． $23^{\prime} \mathrm{g} \cdot$

REF ID:A64644

(13) The identifications given by these placements are inserted in the text, and solution is very rapialy completed. The final chockerboard and deciphered text are given belor.

1	A	B	C	D	E	5	0	C	I	E
	F	G	H	I-J	K	T	Y	A	B	D
	\underline{L}	M	N	0	P	F	G	H	K	L
	Q	R	S	T	U	M	N	P	Q	R
	V	N	X	Y	Z	U	V	N	X	Z
4	E	X	P	U	I	A	B	C	D	E
	S	I	0	N	A	F	G	H	I-J	K
	B	C	D	F	G	IL	M	N	0	P
	H	K	M	Q	R	Q	R	S	T	U
	T	V	U	Y	2	V	W	X	Y	Z

	$\begin{array}{llll} H F C A P \\ O N E H \end{array}$	$\begin{array}{llll} \text { GOOQ I } \\ \mathrm{N} & \mathrm{D} & \mathrm{R} & \mathrm{E} \\ \hline \end{array}$	BSSPKM FIRS S		$\begin{aligned} & O H Q N F \\ & A R T I L \end{aligned}$	$\begin{aligned} & B O R U N \\ & L E R Y M \end{aligned}$
B	- QCLCH	Q $\mathrm{BQBF}^{\text {P }}$	H MAFX	SIOKO	QYFNS	X W C GY
	ROMPO	SITIO	NSINV	IOINI	TYOFB	ARLOW
	XIFBE	$X A F D X$	LPMXH	HRGKG	Q K Q M L	FEQQI
	WILIB	EINGE	NERAL	SUPPO	RTSTO	PDURI
D.	- GOIHM	UEORD	CJTUF	EQQC	$\psi_{4} \mathrm{NHF} \mathrm{F}$	IFBEX
	NGATT	ACKSP	ECIAL	ATTEN	TIONW	1 L L E
E.	- FLBUQ	F CHQ 0	GMAFT	XSYCB	EP F N B	SPKNU
	PAIDT	0 ASSI	STING	ADVAN	CEOFP	IRSTB
F.	- Q I	U Q M L F	EQQIG	OIEUE	HPIAN	YTFLB
	RIGAD	ESTOP	DURIN	$\mathrm{G} \wedge \mathrm{D} \mathrm{VA}$	NCEIT	W I L L P
G.	.. FEEPI	DHPCG	NQIHB	FIIMH F	X SK U P	DGQPN
	LACEC	ONCEN	$\mathrm{T} \cap \mathrm{T}$	0 NSON	WOODS	NORTH.
H.	- CBCQL	Q PNFN	PNITO	RTENC	CBCNT	FHHAY
	ANDSO	UTHOF	T. H.AYE	R FARH	ANDHI	LIS I X
J.	- Z LQCI	A A I Q	CHTPC	BIFGW	KFOQS	L Q M CB
	ZEROE	IGHTD	ASHAA	NDONW	00 DSE	ASTAN
K.	- OYCRQ	Q DPRX	FNEML	FIDGC	CGIOG	0 IHHP
	DWEST	T HEERE	OFSTO		ENCIN	GATON
L.	- IRCGG	GNDLN	O2TFG		I. H $\mathrm{H} O \mathrm{~T}$	FHHAY
	ETENP	MSMOK	EWILL.	BEUSE	D O N H I	LLSIX
M.	- Z LQCI	A AIQU	CH T P			
	Z EROE	IGHTD	ASHA			

d. (1) It is interosting to note how much simpler the matter becomes when the positions of the plain-text and ciphor-text scctions are reversed, or, what amounts to the same thing, when in enciphorment the plain-text pairs are sought in the sections containing the mired alphabets, and their

RET ID:A64644
 - 101 -

cipher equivalents are taken from the sections containing the normal alphabets. For exemple, referring to Fig. 23 h , supposu that sections 3-4 be used is the source of the plain-text pirs, and sections l-2 as the source of the cipher-text pairs. Then $O \mathbb{N}_{\mathrm{p}}=D G_{c}, E H_{p}=A J_{c}$, etc.
(2) To solve a nessage unciphcred in that manner, it is neccssary morely to make a square in which all four sections arc ncrmal alphabets, and then pcriorm two steps. First, the ciphcr text pairs are converted into their normal alphebet equivalonts morely by "deciphering" the message with that square; thu result of thic operation yields two mondalphabets, one composed of the odd letters, the other of the even
r. letters. The second ster is to solve these tom monolphabets.
(3) Whire the sume nixed alphebet is inserted in sections 3 and 4, the problem is still casier, since the letters lesulting from the conversion intp normal-2lphabet oyuivelents al! bolong to the same, singlemixed alphabet.
45. Analysis of ciphers based uron other types of checkerboard designs.' - The solution ot cryptograms enciphored by otincr types of checkerbpard designs is nccomplished nlong lines vory similar to those set farth in the foregoing example of the solution of c mesasge. propared by méans 'of a 4 -square chockerbxard design. There art, unfortunately, no mean's or, tests which om be applied to determine in the uarly stages of the anslysis exactly what type of design is involved in the first case undor sturly. The author freely adraits that the solution outlined in subparagrajh c is quite artiricial in that nothing is demonstrated in step (7) that obvinusly leads to or warrants the assumption that a <-square checkerboard is involved. This point was pessed over with the quite bald statement that this was "the simplest thine to assume" - and then the solution proceeds exrictly $7 s$ though this more hypothogis has been definitcly ostablishita. For example, the very first results obteinod pare based upon assuming that a cortain 4-letter ropetition represcrited the word STOP and immediately inserting certain letters in uppropriate cells in a 4-square checkerboard. Scveral more issumptions zerc built on top or that and very rapid strides were madc. What if it had not been a 4 -square checkerboard at all? That if it had been a 2-syuarc checkerboard of the type shown in Fig. 24?

The only defense that can be made"ir what myy seem to the student to be purely arbitrary procedure based upon the author's advance information or knowledge is the following: In the first place; in order to avoid making the cxplenátion a too-long-uram-out affair, it is necessary, and pedagogical experience warrants, that certain alternative hypotheses be passed over in silence. In the second place, it may now be added, after the principles and procedurc have been elucidated (which at this stage is the primary object of this text) that if good results do not follow from a first hypothesis, the only thine the cryptanalyst can do is to

REF ID:A64644

-102.
reject that hypothesis, and formulate a sec-nd hypothesis. In actual practice he may have to reject a second, third, fourth, ...nth hypothesis. In the end he may strike the right one - or he may not. There is no guaranty of success in the matter. In the third place, one of the objects of this text is to show how certain'systems, if employed for military purposes, can readily be broken dewn: Assuming that a checkerboard system is in use, and that daily changes in keywords are made, it is prssible that the traffic of the first day might give considerable difficulty in solution, if the type of checkerboard were not known to the cryptanalyst. But the second or third day's traffic would be easy to solve, because by that time the cryptanalytic personnel would have analyzed the system and thus learned what type of checkerboard the enemy is using.
46. Analysis of the Playfair ciphor system. - a, An excel leñt example of a practical, partially digraphic system is the playfair cipher. 1 It was used for a number of years as a field ripher by the British Army, before and during the Jorld War, and for a short time, also during that war, by field units of the American Expeditionary Farces:
b. Published solutions ${ }^{2}$ for this cipher are quite similar besically and vary only in.minor det'ails. The earliest, that by Lieut. Mipuporgne, used straightforward prinoiples of frequency to establish the values of three or four of the most frequent digraphs. Then, on the assumption that in most cases in which a keyword appears on the first and second rows, the last five letters of the normal alphebct, ViJXYZ, will rarely be disturbed in sequence and will occupy the last row of the square, he "juggles" the lettersigiven by the values tentatively.established, from froquoney considerations, placing them in various positions in the square, together with VWXYZ, to currespond to the plain-text cipher relationships; tentatively established.- A lator solution by Lieut. Frank Moorman, as doscribed in Hitt's Manual, assumes that in a Playfair cipher prepared by means of a square in which the keywn occupies the first and second rowi, if a digraphic frequency aistribution is"ma, it will be rouñ that the lettors having the greatest combining power aro very probably lotters of the key The latest published solution by Lieut. Gommander Smith is perhaps the

[^13]
REF ID:A64644
 - 103° -

mo'st lucid and systomatized of the throe. He sets forth in definite language cortain considerations whioh the other two writers certainly entortained but failed to indicate.
c. The following details have beon summarized from Commender Smith's solution:
(1) The Playfair cipher may be recognized by virtue of the fact that it always contains in oven number of letters, and that when divided into groups of two letters onch, no group contains ? repetition of the same letter, as NN or霊. Ropetitions of digraphs, trigraphs, and polygraphs rill be evident in fairly long messages.
(2) Using the square ${ }^{l}$ shown in Fig. 25 a, there nre two genernl cases to be considored, as ragards the results of oncipherment:

B	A	N	K	R
D	E	F	G	H
$I-J$	L	M	0	Q
U	P	T	C	Y
S	V	X	X	Z

- Fig. 25 ․ㅡ.

Case 1. Letters at opposite corners of a rectingle. The following relutionships are found:

$$
\begin{aligned}
& \mathrm{TH}_{\mathrm{p}}=\mathrm{YF} \\
& \mathrm{HT} \\
& \mathrm{p}=\mathrm{FY} \\
& \mathrm{C} \\
& \mathrm{YF}=\mathrm{TH} \\
& \mathrm{c}
\end{aligned}
$$

Reciprocity is complete.
Gase 2. Tw? letters in the same line or column. The following relationships are found:

$$
\begin{aligned}
& \mathrm{AN}_{\mathrm{p}}^{+}=\mathrm{NK} \mathrm{c}_{\mathrm{C}} \\
& \mathrm{NA}_{\mathrm{p}}=\mathrm{KN} \mathrm{~N}_{\mathrm{c}}
\end{aligned}
$$

I The Playfair square accompanying Commander Smith's salution is haser upon the keywerd BANKRUPTCY, "to be distributed between the first and fourth iines $n f$ the square." This is a simple departure from the ariginal Playfair scheme in which the letters of the keyword are written from left to right and in consecutive lines from the top downward.

REF ID: A64644
 $-704=$

But N_{p} does not $=A N_{c}$, nor does

$$
K N_{p}={ }^{\prime} N A_{C}
$$

Reciprocity is only partial.
(3) The foregoing gives rise to the follcring.

RULE I:
(a) Regardless of the pcsition of the leiters in the square, if

$$
\begin{aligned}
& 1.2=3.4, \text { then } \\
& 2.1=4.3
\end{aligned}
$$

(b) If 1 and 2 form =pposite corners of a rectangle, the following equations obtain.

$$
\begin{aligned}
& 1.2=3.4 \\
& 2.1=4.3 \\
& 3.4=1.2 \\
& 4.3=2.1
\end{aligned}
$$

(4) A letter considered as occupying a position in a row can be combined with but four other letters in the same row; the same letter considered as occupying a position in a column can be combined with but four other letters in the same column. Thus, this letter can be combined with only 8 other letters all told, under Case 2, above. But the same letter considered as occupying a corner of a rectangle can be combined with 16 other letters, under Case 1, above. Commander Smith derives from these facts the conclusion that "it would appear that Case 1 is twice as probable as Case 2." He continues thus:
"Now in the square, note that:

$$
\begin{aligned}
& A N_{p}=N_{c} \\
& G \mathrm{~N}_{\mathrm{p}}=\mathrm{FK}_{\mathrm{c}} \\
& \mathrm{ON}_{\mathrm{p}}=\mathrm{MK}_{\mathrm{c}} \quad \text { also } \\
& \mathrm{CN}_{\mathrm{p}}=\mathrm{TK} \mathrm{c} \\
& \mathrm{XN}_{\mathrm{p}}=\mathrm{WK}_{\mathrm{c}} \\
& E N_{p}=F A_{c} \\
& E M_{p}=F L_{c} \\
& E T_{p}=F P_{c} \\
& E W_{p}=F V_{c} \\
& E F_{p}=F G_{c}
\end{aligned}
$$

"From this it is seen that of the 24 equations that can be formed when each letter of the square is employed either as the initial or final letter of the group, five
will indicate a repetition of a ccrresponding letter of plain text.
"Hence, RULi II. - After it has been determined, in tho equation $1.2=3.4$, that, say, $\mathbb{N N} N_{0}=F A_{c}$, there is a probability of one in five that any other group besinning with F_{c} indicates $E O_{p}$, and that any group ending in A_{c} indicates $O N_{p}$.
"After such combinatións as $\mathbb{H R}_{\mathrm{p}} \mathrm{OR}_{\mathrm{p}}$ and $E N_{p}$ have been assumed or determined, the above rule may be of use in discorering aditional digraphs and partial vords."l

RULI III. - In the equation $1.2=3.4$, 1 and 3 can never be identical, nor san 2 and 4 ever be identical. Thus, $A N_{p}$ could not possibly be represented by $A Y_{c}$, nor could $E R_{D}$ be represented by $K R_{c}$. This rule is useful in elimination of certain possibilities when a specific : . .message is being studied.

