EXTENSION COURSE of the ARMY SECURITY AGENCY

SUBCOURSE 20-6
 MILITARY CRYPTANALYSIS, PART 1 MONOALPHABETIC SUBSTITUTION SYSTEMS

$$
\begin{aligned}
& \text { RESTRICIED Dissely virtue of his grade or position to } \\
& \text { son is entitled solely by matter is } \\
& \text { Suscer of classified mater official duties re- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { seS is entitled solely by virtue cossession of classified matter. } \\
& \text { soficial duties re- } \\
& \text { knowledge or pose } 23 \mathrm{~b} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { on is entitled sole possession of classified whose official duties } \\
& \text { knowledge or } \\
& \text { entrusted only to those individuals whe (Sesse also paragraph } 23 \\
& \text { knowledge or possesion. (See }
\end{aligned}
$$

$$
\begin{aligned}
& \text { entrusted only } \\
& \text { quire such knowledge or posse } \\
& \text { AR } 380-5,6 \text { March 1946.) }
\end{aligned}
$$

EXTENSION COURSE OF THE ARMY SEGURITY AGENCY

SUBCOURSE 20-6, MILITARY CRYPTANALYSIS, PART I MONOALPHABETIC SUBSTITUTION SYSTEMS

Security Considerations.

This course and the accompanying text have been ctassified REASiRICTEP to facilitate their dissemination to extension students of the Army Security Reserve. Nevertheless, this material is to be safeguarded in the same manner as GONFIDENTTHAL matter, and every precaution will be taken to prevent disclosure to unauthorized personnel.

Introduction.

This is the first of a series of subcourses on the science of military cryptanalytics. The purpose of this subcourse is to teach the student the methods of analysis of systems which form a basis for the more simple military cipher systems. An understanding of these principles is necessary to grasp the advanced cryptanalytic techniques employed in the attack on the complex systems which comprise present-day military cryptography.

The scope of this subcourse is: fundamental principles; uniliteral substitution; polyliteral substitution; polygraphic substitution; and miscellaneous monoalphabetic substitution systems. It consists of nine lessons and an examination as follows:

Lesson 1, Fundamental principles; frequency distributions.
Lesson 2, Uniliteral substitution with standard cipher alphabets.
Lesson 3, Uniliteral substitution with mixed cipher alphabets.
Lesson 4, Polyliteral substitution with mono-equivalent cipher alphabets.
Lesson 5, Polyliteral substitution with poly-equivalent cipher alphabets.
Lesson 6, Polygraphic substitution: 4 -square and 2 -square matrices.
Lesson 7, Polygraphic substitution: Playfair systems.
Lesson 8, Polygraphic substitution: quadricular tables.
Lesson 9, Miscellaneous monoalphabetic substitution systems.
Examination.
30 credits are allowed for the subcourse. You will not be limited as to the number of hours you may spend in the solution of the subcourse, any lesson, or the examination. For statistical purposes you are required to enter the number of hours spent on solution in the answer sheet.

Texts and materials furnished:
Military Cryptanalysis, Part I (1942).
*Appendix 2 (November 1946).
*TM 11-484, Elementary Military Cryptography, March 1945.
*TM 11-485, Advanced Military Cryptography, 8 June 1944.
*Strip device (ASA Training Aid No. 1).
*Printed and blank alphabet strips (Training Aid No. 2).
Cross-section paper.
*This material may be retained upon completion of the subcourse. No other materials are required.
This course was prepared under the direction of the Chief, Army Security Agency.

Special Instructions.

So far as practicable, detailed work sheets which usually form a part of the solution should be submitted with the solutions. In all the lessons of this subcourse, it is required that the student recover all the cipher and plain text alphabets used. He will also be required to state the method of operation of each system and give the keys upon which each component is based. The specific keys and any cipher table employed must be recovered.

EXTENSION COURSE OF THE ARMY SECURITY AGENCY LESSON ASSIGNMENT SHEET

SUBCOURSE 20-6
LESSON 1

CREDIT
TEXT ASSIGNMENT
MATERIALS REQUIRED
SUGGESTIONS

EXERCISES

Weight

Military Cryptanalysis, Part I
Fundamental principles; frequency distributions
3
Text, Sections I to IV, inclusive; attached memoranda
Cross-section paper of $1 / 4$ inch squares None

1. What four fundamental operations are involved in the solution of practically every cryptogram?
2. In the solution of cryptograms involving a form of substitution to what simple terms is it necessary to reduce them in order to reach a solution?
3. Is it always necessary to determine the specific key in order to reconstruct the plain text?
4. Using cross-section paper prepare a uniliteral frequency bar distribution of the letters of the following paragraph:
"The shortest and surest way to live with honor in the world is to be in reality what we would appear to be; all human virtues increase and strengthen themselves by the practice and experience of them."
5. a. What percent (in round numbers) of the letters in English telegraphic text are E's?
b. What are the four most frequent consonants in English telegraphic text?
c. What are the four most frequent digraphs in English telegraphic text?
d. Account for the discrepancies between frequencies of letters in English literary text and English telegraphic text.
4 6. What four facts can be determined from a study of the uniliteral frequency distribution of a cryptogram?
6. Determine the class to which the cipher systems, which were used in enciphering the following messages, belong:
a. ORANATHPNO SKTCD MEEES CERAE RNUSA ETLGD AYECA

b. DHJJK QOAHRXKSOFHPQGAPPHLA DIADEHJROA MAHQA

c. ROLEHKBWFZCQCPZNVJWZMIVEQ EPCINOJSJUYMWQB

7. Which of the following substitution ciphers are monoalphabetic?

b. HUPYP XXAEPAFGZP VGLHA SLXHU SXXAY PWKAS LHPRHALOBAXPLVS WUPJP OBSHU HUPGF XGKPH PVSWU PJOPZ SVPYS MPOAX ULSLP CGNJX

c. GXYVL ZXMXS LOZGR WEJLXPWTKZ GMXLT QIVZWQBRXKKTDVLMXAEX VHMXALOTLYTKDWX GBQKQLWZXG RTYYZKTOXGAWXLQLOZGRXVWGQ ミی
8. The following messages were enciphered monoalphabetically. Determine in each case whether the cipher alphabet used was a standard or mixed alphabet and if standard, whether direct or reversed.
a. ANVORLOUNQ RLEZWZHNEZWZBOR ZKYLFAOZSO ONORFPJZPP LDZDN LRZLBLABWZHNAPO WHOORZIZU

b. ESPAPLVDLY OECZFRSDTYESTDO TDECTMFETZYBFTN VWJTOPYETQ JTELDOTCPNEDELYOLCONTASPC

c. PYHYLXOLWY JJVYX OILYRYQYPJ KNYLK YHYLC PAYAC LYXIR QYJVO ZKOXCPCREKUKUPJIUJUOPRIAS

-RESTRFETED

10. From the intercepted traffic of three intercept stations operating in the same sector of the front, the following messages were selected for study by a member of the cryptanalytic section at GHQ. They are undoubtedly three versions of one enemy message, but there appears to be a number of differences, due no doubt to operating difficulties at the several stations. Study the messages and reconstruct from them the actual message sent by the enemy station.
I. Time intercepted 1612 by HS