1. There is an error in this reasoning. Take, for example, the 24 equations having F as an initial letter:

Gase	
-1	$F B_{c}{ }^{\prime}=D N_{p}$
2	$F D, ~$
$=1$	$F I$
1	$=D M$
1	$F U$

Case	
2	$F E=R D$
1	$F L=F M$
1	$F Y=E T$
1	$F V=E W$
2	$F N=N W$
2	$F M=N F$

Case	
2	$F T=N M$
2	$F W=N T$
1	$F K=G N$
2	$F G=G F$
1	$F O=G M$
1	$F C=G T$

Case

$\begin{array}{ll}1 & F X=G W \\ 1 & F R=H N \\ 2 & F H=H G \\ 1 & F Q=H M \\ 1 & F Y=H M \\ 1 & F Z=H W\end{array}$
Here, the initial letter F_{c} represents the following initial $\theta_{p} s:$
D 它 N G H
It is seen that F_{c} represents $D_{p}, N_{p}, G_{p}, H_{p} 4$ times each, and $E_{n}, 8$ times. Consequently, supposing that it has been determined that $F A_{c}=E N_{p}$, the probability that F_{c} will represent F_{p} is not 1 in 5 but 8 in 24 , or 1 in 3; but supposing that it has been determinei that $\mathrm{FTF}_{q}=\mathrm{NT}_{\mathrm{p}}$, the probability that F_{c} will represent N_{p} is 4 in 24 or 1 in 6 . The difforence in these probabilities is occasioned by the fact that the first instance, $F_{C}=E_{p}$ corresponds to a Gase l encipherment, the second instance, $F W_{c}=N T_{p}$, to a Case 2 encipherment. But there is no way of knowing initially, and without other data, whother one is dealing with a Caso l or Case 2 encipherment. Only as an approximation, therefores may one say that the probability of F_{c} representing a given θ_{p} is 1 in 5.

REF ID:A64644

- 106 -

RULE IV. - In the equation $1.2_{n}=3.4_{c}$ s if 2 and 3 are identical, the letters are all in the same row or column, and in the rolative order 124. In the square shown, $\mathrm{AN}_{\mathrm{p}}=\mathrm{NK}_{\mathrm{c}}$ and the absolute order is ANK. The relative order 124 includes five absolute orders which are cyclic permutalions of cne another. Thus: ANK.--, NK--A, K--AN, --ANK, and -ANK..

RULE V. - In the equation $1.2_{n}=3.4_{c}$, if 1 and 4 are identical, the letters are all in the same row or column, and in the rolative order 243. In the square shown, $\mathrm{KN}_{\mathrm{p}}=\mathrm{RK}_{\mathrm{c}}$ and the absolute order is NKR. The relative order 243 includes five absolute orders which are cyclic permutations of one another. Thus NKR--, KR--N, R--NK, --NKR, ard -NKR-.

RULE VI. - "Analyze tha message for group recurrences. Select the groups of greatest recurrence and assume them to be high-frequency digraphs. Substitute the assumed digraphs throughout the messago, testing the assumptions in their rolation to other granps of the ciphor. The reconstruction of the square proceeds simultaneously with the solution of the message and aids in hastening the translation of the cipher."
d. (1) When solutions for the Playfair cipher systum were first developed, based upon tho fact that the letters were inserted in. the cells in koyword-mixed order, cryptographers thought it dosirable to place stumbling blockṣ in the path of such solution by departing from strict, keyword-mixed order. Playfair squares of tho latter typo are designed as "modified Playfair squares". One of the simplest methods is illustratod in Fig. 25, wherein it will be notod that the last five letters of the keyword proper are inserted in the fourth row of the square instead of the second, where they would naturally fall. Another method is to insert the letters within the celis from left to right and top downward but use a sequence that is a keyword-mixod soquonce developed by a columnar transposition based upon the keywnrd proper. Thus, using the keyword BAIVKRUYTCY:

2	I	5	4	7	9	6	8	3	10
B	A	N	K	R	U	P	T	C	Y
D	E	F	G	H	I	L	$M I$	0	Q
S	V	W	X	Z					

Sequence: AGVBDSCOKGXNF:PLRHZTMUIYQ

A	E	V	B	D
S	C	O	K	G
X	N	F	W	P
L	R	H	Z	T
M	U	I	Y	Q

Fig. 25 b
(2) In the fnregoing square practically all indications that the square has been developed from a keyword have disappeared. The principal disadvantage of such an arrangement is that it requires more time to Incate the letters desired, bith in cryptographing and decryptographing, than it usually dres when a semblance of normal alphabetic order is preserved in the square.
(3) Note the following three squares:

Fig. 25 c

Fig. 25 d

Fig. 25 ㅇ

At first glance they all appear to be different, but closer examination shows them to be cyclic permutations of one another and of the square in Fig. 25 b. They yield identical equivalents in all cases. However, if an attempt be made to reconstruct the original keyword, it would be much easier te de so from Fig. 25 b than from any of the others, because in Fig. 25 b the keywordmixed sequence has not been disturbed as much as in Figs. 25 c , d , Q . In working with Playfair ciphers, the student should be on the lookout for such instances of cyclic permutation of the original Playfair square, for during the course of solution he will not know whether he is building up the original or an equivalent, cyclic permutation of the original square; only after he has completely reconstructer the square will he be able to determine this point.

[^14]
REF ID:A64644

- 108 -

 C. SNOPD GXVXS CAKTVERTMGPU TZPTW ZFNBG D. PTRKXIXBPR ZOTPUTOLZEKTTCSNHCQM

 J. $Y X Z P W \quad G R T I_{V} V_{i}: U X P Y M \quad Q R K M W \quad G X T M R \quad S W G H B$

 M. OTKTK GCHX,X
(2) Without going through the preliminary tests in detail, with which it will be assumed that the student is now familiar, the conclusion is reached that the cryptogram is digraphic in nature, and an ordinary, simple digraphic frequency distribution is made.

REF ID:A64644

A	B	C		D	E			G	H	I	K	L	M	N	0	P	Q		S"	T	U	V	W	X	Y	Z
					1			1																		
								2	2																	
2					1		1		2				1			-	1	1						5	1	
	1							1						1							2					
																1				1						
2								1						2						1						
		1																						2		
	1	1													1		1									
									1						1	1						1		1		
		1								1						1				4						
																						1				1
		1							1	1							2			1			2			
															1											
												3				1				6				2		
											1							1		4	2	1		1	1	3
					1								1							1						
1											4.								1.	1						1
								1					1	2				1			1					
		3			1			1					2									2	1	1	2	1
									1											1				1		1
																				5						
								2				1														1
	2	5					1		3	2									2		1	1				
2		3	3																				1	1		
					2					2					1	2				3	2					

REF ID:A64644

Since there are no double-letter groups, the conclusion is reached that a Playfair cipher is involved and the message is revritten in digraphs.
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
A. VT QE UH IO FT CH XS CA $\mathrm{KT} \quad \mathrm{VT} \quad \mathrm{RA}$ Zin VT AG AE

C. SN OP DG XV XS CA KT VP PK PU TZ PT WZ FN RG
D. PI RK XI XB $\mathrm{PR} \quad \mathrm{ZO} \quad \mathrm{EP} \quad \mathrm{UT} \quad \mathrm{OL} \quad \mathrm{ZE} \quad \mathrm{KT} \quad \mathrm{TC} \quad \mathrm{SN} \quad \mathrm{HC} \quad \mathrm{QM}$
E. VT RK MW CF ZU BH TV YA $\quad \mathrm{BG} \quad \mathrm{IP} \quad \mathrm{RZ}$ KP K CQ $\mathrm{FN} \quad \mathrm{LV}$
F. OX OT UZ FA CX XC PZ XH CY NO TY CL GX XI IH
G. TM SM XG PT OT CX OT TG YA TE XH FA CX XC PZ

J. YX ZP WG RT IV UX PU MQ \quad RK $\quad M W$ CX \quad TM $\quad R S$ WG $H B$
K. $X C P T \quad O T \quad G X \quad O T \quad M I \quad P Y$ DN $F G \quad K I \quad T C$ OL XU ET PX

M. OT KT KC OH XX
(3) The following three fairly lengthy repetitions
are noted:

Lines
F: $\quad \mathrm{OT} \quad \mathrm{UZ}$ FA $\mathrm{CX} \quad \mathrm{XC} \quad \mathrm{PZ} \quad \mathrm{XH} \quad \mathrm{CY}$ NO
G: $\quad T E$ XH $F A \quad C X \quad X C \quad P Z \quad X H \quad Y C \quad T X$

A: FT CH XS CA KT VT RA ZE
C: DG XV XS CA KT VT PK PU

G: $\quad T M$ SM $X C \quad P T \quad O T \quad C X \quad O T \quad T C$
$K: \quad T G \quad H B \quad X C \quad P D \quad C T \quad C X \quad O T \quad M I$
The first long repetition, with the sequent reversed digraphs $C X$ and XC immediately suggests the word BATTALION, split up into -B AT TA LI ON

REF ID:A64644

and the sequenco containing this repotition in lines F and G becomes as follows:

Line F: OX OT UZ

(4) Because of the frequent use of numerals beforo the word BATTALLION and because of the appearance of ON before this word in line G, the possibility suggests itself that the word before BATTALION in line G is either $O N E$ or SECOND. The identical digraph FA in both cases gives a hint that the word BATTALION in line F may also be preceded by a numeral; if ONE is correct in line G, then THREE is possible in line F. On the other hand, if SECOND is correct in line G, then THIRD is possible in line F. Thus:

Line F :	OX	OT	UZ	$\overline{\text { FA }}$	CX	XC	PZ	XH	CY NO TE		
Is.t hypothesis	--	TH	RE	EB	AT	TA	LI	ON			
2nd hypothesis	--	TH	IR	DB							
Line G:	YA	TE	XH	$\overline{\mathrm{FA}}$	CX	XC	P2	XH	YC TX		
Ist hypothesis	-	-	ON	EB	AT	TA	LI	ON			
and hypothesis	-S	EC	ON	DB							

First, note that if either hypothesis is true, then $O T_{c}=T_{p}$. The frequency distribution shows that $O T$ occurs 6 times and is in fact the most frequent digraph in the message. Morenver, by Rule I of subparagraph \underline{b}, if $C T T_{c}=\mathrm{TH}_{\mathrm{p}}$ then $\mathrm{TO}_{c}=\mathrm{HT}_{\mathrm{p}}$. Since HT_{p} is a very rare digraph in normal plain text, TO_{c} should either not nocur at all in so short a message or else it should be very infrequent. The frequency distribution shows its entire absence. Hence, there is nothing inconsistent with the possibility that the word in front of BATTALION in line F is THREE or THIRD, and some evidence that it is actually one or the other.
(5) But can evidence be found for the support of one hypothesis against the other? Let the frequency distribution be examined with a view to throwing light upon this point. If the first hypothesis is true, then $U Z_{c}={ }^{R E} p$, and, by Rule $I, ~ Z U Y_{c}={ }^{E R} R_{p}$. The frequency distribution shows but one occurrence of UZ_{c} and but two occurrences of ZU_{c}. Theso do not look very good for-R马 and ER. On the othor hand, if the 2nd hypothesis is true, then $U Z_{c}=I R_{p}$ and, by Rule $I, Z U_{c}=R I_{p}$. The frequencies are much more favorable in this case. Is there anything inconsistent with the assumption, on the basis of the 2nd hypothesis, that $T E_{c}=\mathrm{EC}_{\mathrm{p}}$? The frequency distribution shows no inconsistency, far TE_{c} occurs-once and $E \mathrm{~T}_{\mathrm{c}}$ ($=\mathrm{CE}_{\mathrm{p}}$, by Rulo I) occurs once. Hs regards whether $\mathrm{FA}_{c}=E B_{p}$ or DB_{p}, both hypotheses are tenablo; possibly the 2nd hypothesis is a shade better than the lst, on the following reasoning.

REF ID:A64644

- 112 -

By Rule I, if $F A_{c}=E B_{p}$ then $A F_{c}=S E_{p}$, nr if $F A_{c}=D B_{p}$ then $A F_{c}=B D_{p}$. The fact that $n \cap A F_{c}$ occurs, whereas at least one $B E_{p}$ may be expected in this message, inslines one to the 2nd hypothesis, since $B D_{p}$ is very rare.
(6) Let the 2nd hypothesis be assumed to be conrect. The additional values are teritatively inserted in the text, and in lines G and K two interesting repetitions are nnted: $\begin{array}{lllllllllllllllll}\text { Line } K: ~ & \text { WG } & \mathrm{HB} & \overline{X G} & \mathrm{PT} & \mathrm{OT} & \mathrm{CX} & \mathrm{OT} & \mathrm{MI} & \mathrm{PY} & \mathrm{DN} & \mathrm{FG} & \mathrm{KI} & \mathrm{TC} & \mathrm{OL} & \mathrm{XU} & \mathrm{ET}\end{array}$

This certainly looks like STATE THAT THE, which would make $T E_{p}=P T_{c}$. Furthermore, in line G the sequence Statethatthe. isecondsattalion can hardly be anything else than STATE THAT THEIR SECOND BATTALION, which

(7) It is perhaps high time that the whole list of tentative equivalent values be studied in relation to their consistency with the positions of letters in the Playfair square; moreover, by so doing, additional values may be obtained in the process. The complete list of values is as fellows:

Assumed values

$$
\begin{aligned}
A T_{p} & =C X_{c} \\
L I_{p} & =P Z_{c} \\
O N_{p} & =X H_{c} \\
T H_{p} & =O T_{c} \\
I R_{p} & =U Z_{c} \\
D R_{p} & =E A_{c} \\
E C_{p} & =T E_{c} \\
T E_{p} & =P T_{c} \\
E I_{p} & =T C_{c} \\
R S_{p} & =Y A_{c} \\
-S_{p} & =S M_{c}
\end{aligned}
$$

Derived by Rule I

$$
\begin{aligned}
& T A_{p}=X C_{c} \\
& I_{p}=Z P_{c} \\
& \mathrm{NO}_{\mathrm{p}}=\mathrm{HX} \mathrm{C}_{\mathrm{c}} \\
& \mathrm{HT}_{\mathrm{p}}=\mathrm{T} \mathrm{C}_{\mathrm{c}} \\
& R I_{p}=Z U_{c} \\
& B D_{p}=A F_{c} \\
& \mathrm{CE}_{\mathrm{p}}=\mathrm{ET}_{\mathrm{c}} \\
& E T_{p}=T P_{c} \\
& I E_{p}=C T \\
& S R_{p}=A Y_{c} . \\
& S_{-p}=M S_{c}
\end{aligned}
$$

- 113 -
(8) By Rule V, the equation $\mathrm{TH}_{\mathrm{p}}=O \mathrm{~T}_{\mathrm{c}}$ means that H, T, and O are all in the same row or column and in the relative order 243; similarly, C, E, and T are in the samo row or column and in the relative order 243. Further F, P, and T are in the same row and column; and their relative order is also 243. That is, theso sequences must occur in the square:

(10) Taking up the HTO sequence, it is notod, in the list of equivalents that $\mathrm{N}_{\mathrm{p}}=\mathrm{XH}_{\mathrm{c}}$, an equation containing two of the throo letters of the HTO sequence. From this it follows that N and X must bolong to the same row or column as HTO. Tho arrangoment must be one of the following:

H	T	O	X	N
T	O	X	N	H
O	X	N	H	T
X	N	H	T	
N	H	T	O	X

(11) Since the sequonce containing $H T O X N$ has a common lottor (T) with the sequonce CETPI, it follows that if the HTOXN sequonce occupies a row, then the CETPI sequence must occupy a column; or, if the HTO sequence occupies a column, then the CETPI sequence must occupy a row; and they may be combined by means of thoir common lettor, T. Simple calculation will show that the two sequencos may be combined in 50 differont ways, all of them yiolding identical sets of equivalents.

Here are a few of them:
(I)

(5)

	C		
0	X		E
	X	N	T
			P
			I

(7)

(12)

(8)

(9)

(14)

(15)

(12) Before trying to discover means whereby the actual or absolute arrangement may be detected from among the full set of 50 possible arrangements, the question may be raised: is it necessary? Since any one of the 50 arrangements will yield the same equivalents as any of the remaining 49 , perhaps a relative arrangement will do.
(13) Let arrangement 13 be arbitrarily selected for trial.

REF ID:A64644

(14) What additional lettors can bo inserted, using as a guide the list of oquivalents in subparagraph (7)? There is ATp $=\mathrm{CX}_{\mathrm{c}}$, for example. It contains only one lottor, A, not in the arrangemont solected for trial, and this lottor may immodiatoly bo placed, as shown:

Scanning the list for additional casos of this type, nono are found. But seaing that several high-frequency letters havo alroady boon inserted in the square, perhaps reforence to the cryptogram itsolf in connection with values derivod from theso inserted letters may yield further clues. For example, the vowels A, E, I, and 0 are all in position, as aro the very frequent consonants N and T. The following combinations may bo studiod:

$$
\begin{array}{llll}
A N_{p}=? X_{c} & A T_{p}=C X_{c} & N A_{p}=X ? & T A_{p}=X C_{c} \\
\dot{E N_{p}}=? T_{c} & E T_{p}=T P_{c} & N I_{p}=T ? & T E_{p}=P T_{c} \\
I N_{p}=? T_{c} & T T_{p}=C P_{c} & N I_{p}=T ? & T I_{p}=P C_{c} \\
O N_{p}=X H_{c} & O T_{p}=X O_{c} & N O_{p}=H X_{c} & T O_{p}=O X_{C}
\end{array}
$$

$A T_{\mathrm{p}}\left(=\mathrm{CX}_{\mathrm{c}}\right), \mathrm{Ti}_{\mathrm{p}}\left(=\mathrm{XC}_{\mathrm{c}}\right), \mathrm{ON}_{\mathrm{p}}\left(=\mathrm{XH}_{\mathrm{c}}\right), \mathrm{TE}_{\mathrm{p}}\left(=\mathrm{PT}_{\mathrm{c}}\right)$ and $\mathrm{ET}_{\mathrm{p}}\left(=\mathrm{TP}_{\mathrm{c}}\right)$ have already beon inserted in tho text. Of tho othors, only $O X_{c}\left(=\mathrm{TO}_{\mathrm{p}}\right)$ occurs two times, and this value can bo at once insertod in the text. But can the equivalents of $\mathbb{A N}$, $\mathbb{H N}$, or IN bo found from frequency considerations? Take $E N_{p}$, for example; it is ropresented by ${ }^{2} \mathrm{~T}_{\mathrm{C}}$. What combination of ? T . is most likely to represent $\mathbb{E N}$ among the following candidates:

$$
\begin{aligned}
& { }^{\circ} \mathrm{KT}_{\mathrm{c}} \text { (4 times); by Rule } I, N E_{p} \text { would }=T K_{c} \text { (no occurrences) }
\end{aligned}
$$

REF ID:A64644

VT_{c} cortainly looks good: it bogins the message, suggesting the word ENIMY; in line H, in the soquence PZTV would bocome LIND. Lot this be assumod to be corroct, ani let the word ENEMY also be assmed to be corroct. Then $\mathrm{HM}_{\mathrm{p}}=Q \mathrm{E}_{\mathrm{c}}$ and the square then becomos as shown horewith:

(15) In line E is seon the follnwing sequence:
 EN RI NE RS PT E

Tho soquenco RI..NERS.. PT suggests PRISONBRS C.iPTURED, as follows:

$M W$	$C F$	ZU	RH	TV	$\mathrm{Y} \dot{A}$	BG	IP	RZ	KP
	P	RI	SO	NB	RS	Ca	PT	UR	ED

This givos the following now values: $-P_{p}=C F_{c} ; \quad S_{p}=\mathrm{BH}_{\mathrm{c}} ; \quad \mathrm{Cr} p=\mathrm{BG} ;$ $U R_{\mathrm{p}}=R Z_{c} ; E D_{p}=K P_{C}$.

The lottors B and G can bo placod in position et once, since tho positions of C and A are alroady known. The insertion of the letter B immediatoly permits the placomont of the lotter S, frcm the equation $S O_{p}=\mathrm{BH}_{c}$. n_{f} the remaining oquations only $E D_{p}=K P_{g}$ can be used. Sinco \mathbb{E} and P are fixed, n are in the same column, D and K must be in the same column, and moreover the K must be in the same row as E. There is only one possiblo position for K, viz., immediatoly after Q. This automatically fixes the position of D. The squaro is now as showm herewith:

(16) s roviow of sll equaticns, including tho very first ones estrblished, gives the following which may now be used: $D B_{p}=F$ fic $\mathrm{RS}_{\mathrm{p}}=\mathrm{Y}_{\mathrm{c}}$. Tho first permits tho immodiato placement of F ; the second, by elimination of possible pcsitions, permits the placement of both R and Y. The square is now as shown herewith:

REF ID:A64644

$\rightarrow 117 .-$

Once more a review is made of all remaining thus far unused equations. $L I_{p}=P Z_{c}$ now permits the placement of L and Z. $I R_{p}=U Z{ }_{c}$ now pormits the placement of U, which is confirmed by the oquation $U R_{p}=\mathrm{RZ}_{\mathrm{c}}$ from the word C.\&PTURED.

There is thon only one cell vacant, and it must be occupied by the only lotter left unplaced, viz., W. Thus the wholo square has been reconstructed, and tho messige can now be decryptographed.
(17) Is the square just reconstructed identical with the original, or is it a cyclic permutation of a koyword-mixed Playfair square of tho typo illustrated in Fig. 25b? Even though the message can be read with ease, this point is still of interest. Let tha sequonce be writtonn in five ways, ench composed of five partial sequences made by cyclicly pormuting each of the horizontal rows of the reconstructed square. Thus:

Row 1 Row 2 Row 3 Rew 4 Row 5
(a) LWPFD ZYIUR GSCBA VMEQK NHTOX
(b) WPFDL YIURZ SCBAG MEQKV, HTOXN
(c) PFDLW IURZY CBAGS EQKVM TOXNH
(d) FDLWP URZYI BAGSC QKVME OXNHT
(o) DLWPF RZYIU GGCB KVMEQ XNHTO

By experimenting with those five sequences, in an endeavor to roconstruct a transposition rectangle conformable to a keyword sequence, tho last sequence yiolds the following:

REF ID:A64644

- 118 -

By shifting the O from the last position to the first, and roarranging the columns, the following is obtained:

2	5	3	6	1	4	7
C	0	M	P	$A 2$	N	Y
B	D	E	F	G	H	I
K	L	Q	R	S	T	U
V	W	X	Z			

Tho original square must heve been this:

f. Continuod practice in the solution of Playfair ciphors will make the student quite expert in th3 mattor and will enable him to solve shorter and shorter messages. Also, with practice it will become a mattor of indifforence to him as to whether the letters are insorted in the squaro with any sert of regularity, such ns simple keyword-mixed order, columnar transpnsod keyword-mixed arder, or in a purely random order.
g. It may porhaps soom to the student that the foregoing steps are somewhat tco nrtificial, n bit too "cut nnd dried" in thoir accuracy to portray the process of analysis, as it is nppliod in nctuality. For example, the critical student may woll object to some of the assumptions and the reasoning in s.top (5) abcve, in which the words THRRE and ONS (lst hypothesis) were rajectod in favor of the words THIRD and SECOND (2nd hypothesis). This rost ad largely upon the rejection of $R \mathrm{P}_{\mathrm{p}}$ and ER_{p} as the equivalents of $\bar{J} F_{c}$ and $Z U_{c}$, find the adoption of $I R_{p}$ and $R I_{p}$ as their equivalents. Indeed, if the student will examino the final mossage with a rritical eye he will find that while the rit of reasoning in step (5) is perfectly logicnl, tho assumption upon which it is based is in fact wrong, for it happens that, in this case $E R_{p}$ occurs only once and RE_{p} does not occur at all. Consequontly, although most of the roasoning which led to the rejoction of the lst hypnthosis and the adoption of tho 2nd was logical, it was in fact basod upon orroneous assumption. In other words, despite the fact that the assumption was incorroct, a correct deduction was made. The student should take note that in cryptonalysis situations of this sort aro not at all unusun․ Indecd they are to be expected and a few wrrds of explanation at this point may be useful.
h. Cryptanalysis is a science in which a very large role is played by making deductions from observational data and the deductions usually rest upon assumptions. It is most ofton the case that the cryptanalyst is forced to make his assumptions upon a quite limited amount of text.