WFF V LDC

```
GR 35 B T
    NR17 DYBIE DUFTO AME JA KI BON
SGCOY FOBAK DODLA LUFYD KAWAL
APAYN CODAP KEDUR JOPID JENOX
MEHAZ LOGIS KUTEG EVAUK IPBEM
KEHZA HOBWEAVDUZ FOFA_ EMCOZ
EGBLODOFYOENC__ MAWEN_____
II. Time intercepted 1610 by MR

III. Time intercepted 1612 by YG

WFF V LDK
GR - BT
NR17 DYBIE DUFTOAMEJAKSBON
IPCOY___A_DO___LUFLKAWAL
APETYN CODAPKEDUR WOPID JENOX
MEHAZ LOGHKUTEGEVAUKIPBEM
KEHZAHOBWEAVDUZ FOFETEMCOZ
EGBLO DOFYO ENCOA MAWEN MAWEN
EXFOMEMCOZACFAHLOFIRO935

\section*{REF ID:A56886}

\section*{MEMORANDUM ON THE \(\phi\) (PHI) TEST}
1. The student has seen how it is possible by ocular examination to determine whether or not a substitution cipher is monoalphabetic. This tentative determination is based on the presence of a marked crest and trough appearance in the uniliteral frequency distribution, and also on the number of blanks in the distribution. Hence, the absence of marked crests and troughs in the uniliteral frequency distribution indicates that two or more cipher alphabets are involved: the flattened-out appearance of the distribution constitutes one of the tests for a polyalphabetic substitution cipher. However, when the distribution contains a small number of elements, ocular examination and evaluation becomes increasingly difficult and hazy. Now, the student may ask, does a mathematical test exist that could determine the monoalphabeticity or non-monoalphabeticity of a distribution?
2. Without going into the theory of probabilities at this time, or into the derivation of the formulas involved, let it suffice for the present to state that there is such a test, known as the " \(\phi\) (phi) test." With this test, the "observed value of \(\phi\) " is compared with the "expected value of \(\phi\) random" and the "expected value of \(\phi\) plain." The formulas are \(\mathrm{E}\left(\phi_{\mathrm{r}}\right)=\) \(.0385 \mathrm{~N}(\mathrm{~N}-1)\) and \(\mathrm{E}\left(\phi_{p}\right)=.0667 \mathrm{~N}(\mathrm{~N}-1)\), where N is the total number of elements in the distribution. The use of these formulas is best illustrated by an example.
3. The following short cryptogram with its accompanying uniliteral frequency distribution is at hand:
\[
\begin{aligned}
& \text { QCYCHADSKS YZZQE CYKYK QZYSK } \\
& \text { LSZACTKFCXIKLKCESZMX,KISZX }
\end{aligned}
\]

The observed value of \(\phi\) is calculated by applying the formula \(f(f-1)\) to the frequency ( \(f\) ) of each letter and totaling the result. Thus,


The expected value of \(\phi\) random is
\[
\mathrm{E}\left(\phi_{\mathrm{z}}\right)=.0385 \mathrm{~N}(\mathrm{~N}-1)=.0385 \times 50 \times 49=94.3
\]

The expected value of \(\phi\) plain is
\[
\mathrm{E}\left(\phi_{p}\right)=.0667 \mathrm{~N}(\mathrm{~N}-1)=.0667 \times 50 \times 49=163.4
\]

Now since the observed value of \(\phi, 188\), is equal to and in fact greater than \(E\left(\phi_{p}\right)\), then we have a mathematical corroboration of the hypothesis that the cryptogram is monoalphabetic. If the observed value of \(\phi\) were nearer to \(\mathrm{E}\left(\phi_{\mathrm{r}}\right)\), then the assumption would be that the

\section*{RESTRTEAED－}
cryptogram is non－monoalphabetic．If the observed value were just half－way between \(\mathrm{E}\left(\phi_{\mathrm{r}}\right)\) and \(\mathrm{E}\left(\phi_{\mathrm{p}}\right)\) ，then decision would have to be suspended as there is no further statistical proof in the matter．

4．Two further examples may be illustrated：
\[
\begin{aligned}
& 0 \quad 0261220 \quad 1220 \quad 0 \quad 6 f(f-1)=42
\end{aligned}
\]

Since both distributions have 25 elements，then for both
\[
\begin{aligned}
& \mathrm{E}\left(\phi_{\mathrm{r}}\right)=.0385 \times 25 \times 24=21 \\
& \mathrm{E}\left(\phi_{\mathrm{p}}\right)=.0667 \times 25 \times 24=40
\end{aligned}
\]

Hence distribution \(a\) is monoalphabetic，while \(b\) is not．

5．The student must not assume that statistical tests in cryptanalysis are infallible or absolute in themselves：statistical approaches serve only as a means to the end，in guiding the analyst to the most probable fruitful sources of attack．To illustrate this point，if the \(\phi\) test is taken on the plaintext letters of the phrase

A QUICK BROWN FOX JUMPS OVER THE LAZY DOG
N
\[
\begin{aligned}
& =\text { ミ———ミ—————————ミ——ミ——ミ————— }=33 \\
& \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\
& f(f-1)=200020000000001200200200000=20 \\
& \mathrm{E}\left(\phi_{\mathrm{r}}\right)=40.7 \quad \mathrm{E}\left(\phi_{\mathrm{p}}\right)=70
\end{aligned}
\]
it will be noticed that the observed value of \(\phi\) is exactly half of \(\mathrm{E}\left(\phi_{r}\right)\) ，therefore＂conclu－ sively＂proving that the above phrase could not possibly be plaintext in any language！The student should be able to understand the cause of this cryptographic＇phenomenon．＇

\section*{MEMORANDUM ON TRAFFIC INTERCEPTS}
1. Before a military cryptanalyst can begin the analysis of an enemy cryptographic system, it is necessary for him to study the intercept material that is available to him, isolate the messages that have been enciphered by means of the cryptographic system to be studied, and to arrange the latter in a systematic order for analysis. This work, although apparently very simple, may require a great deal of time and effort.
2. Since, whenever practicable, two or more intercept stations are provided to copy traffic emanating from the stations of one enemy radio net, it is natural that there should be a certain amount of duplication in the work of the several stations. This is desirable since it provides the cryptanalysts with two or more sets of the same messages so that when one intercept station fails to receive all the messages completely and correctly, because of set difficulties, local static, or poor operation, it is possible by studying the other sets to reconstruct accurately the entire traffic of the enemy net.
3. In all intercept activities where operators are used for copying the traffic, one of the most likely errors to be found is caused by the human error in reception. For this reason cryptanalysts and their assistants should be familiar with the Morse telegraph alphabets and the most common errors of wire and radio transmission methods so as to be able to correct garbled groups when they occur. In this work reference is made to the table given on page 82 of TM 11-484 (Elementary Military Cryptography).

\section*{EXTENSION COURSE OF THE ARMY SECURITY AGENCY LESSON ASSIGNMENT SHEET}

SUBCOURSE 20-6
LESSON 2
CREDIT
TEXT ASSIGNMENT
MATERIALS REQUIRED
SUGGESTIONS

Military Cryptanalysis, Part I
Uniliteral substitution with standard cipher alphabets 3
Text, Section V; attached memorandum
None
None

EXERCISES
Weight
40
1. \(a\). Solve the following cryptogram:


\section*{RESTRHGTED}
b. What is the specific key?
c. Name two methods of solving ciphers of this type.
2. Solve the following cryptograms:
a. QHHYL YDWQJ JMEFC
b. Y X SED YFSXU HWXUS
c. What are the specific keys?
3. \(a\). In the solution of a substitution cipher by completing the plain component sequence involving reversed standard alphabets, what are the successive steps?
b. What is the first step one should take in attempting to solve an unknown cryptogram that is obviously a substitution cipher?
c. If this step is unsuccessful and the cryptogram is obviously monoalphabetic in character, what type of cipher alphabet may be assumed to have been used?
d. Why do monoalphabetic cryptograms involving standard cipher alphabets yield such a low degree of cryptographic security?

\author{
FEETRHCTED
}

\section*{MEMORANDUM ON GRYPTANALYTIG PROCEDURE}

The following suggestions will promote systematization of procedure and logic in analysis. Experience has shown that time and labor can be saved by careful attention to these instructions.
1. Most of the problems in this course are already laid out in worksheet form, to spare the student the clerical labor of copying out the text. However in those cases where worksheets must be prepared, the cipher text should be copied in ink on cross-section paper, one letter per cell. There should be a single space between letters or digraphs in monoalphabetic systems, and a single space between period lengths in polyalphabetic systems. In aperiodic systems groupings may be in five letters, unless the system lends a better alternative. At least three spaces between successive lines of cipher text is recommended in order to leave room for multiple assumptions. Line and column indicators are to be made for each cryptogram, to facilitate reference in the step-by-step commentary. Margins should be left on all sides for notes, etc. All worksheets and notes should be submitted together upon the completion of a lesson.
2. Enciphering alphabets, enciphering diagrams, etc., as well as all keywords and specific keys should be included in a solution. Keyword derivation from transposed sequences will also be shown. Whereas there should be a letter-for-letter decryptment under the cipher text, the final plaintext version in word-lengths should correct any errors or garbles in the text. Nulls or indicators showing sentence separation, change of key, etc., may be enclosed in parentheses.
3. If completing the plain component sequence yields no solution, then uniliteral frequency distributions (or digraphic distributions, if a digraphic system) should be made. Triliteral frequency distributions will enable the separation of vowels and consonants and furnish much additional valuable data. In a difficult case triliterals may give the only clues to solution: this is especially true in foreign language cryptograms. If the problem entails the selection of proper generatrices in polyalphabetic ciphers, the use of alphabet strips will save much time. In polypartite systems, reduce the cryptogram to monoliteral terms wherever possible.
4. Repetitions should be underscored in a manner facilitating their location and interpretation: colored pencils will be found useful. It is recommended that the frequencies of letters comprising the repetitions be inscribed over their respective letters. Likewise, the frequencies of the first 10 and last 10 letters should also be inscribed, as in many cases these positions lend themselves readily to attack. If the problem proves difficult, then it is best to inscribe the frequencies over all the cipher letters of the text, in order better to visualize frequency-patterns of words.
5. Step-by-step analyses should accompany all problems: they should be brief and concise, yet at the same time specific. The steps should be jotted down as they are made, and at the end they should be combined into a complete resume of the analysis. It is not necessary to be verbose, but all the steps which were taken to achieve solution should be specified, so that at any future date the solution may be reconstructed following the exact manner in which it was first accomplished. Assumptions of words, etc., should be referred

\section*{REF ID:A56886}

\section*{-RESTRHGTED}
to with line and column indicators and couched in the proper cryptologic language or symbols. All keywords and specific keys, as well as the mechanics of the general system, should be stated at the end of the commentary.
6. Violations of cryptographic security observed in the problem studied may be included at the close of the commentary. These violations may be stereotypic phraseology (especially in beginnings or endings of messages), related keywords, keywords of military nature, unnecessary punctuation, general wordiness, or any other practices dangerous to cryptographic security which may be seized upon by the cryptanalyst as entering wedges in solution.

\section*{EXTENSION COURSE OF THE ARMY SECURITY AGENGY LESSON ASSIGNMENT SHEET}

\section*{SUBCOURSE 20-6}

LESSON 3
CREDIT
TEXT ASSIGNMENT
MATERIALS REQUIRED
SUGGESTIONS
EXERCISES

Military Cryptanalysis, Part I
Uniliteral substitution with mixed cipher alphabets 3
Text, Section VI; attached memorandum
Cross-section paper of \(1 / 2 \mathrm{inch}\) squares None

\section*{Weight}
1. a. Construct a triliteral frequency distribution showing one prefix and one suffix of the cryptogram below. On the worksheet below indicate by underscoring in black all repetitions of three or more letters. Other significant details may be marked in different colors.
b. Prepare a condensed table of repetitions of digraphs and trigraphs appearing more than twice, and include all repetitions of longer polygraphs.
2. a. Using the data obtained in \(a\) and \(b\) above, complete the solution of the cryptogram.

b. Determine the cipher alphabet and the keyword used. What is the specific key \(\left(A_{p}=\theta_{e}\right)\) ?
3. Using the same components as determined in \(2 b\), solve the following cryptograms and indicate the specific keys:
\(a\).
FPFEN IYRUEPWSFX FWVXK DFGYP
ALCAS KNVAL WEYXP LPCJNYUXHR
K P F W X
\[
\begin{aligned}
& \phi=144 \quad \mathrm{E}\left(\phi_{\mathrm{p}}\right)=198 \quad \mathrm{E}\left(\phi_{\mathrm{r}}\right)=114
\end{aligned}
\]
b.

EPSSPAOEOADKTPU UXMNJ
 \(\phi=16 \quad \mathrm{E}\left(\phi_{\mathrm{p}}\right)=25 \quad \mathrm{E}\left(\phi_{\mathrm{r}}\right)=15\)
4. a. What two places in every message lend themselves more readily to successful attack by the assumption of words than do any other places? Why?
b. What is meant by the "probable word method" of solution?
5. a. What is meant by the word pattern "A B C B A D B"?
b. For each pattern given below, indicate one good English word that contains the pattern:
(1) \(A B C B A D B\)
(2) \(A A B A\)
(3) \(A B C D A\)
6. The following cryptograms, enciphered with random cipher alphabets, are in bona fide word-lengths. Solve them.
\(a\).
HY ARVJZGHAROTVK CGKMMGKHZMLKUG
LKUG OROE HOZ EMVHFSRMJROT
JEHZPUHGVEGM ROMCJKKSJKUME
b.

RGRQRUTDSPYURDP ZFTAVDRCAYCFO JO DRZYUUFSPPFUZRTFADYGP
7. In solving several unrelated monoalphabetic cryptograms the following cipher alphabets were reconstructed. Recover all keywords in each case. To expedite solution, significant segments have been underlined.
a.

P: ABCDEFGHIJKLMNOPQRSTUVWXYZ
C: NLIPFRTHSYDQAKYEBMXGCOZIJU b.

P: ABCDEFGHIJKLMNOPQRSTUVWXYZ
C: ZQXPEONMWLKJHGFDBVYUTRICSA
c.

P:ABCDEFGHIJKLMNOPQRSTUVWXYZ
C: PQERVMOZWUTHAXBCDFSYGIJKLN
d.

P: ABCDEFGHIJKLMNOPQRSTUVWXYZ
C:AUZJTXHSWGRMBNOCI QFEKYPDVL
e.

P: ABCDEFGHIJKLMNOPQRSTUVWXYZ
C: CKVEBOYFDPZGQHSITLTNJURAMX

\section*{MEMORANDUM ON ALPHABET RECONSTRUCTION AND KEYWORD DERIVATION}
1. Concurrent with the solution of a cryptogram, there should be a simultaneous effort in the reconstruction of the general system and recovery of the specific keys. Much labor can thus be saved as recovery of the keys early in the stages of solution transforms the process of decrypting into one of decryptographing.
2. A cipher alphabet consists of two sequences, e.g.,
a. the plain component is a standard alphabet, cipher component mixed;
b. the cipher component is a standard alphabet, plain component mixed;
c. both components are the same mixed sequence;
d. both components are the same mixed sequence, running in reverse; or
\(e\). the components are differently mixed sequences.
3. Let us examine several types of mixed sequences, using the keyword HYDRAULIC as an example:
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

The ordinary keyword-mixed sequence derived from the above will be:
a. HYDRAULICBEFGJKMNOPQSTVWXZ

The two principal transposition-mixed types will read:
b. HBPYEQDFSRGTAJVUKWLMXINZCO and
c. AJVCODFSHBPINZLMXRGTUKWYEQ

Other types may arise from route transpositions as follows:
d. HBPQEYDFSTGRAJVWKULMXZNICO
e. HYBPEDRFQSGAUJTVKLIMWXNCOZ
f. PBQHESYFTDGVRJWAKXUMZLNIOC
g. HYDRAULICONMKJGFEBPQSTVWXZ
h. OCILUARDYHBPQSTVWXZNMKJGFE
i. HYEBPQSTGFDRAUKJVWXZNMLICO
j. CPIOQBLNSEHUMZTFYAKXVGDRJW etc.

Any transposition system may be employed to produce a systematically-mixed sequence: practicability of method is the only determining factor. It must be remembered that the greatest amount of systematic mixing will produce a sequence inherently no more secure than a random alphabet.

\section*{RESTRIGTED-}
4. The student would do well to construct both enciphering and deciphering versions of cipher alphabets recovered. For example, in the following case

Plain: JQNMFHLEBRSKGYZOTICDUVAWPX Cipher: ABCDEFGHIJKLMNOPQRSTUVWXYZ no semblance of a key is apparent; but in the inverse form

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher: WISTHEMFRALGDCPYBJKQUVXZNO
the key-phrase "NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR PARTY" is quite clear. In other types of mixed sequences, first the one form is attacked, and then if negative results are obtained the inverse form is treated.
5. Let us consider the following cipher alphabet:

> P: A B C D E FGGHIJJKLMNOPQRSTUVWXYZ
> C: D W ZMSOCRYATXBEFUGQHIVJKLN

The section V W X seems to be superimposed parts of the non-keyword portions of mixed J K L
sequences. Adding \(\mathrm{Y} Z\) to the plain component, we get V W X Y Z which is certainly conJKLNP
sistent as far as alphabetical progression goes, and indicates that the letters \(M\) and 0 are present in the keyword of the cipher component. Continuing in this vein, the section M N O Q S TV W X Y Z is rapidly established by correlating both sequences. It is obvious BEFGHIJKLNP that the plain component keyword begins right after the \(Z\), and that the cipher component keyword probably just precedes the B. Going to the right, Z R H suggests keywords like PQR
RHOMBOID, RHEUMATISM, etc. These trials are quickly repudiated; therefore we go on to Z R E which is acceptable. ZREK is found wanting, but Z R E P is very satPQS

PQST
PQS U
isfactory, and this is soon expanded to Z R E P U B LI I C, and in a moment or two we
PQSUVWXYZ
recover the complete cipher alphabet:
```

P: REPUBLICANDFGHJKMNOQSTVWXYZ
C:QSUVWXYZDEMOCRATBEFGHIJKLNP

```
6. In the example below the student will observe that the alphabets are reciprocal: this is an indication of identical sequences at a shift of 13 , or that a mixed sequence running against itself in reverse has been employed. In this case the W X Y Z points to the latter hypothesis.

ZYX

\section*{P: ABCDEFGHIJKLMNOPQRSTUVWXYZ C: HOJFTDNAKCIMLGBSUVPEQRZYXW}

Starting with the V W X Y Z R cluster, we see that the keyword begins with the letter R; RZYXWV
therefore the next letter should be a vowel. Z R A is not acceptable, but Z RE is fine, showWV H

W V T
ing that the letter U appears in the keyword. Continuing the same line of reasoning as in the preceding example, and with a little further experimentation, the final alphabet is discovered to be

7. In the next example, all efforts to derive keywords on the basis of keyword-mixed sequences are fruitless: the conclusion is therefore drawn that this is a case of a transposition.

P: ABCDEFGHIJKLMNOPQRSTUVWXYZ
C: ACSEJYIGWLFVMHXNKZPBQRDUTO
Considering the mechanics of the cryptography involved, and assuming for the time being that Z is at the bottom of the matrix and not in the keyword, we start with the letters to the left, or if this fails, to the right of Z in the cipher component, obtaining the column N
which is not incompatible if N is in the keyword on the top row. If we place \(Y\) to the left of \(Z\) and build up its column, we get \(E N\) which is certainly excellent. This is expanded

> J K

Y Z
into I ME N which quickly becomes 71843526 . This last example was very
GHJK PARLIMENT
WXYZ BCDFGHJKO
QS UVWXYZ
casy because none of the letters V W X Y Z appeared in the keyword; but other cases should hardly prove more difficult.
8. Two additional methods that have been encountered for deriving mixed sequences may be mentioned. One is a slight modification of the preceding paragraph, when the keyword contains repeated letters, viz:
\begin{tabular}{|c|c|}
\hline COM.IT.E. & \\
\hline ABDFGHJKL & which produces the mixed sequence \\
\hline NPQRSUVWX & \\
\hline Y Z & \\
\hline
\end{tabular}

CANYEKWFRIGSJVLXMDQOBPZTHU
The other method is the interrupted-key columnar transposition system, viz:
```