REF ID:A64644

It cannot be oxpoctod that assumptions basod upon statistical generalizations will alwnys hold truo when nppliod to data comparatively very much smillor in quantity than tho total data usod to dorive the generalized rules. Consoquontly, as regrrds assumptions mado.in spocific mossages, most of the time thoy will be corroct, but occasionally thoy will be incorroct. In cryptanalysis it is ofton found that among the correct doductions thore will be casos in which subsequently discovored facts do not bear out the assumptions on which the deduction was based. Indood, it is sometimes true that if tho facts had been known before the doduction was mado, this knowledgo would havo provontod making the corroct doduction. For ex?mple, supposo the eryptanalyst had somohow or other devinod that the messago undor considoration contained no RE, only one $¥ R$, ono $I R$, and two RI's (as is astually tho case). Ho would certainly not havo boon able to choose betwoon the words THREE and ONE (lst hypothesis) as against THIRD and SECOND (2nd hypothosis). But bocause he assumos that thero should bo more $\mathbb{E R}_{\mathrm{p}}$'s and $\cdot \mathrm{RE}_{\mathrm{p}}$'s than $I \mathrm{R}^{\prime} \mathrm{s}$-and RI's in the message, he deduces that $U Z_{c}$ cannot be $R P_{p}$, rejocts the lst hypothesis nnd takes the 2nd. It later turns out, after the problem has been solvod, that the deduction wàs correct, although the nssumption on which it whs based (oxpectation of more frequent apperrance of $R E_{p}$ and $E R_{p}$) was not in fact true in this particular case. The cryptanalyst can only hope that the number of times when his dejuctions aro correct, even though based upon assumptions which lator turn out to bo orronoous, will abundantly exceed the numbor of timos whon his deductions are wrong, oven though based upon nsisumptions which later prove to bo correct. If ho is lucky, the making of in assumption which is renlly not true will make no difforonce in tho ond and will not dolay solution; but if ho is specinlly favored with luck, it may zctuelly holp him solvo the mossago--3s was the case in this particular oxample.
i. snother comment of a goneral nature may be mado in connection with this spacific examplo. Tho student may ask what would have beon the procedure in this case if the message had not contained such a tell-tale ropetition as the word B.ITTLION, which formed the point of departure for the solution, or, as it is often snid, pormitted an "entoring wedge" to bo drivon into tho mossage. The answor to his query is that if the word BitThlion had not boen ropeatod, tharo would probrbly have been some other rapotition which would heve permitted the samo sort of attnck. If the student is looking for cut and driod, straightforward, unvarying methods of attack, he should remember that cryptanalysis, while it may be considered a branch of mathomatics, is not a scionce which has many "general solu"tions" such as are found and expected in mathematics propor. It is inhoront in the very nature of cryptanalytics that, as a rule, only gonoral principlos can be established; their practical applicntion must traco advontiage of peculiarities ind particular situations which are noted in r"pecific mossagos. This is espocially true in a text on the subjoct. The illustration of a gonoral principlo requires a specific oxample, and the latter must of nocossity manifest charactoristics which mako it differont from any othor oxmple. Tho word Bistislion was not purposoly ropoated

REF ID:A64644

- 120 -
in this example in order to make the demonstration of solution easy: "it just happened that way". In another example, some other entering wedge would have been found. The student can be expected to learn only the general principles which will enable him to take advantage of the specific characteristics manifested in specific cases. Here it is dosired to illustrate the general principles of solving playfair ciphers and to point out the fact that entering wedges must and, can be fcund. The specific nature of the entering wedge varies with specific examples.

SECTION X

CONGLUDING REMARKS

Paragraph
Special remarks concerning the initial slassification of cryptograms 47
Ciphers employing characters other than letters or figures 48
Goncluding remarks concerning monoalphabetic substitution. 49
Analytical key for cryptanalysis 50
47. Special remarks concerning the initial classification of cryptograms. - a. The student should by this time have a good conception of the basic nature of monoalphabetic substitution and of the many "changes" which may be "rung" upon this simple "tune". The first step of all, naturally, is to be able to classify a cryptogram properly and place it in either the transposition or the substitution class. The tests for this classification have been given and as a rule he will encounter no difficulty in this respect.
b. There are, however, certain kinds of cryptograms whose class cannot be determined in the usual manner, as outlined in Par. 13 of this text. First of all there is the type of code message which employs bona fide dictionary words as code groups.l Naturally, a frequency distribution of sucharmessage will approximate that for normal plain text. The appearance of the message, however, gives clear indications of what is involved. The study of such cases will be taken up in its proper place. At the moment it is only necessary to point out that these are code messages and not gipher, and it is for this reason that in Pars. 12 and 13 the words "cipher" and "cipher messages" are used, the word "cryptogram" being used only where technically correct.

〔. Secondly, there come the unusual and borderline cases, including cryptograms whose nature and type can not be ascertained from frequency distributions. Here, the cryptngrams are technically not ciphers but special forms of disguised secret writings which are rarely susceptible of being classed as transposition or substitution. These include a large share of the cases wherein the cryptographic messages are disguised and carried under an external, innocuous text which is innocent and seemingly

[^15]
REF ID:A64644

- 12
withcut cryptographic content - for instance, in a message wheroin specific letters are indicated in a way not open to suspicion under censorship, these letters being intended to constitute the letters of the cryptographic message and the nther letters constituting "dummies". Obviously, no amount of frequency takulations will avail a competent, expert-cryptanalyst in domonstrating or disclosing the presence of a cryptographic messago, writton and secreted within the "open" message, which serves but as an envelop and disguiso for its authentic or roal import. Certainly, such frequency tabulations can disclose the existonco noither of substitution nor transposition in these casos, sinco both forms aro absent. Another very popular method that resombles the method mentioned above has for its basis a sinplo grills. The whole words forming the socrot text aro inserted within perforations cut in the paper and the romaining space filled carefully, using "nulls" and "dummies", making a seemingly innocuous , ordinary message. There are other methods of this general type which can obviously neither be detected nor cryptanalyzed, using the principles of frequency of recurrences and repetition. These can not be further discussed herein, but at a subsequent date a special text may be written for their handling. ${ }^{1}$
d. In view of the foregoing remarks, when so-called "symbol ciphers", that is, ciphers employing peculiar symbols, signs of punctuation, diacritical marks, figures of "dancing men", and so on are encountered in practical work nowadays, they are almost certain to be simple, monoal phabetic ciphers. They are adequately described in romantic tales, ${ }^{2}$ in popular books on cryptography, and in the more common types of magazine articles. No further space need be given ciphers of this type in this text, not only because of their simplicity but also because they are encountered in mili.. tary cryptography only in sporadic instances in censorship activities. Fren in the latter cases, it is usually found that such ciphers are employed in "intimate" correspondence for the exchange of sentiments that appear less decorous when set forth in plain language. They are very seldom or never used by authentic enemy agents. When such a cipher is encountered nowadays it may practically alvays be regarded as the work of the veriest tyro, when it is not that of a "crank" or a mentally deranged person.
Q. The usual preliminary procedure in handling such cases, where the symbols may be somewhat confusing to the mind because of their unfamiliar appearance to the eye, is to substitute letters for them consistently throughout the message and then treat the resulting text as an ordinary cryptogram composed of letters is treated. This procedure also facilitates the construction of the necessary frequency distributions, which would, be tedious to construct by using symbols.

1 The subparagraph which the student has just read (47c) contains a hidden cryptagraphic message. With the hints given in Par. 35 e let the student see if he can find it.
2 The most famous: Poe's "Gold Bug"; Arthur Conan Doyle's "The Sign of Four".

REF ID:A64644

f. A final word must be said on the subject of symbol ciphers by way of caution. When symbols are used to roplace lettors, syllables and cntire words, then the systoms approach code mothods in principle, and can become difficult of solution. ${ }^{1}$ The logical extonsion of the use of symbols in such a form of writing is the omployment of arbitrary charactors for a spocially devolopod "shorthand" systom boaring littlo or no rosomblanco to woll-known, and thorofore nonsocret, systems of shorthand, such as "Grogg", "Pitman", otc. Unloss a considorable amount of toxt is available for analysis, a privatoly-dovised shorthand may bo vory difficult if not impossible to solvo. Fortunatoly, such systoms are nover oncountured in military cryptography. Thoy fall undor the hoading of cryptographic curiosities, of intorost to tho cryptenalyst in his loisuro moments. 2
48. Ciphors employing characters othor than lottors or figures. - 3. In practical cryptography toduy, tho usc of characters othor than tho 26 letters of the English alphabot is comparatively raro. It is true that there are a fow governmonts which still adhore to systoms yiolding cryptograms in groups of figures. Theso aro almost in ovory caso codo systems and dill be treatad in their propor placo. In some casos cipher systoms, or systems of onciphoring codo aro used which aro basically methematical in charactor and operation, and thorofore uso numbors instead of letters. Some persons aro inclinod toward tho use of numbers rather than lettors bocause numbors lond thomselves much moro rondily to cortain arithmotical oporations such as addition, subtraction, and so on, than do lottors. But there is usually added some final process whereby the figure groups are convertod into lettor groups, for the sake of oconomy in transmission.
b. Tho only notable exceptions to the statement containod in the first sentence of this peragraph are those of Russinn messages transmitted in the Russian Morse alphabet and Japanoso mossages, transmittod in the Kata Kann Morso alphabet.
49. Concluding romnrks concarning monoalphabetic substitution. - ETho alort student will havo by this timo gathored that the solution of mononlphabetic substitution ciphors of tho simplo or fixod type aro particularly casy to solvo, onco the underlying principles aro thoroughly understood. As in othor arts, continuod practice with examples loads to facility and skill in solution, ospocially whoro the student concentratos his attontion upon traffic all of the same genoral naturo, so that the typo of text
1 Tho uso of symbols for nbbroviation and speod in writing goos back to the days of antiquity. Cicoro is roportod to havo drawn up "a book like a dictionary, in which he placod bofore ench word the notntion (symbol) which should reprosent it, and so groat was the number of notations and words that whatovor could bo writton in Latin could bo exprossod in his notations."

2 An oxample is found in tho famous Popys Diary, which was writton in shorthond, purcly for his own eyes by Samuol Popys (1633-1703). "Ho wrote it in Shelt on's systom of tachygraphy (1641), which ho complicatod by using foroign languages or by viriotios of his own invontion whonover he had to record passagos lenst fit to bo soen by his sorvants, or by 'all the world'."

REF ID:A64644

- 123 -
which ho is continually oncountoring bocomos familinr to him and its peculiaritios or charactoristics of construction give clues for short cuts to solution. It is truo that in knowlodgo of tho gonoral phrasoology of mossages, tho kind of words used, their sequoncos, and so on is of vory great assistanco in practical work in all fiolds of cryptanalysis. The student is urgod to noto particularly these finor dotails in the courso of his study.
b. Another thing which the student should be on the lookout for in simple monoalphabetic substitution is the use, consecutively of several different mixed cipher alphabets in a single long message. Obviously, a single, composite frequency distribution for the whole message will not show the characteristic crest and trough appearance of a simple monoalphabetic cipher, since a given cipher letter will represent different plaintext letters in different parts of the message. But if the cryptanalyst will carefully observe the distribution as it is being compiled, he will note that at first it presents the characteristic crest and trough appearance of monoalphabeticity, and that after a time it begins to lose this appearance. If possible he should be on the lookout for some peculiarity of grouping of letters which serves as an indicator for the shift from one cipher alphabet to the next. If he finds such an indicator he should begin a second distribution from that point on, and procecd until another shift or indicator is encountered. By thus isolating the different portions of the text, and rostricting the frequency distributions to the separate monoalphabets, the problem may be treated then as an ordinary simple monoalphabetic substitution.
c. Monoalphabetic substitution with variants represents an extension of the basic principle, with the intontion of masking the characteristic frequencies rosulting from a strict monoalphabeticity, by means of which solutions are rather readily obtained. Some of the subterfugos applied in the ostablishment of variant or multiple values are simple and more or less fail to serve the purpose for which they are intonded; others, on the contrary, may interposo sorious difficultios to a straightforward solution. But in no case may the problom be considered of more than ordinary difficulty"." Furthormore, it should bo recognized that whore these subterfuges aro really adequato to the purpose, tho complications introducod are such that tho practical manipulation of tho systom becomos as difficult far the cryptographer as for the cryptanalyst.
d. As alroady montionod in monoalphabotic substitution with variants it is most common to omploy figures or groups of figures. The reason for this is that the uso of numerical groups soems more natural or oasier to tho uninitiated than does the use of varying combinations of lottors. Moroover, it is oasy to draw up cipher alphabots in which some of the lettors are roprosent od by singlo digits, others by pairs of digits. Thus, tho docomposition of the cipher text which is an irregular intermixture of monolitarat- n polylitoral oquivalonts, is made more complicatod and correspondingly difficult for tho cryptanalyst, who doos not know which digits are to bo usod soparatoly, which in pairs.

REF ID:A64644

Q. A few words may bo added horo in regard to a method which ofton suggests itsolf to laymen. This consists in using a book possossed by all the corrospondents and indicating the lotters of the message by moans of numbers reforring to spocific lottors in tho book. One way consists in solecting a cortain pago and thon giving tho line number and position of the letter in the line, tho pago number boing shown by a singlo initial indicator. Anothor way is to use tho ontire book, giving tho ciphor oquivalents in groups of threo numbers represonting page, line, and number of letter. (Ex.: 75-8-10 menns page 75, 8th line, loth letter in the line.) Such syst ams aro, however, oxtremely cumbersome to use and, whon the cryptographing is done carolossly, can bo solved. The basis for solution in such casos rosts upon the uso of adjacent letters on the same line, the accidental repetitions of cortain lottors, and the occurronce of unenciphored words in tho mossages, when lazinoss or fatiguo intervonos in the cryptographing.
f. It may also be indicatod that human nature and the fallibility of cipher clerks is such that it is rather rare for an encipherer to make full use of the comploment of variants placed at his disposal. The rosult is that in most casos certain of the oquivilents will bo usod so much more ofton than others that diversities in froquencies will soon manifest thomsolves, affording important data for attack by the cryptanalyst.
g. In the World War the cases where monoalphabetic substitution ciphers were employed in actual operations on the Western Front were exceedingly rare because the majority of the belligerents had a fair knowledge of cryptography. On the Eastern Front, however, the extensive use, by the poorly prepared Russian Army, of monoalphabetic ciphers in the fall of 1914 was an important, if not the most important, factor in the success of the German operations during the Battle of Tannenkerg. It seems that a somewhat more secure cipher system was authorized, but proved too difficult for the untrained Russian cryptographic and radio personnel. Consequently, recourse was had to simple substitution ciphers, somewhat interspersed with plain text, and sometimes to messages completely in plain language. The damage which this faulty use of cryptography did to the Russian Army and thus to the Allied Powers is incalculable.
h. Many of the messages found by censors in letters sent by mail during the World War were casos of nonoalphabetic substitution, disguised in various ways.