213546
JANURY
B C)
D)
E F G) which produces the mixed sequence
H I KLM)
OPQS)
TVWXZ-)

```
ACFIPVJBDEHOTNGKQTRMZULSXY

\section*{RESTRHGTEP}

The first example will succumb to the treatment outlined in paragraph 7, whereas the second method is vulnerable owing to the presence of the fragments E H OT, FIPV and G K Q W in the sequence which may be anagrammed. Note the fragment B DEHOT, composed of an ascending sequence of letters: this is an outward indication of the interruptedkey columnar method.
9. There are still other methods used for the production of mixed sequences, but space does not permit giving further examples. However the student should by this time be able to devise methods of attack for any special cases that may present themselves, based upon the weaknesses or peculiarities inherent in the system of cryptography involved.

\section*{EXTENSION COURSE OF THE ARMY SECURITY AGENCY LESSON ASSIGNMENT SHEET}

SUBCOURSE 20-6
LESSON 4
CREDIT
TEXT ASSIGNMENT
MATERIALS REQUIRED
SUGGESTIONS
EXERCISES
Weight
20

Military Cryptanalysis, Part I
Polyliteral substitution with mono-equivalent cipher alphabets
3
Text, Section VII; attached memorandum
Cross-section paper of \(1 / 4\) inch squares None

\begin{tabular}{|c|c|c|}
\hline & A. E H R T & \\
\hline & D \(312-3\) & \\
\hline & L \(213-215\) & \\
\hline & \begin{tabular}{c|cccccc}
0 & 10 & 14 & 6 & 10 & 3 \\
\(R\) & 3 & 7 & & 5 & 3
\end{tabular} & \\
\hline &  & \\
\hline \multirow[t]{2}{*}{\(\phi=2288\)} & \(\mathrm{E}\left(\phi_{\mathrm{r}}\right)=1362\) & \(E\left(\phi_{p}\right)=2270\) \\
\hline & \multicolumn{2}{|l|}{(25-element alphabet)} \\
\hline
\end{tabular}

20 2. This message was sent by the Fifteenth Infantry. Solve it and recover all keys:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & 5 & & & & & 10 & & & & & 15 \\
\hline A & CY & AO & NX & CN & NO & CN & AO & AO & OG & ON & NG & BY & 0x & OX & RO \\
\hline B & CG & NY & RO & AN & RE & AG & RO & OX & AO & AN & AX & AX & AG & AN & AG \\
\hline C & CN & R0 & OX & 0x & BY & AN & AG & CN & BE & CX & BN & BX & CG & R0 & ON \\
\hline D & CO & RE & CN & AY & BG & CE & ON & No & AO & OG & RO & No & No & RO & RE \\
\hline E. & 00 & NG & BY & 0x & OX & RY & AG & AX & BY & AN & OG & CN & AO & OY & OG \\
\hline F & No & OX & CY & NX & OG & A0 & AN & CN & AG & RE & AG & BY & OG & NO & AO \\
\hline G & B0 & AO & CN & CG & AG & CN & ON & B0 & CN & AO & OY & C0 & OE & ON & N0 \\
\hline H & A0 & OG & RO & NO & NG & RO & NO & AG & CN & RE & A0 & OX & RX & AE & BY \\
\hline J & AN & B0 & & & & & & & & & & & & & \\
\hline
\end{tabular}

\[
\begin{array}{ccc}
\phi=716 & \mathrm{E}\left(\phi_{\mathrm{r}}\right)=410 \quad \mathrm{E}\left(\phi_{\mathrm{p}}\right)=960 \text { (approx.) } \\
(36 \text {-element alphabet) }
\end{array}
\]

20 3. Solve and recover all keys:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & 5 & & & & & 10 & & & & & 15 \\
\hline A & RG & GP & EE & GR & RG & GP & ES & GR & RG & PP & GE & PR & GE & RG & GS \\
\hline B & AS & CR & RR & GS & AE & PP & GP & GA & PP & RA & EA. & ES & GR & RG & PP \\
\hline C & GE & RA & PR & GS & RE & GP & AR & GP & GS & PP & GP & RG & RA & EA & PP \\
\hline D & PS & PG & AR & PE & GA & RR & RG & GP & RR & RE & PG & PP & RA & EA & RS \\
\hline E & PG & PE & RG & AR & PE & GA & RR & RG & GP & RR & RP & AE & GS & GA & AP \\
\hline F & GP & PP & RA & EP & ES & GP & RA & GP & RA & PE & PR & PR & AE & GR & GP \\
\hline G & RA & GA & GP & GP & RR & GP & RR & GR & AS & AS & GP & RR & GR & GS & PP \\
\hline H & GP & AE & GE & RS & PG & RG & GS & RE & PP & GR & GG & GS & PP & GR & PG \\
\hline J & GA & PG & RS & RE & PG & AS & PR & GS & GA & GE & RR & EA & ES & GR & RG \\
\hline K & RR & RP & GS & PP & PP & GS & AE & GR & PG & GA & EP & RG & GP & EE & GR \\
\hline L & RA & GR & PP & GR & PG & GA & AR & GS & RA & RP & GP & GP & GA & GS & PE \\
\hline M & ES & PG & RG & GR & ER & GP & RR & RP & GE & RG & GP & AG & GR & AS & GP \\
\hline N & GA & PP & GS & AE & AR & PA & EP & RG & GP. & PR & AE & GE & RG & GP & EE \\
\hline \multirow[t]{7}{*}{P} & GP & RA & PP & GP & RR & & & & & & & & & & \\
\hline & & & & & & A & E G & P & R S & & & & & & \\
\hline & & & & & & - & 71 & 1 & \(\begin{array}{lr}5 & 5 \\ 1 & 5\end{array}\) & & & & & & \\
\hline & & & & & F & 11 & \begin{tabular}{ll}
7 \\
51 \\
\hline 10
\end{tabular} & & \(\begin{array}{cc}16 & 14 \\ 6 & 1\end{array}\) & & & & & & \\
\hline & & & & & R & 11 & 416 & & 123 & & & & & & \\
\hline & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{\(\phi=2294\)}} & \multicolumn{9}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{E}\left(\phi_{\mathrm{r}}\right)=1164 \quad \mathrm{E}\left(\phi_{p_{0}}\right)=2260 \text { (approx.) } \\
& \text { (30-element alphabet) }
\end{aligned}
\]}} & & - \\
\hline & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

20 4. Solve and recover all keys:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline A & AAC & ACA & AAA & ACA & AAC & ACA & ACC & BAC & ACA & CCA \\
\hline B & CAA & ACB & AAC & BCC & ACA & ABA & ABA & BAA & BBB & ACA \\
\hline C & ACC & ACB & BCC & BAB & ACA & AAC & AAA & \(A A B\) & CBA & ACA \\
\hline D & AAA & CAA & ACB & AAC & ABB & BBC & AAC & ACA & BBB & AAB \\
\hline E & BCC & ACA & ACC & ABB & CBB & AAB & ABC & ABC & BAA & BBA \\
\hline F & CBA \({ }^{\prime}\) & BAA & ACC & BAC & ACA & ABB & CAA & ACC & ACA & CBB \\
\hline G & CAB & CAA & ABA & AAB & ABB & AAB & CAA & ACC & ABA & ACC \\
\hline H & CAA & AAC & ABB & BBC & CAA & AAA & AAC & BCA & ABA & AAB \\
\hline J & CBC & CAA & ACC & ACA & AAA & AAB & CBA & ACA & & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { A A ABBBCCC }
\end{aligned}
\]
\[
\begin{aligned}
& \phi=486 \quad \mathrm{E}\left(\phi_{\mathrm{r}}\right)=284 \quad \mathrm{E}\left(\phi_{\mathrm{D}}\right)=505 \text { (approx.) }
\end{aligned}
\]
(27-element alphabet)
5. The following is a text in the Baudot teletype code enciphered by a simple machine employing five two-position switches which operate polarized relays. Each switch has the function of changing the polarity of its respective baud (a single "mark" or "space" impulse), if the switch is in the 'active' position. If the switch is in the 'inactive' position, the polarity of the baud is unaffected. The switch settings remain constant for each message. As an example, if switches 1 and 4 are active ( \({ }^{*}\) ), and 2,3 and 5 are inactive ( - ), then the word ENEMY is enciphered thus:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline Plain: & MSSSS & S & USSSS & SSIMM & M \\
\hline Cipher: & SSSMS & MSUSS & SSSM & MS & \\
\hline
\end{tabular}

It is suspected that the same signature is in the text as was present in Problem 2. Solve the message and recover the switch settings.


\section*{MEMORANDUM ON THE BAUDOT TELETYPE CODE}

Teletypewriters employ in their operation a fixed-length five-element code similar to the Baconian quinqueliteral cipher. Each character in the code consists of five "mark" or "space" impulses in the 32 possible permutations. However, to allow for a greater number of characters than 32, a "Fig." indicator changes to an upper alphabet and the "Ltr." indicator re-establishes the lower alphabet. The other process symbols, in addition to the space between words, are the CR (carriage return) which returns the carriage to the lefthand margin on the completion of a line; the LF (line feed) which feeds the paper, rolling the carriage to the next lower line; and the "Bell" which rings a bell to signal the operator at the receiving end that there is traffic ready to be transmitted. Below is a diagram of the normal Baudot code in international use; the black dots represent the holes in the teletype tape which are the "mark" impulses, while the "space" impulses are unperforated.


The example below is a Baudot tape, containing the beginning of the phrase 'NOW IS THE TIME FOR ALL GOOD MEN. . . ."


\section*{EXTENSION COURSE OF THE ARMY SECURITY AGENCY LESSON ASSIGNMENT SHEET}

SUBCOURSE 20-6
LESSON 5
CREDIT
TEXT ASSIGNMENT
MATERIALS REQUIRED
SUGGESTIONS
EXERCISES

\section*{Weight}

5 1. a. What is the purpose of providing variants in a cipher system?
5
b. From the cryptanalytic point of view, how does simple monoalphabetic substitution differ from monoalphabetic substitution with variants?

20
2. Solve and recover all keys:


\section*{RESTRHETET}

20
3. Solve'and recover all keys:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & 5 & & & & & 10 & & & & & 15 \\
\hline A & DR & DD & SY & DA & RA & RR & SB & YA & BT & TY & AR & HI & DB & TB & AD \\
\hline B & YY & YB & SA & AA & HI & DA & TD & HR & YB & TD & RB & RI & AI & HH & BT \\
\hline C & DD & IA & AI & BB & HA & YD & TH & YA & HI & BA & YT & YD & YY & BD & YH \\
\hline D & SD & DI & SB & AA & ST & YD & RH & SD & SR & YR & DT & SR & RA & RR & YB \\
\hline E & SA & BT & TY & HR & AI & DB & IB & AD & DY & YB & SA & HA & HI & DA & TD \\
\hline F & TS & DB & SH & YH & DI & SD & TT & TT & YY & HH & ST & YI & SB & AA & ST \\
\hline G & DD & AH & DH & YT & RH & HI & ID & AR & SB & BA & RI & HB & AI & HI & RH \\
\hline H & DB & SH & HA & RI & DA & AI & IB & YB & DI & SI & DD & YA & BB & \(Y T\) & HH \\
\hline J & II & YH & TY & BS & DD & YR & SR & RI & HH & TD & DT & TA & AI & RY & ST \\
\hline K & SH & DH & AB & AI & TI & YT & AH & HY & AR & AI & RH & DI & YD & DD & YA \\
\hline L & TB & DT & HH & SB & AA & DT & DD & RH & YD & DR & YB & DH & SH & SR & DD \({ }^{\circ}\) \\
\hline M & DA & SI & RI & ID & ST & BD & SI & SD & TT & BH & SH & RI & AA & HI & BB \\
\hline N & IS & BI & HI & RH & AY & DB & BA & AI & DH & SH & & & & & \\
\hline
\end{tabular}
4. Solve and recover all keys:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & 5 & & & & & 10 & & & & & 15 \\
\hline A & 99 & 18 & 57 & 82 & 12 & 28 & 78 & 90 & 25 & 04 & 15 & 30 & 04 & 06 & 14 \\
\hline B & 57 & 34 & 64 & 20 & 72 & 15 & 30 & 02 & 57 & 44 & 84 & 52 & 66 & 11 & 81 \\
\hline C & 87 & 58 & 35 & 78 & 31 & 14 & 70 & 90 & 68 & 47 & 30 & 13 & 15 & 21 & 86 \\
\hline D & 92 & 43 & 10 & 30 & 35 & 20 & 31 & 32 & 64 & 18 & 57 & 26 & 84 & 12 & 06 \\
\hline E & 34 & 25 & 69 & 72 & 90 & 78 & 07 & 90 & 31 & 29 & 57 & 50 & 82 & 19 & 53 \\
\hline F & 31 & 72 & 51 & 36 & 10 & 86 & 36 & 47 & 18 & 67 & 26 & 04 & 92 & 82 & 30 \\
\hline G & 08 & 31 & 58 & 90 & 88 & 87 & 91 & 10 & 20 & 82 & 31 & 14 & 56 & 57 & 31 \\
\hline H & 88 & 04 & 31 & 30 & 66 & 47 & 30 & 36 & 18 & 99 & 20 & 06 & 97 & 31 & 21 \\
\hline J & 55 & 99 & 18 & 20 & 10 & 28 & 74 & 68 & 90 & 41 & 69 & 82 & 90 & 78 & 31 \\
\hline K & 86 & 88 & 15 & 91 & 26 & 92 & 72 & 87 & 14 & 43 & 20 & - 53 & 28 & 64 & 92 \\
\hline L & 47 & 02 & 58 & 35 & 10. & 96 & 05 & 34 & 37 & 85 & 06 & 26 & 80 & 50 & 92 \\
\hline m & 68 & 10 & 70 & 81 & 92 & 18 & 02 & 86 & 49 & 47 & 07 & 82 & 94 & 06 & 69 \\
\hline N & 15 & 21 & 90 & 56 & 10 & 40 & 01 & 68 & 90 & 15 & 35 & 57 & 52 & 32 & 60 \\
\hline P & 47 & 64 & 36 & 71 & 06 & 55 & 00 & 68 & 78 & 45 & 52 & 12 & 69 & 43 & \\
\hline
\end{tabular}

\section*{RESTRHGTED}

25 5. This message is suspected of having an ending similar to Problem 4. Solve it and recover all keys:


FREQUENCY DISTRIBUTIONS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{A EI} \\
\hline B & 26187 \\
\hline C & \(-5231\) \\
\hline D & 46187 \\
\hline F & \(2112-\) \\
\hline G & -323- \\
\hline J & 23-92 \\
\hline K & \(1362-\) \\
\hline \(L\) & 23-1- \\
\hline \[
\mathbf{M}
\] & -314- \\
\hline N & \(612-\) \\
\hline & 123 \\
\hline R & 331 \\
\hline S & 421 - - \\
\hline T & \(1251-\) \\
\hline \[
\mathrm{v}
\] & 422 \\
\hline
\end{tabular}


Problem 2


Problem 4


Problem 5

\section*{MEMORANDUM ON STEREOTYPIC BEGINNINGS AND ENDINGS}

Within the confines of the comparatively limited scope of military messages, stereotypy of phraseology is inevitable. Particularly in the beginnings of messages is this limitation apparent: thus these positions lend themselves most readily to attack by the cryptanalyst. The following list of stereotypes have a high frequency of positional occurrence, and therefore are to be shunned by the cryptographer as conscientiously as they are looked for by the cryptanalyst. It is to be noted that a stereotypic initial word often may suggest a whole opening phrase. For example, if a message begins with the word HEAVY, then it is not too unlikely that the opening phrase is "HEAVY ARTILLERY (FIRE, BARRAGE) (FALLING, INTERDICTING) ....," which might be expanded into "HEAVY ARTILLERY FIRE FALLING ON OUR POSITIONS (NORTH, EAST, SOUTH, WEST) OF. .."

BEGINNINGS
ACKNOWLEDGE
ADVANCE
ADVISE
ARRIVE
ATTACK
ATTENTION
CANCEL
CITE
COMMANDING (GENERAL)
LOCATION (OF)
NUMBERS (1, 1st, 2, 2nd, etc.)
ORDERS
OUR
PARAPHRASE
PLEASE
POSITION
PREPARE
PROCEED
COMMUNICATION (OFFICER) RECEIPT
CONCENTRATE RECEIVE
CONFIRM
CONTINUE
DEPART (-URE)
DISCONTINUE
ENEMY
EQUIPMENT
EXPEDITE
FOLLOWING
FOR
FROM
RECOMMEND
REFER (-RING) (TO) (YOUR)
REFERENCE (YOUR) (MESSAGE, RADIOGRAM, TELEGRAM) (NUMBER)
REPEAT
REPORT
REQUEST
REQUIRE
RERAD
REURAD
HEAVY
HOSTILE
INFORM (-ATION)
IN REPLY (TO) (YOUR)
SEND
SUPPLY
VERIFY
YOUR (S)
EŃDINGS
PERIOD
REPLY
REFERENCE
REQUESTED
SIGNED (NAME)
STOP
TITLES (MAJ, COL, ETC.)

\section*{EXTENSION COURSE OF THE ARMY SECURITY AGENCY LESSON ASSIGNMENT SHEET}

SUBCOURSE 20-6
LESSON 6
CREDIT
TEXT ASSIGNMENT

MATERIALS REQUIRED
SUGGESTIONS
EXERCISES
Weight

Military Cryptanalysis, Part I
Polygraphic substitution systems: 4square and 2 -square matrices

3
Text, pars. 41-44, Section IX; attached memoranda
Cross-section paper of 14 inch squares
Review Section VIII, TM 11-485

4
1. a. What is polyliteral substitution? What is polygraphic substitution?

4 b. In true digraphic substitution, if \(\mathrm{RE}_{\mathrm{p}}\) yields \(\mathrm{QN} \mathrm{c}_{\mathrm{c}}\), is it possible for \(\mathrm{RN}_{\mathrm{p}}\) to yield \(A Z_{\mathrm{c}}\) ?
2
c. What is the fundamental purpose of polygraphic substitution?
2. a. Construct a digraphic frequency distribution of the cryptogram below.
b. The following cryptogram is suspected to contain the word INFANTRY.

Solve it and recover all keys:


\section*{RESTRIGTET}

20 3. The enemy is suspected of using a 4 -square matrix wherein the plain components are mixed sequences and the cipher components are standard alphabets ( \(I=J\) ) inscribed in straight horizontals. Solve the following cryptogram and reconstruct the original matrix:
\(5 \quad 10 \quad 15\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A & DO & GV & XX & HA & TP & PN & DF & OW & FS & YN & DP & YK & DP & YK & WH \\
\hline B & WL & IA & NF & OB & DE & GV & HX & vc & OP & RY & OP & DQ & RY & WT & DP \\
\hline C & YK & DP & YK & QZ & FS & IX & GW & DB & AF & HW & NE & vo & YA & LZ & CW \\
\hline D & TY & DQ & GN & WN & NS & IH & CA & VI & HH & OF & WZ & YN & WM & WH & OG \\
\hline E & EV & YN & NL & NK & XI & WH & WL & IA & NF & OB & DE & GV & FS & OF & WH \\
\hline F & NF & OP & DQ & X0 & FA & WN & LQ & DP & YK & BP & IE & DP & YK & SD & NQ \\
\hline G & DP & YK & TP & PN & VT & TF & BL & MW & CW & IE & TE & FS & CY & OK & YD \\
\hline H & OM & XE & VT & FS & IX & HB & IH & MP & YN & LZ & YN & NW & GR & & \\
\hline
\end{tabular} It is suspected that this message probably has a stereotypic ending.
\(510 \quad 15\)

5. The following two messages were intercepted on the same circuit half an hour apart, message " \(B\) " being in answer to a request for a repeat. Solve the texts, and determine the cause of the cryptographic error involved:

MESSAGE "A"
5
10
15


MESSAGE "B"
\(510 \quad 15\)


\section*{MEMORANDUM ON THE SOLUTION OF 2－SQUARE MATRICES}

1．If the student reviews paragraph 34 of TM 11－485，he will refresh his memory on the enciphering and deciphering processes of the two types of 2 －square matrices．In the horizontal 2－square matrix illustrated in Fig．36，the first member of the plaintext digraph comes from the same square as the second member of the cipher－text digraph，whereas the \(\theta^{2}{ }_{p}\) comes from the same square as the \(\theta^{1}{ }_{\mathrm{c}}\) ．Thus in the digram， \(\mathrm{TH}_{\mathrm{p}}=\mathrm{SD}_{\mathrm{c}} ; \mathrm{AN}_{\mathrm{p}}=\mathrm{UO} 0_{\mathrm{c}} ; \mathrm{RE}_{\mathrm{p}}=\) \(E R_{c} ; \mathrm{MO}_{\mathrm{p}}=0 \mathrm{M}_{\mathrm{c}}\) ．However，the cryptography of the vertical 2 －square matrix is analogous to that of the 4 －square system，in that the \(\theta^{1}{ }_{\mathrm{p}}\) and the \(\theta^{1}{ }_{\mathrm{c}}\) come from the upper component， whereas the \(\theta^{2}{ }_{p}\) and \(\theta^{2}\) c are found in the lower component．Thus in Fig．38， \(\mathrm{CO}_{\mathrm{p}}=\mathrm{IA} \mathrm{c}_{\mathrm{c}}\) ； \(\mathrm{RE}_{\mathrm{p}}=\mathrm{IL}_{\mathrm{c}} ; \mathrm{CA}_{\mathrm{p}}=\mathrm{CA}_{\mathrm{c}} ; \mathrm{WI}_{\mathrm{p}}=\mathrm{WI}_{\mathrm{c}}\) ．