1 Gyldon, Yvos. Chifforbyraernas Insatser I Varldskriget Till Lands, Stockholm, 1931. Translation under the title The Contribution of tho Crvptographic Burcaus in the World War, appoared in the Signal Corps Bullotin in sevon succossivo installmonts, from November-Docember 1933 to November-Docombor 1934, inclusivo.
Nikolaiuff, A. M. Socrot Gausos of German success on the Eastern Front. Coast Artillery Journal, Soptember-Octobor, 1935.
50. Analytical key for cryptanalysis. - R. It may be of assistance to indicate, by means of an nutline, the relationships existing among the various cryptographic systems thus far considered. This graphic outline will be augmented from time to time as the different cipher systems are examined, and will constitute what has already been alluded to in Par. $6 \mathbb{d}$ and there termed an analytical key for cryptanalysis. ${ }^{1}$ Fundamentally its nature is that of a schematic classification of the different systems examined.
k. Nate, in the analytical key, the rather clear-cut, dichotomnus method of treatment, that is, classification by subdivision into pairs. For example, in the very first step there are only two alternatives: the cryptogram is either (1) eipher, or (2) code. If it is cipher, it is either (1) substitution (2) transposition. If it is a substitution cipher, it is either (1) monographic, or (2) polygraphic, and so on. If the student will study the analytical key attentively, it will assist him in fixing in mind the manner in which the various systems covered thus far are related to one another, and this will be of benefit in clearing away some of the mental fog or haziness from which he is at first apt to suffer.
1 This analytical key is quite analogous to the analytical keys usually found in the handbooks biolcgists commonly employ in the classification and identification of living organisms. In fact, there are several peints of resemblance between, for example, that branch of biology caller taxonomic botany and cryptanalysis. In the former the first steps in the classificatory process are based upon obseryation of externally quite marked differences; as the process continues, the observational details become finer and finer, involving more and more difficulties as the work progresses. Towards the end of the work the bntanical taxonomist may have to dissect the specimen and study internal characteristics. The whele process is largely a matter of painstaking, accurate observation of data and drawing proper conclusions therefrom. Except for the fact that the botanicnl taxonomist depends almost entirely upon ocular observation of characteristics while the cryptanalyst in addition to observation must use some statistics, the steps trken by the former are quite similar to those taken by the latter. It is only at the very and of the work that a significant dissimilarity between the two sciences arises. If the botanist makes a mistake in observation or deduction, he merely fails to identify the specimen correctly; he has an "nnswer" -- but the answer is wrong. He mey not be cognizant of the orror; however, other more skillful botanists will find him out. But if the cryptanalyst makes a mistake in observation or deduction, he fails to get any "answer" at all; he needs nobody to till him he has failed. Further, there is one additional important point of difference. The botanist is studying a bit of Nature -- and she does not consciously interpose obstacles, pitfalls, and dissimulations in the path of thoso trying to solve hor mystories'. The'cryptanalyst, on the other hand, is sturying a piece of writing propared with the expross purpose of preventing its baing read by any porsons for whom it is not intonded. Tho obstacles, pitfalls, and dissimulations are here consciously interposod by the one who eryptographed the mossage. Thoso, of courso, aro whit mako cryptanalysis differont and difficult.

REF ID: A $64 \dot{644}$
 - 126 -

c. The numbers in parontheses rofor to specific paragraphs in this toxt, so that tho student may rondily turn to tho toxt for dotailod information or for purposos of rofroshing his memory as to procodure.
d. In addition to thoso reforonco numbers thare have beon affixed to the succossive stops ion the dichotomy, numbors that mark the "routes" on the cryptanalytic map (the analytical koy) which tho student cryptanalyst should follow if ho wishos to facilitato his travols nlong the rather complicatod and difficult road to succoss in cryptanalysis, in somewhat tho samo way in which" n intolligent motorist follows the routos indicatod on a goographical map if ho wishes to facilitate his travols ilong unfamiliar roads. The analogy is only partinlly valid, howover. The motorist usually knows in advanco the distant point which ho dosiros to rench and he proceods thereto by the bost and shortost routo, which he finds by obsorving the roxte ineications on a map and following the routo markors on the road. Occasionally he oncountors a dotour but theso aro unoxpocted difficulties as a rule. Least of all doos he nnticipato any nocossity for journoys down whit may soon turn out to bo blind alloys and "doai-ond" stroots, forcing him to double back on his way. Now the cryptinalyst also has a distant goal in mind -- tho solution of tho cryptogram at hand -- but he doos not know at the outset of his journey the exact spot whore it is located on tho cryptanalytic map. The map contains many routos and ho procoeds to tost thom onc by ono, in 2 successivo chain. Ha onccunters many blind illeys and doad-ond stroets, which forco him to rotraco his stops; he makes many detours and jumps many hurdles. Some of these retracings of steps, doubling back on his tracks, jumping of hurdles and detours are unavoidable, but a feir are 2voidablo. If properly omployed, the analytical koy will help the careful sturient to avoid those which should and crn be avoided; if it does that much it will sorve the principal purpose for which it is intended.
e. Tho analytical key miy, howover, sorvo another purpose of a somewhat difforont naturo. Whon 2 multitudo of cryptographic systems of diverso types must be filod in some systomatic manner repurt from the namos of the correspondents or other roforenco data, or if in conducting instructional activities classificatory designations aro desireblo, the referonce numbers on the malytical key may be made to sorve as "type numbers". Thus, instend of stating that a given cryptogram is a keyword-systemati-cally-mixod-monoliteral-monoolphabetic-monographic substitution cipher ono may say that it is a "Typs 901 cryptogrom".
f. The method of nssigning type numbers is quite simple. If the student will oxamine the numbers he will noto that successive levels in the dichotomy are designatod by succossivo hundrods. Thus, tho first lovel, tho classification into cipher and codo is assigned the numbers 101 and 102. On the socond lovol, undor cipher, the classification into monographic and polygrrphic systoms is nssigned the numbers 201 and 202, atc. Numbors in the same hundreds apply therofore to systems at the same level in the classification. There is no particular virtuo in this scheme of assigning type numbers except that it provides for a considerable degreo of expansion in future studios.

REF ID12A64644

TABLE 1-A
Absolute Prequencies of Inttors appearing in five sets of Governmental plain-text tolcgr.ms, c.ch set contuining l0,000 letters. Arranged alphahotically.

Message No. 1	Message No. 2	mossage No. 3	Message No. 4	Mussage No. 5
	$\begin{array}{cc} & 0 \\ & 0 \\ & 0 \\ \hline \end{array}$			
A-738	A-78\%	A - 681	A-740	A-741
B - 104	B - 103	B - 38	B- 33	B-99
C - 319	C-300	C - 238	C - 326	C - 501
D-387	D - 413	D-423	D - 451	D -448
E -1367	E-1294	E-1292	F - $] 270$	E - 1275
F-253	F-. 287	F-308	F-287	F-281
G-166	G-175	G - 161	G-167	$G-150$
H-310	H-351	H-335	H - 349	H-349
I-712	I-750	I - 787	I - 700	I - ${ }^{\text {9 }}$ 97
J - 18	J-17	J- 10	J - 21.	J - 16
K - 36	Y - 38	K-22	K-21	K-31
L-365	L-393	L - 333	L-386	L - 344
M-2 ${ }^{\text {d }}$ 2	M-240	M - 238	M-249	
N-786	N-794	$\mathrm{N}-815$	N-800	N-780
0-685	- - 770	0-731	0-736	0-762
P-241	P-272	P-317	P-245	P-260
Q - 40	Q - 22	$\varepsilon-45$	Q-38	Q - 30
R-760	R-745	R-762	R-735	R-736.
S-658	S-583	S - 585	S - 628	S-604
T-936	T-879	T-834	T-958	T-928
U - 270	U-233	U-319	U-247	U-238
$\mathrm{V}-163$	V-173	V-142	V-133	$v-155$
W- 166	W-163	F-136	\#-133	¢: - 182
X - 43	$\mathrm{X}-50$	X-14	X - 53	X - 41
+ - 191	Y-155	Y - 179	Y - 213	Y - 229
$z-14$	$2-17$	$2-2$	Z-. 11	$2-5$
Totals				
		Table 2-		

Absolute frequencies of letters appearing in the combincd five sets of messages totalling 50,000 letturs arr: nged alphabotically.

A - 3683	G - 819	$\mathrm{I}_{1}-1821$	Q - 175	V-766
B - 487	H - 1691	M - 1237	R-3788	W - 780
C - 1534	I - 3676	N-3 375	S-3058	X - 231
D - 2122	J - 82	0-3764	T - 4595	Y - 967
E-6498	$K-1 \leqq 8$	P-1335	U - 1300	Z - 49
F-1416				

REF ID $^{\text {TD }}:$ A64644

TABCW $1-\mathrm{B}$

Absolute frequencies of letters apperring in five sets of Government plain-text tolegroms, eoch set containing 10,000 lettors.

Arranged according to frequency.

Absolute Frequencios of vowels, high frequency consonants, medium freruency consonants, and low frequency consonants ajpcaring in five sets of Government nlain- text tclegrams, each set containing 10,000 letters.

Message	Vowels.	High Freq. Consonents.	Wiedium Freq. Conson nts.	Low Freq. Consonants.
1	3993	3527	2329	151
2	3985	3414	2457	144
3	1042	3479	2356	123
4	3926	3572	2358	144
5	3942	3546	2389	123
Totals	19,388	17,538	11,889	685

REF ID:A64644

- 120 -

「ABLE R-E
Absolute frecuencies of letters anpearing in the combined five sets of meseages toteliling 50,000 leticis arranged according to frequencios.

E -6498	I. -3676	C - 1534	Y - 967	X - 231
T -4505.	S -8058	F-1416	G - 819	Q-175
N -3975	D --2192	P -1335	W - 780	K - 1.48
$\overline{\mathrm{T}}$-3788	L -18id.	U -1300	V -. 766	J - 82
0-3764	H -1.694	M -1237	B - 487	$z-49$
A -5683				

TARLE 2--C

Absolute frequencies of vowcls, high frequency consonants, medium frecuency consonents, and low frequency consonents appoaring in the combincd five sots of messages totalling 50,000 letters.

Vowels . 19,888
 Fiedium Frequency Consonents (B , C, F, G, II, L, M, P, V and W) 11,889 Lo'v Trequency Consonents (J, K, Q, X and Z) 685 Totaj゙ . 50,000

TABLE 2-D

Absolute frequencies of letters as initial letters of 10,000 words found in Government plain-tert telegrans.
(1) Arrangad slph:ihctically

A - 905	G-109	L - 196	Q - 30	V - 77
B - 287	H-272	M-384	R-611	T1-320
C - 664	I - 34.1	N-4.41	S - 965	X - 4
D - 525	J - 44	0-646	T - 1253	Y-88
E- 395	K-23	P - 453	U-122	Z-12
F-855				

(2) Arranged according to absolute frecquencies.

T-1253	R-611	M - 384	L - 196	J - 44
5 S 965	D - 525	I-344	U-122	Q-30
A - 905	N-441	W-320	G-109	K- 23
F-855	P-433	B - 287	Y - 38	Z-12
$C=.664$		H - 272	V-77	X -- 4
0-646				

TABLE $2-T$

Absolute frequencies of luthers as finl lattors of 10,000 words found in Government plein-text telogrnas.
(1) Arranged alphebetically.

A - 269	G - 225	L - 354	Q-8	V - 4
B - 22	II - 450	m - 154	R-769	W- 45
C-86	I- 22	N-872	S - 362	X - 113
D -1002	J-6	O-515	T - 1007	Y - 866
E -1628	K - 53	P-213	U-31	Z - 9
F-252				

(2) Arranged according to sbsolute froqur ncies.

E -1628	P-769	F-252	C- 86	J. 22
T -1007	0-575	G-2?	K-53	Z- 9
D --1002	$\mathrm{H}-450$	P-213	W-45	Q -
S - 962	L - 354	M-104	U -- 31.	J
N-872	A - 269	X-116	B-22	V -
$Y-866$				

TABLIE 3

Relative frcquencies of lutters appearing in 1,000 letters besed upon table 2.
(1) Arranged alphobctic:11.r

A-73.66	G-16.38	L - 36.42	Q - 8.50	7-15.32
B - 9.74	H - 33.88	M- 24.74	R - 75.76	W-15.60
C - 30.68	I - 73.52	$N-79.50$	S-61.26	X- 4.62
D - 42.44	J - 1.64	0-75.28	T-31.3x	Y - 19.54
E -129.96	K-2.96	P-26.70	U - 26.0 .	2-. 98
F-28.32				

(2) Arrenged "coording to frecurrey.