2．The cryptographic idiosyncracies of 2 －square matrices may be exploited by the analyst in attacking such systems．In the vertical 2 －square， \(20 \%\) of the possible 625 plain－ text digraphs will be self－enciphered，such as \(\mathrm{CA}_{\mathrm{p}}=\mathrm{CA}_{\mathrm{c}}\) in the example．In the horizontal 2 －square， \(20 \%\) of the 625 digraphs will be enciphered by themselves in reversed form，as in the example \(R E_{p}=E R_{c}\) ．Therefore if an examination of the cryptogram at hand discloses a goodly proportion of cipher digraphs which could well be plaintext digraphs，then one may assume that a vertical 2 －square has been used．On the other hand，if a large number of cipher digraphs could be good plaintext digraphs if the positions of the letters were reversed， then the assumption would arise that the cryptogram was produced by a horizontal 2 －square matrix．Sometimes skeletons of words or even whole phrases are self－evident in the text， affording an easy entering wedge into the problem．

3．During the reconstruction of the squares of the matrix，the student should keep clear on his worksheets which letters are in the same row，and which are in the same column． It will be found expeditious to draw a dividing line（either horizontal or vertical，depending on the type of 2 －square involved）on the page to keep the elements of the two squares in－ dependent，recording the values which are in the same row or column，writing down the letters as they are assumed until enough values have been established to facilitate recon－ struction of the matrix．In the early stages of this process the student must exercise care in recording the letters so that no false relationships are formed；in other words，the values should be written down so that they are not in the same row or column with any other letters than those with which they are known to be related．This will entail spreading the work rather widely over the page．

DIGRAPHIC IDIOMORPHS: GENERAL


\section*{RESTRYGTEF}

\[
A B--\ldots B
\]

\(A B-\) - - \(A B\)
-I \(\mid\) NS TA LL AT IO NS
-C ON CE NT RA TI ON ON FL AG RA TI ON
\(A B-A B A B\)
IN CL IN IN|GMA \(\mid\) IN TA IN IN|G-

\section*{EXTENSION COURSE OF THE ARMY SECURITY AGENGY \\ LESSON ASSIGNMENT SHEET}

SUBCOURSE 20-6
LESSON 7
CREDIT
TEXT ASSIGNMENT
MATERIALS REQUIRED
SUGGESTIONS
EXERCISES
Weight
35
1. What are the characteristics of the normal Playfair cipher which make it recognizable?
20

Military Cryptanalysis, Part I
Polygraphic substitution systems: Playfair cipher systems
3
Text, pars. 45-46, Section IX; attached memoranda
Cross-section paper of \(1 / 4\) inch squares
Review Section VIII, TM 11-485

35
2. Solve the following and recover the keyword:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & 5 & & & & & 10 & & & & & 15 \\
\hline A & Q0 & AP & Q0 & CM & \(P Q\) & BQ & HO & WE & OB & DQ & WE & LC & FT & OF & TE \\
\hline B & 0 C & AO & OC & CK & BX & CM & BV & LF & LX & EX & TW & SD & ND & VL & VR \\
\hline C & FR & XV & AR & VD & LZ & SB & XV & FW & QV & DL & BK & CM & SB & XV & WS \\
\hline D & Q0 & PA & BQ & TE & OC & FR & BV & VQ & QV & TL & VQ & CX & LY & FW & WS \\
\hline E & Q0 & PA & BZ & RF & PV & IV & VD & SZ & TW & XE & WE & OB & IR & DC & PV \\
\hline F & VZ & SD & ND & MD & FV & ZD & MH & ZD & VP & BG & MH & DC & VB & R0 & CK \\
\hline G & PA & AP & MS & AO & TW & XE & VD & LZ & VL & ZR & RZ & LY & OQ & RZ & QR \\
\hline H & CS & AR & DC & MA & YM & MS & BX & LP & TK & TK & DW & & & & \\
\hline
\end{tabular}

20 3. The following cryptogram is suspected to contain the word DIVISION. Solve it and recover the original enciphering square.


20
4. \(a\). Solve the following cryptogram and recover the original enciphering square. It is suspected that this message is signed "WINTHROP COL INF."


2
b. What is the principal disadvantage of such a system for military purposes?
5. The following message was intercepted and solved by the cryptanalytic section at GHQ. The plaintext was found to read: "DIVISION RESERVES HAVE REACHED CROSSROADS EIGHT NINE THREE DASH B." Reconstruct the general system and show the specific key:

GKATJAHPOGFBRCQRBISXCGFLG
KEREDEKOBQRHKUB RZGKERIWKU
KAKUGXKOHKEBFELAKESX
6. From the solution of three Playfair ciphers, the following squares were derived. Reconstruct the original squares and show the keywords.
a. YPTGV

C FALZ
QIUDB
K X ESN
RMOHW
b. Z P E WL

QUGYS
ARHBC
I DVKT
MFXNO
c. W Z R T V

0 P X YL MUHNE ABSIC K Q D FG

\section*{DIGRAPHIC FREQUENCY DISTRIBUTIONS}

ABCDEFGHIJKLMNOPQRSTUVWXYZ
\begin{tabular}{|c|c|}
\hline & ----------22-2------10] \\
\hline \[
\ddot{B}
\] & - - - - 1--1----2---2-2-1 \\
\hline \[
\mathrm{c}
\] &  \\
\hline D & - 3 - - - - - - 1 ---1-1 \\
\hline E & - 1 - \\
\hline F & \(2 \div 1-12\) \\
\hline G & \\
\hline H & \\
\hline I & 1 \\
\hline J & \\
\hline K & \\
\hline \[
\mathrm{L}
\] & --1--1------1-----122 \\
\hline M &  \\
\hline N & - \(2-\) \\
\hline 0 & -23--1 \\
\hline \(P\) & 3-- - - - - - - - \(1-\) \\
\hline Q & --------4-1---2 \\
\hline R &  \\
\hline S &  \\
\hline T & --2----21-------3 \\
\hline U & \\
\hline V &  \\
\hline W & - \(3---------2\) \\
\hline X & - \(2------------3\) \\
\hline Y & \\
\hline & \(2-\cdots \cdots-\cdots-\cdots-1\) \\
\hline & 457107222544846951116527 \\
\hline & \\
\hline
\end{tabular}

ABCDEFGHIJKLMNOPQRSTUVWXYZ


Problem 3

\section*{MEMORANDUM ON PLAYFAIR KEYWORD DERIVATION}
1. Reconstruction of the square in Playfair ciphers takes place concurrently with the evolution of the plaintext, once a few correct assumptions are made. However, the square that is derived may not necessarily be the original enciphering square: more than likely it will be one of the 24 possible cyclic permutations of the original square. If the Playfair consisted of a keyword-mixed sequence, a permutation of the square will cause no difficulty in recovering the original matrix and hence the keyword. For example, if the derived square is Q T L N 0 then the square P Y R A M
\begin{tabular}{ll} 
X Z U V W & I D S B C \\
AM P Y R & EFGGH \\
B C I D S & L N O Q T \\
H K E F G & U V W X Z
\end{tabular}
is easily constructed because of the tell-tale letters UV W X Z occurring in a row of the derivative square. But when the Playfair square consists of a transposition-mixed sequence, then a different procedure must be adopted.
2. As an example, let us take the transposition matrix

58614327 from which A F T D K is the original square. Using the methods illusPYRAMIDS WIHVM
BCEFGHKL GUPBN
NOQTUVWX . ZREQS
\(Z \quad L X Y C O\)
trated in a previous memorandum ("Alphabet reconstruction and keyword derivation"), the columns I D S will afford rapid recovery of the keyword. But if instead of the original H K L V W X
square we had one of its permutations such as Q S Z RE, then the columns F V O are
\begin{tabular}{|c|c|}
\hline C OLXY & T M L \\
\hline DKAFT & V W X \\
\hline VMWIH & \\
\hline B N G U P & \\
\hline
\end{tabular}
without significance; therefore the procedure above is inapplicable without a slight modification.
3. Since it will be noted that a permutation of the rows will not affect the procedure of keyword recovery, then we construct a \(9 \times 5\) rectangle Q S Z R E Q S Z R which contains
the five squares of the successive permutations of the columns. A A \(5 \times 5\) cut-out square will be found convenient in testing each permutation in turn. Affirmative results will be obtained when the correct permutation is reached, which in this case is the third square in the rectangle, namely
```