E -129.96	I - 73.52	C - 30.68	Y-19.3:	7-4.62
T-91.90	S-61.16	F-28.32	G - 16.38	Q - 3.50
N-79.50	D - 42.41	P-26.70	W - 1.5 .60	K - 2.96
R-75.76	L - 36.42	U - 26.00	V - 1.5 .32	J - 1.64
0-75.28	H -33.88	M - 21.7\%	B-9.74	Z - . 98
A - 73.66				

TABLFP 4
Frecuency Distribution for 10,000 letters of literary English, as compiled by Hitt. 1
A. Alphabetically arranged.

$A-778$	$G-174$	$L-372$	$Q-8$	$V-112$
$B-141$	$H-595$	$M-288$	$R-651$	$W-176$
$C-2966$	$T-667$	$N-686$	$S-622$	$X-27$
$D-402$	$J-51$	$0-807$	$T-855$	$Y-196$
$E-1277$	$K-74$	$P-223$	$U-308$	$Z-17$
$F-197$				

B. Arranged according to frequency.

$E-1277$	$R-651$	$U-308$	$Y-196$	$K-74$	
$T-855$	$S-622$	$C-296$	$W-176$	$J-51$	
$O-807$	$H-595$	$M-288$	$G-174$	$X-$	K7
$A-778$	$D-402$	$P-223$	$B-141$	$Z-17$	
$N-686$	$L-372$	$F-197$	$V-112$	$Q-8$	
$I-667$					

TABLE 5
Frequoncy Distribution for 10,000 lottors of telegr?phic English as compiled by Hitt.
A. Alphabetically arranged.

A -813	H-201	L-392	Q - 38	V - 136
B - 149	H-386	M - 273	R-677	W - 166
C-306	I - 711	N-718	S - 656	X - 51
D - 417	J - 42	0-844	T-634	Y-208
E - 1319	K - 88	P-243	U-321	Z - 6
B. Arranged according to frequency.				
\$-1319	S - 656	U-321	F-205	K-88
$0 \div 844$	T-634	C - 306	G - 201	X - 51
A-813	D - 417	M-273	W - 166	J - 42
N-718	L - 392	P-243	B - 149	Q-38
I-711	H-386	Y - 208	$\mathrm{V}-136$	Z - 6
N-677				

1 Hitt, Capt. Parker. Manual for the Solution of Military Ciphers. Army Service Schools Press, Fort Loavenworth, Konsas, 1916.

REF ID: A6.4644.

Based on 50,000 letters of Government plai text telegrams.
Reduced to 5,000 digraphs.

REF ${ }^{123}$ ID : A64644

TABLE 7-A
THE 438 DIFTERENT DIGRAPHS OF TABLE 6 ARRINGED ICCORDING TO THEIR ARSOTJTE TREQUENGIES.

134
table 7 a cuncluded

T F	7	OB	4	N P	3	\times A	2	L G	1
TN	7	0 C	4	NV	3	$\times \mathrm{C}$	2	LH	1
X T	7	DN	4	N W	3	$\times 1$	2	LN	1.
A B	6	D W	4	OH	3	X P	2	4 M	1
A G	6	E ${ }^{\text {a }}$	4	A H	A	Y ${ }^{\text {B }}$	2	M F	1
BL	6	E G	4	AK	2	$Y \mathrm{~L}$	2	MH	1
0) 0	6	E Y	4	B1	2	Y Mi	2	NJ	1
Y A	6	G T	4	RR	2	ZE	2	NQ	1
G 0	¢	HS	4	BU	2	G ${ }_{\text {g }}$	1	$0 J$	1
10	6	MS	4	OG	2	AJ	1	$0 \times$	1
$K E$	5	NH	4	U H	2	R J	1	P B	1
LS	6	NR	4	00	2	P +1	1	PC	1
\cdots	6	OB	4	A 0	2	B8	1	P0	1
P1	6	P M	4	0 Y	?	ET	1	PN	1
PS	6	K W	4	FC	2	CD	1	P V	1
RF	6	SN	4	FL	2	CF	1	P W	1
TC	6	SW	4	G C	2	C 1.1	1	P Y	1
TD	6	W H	4	G F	$?$	C iv	1	Q 11	1
TM	5	Y C	4	$G \mathrm{~L}$	2	CS	1	A R	1
U L	6	Y 0	4	$G P$	2	CW	1	R J	1
$\checkmark \mathrm{A}$	6	YR	4	GU	2	C. Y	1	R K	1
Y N	6	PH	3	HD	2	DJ	1	SK	1
C L	5	PU	3	HM	$?$	DY	1	SV	1
UM	5	R H	3	1 B	2	EJ	1	S Y	1
Dr	5	SB	3	1 K	?	AE	1	Tris	1
DU	5	SM	3	12	?	U O	1	T日	1
01	5	TB	3	JE	2	Y U	1	T Z	1
$\cup A$	5	UB	3	Jo	2	EZ	1	UF	1
$\cup 1$	5	U C	3	JU	?	F0	1	U V	1
F A	5	UU	3	K1	?	FG	1	V 0	1
G 1	5	Y P	3	L M	2	FM	1	$\checkmark T$	1
G K	5	C C	3	LR	?	FP	1	W L	1
HF	5	A W	3	Lu	?	FW	1	14 L	1
NL	5	OL	3	LV	$?$	FY	1	w S	1
NM	5	DV	3	L W	2	G 0	1	Wr	1
NY	5	A A	3	MR	2	G J	1	$\times 0$	1
RL	5	EU	3	M1 T	?	GM	1	X E	1
KU	5	OE	3	MU	2	G W	1	X F	1
R V	5	Y 1	3	M Y	2	HB	1	$\times \mathrm{H}$	1
SD	5	FS	3	NB	2	HL	1	$\times \mathrm{N}$	1
$S k$	5	FU	3	NK	2	HP	1	$\times 0$	1
TL	5	G N	3	OG	2	HQ	1	XR	1
TU	5	G S	3	0 K	2	HW	1	\times S	1
U:1	5	H C	3	PF	?	HY	1	Y G	1
AF	4	H	3	R B	?	\checkmark A	1	Y H	1
B A	4	LB	3	S G	2	K A	1	Y W	1
B 0	4	LC	3	SL	2	K C	1	2 A	1
C K	4	LF	3	T P	2	KL	1	21	1
CK	4	LP	3	$\cup P$	2	KN	1		
CU	4	MC	3	W N	3	K S	1	Total	5000

- REF ID: A64644

TABLE 7-C

THE ES DIGRAPIS COMPOSNG 50% OF THF 5000 DIGRAPHS OF TABLE 6, ARRANGED ALPHABETICELLY ECCORDING TO THEIR INITIAL LFTTERS;
(1)

AND ECCORDING TO THFIR FINAL LETCRRS
(2.)

IND ACCORDING TO TIEIR ABSOLUTE FRECUENCIES

A L	32	N0	52	A N	64	NT	82
A $\mathrm{H}^{\text {d }}$	64	NE	57	A T	47	HE	57
AR	44	NI	30	$A P$	44	ND	52
$A ¢$	41	NT	8 \%	$A S$	41	川1	30
A T	47			A L	32		
		0 N	77			0 N	77
C E	32	OH	04	co	41	0 R	64
C 0	41	0 U	37	C E	3%	01	37
D A	32	R A	39	b E	33	HE	98
DE	33	R E	98	D A	3 ?	R T	42
E A	35	R 1	30			K A	39
EC	32	R 0	2 ษ	EN	111	hs	31
ED	60	RS	31	ER	87	R 1	30
$E E$	4%	R T	4%	ED	60	RO	28
EL	29			ES	54		
EN	111	¢ E	49	E E	4 ?	ST	63
ER	87	41	34	E \dagger	37	$\bigcirc \mathrm{E}$	49
E	54	ST	03	E A	35	31	34
ET	37			E C	32		
		T A	28	EL	29	TH	78
F 1	39	TE	71			TE	71
Fu	40	TH	78	Ful	40	TO	50
		TI	45	FI	39	TI	45
H I	33	TU	50	HI	3%	T Y	41
H T	28	TW	36	H T	28	TW	36
		T Y	41			T A	28
1 N	75			1 N	75		
10	41	UR	31	10	41	U R	31
15	35			1 s	35		
		VE	57			V E	57
$\begin{aligned} & L A \\ & L E \end{aligned}$	$\begin{aligned} & 28 \\ & 37 \end{aligned}$	Total -	2495	LE	$\begin{aligned} & 37 \\ & 28 \end{aligned}$	Total	2495
1.1 A	36			11 A	36		

(1) AND ACCORDIIVG "TO THEIR FINAL LETTEERS.

(2) AIND ACCORDING TO THEIR ABSOLUTL FREOUPHTCIES.

A N	64	HI	33	PE	23
A T	47	H T	28	PR	18
A K	4 4	Ha	20	PO	17
A S	41	HE	20	PA	14
A L	3\%	HU	20		
A 0	27	HK	17	Qu	15
A 1	17				
A C	14	1 N	75	KE	98
$A \mathrm{wl}$	14	10	41	K T	42
AU	13	1 S	35	R A	39
		1 R	27	RS	31
BE	18	1 T	27	121	30
		1 V	25	KO	28
C0	41	11	23	K \quad	17
C E	32	1 C	22^{\prime}		
C A	2.0	/ G	19	S T	63
CH	14	$1 \times$	15	SE	49
C T	14	1 E	13	S 1	34
				SH	2,6
DE	33	LE	37	S A	24
DA	32	LA	28	ら S	19
D 1	27	L L	27	SU	15
[0	16	LI	20	.	
D T	15	Lu	13	T H	78
DS	13			TE	71
		M A	36	Tu	50
EN	111	M E	26	TI	45
E. K	87			T Y	41
E D	60	NT	82	TV	36
E S	54	NE	57	T A	28
E E	4%	ND	5 2	TS	19
E 7	37	NI	30	TT	19
E A	35	NG	27	Tik	17
E C	32	NA	26		
EL	29	$\bigcirc 0$	4	UR	31
E	27	NC	19	UN	21
E P	20	NO	18		
E V	20			V E	57
E F	18	0 N	77		
E:	14	0 K	64	$W E$	22
		0 U	37	W0	19
Fo	40	0 F	2.5		
F 1	$3 y$	() M	25	Y Y	15
		0 P	25	Total - 3745	
$\begin{aligned} & \text { G H } \\ & \text { GE } \end{aligned}$	20	OL	19		
	14	0 T	19		
		0 S	14		

TABLE 7.E
ALL THE 438 DIGRAPHS OF TABLE 6, A`R'NGED FIRST ALPHABETICALLY ACCORDING TO THEIR INITIII LETTERS AND THEN ILPHRBETTCALLY ACCORDING TO THEIR FINAL LETTERS.

REF ID:A64644

TABLE 8
THE 438 LIFTERENT DIGRAPHS OF TABLE 6 :RRANGED FJFST \&LPHEBETIC:ILLY ACCORDING TO THEIR INITIAL LETTERS, AND THEN ACCORDING TO THEIR ABSOLU'IE FREOUENGIES UNDER EACH INITIAL LETTER.

TABLE 8 CONTINUED.

TABJ.E 9 CONCLUDED.

(Note: For arrangement alphabetically first under initial letters and then under final letters, see Table 6.) ALPH:BETICALJY SCCORDING TO THSIR FINAL LETTENS AND THEN ACCORDING TO THWIR ABSOTUTE FREOUENCIES.

TABLE 9－A CONTINUED．

ステススススス cccccccc		
 brhrrartrarararrarra		
cccccccccocccoccoccccco 		
	－	HคNNNNWWWCTVロロトロトNON

TABLF, 3-A CONCLUDED.

TABLE 9-B

THE 18 DIGRAPHS COMPOSING 25\% OF THE 5000 DIGRAPHS
 .mINAL LETTERS,

RE $_{\underline{L}} \mathrm{~F}_{\boldsymbol{c}}$ ID : A64644

TABLE 9-G
THE 53 DIGRAPHS CCITPOSIMG 50\% OF THE 5000 DIIRAPHS
 LETTERS,

(I) AND ACCORDING TO TFEIS INITIM LETTHPS.				(2) IND ACCORDING TO THEIR ABSOLUTE FRTCOENCIES.			
DA	32	CO	11	RA	39	TO	50
EA	35	FO	40	MA,	36	00	C1
L^	28	IO	11	E. 1	35	IO	41
MA	36	10	28	Dis	32	FO	40
RA	39	TO	50	LA	28	RO	28
T	28			TA	28		
		AR	64			FR	87
EC	32	ER	87	EC	39	OR	64
		OR	64.			AR	44
$E D$	60	UF	31	EI	60	UR	31
ND	52			ND	52		
		AS	. 11			ES	54
CE	32	ES	54	RE	98	4 S	41
DE	33	IS	35	TE	71	IS	35
EE	42	HS	31	NE	57	RS	31
LE	37			VE	57		
NE	57	$2 . \mathrm{T}$	47	SE	49	NT	82
RE	98	FT	37	EE	42	ST	63
SE	49	HT	28	LE	37	AT	17
TE	71	WT	32	DE	33	RT	42
VE	57	RT	42	CE	32	ET	37
		ST	63			HT	28
TII	78			TH	78		
		00	37			OU	37
FI	39			TI	45		
HI	33	TTW	36	FI	33	TT	36
NI	30			SI	34		
RI	30	TY	$\wedge 1$	HI	33	TY	41
SI	34	Total	2495	NI	30	Tots 1 -	2495
TI	.45			$R I$	30		
AL	32			NL	32		
EL	29			EL	29		
AN	64			EN	111		
EN	111			ON	77		
IN	75			III	75		
ON	77			NN	6 \%		

REF ID:A64644

- 147 -

TABLE 9-D
THE 117 DIGRAPIIS COMPOSING 75, OF THE 5000 DIGREAPHS OF TABEE 6, ARRANGED ALPHADETICALLY ACCORDING TO THEIR FINAL LETHERS,
(1) AND ACCO'DING TO THFTR INITIAL LETTERS.