Z R E Q S
LXYCO
AFTDK
W I H V M
GUPBN

```

\section*{DIGRAPHIC IDIOMORPHS: PLAYFAIR}


\section*{RESTRTCTEか}


\section*{AB BA}

EG
\[
{ }_{-W}
\]
CL

SH
-M IS SI
IS SI
EM
\(-\mathrm{H}\)

\section*{TR AN}
-F IT TI
PE RM IT TI N
-A FT ER NO ON
0 RE NO ON
NO ON TI ME
-F OL LO W-
-H OL LO W-
C OM MO N-
-C OM MO TI ON
PO SI TI ON NO RT HO F-
-R EC ON NO IT ER
OP PO RT UN E-
OP PO RT UN IT Y-
OP PO SE
OP PO SI TE
OP PO SI TI ON
-C OR RO BO RA TE
-C OR RO DE
-T OM OR RO W-
-B OT TO M-
-C OT TO \(\mathrm{N}-\)
-S UC CU MB ED




AB —————BA
\(\left|\begin{array}{llllll}\text { DE } & \text { MO } & \text { NS } & \text { TR } & \text { AT } & E D \\ \text { NO } & T I & F I & C A & T I & O N\end{array}\right|\)

\section*{EXTENSION COURSE OF THE ARMY SECURITY AGENCY LESSON ASSIGNMENT SHEET}

SUBCOURSE 20-6
LESSON 8

CREDIT
TEXT ASSIGNMENT
MATERIALS REQUIRED
SUGGESTIONS
EXERCISES

\section*{Weight}

Military Cryptanalysis, Part I
Polygraphic substitution: quadricular tables
3
Text, Section IX
Cross-section paper of \(1 / 4\) inch squares *
Review Section VII, TM 11-485 NAISSANCE. Solve the text, and reconstruct the enciphering diagram:

51015


\section*{RESTRTATED}

35 2. This cryptogram is suspected of having a beginning similar to that of Problem 1. Solve the text, and reconstruct the enciphering diagram:


35 3. This cryptogram is suspected to begin with the stereotype "REFERRING TO YOUR MESSAGE" or "REFERENCE YOUR MESSAGE." Solve the text, and reconstruct the enciphering diagram:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline A & MRA & DMT & GCI & YIY & MFG & NNL & SRK & QFB & DMD & WII \\
\hline B & DSZ & GNM & IJA & G00 & LGI & DEV & LID & GCI & IYD & LCI \\
\hline c & mat & JIU & PNI & .VZP & LGI & DMY & ITI & POV & GIP & TGO \\
\hline D & PLM & MCH & JPB & MRC & DGK & FWJ & IHC & EKEF & 1D0 & DSZ \\
\hline E & TEN & DGK & FWI & Minm & LeV & EZ2F & TAS & DIP & HMT & TDL \\
\hline F & GTR & Q10 & MZU & ROD & NPC & JNJ & GCI & IQM & UZX & LIY \\
\hline G & NWN & CWQ & MEFF & vod & NWG & PRG & NLC & URP & MIA & DGI \\
\hline H & VRG & NRF & URV \({ }^{-1}\) & PIF & DUJ & TDL & POJ & VRT & DAZ & MRI \\
\hline J & IFX & DGG & DHV & VZP & IQM & ENF & JPC & SMK & JLM & MND \\
\hline \(\mathbf{K}\) & PQW & YZB & O2N & IJY & IPJ & Did & YJP & NIP & ExTr & JPC \\
\hline \(L\) & SHK & JLF & ENG & NPW & FNV & FJJ & IWI & GIT & MOT & EOW \\
\hline M & CRV & WLF & ELE & TSZ & INM & VRS & LIR & TEQ & VRV & QJQ \\
\hline N & MRV & NOV & GIP & RMT & KQX & GCJ & ELC & MZH & PRT & LNM \\
\hline P & LCR & IYR & CZY & GPW & XPA & & & & & \\
\hline
\end{tabular}

\section*{FREQUENCY DISTRIBUTIONS}

Problem 1


Problem 3

\(\theta^{1}\) : \(\quad\) ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\quad \phi=1094\)


\(\theta^{3}\) 。
\[
\text { ABCDEFGHIJKLMNOPQRSTUVWXYZ } \quad \phi=794
\]
\[
E\left(\phi_{p}\right)=1207 \quad E\left(\phi_{r}\right)=696
\]

\section*{EXTENSION COURSE OF THE ARMY SECURITY AGENGY LESSON ASSIGNMENT SHEET}

SUBCOURSE 20-6
LESSON 9
CREDIT
TEXT ASSIGNMENT
MATERIALS REQUIRED
SUGGESTIONS
EXERCISES
Weight

2
2

4

2
25
1. a. What characters are most used in practical cryptography today?
b. What is the usual preliminary procedure in solving cryptograms involving symbols?
c. In monoalphabetic substitution with variants, what characters are most commonly used? Why?
2. What is the primary purpose of an analytical key?
3. Solve the following cryptogram, and recover all keys:
\begin{tabular}{llll}
5 & 10 & 15 & 20
\end{tabular}

25

A

B

C GQYKQLLSUI YKCGS WUFQUUQKCF IWHQK OGSWI.YJYOY SKXFQIADQB YK J Y S VCLLC S SHJWYMJYSXWYKB JUKKUPTPWI IUQHKXHYKB JYCOF YQENV QICUY BIRRWPIYYNPSWJE \(P M I O P U Q A R H K Y Y Q C G W P G E P G A E L\) SVTFELTKBTDXVSXSRMYFQXTSH DTTDYCFXFQ HUSGT GUDXCHSBSO WLHQQ NZHKFJHKIUSWWALHSINW UQQWUSKQSI UMHITUIZWH HPHWU

20 4. Below is an intercepted message which is suspected to begin with the words "FIFTH DIVISION." Solve it and recover all keys:
```