$C^{2} A^{* *}$	20	EF	18	co	41	A T	47
0 A	32	OF	25	DU	16	C T	14
$E A^{\prime}$.	35			FO	40	0 T	15
HA	20	1 G	19	H 0	20	ET	37
LA"	38	NG	27	10	41	H T	28
M A	36			Lu	13	1 T	27
N.A	26	CH	14	No	18	NT	82
P. A	14	G H	20	Pu	17	0 T	19
RA	39	SH	26	R 0	28	R T	42
8 A	24	TH	78	S 0	15	ST	63
TA	28			TO	50	T T	19
		A 1	17	W0	19	Y T	15
A C	14°	1	27				
E'C.	32	E1	27	EP	20	A U	13
$1{ }^{\circ}$	$2{ }^{2}$	Fi	39	OP	' 5	$0 \cup$	37
NC.	19	HI	33			QU	15
		L 1	20	AR	4.4		
A. D_{1}	27	NI	30	TR	17	E V	20
- ${ }^{-1}$	60	R I	30	UR	31	IV	P 5
N $\mathrm{U}^{\text {O }}$	52	SI	34	ER	87		
K	17	TI	45	$\bigcirc \mathrm{OR}$	64	T W	36
				PR	18		
$B E$	18	A L	32	HR	17	1 X	15
CE	32	EL	29	1 R	27		
DE	33	1 L	23			TY	41
EE	42	LL	27	A S	41	Total - 3745	
GE	14	0 L	19	S S	19		
HE	20			T S	19		
1 E	13	A ${ }^{\text {m }}$	14	O S	13		
L. E	37	$E M$	14	ES	54		
W E	26	0 M	25	NS	24		
V E	57			0 S	14		
PE	23	A N	64	$1 s$	35		
K E	98	EN	111	R S	31		
S E	49	1 N	75				
TE	71	0 N	77				
V	57	UN	21				
WE	22						

TABLE 9-D Continued.
(2) AND CCCOLUING TO TIITR IBSOLUTE FREOUENGIES.

R A	39	0 F	25	Tu	50	NT	82
M A	36	E F	13	co	41	ST	63
E A	35			10	41	A T	47
L A	32	NG	27	FU	40	R T	42
LA	28	1 G	19	R U	28	ET	37
T A	28			Hu	20	H T	28
NA	26	TH	78	Wu	19	1 T	27
S A	24	SH	26	Nu	18	0 T	19
C A	20	GH	\%	PU	17	T T	1.9
HA	2.0	CH	14	DU	16	DT	1.5
PA	14			Su	15	Y T	15
		T 1	45	Lu	13	C T	14
EC	32	F I	39				
1 C	2.2	51	34	OP	25	0 U	37
NC	19	H1	33	$E P$	20	Q U	15
A C	14	131	30			AU	13
		R I	30	ER	87		
ED	60	U1	27	0 R	64	IV	25
ND	52	E I	27	AR	44	E V	20
A D	27	LI	20	UR	31		
K D	17	A 1	17	1 k	27	T	36
				PR	18		
RE	98	A L	32	HR	17	1 X	15
TE	71	EL	29	TR	17		
NE	57	LL	27			T Y	41
$\checkmark E$	57	1 L	23	ES	54	Total-3745	
SE	49	0 L	19	A S	41		
E E	42			15	35		
LE	37	011	25	R S	31		
DE	33	A ri	14	NS	24		
$C E$	32	E 14	14	SS	19		
Wi E	26			T S	19		
PE	23	EN	111	0 S	14		
W E	2%	UN	77	DS	13		
HE	20	1 N	7.5				
B E	18	A N	64				
G E	14	UN	21				
1 E	13						

TABLE 9-E
ALL THE 438 DIFFERENT DIGSAPHS OF TiBLE 6 AZRAIJGED RLPEABTTICALLY FTHST AGCORDING TO THETR FINEL LETTERS AND THFN. . L.CCORDING TO THEIR INITILLL LETTERS.
(SEE TABLE 6. READ DOTN TIE COLLRNS)

REF ID:A64644

- 150 -

TABLE 10 B

THE 56 TRIGRAPES APPEARING 100 OR MORE TTMES IN THE 50,000 LETTERS OF GOVERNMENT PLKIN-TEXT TELRGRiNS ARRANGED FIRST $\operatorname{iLLPHABETICALLY~LACCORDING~TO~THEIR~INITLAL~IETTERS~}$ AND THEN ACCORDING TO THEIR ABSOLUTE FREQUENCIES

AND	228	MEN	131
ATI	160		
LSH	143	IIN	207
ATE	135	NTH	171
		NTY	157
COM	136	NET	118
DAS	140	OUR	211
DER	101	ONE	210
DRE	100	ORT	146
ENT	569	PER	115
EEN	196		
EVE	177	REE	146
EST	176	RED	113
ERE	138		
EIG	135	STO	202
ERS	126	SIX	146
EQU	114	SEV	131
ERI	109	STA	115
FOR	218	TIO	221
FOU	152	THI	211
FIV	135	TEE	174
		TOP	174
GHT	196	TWE	170
		TWO	163
HRT	153	THR	158
HIR	106	TER	115
		TED	112
ION	260		
ING	226	UND	125
IVE	225		
INE	192	VEN	190
IGH	140		
IRT	105	WEN	153

TABLE 100
THE 56 TRIGRAPHS APPEARING 100 OR MORE TIMES IN THE 50,000 LETTERS OF GOVERNENT PIAIN-TEXT TELEGRAMS ARRANGED FIRST ALPHABETICALLY ACCORDING TO THEIR CENTRAL LETTERS AND THEN ACCORDING TO THEIR $a B S O L U T E$ FREQUENCIES

Das	140	ION	260
		FOR	218
EEN	196	TOP	174
VEN	190	FOU	152
TEE	174	COM	136
WEN	153		
REE	146	EQU	114
MEN	131		
SEV	131	HRE	153
NET	118	ORT	146
PER	115	ERE	138
TER	115	ERS	126
RED	113	ERI	109
TED	112	IRT	105
DER	101	DRE	100
IGH	140	TST	176
		4 SH	143
THI	211		
GET	196	STO	202
THR	158	NTH	171
		ATI	160
TIO	221	NTY	157
NIIS	207	$1 . t 5$	135
SIX	146	STA	115
EIG	135	OUR	211
FIV	135		
HIR	106	IVE	225
ENT	569	EVE	177
AND	228		
ING	226	TWE	170
ONE	210	TWO	163
INE	192		
UND	125		

TABLE 10 D
THE 56 TRIGRAPHS APPEARING 100 OR MORE TINES IN THE 50,000 IETTERS OF GOVERNMENI PLAIN-TEXT TELEGRAMS ARRANGED FIRST ALPHABETICHLLY ACCORDING TO THEIR FINLL LETTERS and then according to their absolute frequencirs

STA	115	TIO	221
		STO	202
AND	228	TWO	163
UND	125		
IED	113	TOP	174
TED	112		
		FOR	218
IVE	225	OUR	211
ONE	210	TER	158
INE	192	PER	115
EvE	177	ITR	115
TEE	174	HIR	106
TWE	170	DER	101
HRE	153		
REE	146	DAS	140
ERE	138	ERS	126
ATE	135		
DRE	100	${ }_{\text {ENT }}$	569 196
ING	226	EST	276
EIG	135	ORT	146
		NET	118
NTH	171	IRT	105
ASH	143		
IGH	140	EQU	114
THI	211	FIV	135
ATI	160	SEV	131
ERI	109		
COM	136	SIX	146
ION	260	WTY	157
NIN	207		
EEN	196		
VEN	190		
WEN	153		
MEN	131		

TiBLE II Λ
 IV THZE $50,000 \mathrm{LETTERS}$ OF GOVERNAENT PIAIN-TEXT TELEGRAMS ARRANGED $\angle C C O R D I N G T O$ THEIR ABSOLUTE FREQUENCIES

TION	218	OMMA	71
EVEN	168	LLAR	71
TEEN	163	OLIA	70
ENTY	161	VENT	70
STOP	154	DOLL	68
WENT	153	LARS	68
NINE"	153	THIS	68
TTVEN	152	PERI	67
Thite	149	ERIO	66
FOUR	144	4 SHT	64
IGHT	140	HOND	64
FIVE	135	DRED	63
HR'EE	134	RIOD	63
Eigh	132	IVED	62
Disiti	132	ENTS	62
SEVE	121	FFicic	62
ENTH	114	FROM	59
MEENT	111	IRTY	59
THIR	104	RTEE	59
EENT	102	UNDR	59
REQU	98	NhUG	56
HIRT	97	OURT	56
COMM	93	UGHT	56
QUES	87	Stat	54
UEST	87	SUGGE	52
EQUE	86	CENT	52
NDRE	77	FICE	50

REF ID:A64644

- 154 -

TLBLE 11 B
 IN THE 50,000 LETIERS OF GOVERNMENT PLAIN-TEXT TELEGRAMS
 AND THEN ACCORDING TO THEIR ABSOLUTE FRPQUENCIES

ISHT	64	MENT	111
AUGH	52		
		NINE	153
COMM	93	NDRE	. 77
CENT	52	NHUG	56
Dish	132	OMasit	71
DOLL	68	OLITri	70
DRED	63	OURT	56
EVEN	168	PERI	67
ENTY	161		
EIGH	132	QUES	87
HNTH	114	REQU	98
EENT	102	RIOD	63
EQUE	86	RTEE	59
ERIO	66		
LNTS	62	STOP	154
		SEVE	121
FOUR	144	STAT	54
FIVE	135		
FFIC	62	TION	218
FROM	59	TEEN	163
FICE	50	TTYEN	152
		TERE	149
HREE	134	THIR	104
HTRT	97	TIIIS	68
HOND	64		
		UEST	87
IGHP	140	UNDR	59
IVED	62	UGHT	56
IRTY	59		
LILR	71	VENT	70
LuRS	68	TENT	153

REF ID:A64644

- 155 -

TABLT 11 C

THF 54 IPETRAGRIPHS APPEARING 50 OR MORE TIMES IN THE 50,000 IETTERS OF GOVERNNENT PLAIN-TRXT TELEGRAMS LRRRNGED FITST ALPHABETIGAILY ACCORDING TO THEIR SEC̄OND LETTERS AND THEN ACCORDING TO THEIR ABSOLUTE FRPQUENCIES

REF ID:A64644

- 156 -

TABLE 11 D

THE 54 TETRAGRAPHS $\quad P P E A R I N G 50$ OR MORE TIMRS IN THE 50,000 LETTERS OF GOVERIMENT PLAIN-TEXT TELEGRAMS ARRLNGED FIRST AIPHABETICAJUY ACCORDING TO THEIR THIRD LETTERS AND THEN $\Lambda C C O R D I N G T O$ THEIR $\angle B S O L U T E ~ F R E Q U E N C I E S ~$

ILuR	71	TENT	153
STLT	54	NINE	153
		MENT	111
FICE	50	EENT	102
		VENT	70
UNDR	59	HUND	64
		CENT	52
EVEN	168		
TEEN	163	TION	218
TTVEN	152	STOP	154
HPEE	134	RIOD	63
QUES	87	FROM	59
DRED	63		
IVED	62	REQU	98
RTEP	59		
		THRE	149
EIGH	132	HIRT	97
AJGH	52	NDRE	77
		LfRS	68
IGITT	140	PERI	67
ASHT	64	OURT	56
UGHT	56		
		DASH	132
THIR	104	UEST	87
THIS	68		
ERIO	66	ENTY	161
FFIC	62	ENTH	114
		ENTS	62
OLIA	70	IRTY	59
DOLL	68		
		FOUR	144
COMM	93	EQUE	86
OMML	71	NaUG	56
		FIVE	135
		SEVE	121

- 157 -

T 4 BLE 11 E
THE 54 TETRAGRAPHS APPEIRING 50 OR MORE TIUES IN ARRINGED FIRST ALPHiBETICALLY ACCORDING TO THEIR FINLI LETTERS $\angle N D$ THEN ACCORDING TO THEIR ABSOLOTE FREQUENCIES

Orma	71	TION	218
OLIL	70°	EVEN	168
--		TEEN	163
FFIC	62	TWEN	152
HOND	64	ERIIO	66
DRED	63		
RIOD	63	STOP	154
IVED	62		
		FOUR	144
NINE	153	THIR	104
THIRE	149	LIAR	71
FIVE	135	UNDR	-59
HREE	134		
SEVE	121	QUES	87
EQUE	86	THIS	68
NDRE	77	ILINS	68
RTEE	59	ENTS	62
FICE	50		
		WENT	153
NuUG	56	IGHT	140
		.MENT	111
Dish	132	EENT	102
EIGH	132	HIRT	97
ENTH	114	UEST	87
SUGH	52	VENT	70
		ASHT	64
PERI	67	UGHP	56
		OURT	56
DOLL	68	STiT	54
		CENT	52
comim	93		
FROM	59	REQU	98
		ENTY	161
		IRTY	59

REF ID:A64644

- 158 -

ThBLE 12

AVERGGE LND MEAN LENGIHS OF WORDS

No. of Letters In Word	No. of Times TVord Appears	No. of Letters
1	378	
2	973	378
3	1307	1946
4	1635	3921
5	1410	6540
6	1143	7050
7	1009	6858
8	717	7063
9	476	5736
10	274	4284
11	161	2740
12	86	1771
13	23	1032
14	23	299
15	4	322
120	9619	60

(1) Mean Length $=\frac{50000}{9619}=5.2$ Letters
(2) Average Length of messages . . . 217 Letters
(3) Mean Length of messages 191 Letters
(4) Mode (Most frequent) Length . . . 105-114 Letters
(5) It is extremely unusual to find 5 consecutive letters without at least one vowel.
(6) The average number of letters between vowels is 2.