6726786555 7287285237772857
63872 77684 78277886378 3 8528
6237785863 780588625 9 59158
56660 58580 681467055959 277668
59388

```

20 5. This message below is suspected to contain the same plain text as Problem 4. Reconstruct the general system and recover all keys:
```

3559145922886600 24635 78881
77777 84330110435 5539966611
2987258700 2938845008 07 106
97640 02300 31858 06958 97442
022327684991300144090668678
749230010244092 91100 55720
49766.83330 77512 24780 1 1 1 1 0
30663 304446012211898

```

\section*{REF ID:A56886}
-RESTRICTED
25
6. The enemy is using a system incorporating a \(10 \times 10\) bipartite square consisting of letters, digits and syllables. The row and column coordinates are invariable, but a different internal chart is used each day. The chart for 16 December was reconstructed and found to be based on the keyword PYRAMIDS as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 0 & P & Y & R & RA & RE & RED & RES & RI & R0 & A \\
\hline 1 & \(\underline{1}\) & AL & AN & AND & AR & ARE & AS & AT & ATE & ATI \\
\hline 2 & M & ME & I & 9 & IN & ING & ION & IS & IT & IVE \\
\hline 3 & D & 4 & DA & DE & S & SE & SH & ST & STO & B \\
\hline 4 & 2 & BE & C & 3 & CA & CE & CO & COM & E & 5 \\
\hline 5 & EA & ED & EN & ENT & ER & ERE & ERS & ES & EST & F \\
\hline 6 & 6 & G & 7 & H & 8 & HAS & HE & J & \(\emptyset\) & K \\
\hline 7 & L & LA & LE & N & ND & NE & NT & 0 & OF & ON \\
\hline 8 & OR & OU & Q & T & TE & TED & TER & TH & THE & THI \\
\hline 9 & THR & TI & T0 & U & V & VE & \(N\) & WE & X & Z \\
\hline
\end{tabular}

The next day the following cryptogram, suspected to contain the word CROSSROADS, was intercepted. Solve the text, reconstruct the chart for the day, and determine the specific key:


\section*{RESTAHETED}

\section*{PARTIAL ANALYSIS SHEETS}

LESSON 9, MILITARY GRYPTANALYSIS, PART I

\section*{Problem 3}

In taking a uniliteral frequency distribution of this cryptogram, it was observed that the positions of the peaks and troughs of the distribution seemed to change during the compilation. The over-all distribution is
\(87966121020191118995692142210245198213 \mathrm{~N}=300\)
ABCDEFGH I J KLMNOPQRSTUVWXYZ
\[
\phi=4136 \quad \mathrm{E}\left(\phi_{\mathrm{p}}\right)=5983 \quad \mathrm{E}\left(\phi_{\mathrm{r}}\right)=3363
\]

If the cryptogram is divided into two 150 -letter sections, then the distributions are as follows:
\[
54521758109125614210-10214293131
\]
1. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\phi=1144\)
\[
3344555129254342711412810310582
\]
2. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\phi=970\)
\[
\mathrm{E}\left(\phi_{\mathrm{p}}\right)=1520 \quad \mathrm{E}\left(\phi_{\mathrm{r}}\right)=868
\]

When the message is divided into three 100 -letter sections, then
1. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\quad\) T \(\quad\) S
\[
235-4134667322285351526213-
\]
2. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\boldsymbol{\phi}=484\)

1224152115143221171118827522
3. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\quad\) O \(=522\)
\[
\mathrm{E}\left(\phi_{\mathrm{p}}\right)=660 \quad \mathrm{E}\left(\phi_{\mathrm{r}}\right)=381
\]

When divided into four 75 -letter sections, the distributions are
1. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\phi=293\)

1331-21456821-324-61315310-
2. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\quad\) O \(=306\)
\(2221523241222216545423337-\)
3. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\quad\) O \(=212\)

1123-3210513212116-748-7212
4. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\quad\) O \(=322\)
\[
\mathrm{E}\left(\phi_{\mathrm{p}}\right)=370 \quad \mathrm{E}\left(\phi_{\mathrm{r}}\right)=212
\]

Upon dividing the text into five 60-letter sections, the distributions are
: 41-113345323511-4-31813-21
1. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\quad\) O \(=180\)
2. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\phi=200\)
- 32-21-2635-1226321141427-
3. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\quad\) O= 178
4. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\quad\) O \(=156\)

1111-119513212115-617-71-2
5. - ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\phi=238\)
\[
E\left(\phi_{p}\right)=236 \quad E\left(\phi_{r}\right)=136
\]

Finally, upon dividing the cryptogram into six 50 -letter sections, the distributions are
1.
2.
.
3.

4. ABCDEFGHIJKLMNOPQRSTUVWXYZ \(\phi=122\)
5.
ABCDEFGBHIJKLMNOPQRSTUVWXYZ
ABCDEFGH:JKLMNOPQRSTUVWXYZ
\[
E\left(\phi_{\mathrm{p}}\right)=163 \quad E\left(\phi_{\mathrm{r}}\right)=94
\]

This last set of distributions gives the most satisfactory results, both as regards the \(\phi\)-test and also the expected number of blanks (cf. chart on page 25 of Text). From these several sets of distributions we were trying to determine the first two or three sections of the text that were monoalphabetically enciphered. The division not only seems to be approximately 50 letters, but it also appears that practically all the sections are of equal length.

\section*{RESTRTGTED}

\title{
EXTENSION COURSE OF THE ARMY SECURITY AGENCY LESSON ASSIGNMENT SHEET
}

SUBCOURSE 20-6
EXAMINATION
CREDIT
TEXX ASSIGNMENT
MATERIALS REQUIRED
SUGGESTIONS
EXERCISES

\section*{Weight}

Until now the problems of each lesson have followed very closely the order of subject matter in the text, so that the student knew fairly well what types of systems were involved. This examination is designed to test the student's power of observation and logic in determining the general cryptographic system. All that is required in the five problems below is the determination of the general system, together with the reasons for the particular classification. Solution of the message texts is not mandatory, but strongly recommended: recovery of the plaintexts and specific keys certainly would furnish the student with irrefutable proof of the validity of his hypotheses.
1. LWHPCXBVLWHVKZJPBPGRBXHSL QKRHV FRLXBTCSBPKSBZKRCNBP FWHPDWHVGTBPDSBNDQKWFTBVF QFRHR.DZDSHPDQKZ BXGVHNLRFX HQCZK SBVJQMRHXBSLQBRFWJSB TKZHWMSBNLSBQBXKSDTHTMNHP CTBPHVDSJV DWHVH NLQHPCQCRB RLWKR HVFXFRBNCSBPJPHVDZFZ BVLWCWBZFSBWBPLXXXXX
2. EMURB WPZLSERMWUROBOP UWBWB QTIONIYBHY VMIWBEGOPSCDVCC ODCXSOUDIYMCYXDYHSOUSMONB QTIONOBOPZDNOILLBERORTREM DTENRTBNTAKBCOO BOBEZ SKZZS MEGEBDFGNSHRLIXSESVRLESUU SKSPEWLDEGBWDMTZTIONSIVME RETAK PHTIM BHHOHIZUDMOEKHP

20
3. GHUIPGJHNI MBSPRIUSNS SHPGB
\(\therefore R Q S A J O O Q R S S I P Q S M H V J I P Q I V V\) JFKIH GSANYPTKKDYJKQXZVNPR OQNJSNUYEFENPZVNPROQQTKLN FFHON QUPOQ HUQTVOTNDO JTKLP OWOJTEJWNQ EKJAETOUTI QQGTB ANNKZXVUKREMMQR RTEII KVPXV UKRREMWKIKVPXVUDAEIPRSQII GWQLQ UXVVXVUATGWQQVP offensive.

Message "A"
ILPURPSBOK YBDGY YNCNPVXHCJ ROKFI NPXVPEWHLXKWYXQBVYDB Y Y Z C X

Message " \(B\) "
RBVYW BYYZCTHEEB MMEZIABXHW SYXCKNNBYMSXQDYAEPCX
5.

SWWSNSDWPNXDFPF DSCDFAWKDM VDZFDQYINBPGPPGLATNNTQRTS IHYXM OUPWNYTVAP UGOBZRZFQI HNDKD XDAUBODFFDINWTWUPGBO ALDWK XUBIZ ZPPGI NAEAR ZAUMM UXIYVIOEXFQWPWIQDAROZFYHI PMBOO BADNWTBBTAGBZPHWSQRO BWINT AVZOX FFYNG DQOZHYXZZX NGDNI FTRWI AUPRRPVSON MBGSP Z G Q D F

\section*{RESTRICTED}

\section*{RESTRICTED}```