--	Page	Paragraph
Accented Ietters	11	5 b
Alphabets, bipartite	73	35 c
" , deciphering	64	31.
" , direct standard	25,30,38	12a,16,19
" , enriphering	60,64	29b,31c
" , keyword-mixed	65	31d
" , mixed	$\begin{aligned} & 25,30,38, \\ & 48,50,64 \end{aligned}$	$\begin{gathered} 12 \mathrm{a}, 15 \mathrm{a}, 19,21 \mathrm{~d} \\ 22 \mathrm{~b}, 24 \mathrm{c}, 51 \mathrm{~b} \end{gathered}$
" , reversed standard	25,30,40,44	12a,16,19b,20b
" -, standard	$\begin{array}{r} 25,30,39, \\ 44,49,80 \end{array}$	$\begin{gathered} 12 \mathrm{a}, 15 \mathrm{a}, 16,19, \\ 20 \mathrm{~b}, 23,38 \mathrm{e} \end{gathered}$
II , systematically mixed	$6: 5$	31c,e
Analytic key for cryptanalysis	13,125	6r,50
Arbitrary symbols	27,121,122	13h,47ก,48
Assumptions	11.3	46h
Average length of messages	23	Illb
Baconian cipher	74	35 e
Bar distribution	16	9 a
Beginnings of messages	68	32e
Biliteral substitution	85	41
Bipartite alphabet	73	35b, c
Blanks, number of	29	14 e
Book systems	124	49 e
Censorship, methods for evading	121	47c
Characteristic frequency of the letters of a language	17,28,51	9d,14b,25
Characteristic frequency of the letters of a language, suppression of	s 77,37	37, A1f
Checkerboard systems	89,101	44,47
Checkerboards, 4-square	39	44
Cipher, Baconian	74	35 e
" component	70	34
" , distinguished from code " text, length of as	79	38 c
compared with plain text	85	40 c
" unit	35	41 c
Glassification of ciphers	24,25,120,126	12a,13,47, 0 , f
Code systems 10	10,88,120,122	4a,4lg, 47b,4*
" " , distinguished from cipher	r 79,51	3Rc, 24 c , footnote
Completing the plain component	41,71	20a,34a
Concealed messages	120	47c
Condensed table of repetitions	57	27 i
Consonents distinguished from vowels	57,66	23,32c
" , relative frequency of	20,25,38	10a,13,19
" , in succession	66	32 c
Conversion of cipher text	46,47,72	2la,c,34c
Coordinates on work sheet	52	26d
Coordination of services	7	$2 e$

Grests and troughs	$\begin{array}{r} 20,28,37,92 \\ 29 \end{array}$	$\begin{gathered} 10 \mathrm{a}, 14 \mathrm{~b}, 41 \mathrm{f}, 44 \mathrm{c} \\ 14 \mathrm{c} \end{gathered}$
Deciphering alphabets	64	31 c
Dictionary words used as code words	120	47b
Digraphic substitution	R6,83	41c,42,43
Digraphs, characteristic frequency " , weighted according	51	25
to relative frequency	60 16	${ }_{97}^{29}$
Distribution, bar type	16,23 32	$92,11 b$ $17 b, c$
" , normal	32	$17 \mathrm{~b}, \mathrm{c}$
" , with no crests and troughs	s 29	140
Dummy letters	121	47c
Elementary sounds, characteristic frequency	nency 28	14b
Enciphering alphabet	64	31 c
Endings of messages	69	32e
Equivalent values	91	39b
Figure ciphers	27,122	1.3h,49
Fitting distribution to normal	32,38,80	17b, c,19,38e
Foreign language cryptograms	11,15	5b,7c
Formulas	69	33त
Frequency distribution 16,31,38	1,38,53,92,93	9,17,19,26e,4ic
" " , ; fitted to normal	1.32	17b, c
" . , for code	120	47 b
" , four part	30	38d
" , monoliteral	16,31.	9,17
" , trigraphic	54	27
method of solution	34,51,60	18,24土,29
General snlutions in cryptanalysis	119	46 i
". Sustem, determination of 10,	10,12,25,125	4a,6,13,50
Generatrix	14	?.0a
Goodness of fit	32	17b
Grilles	121	47 c
Hidden messages	121	47c
High frequency consonants	26	137
Historical examples of polyliteral systems	ems 75	36
Idiomorphism	70	33e
Indicators	123	49b
Intelligence facilities	6	2 e
Intelligible text obtained by chance	47	21b
Intuitive methor	68	33
Invisible writing	1	17
Japanese Morse alphrbet	11,122	5b,43b
Kata Kana Morse alphabet	122	48 b
Key phrase	77	36c
Known sequences	49	23a
Language employed in a cryptogram	10	4a,5
" frequency characteristics	17, 1	9d,25
" . peculiarities	11	5 b

Page

Reversed standard alphabets
Reversible digraphs indicated on worksheet
Russian Morse alphabet
Secusity of monoalphobot using standerd alphabets
Sequences, known " , mixed " , unknown
Solutions of a subjective naturo
Specific key
Standerd alphabets
Subjective solutions
Substitution, biliteral
" , digraphic transposition
polygrophic
polyiliteral
trigrrphic
, triliterial
Suffixes in trigraphic distribution
Suppression of froquency
Symbols as cipher eloments
Telegrams, average length of
Terminology
Text, different types
Transposition distinguished from substitution
Trigraphic cipher systen
frequency tible
Triliteral frequency distribution " substitution
Typo numbers for cryptographic systems
Unknown sequences
Varients
Vowels, average distance apart , combinations with consonants " $"$ vowels
" , distinguished from consonants
" , in succession
" , relative froquency oi
Word formulas
" lengths in a cryptogram
" patterns
" skeletons
Work sheet, preparation of

Page
30, 14
53
11,122
49
49
48
49
8
10,14,10,64 30,44,80

8
85
86,88
24,25
85
35

- 85

85
55
77,84,87
27,121,122
23
1
21
24,25
85
54
54
85
126
49
78,84,123,124
66
57,58
59
57,66
66
20,25,38
69
52,68,69,70
69
61,68
51.

Paragraph
16,20b
$26 f$
5b,48b
23
$23 a$
21d
23a

3

4,7,19a,31b
15a,16,20b,38c
3
41
41c,42a
12,13
Alc
41c
4ic
41
27 e
37,40b,41f
13h, 17d,48
11b
1.

10b, c
12,13
41c
27
27
41
$50 £$
$23 a$
37d,10b,49c, d,49f
32c, footnote
28,29
29a
28,32c
32c
10a,13,19
33d
26c,32e,33d,33f,g
33d
30b, 22 c
26

 90 .

 -

出

NUMBER OF LETTERS PER MESSAGE.
$\underset{\text { mo } 33 \mathrm{~s}}{\mathrm{millimeters}}$

Analytical Key for Cryptaralysis (See Par. 50.) (Nambers in paron thesis refor to Paragraph Nos. in this text)

[^0]: ${ }^{1}$ Hitt, Capt. Parker. Manual for the Solution of military Ciphers. Arny Sorvice Schools Pross, Fort Loavonworth, Kansas, 1916. 2d Edition, 1918 (Both out of print)

[^1]: 2 Lange et Soudart. Traité de Cryptographie. Librairie Felix Alcan, Paris, 1925.

[^2]: ${ }^{1}$ Langc et Soudart, alrcady cited (pagc 106).

[^3]: 2 These comprised messages from several departuents in addition to the War Department, and were all of an administrative character.

[^4]: I Section VII of Special Text No. 165, Elementary Lilitary Cryptography.

[^5]: 1 Loc. cit., pp. 6-7.

[^6]: ${ }^{1}$ See Par. 41, Snecial Text No. 165, Tlementary ailitary Gryptography.

[^7]: h. It should be claar, therefore, that the selection of G_{c} to represent \bar{A}_{p} in the cryptographing process has absolutely no effect upon the relative spatial and frequency relations of the crests and troughs of the monoliteral-frequency distribution for the cryptogram. If Q_{c} had been selected to represent Ap, these relations would still remain the same, the whole series of crests and troughs being merely displaced further to the right of the positions they occupy when $G_{c}=A_{p}$.

[^8]: 1 Far. 13 f, g, above.
 ${ }^{2}$ Pars. 20-22, above.

[^9]: 1 This possible step is mentioned here for the purpose of making it clear that the plain-component sequence completion method cannot solve a case in which transposition has followed or preceded monoalphabetic substitution with standard alphabets. Cases of this kind will be discussed in a later text. It is sufficient to indicate at this point that the frequency distribution for such a combined substitution-transposition cipher bould present the characteristics of a standard alphabet cipher - and yet the method of completing the plain-component sequence would fail to bring out any plain text.

[^10]: ${ }^{1}$ General Givierge in his Cours de Cryptographie (p. 121) says "However, expert cryptanalysts often enploy such details as are cited above [in connection with assuling the presence of 'probable words'], and the experience of the years 1914 to 1913, to cite only those, prove that in practice one of ten has at his disposal elements of this nature, permitting assumptions much more audacious than those thich served for the analysis of the last exariple. The reader would therefore be wrong in imagining that such fortuitous elements are encountered only in cryptographic works where the author deciphers a document that he hirnself enciphered. Cryptographic correspondence, if it is extensive, and if sufficiently numerous vorking data are at hand, often furnishes elements so complete that an author would not dare use all of them in solving a p oblem for fear of being accused of obvious exagjeration."

[^11]: 1 For a true picture of this cipher, the explanation of which is often distorted beyond recognition even by cryptographers, see Bacon's own description of it as contained in his De Augmentis Scientiarum (The tavancement of Learning), as translated by any first-class editor, such as filbert vatts (1640) or silis, Spedding, and Heath (1857, 1870). The student is cautioned, hovever, not to accept as true any alleged "decipherments" obtained by the application of Dacon's cipher to literary works of the l6th century. These readings are purely subjective.
 2 In the l6th Century, the letters I and J were used interchangeably, as wore also U and V.

[^12]: $1_{\text {A patent has been granted upon a rathor ingenious machine for autrmati- }}^{\text {a }}$ cally accomplishing true polygraphic substitution, but it has not been placed upon the market. Soe U. S. Patent Ne. 1,845,947 issued in 1932 to Weisner and Hill. In U. S. Patent No. 2,515,680 issued te Henkels in 1924, there is described a mechanism which also produces polygraphic substitutien.

[^13]: 1 This cipher was roally inventod by Sir Charlos Wheatstnne but receives its name from Lord Playfair, who apparontly was its sponsor before the British Foreign Office. Şe Wemyss Reid, "momoirs of Lyon Playfair", Lond $\mathfrak{\circ}$, 1899.

 2 Maubnrgne, Lieut. J. O. An advanced problom in cryptography and its solution, Leavenworth, 1914.
 Hitt, Captain Parker. Manual for the solution of military ciphors, La⿱venworth, 1918.
 Smith, Lieut. Commanzier W. 'V., U. S. . N. ' In "Cryptagraphy" by"Anire Langie, translated by ،. C. H. Macbeth, Now. York, 1922.

[^14]: (1) The steps in the solution of a typical example of this cipher may be useful. Let the message be as follows:

[^15]: I See Par. 71, Special Text No. 165, Elementary Military Cryptography.

